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Abstract

There is increasing evidence that the rapid and anomalous changes in climate

experienced in the last century have had widespread ecological impacts. Indeed, sub-

Antarctic Marion Island has experienced particularly large increases in temperature

and declines in rainfall. However, the effects of these changes on the island's

extensive fellfield vegetation remain largely unexamined. The aim of this study was

to examine the sensitivity of a dominant and keystone fellfield plant species, the

cushion-forming Azorella selago Hook. (Apiaceae), to changes in climate. Three

complementary approaches (two mensurate, one experimental) were used, and all

showed that A. selago is likely to change in response to further changes in climate.

First, the unimodal age class distribution of A. selago suggested that the species'

establishment is episodic, and therefore reliant on specific (possibly climatic)

conditions. Azorella selago growth rate was related to environmental factors,

suggesting that both the establishment and growth rate of the species is likely to be

sensitive to changes in climate. Second, altitudinal variation in A. selago plant

attributes suggested that the species' morphology would be responsive to changes in

climate (assuming that a spatial gradient in climate is a suitable analogue for similar

changes in climate over time). Plant height, leaf size and trichome density differed

most consistently over altitude across the island. The altitudinal range of some

epiphyte species, as well as the cover and species richness of epiphytes growing on A.

selago, also showed consistent patterns along the altitudinal gradient. These cushion

plant and epiphyte attributes appeared to be related to climatic factors, and are

therefore predicted to change in response to further shifts in climate. Finally, A.

selago showed a rapid vegetative response to short-term experimental reductions in

rainfall and increases in temperature and shading. Reduced rainfall accelerated

autumnal senescence, shortening the species' growing season. Plants were relatively

unaffected by the magnitude of warming imposed, although the foliar nutrient

concentrations of some elements were higher in warmed plants than in control plants.

Experimental shading of A. selago (simulating a predicted indirect effect of climate

change: increased cover of the dominant epiphyte species, Agrostis magellanica

(Lam.) Vahl (Poaceae)) caused greater stem elongation, and the production of larger,

thinner leaves, with lower trichome densities and higher foliar nutrient concentrations

of some elements. Given this sensitivity of A. selago to shading, it is possible that
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changes in epiphyte load could overshadow the direct effects of changes in climate on

this species. Ongoing changes in climate are predicted for the next century. Based on

the results of this study the following scenarios are proposed. Continued warming and

drying of the island will potentially favour the upslope expansion of A. selago

(although also shortening its growing season) and decrease the abundance of its

dominant epiphyte. Under such a scenario fellfield primary production may decline.

In contrast, under warming alone, most epiphyte species could increase in abundance

and expand their altitudinal ranges upslope. This would bring about much heavier

shading of A. selago plants, leading to a short-term increase in stem growth and leaf

nutrient concentrations. However, ultimately a decline in A. selago abundance and

production would also be expected if cushion plants experience stem mortality under

longer-term shading. Nonetheless, monitoring A. selago leaf size, trichome density

and phenology, as well as the altitudinal range of dominant epiphyte species

(attributes that this research suggests may be most sensitive to short-term changes in

climate), will indicate the biological consequences of these changes in climate. This

study, therefore, shows that further climate changes on Marion Island will affect A.

selago and its epiphytes, with likely repercussions for fellfield communities.
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Opsomming

Daar is toemende bewys dat die vinnige en onreëlmatige veranderinge in klimaat oor

die laaste half-eeu wye ekologiese gevolge gehad het. Inderdaad, sub-Antarktiese

Marion Eiland het 'n ook 'n besondere groot toename in temperature en daling in

reënval ervaar. Nogtans is die gevolge van hierdie veranderinge op die eiland se

uitgebreide dorveld (fellfield) plantegroei nog nie nagevors nie. Die doel van hierdie

studie was om die sensitiwiteit van 'n dominante hoeksteen spesie, die kussing-

vormige Azorella selago Hook. (Apiaceae), aan veranderinge in klimaat te ondersoek.

Drie aanvullende metodes (twee waarnemend, een eksperimenteel) was gebruik, en al

drie het aangedui dat A. selago waarskynlik sal reageer op verdere veranderinge in

klimaat. Eerstens, die enkelpiek-vormige ouderdomsverspreiding van A. selago dui

daarop dat die spesie ongereeld vestig, en is daarom afhanklik van spesifieke (dalk

klimatiese) toestande. Verder, was A. selago se groeitempo aan omgewingsfaktore

verwant. As gevolg hiervan sal die spesie se vestiging en groeitempo vermoedelik

sensitief vir klimaatsveranderinge wees. Tweedens, veranderinge in A. selago

eienskappe met 'n toename in hoogte bo seespieël (hoogte) dui daarop dat die spesie

se morfologie sal reageer op veranderinge in klimaatstoestande (op voorwaarde dat 'n

ruimtelike verandering in klimaat goed ooreenstem met 'n soortgelyke verandering in

klimaat oor tyd). Planthoogte, blaaroppervlakte en trigoomdigteid het geleidelik met

hoogte verander oor die eiland. Die verspreiding en bedekking van sommige epifitiese

spesies, asook epifiet spesie rykheid, was ook aan hoogteverwant. Hierdie

verwantskap tussen A. selago (en die epifiete) en hoogte is vermoedelik deur

klimatiese faktore veroorsaak, en daarom word voorspel dat dit sal verander soos die

klimaat verander. Laastens, het A. selago 'n vinnige vegetatiewe reaksie tot kort-

termyn eksperimentele vermindering in reënval en toename in temperatuur en

beskaduwing gewys. 'n Afname in reënval het blaarveroudering versnel, en dus A.

selago se groeiseisoen verkort. Plante het min verander as gevolg van hoër

temperature, alhoewel die konsentrasie van sommige plantvoedingstowwe hoër was in

blare van verwarmde plante as in die wat gewone temperature ervaar het.

Eksperimentele beskaduwing van A. selago (wat 'n verwagde indirek effek van

klimaatsverandering naboots, naamlik die toename in bedekking van A. selago deur

die dominante epifiet spesie, Agrostis magellanica (Lam.) Vahl (Poaceae)) het stingel

groei versnel, en veroorsaak dat groter en dunner blare met laer trigoomdigthede en
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hoër konsentrasies van sommige plantvoedingstowwe op die plante groei. As gevolg

van die sensitiwiteit van A. selago op beskaduwing, is dit moontlik dat die gevolge

van veranderinge in die bedekking van epifiete belangriker sal wees as die direkte

gevolge van klimaatsverandering. Verdere klimaatsveranderinge word vir die

volgende eeu voorspel. Gebasseer op die resultate van hierdie navorsing, word twee

moontlike toekomstige omstadighede voorgestel. Toenemende verwarming en

verdroging van die eiland sal vermoedelik veroorsaak dat A. selago op hoër hoogtes

voorkom (alhoewel die spesie se groeiseisoen ook sal verkort), en dat die volopheid

van A. magellanica sal afneem. In so 'n geval sal dorveld se plantproduksie

waarskynlik effens verminder. In teenstelling, as die eiland slegs verwarm (sonder 'n

verandering in reënval) kan die volopheid en verspreiding van epifiet spesies

waarskynlik toeneem. Dit sal vermoedelik tot 'n toename in the verskaduwing van A.

selago lei, wat tot 'n kort-termyn verhoging van stingel groeitempo en

plantvoedingstof konsentrasies sal lei. Alhoewel, uiteindelik, word 'n vermindering

van A. selago volopheid en groei verwag as plantstingels van lang-termyn

beskaduwing vrek. Nietemin, as die blaargroote, trigoomdigteid en groeiseisoenlengte

van A. selago en die hoogte verspreiding van die dominante epifiet spesie gemonitor

word (eienskappe wat deur hierdie studie aangedui is as gevoelig aan kort-termyn

veranderinge in klimaat), kan die biologiese gevolge van hierdie klimaatsveranderinge

aangewys word. Hierdie navorsing bewys dus dat verdere veranderinge in klimaat op

Marion Eiland 'n invloed sal hê op A. selago en geassosieerde epifiete, met moontlike

gevolge vir die hele dorveld gemeenskap.

IV
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Chapter 1: General introduction

There is increasing evidence that the rapid and anomalous changes in climate

experienced in the last century have had widespread ecological impacts (Hughes,

2000; McCarthy, 2001; Walther et aI., 2002; Parmesan and Yohe, 2003).

Anthropogenic activities have changed the earth's atmospheric composition and land

cover, altering the planetary energy budget by reducing the loss of long wave

radiation to space (IPCC, 2001). As a consequence, mean global surface temperatures

have risen by 0.6 °C over the last 100 years, changing at a rate unprecedented in the

last millennium (Callaghan et al. 1992; IPCC, 2001). Warmer air masses have

accelerated the global hydrological cycle, increasing precipitation in some areas, as

well as altering cloud and wind patterns (IPCC, 2001).

These changes in climatic conditions have altered the abundance, distribution,

physiological performance and phenology of species (e.g. Grabherr et aI., 1994;

Menzel and Fabian, 1999; Parmesan et aI., 1999; Thomas and Lennon, 1999; Sturm et

al., 2001; Fitter and Fitter, 2002; Pefiuelas and Boada, 2003; Saavedra et al., 2003;

Sanz-Elorza et aI., 2003). Altered environmental conditions have also caused the

spatial and/or temporal disassociation of communities (due to individualistic

responses to changes in abiotic factors: Harrington et aI., 1999; Stenseth and

Mysterud, 2002), in addition to changing ecosystem-level processes (due to changes

in community composition and species dominance: Kennedy, 1995b; Brown et aI.,

1997; Chapin et aI., 1997). In the near future, however, even larger impacts can be

expected, since the changes in climate already experienced are small relative to those

predicted for the next century (IPCC, 2001). Further planetary warming of up to 5.8

oe is possible within the next 100 years, and even under a best-case scenario further

warming of 1.4 °C is expected (IPCC, 2001).

Climate change in polar and sub-polar systems

High latitude ecosystems are ideally suited to studying the biological consequences of

these changes in climate, because they have three main advantages over other systems

for climate change research (Callaghan et aI., 1992; Kennedy, 1995b; Bergstrom and

Chown, 1999; Davies and Melbourne, 1999; Smith, 2002). First, high latitude

ecosystems, in agreement with recent trends, will experience the largest and most

1
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rapid changes in climate (Callaghan et al., 1992; IPCC, 2001). At high northern

latitudes, warming greater than the global average (up to 8 °C over the next 100 years)

and large increases in precipitation are likely (IPCC, 2001). Similar changes are

predicted for the southern hemisphere (4 - 6 °C warming over Antarctica: IPCC,

2001), and are supported by recent climate trends. For example, the Antarctic

Peninsula has warmed by 1 °C in summer and 4 - 5 °C in winter over the last 50 years

(Robinson et al., 2003; although localized cooling has also occurred, see Doran et al.,

2002). These changes represent considerable and rapid shifts in climatic conditions.

Second, the biological responses to changes in climate are expected to be most

pronounced at high latitudes (Davies and Melbourne, 1999). Polar and sub-polar

species are thought to be near their physiological limits and will therefore show

disproportionately large responses to changes in climate (Davies and Melbourne,

1999). Further, these systems are becoming more susceptible to colonization by exotic

species that are able to respond more rapidly to the ameliorating climatic conditions

(Bergstrom and Chown, 1999; Davies and Melbourne, 1999). As a result, large

changes in species' distributions and community function and composition are

expected (Bergstrom and Chown, 1999).

Finally, the biological responses to climate change may be most discernable at

high latitudes. As a result of generally low species richness, the influence of biotic

factors are minimal relative to abiotic effects, and climate change impacts are thus

more easily identified (Callaghan and Jonasson, 1995; Callaghan et al., 1997). High

latitude areas are also among the least disturbed ecosystems globally and therefore

allow the effects of climate change to be observed unconfounded by other

anthropogenic effects (Callaghan et al., 1997). These characteristics make high

latitude ecosystems potentially sensitive indicators of the biological effects of climate

change.

Indeed, long-term monitoring programs at high latitudes yield evidence of

these advantages. For example, Sturm et al. (2001) documented increased shrub

abundance in the Alaskan Arctic during the past 50 years, which correlates with

higher temperatures in the region over the same period. In addition, by examining

seasonal cycles of atmospheric CO2 concentration, Myneni et al. (1997) found a seven

day increase in the length of the growing season at high northerly latitudes between

1981-1991, which is also thought to be due to rising temperatures. Finally, long-term-

monitoring in the Antarctic has revealed increases in the abundance and distribution

2
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of the continent's two native phanerogams, correlating with recent warming trends

(Smith, 1994).

Undeniably, climate change research at high latitudes has revealed much about

the biological consequences of changes in climate. For example, in Arctic and sub-

Arctic ecosystems, community production consistently increases under nutrient

addition (simulating enhanced atmospheric deposition and mineralization under

warming), but is unaffected by changes in temperature and rainfall. Similarly, at the

species-level, plant functional type is a good predictor of species' response to changes

in temperature and nutrient levels. However, beyond these broad patterns, no other

generalizations can yet be made other than the individualistic nature of species'

responses (Arft et al., 1999; Dormann and Woodin, 2002). For example, plant species

differ in their sensitivity to changes in temperature, water availability, light and

nutrients (Chapin and Shaver, 1985; Chapin et al., 1997). In addition, species'

responses are often spatially (high vs. low latitude: Havstrëm et al., 1993; Wookey et

al., 1993; Arft et al., 1999) and temporally (short- vs. long-term response: Chapin et

al., 1995) variable, suggesting the need for further species-level studies (particularly

of dominant species) if the effects of climate change are going to be predicted with an

accuracy exceeding the coarse scale enabled by current generalizations. This is

possibly particularly true for the high latitude southern hemisphere ecosystems that

are ecologically distinct from northern hemisphere equivalents and relatively poorly

researched (Smith and French, 1988; Callaghan et al., 1992).

Prince Edward Islands

The sub-Antarctic Prince Edward Islands (comprising Prince Edward Island and the

larger Marion Island) are a high latitude southern hemisphere system suited to

studying the effects of climate change. These islands have recently experienced large

and rapid changes in climate, as evidenced by a continuous weather record on Marion

Island, which shows a significant increase in temperature (1.2 °C) on the islands over

the last 50 years (Smith, 2002). Considering the oceanic climate of the islands (mean

annual temperature 5.1 °C, mean diurnal variation 1.9 °C: Schulze, 1971), this

represents considerable warming. Similarly, a 25% reduction in rainfall (i.e. 700 mm

less) since the 1960's also constitutes a substantial change in climate (Smith, 2002).

3
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Finally, the number of sunshine hours on the island has increased significantly since

the 1950's, indicating a reduction in cloudiness over the island (Smith, 2002).

The biological consequences of these changes in climate are already evident

on the islands. For example, the cover of a temperature-sensitive sedge, Uncinia

compacta R. Br. (Cyperaceae), increased significantly between 1973 and 1992 on

Prince Edward Island, probably in response to the warmer, drier conditions over that

period (Chown and Smith, 1993). Recent warming is also thought to be responsible

for higher population densities of the introduced house mouse (Mus musculus L.

Muridae) on Marion Island (Smith, 2002), and thereby indirectly affecting the

indigenous species that the mice feed upon (e.g. the sedge Uncinia compacta and

ectemnorhinine weevil species; Chown and Smith, 1993) and compete with (e.g.

Lesser Sheathbills Chionis minor; Huyser et al., 2000).

Various species-, community- and ecosystem-level predictions have been

made for the effects of future changes in climate on Marion Island. For example,

under rising temperatures, vascular plants are expected to spread to higher altitudes on

the island (to the disadvantage of bryophyte communities: Smith and Steenkamp,

1990). Interestingly, the island's vegetation is predicted to be more sensitive to

changes in rainfall and wind than to temperature, because these factors appear to more

strongly determine the character of the vegetation growing at a site (Gremmen, 1981;

Smith and Steenkamp, 1990). Indeed, this has already been shown for the lichen

Turgidosculum complicatulum (Nyl.) Kohlm. et Kohlm. which has a coastal

distribution on the island. This species' carbon acquisition will change little under 2

°C of warming, but could show large changes in response to altered moisture levels

(Smith and Gremmen, 2001). At the ecosystem-level, the ameliorating climate

conditions are expected to increase primary productivity. However, as outlined by

Smith and Steenkamp (1990), mouse predation on soil invertebrates could depress

decomposer populations to a level where nutrient demand by the vegetation exceeds

nutrient mineralization by the invertebrates, leading to imbalances between

production and decomposition. Further, warmer conditions are thought to be more

favourable for the establishment of exotic species, as well as for the spread of

established exotics (Bergstrom and Chown, 1999; Smith, 2002), with potentially

serious consequences for community structure and functioning (see e.g. Gremmen et

al., 1998).

4
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However, as for most other research on Marion Island (Smith et al., 2001),

these predictions and observations are biased towards the coastal vegetation. As a

result, the effects of climate change on the higher altitude fellfield vegetation remain

unexamined, despite the large area this vegetation type covers on Marion Island and

the rest of the sub-Antarctic (Barendse and Chown, 2001). Thus studies of the

dominant fell field plant species are necessary to improve our understanding of the

biological consequences of climate change on the Prince Edward Islands.

Azorella selago

Azorella selago Hook. (Apiaceae) is the dominant vascular fell field species (Fig. 1;

Huntley, 1972; Orchard, 1989; Frenot et al., 1993). It is a long-lived, pioneer species

with a cushion growth form (Frenot et al., 1993), occurring across much of the sub-

Antarctic (see Chapter 3, page 44 for more information about the distribution of the

genus). The species is also common in a variety of other habitats. For example, thy

species occurs from sea-level to 765 m a.s.l. on Marion Island (Moore, 1968;

Gremmen, 1981; Smith et al., 2001) and between 450 and 1150 m a.s.l. on Tierra del

Fuego (Orchard, 1989; Mark et al., 2001). Generally, A. selago is most common in

cold and exposed areas, where its growth form is thought to reduce wind stresses and

the plant's rate of heat and moisture loss (Ashton and Gill, 1965; Huntley, 1971;

Callaghan and Emanuelsson, 1985; Wickens, 1995).

Azorella selago cushions have a central taproot, from which stems anse

radially and branch dichotomously (Frenot et al., 1993). lts leaves are small, tough

and lobed, and its petioles form a sheath around the stem (Orchard, 1989). The

surface of the plants is hard and compact because its leaves are tightly packed and its

stems grow closely against each other (Orchard, 1989). Cushion growth stops in

autumn, and by winter all leaves have senesced. However, cushions retain these old

leaves, forming a rich, moist, humus-like collection of organic matter inside the plant

(Huntley, 1971). The species can show marked morphological variability, apparently

linked to its environmental conditions (Huntley, 1972). For example, cushions

growing in sheltered environments tend to have a longer growing season, faster stem

growth, larger leaves and a more hemispherical growth form than those from more

exposed locations (Huntley, 1971, 1972).

5
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Cushions can host dense and diverse epiphyte (Huntley, 1972) and

invertebrate communities (Barendse and Chown, 2001; Hugo et aI., submitted). At

higher altitudes some plant species are limited to epiphytic growth on the cushions

(Huntley, 1972) and invertebrate density in cushions greatly exceeds that on the

surrounding soils (Barendse and Chown, 2001). The grass Agrostis magellanica

(Lam.) Vahl (Poaceae) is the dominant epiphyte on the cushions (Fig. I), although at

least another 15 vascular plant species and numerous bryophyte and lichen species

also grow epiphytically on the cushions (Huntley, 1971; pers. obs). As a result of

varying epiphyte cover, autumnal senescence and environmental conditions, cushions

can have diverse and complicated surface cover (Fig. 2).

Azorella selago is a keystone species on Marion Island (sensu Begon et aI.,

1996), in part because it hosts considerable densities of epiphytes and invertebrates,

but also due to its contribution to biomass, succession and geomorphological

processes on the island (Huntley, 1972; Smith, 1978; Scott, 1985; Frenot et aI., 1998;

Selkirk, 1998; Boelhouwers et aI., 2000). Marion Island supports 38 vascular plant

species (including 14 introduced species) and approximately 40 liverwort, 80 moss

and 100 lichen species have been recorded on the island (Smith, 1978; Smith and

Steenkamp, 1990). However, A. selago is one of only six species that contribute

significantly to the islands' standing crop (Smith, 1978). Azorella selago also plays an

important role in succession on Marion Island (Scott, 1985; see also Frenot et aI.,

1998), since it is able to colonize loose scoraceous slopes, recent lava flows and

glacial forelands of retreating glaciers (Huntley, 1972; Frenot et aI., 1998). The

species may also influence geomorphological processes on the island (see e.g. Selkirk,

1998; Boelhouwers et al., 2000).

Because of A. selago's slow growth and longevity and the harsh environment

within which it grows (Huntley, 1972; Frenot et aI., 1993), the species can be

considered a stress-tolerator (sensu Grime, 1979, 2003), and is therefore expected to

respond slowly (if at all) to changes in climate. Indeed, Frenot et al. (1993) found

small climatic fluctuations to have no effect on cushion growth rate on Kerguelen

Island, and Huntley (1972) suggested that the species' phenology is "temperature-

insensitive". Nevertheless, this species' response to climate change requires

investigation because this has not been tested explicitly, and because it is an important

component of fellfield habitat.

6
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Thesis aims and outline

The objective of this research was to investigate the sensitivity of Azorella selago to

changes in climate. To achieve this, three complementary methods were employed to

examine the responsiveness of the species to climate change (study sites shown in Fig.

3).

First, the assumptions and accuracy of a procedure for aging cushion plants

(McCarthy, 1992; Frenot et aI., 1993; Molau, 1997; McCarthy, 1999) were tested, and

the age structure of A. selago populations examined (reported in Chapter 2). The age

class distribution of a population enables population dynamics to be inferred and can

reveal the influence of past events (Callaghan and Emanuelsson, 1985; Callaghan and

Carlsson, 1997).

Second, the variation III A. selago morphology and its epiphytes was

documented along three altitudinal transects (reported in Chapter 3). Examining A.

selago's response to gradual spatial changes in climate suggests how it might respond

to similar changes in climate over time (Fielding et aI., 1999; Tweedie, 2000; Rustad

et al., 2001; Smith et al., 2002).

In the fourth chapter, the short-term vegetative response of A. selago to

changes in rainfall, temperature and shading was experimentally determined. As

highlighted by Havstrëm et al. (1993) and Kennedy (1995a), experimental studies are

difficult to conduct in a "controlled and realistic manner", but are an important

complement to other methods since they enable the effect of specific factors to be

examined within otherwise natural conditions (Wookey et aI., 1993). By using a

procedural control and measuring the changes in microclimate affected by the

treatments, the effects of two abiotic (i.e. reduced rainfall and increased temperature)

and one biotic (i.e. increased shading by epiphytes) change on A. selago were

assessed.

Each of these chapters was written as an individual manuscript and there is

thus some repetition in each. Finally, a general conclusion (Chapter 5) provides a

brief summary of the findings from the preceding chapters, and discusses the potential

of A. selago and its epiphytes for monitoring the biological consequences of climate

change.

7
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FIGURE 1. The sub-Antarctic cushion plant Azorella selago, supporting a dense epiphyte load of

Agrostis magellanica The matchbox (52 x 41 mm) is provided for scale.
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FIGURE 2. Portion of an Azorella selago cushion, supporting epiphytic bryophytes (Ditrichum

sp.) and small Agrostis rnagellanicagrasses (approximately one and a halftimes life-size).
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1--+--+---+--+--115 km

FIGURE 3. Schematic of Marion Island indicating the location of the study sites (transects -

straight lines; quadrats - squares; site of experiment - circle) and the 500 and 1000 m a.s.l.

contour lines. The maximum altitude (in m a.s.I.) of each transect, the mean altitude of each

quadrat and the site of the experiment, and the location of the scientific base and

meteorological station (Base) are also indicated.
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Chapter 2: The use of size as an estimator of age in the sub-Antarctic cushion

plant, Azorella selago (Apiaceae)

Introduction

Rising concern about the effects of current environmental change has led to increased

interest in past environments (Bluemle et al., 1999; Trotter et al., 2002). However, the

scarcity of historical records and information from long-term monitoring programs

has necessitated the reconstruction of past environmental conditions from proxy

records of climate and geomorphology (e.g. Bluemle et al., 1999; Mann, 2002). For

example, dendrochronology, and in some cases lichenometry, has been used to

reconstruct local temperature and precipitation levels (e.g. Vogel et al., 2001; Cook et

al., 2002), glacial fluctuations, debris flow and snow-avalanche frequencies

(McCarroll, 1993; Winchester and Harrison, 1994; Winchester and Chaujar, 2002)

and to estimate the age of landforms and surface features (Winchester and Harrison,

2000; Bradwell, 2001). Compared to methods such as the analysis of isotope ratios or

pollen records, phytometric techniques (i.e. the use of plant growth or performance as

a surrogate for an unmeasured variable) can potentially provide information on

comparatively more recent environments and at finer spatial and temporal scales

(Callaghan et al., 1989; Trotter et al., 2002).

Although most widely applied, dendrochronology and lichenometry are not

the only phytometric methods that have proved useful for estimating the age of

individual plants and the minimum time since substrate disturbance. For example,

Callaghan et al. (1989) estimated the age of Cassiope tetragona (Ericaceae, evergreen

dwarf shrub) in the Arctic from seasonal patterns in the sizes of leaves produced.

Methods such as this are particularly useful because they extend the application of

phytometric methods to higher latitudes, where trees and known-age sites may be

absent (often precluding the use of traditional dendrochronology and lichenometry

respectively; although see e.g. Elvebakk and Spjelkavik, 1995; McCarthy, 2003).

Indeed, it is in the polar and sub-polar regions where long-term environmental data is

especially valuable, because the rate and magnitude of climate change is high in these

areas, and is predicted to remain so (IPCC, 2001).

Previous studies have demonstrated the phytometric potential of cushion

plants (dicotyledonous plants with a cushion-type growth form) (e.g. McCarthy, 1992;
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Molau, 1997), which are a conspicuous component of high latitude vegetation

(particularly in the southern hemisphere; Aleksandrova, 1980). In the sub-Antarctic

(Kerguelen Island), Frenot et al. (1993) estimated the age of the cushion plant

Azorella selago Hook. (Apiaceae) as the ratio of plant size to annual growth. A. selago

is a long-lived species with a wide altitudinal range and broad geographic distribution

in the sub-Antarctic. As a result, the species could potentially be used to estimate the

age of landforms and contribute to the understanding of geomorphological processes

across the region (see e.g. Winchester and Harrison, 2000; see Hall, 2002 for review

of sub-Antarctic periglacial landforms and processes).

The results of any phytometric analysis must, however, be interpreted

cautiously. In dendrochronology, for example, missing annual growth rings, false

rings, irregular growth patterns and incorrect sampling height can lead to false age

estimates (Vogel et al., 2001; Niklasson, 2002). Lichenometric analyses have similar

problems and simplistic assumptions that disregard lichen biology, ignoring in

particular the spatial and temporal variability of growth rates due to local differences

in habitat, climate and competition (McCarthy, 1999; Winchester and Chaujar, 2002),

reduce the method's reliability. Therefore, researchers in the field have highlighted

the importance of testing the assumptions of phytometric methods and of recognizing

their limitations (McCarthy, 1997, 1999; Winchester and Harrison, 2000; Trotter et

al.,2002).

The phytometric model outlined earlier implicitly assumes plant growth rate to

be independent of space and time, and to vary randomly around a mean growth rate

for the extent of the area examined. If growth rate varies in a non-random fashion

(e.g. in response to competition or variation in local habitat suitability), then mean site

growth rate will not be representative of the annual size increase of all plants at a site.

This may greatly reduce the reliability of plant age estimates. However, the validity of

these assumptions, and the effect of their likely violation on age estimates, can

currently not be assessed because there are few published studies documenting the

growth of A. selago (Huntley, 1972; Frenot et al., 1993, 1998).

The objective of this study was thus to test if the phytometric model (outlined

by Frenot et al., 1993) can potentially provide unbiased and accurate age estimates for

A. selago on sub-Antarctic Marion Island (Prince Edward Islands: 46°55'S, 37°45'E).

We quantify the spatial variability in A. selago and evaluate the effect of this

variability on the accuracy of the phytometric model. The relationships between plant
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growth rate, plant size and a suite of spatial (altitude and position on the island which

are used as surrogates for abiotic environmental variation) and biotic (nearest

neighbour characteristics and epiphyte load) variables were examined 1) to test the

phytometric model's assumption that growth rate varies independently of plant size,

and 2) to identify the relative influence of spatial location and selected biotic variables

on plant size and growth rate. A simulation model is used to evaluate the sensitivity of

the phytometric model's age estimates to the variability around mean site growth rate

found. These results are then used to evaluate the efficiency of A. selago as a

phytometer.

Methods

Azorella selago and the phytometric model

Azorella selago is a cushion-forming perennial that grows in a variety of habitats, and

is able to colonize recently deglaciated and high-altitude areas (Huntley, 1972; Frenot

et al., 1993). It often dominates the vegetation of these habitats (Huntley, 1972), and

is widespread across the sub-Antarctic (Moore, 1968; Frenot et al., 1993).

Azorella selago cushion are commonly hemispherical on Marion Island, with

short stems carrying simple leaves and growing radially from the center of each plant

(Orchard, 1989). At the plant's surface both the leaves and the stems grow tightly

against each other, creating a hard and compact surface. A. selago leaves tum brown

at the start of the austral winter, and discontinuities in the colour ofleaves retained on

the stem allow up to the past five years' growth to be determined (a method requiring

destructive sampling; used by Frenot et al., 1993). Alternatively, the growth rate of A.

selago plants can be measured by quantifying annual increases in the size of each

plant (a non-destructive method facilitated by the plants' compact surface; used by

Huntley, 1972). In this study, Huntley's (1972) non-destructive method was

considered more appropriate for use within a conservation area.

Frenot et al. 's (1993) model estimated plant age as:

Age(years)- Size(mm) /
- / Growth rate (mm1year) ... Eq.l,

where size was measured by plant diameter and growth rate as the annual increase in

plant diameter. On Marion Island, growth rate was measured as the annual increase in
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plant height, and accordingly plant size was measured as plant height. In this study we

used vertical growth rather than radial growth (following Huntley, 1972), because

vertical growth markers were considered to be less damaging to the plant and less

susceptible to disturbance. The assumptions and rationale of Frenot et al.'s (1993)

model are identical regardless of the measure of plant size (and its associated measure

of growth rate) used.

Study sites

Marion Island (46°55'S, 37°45'E; the larger of the two Prince Edward Islands)

experiences an oceanic climate, characterized by low (mean temperature in warmest

month 7.3 °C, and in coldest month 3.2 °C) but stable temperatures (mean diurnal

variation 1.9 °C), high relative humidity (on average 83 %), cloud cover and rainfall

(approximately 2500 mm per annum, distributed evenly throughout the year), and

strong winds (dominated by prevailing westerly winds; exceeding gale force on more

than 100 days per year: Schulze, 1971). Marion Island is of volcanic origin and has a

dome-like profile, rising to 1230 m a.s.l. (Verwoerd, 1971). Three transects and three

quadrats of A. selago were sampled between April 2001 and April 2002 (see Fig. 3,

Chapter 1, page 15). Transects were orientated along the altitudinal gradient on the

island and each comprised 100 plants (although the length of transects differed due to

topographical differences between the eastern and western sides of the island; see Fig.

3, Chapter 1, page 15). Transects began at the highest altitude plant in the area, and

successive plants were sampled every 4 - 6 m decline in elevation thereafter. Plants

were selected to be representative of surrounding plants, although only plants> 0.15

m in diameter were considered. The transects included both grey (older and

undulating due to glacial erosion) and black (younger and more irregular) lava

(Verwoerd, 1971). Although detailed mesoclimatic data are not available for the

island, higher altitude sites are colder, windier and cloudier than lower altitudes, and

rainfall is maximal at intermediate elevations (Blake, 1996). A quadrat of 200 plants

(> 0.15 m diameter) was surveyed adjacent to each transect (see Fig. 3, Chapter 1,

page 15). All plants within the demarcated 200-plant area, including those < 0.15 m

diameter, were measured. Only the size, and not the growth rate and relative position,

of small plants (i.e. < 0.15 m diameter) were determined, because of the risk of

measurement-related damage resulting in their mortality.
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Plant measurements

Each plant was marked with an aluminum tag. A thin (::;10 mm diameter) wooden rod

(growth-rate marker) was carefully inserted vertically into each plant and into the

underlying soil. Growth-rate markers were inserted approximately halfway between

the center of a plant and its perimeter. By marking the height of the plant against the

marker immediately after insertion and again before removal one year later, annual

vertical growth (hereafter growth rate; mm.year") was determined for each individual

(following Huntley, 1972). These growth-rate markers were inserted as deeply as

possible into the soil underlying the plant to limit any potential movement by frost-

heave. Depth of freeze-thaw on Marion Island is shallow, reaching a maximum depth

of 0.2 m at high altitudes in open soils (Boelhouwers et al., 2003). Thus, because our

growth-rate markers were inserted approximately 0.15 m into the soil underneath

plants, and because cushion plants buffer the temperature of underlying soil (see e.g.

Arroyo et al., 2003), frost-heave did not affect the plant vertical growth measurements

taken in this study. Nonetheless, growth-rate markers that showed any signs of

dislodging as a result of any disturbance (approximately 12 % of the 900 growth-rate

markers) were excluded from analyses.

Three size measurements were taken for each plant, i.e. maximum diameter,

diameter perpendicular to the maximum diameter (hereafter perpendicular diameter),

and height of the plant. Height was determined by measuring the vertical distance

between the highest point of the plant surface and the ground beneath it using a stadia

rod. The relative position of each individual (> 15cm diameter) within a quadrat or

transect was determined using a Nikon Total Station DTM350 Theodolite, with an

accuracy of 10 mm (Anonymous, 2001). The altitude of the highest plant in each

transect was determined using a Garmin 12MAP GPS, because no suitable known-

points were available on the island to determine the exact altitude and geographic

position using the theodolite (readings were cross-checked against a topographical

map of the island: Langenegger and Verwoerd, 1971).

The influence of biotic and abiotic environmental conditions on plant growth

rate and size were considered by examining the relationship between plant

characteristics and selected variables. Our intention was not to identify mechanistic

explanations for variability observed in A. selago, but rather to quantify variability in
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plant characteristics and evaluate the effect of this variability on the accuracy of the

phytometric model. This study was designed to encompass plants from as broad a

geographic and altitudinal range on the island as possible, and in addition to measure

those biotic variables thought to have the greatest likely impact on plant growth rate.

First, the spatial position of the plants (i.e. locality co-ordinates of each plant within

the quadrats and altitude of plants along the transects) was used as a surrogate for

abiotic environmental variation (on the rationale that plants on different parts of the

island and at different altitudes are exposed to different abiotic environmental

conditions; see also Koenig, 2002). Thus, hereafter, the net influence of abiotic factors

on plant characteristics are considered in analyses by inclusion of these spatial

variables. Second, nearest neighbour characteristics and epiphyte load were measured

directly, because these were the two biotic factors thought most likely to affect plant

growth rate. The number of Agrostis magellanica (Lam.) Vahl (Poaceae) individuals

growing epiphytically on each plant was counted as a measure of epiphyte load. This

grass is the dominant epiphyte on A. selago on Marion Island, and at mid altitudes

may cover up to 61% of the surface of plants (le Roux and McGeoch, unpublished).

Within quadrats, the distance between each plant and its ten nearest-neighbours was

calculated. Preliminary analyses showed that data for the two nearest neighbours

explained the most variation in plant size and growth rate (hereafter 2NN distance).

Therefore, the mean maximum diameter, perpendicular diameter, height and growth

rate of the two-closest plants were also calculated (hereafter 2NN maximum diameter,

2NN perpendicular diameter, etc.). To ensure that nearest-neighbour distances were

not overestimated for plants at the edge of the sampled quadrat, progressively more

outer plants were excluded from analyses until the nearest-neighbour distances of the

outermost plants were approximately similar to those of the central plants. This

required the exclusion of the outermost 35 - 40 % of plants.

Analyses

Analysis of Variance (ANOVA) and Tukey's Honest Significant Difference tests for

Unequal N were used to identify which sites differed from each other in terms of plant

size and growth rate. Logarithmic or square-root transformations were used to achieve

normal distributions for all variables where necessary (normality assessed using

Shapiro-Wilk's W test). Data from each site were analysed separately, except where
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calculating mean plant size and growth rate across the island. Analyses were repeated

with and without the inclusion of those plants that showed no vertical growth during

the study period (approximately 15% of all plants measured; the size and epiphyte

load of these plants did not differ significantly from those for which growth was

recorded).

To test if variability in plant growth rate increased with plant size, the

coefficient of variation (CV) of growth rate was determined for different plant size

classes. The number of size classes used for these analyses was determined using

Sturge's rule (Legendre and Legendre, 1998). The relationship between plant size

class and its CV of growth rate (arcsine transformed) was then examined using simple

linear regression (Collet, 1991).

Partial regression analyses

Potential biases in the model, and resulting biases in age estimates (i.e. any systematic

deviation of the ages estimated by the phytometric model from the real ages of the

plants sampled), were examined by considering the influence of spatial and biotic

factors on plant size and growth rate. To identify the proportion of variability in plant

size and growth rate explained by spatial (i.e. using geographic co-ordinates and

altitude as a surrogate for environmental variation, see above) and biotic (i.e. nearest-

neighbour characteristics, epiphyte load) variables, trend surface analysis and partial

regression approaches to the analysis of spatially explicit data were used (Legendre

and Legendre, 1998). This is currently one of the approaches adopted to incorporate

spatial position into explanatory models, i.e. modelling the spatial variation in plant

size or growth rate as a linear combination of biotic variables and geographic

coordinates of each plant (see e.g. Brewer and Gaston, 2002; Lobo et aI., 2002). This

method also accounts for biases that may occur as a result of the spatial non-

independence of data points (Legendre and Legendre, 1998). Trend surface analysis

was thus performed on growth rate and plant size measures to test for spatial structure

in these variables across the quadrats (transect data were analysed differently; see

below). A third-order polynomial combining the geographic co-ordinates, X and Y,

for each plant was fitted to each dependent variable using general linear models. The

least significant term in each model was identified and excluded, and the model

refitted to the data. Following the method described by Legendre and Legendre
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(1998), this process (backwards elimination) continued until all remaining spatial

terms contributed significantly to the model. The final model thus describes the broad-

scale spatial trends (if any) of the variable modelled across the quadrat (Legendre and

Legendre, 1998).

Biotic variables that contributed significantly to explaining variation in plant

size and growth rate were then determined for each quadrat. Models of plant size and

growth rate were again constructed by backwards elimination, with all environmental

variables initially included (Growth rate = Plant size + 2NN distance + 2NN size +
2NN growth rate + Epiphyte load; Plant size = Growth rate + 2NN distance + 2NN

size + 2NN growth rate). Epiphyte load was not included in plant size models because

there was a significant relationship between plant size and epiphyte load (data pooled

over quadrats; maximum diameter: R2 = 0.40, F 1,456 = 309.44, P < 0.01; height: R2 =

0.09, F 1,456 = 45.42, P < 0.01), and plant size places a limit on epiphyte load (see

Lyons et al., 2000). Thereafter, partial linear regression analyses were conducted in

which independent variables included the best-fit trend surface model variables

(abiotic variables; sensu "spatial component": Legendre and Legendre, 1998), nearest-

neighbour characteristics and epiphyte load (biotic variables; sensu "environmental

component": Legendre and Legendre, 1998). In these partial regression analyses the

variation in plant size or growth rate was divided into fractions representing the

proportion explained by the biotic variables (A), either biotic variables or spatial

(abiotic) terms (B: spatially structured biotic effect), the spatial terms (C), and

remaining unexplained variation (D: Legendre and Legendre, 1998). This method

identifies the relative contribution of the biotic and abiotic variables to the variation

explained by a model, although it does not specifically quantify the importance of

individual variables (Legendre and Legendre, 1998; see also Brewer and Gaston,

2002; Lobo et al., 2002 for application ofthis approach). Full models were considered

statistically significant if they exceeded the Bonferroni-corrected, table-wide

significance level (cx= 0.05/18 = 0.0028) (Rice, 1989).

The same method was then modified and applied to the plant size and growth

rate data for each transect. Because plants in the transects were distributed across an

altitudinal gradient, altitude (rather than geographic co-ordinates) was used as a

surrogate for abiotic variation (i.e. included as the spatial component during variance

partitioning), enabling the proportion of explained variability attributable to altitude to

be calculated. The environmental component included in variance partitioning for the
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transects was then also calculated (i.e. Growth rate = Plant size + Epiphyte load; Plant

size = Growth rate).

Simulation model

Simulation models of plant ages were constructed to investigate the influence of

variability in growth rate and plant size on plant age estimates. In the absence of

temporal data, the observed spatial (between-plant) variability in growth rate was used

as a surrogate for temporal variation in the growth rate of individual A. selago plants.

Although the validity of this surrogacy approach cannot currently be assessed, the

objective here was merely to demonstrate how the accuracy of age estimates is

affected by variability in growth rate and plant size. Nine idealized plant sizes

(heights) were selected to represent a range of plant sizes documented on Marion

Island, i.e. 75, 150,225, ... and 675 mm (while the greatest plant height sampled was

600 mm, larger plants were also observed on the island). These heights were each

successively reduced by subtracting randomly-selected (with replacement) growth

rate values chosen from a 'set of observed values' (described below), until plant

height was reduced to, or less than, zero. Thus,

x
H- t.s.:»,

)=1

where H = plant height (mm), Yj = growth rate (mm.year") value randomly chosen

until hj ::;;0 ... Eq.2,

from the set of observed values used for the simulation, hj = plant height j years ago,

and x = plant age (years).

The number of times height was required to be reduced was then recorded as

one simulated age for a plant of that size. This process was repeated 104 times to

generate distributions of simulated plant ages for each plant size. The mean and one

standard deviation around the mean (i.e. ± 68 % of simulated ages closest to the

mean) were calculated for each distribution (two standard deviations around the mean,

i.e. ± 95 % of simulated ages closest to the mean, were also calculated and are

reported). This standard deviation (1 S.D.) provided a measure of the accuracy of the

phytometric model's (Eq. 1) age estimates, assuming that accuracy is inversely

proportional to the range of plant ages simulated for a plant of a given size.
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The 'set of observed values' from which growth rate values (yj) were selected

comprised either i) all the growth rate values measured at a site, or ii) three sets of

randomly generated values with normal distributions. These randomly generated

growth rate distributions had identical means (4.26 mm.year'> mean plant growth

rate measured across Marion Island), but different standard deviations (2.9 (=observed

S.D. of growth rate across Marion Island), 0.29, 0.029). Randomly generated growth

rate distributions (ii) were used in addition to measured site growth rates (i), because

the range of variability in growth rate in the measured data was low, and a greater

range of variability was necessary to determine if variability in growth rate influenced

the S.D. of age estimates. The relationship between variability in growth rate

(measured as CV) and the S.D. of the age estimates was examined for both the

measured (i) and generated (ii) data sets using simple linear regression. Changes in

the S.D. of age estimates with plant size were similarly examined. Annual growth

increments were selected ignoring possible temporal autocorrelation in growth rates.

However, in the presence of temporal autocorrelation standard deviations are likely to

be reduced, and the approach taken here is the more conservative. Moreover, the

results of the simulation model are likely to underestimate the phytometric model's

accuracy, because the range of growth rate values used are wide relative to those

expected for an individual plant over time (ranges of growth rate values used varied

between 1.4 - 11.0 and 1.0 - 16.0 mm.year", which are ranges double that previously

recorded for A. selago: Huntley, 1972; Frenot et al., 1993).

Results

Plant size, growth rate and age

The distribution of A. selago plant size and growth rate at each site were right-

skewed, with the majority of plants ranging from 0.40 to 1.15 m in diameter (mean ±

S.E. (m): maximum diameter = 0.59 ± 0.01, perpendicular diameter = 0.36 ± 0.01,

height = 0.13 ± 0.01, n = 1038) (Fig. I). The growth rate of plants ranged between 0.7

- 21.0 mm per year (mean ± S.E. (mm) = 4.26 ± 0.11, excluding plants not showing

growth). The three plant size measurements were significantly positively related to

each other (maximum diameter - height: R2 = 0.16, FI, 1036 = 202.24, P < 0.-001;

perpendicular diameter - height: R2 = 0.21, FI, 1036 = 275.74, P < 0.001), most strongly
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so for maximum and perpendicular diameter (R2 = 0.58, FI, 1036 = 1432.92, P < 0.001).

As a result, only maximum diameter and height were used as plant size measures in

subsequent analyses. Similar results were obtained when analyses were performed

using growth rate data excluding or including plants showing zero growth and only

results from analyses excluding zero growth plants are reported.

Growth rate was not related to plant height (all sites p > 0.05). In addition,

there was no clear relationship between variability in growth rate and plant size (Table

1). The coefficient of variation in growth rate across plant size classes was high

(between 50 and 65 %; Table 1). Plant size and growth rate differed significantly

between sites on Marion Island (Fig. 2). Amongst the sites, the NE Transect had the

largest plants, and plant growth rates were highest in the NE and NW Transects (Fig.

2).

Age estimates (from the phytometric model; Eq. 1), were found to be non-

normally distributed (p > 0.05 for all sites) with right-skewed distributions (Fig. Id).

Mean plant age estimated for the six study sites ranged between 26 and 41 years

(Table 1). The tallest plants in the NW and SE Transects were estimated to be the

oldest sampled; 84 and 97 years old respectively (Table 1).

Partial Regression Analyses

Plant size and growth rate were weakly related to the explanatory variables measured

in this study; less than 36 % of the variation observed in either size or growth rate was

explained (Table 2). Variance partitioning, nonetheless, generally attributed most (3 -

16 %) of the explained variation to biotic factors ('A'; Table 2). Spatially-structured

biotic factors ('B'; Table 2) accounted for an additional 0 to 19 % of the variability in

plant characteristics (the small negative value in Table 2 merely indicates that the

biotic and abiotic variables have effects of an opposite direction on plant growth rate

in the NE Quadrat; Legendre and Legendre, 1998). Therefore, in the full regression

models up to an additional 19 % of variability in plant size and growth rate could

possibly be attributed to the biotic variables recorded in the study. However, this

variability may equally be a result of some abiotic variable sharing a common spatial

structure with the biotic variables (i.e. this proportion of explained variation cannot be

confidently attributed to either category; Legendre and Legendre, 1998). Finally,
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abiotic variables ('C', Table 2) accounted for between 0 to 27 % of observed

variability in plant size and growth rate.

Biotic variables

Among the biotic variables, plant size (height and diameter) in the quadrats was

consistently significantly related to the distance and size of nearest neighbours (Table

2). The mean maximum diameter of the two nearest neighbours (2NN) was always

significantly positively related to plant maximum diameter (Table 2, Fig. 3). Similarly

2NN distance and 2NN height were significantly positively related to plant diameter

and height respectively (Table 2). While the strength of these relationships varied,

nearest-neighbour characteristics were the most consistent predictors of plant size in

the quadrats.

Both epiphyte load and altitude contributed significantly to explaining plant

size and growth rate, although these relationships were neither strong nor consistent.

Epiphyte load was significantly negatively related to plant growth rate in two of the

models and positively in one (Table 2). Altitude contributed significantly to

explaining plant height or growth rate in three of the transect models (Table 2). Plant

height declined significantly with increasing altitude in two cases, whereas plant

growth rate increased with altitude in one of the models (Table 2). Therefore, in

addition to nearest-neighbour characteristics, in some cases plant size and growth rate

were related to altitude and epiphyte load.

Simulation model

Simulation model results showed that the magnitude of one S.D. around the mean

plant age estimate is influenced by the size of the plant being aged, as well as the

variability in site growth rate. Variability in growth rate and the standard deviation

around mean age were significantly positively related in the three randomly generated

data sets (generated with low, medium and high variability in growth rate; for all plant

sizes: slope estimates> 0.65, R2 > 0.9, FI, I > 100.0, p < 0.05). However, no

significant relationships were found between the accuracy of age estimates and the

variability in growth rate for the measured data sets (for all plant sizes: FI,4 < 0.27, P

> 0.5). Using both measured and generated growth rate distributions (i and ii in
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Methods), the standard deviation around the mean estimated age increased

significantly with plant size (all data sets: slope estimates between 0.001 - 0.008, R2 >

0.9, Fl. 7> 64.0, P < 0.01, except for the generated data set with the least variation in

growth rate, since S.D. of simulated ages was zero for some size classes; Table 3).

Therefore, within any particular site, small plants (i.e. 75 mm tall) could be aged more

accurately (S.D. = 1.8 - 2.6 years) than large plants (600 mm tall: S.D. = 4.9 - 6.0

years; using the observed growth rate data, Table 3). Averaged over all plant sizes, the

mean accuracy of age estimates (i.e. averaged across the second row of all plant

heights in Table 3) was approximately 4.5 years.

Discussion

The results of this study confirm the potential of A. selago as a phytometer for

estimating minimum landscape age. The first assumption important for the use of

Frenot et al.' s (1993) phytometric model to estimate the age of A. selago was

supported, i.e. that plant growth rate is independent of plant size. However, the second

assumption was not supported, because plant characteristics were related to biotic and

abiotic factors, and differed across the island. As expected, plant characteristics were

not independent of site-specific habitat or environmental characteristics and age

estimates could, as a consequence, be biased. In addition, variability in growth rate

was high across all plant size classes, and was shown to reduce the accuracy of plant

age estimates. Although these findings highlight limitations for the application of A.

selago as a phytometer, they also suggest possible avenues for improving the

reliability of the phytometric model.

Azorella selago sizes and growth rates observed in this study were within the

ranges reported from previous studies in the sub-Antarctic (Moore, 1968; Huntley,

1972; Frenot et al., 1993; Frenot and Gloaguen, 1994; Frenot et al., 1998). For

example, the results of the phytometric model (albeit in the absence of support for one

of its two assumptions) confirm that A. selago plants are long-lived. The age of the

oldest individuals sampled in this study ranged from 55 - 96 years. This is comparable

to plants on Kerguelen Island (Frenot et al., 1993). Some between-island and -study

differences in plant characteristics were, however, apparent. For example, an

extremely tight link between plant diameter and height was quantified for Kerguelen

Island (R2 = 0.93; Frenot et al., 1993), whereas the same was not true on Marion
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Island (R2 = 0.16, this study). Frenot et al.'s (1993) radial growth rate estimates were

lower than the mean vertical growth rate observed here (t = 5.63, d.f. = 590, p < 0.01).

Similarly, Huntley's (1972) estimates of vertical growth rate on Marion Island were

also lower than those observed in this study. However, because A. selago has not been

extensively surveyed on these islands, and because we show within-island variability

to be high for Marion, between-island comparisons remain premature.

Plant size and growth rate have to date not been found to be related in A.

selago (Frenot et al., 1993; this study). Therefore, despite the high spatial variability

observed in growth rate, the use of a linear function to model the relationship between

size and age for the species is justified. The phytometric model's second assumption

was, however, violated by the demonstration that plant size and growth rate on

Marion Island differed between sites, and that these variables were, at least partly,

related to biotic and abiotic variables. Much stronger relationships were found

between plant size, rather than growth rate, and environmental characteristics. Plant

size is, nonetheless, a cumulative product of growth rate over time and thus also

contributes to the violation of this assumption. Therefore, the dependence of plant

characteristics on environmental variables will result in biased plant estimates.

These between-site differences versus within-site variability in plant

characteristics have different implications for the application of the phytometric

model. First, between-site differences in plant growth rate highlight the importance of

site-specific growth rate estimates. It is therefore not possible to estimate plant ages at

one site on the island using growth rate data from another. Furthermore, the

assumption that larger plants are older than smaller individuals is not necessarily true,

especially when comparing plants from different sites. Second, the implication of

within-site relationships between plant characteristics and environmental variables is

that age estimates will be biased. One or more unmeasured variables are clearly also

important determinants of plant characteristics, because more than 65 % of the

variation in these characteristics was not explained. To reduce environmental bias in

age estimates, the determinants of A. selago growth rate need to be identified.

Variability in soil moisture and nutrients, wind exposure and snow cover, due to

topographical and micro-climatic variation, are known to be important determinants

of plant performance in arctic and alpine communities (Callaghan et al., 1997;

Jumpponen et aL, 1999), and are likely to be equally important in the sub-Antarctic

(both at fine scales and between areas on single islands) (Frenot et aL, 1993). A more
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complete understanding of the determinants of plant growth rate may enable the

incorporation of these variables into the phytometric model, reducing the effect of

environmental bias on age estimates.

The usefulness of the phytometric model clearly depends on both the biases in,

and the accuracy of, its results. For example, very accurate age estimates are of little

worth if the model's answers are strongly biased by the effect of unaccounted for

environmental variation. Similarly, unbiased age estimates are of limited value if their

accuracy is very poor. While it is theoretically possible to remove bias from the model

(e.g. by including major variables that influence A. selago growth rate), the accuracy

of age estimates is determined by temporal variability in growth rate. Despite the

importance of such variation, it has not been explicitly quantified for A. selago

(although Frenot et aI., 1993 noted no significant difference in mean plant growth rate

over five successive years). If growth rate varied non-randomly over time, this would

contribute to bias in plant age estimates. For example, if soil quality or climate (i.e.

factors showing long-term trends) strongly influence plant growth rate, current short-

term measures of growth rate may not be representative of historical growth rates

(Trotter et aI., 2002). By contrast, the effect of random temporal variation is a

reduction in the accuracy of age estimates. This was demonstrated by the simulation

model that showed that 1) age estimates for young plants are likely to be more

accurate than those of old plants (see also Molau, 1997; Campana, 2001), and 2) with

increasing temporal variability in growth rate there is decline in accuracy of age

estimates. Under a simulated scenario of high temporal variability in growth rate

(incorporated using the extent of between-plant variability in growth rates as a

surrogate), a plant of 300 mm could, for example, be estimated with 68% probability

as being between 68 and 77 years old. Generally, under this high temporal variability

scenario plants could be aged to within 2-7 years with 68 % probability, and to within

4 - 15 years with 95 % probability. Therefore, except where high-resolution age

estimates are required, the usefulness of the phytometric model may not be limited by

the level of accuracy it provides. This would be particularly true where temporal

variation in growth rate lower than that used in the simulation model here.

Phytometry using A. selago in the sub-Antarctic, like other phytometric

techniques, must therefore necessarily rely on fairly detailed information on the

spatial and temporal variability in the species and its environment (McCarthy, 1997).

Data on the temporal variation in growth rate is required to quantify the accuracy of
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the model's age estimates, although even the wide range of growth rates used in the

simulation model produced age estimates accurate to within 2-15 years. Bias in the

model may be reduced by developing a more complete understanding of the ecology

of the plant species, identifying determinants of its growth rate and using site-specific

growth rate estimates. Explicit inclusion of such information into the phytometric

model for A. selago will improve its reliability and value as a tool for reconstructing

past environmental conditions in the sub-Antarctic.
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TABLE 1

Coefficient of variation of growth rate (% CV) (across all size classes), and the results of the regression

of cv against plant height classes for each site. Age (years) estimates for plants at each site also

provided. Minimum ages not estimated for plants within transects.

Site Coefficient of variation Estimated plant age

CV% nl R2 d.f. F Mean (± S.B.) nl Min. Max.

SE Quadrat 51.7 147 0 1,6 0.21 26.7 ± 0.6 256 6.9 55.0

NE Quadrat 58.8 127 0.15 1,6 2.25 26.3 ± 0.6 240 5.3 64.4

NWQuadrat 53.1 157 0 1,6 0.01 33.4 ± 0.8 242 2.1 83.0

SE Transect 50.3 72 0.83 1,5 26.11* 41.0± 1.3 100 96.6

NE Transect 64.7 82 0 1,5 0.02 29.2 ± 1.4 100 71.4

NWTransect 53.7 75 0 1,5 0.83 26.3 ± 1.3 100 83.5

number of plants, * significant at p < 0.05
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TABLE 2. Proportion of variation in plant diameter, height and growth rate attributable to biotic and spatial variables. Standardized coefficient

estimates are providedfor the biotic variables and altitude to indicate the direction and magnitude of effects.

Independent variables I Pro]20rtion of variation eX]2lained{%1
Variable Quadrat {coefficient estimate 1 S]2atial terms Total Biotic; A2 Biotic x S]2atial; B3 S]2atial;C4 P<
Diameter SE 2NN Diam.s (0.36) y, xy2, y3 24.04 9.93 12.65 1.46 F4,114= 10.34 0.001

NE 2NN Diam. (0.21), 2NN Dist. (0.28) -6 13.78 13.78 F2,90= 8.35 0.001
NW 2NN Diam. (0.06), 2NN Dist. (0.38) y, l, y3, x2, x3 35.62 11.96 19.35 4.31 F7, IlO = 10.25 0.001

Height SE 2NN Height (0.43) 2 2 3 25.82 16.26 6.62 2.94 Fs, 113= 9.21 0.001y, x, x y, x
NE 2NN Height (0.25) 5.42 5.42 FI,91= 6.27 0.0147

NW 2NN Height (0.28) 2 2 21.29 5.14 12.39 3.76 F4, 113 = 8.91 0.001x, xy, x y

Growth rate SE
NE Diam. (-0.25), Epiphyte load (0.28) x2y, xl 10.96 3.55 - 0.02 7.41 F4,89= 3.86 0.0067

NW y,l,l 4.99 4.99 F3,114= 3.05 0.0327

Transect
Diameter SE

NE
NW Growth rate (0.28) 6.63 6.63 FI,73= 6.25 0.0157

Height SE Altitude (-0.47) 21.14 21.14 F1,70= 20.04 0.001
NE
NW Altitude (-0.53) 27.43 27.43 FI,73 = 28.96 0.001

Growth rate SE Diam. (0.20), Epihyte load (-0.22) Altitude (0.29) 18.47 3.52 9.58 5.37 F3,68= 6.36 0.001
NE Epiphyte load (-0.38) 13.48 13.48 FI,80 = 13.62 0.001
NW Diam. {0.251 5.19 5.19 FI, 73= 5.05 0.0287

1 Independent variables contributing significantly in final model (p < 0.05). 2 Variation in plant characteristics explained by biotic variables. 3 Variation
in plant characteristics explained by biotic and spatial variables, but which cannot be split between the two components. 4 Variation in plant
characteristics explained by spatial variables. s 2NN Diam. = mean maximum diameter of two nearest nei~hbours, 2NN Dist. = mean distance to two
nearest neighbours, 2NN Height = mean height of two nearest neighbours, Diam. = maximum diameter. No significant contribution by variables. 7
Models no longer significant after significance levels adjusted using the Bonferroni table-wide alpha = 0.003.
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TABLE 3

Simulated ages (mean simulated age and three measures ofvariability around that mean age, i.e.

estimate of accuracy) for three idealised plant heights using measured growth rate data from the six

study sites.

Plant Variable Quadrat Transect

height (years) SE NE NW SE NE NW

75mm Mean age 18.6 19.9 16.7 11.2 12.1 18.6

1 S.D. around mean] 2.2 2.6 2.1 2.1 2.2 1.8

2 S.D. around mearr' 4.4 5.2 4.2 4.2 4.4 3.6

Min.-Max. 10 - 27 11 - 30 9 - 24 4 - 18 6 - 23 11 - 27

300mm Mean age 72.6 77.6 64.9

I S.D. around mean 4.3 5.2 4.2

2 S.D. around mean 8.6 10.4 8.4

Min.-Max. 57 - 89 54 - 97 50 - 82

42.7

4.2

8.4

30 - 56

45.6 72.3

4.3 3.5

8.6 7.0

30 - 65 57 - 92

600mm Mean age 144.7 154.6 123.2 84.8 91.1 144.5

1 S.D. around mean 6.2 7.3 6.0 6.0 6.0 4.9

2 S.D. around mean 12.4 14.6 12.0 12.0 12.0 9.8

Min.-Max. 121 - 172 129 - 182 106 - 150 65 - 104 70 - 116 124 - 168

1 Approximately 68 % of simulated plant ages fall within the mean age ± I S.D., 2 Approximately

95 % of simulated plant ages fall within the mean age ± 2 S.D.
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Chapter 3: Altitudinal variation in the sub-Antarctic cushion plant Azorella

selago and its epiphytes

Introduction

Altitudinal gradients are suited to studying the relationship between plants and their

environment, because even a narrow altitudinal range can encompass a steep

environmental gradient (Bowman et al., 1999; Komer, 2000; Md Nor, 2001). Indeed,

the morphology and physiology of many plant and animal species vary markedly

across altitude in direct response to climatic variation (e.g. Kudo, 1995; Schoettle and

Rochelle, 2000; Chown and Klok, 2003). For example, the growth of Pinus sylvestris

(Pinaceae) declines with increasing altitude due to lower temperatures at higher

elevations (James et al., 1994). Similarly, mechanisms that protect plants from

damage from UV-B radiation have been shown to increase over a 2000 m elevational

range corresponding to a gradient of increasing radiation (Filella and Pefiuelas, 1999).

The aggregate effect of such within-species variation across altitudinal gradients is

that community-level changes also occur across altitude (e.g. differences in vegetation

structure, species richness and composition, production: Begon et al., 1996; Brown,

2001; Mark et al., 2001; Andrewet al., 2003). Therefore, both species and community

characteristics commonly vary with altitude as a consequence of elevational

differences in environmental factors.

Field-based gradient studies of plant-environment relationships (e.g. along an

altitudinal gradient) offer several advantages over experimental studies with the same

objectives (Hodkinson and Wookey, 1999). Gradient studies are able to identify the

effects of one set of environmental variables, while controlling for the effects of

others. For example, using an altitudinal transect, the influence of climatic variables

(e.g. temperature, rainfall and wind) can be examined, while minimizing broad-scale

differences in photoperiod, vegetation type, geology and ecological history (Fielding

et al., 1999; Kamer, 2000; Brown, 2001; Smith et al., 2002). Additionally, species

distribution and abundance patterns along altitudinal gradients represent long-term

responses to a gradual spatial change in natural conditions (Rustad et al., 2001). In

contrast, experimental studies generally observe short-term responses to sudden

changes in environmental conditions, often in artificial environments (e.g. laboratory

studies).
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With increasing interest in the biological consequences of climate change,

biotic differences (i.e. within-species or between-community variation) along

altitudinal gradients have been used to forecast the potential biological effects of

changes in climate (Hodkinson and Bird, 1998; Fielding et al., 1999; Tweedie, 2000;

Smith et al., 2002). For example, vegetation at warmer, low altitude sites is used as an

analogue for the response of plants at colder high altitude sites to increased

temperatures. Similarly, the vegetation structure of windier high elevation sites can be

used to forecast the potential effects of increased winds on plants at lower sites. Using

this approach, Tweedie (2000) predicted increased leaf production and reproductive

output for six plant species on sub-Antarctic Macquarie Island under a scenario of

climate warming.

However, predictions of species (and community) responses to climate change

based on changes along an altitudinal gradient must be made cautiously, since altitude

is only a "distal" predictor of vegetation patterns (Austin, 2002). In other words,

altitude (an indirect gradient) does not directly determine the vegetation at a site, but

is only correlated with the causal ("proximal") mechanism (i.e. a direct gradient, like

temperature or rainfall: Austin et al., 1984; Austin, 2002). Since multiple

environmental variables change simultaneously across altitude, causality cannot

confidently be attributed to a single environmental factor (Cavelier, 1996; Halloy and

Mark, 1996; Pausas and Austin, 2001; Austin, 2002). Therefore, for example, the

biological consequences of changes in temperature will be reflected in the differences

in the species and communities along an altitudinal gradient, although these

differences will also reflect their responses to other factors that vary along the same

gradient.

Interpretation of altitudinal patterns are complicated by at least two other

factors. First, fine-scale variation in micro-environmental conditions can veil larger-

scale altitudinal patterns (Halloy and Mark, 1996; Andrewet al., 2003). For example,

Smith et al. (2002) attributed their lack of significant altitudinal trends in microbial

activity to high local-scale variability. Second, the upper and lower altitudinal

boundaries of species (or communities) may be determined by different factors

(analogous to species' northern and southern distributional boundaries: Parmesan et

al., 1999; Thomas and Lennon, 1999; Gaston, 2003). For example, the upper

elevational limit to montane rainforest is determined by temperature and its lower

boundary by competition (Cavelier, 1996). Thus, considering these limitations,
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altitudinal patterns should be viewed as a heuristic tool for hypothesis generation and

for understanding the sensitivity, and the potential responses, of vegetation to changes

in climate, rather than as a basis for the prediction of vegetation patterns under altered

climates.

A species that occurs across a wide range of altitudes is the cushion plant

Azorella selago Hook. (Apiaceae). Azorella selago is widespread across the sub-

Antarctic (even occurring in the southern portions of South America), and covers a

wide altitudinal range within its geographic distribution (Moore, 1968; Huntley, 1972;

Gremmen, 1981; Frenot et al., 1993). For example, the species occurs between 450

and 1150 m a.s.l. on Tierra del Fuego (Orchard, 1989; Mark et al., 2001; see also

Gremmen, 1981). On sub-Antarctic Marion Island, A. selago has the widest altitudinal

distribution of any vascular plant, occurring from sea-level to 765 m a.s.l., the

altitudinal limit of vascular plants on the island (Huntley, 1970). Across this

altitudinal extent the species experiences a wide range of environmental conditions.

For example, higher altitudes on Marion Island are colder, drier and windier, with

deeper soil freezing and less solar radiation, than lower altitudes (Schulze, 1971;

Blake, 1996; Boelhouwers, 2003; Holness, 2003; lA. Deere, unpublished; M.

Nyakatya, unpublished; Fig. I). In addition, it seems that rainfall and the frequency of

freeze-thaw events both peak at mid-altitudes (Blake, 1996; Boelhouwers, 2003;

Holness, 2003; Fig. I).

Across its altitudinal range a diversity of vascular and non-vascular plants

grow epiphytically on A. selago plants (Huntley 1972). Because these epiphytes alter

the microclimate experienced by the cushion plants (e.g. reduce solar radiation and

wind, and buffer temperature and moisture regimes; see e.g. Arroyo et al., 2003;

Freiberg, 2001), they potentially affect the performance of the cushion plants,

although the form of this relationship is still unclear (e.g. see Table 2, Chapter 2, page

36). Equally poorly known is the altitudinal distribution (i.e. extent) of individual

epiphyte species as well as the altitudinal variation in epiphyte species richness on the

island. The distribution of individual epiphyte species along the elevation gradient

identifies the environmental factors potentially important for determining their upper

and lower altitudinal limits, and therefore allows some (preliminary) predictions of

the effects of changes in climate on these species. Similarly, matching the current

altitudinal variation in epiphyte species richness to environmental gradients helps to
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formulate likely scenario's of shifts in species richness with further changes in climate

on Marion Island.

The objective of this study was thus to quantify altitudinal variation in A.

selago cushion morphology, leaf morphology, surface cover and epiphyte species

composition across three transects on Marion Island. Fine-scale variability in these

attributes is also determined at a single site along each transect, and compared to

transect-scale variability. These altitudinal patterns are then related to the

environmental gradients on the island, and hypotheses generated on the influence of

abiotic and biotic factors on the characteristics of A. selago cushions and their

epiphyte communities.

Methods

Study species

Azorella selago is a long-lived, cushion-forming vascular plant species that is widely

distributed across the sub-Antarctic (Huntley, 1972; Frenot et al., 1993). It is a

pioneer species, colonizing loose scoraceous slopes, recent lava flows and glacial

forelands of retreating glaciers (Huntley, 1972; Frenot et al., 1998). The species is

common in a variety of habitats, and on Marion Island is the dominant vascular plant

species in the cold, wind-swept fellfield habitats (Moore, 1968; Huntley, 1972;

Gremmen, 1981). Other Azorella species occur on the sub-Antarctic Macquarie Island

(A. macquariensis: Orchard, 1989), the lower latitude Falkland Islands (4 spp.:

Moore, 1968) and throughout the high latitude and altitude areas of South America

(more than 70 species, including the widespreadA. compacta: Wickens, 1995).

Azorella selago cushions have a central taproot, from which stems anse

radially and branch dichotomously (Frenot et al., 1993). Its leaves are lobed (deeply

incised, forming finger-like leaflets), with widened petioles forming a sheath around

the stem (Orchard, 1989). Cushion growth stops in autumn, and by winter all leaves

have turned brown (autumnal senescence). Old leaves are retained, forming a rich,

moist, humus-like collection of organic matter inside the plant (Huntley, 1971; see

also Ashton and Gill, 1965).

Azorella selago cushions have a hard and compact surface as leaves are tightly

packed and stems grow closely against each other (Orchard, 1989). However, even in
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summer (i.e. no autumnal senescence), few cushions have a completely green surface.

Cushions can be covered by patches of dead stems (black or grey in colour), spaces

between stems ("gaps"; but usually restricted to sheltered plants), and epiphytes.

Cushions can host dense and diverse epiphyte (Huntley, 1972) and

invertebrate communities (Barendse and Chown, 200 1). The most common epiphytes

on A. selago on Marion Island include the grass Agrostis magellanica (Lam.) Vahl

(Poaceae; see Fig. 1, Chapter 1, page 13), the low scrambling shrub Aceana

magellanica Vahl (Rosaceae), and the fern Blechnum penna-marina (Poir) Kuhn

(Polypodiaceae). Other epiphyte species include the mat dicot Ranunculus biternatus

Sm. (Ranunculaceae), the rosette dicot Cotula plumosa Hook. f. (Asteraceae), the

tussock grass Poa cookii Hook. (Poaceae), and a variety of mosses, lichens and

liverworts (Huntley, 1972). These species can be regarded as facultative or casual

epiphytes (following Benzing, 1989 and Kress, 1989) respectively), since a single

population, at least at low altitudes, will contain some individuals growing on cushion

plants (i.e. showing epiphytism) and others growing in the soil.

Study sites

Azorella selago was surveyed in three transects and three quadrats (six sites) on

Marion Island (46°55'S, 37°45'E; the larger of the two Prince Edward islands)

between Apri1200l and Apri12002 (same plants as used in Chapter 2). Two transects

were on the eastern side of the island (running along Long Ridge and Stoney Ridge;

the north-east and south-east transects respectively), while the third (ending at Mixed

Pickle Cove; north-west transect; see Fig. 3, Chapter 1, page 15) was on western side.

Transects were orientated along the altitudinal gradient on the island and each

comprised 100 cushions. Transects began at the highest altitude cushion in the area,

and successive cushions were sampled every 4 - 6 m decline in elevation thereafter.

Cushions were selected to be representative of surrounding cushions, although only

cushions> 0.15 m in diameter were considered (smaller cushions were not selected

because of the risk of measurement-related damage resulting in their mortality). The

transects mainly covered fellfield vegetation, although the lowest 15 - 30 cushions in

each transect grew in fernbrake habitats (high Aceana magellanica and Blechnum

penna-marina cover: Smith et al., 200 1). The western transect was confined to black

basalt lava flows. In contrast, the eastern transects were predominantly on older grey
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lava (i.e. smoothed by glacial erosion), except for the highest 20 - 30 plants which

were growing on black lava.

To determine fine-scale variation in cushion characteristics and epiphyte load,

a quadrat was surveyed next to (approximately halfway along) each transect. Quadrat

size was determined by the smallest area required to sample 200 cushions (> 0.15 m

diameter). The quadrats were all located in fellfield habitat (Smith et al., 2001).

Altitudinal gradients on Marion Island

Altitudinal patterns in temperature, wind speed, radiation, rainfall and freeze-thaw

events have been documented for Marion Island (Fig. I). Mean air, soil and within-

plant temperatures decline with increasing altitude (Blake, 1996; Boelhouwers, 2003;

Holness, 2003; I.A. Deere, unpublished; M. Nyakatya, unpublished). In contrast, wind

speed increases consistently with altitude (Blake, 1996), consistent with predictions

(Schulze, 1971). Solar radiation declines with altitude, although photon flux density

does not differ between elevations (Blake, 1996). Total rainfall was found to peak at a

mid-altitude site (550 m a.s.l.), and was lowest and most erratic at the highest altitude

measured (Blake, 1996). However, the relationship between rainfall and the amount

of water actually available to plants (plant-available moisture) is less clear, because

the warmer conditions at low altitudes and the stronger winds at high altitudes

increase evaporation rates (Ashton and Gill, 1965; Gremmen, 1981). Furthermore,

altitudinal variation in infiltration rates, soil depth and soil water holding capacity has

not been documented for the island, and may vary greatly across elevations. However,

since such data are not available, we assume that rainfall is a suitable surrogate for

plant-available moisture. Marion Island also exhibits an altitudinal gradient in the

duration and frequency of freeze-thaw events. Mid altitudes experience freeze-thaw

events most often, with lower altitudes experiencing fewer of these cycles

(Boelhouwers et al., 2003). Higher altitudes also experience fewer cycles than mid

altitudes, but they are of longer durations and with deeper soil freezing than other

altitudes (Boelhouwers et al., 2003).

Ground cover and vegetation also change over the altitudinal gradient on

Marion Island. Rock cover increases with altitude (data in Smith et al., 2001), causing

increasingly uneven surface cover at higher elevations, and creating a diversity of

microhabitats (Gremmen, 1981). Total plant cover and the richness of vegetation
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types is highest at low altitudes, declining with increasing elevation (data in Smith et

aI., 2001). Primary production is highest in the vegetation types that are most common

at low altitudes (compared to those at higher altitudes: Smith, 1978), and therefore

was assumed to decline with altitude.

These patterns are probably similar across all three transects, although some

differences potentially exist. Most importantly, the western side of the island has

recently been shown to be cooler than the east (within-plant temperatures; M.

Nyakatya, unpublished), and probably experiences greater net precipitation and winds

due to its exposure to the dominant westerly winds (Schulze, 1971; Gremmen, 1981).

Cushion plant measurements

Before the start of the 2001-2002 growing season, three size measurements were

taken for each cushion, i.e. maximum diameter, diameter perpendicular to the

maximum diameter (hereafter perpendicular diameter), and height of the plant. The

number of Agrostis magellanica individuals growing epiphytically on each cushion

was counted, and the presence of other epiphyte species (vascular plants and mosses)

noted. Cushion growth rate (i.e. annual height increase) was determined by carefully

inserting a thin (~10 mm diameter) wooden stick through each cushion and into the

underlying soil. Cushion height was marked against the stick immediately after

insertion and again before removal after autumnal senescence (April 2002). Annual

vertical growth was thus measured by the height difference between the two marks

(hereafter growth rate; mm/year; see Chapter 2 for details). Cushions were examined

for mouse-burrows (Mus musculus are alien on Marion Island: Avenant and Smith,

2003), and none were found in study cushions.

During middle to late growing season (October 2001 - February 2002),

cushions were revisited. Each cushion was photographed from above (from a height

of approximately l.5 m). The relative position of each cushion (> 0.15 m diameter)

within a transect was determined using a Nikon Total Station DTM350 Theodolite

(Nikon Corporation, Tokyo, Japan) with an accuracy of 10 mm in three dimensions

(Anonymous, 2001). The altitude of the highest cushion in each transect was

determined using a Garmin 12MAP GPS (Garmin International, Kansas City, USA),

because no suitable known-points were available on the Island to determine the exact

altitude and geographic position using the theodolite (readings were cross-checked
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against a topographical map of the island: Langenegger and Verwoerd, 1971). In

addition, ten stems were randomly sampled from the top of each cushion. Twenty

green leaves (two leaves per stem) were pressed, their trichornes and leaflets counted,

and their images digitised using a flatbed scanner (HP Scanjet 5470c; Hewlett-

Packard, Palo Alto, USA).

Later, cushion size and surface cover were determined using image analysis

software (SigmaScan Pro version 5.0; SPSS, Illinois, USA). Cushion diameter

(maximum and perpendicular), area, perimeter and shape factor were determined from

the overhead photographs (following e.g. Belyea and Lancaster, 2002; for the three

transects and the SE quadrat only). Shape factor was calculated as:

4.7r.area / perimeter' ... Eq. 1,

ranging from 0 (straight line) to 1 (perfect circle: Anonymous, 1999). Images were

calibrated against an object of known size in each photograph. Measurements from

photographs were validated against field measurements (following Belyea and

Lancaster, 2002), and were similar (simple linear regression: maximum diameter: R2

= 0.86, P < 0.001; perpendicular diameter: R2 = 0.73, P < 0.001). Image analysis was

then used to measure the fraction of each cushion's surface covered by epiphytes

(grouped as Agrostis magellanica, other vascular plant species, or moss), dead stem

areas (brown or black stem or leaf patches) and healthy tissue (green leaves; methods

similar to Rousseaux et a1., 2001). Small epiphytic plants (e.g. Ranunculus biternatus)

were not always visible on the photographs, but due to their small size they were

unlikely to have an effect on epiphyte cover estimates. Gaps between stems

contributed very little to cushion surface cover (usually associated with sheltered

cushion; see Chapter 4), and were not measured.

Leaf images were similarly analysed. Image analysis software (SigmaScan Pro

version 5.0) was used to measure each leafs surface area, length, width and perimeter

(see Fig. 2, Chapter 4, page 127). Trichornes density was calculated per mm' leaf

area, as leaflet area was not available for the leaves (trichornes do not grow on leaf

stems and therefore these values are lower than those in Chapter 4 which are

expressed as trichornes per mrrr' leaflet area). Mean values for each plant were

calculated from all twenty leaves, with damaged leaves excluded from calculations.

48

Stellenbosch University http://scholar.sun.ac.za



Statistical analyses

Analysis of variance (ANOVA) and Tukey's Honest Significant Difference tests for

Unequal sample sizes were used to test if variables differed between sites.

Bootstrapped p-values were used where data did not meet ANOVA's assumption of

normality (Bruce et al., 1999; Good, 1999). Bootstrapping was performed with 104

iterations, using Resampling Stat's Software (Bruce et al., 1999). The variability of

each variable was quantified by calculating its coefficient of variation (CV: Zar,

1984), and these values were compared between sites.

The relationship between altitude and plant characteristics was initially

examined using simple linear regression (for continuous variables) and generalized

linear models (using a Poisson distribution for count data: Dobson, 2002; using a

binomial distribution for proportion data: Collet, 1991). Next, the relationship

between each variable and altitude was examined using polynomial regression

(following e.g. Md Nor, 2001). To test if a second-order polynomial model provided a

better fit to the data, the significance of the reduction in unexplained variance (for

simple linear regression: F-test, d.f. = 1; Quinn and Keough, 2002) or unexplained

deviance (for generalized linear models: Chi2 test, d.f. = 1; Dobson, 2002) in the

polynomial model was calculated. A significant decrease in unexplained variance (or

deviance) indicated that the polynomial model provided a better fit to the data than a

linear model.

For graphical representation of epiphyte species richness and epiphyte

prevalence, data were divided into eight altitudinal bands (following Sturge's rule; <

100, 100 - 175, 175 - 250, ... , 475 - 550, > 550 m a.s.l.: Legendre and Legendre,

1998), although all analyses were performed on continuous altitude data.

Results

The variables used to describe cushion and leaf morphology were strongly correlated

(Table 1), and gave similar results in all analyses. Therefore, results are only reported

for cushion area, leaf area and trichome density, and not for the other variables listed

in Table 1.
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Between-site comparisons

Cushion plant and leaf morphology differed between transects and between quadrats

(Tables 2, 3). While the objective of this study was not to compare the sites with each

other, these results provide useful baseline data and allow the relative influence of

altitudinal vs. other spatial variability on the island to be evaluated, and are thus

presented. Cushion surface area was highest in the NW and SE transects, while

cushion shape did not differ between transects (Table 2). Azorella selago leaves were

largest in the NW and NE transects and quadrats (Tables 2, 3). Similarly, leaves from

the NW and NE quadrats had significantly more leaflets than those from the SE

quadrat (Table 3). The NW transect and quadrat had the highest trichome densities;

nearly three times the densities in the NE and SE sites (Tables 2,3; Fig. 2a).

Cushion surface cover and epiphyte abundance and mean species richness also

differed significantly between sites. Cushions in the SE transect had a significantly

lower proportion of their surface area covered by green leaves (hereafter green

fraction) than plants in the NE or NW transect (Table 2; Fig. 2b). The SE transect

cushions also had the highest proportion of their surface covered by patches of dead

stems (hereafter dead fraction; Table 2). Cushions in the SE transect also had the

highest proportion of their surface covered by the epiphyte Agrostis magellanica

(hereafter Agrostis cover), as well as the highest abundance of this epiphyte (Table 2;

Fig. 2c). In contrast, Agrostis abundance was highest in the NW quadrat (Fig. 2c).

Both the proportional cover of other vascular epiphyte species (i.e. excluding

Agrostis) and epiphyte species richness was lowest in the SE and highest in the NW

transect and quadrat (Table 2).

All plant characteristics, with the exception of the number of leaflets per leaf,

were highly variable (mean CV > 15 %; Table 4). Within-quadrat variability in plant

and epiphyte attributes was similar to variability across the transects, except for one

attribute. Total leaf area was approximately 50 % less variable within quadrats than

across transects (Table 4). Trichome density was the only cushion characteristic

which was much more variable when data over the sites were pooled (CV = 61 %)

than when considered separately (CV ranged from 25 to 49 %; Table 4). This is due

to the large between-site (in both quadrats and transects) differences in this variable

(see Tables 2,3; Fig. 2a).
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Altitudinal trends in cushion morphology and epiphyte cover

Cushion plant characteristics varied across altitude, although not always consistently

between transects (Table 5). Patterns of epiphyte abundance and cover were strongest

and most consistent, while relationships between cushion morphology and altitude

tended to be weaker and less consistent. The abundance (Fig. 3) and proportional

cover (Fig. 4) of Agrostis peaked at mid-altitudes in all three transects, although

maximum abundance and cover (as well as the altitude at which this was attained)

differed between transects. Cushion cover was dominated by Agrostis cover (e.g. Fig.

4), which on average covered 6.4 % of each cushion's surface (the species grew

epiphytically on 169 cushions in the transects). The proportion of cushion surface

covered by other vascular epiphyte species (i.e. excluding Agrostis) was strongly

related to altitude, and in all three transects declined strongly with increasing

elevation (e.g. Fig. 4). These epiphytes (chiefly Blechnum penna-marina, Aceana

magellanica and Cotula plumosa) occurred on 57 cushions in the transects and

covered on average 2.6 % of cushion surfaces (despite a maximum cover of nearly 50

% on some cushions). Similarly, moss cover was low (on average < 1 %) and

restricted to a few cushions in each transect (20 - 39 cushions per transect). However,

unlike vascular epiphyte cover, moss cover was weakly and inconsistently related to

altitude (Table 5). Finally, cushion dead fraction was only weakly related to altitude

and consistently occupied a small proportion of each cushion's surface (only 23

cushions did not have any dead stem areas and only 14 cushions had a dead fraction

exceeding 10 % of their surface). Cushion green fraction increased significantly with

altitude in all three transects, but was strongly negatively related to Agrostis cover

(Spearman's correlation: r = - 0.688, P < 0.001). This was not surprising as cushion

green fraction and Agrostis cover on average comprise 93.5 % of cushion surfaces,

and therefore an increase in either is likely to be at the expense of the other.

Leaf area was significantly related to altitude in two transects (NW and NE,

with the smallest leaves at mid altitudes), but not in a third (Table 5; Fig. 5). Cushion

height and shape factor declined consistently (albeit weakly) with altitude, while

trichome density was positively related to altitude (Table 5; Fig. 5). The cushion

surface area and numbers of leaflets were weakly (or not at all) and inconsistently

related to altitude (Table 5).
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Altitudinal patterns in epiphyte species richness and distribution

Epiphyte species richness was strongly and consistently related to altitude, peaking at

mid-altitudes (Table 5; Fig. 6a). This pattern was composed of two contrasting species

richness patterns. First, non-vascular epiphyte species richness peaked at higher

elevations and declined rapidly towards lower altitudes (Fig. 6b). Second, vascular

epiphyte species richness was highest at sea-level and declined gradually with

increasing altitude (Fig. 6c). Total epiphyte species richness differed between

transects, with the most species (16) recorded on the NW transect, and only ten in the

SE transect. The prevalence (i.e. number of cushions on which the epiphyte was

recorded) and distribution of vascular epiphytes differed between species and

transects (Fig. 7; Table 6). Agrostis and Ranunculus biternatus occurred on more

cushions, and at higher altitudes, than other vascular epiphytes. Blechnum and Aceana

were the only other vascular epiphytes that occurred on more than 10 % of the

sampled cushions, and were generally restricted to altitudes below 200 m a.s.l. (a

single individual of Aceana was observed at 397 m a.s.l. in the SE transect).

Comparing transects, Agrostis had a narrower altitudinal range in the NW transect

than in the NE or SE transects (despite lowest prevalence in the NE transect).

Similarly, the distribution of the other vascular epiphytes differed between sites. As

an extreme example, Cotula, which was absent from the NW and SE transects but

grew epiphytically on approximately 10 % of cushions in the NE transect (Fig. 7).

Mosses grew epiphytically on A. selago across the length of all the altitudinal

transects (from 50 m to 650 m a.sJ.), although no species occurred along the entire

gradient. Species like Breutelia integrifolia and Unidentified Moss sp. 1 were

common at mid and high altitudes, but were absent at the lowest altitudes (neither

recorded below 100 m a.s.l.; Fig. 7). In contrast, Sanionia uncinata occurred mostly at

low altitudes, never exceeding 370 m a.sJ. (Fig. 7). The prevalence (and presence) of

epiphytically growing mosses also differed between transects. For example,

Ditrichum sp. grew epiphytically on approximately 80 % fewer cushions in the NW

transect than in the NE or SE transects. Similarly, Racomitrium sp., Andreaea sp. and

Unidentified mosses spp. 2 and 3 were common on cushions in the NW transect, but

not at the other sites.
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Three broad patterns of elevational distributions were evident from these

epiphyte species. First, "low altitude" species with the highest prevalence at low

altitudes, declining towards higher altitudes (e.g. Blechnum, Aceana, Cotula,

Sanioniaï. These species generally had a narrow altitudinal range (roughly from sea-

level to 200 m a.s.l.). Second, "high altitude" species showing highest prevalence at

high altitudes, declining towards sea-level (e.g. Breutelia, Racomitrium, Ditrichumï.

These species generally had the largest altitudinal ranges (usually from 150 m a.s.l. to

over 550 m a.s.1.). No vascular plants showed this distribution. Finally, "mid altitude"

species with peak prevalence at mid altitudes (e.g. Agrostis, Ranunculus, Andreaea,

Unidentified Moss spp. 1 and 3). Species generally showed the same altitudinal

distribution pattern in all three transects, although the exact form differed.

Discussion

Altitudinal trends in cushion and leaf morphology

Despite high fine-scale variability, altitudinal trends were observed in cushion and

leaf morphology. Leaf morphology is a sensitive indicator of environmental

conditions (Halloy and Mark, 1996), and was therefore expected to vary along the

altitudinal transects. Surprisingly, A. selago leaf size showed a unimodal (concave)

relationship with altitude, in contrast to most species where leaf size declines with

increasing elevation (e.g. Kudo, 1995; Cavelier, 1996; Halloy and Mark, 1996;

Cordell et al., 1998; Schoettle and Rochelle, 2000). In a comparable study, the leaf

size of five sub-Antarctic plant species were negatively related to altitude on

Macquarie Island (Tweedie, 2000). In the same study, however, the leaf size of a

sixth species, Aceana magellanica, was non-linearly related to altitude, although its

leaf size was maximal at mid-altitudes (Tweedie, 2000), while in this study A. selago

leaves were smallest at mid-altitudes. Changes in leaf size over altitude have been

attributed to a variety of environmental factors (e.g. temperature, rainfall and soil

moisture, wind, frost frequency, nitrogen limitation, and shading: Cavelier, 1996;

Halloy and Mark, 1996; Schoettle and Rochelle, 2000; Tweedie, 2000), and there is

still uncertainty about how these factors affect leaf size (Cavelier, 1996). Altitudinal

variation in rainfall and freeze-thaw frequency (since both peak at mid altitudes)

matched that of A. selago leaf size on Marion Island. However, if moisture were a
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limiting resource to A. selago, smaller leaves should be favoured when moisture

availability is low, i.e. the opposite pattern of leaf size variation would be expected

(Daubenmire, 1947). The hypothesis that leaf size is influenced by frost frequency

(smaller leaves suffer less damage from frost than larger leaves: Parkhurst and

Loucks, 1972) is, therefore, at present the most plausible explanation for the unusual

altitudinal variation in leaf size on Marion Island.

In agreement with other species, the trichome density of A. selago leaves

increased with altitude (e.g. Cordell et al., 1998). Due to the multiple possible

functions of trichomes (Gutschick, 1999; Press, 1999), the functional significance of

changes in trichome density is unclear (Cordell et al., 1998). High trichome density

can improve the insulation of leaves, by increasing the leaf boundary layer thickness

and thereby reducing heat loss (Press, 1999). Similarly, by maintaining the boundary

layer around leaves, trichomes can reduce water loss and improve water use

efficiency (Cordell et al., 1998; Press, 1999), particularly at the low atmospheric

pressures associated with higher altitudes (Halloy and Mark, 1996). Interestingly, it

has also been suggested that trichomes help leaves remain dry. Higher trichome

densities reduce the "wettability" of leaf surfaces, keeping stomata unobstructed and

reducing the risk of freeze-associated damage and fungal infections (Halloy and

Mark, 1996; Cordell et al., 1998; Press, 1999). However, trichomes perform these

functions simultaneously (Press, 1999), and at higher altitudes a greater trichome

density is probably advantageous because it provides stronger buffering against

changes in leaf temperature and moisture (by maintaining the leaf boundary layer) and

protects against freezing (by reducing wettability). Comparing trichome density

between transects provides support for some of these hypotheses, because trichome

density was highest in the colder and windier NW transect (suggesting that it is

advantageous at lower temperatures and/or strong winds).

Although not as clear as the altitudinal trends In leaf morphology, both

cushion height and shape factor (i.e. roundness) tended to decrease with increasing

altitude. Plant height generally decreases with increasing altitude (Grace and Norton,

1990; Davies and Melbourne, 1999), and cushion height was therefore expected to

follow the same pattern. The low stature of the higher altitude cushion plants has

implications for their water and energy balance. Growing closer to the ground keeps

the plant's leaves within the surface boundary layer, thereby reducing heat and water

loss (lower convective heat loss and evaporative water loss: Grace, 1977). For
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example, the tissue temperature of krumholtz (low-growing individuals surviving at or

above the treeline) Pinus sylvestris trees exceeds that of conspecifics at lower

altitudes, allowing them to achieve higher growth rates than individuals below the

treeline (Grace and Norton, 1990). Similarly, the higher temperatures associated with

the prostrate growth form of Muhlenbergia richardson is (an alpine C4 grass) enables

the species to occur at higher altitudes than other C4 species (Sage and Sage, 2002).

The decline in cushion shape with altitude (i.e. cushion perimeter becoming less

round and more irregular at higher altitudes) is probably due to this decline in plant

height with altitude. Low-growing, high altitude cushions grow around obstructions,

whereas taller low altitude cushion are able to grow over obstacles, maintaining their

hemispherical shape. This altitudinal trend is probably exacerbated by the greater rock

cover and higher proportional cover of black lava (unweathered and uneven) at high

altitudes, compared to lower altitudes with a higher proportional cover of older grey

lava (undulating topography due to glacial scouring; i.e. fewer obstructions to cushion

growth: Verwoerd, 1971).

These altitudinal differences in cushion and leaf morphology, in addition to

the species' growth form, might explain how A. selago achieves a similar growth rate

across its> 750 m altitudinal range on Marion Island (Chapter 2). First, the plant's

cushion-type growth form causes the plant to lose heat (Huntley, 1971) and moisture

(the inside of cushions are usually wet: pers. obs; see also Callaghan and

Emanuelsson 1985) more slowly than their surroundings. Then, because of their low

stature and dense trichome cover, high altitude A. selago plants might have an even

more favourable microclimate, enabling the species to maintain a similar growth rate

on average across altitudes.

Elevational patterns in cushion cover

In contrast to expectations, cushion dead fraction was not consistently related to

altitude. This suggests that stem mortality is not related to temperature, wind or other

factors that change consistently over the altitudinal gradient. Similarly, the

inconsistent relationship between the proportion of cushions covered by mosses and

altitude suggests that moss epiphyte cover is also not determined by variables that co-

vary with altitude. Indeed, the altitudinal distribution of mosses is suggested to be less

strongly determined by climatic variables than that of vascular plants (Theurillat et al.,
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2003). Nonetheless, cushion surface cover did change over altitude because of

vascular epiphyte cover differences across elevation. This variation in epiphyte cover

with altitude potentially has implications for A. selago, because it can alter the

environmental conditions experienced by cushions. For example, dense epiphyte

cover could extend the cushion's boundary layer further from its surface (buffering it

against changes in temperature and moisture: see Freiberg, 2001), but would also

reduce the surface area available for photosynthesis, and shade adjacent parts of the

cushion (discussed in full in Chapter 4). Therefore, while changes in temperature or

rainfall (within the range experienced across the altitudinal gradient) are unlikely to

alter the epiphytic moss cover or dead fraction of cushions, a change in climate could

alter vascular epiphyte cover. As a result, climate change may indirectly (through its

effects on epiphytes) alter A. selago's performance by changing cushions'

photosynthetic area and altering their microclimate.

Altitudinal distribution of epiphyte species

Because cushion cover was found to be strongly influenced by the presence of

epiphytically-growing plants, it is important to understand what determined the

distribution of these species. Hypotheses about the factors limiting the distribution of

these epiphyte species (and therefore mediating their influence on the cushion plants)

can be generated by qualitatively examining their altitudinal ranges. The spatial

distribution of a species is potentially limited by four factors: the species' abiotic

tolerances, its ability to disperse, its interactions with other species (e.g. competitive

and facilitative interactions), and "hard" boundaries (e.g. the sea for terrestrial

organisms or host range limit for parasites: Whitehead, 1951; Krebs, 1978; Huston,

1994; Gaston, 2003). Of these potential limitations, dispersal is the least likely to

restrict the altitudinal range of epiphytes on Marion, because these species produce

small seeds (see Bergstrom et aI., 1997) or spores that are probably easily transported

across the island by strong winds. The only hard boundaries to species on Marion

Island are the sea and absence of land above 1230 m a.s.l., although species that are

restricted to growth on A. selago (e.g. vascular plants at high altitudes) are limited by

the upper and lower altitudinal limits of the cushion plant.

Abiotic factors and biotic interactions must therefore explain the remaining

altitudinal boundaries. Due to physiological and energetic constraints, species have a
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limited ability to endure both these abiotic and biotic challenges (Smith and Huston,

1989), suggesting that species that are able to tolerate abiotic stresses (e.g. high

altitude conditions) are generally poor competitors (analogous to Grime's (1979,

2003) "stress-tolerant" species). Further, species that are strong competitors in

favourable environments are predicted to have poorer environmental tolerances

(Grime's (1979, 2003) "competitive" species). As a result, the relative competitive

ability of species change consistently along an environmental gradient (e.g. with

increasing altitude: Smith and Huston, 1989), with stronger competitors continually

being replaced by stronger tolerators, as environmental conditions shift beyond the

tolerances of the competitors. Therefore, along an altitudinal gradient, the upper

altitudinal boundary of a species may be expected to be set by abiotic constraints, and

its lower by biotic interactions. Indeed, Ashton and Gill (1965) and Taylor (1955)

suggested that the upper boundary of fellfield species on Macquarie Island may be set

by wind exposure and their lower boundary by shading.

Upper altitudinal boundary

Of the abiotic constraints limiting the upper altitudinal boundary of plants,

temperature is often suggested to be most important (e.g. Holten, 2003), although the

mechanisms through which low temperatures limit plant growth are still unclear

(Hoch et aI., 2002). However, stronger winds at higher altitudes can also limit growth,

via enhanced cooling, accelerated water loss or mechanical damage (Warren Wilson,

1959; Huntley, 1971; Grace, 1977; Ennos, 1997). Indeed, both temperature and wind

potentially limit the upper altitudinal distribution of vascular plants (including A.

selago) on Marion (Huntley, 1970, 1971) and Macquarie Islands (Taylor, 1955;

Ashton and Gill, 1965). Rainfall peaks at mid-altitudes on Marion Island (near the

upper altitudinal limit of A. selago), and is therefore probably not limiting to

epiphytes at higher altitudes. Similarly, differences in freeze-thaw frequency and

depth (important to northern European alpine plants: Holten, 2003), are unlikely to

directly influence the epiphytes, since they are rooted inside the cushion plants.

Finally, salt-spray determines the upper altitudinal limit for some coastal species (e.g.

Cotula plumosa and Crassula moschata, which are susceptible to shading: Taylor,

1955), by suppressing their competitors (Huntley, 1971). Therefore, low temperatures
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and strong winds probably limit the upper altitudinal boundary of most species on

Marion Island.

The importance of these factors (temperature and wind) is apparent for the

dominant epiphyte on the cushion plants, the grass Agrostis magellanica. The

prevalence, cover, distribution and abundance of A. magellanica, were lowest on the

cooler, wetter and windier NW transect than on the eastern transects. This pattern is

probably not related to the higher rainfall on the western side of the island, since this

species' peak abundance was at mid altitudes along the altitudinal transects (where

rainfall is highest). The lower temperatures and stronger winds experienced on the

NW transect therefore appear to constrain the epiphyte's performance. These transect-

specific distribution and abundance patterns also explain the contrasting Agrostis

abundances between the transects and quadrats, since altitudinal variation in Agrostis

abundance can override transect effects. Therefore, low temperatures and/or strong

winds may limit Agrostis at high altitudes, and variation in these environmental

factors can explain the species' transect-specific abundance and distribution.

Therefore, the upper elevational limit of most epiphyte species (except the

salt-spray-dependent species) is probably determined by increasing climatic severity

with increasing altitude. As a result, if climatic conditions ameliorate, some epiphyte

species may colonize upslope cushions (e.g. Agrostis may spread to higher altitudes

under warmer temperature and milder winds: see also Grabherr et al., 1994; Peiiuelas

and Boada, 2003; Sanz-Elorza et al., 2003), possibly to the disadvantage of the

cushions being colonized (see Chapter 4).

Lower altitudinal boundary

Abiotic factors are unlikely to determine lower elevational limits of epiphyte species

on Marion Island. The higher temperatures at lower altitudes appear to be within the

thermal tolerances of the sub-Antarctic plant species that have been studied (e.g.

Tallis, 1959; Bate and Smith, 1983; Pammenter et al., 1986; Smith and Gremmen,

2001), and the lower wind speeds are unlikely to have a negative influence on any

species. Salt spray does not limit species, since rain generally washes the salt away

before it reaches toxic concentrations in the soil (Huntley, 1971). Less rainfall at

lower elevations could explain the lower altitudinal boundary for some epiphyte
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species (Holten, 2003), but altitudinal variation in plant-available moisture is probably

a stronger determinant of species' ranges and is still undocumented for the island.

Biotic interactions therefore probably set the lower altitudinal boundary of

most epiphyte species (e.g. competition for space and light, due to higher epiphyte

and general plant cover: see Holten, 2003). The decline in prevalence of high altitude

species (e.g. mosses like Breutelia, Ditrichum, Racomitrium) towards lower altitudes

is probably due to shading from the taller Agrostis magellanica (at mid altitudes) and

Aceana magellanica and Blechnum penna-marina (at lower altitudes). However, this

explanation is not entirely satisfactory, since other low-growing species (e.g.

Ranunculus biternatus and Andreaea spp.) co-exist with Agrostis magellanica on A.

selago cushions at mid altitudes.

Equally paradoxical, at lower altitudes Agrostis appears to be excluded by the

low-growing Blechnum and Aceana. However, while Blechnum and Aceana would

not be able to shade a fully-grown Agrostis grass, they are potentially able to

overgrow young Agrostis individuals. Therefore, for example, if viable Agrostis seeds

are produced more irregularly or take a longer time to germinate (see e.g. Frenot and

Gloaguen, 1994) than the propagules of Aceana or Blechnum, then priority effects

(i.e. pre-empting space: Begon et al., 1996) could be important (i.e. Agrostis seedlings

would have difficulty establishing on a cushion supporting high Aceana or Blechnum

epiphyte load). Similarly, if these other epiphytes have greater longevity than

Agrostis, they could slowly replace Agrostis by colonizing the gaps left when an

Agrostis individual dies. Therefore, the lower altitudinal boundary of epiphyte species

is most likely to be a consequence of biotic interactions, particularly competition

(although historical factors, etc. could also be important).

Epiphyte species richness

Related to the factors limiting the altitudinal range of particular epiphyte species are

the factors determining the variation in epiphyte species richness across altitudinal

gradients. Epiphyte species richness peaked at mid-altitudes (200 - 350 m a.s.l.), in

agreement with a previous study of epiphytes (Wolf, 1993; see also e.g. Brown, 2001;

Md Nor, 2001 for examples of other plant and animal taxa). The different altitudinal

patterns in species richness shown by the non-vascular (peaking at mid-altitudes; Fig.

6b) and vascular (declining with altitude; Fig. 6c) epiphytes on Marion Island also

59

Stellenbosch University http://scholar.sun.ac.za



agrees with some previous studies (e.g. Wolf, 1993; Freiberg and Freiberg, 2000;

Theurillat et aI., 2003), and suggests that different factors may drive species richness

in each group (e.g. see Theurillat et aI., 2003; Table 7).

A wide variety of hypotheses have been advanced to explain altitudinal

variation in species richness (reviewed in Heaney, 2001; see Table 7). Some of these

hypotheses can be evaluated using our data set, while data from Marion Island is

lacking to test others (Table 7). The null hypothesis (Ho; Table 7) is rejected because

species richness is significantly related to altitude. Similarly, the hypothesis that

species richness declines with altitude is rejected because species richness increases

with altitude at lower elevations.

The hypotheses that species richness increases with area or productivity are

also rejected, since the island's area (Table 1 in Smith et aI., 2001) and productivity

(Smith, 1978) are greatest at low altitudes. If the frequency and intensity of

competitive interactions are assumed to be positively related to the proportion of the

cushion surface covered by epiphytes (i.e. epiphytes experience stronger competition

on cushions with higher total epiphyte cover), then the hypothesis that species

richness increases with declining competition can be rejected (since epiphyte cover,

and therefore competition among epiphytes, is lowest at high altitudes; see e.g. Fig.

4). In addition, the hypothesis that species richness declines with increasing frequency

of disturbances can also be rejected, since disturbance is probably highest at coastal

sites (due to animal activity). Epiphytes are unaffected by soil freeze-thaw cycles

(since they are rooted in cushion plants) which is the other potentially dominant form

of disturbance on Marion Island. Rainfall peaks at mid altitudes on Marion Island

(Blake, 1996), and therefore the hypothesis that species richness increases with

rainfall cannot be rejected. Assuming that the abundance pattern of Agrostis

magellanica is roughly representative of the combined abundance of all the epiphyte

species, our data also provides some tentative support for the hypothesis that epiphyte

species richness peaks where epiphyte abundance is maximal. However, comparing

transects shows that epiphyte species richness is lowest in the SE transect where

Agrostis abundance was highest, and highest in the NW transect where Agrostis was

least abundant, suggesting that this hypothesis alone cannot explain epiphyte species

richness patterns across Marion Island. Three hypotheses predicted species richness to

peak at altitudes where the diversity of habitats, microhabitats and resources are

maximal (Hs, H9 and HIO, respectively). Habitat diversity is highest at low altitudes
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(there are more vegetation types present between sea-level and 100 m a.s.l. than in

higher altitudinal bands: Smith et al., 2001), and therefore cannot explain the mid-

altitude peak in epiphyte species richness. Resource and microhabitat diversity are

also possibly highest at lower altitudes (especially if epiphyte resource and

microhabitat diversity is positively related to habitat diversity), although are difficult

to assess because both biotic and abiotic heterogeneity must be considered. Therefore,

these hypotheses could not be rigorously assessed. Finally, the remaining hypotheses

(Table 7) could also not be suitably evaluated using our data. Therefore, within the

limits of our data set, epiphyte species richness appears to be best predicted by

rainfall. This is supported by the observation that epiphyte species richness is also

highest at the wetter NW transect, although the mechanism by which higher rainfall

allows more species to co-exist is not clear.

These results must, however, be considered within the context of three

caveats. Some vascular plants known to grow epiphytically on A. selago were not

recorded during the survey (e.g. Montia fontana, Uncinia dikei, Juncus

scheuchzerioides, Crassula moschata, Hymenophyllum peltatum, Lycopodium

magellanica: Huntley, 1970, 1971, 1972; Sagina procumbens: pers. obs). Also, moss

species richness may have been underestimated due to morphological similarity of

congeneric species. Finally, liverwort and lichens were not recorded because of

identification difficulties and their small size. However, the patterns described relate

to mean species richness per cushion, and these problems only affect the estimates of

total epiphyte species richness (i.e. comparing between sites). Therefore, despite the

limitations of the altitudinal transects, this suggests that climate change could affect

species richness patterns, particularly if factors influencing water availability change.

Conclusion

Azorella selago morphology and surface cover, and epiphyte composition and species

richness varied across the altitudinal gradient on Marion Island. Assuming that a

gradual spatial change in climate is a suitable analogue for a temporal change in

climate, this suggests that A. selago cushion height, leaf size and trichome density will

be responsive to changes in climate. Similarly, the altitudinal zonation of epiphyte

species suggests that the altitudinal limits of some species could shift under further

changes in climate, with potential implications for the performance of A. selago under
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altered epiphyte loads. Therefore, altitudinal patterns in cushion characteristics and

epiphyte abundance and distribution on Marion Island suggest that A. selago may be

directly and indirectly affected by changes in climate.
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TABLE 1

Relationship between strongly related variables, calculated by pooling data across all sites.

Calculations were repeated individually for each site's data, but yielded very similar results. Slope

values are untransform ed. J log-transformed, 2 square-root transformed.

Independent
variable De~endent variable R2 F d.f. ~ slo~e ± SE
Cushion area Maximum diameter 1 0.82 2189.47 1,487 < 0.001 0.43 ± 0.02
Cushion area Perpendicular diameter 1 0.66 951.52 1,487 < 0.001 0.32 ± 0.02
Cushion area Perimeter 1 0.88 3559.99 1,487 < 0.001 0.50 ± 0.01

Leaf area Leaf length 2 0.94 13838.67 1,887 < 0.001 1.64 ± 0.02
Leaf area Leaf width 2 0.93 11755.38 1,887 < 0.001 1.28 ± 0.02
Leaf area Leaf perimeter 2 0.66 1740.93 1,887 < 0.001 3.25 ± 0.07

Trichome densit:i Number of trichomes 2 0.87 6180.82 1,887 < 0.001 4.48 ± 0.10

69

Stellenbosch University http://scholar.sun.ac.za



TABLE 2

Azorella selago characteristics in the transects (mean ± SE). Differences between transects tested using ANOVA, with bootstrapped p-values

where data violate assumption of normality. A. magellanica = Agrostis magellanica. 1 log-transformed, 2 square root transformed, 3from Chapter

2, t bootstrapped p-value, * non-significant after sequential Bonferroni correction (Rice, 1989).Groups not sharing a letter differ at p < 0.05.

F d.f. P NW Transect N NE Transect N SE Transect N

Cushion growth rate and morphology

13.43 2,226 < 0.80 ± 0.03 75 0.73 ± 0.03 82 0.57 ± 0.02 72Growth rate (mm/yr) 1.3 0.001 a a b
Cushion surface area (rn") 1 8.78 2,286 < 0.001 -0.50 ± 0.03 95 b -0.36 ± 0.03 96 a -0.51 ± 0.03 98 b
Height (rn) 1,3 0.66 2,296 0.515 -0.76 ± 0.02 99 -0.76 ± 0.02 100 -0.79 ± 0.01 100

Cushion shape 1.01 2,286 0.365 0.48 ± 0.02 95 0.50 ± 0.02 96 0.48 ± 0.01 98

Leaf morphology
Leaf area (rnrrr) 1 8.89 2,286 < 0.001 1.35 ± 0.01 95 a 1.36 ± 0.01 96 a 1.31 ± 0.01 98 b
Leaflets 1 1.04 2,286 0.356 0.71 ± 0.01 95 0.70 ± 0.01 96 0.70 ± 0.01 98

Trichome density (per mm2
) 2 342.05 2,286 < 0.001 1.22 ± 0.02 95 a 0.70 ± 0.02 96 b 0.67 ± 0.01 98 b

Cushion surface cover
Green fraction 15.15 2,286 < 0.001 t 91.09 ± 0.85 95 a 86.15 ± 1.20 96 b 84.14±1.21 98 b
Dead fraction 5.93 2,286 0.010* t 3.47 ± 0.32 95 b 2.79 ± 0.40 96 b 4.52 ± 0.36 98 a
A. mage/lanica cover 10.48 2,286 < 0.001 t 2.70 ± 0.57 95 b 6.23 ± 1.15 96 a 10.20 ± 1.07 98 a
Moss cover 3.78 2,286 0.093 t 0.28 ± 0.06 95 0.49 ± 0.16 96 0.10 ± 0.03 98

Other epiphyte spp. Cover 5.57 2,292 0.015* t 2.46 ± 0.74 95 ab 4.35 ± 0.85 96 a 1.03 ± 0.48 98 b

Epiphyte abundance and species richness
A. mage/lanica individuals 17.53 2,297 < 0.001 t 12.44 ± 2.36 100 b 22.32 ± 4.07 100 b 42.14 ± 4.12 100 a

E~i~h~e s~ecies richness 12.78 2,297 < 0.001 t 2.79±0.12 100 a 2.15 ± 0.11 100 b 2.07 ± 0.10 100 b
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TABLE 3

Azorella selago characteristics in the quadrats (mean ± SE). Differences between quadrats tested using ANOVA, with bootstrapped p-values where

data violate assumption of normality. A. magellanica =Agrostis magellanica. I log-transformed, 2from Chapter 2, t bootstrapped p-value. All

values remain significant after sequential Bonferroni correction (Rice, 1989). Groups not sharing a letter differ at p < 0.05.

F dJ. p NW Quadrat N NE Quadrat N SE Quadrat N
Cushion growth rate and morphology

Growth rate (mm/yr) 1.2 5.71 2,428 0.004 0.61 ± 0.02 157 a 0.54 ± 0.02 127 b 0.57 ± 0.02 147 ab
Cushion surface area (rn") 1 5.06 ± 0.02 200
Height (m) 1,2 61.96 2,597 < 0.001 -0.82 ± 0.01 200 a -0.98 ± 0.01 200 b -0.95 ± 0.01 200 b

Cushion shape 0.47 ± 0.01 200
c

Leaf morphology
Leaf area (rnrn") 1 10.01 2,597 < 0.001 1.23 ± 0.01 200 a 1.23 ± 0.01 200 a 1.21 ± 0.01 200 b

Leaflets 25.08 2,597 < 0.001 t 5.10 ± 0.01 200 a 5.07 ± 0.01 200 a 5.00 ± 0.01 200 b

Trichome density (per mm") 805.61 2,597 < 0.001 t 1.53 ± 0.02 200 a 0.64 ± 0.02 200 b 0.53 ± 0.02 200 c

Cushion surface cover
Green fraction 78.03 ± 14.99 200
Dead fraction 6.69 ± 6.25 200
A. magellanica cover 15.27 ± 13.80 200
Moss cover 0.01 ± 0.08 200
Other epiphyte spp. cover 0 200

Epiphyte abundance and species richness
A. magellanica individuals 37.21 2,597 < 0.001 t 39.47 ± 2.16 200 a 15.04 ± 2.16 200 b 18.59±2.16 200 c

E~i~hy!e s~ecies richness 87.80 2,478 < 0.001 t 3.07 + 0.06 200 a 2.30 ± 0.06 200 b 1.69 ± 0.09 81 c
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TABLE4

Variability in Azorella selago characteristics expressed as coefficient of variation (%). Data analysed separately for

each site, and pooled for the "All sites" values. A. magellanica = Agrostis magellanica 1from Chapter 2.

NW NE SE All sites
Transect Quadrat Transect Quadrat Transect Quadrat

Cushion growth rate and morphology
Growth rate 1 53.7 53.6 64.7 60.5 50.3 51.5 62.0
Cushion surface area 78.5 70.6 82.0 80.5 97.1
Cushion maximum diameter 1 36.0 53.1 37.8 45.9 34.5 39.9 47.3
Cushion height 1 50.7 36.0 46.9 36.0 32.1 30.5 45.8
Cushion shape 31.2 33.4 24.9 27.1 29.1

Leaf morphology
Total leaf area 31.1 14.0 29.5 14.8 25.6 13.2 27.0
Leaflets 3.8 3.7 3.9 2.7 4.1 2.2 3.3
Trichome density 24.6 25.8 48.7 31.7 44.2 31.5 61.2

Cushion surface cover
Green fraction 9.1 13.7 14.2 19.2 16.3
Dead fraction 91.1 139.1 78.6 93.5 104.7
A. magellanica cover 204.9 180.3 103.7 90.4 124.0
Moss cover 216.8 321.0 304.5 693.0 443.7
Other epiphyte spp. cover 263.3 171.6 430.5 693.0 327.9

Epiphyte abundance and species richness
A. magellanica individuals 189.4 110.7 182.5 158.4 97.9 98.2 138.7
Epiphyte species richness 41.79 52.2 49.2 46.4 50.5
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TABLE 5. Relationship between altitude and various characteristics of Azorella selago. Theform, shape andfit of the relationships that

provide the best fit to the data are shown. Where neither monomial nor polynomial regression explained a significant proportion of the

variation in a plant characteristic the slope of the best fitting curve is shown in brackets. Where a quadratic curve provided the best fit but

the curve appeared approximately linear over the range of data examined, shape is indicated by just negative or positive (as for linear). A.

magellanica = Agrostis magellanica. Minimum = quadratic curve with a minimum, maximum = quadratic curve with maximum. I curve

showing a lower plateau, 2 curve showing an upper plateau. See appendices A, B, C, D and E for statistics.

NW Transect NE Transect SE Transect Max.
Variable Best fit Sha~e R2 Best fit Sha~e R2 Best fit Sha~e R2 R2

Cushion growth rate and morphology
Cushion growth rate (positive) (negative) linear positive 0.15 0.15
Cushion area quadratic minimum 0.07 (negative) (positive) 0.07
Cushion height quadratic negative 1 0.37 (negative) linear negative 0.19 0.37
Cushion shape factor quadratic negative 1 0.25 quadratic negative 0.50 linear negative 1 0.19 0.50

Leaf morphology
Leaf area quadratic minimum 0.25 quadratic minimum 0.32 (negative) 0.32
Leaflets quadratic minimum 0.18 (negative) linear negative 0.06 0.18
Trichome density quadratic positive 2 0.23 linear positive 0.41 linear positive 0.07 0.41

Cushion surface cover
Green fraction linear positive 2 0.34 quadratic minimum 1 0.28 quadratic minimum 1 0.27 0.34
Dead fraction quadratic maximum 0.23 quadratic positive 0.29 (negative) 0.29
A. magellanica cover quadratic negative 0.49 quadratic maximum 0.57 quadratic maximum 0.38 0.57
Moss cover quadratic maximum 0.11 quadratic positive 0.29 (negative) 0.29
Other epiphyte spp. Cover quadratic minimum 0.65 quadratic minimum 0.82 quadratic negative 1 0.45 0.82

Epiphyte abundance and species richness
A. magellanica individuals quadratic negative 0.59 quadratic maximum 0.79 quadratic maximum 0.50 0.79
E~i~h~e s~ecies richness guadratic maximum 0.25 guadratic maximum 0.34 guadratic maximum 0.34 0.34
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TABLE6

Altitudinal distribution of species growing epiphytically on Azorella selago. I minimum and maximum altitude at which species was recorded

on A. selago (calculated where more than four records available), 2 from Huntley (1970), 3 moss, 4 liverwort, 5 exceeded by an observation in

the NE transect. See appendix F for additional data.

Number of occurrences Range (m a.s.!.} 1 Upper
S~ecies Famil:t NW NE SE All sites NW NE SE All record 2

Agrostis magellanica Poaceae 50 36 77 163 80 - 387 60 - 437 65 - 477 60 - 477 585
Breutelia integrifolia Bartramiaceae 3 55 23 45 123 148 - 649 165 - 597 109 - 583 109 - 649
Ditrichum sp. (D. conicum?) Ditrichaceae 3 7 60 49 116 273 - 649 165 - 619 67 - 583 67 - 649
Ranunculus biternatus Ranunculaceae 24 20 18 62 69 - 556 190 - 606 202 - 431 69 - 606 5825

Unidentified moss sp. 1 Bryophyte 28 12 5 45 153 - 602 197 - 418 253 - 548 153 - 602
Blechnum penna-marina Polypod iaceae 6 25 5 36 55 - 144 60 - 158 58 - 218 55 - 218 275
Sanionia uncinata Amblystegiaceae 3 22 10 2 34 55 - 367 60 - 144 55 - 367
Aceana magellanica Rosaceae 17 14 3 34 64 - 193 65 - 158 64 - 397 530
Racomitrium sp. Grimmiaceae 3 25 2 27 244 - 583 208 - 583
Unidentified moss sp. 2 Bryophyte 25 25 177 - 465 177 - 465
Andreaea sp. Andreaeaceae 3 8 1 9 270 - 485 270 - 498
Unidentified moss sp. 3 Bryophyte 9 9 244 - 452 244 - 452
Cotula plumosa Asteraceae 9 9 65 - 69 65 - 69 655

Lycopodium saururus Lycopodiaceae 2 1 3 415
Poa cookii Poaceae 1 2 3 590
Callitriche antarctica Callitrichaceae 2 2 535
Co/obanthus kerguelensis Caryophyllaceae 2 2 320
JamesonielIa sp. Jungermanniaceae 4 1 1

S~ecies richness 16 12 10 18
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TABLE 7

Hypotheses concerning variation in species richness (S) along altitudinal gradients (modified from Heaney, 2001).

Supported by this study?
Ho: No altitudinal variation in SpRns

HI: S increases with decreasing altitude
H2: S increases with area
H3: S increases with productivity
H4: S increases with infrequency of disturbance
Hs: S increases with habitat diversity

H6: S increases with rainfall
H7: S increases with epiphyte abundance and/or
biomass

Hs: S increases with decreasing competition

H9: S increases with habitat complexity

HIO: S increases with resource diversity

HII: S peaks in areas of community
interdigitation
H12: S peaks in areas that have had the highest
rates of speciation

No

No
No
No
No
No

Possible
Possible

No, but difficult to
evaluate

No, but difficult to
evaluate

No, but difficult to
evaluate

Could not evaluate

Not relevant at scale of
Marion Island

Some support from vascular epiphytes
Some support from vascular epiphytes
Some support from vascular epiphytes

Some support from non-vascular
epiphytes
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FIGURE 1. Idealized representation of altitudinal gradients in biotic and abiotic variables on

Marion Island (based on Huntley, 1971; Schulze, 1971; Blake, 1996; Smith et al., 2001;

Boelhouwers, 2003; Holness, 2003; J.A. Deere, unpublished data; M Nyakatya, unpublished

data). The altitudinal gradient probably represents a shift in the relative importance of biotic

and abiotic variables in controlling community composition (see text).

76

Stellenbosch University http://scholar.sun.ac.za



a)_ 1.8 I1: Transect Quadrat
E 1.6 I I :::::E...

1.4 IQ) X
Q. a->- 1.2-"iii

1.0c:
Q)
"C 0.8
Q)

b YE ::::JE::
0 0.6 :r b z
..c: :::I: ::::JE::
CJ 0.4...
I-

0.2
NW NE SE NW NE SE

b) 94
Transect

92 I~0- 90
c: b
0 a I:;; 88
CJ bcu...

86 I....
c:
Q)
Q) 84...e

82

80
NW NE SE

C)Q) 49
TransectI: QuadratCJc: Icu 42"C

c:
j 35.0 a b Icu

I xcu 28 ICJ.... ±e 21Q) a z- I- Icu
0) 14cue 7
q:

0
NW NE SE NW NE SE

FIGURE 2. Differences in a) trichome density, b) proportion of

cushion surface covered by green leaves (i.e. green fraction), and c)

Agrostis magellanica abundance between sites. Data from transects

and quadrats analysed separately. Groups not sharing a letter are

significantly different at p < 0.05.
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FIGURE 3. Altitudinal variation in epiphytic Agrostis magellanica abundance on Azorella

selago (blue circles 0 - NW transect, black squares _ - NE transect, red triangles ó - SE

transect). Zero values have been excluded for clarity in this graph (46 % of zero values are

from altitudes exceeding 450 m a.s.I.). Curves indicate the best fit of a quadratic curve to

data (for non-zero values; NW transect: y = -16.96 + 0.57x - 0.OIx2; NE transect: y = -

57.53 + I.23x - 0.OIx2; SE transect: y = -7.30 + 0.58x - 0.OIx2).
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APPENDIXA

Simple linear regression of Azorella selago cushion growth rate, cushion morphology and leaf morphology against altitude. I sign of the linear

coefficient, 2 log-transformed, 3 square-root transformed.

NW Transect NE Transect SE Transect

De~endent variable R2 F df ~ Coeff.' R2 F df ~ Coeft. R2 F df ~ Coeft.

Cushion growth rate and morphology

Cushion growth rate 2 < 0.01 0.15 1,73 0.701 + < 0.01 0.01 1,80 0.976 0.15 13.6 1,70 < 0.001 +

Cushion area 2 0.02 3.37 1,93 0.070 0.01 2.12 1,94 0.148 < 0.01 0.97 1,96 0.327 +

Cushion height 2 0.30 41.47 1,93 < 0.001 < 0.01 0.41 1,95 0.522 0.19 24.55 1,98 < 0.001

Cushion shape factor 2 0.20 24.05 1,93 < 0.001 0.42 69.66 1,94 < 0.001 0.20 25.13 1,96 < 0.001

Leaf morphology

Leaf area 2 0.06 7.19 1,92 0.009 0.19 23.52 1,94 < 0.001 < 0.01 0.25 1,96 0.621

Leaflets 2 0.04 4.59 1,92 0.035 0.03 3.90 1,94 0.051 0.06 7.26 1,96 0.008 +

Trichome densi!y 3 0.19 23.35 1,92 < 0.001 + 0.41 66.29 1,94 < 0.001 + 0.07 8.00 1,96 0.006 +
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APPENDIXB

Polynomial (quadratic) regression of Azorella selago cushion growth rate, cushion

morphology and leaf morphology against altitude. 1 sign of the linear coefficient, 2 sign

of the quadratic coefficient, 3 log-transformed, 4 square-root transformed.

Coefficient
De~endent variable R2 F d.f. ~ Linear 1 Quadratic 2

NWTransect

Cushion growth rate and morphology

Cushion growth rate 3 0.02 1.92 2, 72 0.154 +

Cushion area 3 0.07 4.61 2,92 0.012 +

Cushion height 3 0.37 28.82 2,92 < 0.001 +

Cushion shape factor 3 0.25 17.02 2,92 < 0.001 +

Leaf morphology

Leaf area 3 0.25 16.23 2,91 < 0.001 +

Leaflets 3 0.18 11.10 2,91 < 0.001 +

Trichome density 4 0.23 14.84 2,91 < 0.001 +

NE Transect

Cushion growth rate and morphology

Cushion growth rate 3 0.02 1.75 2,79 0.180 +

Cushion area 3 0.01 1.24 2,93 0.295 +

Cushion height 3 0.03 2.24 2,94 0.112 +

Cushion shape factor 3 0.50 48.8 2,93 < 0.001 +

Leaf morphology

Leaf area 3 0.32 23.34 2,93 < 0.001 +

Leaflets 3 0.02 1.99 2,93 0.143
Trichome density 4 0.40 32.84 2,93 < 0.001 + +

SE Transect

Cushion growth rate and morphology

Cushion growth rate 3 0.33 18.34 2,69 < 0.001 +

Cushion area 3 -0.01 0.49 2,95 0.617 + +

Cushion height 3 0.19 12.32 2,97 < 0.001 +

Cushion shape factor 3 0.19 12.47 2,95 < 0.001

Leaf morphology

Leaf area 3 0.01 1.70 2,95 0.187 +

Leaflets 3 0.05 3.67 2,95 0.029 +

Trichome densi~ 4 0.11 6.75 2,95 0.002 +
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APPENDIXC

Straight-line regression of Azorella selago cushion surface cover variables and epiphyte

characteristics against altitude, using Generalized Linear Models. J sign of the linear coefficient,

2 binomial distribution, 3 Poisson distribution, 4 logit link-function, 5 log link-function, 6 log-log

link function, A. magellanica = Agrostis magellanica.

Scaled % Explained Log-likelihood
Variable d.f, dev./d.f. deviance ratio ~ Coeff.'

NWTransect

Cushion surface cover (%)
Green fraction 2.4 93 0.92 34.13 -2736.75 < 0.001 +
Dead fraction 2.4 93 1.00 6.32 -1422.78 < 0.001 +

A. magellanica fraction 2,4 93 0.76 19.21 -1111.12 < 0.001
Moss fraction 2,4 93 0.65 0.71 -182.91 0.453
Other epiphyte cover 2, 4 93 0.42 60.92 -787.10 < 0.001

Epiphyte abundance and species richness
A. magellanica 3. 5 93 0.82 23.93 -1261.83 < 0.001
Epiphyte species richness 3. 5 93 0.53 13.59 -90.1095 0.042

NE Transect

Cushion surface cover (%)
Green fraction 2,4 93 0.85 18.73 -3770.07 < 0.001 +
Dead fraction 2.4 93 0.82 24.66 -1175.51 < 0.001 +

A. magellanica fraction 2, 6 93 0.79 4.92 -2199.95 < 0.001
Moss fraction 2,4 93 0.46 26.25 -273.69 < 0.001 +

Other epiphyte cover 2, 4 93 0.98 66.08 -1314.4 < 0.001
Epiphyte abundance and species richness

A. magellanica 3,5 95 0.86 4.68 -2957.86 < 0.001
Epiphyte species richness 3. 5 95 0.59 6.40 -103.21 0.081

SE Transect

Cushion surface cover (%)
Green fraction 2,4 96 0.91 15.24 -4206.96 < 0.001 +
Dead fraction 2,4 96 0.91 0.04 -1805.79 0.757 +

A. magellanica fraction 2, 4 96 0.96 8.25 -3177.78 < 0.001
Moss fraction 2.4 96 0.50 4.29 -76.71 0.180
Other epiphyte cover 2.4 96 0.20 42.52 -433.48 < 0.001

Epiphyte abundance and species richness
A. magellanica 3. 5 98 1.04 16.20 -2007.06 < 0.001
E~i~h~e s~ecies richness 3,5 98 0.55 6.66 -124.90 0.049
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APPENDIXD

Polynomial (quadratic) regression of Azorella selago cushion surface cover variables and epiphyte

characteristics against altitude, using generalized linear models. J sign of the linear coefficient, 2 sign of

the quadratic coefficient, 3 binomial distribution, 4 Poisson distribution, 5 logit link-function, 6 log link-

function, 7 log-log link function, A. magellanica = Agrostis magellanica.

Scaled %Explained Log-likelihood Co-efficient
Variable d.f, dev./dJ. deviance ratio ~ Linear 1 Quadratic :1

NW Transect

Cushion surface cover (%)
Green fraction 3, 5 92 0.92 34.51 -1004.71 < 0.001 + +
Dead fraction 3, 5 92 0.92 23.03 -1398.32 < 0.001 + +

A. magellanica fraction 3, 5 92 0.81 49.24 -2735.46 < 0.001 +
Moss fraction 3, 5 92 0.77 10.77 -178.91 0.014 + +

Other epiphyte cover 3, 5 92 0.50 65.12 -765.81 < 0.001 +

Epiphyte abundance and species richness
A. magellanica 4, 6 92 0.78 59.49 -721.38 < 0.001 +

Epiphyte species richness 4, 6 92 0.46 24.52 -87.02 0.006 + +

NE Transect

Cushion surface cover (%)

Green fraction 3,5 92 0.74 28.46 -1792.69 < 0.001 +

Dead fraction 3, 5 92 0.71 28.62 -1168.13 < 0.001 + +

A. magellanica fraction 3, 7 92 0.83 57.36 -3722.46 < 0.001 + +
Moss fraction 3, 5 92 1.34 29.43 -270.90 < 0.001 + +

Other epiphyte cover 3, 5 92 1.00 81.90 -1218.15 < 0.001 +

Epiphyte abundance and species richness
A. magellanica 4, 6 94 0.78 78.89 -720.67 < 0.001 +

Epiphyte species richness 4,6 94 0.42 33.82 -94.96 < 0.001 + +

SE Transect

Cushion surface cover (%)
Green fraction 3.5 95 0.92 26.79 -2985.18 < 0.001 +
Dead fraction 3,5 95 0.91 0.04 -1805.78 0.952 + +

A. magellanica fraction 3, 5 95 0.90 38.94 -4147.58 < 0.001 + +
Moss fraction 3, 5 95 0.42 4.30 -76.71 0.407 + +

Other epiphyte cover 3,5 95 0.29 45.09 -425.76 < 0.001 +

Epiphyte abundance and species richness
A. magellanica 4, 6 97 0.97 50.08 -1281.17 < 0.001 + +

E~i~h~e s~ecies richness 4,6 97 0.39 34.47 -116.81 < 0.001 + +
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APPENDIXE

Test of if the inclusion of a quadratic term (i.e. second order polynomial model) significantly improves the proportion of variance

(F-test; simple linear regression) or proportion of deviance (Chi 2 test; GLZ) in Azorella selago characteristics explained by a

linear model (i.e. first order polynomial mode!). A. magellanica = Agrostis magellanica.

NW Transect NE Transect SE Transect Mean R2

F ~ F ~ F ~ monomial ~ol~nomial
Cushion growth rate and morphology

Cushion growth rate 3.68 0.059 3.50 0.065 19.48 < 0.001 0.06 0.12
Cushion area 5.68 0.019 0.37 0.545 0.01 0.913 0.01 0.02
Cushion height 11.49 0.001 4.05 0.047 0.27 0.604 0.17 0.19
Cushion shape 8.15 0.005 16.48 < 0.001 0.05 0.824 0.27 0.32

Leaf morphology
Leaf area 23.50 < 0.001 18.72 < 0.001 3.16 0.079 0.08 0.19
Leaflets 16.81 < 0.001 0.11 0.745 0.13 0.718 0.04 0.08
Trichome density 5.25 0.024 0.05 0.815 5.15 0.025 0.22 0.25

Chi 2 ~ Chi 2 ~ Chi 2 ~
Cushion surface cover (%)

Green fraction 2.56 0.110 95.22 < 0.001 118.75 < 0.001 22.70 29.92
Dead fraction 48.90 < 0.001 14.77 < 0.001 0.00 0.958 10.34 17.23
A. magellanica fraction 212.82 < 0.001 814.51 < 0.001 385.20 < 0.001 10.79 48.52
Moss fraction 7.99 0.005 5.57 0.018 0.00 0.972 10.42 14.83
Other epiphyte cover 42.58 < 0.001 192.50 < 0.001 15.44 < 0.001 56.51 64.04

Epiphyte abundance and species richness
Agrostis magellanica 1080.90 < 0.001 4474.38 < 0.001 1451.77 < 0.001 14.94 62.82
E~i~h~e s~ecies richness 6.19 0.013 16.50 < 0.001 16.18 < 0.001 8.88 30.94
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APPENDIXF

Altitudinal distribution of species growing epiphytically on Azorella selago. J Ft quartile - 3rd quartile, 2 log-transformed prior to

ANOVA, 3 SE Transect excludedfrom analysis. All values in m a.s.l. Groups not sharing a letter differ at p < 0.05 (where letters are

not indicated none of the groups differ significantly).

NWTransect NE Transect SE Transect All transects ANOVA
E~i~hï!e s~ecies g25 - g75 1 median g25 - g75 median g25 - g75 median Min - Max F d.f, P
Agrostis magellanica 188 - 292 256 217 - 349 273 194 - 335 264 60 - 477 1.876 2,158 0.157
Breutelia integrifolia 2 270 - 475 331 a 245 - 498 373 ab 218 - 362 293 b 109 - 649 4.550 2,119 0.012
Ditrichum sp. 307 - 568 509 276 - 514 424 235 - 487 327 67 - 649 2.850 2,113 0.062
Ranunculus biternatus 2 197-383 299 222 - 326 267 264 - 335 291 69 - 606 0.191 2,58 0.827
Unidentified moss sp. 1 2 206 - 332 278 287 - 376 349 293 - 441 406 153 - 602 2.051 2,42 0.141
Blechnum penna-marina 2 64 - 87 80 71 - 122 83 65 - 132 121 55 - 218 0.688 2,30 0.510
Sanionia uncinata 142 - 334 215 a 69 - 130 112 b 55 - 367 14.242 1,283 0.001
Aceana magellanica 2 87 - 153 122 69 - 127 110 64 - 397 1.442 1,243 0.242
Racomitrium sp. 310 - 495 337 208 - 583
Unidentified moss sp. 2 250 - 329 284 177 - 465
Andreaea sp. 309 - 395 327 498 - 498 498 270 - 498
Unidentified moss sp. 3 283 - 362 321 244 - 452
Cotuia eJumosa 67 - 69 69 65 - 69
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Chapter 4: Effects of simulated climate change on a dominant vascular plant

species, Azorella selago, on sub-Antarctic Marion Island

Introduction

High latitudes are predicted to experience the greatest temperature increases at the

greatest rates (IPCC, 2001). Indeed, in these regions large and rapid changes in

climate have already been documented, the ecological consequences of which may be

diverse and widespread (Kennedy, 1995b; Callaghan and Carlsson, 1997; Callaghan

et al., 1997; Hughes, 2000; Walther et al., 2002). There is some evidence that changes

in climate at high latitudes have already directly altered species' physiology,

phenology and distribution, potentially leading to changes in species interactions and

community structure (Kennedy, 1995b; Hughes, 2000; Walther et al., 2002). For

example, higher temperatures can accelerate many physiological processes (including

photosynthesis and growth: Callaghan et al., 1992), and are thought to be responsible

for increased plant growth observed at high latitudes in the northern hemisphere

(Myneni et al., 1997; Sturm et al., 2001). Warming can also alter phenological

patterns, for example by extending the duration of species' growing seasons (Myneni

et al., 1997; Sturm et al., 2001). Other plant responses to increased temperatures

include changes in plant and leaf morphology, shifts to earlier spring events, altered

nutrient relations and thermal stress damage (e.g. Michelsen et al., 1996; Robinson et

al., 1998; Arft et al., 1999; Jonasson et al., 1999; Fitter and Fitter, 2002; Parmesan and

Yohe, 2003). Warming can also alter species' reproductive performance and

establishment success, and thereby species distributions. For example, the two

vascular plant species native to the Antarctic, Colobanthus quitensisi and

Deschampsia antarctica, have increased their range and abundance dramatically over

a 27-year period in response to increasing summer temperatures (Smith, 1994; see

also Sturm et al., 2001). The biological effects of changes in rainfall are less well

understood, particularly at high latitudes (Hodkinson et al., 1999). Changes in rainfall

will alter the moisture stress experienced by plants, and consequently, most plant

physiological processes (including respiration and photosynthesis: Salisbury and

Ross, 1992; Hughes, 2000). Altered rainfall patterns could therefore lead to changes

in plant growth, production and nutrient relations, as well as biomass allocation and
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phenological patterns (Callaghan et aI., 1992; Kennedy, 1995b; Callaghan and

Carlsson, 1997; Hodkinson et aI., 1999).

The biological effects of changes in climate are, however, not limited to the

direct effects on species physiology, phenology and distribution. Because responses to

climate change are generally species-specific (species differ in the sign, magnitude

and/or rate of their responses: Chapin et aI., 1995), climate change will also alter

species interactions (e.g. shift competitive balance, decouple mutualisms: Harrington

et aI., 1999; Stenseth and Mysterud, 2002; Saavedra et aI., 2003). These indirect

effects include increased shading of low-growing plants, a response that has already

observed in some experimental systems and which is predicted to be important in the

Arctic (Callaghan et aI., 1992; Callaghan and Jonasson, 1995; Callaghan and

Carlsson, 1997). For example, Jonasson et al. (1999) reports how increased shading

from shrubs reduces moss cover under warming and fertilization treatments in the

Scandinavian Arctic. There is therefore significant evidence of climate change effects

on high latitude plant communities, and under current climate change projections

further biological changes are expected (Hughes, 2000).

In general, high latitude plant communities and their component species are

well suited to experimental climate manipulation, partly due to their low height and

low species diversity (Kennedy, 1995a, 1995b; Callaghan et aI., 1997; Davies and

Melbourne, 1999). In these communities, comparatively small treatments or samples

can cover an area representative of an entire community, and therefore enable

sufficient replication (Kennedy, 1995a). Additionally, in these challenging

environments the influence of biotic factors are low relative to abiotic effects, and

climate change impacts are thus more readily discernable (Callaghan and Jonasson,

1995; Callaghan et aI., 1997). An important component of these high latitude plant

communities are species with cushion growth-forms (e.g. Griggs, 1956; Mark et aI.,

2001). Due to their life history attributes (and characteristics of their environment),

cushion plants are potentially good models for studying the biological effects of

climate change. First, they have characteristics typical of species predicted to be

unable to respond rapidly to change (slow growth, longevity of plant, stems and

leaves), and are therefore potentially vulnerable (Molau, 1997). Second, the cushion

growth-form simplifies and facilitates a number of measurement and monitoring

techniques (e.g. growth rate: Huntley, 1972; Frenot et aI., 1993; age estimation:

McCarthy, 1992; Molau, 1997; Chapter 2). Finally, cushion plants often have

90

Stellenbosch University http://scholar.sun.ac.za



important and varied ecosystem functions, and could be considered keystone species

in some systems. For example, they often host dense and diverse epiphyte and

invertebrate communities (Griggs, 1956; Huntley, 1972; Barendse and Chown, 2001),

and can influence geomorphological processes (see Selkirk, 1998; Boelhouwers et al.,

2000).

In this paper we test the direct and indirect effects of continued warming and

drying on the cushion plant species, Azorella selago Hook. (Apiaceae), on sub-

Antarctic Marion Island. Azorella selago is a ubiquitous species on the island

(Huntley, 1972; Smith et al., 2001), and host to a high diversity of epiphytes and

invertebrates (Huntley, 1972; Barendse and Chown, 2001). Over the last half century

the island has experienced large and rapid changes in climate, probably due to

changes in atmospheric circulation patterns (Smith, 1994; Smith, 2002). Since the

1960's mean temperatures on the island have risen by 1.2 °C, and rainfall dropped by

25 % (Smith, 2002). These changes represent a considerable alteration in climate, and

could greatly alter the island's vegetation (Smith, 1994; Smith, 2002). It has been

predicted that changes in rainfall will have larger effects than temperature on plant

communities on Marion Island, because vegetation patterns on the island are strongly

influenced by hydrological factors (Gremmen, 1981; Smith and Steenkamp, 1990).

Nonetheless, under a scenario of continued warming the abundance and distribution

of vascular plant species are predicted to increase (Smith and Steenkamp, 1990). This

may be particularly true for highly responsive species, such as Agrostis magellanica

(Lam.) Vahl (Poaceae), the dominant epiphyte on A. selago (Huntley, 1971; Dormann

and Woodin, 2002). Such an increase in epiphyte abundance may have considerable

effects on A. selago, since the species is sensitive to shading (see Bergstrom et al.,

1997). In this study we therefore simulate the direct effects of increased temperature

and decreased rainfall, and examine the short-term vegetative response of A. selago to

these changes. The possible indirect effect of climate change on A. selago by shading

is also investigated.
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Methods

Study species

Azorella selago Hook. (Apiaceae) is widely distributed across the sub-Antarctic

islands and is a dominant species in some habitats (Moore, 1968; Huntley, 1972;

Walton, 1976; Frenot et al., 1993). It is a long-lived pioneer species, colonizing loose

scoraceous slopes, recent lava flows and glacial forelands of retreating glaciers

(Huntley, 1972; Frenot et al., 1993). The species has a central taproot, from which

stems arise radially and branch dichotomously (Frenot et al., 1993). The leaves of A.

selago are small and lobed (deeply incised, forming finger-like leaflets) and their

widened petioles form a sheath around the stem (Orchard, 1989). Azorella selago

cushions have a hard and compact surface as leaves are tightly packed and stems grow

closely against each other (Orchard, 1989). The species has a 7"h to 8"h month

growing season on Marion Island (longer in sheltered environments; Huntley, 1972).

In autumn growth ceases and by the onset of winter cushion leaves have turned brown

(autumnal senescence; on Marion Island mid-April and mid-June respectively:

Huntley, 1972). Old leaves are retained, forming a moist, humus-like collection of

organic matter inside the plant (Huntley, 1971).

The cushion-growth form occurs in many plant families, and is thought to be

advantageous in cold, dry and windy environments (Ashton and Gill, 1965; Huntley,

1972; Callaghan and Emanuelsson, 1985; Wickens, 1995). The hemispherical,

prostrate and streamlined growth-form of cushion plants reduces their wind-resistance

and decreases their surface to volume ratio, thereby minimizing water and heat loss

(Huntley, 1971). Due to the presence of epiphytes, the surface of cushions can be

quite heterogeneous, and few cushions have a completely green surface (i.e. capable

of photosynthesis: Chapter 3). The surface of cushions can also comprise patches of

dead stems, areas of senescent leaves (indicating the progress of autumnal

senescence) and sometimes also spaces between stems ("gaps"; pers. obs).

Study site: Climate and location

Marion Island expenences an oceamc climate, characterized by low but stable

temperatures (mean annual temperature 5.1 °C, mean diurnal variation 1.9 °C), high
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relative humidity (on average 83 %) and rainfall (approximately 2500 mm per annum,

distributed evenly throughout the year), and strong winds (exceeding gale force on

more than 100 days per year; Marion Island's climate is discussed in full by Schulze,

1971; Smith, 2002).

The experiment was conducted on the eastern side of Marion Island over an

area of approximately 100 x 150 m (western end of Skua Ridge: center 46° 52' 02"S

37° 50' 17"E, maximum altitude 106 m a.s.l.; see Fig. 3, Chapter 1, page 15). Skua

Ridge is a basalt lava flow, with thin skeletal soil and a smoothed and rounded

topography due to glacial erosion (Verwoerd, 1971). This site was chosen for logistic

(fell field area closest to scientific base), ecological (relatively flat and A. selago

cushions support a relatively low density of epiphytes) and conservation reasons (it is

located outside of wilderness and protected areas, albeit undisturbed; Anonymous,

1996). The vegetation is mesic fellfield (Smith and Steenkamp, 1990), dominated by

A. selago cushions, Agrostis magellanica (mostly growing epiphytically on A. selago,

but also as isolated independent plants at this altitude) and mosses (mostly Andreaea

spp. and Ditrichum spp., with the latter also growing epiphytically on A. selago:

Gremmen, 1981).

The extent of the area within which the experiment was conducted was

determined by the minimum area within which enough suitable experimental cushions

could be allocated. Sampling requirements for experimental cushions were that they

fell within the median size range for the site (0.3 - 0.7 m maximum diameter

determined in a pilot study; see also Chapter 2). In addition, experimental cushions

could not be sheltered by large rocks, or be closer than 5 m from the nearest

experimental cushion (to ensure treatments did not affect each other). Treatment

cushions were also required to be relatively healthy (subjectively assessed, but partly

determined by epiphyte load and proportion of surface covered by dead stem patches;

see Huntley, 1972), free from mouse-burrows (House mice Mus musculus L.

(Muridae) are alien on Marion Island and burrow into these plants: Avenant and

Smith, 2003), and have a low Sagina procumbens L. (alien Caryophyllaceae species)

epiphyte load. Treatments were then randomly applied to the selected experimental

plants.
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Treatments

Five treatments were imposed, with unmanipulated plants used as controls.

Treatments were imposed for one year, starting in April 2002. They were applied

subsequent to "before" measurements and removed in April 2003 (prior to "after"

measurements). The treatments were designed to simulate further reductions in

rainfall and increased shading by epiphytes.

Fixed-location rainout shelters constructed from clear polycarbonate sheets

(Lexan Thermoclear LTC 6/2RS/1300, General Electric Structured Products,

Massachusetts, USA; edges sealed to reduce condensation within the sheets) of 1.4 m

x 1.9 m were used to minimize direct rainfall received by individual plants ("warm-

dry" treatment; Fig. la). The polycarbonate sheets initially transmitted> 80 % of

wavelengths> 380 nm, and < 10 % of wavelengths < 375 nm (the ultra-violet

wavelengths: Anonymous, 2002; verified at the University of Stellenbosch, South

Africa). The low transmission of ultraviolet-B radiation by the rainout shelters could

complicate interpretation of results, as UV-B inhibits growth in some species

(Rousseaux et al., 2001). However, A. selago's responses to changes in UV-B are

predicted to be limited, based on leaf morphology (high trichome density, thick

leaves: Rousseaux et al., 2001) and chemistry (high concentration of diterpenoids,

which are possibly UV-screening compounds: Ormrod and Hale, 1995). Results are,

therefore, interpreted assuming a negligible effect of reduced UV-B radiation. Rainout

shelters were secured> 0.1 m above the top of each plant and were angled such that

runoff was displaced downslope of the plant (design similar to Yahdjian and Sala,

2002). This treatment was not designed to eliminate all water sources to the treatment

cushions, and the plants still received moisture inputs from lateral soil water

movement, surface flow and condensation.

Because a variety of unwanted microelimatie differences are often imposed by

climate manipulation treatments ("chronic" microclimate modifications: Havstrëm et

al., 1993; Kennedy, 1995a; Fay et al., 2000), the shelters were designed to minimize

these changes wherever possible. To minimize changes in temperature, wind

conditions and C02 and water vapour concentrations, the sides of the rainout shelters -

were open, and a large space maintained between the top of the plants and the shelter.

The low altitude of our experimental site minimized problems associated with

treatments altering snow cover, as snow cover was present on the site for only a few
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days during the experiment « 15, M. Nyakatya, pers. comm.) In addition, a

procedural control (see below) was designed and deployed to separate the effects of a

rainfall reduction from other shelter effects (following Kennedy, 1995a).

Perforated rainout shelters were used as procedural controls (Fig. 1b).

Perforations were evenly-spaced and comprised three large slits (approximately 0.04

m long and 0.8 m wide, running perpendicular to the slope of the rainout shelter) and

eight smaller holes (diameter 0.04 m) between the slits. The perforations allowed the

treatment plants to receive approximately natural rainfall, but maintained the other

effects of the shelter. The effects of drying were then inferred by comparing plant

responses between the warm-dry treatment and procedural control, since they differed

only in the amount of direct precipitation received. Similarly, the impact of secondary

shelter effects (i.e. changes in temperature, light and relative humidity) can also be

assessed by comparing plants from the procedural control with control plants.

Shading was effected by covering treatment cushions with green shade cloth

(following e.g. Chapin and Shaver, 1985; Cavender-Bares et aI., 2000), reducing light

transmission by approximately 80 % (Alnet, Somerset West, South Africa; validated

on site). Two types of increased shading were simulated; shade cloth was fixed over

an entire plant ("shade" treatment; simulating heavy epiphyte cover observed on some

low altitude cushions), or only a portion (randomly chosen side (half) of each

cushion) of the treatment plants ("half-shade" treatment; simulating a more modest

increase in epiphyte cover, Fig. lc). The "half-shade-dry" treatment was imposed by

covering a half-shade cushion with a rainout shelter. The lower temperatures and

reduced wind under the shade cloth (due to reduced incident radiation and increased

sheltering respectively) were considered to simulate the effects of increased shading

by epiphytes. In other words, reductions in light intensity, temperature and wind

speed are all expected simultaneously under increased epiphyte load. The half-shade

and half-shade-dry treatments ("half-cushion" treatments) were analysed separately

from the other treatments ("whole-cushion" treatments, i.e. where treatment applied

evenly across entire plant), because the exposed half of the cushion was used as a

within-plant control for the effect of shading.

Rainout shelters blown away during the experiment and not replaced within

one week were excluded from all analyses (in total five replicates were lost). At the

end of the experiment, unequal numbers of replicates thus remained (control = 28,

warm = 12, warm-dry = 16, shade = 14, half-shade = 14, half-shade-dry = 9).
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Cushion measurements

Before treatments were applied, a number of measurements were taken to ensure no a

priori differences between experimental groups. The maximum diameter, diameter

perpendicular to maximum diameter (hereafter perpendicular diameter), and height of

each cushion was measured. The number of epiphytic A. magellanica individuals on

each plant was counted. Distance to, and diameter of each plant's five nearest

neighbours were measured (known to influence A. selago growth rate; Chapter 2).

Soil depth was measured at four points around the base of each cushion (north-east

(NE), south-east (SE), north-west (NW) and south-west (SW) sides), because Frenot

et al. (1993) suggested that soil properties influence A. selago growth rate. Foliar

nutrient concentrations were also tested for a priori differences between treatments.

Leaf samples were taken from the center of ten randomly-selected cushions in each

treatment. Green leaves from these samples were dried for 48 hours at 60°C, and

returned to South Africa to be ashed, taken up in hydrochloric acid, and nutrient

concentration (N, P, K, Ca, Mg, Na, Mn, Fe, Cu, Zn, B) determined with an

inductively coupled plasma emission spectrometer against certified standards

(performed by BernLab Analytical Laboratories, Somerset-West, South Africa).

Additionally, before treatments were imposed, cushion height was marked

against thin (~1 0 mm diameter) wooden sticks inserted diagonally through the

cushions and deeply into the underlying soil (in both the shaded and exposed halves

of the half-cushion treatments). The height of the cushion surface was again marked

against the stick at the end of the experiment, with the difference between the marks

equaling stem growth over the year. Growth rate therefore represents the change in

cushion surface height over a year, but is not necessarily related to the increase in

cushion biomass (i.e. production) due to differences in stem tissue density between

cushions (Huntley, 1972; pers. obs). Diagonal positioning was used in preference to

vertical positioning of the sticks (as used by Huntley, 1972; Chapter 2) because the

latter would have obstructed experimental manipulations (growth rate measurements

are therefore not comparable between this study and others).

At the end of the experiment, measures of leaf morphology, foliar nutrient

concentration, surface cover and soil nutrient concentrations were made. Immediately

after removing a treatment, an overhead photograph was taken of each cushion (from
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1.5 m above cushion), A. magellanica individuals counted, and a sample of leaves

collected. Two leaves were selected from each of ten randomly sampled sub-stems

(avoiding the sides of the cushion, damaged leaves and dead stem patches) for

determination of leaf morphology. The remainder of the sample was analysed for

foliar nutrient concentration using the method outlined above. Leaf samples were

taken from both the shaded and exposed sections of the half treatments.

Simultaneously, four soil samples (± 100 - 300 grams dry mass) were collected

adjacent to each cushion (from NE, NW, SE and SW sides), and a tissue core (70 mm

diameter x 70 mm height) was taken from the center of each plant. Soil samples were

taken to test if soil nutrient content had been influenced by the treatments (following

e.g. Chapin and Shaver, 1985; Chapin et al., 1995; Jonasson et al., 1999), and tissue

cores to test if the amount of moisture in the cushions differed between treatments.

Plant tissue cores were dried at 60°C for 24 hours and core moisture content

calculated (% of dry mass). Soil samples were pooled, mixed, air-dried at

approximately 25°C for at least five days and returned to South Africa for analysis of

soil nutrients (methods following Sparks et al., 1996). Phosphorus (Bray II

extraction), potassium, calcium, magnesium and sodium (ammonium acetate

extraction) concentrations were determined using an inductively coupled plasma

emission spectrometer. Total carbon was determined by Walkley Black acid

digestion. Soil samples were saturated with de-ionised water and electrical resistance

measured in a standard USDA soil cup, and their pH read from a KCl-soil mixture (all

soil analyses performed by BemLab Analytical Laboratories, Somerset-West, South

Africa).

Leaves were weighed, and trichomes and leaflets counted. They were then

pressed onto card and leaf images captured using a flatbed scanner (HP Scanjet

5470c). Image analysis software (SigmaScan Pro version 5.0; SPSS, Illinois, USA)

was then used to measure each leafs surface area, length, width, perimeter and shape

factor (methods similar to Rousseaux et al., 2001; Belyea and Lancaster, 2002). The

shape factor was calculated as:

4.7r.area/ perimeter' ... Eq. 1,

ranging from 0 (straight line) to 1 (perfect circle) (Anonymous, 1999). These

measurements were taken separately for the entire leaf, the leaf sheath (yellow on live

leaves) and the green leaf area (i.e. the remaining green tissue, including the leaflets;

Fig. 2). Damaged, old (i.e. > four days since collection) or senesced leaves were
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excluded from calculations. Specific leaf area (SLA; unit leaf area per unit wet mass;

dry mass could not be determined simultaneously with other leaf measurements),

trichome density (per mnr' leaflet area, as trichornes only grow on the leaflets and not

on the leaf sheath) and the proportion leaf area comprising leaflets were calculated.

Cushion size and surface cover were determined by image analysis of the

photographs taken (SigmaScan Pro version 5.0). Images were calibrated against an

object of known size and orientation (north-pointing) in each photograph, and cushion

diameter (maximum and perpendicular), area and circumference determined

(following e.g. Belyea and Lancaster, 2002). Measurements from photographs were

validated against field measurements (following Belyea and Lancaster, 2002), and

were similar (simple linear regression: maximum diameter: R2 = 0.80, p < 0.001;

perpendicular diameter: R2 = 0.62, P < 0.001). Image analysis was then used to

measure the fraction of each cushion's surface covered by epiphytes (split into A.

magellanica vs. other epiphytes for analyses), dead stem area (i.e. grey or black sterns

or leaves), senescent tissue (i.e. brown or yellow leaves) and healthy tissue (i.e. green

leaves; methods similar to Cavender-Bares et aI., 2000; Rousseaux et aI., 2001). Two

methods were used to measure the extent of senescent tissue (i.e. progression of

autumnal senescence). For the "brown" method, all pixels falling within a range of

brown colours were selected and tallied ("Colour Threshold" option of SigmaScan),

while for "browning" measurements were taken only of contiguous areas of browned

tissue (subjectively selected). This distinction was made because brown pixels were

not necessarily clustered together, and therefore not always representative of the

manner in which senescence has been observed (i.e. patchily distributed) on cushions.

Both these measures of autumnal senescence gave similar results, and therefore only

results from browning measurements are presented. For shaded plants, the gap area

between stems (i.e. where stems did not grow tightly against each other and the inside

of the cushion was visible) was also measured (gap area was small on exposed

cushions, and therefore not measured in the control, procedural control and warm-dry

plants).

Mean A. magellanica individual size (mmvindividual) was calculated for all

treatments by dividing cushion area covered by A. magellanica epiphytes by the

number of grass individuals on that cushion. Field observations suggested that A.

magellanica epiphyte load was unevenly distributed across cushions. To test this,

images were split into quarters (NE, SE, NW and SW quarters), and each quarter
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analysed separately (procedure as above). As Agrostis magellanica cover differed

between treatments, all analyses were repeated after excluding A. magellanica

covered areas, i.e. using a reduced measure of total cushion surface. However, results

generally did not differ whether analyses were adjusted for A. magellanica or not, and

thus only results from analyses excluding A. magellanica cover are discussed. Half-

cushion treatments were again analysed separately. The shaded and exposed halves of

half cushions were analysed individually, with the transition area between the shaded

and exposed areas excluded.

Micro-environment measurements

Over the course of the experiment, the effect of treatments on microelimatie

conditions were quantified using iButton (Thermochron DS1921G, Dallas Semi-

Conductors, Texas, USA) and Hobo (Hobo Pro RHlTemp, Onset Computing,

Massachusetts, USA) dataloggers (following recommendations of Kennedy, 1995a).

Temperature was measured throughout the year, and relative humidity, light intensity

and soil moisture determined in April 2002 and April 2003. iButtons were used to

measure temperature within cushions (15 mm below cushion surface; 0.5°C

resolution, with hourly intervals) for four sampling periods ("Autumn" 73 days,

commencing 28/4/2002; "Winter" 64 days, commencing 3/8/2002; "Spring" 48 days,

commencing 7/12/2002; "Summer" 27 days, commencing 19/212003). At least eight

replicates were present for each treatment within each sampling period. For all

analyses mean treatment temperature (i.e. average of all replicates) was used. Hobo

dataloggers (0.1 % resolution, hourly measurement intervals) were used to measure

relative humidity around treatment cushions for shorter durations during the study

(once in April 2002, three sampling periods in April 2003). Paired (i.e. treatment and

control) dataloggers were placed under and next to treatments (0.3 m under and 0.3 m

outside rainout shelters, and under the shade cloth and immediately adjacent to the

shade cloth), with humidity sensors facing a standardized direction.

Soil moisture was determined gravimetrically on three occasions in April 2003

while the treatments were in place (following e.g. Chapin and Shaver, 1985;

Michelsen et al., 1996). Paired soil samples were collected from 0.3 m under and 0.3

m outside the rainout shelters (i.e. warm-dry and half-shade-dry treatments, and

procedural control). On the first sampling occasion soil samples were also collected
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from immediately adjacent to other treatments. Samples were dried at 100°C for 48

hours, and percentage soil moisture (dry mass) determined.

The reduction in photosynthetically active radiation caused by the treatments

was determined using a Li-Cor Quantum sensor (Li-Cor BioSiences, Nebraska, USA)

during April 2003 before the treatments were removed. Paired measurements were

made in ambient light and under the treatments (sensor held vertical), and repeated

three times at each treatment replicate. Measurements were repeated on two

consecutive but contrasting days (a clear day and a cloudy day).

Statistical analyses

Normality of all data were tested using a Shapiro-Wilks W test, and transformed to

achieve approximate normality where possible. Differences between samples were

tested using ANOV A, with a bootstrapped p-value where the data violated ANOV A

assumptions (Good, 1999). Bootstrapping was calculated with 104 iterations, using

Resampling Stat's Software (Bruce et al., 1999; for recent examples of use see Garcia

et al., 2002; Howes Keiffer and Ungar, 2002). Changes in temperature affected by

treatments were analysed using an ANOV A on the temperature differences (control

minus treatment; to remove daily and seasonal cycles in temperature). Paired data (i.e.

paired measurements from the exposed and the shaded halves of the same cushions, or

soil moisture data from under and next to the same rainout shelter) were analysed

using a paired t-test (bootstrapped p-value used when data were non-normally

distributed). The exposed portions of the half-cushion treatments were used as within-

cushion controls for the effect of shading. Tukey's Honest Significant Difference tests

(for normally-distributed variables) or their non-parametric equivalent (post-hoc

comparison of mean ranks for all groups: Zar, 1984) were used to determine which

sample means differed from each other.

Results

Treatment assignment

There were no a priori cushion size differences between treatments (maximum

diameter: F 92,5 = 0.094, P = 0.993; perpendicular diameter: F 92,5 = 0.398, P = 0.849;
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height: F 92, 5 = 1.052, P = 0.392). In addition, there were no differences between

mean nearest neighbour distances (F 92,5 = 1.091, P = 0.371) or neighbour diameters

(F 92,5 = 0.631, P = 0.677). Soil depth (on each side of the plants and mean plant soil

depth; all p > 0.50) and a priori epiphyte load (number of A. magellanica individuals:

F 89, 5 = 0.489, p = 0.784) also did not differ between treatments. Foliar nutrient

concentrations (all nutrients: F 5, 54 < 1.325, p > 0.268) did not differ between

treatments, and were generally within the range of values reported from A. selago on

Marion Island (leaf calcium concentration was slightly higher for A. selago than

reported in Smith, 1976, 1977).

Treatment effects on micro-environment

The rainout shelters and the shade treatments had little effect on soil nutrients. Soil

nutrient concentration generally did not differ between treatments (Appendix A).

Potassium concentration differed between control (highest concentration) and half-

shade-dry treatments (lowest concentration; all other treatments did not different from

each other; ANOVA across all treatments: F 24,5 = 3.978, P = 0.009). Phosphorus also

differed between treatments with a significantly lower concentration in the shade

treatment compared to the control and half-shade and shade-shade-dry treatments (all

other treatments did not differ significantly from each other; ANOV A across all

treatments: F 24, 5 = 2.880, P = 0.036). However, after sequential Bonferroni

adjustment (Rice 1989) the concentration of the soil nutrients (also soil resistance and

pH) did not differed between treatments.

Rainout shelters blocked direct rainfall to the experimental plants (primary

shelter effect), but also caused other unwanted changes in microclimate (secondary

shelter effects; altering relative humidity, temperature and light). However, as

outlined in the methods, the procedural control enabled the effect of reduced rainfall

to be separated from the secondary shelter effects. The warm-dry treatment lowered

relative humidity (RH) significantly during two (out of three) sampling periods (both

periods t > 27.00, d.f. = 131, bootstrap p < 0.001; RH (mean ± S.E.) 1.88 ± 0.07 %

and 4.66 ± 0.10 % lower), but had no effect on the range of RH experienced by

cushions (all comparisons p > 0.05). The procedural control had a similar effect

(control RH - treatment RH = 3.60 %; t = 41.47, d.f. = 65, bootstrap p < 0.001).

Cushion core moisture (F 134,5 = 8.749, P < 0.001) differed between sampling dates,
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but not between treatments (F 130, 9 = 0.449, p = 0.906; high d.f. because multiple

cores were taken from half-shade and half-shade-dry cushions). Soil moisture also

differed between sampling dates (although only warm-dry treatment: F 41,2 = 7.054, P

= 0.002; other treatments: p> 0.05) and not between treatments (F 72,6 = 0.772, P =

0.595) or between paired samples (i.e. from under and adjacent to the rainout shelters;

p ~.02, all comparisons non-significant after sequential Bonferroni correction).

Rainout shelters also altered the temperatures experienced by treatment

cushions (Fig. 3). The shelters consistently reduced the range of temperatures

experienced by plants (mean annual daily temperature range> 0.65 DC narrower in the

treatments: Appendix B). Mean temperatures were higher under the rainout shelters

than in control plants. Plants in the warm-dry treatment were warmer than controls in

all seasons (warming relative to control plants: mean ± S.E. = 0.25 ± 0.01 DC:

Appendix B). In the procedural control, mean warming was experienced in three of

the four sampling periods (Appendix B). The magnitude of temperature enhancement

under the rain out shelters was negatively related to plant temperature in all treatments

(across seasons and within days). Therefore, treatments were cooler than control

plants during the hottest part of the day and generally warmer during the coldest part

of the day (simple linear regression of size of warming against control temperature:

all treatments p < 0.001, R2 = 14 - 46 %, slope = -0.08 to -0.17; Fig. 3). This was

supported by examination of the seasonal temperatures where, for a given treatment,

during the hottest season cushions tended to be warmed the least, and during the

coldest season cushions tended to be warmed the most (Pearson correlation: all

treatments r < -0.18, although p > 0.25).

Plants under rainout shelters received lower intensity light than control plants.

Transmission by the rainout shelters at the end of the experiment was lower than

expected at 61.5 ± 4.5 % (mean ± S.E., n = 14) for warm-dry treatment and 61.0 ± 6.8

% (mean ± S.E., n = 4) for the procedural control, despite an initial transmissivity of

approximately 85 %. This was due to superficial damage (wind abrasion), and

condensation on the shelters. Light transmission, however, differed significantly

between sampling days, with proportionally lower transmission on the sunnier day (F

I, 16 = 35.970, bootstrap p < 0.001). Transmission declined with increasing light

intensity in all treatments, although only significantly so in the warm-dry treatment

(Spearman rank correlation; all treatments: r = -0.79, p < 0.001).
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Under the shading treatments, light intensity was significantly reduced (mean

transmission ± S.E. = 15.8 ± 1.8 %, n = 9). The plants in the half-shade-dry treatment

experience an 89 % reduction in light intensity on their shaded portion relative to

control plants (mean transmission ± S.E. = 11.2 ± 1.47 %, n = 6). Similar to results

from the rainout shelters, the transmissivity of the shade cloth varied between sunny

and overcast conditions (shade and half-shade treatments: F 1,9= 6.196, bootstrap p <

0.001). In addition, shade and half-shade treatments consistently experienced lower

temperatures than control cushions (cooling relative to control plants: mean ± S.E. =

0.30 ± 0.01 and 0.44 ± 0.01 respectively: Appendix B). Plants under the half-shade-

dry treatment experienced mean cooling in three seasons, and the effect of slight

warming during the autumn sampling period is assumed to be negligible, particularly

since the plants were senescent over most of that period (Appendix B). As reported

for the rainout shelters, temperature enhancement was greatest during the coolest

periods. Shading did not alter cushion or soil moisture (t = -0.47, d.f. = 65, bootstrap p

> 0.31), but did increase RH in both sampling periods. Relative humidity was 2.12 -

2.79 % higher in the shade treatment for the two sampling period showing significant

differences (t = 11.08, d.f. = 131, bootstrap p < 0.001 and t = -8.94, d.f. = 40,

bootstrap p < 0.001 respectively; no significant difference in RH during third

sampling period). Data were not available for the half-shade-dry treatment. Because

these changes in relative humidity were small « 3 %) and inconsistent, their effects

were considered to be negligible in comparison with the large reductions in light,

temperature and wind.

Growth rate and leaf morphology

Whole-cushion treatments

Cushion growth rate and leaf morphology differed between treatments. Shade

cushions grew significantly more during the experimental year than control,

procedural control and warm-dry cushions (F 3,61 = 31.365, P < 0.001; Fig. 4). Leaf

area, green leaf (leaflet) area and sheath area (and their associated measurements of

length, width and perimeter) all differed in a similar way between treatments, with

shade leaves differing most from control leaves than the other treatments (Table 1;

Fig. 5). Leaves from the shade treatment were always significantly larger (i.e. had a
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greater area and perimeter and were longer and wider, for the whole leaf, the leaflets

and the sheath) and heavier than control leaves (Table 1; Fig. 5a, b). Leaves from the

procedural control and warm-dry treatment tended to be larger (but not significantly

so) than control leaves, although smaller than shade leaves (Fig. 5a).

The fraction of leaf area comprising leaflets and leaf shape differed

significantly between treatments (Table 1). Leaflets comprised a lower proportion of

total leaf area in the shade treatment compared to the other treatments (Fig. 5c). Leaf

shape differed between some treatments, with shade leaves having a significantly

lower shape factor (i.e. less circular) than leaves from the other treatments (Table 1;

Fig.5d).

Numbers of leaflets and trichomes were similar across treatments (Table 1).

However, trichome density differed significantly between treatments with

significantly lower densities in the shade and warm-dry treatments than in the control

plants (Table 1; Fig. 5e). Specific leaf area (SLA) also varied significantly between

treatments (Table 1), with a significantly higher ratio for shade leaves, but no

difference between control, procedural control and warm-dry leaves (Fig. SQ.

Half-cushion treatments

Similar to the whole cushions, partial shading also increased growth rate (Fig. 4). The

shaded halves of the half-cushion treatments grew significantly more than the exposed

halves (half-shade: t = -5.709, d.f. = 5, p = 0.002; half-shade-dry: t = -10.734, d.f. =

12, P < 0.001).

The differences between shaded and exposed leaves from the half treatments

were also similar to the differences between leaves from the shade treatment and the

other whole-cushion treatments. Leaves from the shaded halves were always

significantly larger than exposed leaves (Table 1; Fig. 6a). Shade leaves also had a

greater mass than exposed leaves, although the difference was small and non-

significant for the half-shade-dry treatment (Table 1; Fig. 6b). Similar to leaves from

the whole shade cushions, leaf sheath made up a significantly larger proportion of

total leaf area in shade leaves (Table 1; Fig. 6c). Leaf shape was similar between

halves, except when considering total leaf area, where shade leaves had a significantly

less circular (i.e. more indented) shape (Table 1; Fig. 6d). Trichome density was also

consistently lower on shaded than exposed leaves (Fig. 6e). SLA was higher in the
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shaded leaves in the half-shade-dry treatment, but not for the half-shade treatment (no

difference: Table 1; Fig. 6f).

Leaf nutrient content

Whole-cushion treatments

Foliar nutrient concentration differed between treatments (Appendix C).

Concentrations were determined on a per leaf mass and per leaf area basis, but since

the area - mass relationship (i.e. SLA) did not differ much between treatments (except

when comparing shaded leaves to exposed leaves), results were similar (although the

significance of some patterns changed). Foliar concentrations of N, P, K and B were

higher in shade leaves than in other treatments (significantly so for Nand P on a per

mass basis; Appendix C). In contrast, leaves from the shade treatment had lower Na

and Ca concentrations than other treatments (significantly so for Ca on a per area

basis: Fig. 7a; Appendix C). Leaf nutrient concentration also differed between the

rainout shelters (procedural control and warm-dry treatment; which never differed

significantly: Appendix C) and the other treatments. For example, foliar concentration

of Na, Fe and Zn tended to be higher in the procedural control and/or warm-dry

treatments than in shade or control leaves (significantly so for Zn on a per area basis:

Fig. 7b; Appendix C).

Half-cushion treatments

The nutrient results of the half-cushion treatments were similar to their whole-cushion

treatment equivalents (Appendix D). Foliar concentrations ofP, Zn and B were higher

under shading (on a per mass basis, and the difference in B concentration only

significant in the half-shade-dry treatment), and those of Ca and Na higher in exposed

portions of cushions (only significant in the half-shade treatment, Fig. 7a; similar

pattern on a per area basis: Appendix D).
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Cushion surface

Whole-cushion treatments

Cushion cover differed significantly between treatments (Table 2). The proportion of

each cushion covered by green leaves (hereafter green fraction) was significantly

lower under the warm-dry treatment than under the procedural control or shade

treatment (Table 2; Fig. 8a). Similarly, the proportion of cushion surface area

comprising dead tissue (hereafter dead fraction) was lower in warm-dry and shade

cushions than in control plants (Table 2; Fig. 8b). Therefore, cushion surface cover

was responsive to the treatments imposed, changing in both the green and dead

fraction.

The senescent fraction of treatment cushions was significantly higher in the

warm-dry treatment than in the procedural control or shade treatment (Table 2; Fig.

9). The senescent fraction of the other treatments (i.e. control, procedural control and

shade treatment) did not differ significantly.

Agrostis magellanica responded strongly to shading (Fig.lO). Over the course

of the experiment, the number of A. magellanica individuals increased by a similar

proportion on control, procedural control and warm-dry cushions, but declined in

shade cushions (Fig. lOa). Average A. magellanica size did not differ between

control, procedural control and warm-dry treatments, but was significantly larger in

the shade treatment (Fig. lOb). The fraction of cushion surface covered by A.

magellanica increased significantly under the shade treatment, and slightly (albeit

non-significantly) under the procedural control (Table 2; Fig. lOc). Therefore,

epiphyte load increased under shading, despite reduced numbers of grasses, due to

increased average individual size. Other epiphyte species occurred on only a few

treatment cushions (mostly Ditrichum spp. and Sagina procumbens mosses, and also

liverworts and lichens on the shaded cushions), and never covered more than a small

proportion of cushion surface area (maximum cover 4 %). Epiphyte load from all

these other species did not differ between treatments (Table 2).

Agrostis magellanica epiphyte load (measured as proportional cover) also

differed significantly between quarters in all treatments, and was always highest in the

SE quarter and lowest in the NW quarter (Table 3; Fig. lla). After adjusting cushion

fractions for this unequal distribution of epiphyte load, only the warm-dry treatment
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showed any other differences in surface cover between quarters (Table 3). The warm-

dry treatment had a significantly lower green fraction in the SW than the NE quarters

(SE and NW quarters intermediate; Fig. 11b). The inverse pattern was observed for

the senescent fraction in the warm-dry treatment, with the greatest proportion of

senescent area in the SW quarter and the lowest in the NE (Fig. 11c). Other cushion

surface cover variables did not differ between quarters (e.g. Fig. lId). Therefore, in

all treatments epiphyte load differed between cushion quarters and, in the warm-dry

treatment, quarters differed in their degree of autumnal senescence.

Half-cushion treatments

The responses of the shaded portions of the half cushions were similar to those of the

shade cushions. Green fraction was significantly lower in the shaded halves of the

half-shade treatment, and tended to be lower (although not significantly) in the half-

shade-dry treatment (Fig. 8c). In contrast, the gap fraction (i.e. the proportion of each

cushion's surface covered by gaps between stems) was significantly higher in the

shaded sections (half-shade treatment: exposed halves; mean ± S.E. = 0.50 ± 0.15 %,

shaded halves; 2.14 ± 0.52 %; half-shade-dry treatment: exposed halves; 0.13 ± 0.05

%, shaded halves; 1.84 ± 0.66 %; Table 2), while dead fraction did not differ between

halves (Fig. 8d).

Proportional cover by A. magellanica was strongly and significant higher in

the shaded portion of the half-shade treatment, although there was no difference in the

half-shade-dry treatment (Fig.lOc). The mean size of A. magellanica individuals did

not differ between shaded and exposed halves, although tended to be slightly greater

in the shaded portions of the half-shade treatment (Fig. lOb). Changes in numbers of

A. magellanica grasses were less clear in the half cushions than in the whole cushions,

because the two halves were analysed together ("before" counts were not split into the

two halves; Fig. lOa).

Other vascular epiphyte species increased their proportional cover under

shading (although only significant in the half-shade treatment after removing A.

magellanica cover: t = -2.10, d.f. = 13, p = 0.020). Total cover by epiphyte species

(excluding Agrostis magellanica) still though never exceeded 7 % of the cushion

surface. The size of the senescent fraction did not differ between shaded and unshaded

halves (Table 2), although there was a trend for slightly higher senescence in both the
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shaded halves (compared to the exposed halves) and the half-shade-dry treatment

(compared to the half-shade treatment: Fig. 9).

Discussion

Significant and striking differences were observed between treatments in cushion

growth rate, leaf morphology, phenology and epiphyte cover, despite the short

duration of the experiment.

Responses to reduced precipitation

Reduced rainfall strongly altered cushion phenology, but had a limited effect on leaf

morphology, leaf nutrient concentrations and stem growth rate of A. selago. Few

previous studies have examined the effects of reduced rainfall in mesic high latitude

areas, because rainfall is predicted to increase in the Arctic (where most high latitude

climate change research has been conducted). However, most reviews stress the

importance of changes in rainfall to vegetation, particularly in fellfield habitats (e.g.

Callaghan and Emanuelsson, 1985; Kennedy, 1995b; Callaghan and Carlsson, 1997;

see also Callaghan and Jonasson, 1995).

The most striking effect of reduced rainfall in this study was that it accelerated

autumnal senescence, shortening the growing season of A. selago. Cushion

senescence in the half-cushion treatments also supported this result because

senescence was greater under drying and shading than under shading alone.

Therefore, rainfall potentially constrains the length of the A. selago growing season,

as has been suggested for Artie vegetation (Callaghan and Emanuelsson, 1985).

Further reductions in rainfall on Marion Island could thus shift autumnal senescence

to earlier in the season and possibly reduce A. selago productivity as a consequence of

the shorter growing season (Myneni et a1., 1997; Perfors et a1., 2003; although see

Walker et a1., 1995; Chapin and Shaver, 1996; Starr et a1., 2000).

In this study, reduced rainfall had little effect on leaf morphology (i.e. leaf

responses in the procedural controls and warm-dry treatment, and half-shade and half-

shade-dry treatments were similar), in broad agreement with results from the Arctic,

where simulated increases in rainfall had little effect on plants (Dormann and

Woodin, 2002). However, one notable exception was the contrasting responses of
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shade leaf weight and thickness in the half-shade treatments. Shaded leaves were

heavier than exposed leaves in the half-shade treatment, but not in the half-shade-dry

treatment. In contrast, shade leaves were thinner (i.e. higher SLA) than exposed

leaves in the half-shade-dry treatment, but SLA did not differ between leaves in the

half-shade treatment. This result highlights the importance of considering the

interactive effects of multiple simultaneous changes in environmental factors (e.g. the

effect of a reduction in rainfall on a species might differ if shading increases or

remains constant over the same period: Cavender-Bares et al., 2000; Sack and Grubb,

2002; Dole et al., 2003).

Changes in rainfall may also affect the growth of epiphytes on this species.

Comparing A. magellanica cover between the procedural control and the warm-dry

treatment suggests that the species' growth may be limited by rainfall (the trend was

consistent, although differences were non-significant). lts cover under the procedural

control was greater than that of the controls, although the difference between A.

magellanica cover between the warm-dry treatment and the controls was much

smaller. Similarly, comparing the half-cushion treatments, A. magellanica cover was

highest under the shaded portion of half-shade treatment than its exposed portion, but

did not differ between the exposed and shaded portions of the half-dry-shade

treatment. This suggests that drying could also constrain the response of A.

magellanica to shade. Therefore, reduced rainfall could alter both the timing of

autumnal senescence in, and the epiphyte cover of, A. selago.

Effects of shading

Shading brought about large changes in A. selago leaf morphology, foliar nutrient

concentrations, growth rate and surface cover. As expected, A. selago cushions

produced larger (lamina area and petiole length) and thinner (increased SLA) shade

leaves (Salisbury and Ross, 1992; Niklas, 1996; Gutschick, 1999; Cavender-Bares et

al., 2000; high latitude studies: Michelsen et al., 1996; Dormann and Woodin, 2002;

but see also Havstrëm et al., 1993). These changes increase leaflight interception area

(as expected for shaded leaves), while increasing potential water loss (due to higher

surface - volume ratio: Larcher, 1980). The lower leaf shape factor (i.e. shape

becoming less circular) of shaded leaves also suggests a shift towards higher moisture

loss under shade conditions, since it represents an increase in leaf perimeter to volume
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ratio. Similarly, due to their lower trichome density, shade leaves have a higher

potential for light interception (trichornes can reduce light interception: Gutschick,

1999; Press, 1999), but also for water loss (trichornes can reduce water loss:

Gutschick, 1999; Press, 1999). Another difference between shade and exposed leaves

was the disproportionally large area of sheath tissue in shade leaves (i.e. supporting

structure). Shade leaves had less leaflet area (i.e. photo synthesising area) per unit leaf

area than exposed leaves (i.e. leaflets comprised ± 55 % of exposed leaves, but only ±

45 % of shaded leaves), and therefore increased their light interception area as well as

their sheath area.

Leaf nutrient concentrations also differed between shaded and exposed leaves.

Because the treatments did not affected soil nutrient concentrations, these differences

in foliar nutrient concentrations were not a result of changes in the soil-availability of

nutrients. In agreement with other studies, foliar nitrogen, potassium and phosphorus

concentrations (also boron and zinc; not measured in other studies) were generally

higher in the shade leaves of A. selago in this study (e.g. Michelsen et aI., 1996;

Shaver et al., 1998; Jonasson et al., 1999; Cavender-Bares et al., 2000). Higher

nutrient concentrations in shaded plants have been attributed to these plants

maintaining their nutrient uptake despite their lower productivity, i.e. they maintain

the same nutrient content as unshaded plants, but at higher concentrations because the

nutrients are not diluted by growth (Dormann and Woodin, 2002). However, because

production was not measured in this study, the contribution of nutrient dilution to the

changes in plant nutrients observed could not be assessed. Nonetheless, since

nutrients did not show a uniform pattern of dilution (i.e. in the shade treatment the

concentration of all nutrients did not increased), other mechanisms (i.e. controlling

nutrient allocation and accumulation) must also be important.

Stem growth rate was much higher in shaded treatments than exposed

controls. Increased shoot length is a common response to reduced light in Arctic

plants (Havstrërn et aI., 1993; Dormann and Woodin, 2002). This response has been

attributed to reduced foliar thermal stress (Danner and Knapp, 2003), and also as an

attempt to increase light interception (Grime, 1979). In addition, the effect of reduced

wind may also be important, as strong winds can alter plant growth and morphology

(Ennos, 1997). Indeed, observations by Ashton and Gill (1965) and Huntley (1972)

suggest that A. selago and A. macquariensis have higher stem growth rates in
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sheltered areas. Therefore, rapid changes in stem growth rate are likely in response to

changes in shading.

The increased gap fraction in shaded plants is likely to be the result of two

changes in stem characteristics. First, if increased stem growth rate under the shading

treatment was not matched by increased branching, the tight packing of stems on the

surface of cushions would not be maintained, resulting in gaps between stems.

Second, shading may have increased stem mortality (Chapin and Shaver, 1996). In

this study, some stems grew more under shading, while others appeared to not have

grown at all (pers. obs), thereby leading to increased gap fractions in shaded cushions.

The implication of increases in gap fraction is a reduction in cushion surface integrity

and regularity, and therefore potentially increased rates of temperature change and

moisture loss. In general, the overall loss of compactness of the shaded cushions

could make them more vulnerable to the effects of climatic extremes (e.g. strong

winds, extended dry periods, very cold temperatures, although increased epiphyte

cover will also buffer plants against these extremes: e.g. Freiberg, 2001; Hsu et al.,

2002).

Shading also affected an increase in epiphyte cover and a reduction in

senescent fraction in some treatments. Shading increased the proportional cover of A.

magellanica, despite a reduction in the total number of individuals on cushions. The

fewer A. magellanica individuals are possibly a result of A. selago shade-growth

overwhelming small A. magellanica individuals. This also potentially explains why

average A. magellanica size was larger in the shaded treatments (i.e. mean grass size

increased because smallest individuals were removed), although increases in A.

magellanica leaf size under shading (pers. obs) probably also contributed to this

result. This result also suggests that A. selago's response to shading can reduce the

number of epiphyte individuals successfully establishing on a cushion (i.e. A. selago

is not just a passive host, but can offer resistance to epiphyte establishment). The

effect of shading on senescence was less consistent. Shading delayed senescence in

the shade treatment, in agreement with previous studies (e.g. Cavender-Bares et al.,

2000), but had no effect on senescence in the half-cushion treatments.

Previous studies and field observations suggest the longer-term effects of

shading are different from the responses observed after one year. Short- and longer-

term responses to environmental manipulations can differ greatly (e.g. Chapin et al.,

1995; Michelsen et al., 1996; Arft et al., 1999; Rustad et al., 2001; Melillo et al.,
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2002), and therefore extrapolations from short-term manipulations must be made

cautiously. Cushion structure under heavy A. magellanica cover usually comprises

dead, loosely-packed A. selago stems with large leaves (pers. obs; see also Bergstrom

et aI., 1997). This suggests that increased growth in response to shading is probably a

short-term response, and that ultimately reduced light conditions lead to stem

mortality (Bergstrom et al., 1997; Shaver et al., 1998).

Therefore, the short-term response of A. selago to shading includes greater

stem elongation, larger leaves, raised foliar nitrogen and phosphorus concentrations

and increased gap fraction. Additionally, the cover of A. magellanica increases,

despite a reduction in the number of epiphytically growing individuals. However,

these responses may be transient, with different longer-term responses expected to

reductions in light intensity.

Responses to warming

Some plant responses differed strikingly between the procedural controls and the

control plants. Since only temperature, light intensity and relative humidity differed

between the control and procedural controls, differences in plant responses were

attributable to these three secondary rainout shelter effects. Relative humidity differed

little between control and procedural control plants (2 - 5 % higher for control

plants), and therefore its effect on the plants was considered negligible in comparison

with the differences in temperature and light (following Havstrëm et aI., 1993).

Therefore, since the short-term effects of shading on A. selago are known, and some

(cautious) inferences could be made about the effect of warming, despite the effects of

reduced light and increased temperatures being confounded in these treatments. For

example, if a given parameter increased under shading but decreased in the procedural

control (i.e. when plant responses in the two treatments were in opposite directions),

then the effect of warming could be inferred to be negative, and that of reduced light

to be positive. Further evidence of the consequences of drying was obtained by

comparing the half-shade and half-shade-dry treatments. While the effects of reduced

rainfall were also confounded by shelter effects in this treatment, the relative

influence of shelter effects was assumed to be much lower than in the warm-dry

treatment. This assumption was made because the additional reduction in light

intensity by the rainout shelter was small relative to that of the shade cloth, and
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differences in temperature (particularly during the growmg season) and relative

humidity between the half treatments were similar.

Leaf nutrient concentrations responded to warming. Sodium, iron and zinc

concentrations were higher under the procedural control, but did not differ between

the shade treatment and control cushions. Therefore, the reduction in light under the

rain out shelters is not responsible for the changes in foliar nutrient concentration,

suggesting therefore that increased temperatures are responsible instead. This is

supported by previous studies that have shown changes in temperature to alter foliar

nutrient concentrations. For example, Jonasson et al. (1999) found higher

concentrations of nitrogen and potassium in warmed Cassiope tetragona-dominated

communities (see also Dormann and Woodin, 2002). However, comparisons with

these studies are limited, as they have generally only considered nitrogen, phosphorus

and potassium.

Warming may also favour the growth of A. magellanica (assuming that

changes in rainfall do not constrain the grass' response). While this study does not

provide convincing evidence for warming affecting the species (since its cover in the

procedural control was not significantly higher than that in the control), strong

evidence from other studies suggest that it is likely. For example, recent experimental

work showed a congener (Agrostis curtisii) to increase shoot mass in response to

warming (under laboratory conditions; Norton et al., 1999). More generally, grasses

are amongst the most responsive plant groups (e.g. Zhang and Welker, 1996;

Dormann and Woodin, 2002) probably due to their rapid biomass tum-over (Dormann

and Woodin, 2002). Increases in A. magellanica could have large long-term

implications for A. selago, particularly a reduction the cushion plant's photosynthetic

area and increased shading of adjacent areas. Epiphytes potentially also ameliorate

their host's environment by buffering against changes in temperature and moisture

(by extending the cushion boundary layer) and sheltering the plant from strong winds.

The net effect of a change in epiphyte load is therefore unknown, although large long-

term increase in epiphyte load will probably negatively affect cushion plants because

of their sensitivity to shading.

Therefore, while future warming on Marion Island may alter A. selago foliar

nutrient concentrations, changes in the distribution and cover of the epiphyte A.

magellanica in response to the same factor could have greater effects on A. selago.

These results agree with Scott's (1985) pollen analyses, which suggested that fellfield
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vegetation is probably not directly negatively affected by warming, but is rather

susceptible to replacement by other vegetation types when temperature and moisture

availability increase.

Inferred effects of wind

Previous authors have suggested the importance of wind in determining plant growth

and stature in fell field ecosystems (e.g. Ashton and Gill, 1965; Smith, 1978). Wind

patterns on Marion Island are characterized by strong, warm north-westerly winds and

weaker, colder, drier south-westerlies (Schulze, 1971). South-easterly winds are the

most rare « 10 % of the time) and weakest (Schulze, 1971). While the influence of

wind was not experimentally tested, its effects can be inferred (e.g. Belyea and

Lancaster, 2002). Indeed, analysis of cushion quarters suggests that wind speed,

temperature and humidity might influence the distribution of epiphyte cover and

cushion senescence.

The most striking difference between cushion quarters was the unequal

distribution of A. magellanica. This was the result of a priori differences in A.

magellanica distribution (since control and experimental cushions did not differ in

distribution of epiphyte cover). The grass dominated the southeastern quarter of

cushions, with lowest cover in the northwest quarter. Since this is the inverse of wind

speed (and frequency) patterns, it suggests that strong winds may negatively affect A.

magellanica. Winds can cause mechanical damage and reduce photosynthetic

performance (van Gardingen et al., 1991; Ennos, 1997). Indeed, reduced

photosynthetic performance under windy conditions has already been shown for

another grass species (Poa cookii) on Marion Island by Bate and Smith (1983).

Additionally, as A. magellanica carbon assimilation rate is temperature dependent

(pammenter et al., 1986), it may be suppressed by wind-driven cooling. The

abundance and distribution patterns of A. magellanica on Marion Island (Chapter 3),

and the relatively low cover of this species on the top of A. selago cushions (pers. obs;

where winds is predicted to be strongest: Warren-Wilson 1959) provides additional

support for the importance of wind in influencing the distribution of this species.

However, alternative explanations for the unequal distribution of grasses exist (e.g. A.

magellanica seeds are unequally dispersed, tending to accumulate on the leeward side

of cushions, etc.).
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Through its effect on A. magellanica, wind may indirectly affect cushion plant

morphology, since the distribution of A. magellanica has implications for the growth

of A. selago cushions. Under long-term heavy epiphyte load A. selago suffers

increased stem mortality (pers. obs), and therefore stem growth is likely to be slower

in the SE than NW quarter. Accumulated difference in cushion growth (as well as

stem and epiphyte mortality) could then lead to the sickle-shape shown by many

larger cushions ("cushions ... develop an arcuate shape, advancing into the wind":

Huntley, 1972; see also Ashton and Gill, 1965). These patterns had previously been

attributed to abiotic factors such as differential erosion patterns or needle-ice

formation (e.g. Ashton and Gill, 1965; Boelhouwers et al., 2003), but could be

complemented by this indirect effect of wind.

Autumnal senescence also differed III its distribution between cushion

quarters, although only under the warm-dry treatment (possibly since senescence had

progressed further in this treatment than in any other). Greatest senescence occurred

in the SW quarter, and least in the NE (pattern weakly mimicked by the procedural

control), consistent with wind temperature and humidity patterns on Marion Island

(coldest and driest winds from the SW). This suggests that cold and/or dry winds can

accelerate senescence in A. selago.

Therefore, A. magellanica cover and autumnal senescence (the latter only in

the warm-dry treatment) are not equally distributed within cushions, probably due to

the differences in speed, temperature and humidity of winds from different directions.

Considering that wind patterns are changing at high latitudes in the southern

hemisphere (strengthening of the circumpolar westerlies: Gillet and Thompson, 2003;

although on Marion easterly winds are becoming stronger and more common: Smith

et al., 2001), these results suggest that the distribution of senescence and of epiphytes

on A. selago could change in the future.

Conclusion

Azorella selago showed rapid vegetative responses to changes in temperature, rainfall

and shading, despite its slow growth and the short duration of the experiment. Plant

responsiveness differed between treatments and plant characteristics, and

demonstrates the differing sensitivities of the species' morphology, phenology and

physiology to changes in its environment. The potential for interactions between
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simultaneous environmental changes was illustrated by the effects of reduced rainfall

(on certain A. selago characteristics) not being independent of other environmental

factors. This suggests that the effects of a change in one factor (e.g. shading) can only

be predicted accurately with knowledge of how other factors (e.g. rainfall) will

change over the same period. Finally, this study highlights the importance of indirect

effects of climate change. Epiphyte cover (particularly the dominant epiphyte A.

magellanica ) responded to shading and appears to be affected by wind strength

patterns. Given the high responsiveness of grasses in general, and the sensitivity of A.

selago to shading, it is possible that changes in epiphyte load could overshadow the

direct effects of changes in climate. Therefore, ongoing climate changes on Marion

Island will affect A. selago and its epiphytes, with likely repercussions for fellfield

communities.
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TABLE 1

Differences in Azorella selago leaf morphology between treatments. All p-values

bootstrapped. t no longer significant after column-wide sequential Bonferroni correction

(Rice, 1989J. See text and Fig. 2 for explanation of measurements.

Whole cushions Half-shade Half-shade-dry
d.f. F Q d.f. t Q d.f. t Q

Total leaf area 3,64 51.16 < 0.001 13 -8.80 < 0.001 8 -8.09 < 0.001
Leaf length 3,64 73.61 < 0.001 13 -9.94 < 0.001 8 -7.91 < 0.001
Leaf width 3,64 3.66 O.013t 13 -7.30 < 0.001 8 -3.75 0.006t
Leaf perimeter 3,64 45.98 < 0.001 13 -7.06 < 0.001 8 -4.85 0.001
Leaf shape factor 3,64 6.22 < 0.001 13 1.99 0.069 8 2.75 0.025t

Green leaf area (GA) 3,64 39.62 < 0.001 13 -7.10 < 0.001 8 -3.75 0.006t
GA length 3,64 28.86 < 0.001 13 -6.96 < 0.001 8 -3.38 O.OlOt
GA width 3,64 57.45 < 0.001 13 -7.23 < 0.001 8 -4.27 0.003
GA perimeter 3,64 24.73 < 0.001 13 -5.26 < 0.001 8 -3.13 0.014t
GA shape factor 3,64 2.49 0.066 13 -1.17 0.263 8 0.69 0.511

Sheath area (SA) 3,64 51.13 < 0.001 13 -9.17 < 0.001 8 -12.08 < 0.001
SA length 3,64 59.10 < 0.001 13 -8.84 < 0.001 8 -8.17 < 0.001
SA width 3,64 10.91 < 0.001 13 -3.78 < 0.001 8 -0.74 0.482
SA perimeter 3,64 37.73 < 0.001 13 -7.88 < 0.001 8 -7.96 < 0.001
SA shape factor 3,64 3.67 0.008 13 1.68 0.117 8 1.60 0.148

Leaflets 3,64 0.83 0.603 13 -0.55 0.591 7 -0.53 0.609
Trichomes 3,64 2.29 0.086 13 0.10 0.919 7 0.48 0.646
Mass 3,59 18.30 < 0.001 12 -6.92 < 0.001 5 -1.00 0.362

GNtotalleaf area 3,64 19.02 < 0.001 13 6.76 < 0.001 8 7.59 < 0.001
Specific leaf area 3,63 3.47 0.015t 12 -0.94 0.367 5 -3.09 0.027t
Trichome density 3,64 11.07 < 0.001 13 6.26 < 0.001 7 4.28 0.004
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TABLE 2

Differences in Azorella selago surface cover between treatments. Analyses were repeated after

excluding cushion areas covered by Agrostis magellanica. Gap fraction was only measured for

shaded cushions, and therefore a test for differences in gap fraction between whole cushions

was not performed. t bootstrapped p-values, t no longer significant after column-wide

sequential Bonferroni correction (Rice, 1989).

Surface cover without A. magellanica
{% of cushion surface 1 d.f. F Q F Q

Whole cushions
Green fraction 3,62 3.41 0.023 t 7.11 < 0.001 t
Dead fraction 3,62 9.83 < 0.001 9.14 < 0.001
A. magellanica cover 3,62 7.75 < 0.001
Other epiphyte cover 3,62 0.02 0.688 t 0.74 0.691 t
Senescent fraction 3,62 8.35 < 0.001 6.78 < 0.001

Half-shade t t
Green fraction 13 3.31 0.006 t 2.16 0.019 tt
Dead fraction 13 0.22 0.832 0.11 0.913
A. magellanica cover 13 -2.19 0.048 t
Other epiphyte cover 13 -2.09 0.056 -2.10 0.020 tt
Senescent fraction 13 -0.86 0.403 -1.14 0.274
Gap fraction 13 -4.54 0.001 -5.05 < 0.001

Half-shade-dry
Green fraction 8 0.78 0.460 1.52 0.082 t
Dead fraction 8 -1.08 0.313 0.13 0.450 t
A. magellanica cover 8 0.43 0.682
Other epiphyte cover 8 -1.32 0.222 -1.33 -0.095 t
Senescent fraction 8 -1.49 0.173 -1.32 0.111 t
GaQ fraction 8 -3.78 0.005 t -2.55 0.008 t
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TABLE 3

Comparison of Azorella selago cushion cover distribution between cushion quarters (north-east,

north-west, south-east and south-western quarters). Analyses were repeated after excluding

cushion areas covered by Agrostis magellanica. Proc. Con. =procedural control. t bootstrapped
p-values, t no longer significant after column-wide sequential Bonferroni correction (Rice 1991).

Surface cover without A. magellanica
Treatment {% of cushion surface 2 d.f. F .Q F .Q
Control Green fraction 3,96 10.19 < 0.001 1.04 0.374 t

Dead fraction 3,96 0.35 0.827 t __0.35 0.827 t
A. magellanica cover 3,96 11.15 < 0.001
Other epiphyte cover 3,96 2.22 0.072 t 2.03 0.101 t
Senescent fraction 3,96 2.73 0.048 t 1.11 0.352 t

Proc. Con. Green fraction 3,44 12.78 < 0.001 1.33 0.267 t
Dead fraction 3,44 0.40 0.827 t 0.74 0.592 t
A. magellanica cover 3,44 12.05 < 0.001
Other epiphyte cover 3,44 1.32 0.126 t 1.22 0.305 t
Senescent fraction 3,44 1.26 0.299 1.56 0.213 t

Warm-dry Green fraction 3,56 5.68 0.002 5.57 ·0.003 tt
Dead fraction 3,56 0.15 0.950 t 0.16 0.944 t
A. magellanica cover 3,56 5.29 0.003
Other epiphyte cover 3,56 1.28 0.275 t 1.14 0.332 t
Senescent fraction 3,56 4.60 0.006 t 5.68 0.002 tt

Shade Green fraction 3,52 3.90 0.014 t 0.44 0.74 t
Dead fraction 3,52 1.24 0.303 t 1.74 0.164 t
A. magellanica cover 3,52 3.67 0.018 t
Other epiphyte cover 3,52 0.79 0.604 t 0.81 0.641 t
Senescent fraction 3,52 0.19 0.902 0.41 0.764 t
Ga.Qfraction 3,52 0.58 0.628 0.15 0.926
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c)

FIGURE 1. The a) warm-dry, bj procedural control, and c) half-shade treatments.
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FIGURE 2. Schematic diagram of an Azorella selago leaf, indicating the measurements

taken in this study. Leaflets comprised part of the green leaf area. The boundary between

"green leaf area" and "leaf sheath area" (line 1-3) was determined by leaf colour, but

always lay approximately between the notches in either side of the leaf a = leaf length, b

= green leaf length, c = leaf sheath length, d = leaf sheath width, e = green leaf width.

Leaf width was the maximum of (d) and (e). Leaf perimeter was measured as the distance

along the leaf edge from 1-2-3-4-1, green leaf perimeter from 1-2-3-1, and leaf sheath

perimeter from 1-3-4-1.
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December 2002 and 24 January 2003 (t'spring" sampling period) inside control

Azorella selago plants (top), and temperature deviations (i.e. difference between

control and treatment temperatures, °C) affected by the procedural control (.

closed circles) and warm-dry (0 open squares) treatment during the same period

(bottom). Negative temperature enhancement values indicate the treatments were

cooler than the controls (see Appendix B).
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Paired samples (i.e. exposed and shaded portions of the half-cushion treatments) differing at

p < 0.05 indicated with an asterisk (*; see Table 2). Proc. Con. = procedural control.
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APPENDIXA

Soil properties of the treatments after experiment. Only potassium and phosphorus differed significantly between treatments

(details in text). I used by Smith (1978).

Control Proc. Con. Warm-dry Full shade Half-shade Half-shade-dry
pH 4.68 ± 0.06 4.76±0.04 4.64 ± 0.10 4.68 ± 0.04 4.78 ± 0.08 4.66 ± 0.04
Resistance (Ohm) 1764.00 ± 142.78 2022.00 ± 223.59 1670.00 ± 136.71 1724.00 ± 97.24 1660.00 ± 151.86 1968.00 ± 243.57
Organic C (%) 4.46 ± 0.79 3.81 ± 0.48 6.64 ± 2.07 4.15±0.46 6.10 ± 1.38 6.43 ± 1.61
P (ppm) 25.40 ± 6.92 23.80 ± 8.00 17.4 ± 6.07 28.80 ± 5.21 8.40 ± 5.44 12.80 ± 7.70

Exchangeable cations (cmol/kg)
H 2.66 ± 0.27 2.41±0.1O 3.23 ± 0.59 2.66 ± 0.10 2.72 ± 0.35 2.91 ± 0.31
Na 0.29 ± 0.04 0.27 ± 0.04 0.46 ± 0.12 0.32 ± 0.04 0.36 ± 0.06 0.33 ± 0.07
K 0.21 ± 0.03 0.14 ± 0.02 0.33 ± 0.12 0.19 ± 0.03 0.19 ± 0.04 0.25 ± 0.06
Ca 0.45 ± 0.14 0.38 ± 0.09 0.76 ± 0.22 0.77±0.19 0.62 ± 0.15 0.49 ± 0.10
Mg 0.76 ± 0.21 0.76 ± 0.15 1.54 ± 0.52 1.18 ± 0.25 1.13 ± 0.31 0.99 ± 0.21
(Mg +Na)/Ca 1 2.87 ± 0.51 2.87 ± 0.30 2.62 ± 0.15 2.45 ± 0.17 2.05 ± 0.13 2.87 ± 0.20

Percentage base saturation (%)
Na 6.84 ± 0.35 6.65 ± 0.54 7.23 ± 0.35 6.32 ± 0.42 7.24 ± 0.23 6.45 ± 0.47
K 4.94 ± 0.23 3.58 ± 0.31 4.86 ± 0.46 3.80 ± 0.37 3.72 ± 0.14 4.76 ± 0.43
Ca 9.23 ± 1.94 9.04 ± 1.36 11.36 ± 1.25 14.32 ± 1.82 11.85 ± 0.97 9.43 ± 1.33
Mg 15.86 ± 2.62 18.51 ± 1.92 21.92 ± 2.77 22.17± 1.91 21.38 ± 1.71 19.02 ± 1.83
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APPENDIXB
Thermal environment roC) experienced within experimental Azorella selago cushions. Mean

temperatures and mean daily temperature ranges experienced by control cushions are provided. The
differences between the temperature and range experienced by control and treatment cushions are
presented (negative values show treatment experienced a lower temperature or reduced daily
temperature range). Maximum and minimum temperatures experienced in each treatment also

presented. Data presented combined ("All '') and separately for the four sampling periods. n = number
of hourly recordings of temperature, N = number of recording of daily temperature range and daily

maximum and minimum teme.eratures.
Treatment Season n Temperature ± S.E. N Range ± S.E. Max. ± S.E. Min. ± S.E.
Control All 4824 5.42 ± 3.13 201 4.75±0.16 7.97 ± 0.23 3.23 ± 0.17

Autumn 1680 4.08 ± 2.19 70 3.59 ± 0.17 5.98 ± 0.23 2.39 ± 0.19
Winter 1440 3.98 ± 2.8 60 4.97 ± 0.35 6.74 ± 0.39 1.77 ± 0.25
Spring 1080 7.63 ± 2.46 45 5.77 ± 0.28 10.79 ± 0.30 5.01 ± 0.23
Summer 624 8.52 ± 2.57 26 5.57 ± 0.42 11.32 ± 0.38 5.74 ± 0.49

Temperature Range difference ±
difference ± S.E. S.E.

Proc. Con. All 4824 0.08 ± 0.01 201 -0.66 ± 0.06 7.65 ± 0.2 3.56 ± 0.16
Autumn 1680 0.33 ± 0.01 70 -0.30 ± 0.06 6.12 ± 0.21 2.83 ± 0.19
Winter 1440 -0.02 ± 0.02 60 -0.96 ± 0.13 6.09 ± 0.32 2.08 ± 0.24
Spring 1080 -0.20 ± 0.02 45 -0.68 ± 0.10 10.16 ± 0.27 5.07 ± 0.22
Summer 624 0.16 ± 0.02 26 -0.91 ± 0.15 11.03 ± 0.32 6.37 ± 0.4

Warm-dry All 4824 0.25 ± 0.01 201 -0.77 ± 0.05 7.78 ± 0.21 3.81 ± 0.16
Autumn 1680 0.37 ± 0.01 70 -0.68 ± 0.08 5.92 ± 0.21 3.02±0.19
Winter 1440 0.29 ±0.02 60 -0.78±0.11 6.55 ± 0.32 2.37 ± 0.22
Spring 1080 0.04 ± 0.01 45 -0.90 ± 0.08 10.33 ± 0.26 5.46 ± 0.21
Summer 624 0.21 ± 0.02 26 -0.78±0.12 11.23 ± 0.36 6.44 ± 0.38

Shade All 4824 -0.30 ± 0.01 201 -1.48±0.08 6.77 ± 0.18 3.51 ±0.17
Autumn 1680 -0.04 ± 0.01 70 -0.68 ± 0.06 5.51 ± 0.21 2.60 ± 0.18
Winter 1440 -0.31 ± 0.02 60 -1.42 ± 0.14 5.54 ± 0.33 1.99 ± 0.24
Spring 1080 -0.69 ± 0.03 45 -2.20 ± 0.16 8.78 ± 0.23 5.20 ± 0.21
Summer 624 -0.30 ± 0.04 26 -2.56 ± 0.24 9.56 ± 0.31 6.55 ± 0.39

Half-shade All 4824 -0.44 ± 0.01 201 -1.15 ± 0.08 6.78 ± 0.20 3.19±0.17
Autumn 1680 -0.08 ± 0.01 70 -0.58 ± 0.08 5.49 ± 0.23 2.48±0.19
Winter 1440 -0.68 ± 0.02 60 -1.44 ± 0.18 5.10 ± 0.33 1.58 ± 0.24
Spring 1080 -0.74 ± 0.02 45 -1.50±0.14 9.10±0.26 4.83 ± 0.23
Summer 624 -0.33 ± 0.02 26 -1.43±0.15 10.14 ± 0.36 6.00 ± 0.47

Half-shade- All 4824 -0.19±0.01 201 -1.38 ± 0.08 6.93±0.18 3.57 ± 0.16
dry Autumn 1680 0.18±0.01 70 -0.82 ± 0.08 5.67 ± 0.2 2.90 ± 0.19

Winter 1440 -0.14 ± 0.02 60 -1.37±0.17 5.69 ± 0.3 2.09 ± 0.24
Spring 1080 -0.82 ± 0.03 45 -1.94 ± 0.17 8.77 ± 0.24 4.94 ± 0.21
Summer 624 -0.26 ± 0.03 26 -1.96 ± 0.19 10.01 ± 0.32 6.40 ± 0.38
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APPENDIX C. Azorella selago foliar nutrient concentrations (mean ± S.E.) for the control, procedural control, warm-dry and shade treatments
(whole-cushion treatments), expressed on a per mass and per area basis. Differences were tested using ANOVA, with pmol/m' Na, Mn, Fe, Cu

and Zn concentrations log-transformed prior to analysis (to achieve normal distribution), although untransformed mean values provided. Sample
size = 10 per treatment, exceptfor pmol/m' concentration of warm-dry treatment (n = 9). Degrees offreedom = 3, 36for mg/kg data, and 3,35

for JJmol/m2 data.

Units Control Proc. Con. Warm-dry Shade F 12
Mass per mass
N % 1.33 ± 0.06 a 1.27 ± 0.05 a 1.20 ± 0.07 a 1.67 ± 0.06 b 12.28 <0.001
P % 0.14 ± 0.01 a 0.13 ± 0.01 a 0.14 ± 0.01 a 0.19 ± 0.01 b 7.39 0.001
K % 1.79±0.15 a 1.89 ± 0.08 ab 1.60 ± 0.10 a 2.29 ± 0.08 b 7.21 0.001
Ca % 0.75 ± 0.03 b 0.71 ± 0.03 ab 0.78 ± 0.03 b 0.61 ± 0.03 a 5.32 0.004
Mg % 0.30 ± 0.01 0.33 ± 0.03 0.32 ± 0.02 0.28 ± 0.02 1.04 0.385
Na mg/kg (ppm) 5691.00 ± 489.44 ab 7244.40 ± 454.88 b 7582.00 ± 734.03 b 5075.40 ± 400.71 a 5.08 0.005
Mn mg/kg (ppm) 191.30 ± 23.61 225.10 ± 26.99 316.90 ± 65.63 162.20 ± 24.28 2.74 0.057
Fe mg/kg (ppm) 549.20 ± 143.34 a 1103.70 ± 306.26 ab 1790.40 ± 310.28 b 599.30 ± 112.57 a 7.73 <0.001
Cu mg/kg (ppm) 11.80 ± 0.44 12.00 ± 0.83 13.00 ± 0.58 14.10 ± 0.60 2.85 0.051
Zn mg/kg (ppm) 12.60 ± 0.60 a 30.70 ± 4.01 e 23.80 ± 2.64 be 17.00 ± 1.14 b 16.27 <0.001
B mg/kg (ppm) 16.80 ± 0.36 a 18.70 ± 0.65 ab 17.40 ± 0.73 a 20.80 ± 0.83 b 7.22 0.001
Mols per area
N (ILmoVm2

) 2.76±0.17 2.71 ± 0.13 2.45 ± 0.29 2.92 ± 0.23 0.87 0.466
P (umol/m') 0.14 ± 0.01 0.13 ± 0.01 0.13 ± 0.02 0.15±0.01 0.79 0.505
K (umol/rrr') 1.34 ± 0.12 1.46 ± 0.10 1.16±0.15 1.44 ± 0.11 1.21 0.322
Ca (umol/rrr') 0.54 ± 0.03 b 0.53 ± 0.04 b 0.57 ± 0.06 b 0.37 ± 0.03 a 5.30 0.004
Mg (umol/rrr') 0.36 ± 0.02 ab 0.40 ± 0.03 b 0.37 ± 0.04 ab 0.28 ± 0.02 a 3.57 0.024
Na (umol/rrr') 75.27 ± 7.64 ab 99.40 ± 8.30 b 101.42 ± 14.43 ab 55.47 ± 4.80 a 3.96 0.016
Mn (umol/rrr') 1.04 ± 0.15 ab 1.29 ± 0.19 ab 1.76 ± 0.44 b 0.78 ± 0.16 a 3.74 0.020
Fe (umol/m') 2.85 ± 0.71 a 6.09 ± 1.70 ab 9.85 ± 2.08 b 2.81 ± 0.71 a 7.19 0.001
Cu (umol/mi) 0.05 ± 0.01 0.06 ± 0.01 0.06 ± 0.01 0.05 ± 0.00 0.05 0.985
Zn (umol/m'') 0.06 ± 0.01 a 0.14 ± 0.02 b 0.10 ± 0.02 b 0.06 ± 0.01 a 13.40 <0.001
B {gmol/m22 0.45 ± 0.02 0.52 ± 0.03 0.45 ± 0.04 0.47 ± 0.03 1.34 '0.277
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APPENDIX D. Azorella selagofoliar nutrient concentrations (mean ± S.E.) for the half cushion treatments, expressed on a per area and per

mass basis. Ten samples per treatment.

Half-shade Half-shade-dry
Units EX120sed12°rtion Shaded 12ortion t 12 EX120sed12ortion Shaded 12ortion t 12

Mass per mass
N % 1.43 ± 0.16 1.42 ± 0.13 0.08 0.942 1.26 ± 0.18 1.36 ± 0.33 -1.04 0.355
P % 0.15 ± 0.01 0.20 ± 0.02 -5.66 0.005 0.14 ± 0.02 0.20 ± 0.04 -5.07 0.007
K % 2.10 ± 0.23 2.32 ± 0.16 -1.54 0.197 1.61 ± 0.28 2.07 ± 0.29 -2.58 0.061
Ca % 0.79 ± 0.10 0.66 ± 0.08 4.66 0.010 0.73 ± 0.12 0.69 ± 0.14 0.92 0.408
Mg % 0.35 ± 0.10 0.34 ± 0.05 0.46 0.669 0.34 ± 0.09 0.37 ± 0.05 -0.92 0.411
Na mg/kg (ppm) 6245.60 ± 1459.77 5304.20 ± 1380.96 4.44 0.011 7113.40 ± 1448.27 6503.20 ± 883.13 0.70 0.520
Mn mg/kg (ppm) 129.00 ± 27.47 133.60 ± 42.16 -0.36 0.738 275.20 ± 57.49 274.80 ± 84.49 0.01 0.989
Fe mg/kg (ppm) 329.40 ± 88.98 889.00 ± 653.31 -1.89 0.132 2170.40 ± 1986.58 2746.40 ± 1233.00 -0.57 0.599
Cu mg/kg (ppm) 17.20 ± 13.88 13.80 ± 3.11 0.62 0.568 13.40 ± 3.13 17.20 ± 3.03 -2.54 0.064
Zn mg/kg (ppm) 14.40 ± 2.30 17.00 ± 2.92 -2.80 0.049 22.00 ± 6.40 28.8 ± 5.45 -3.67 0.021
B mg/kg (ppm) 16.80 ± 0.45 20.00 ± 2.83 -2.58 0.061 16.60 ± 2.61 24.60 ± 4.16 -4.40 0.012
Mols per area
N (umol/rrr') 3.11 ± 0.70 2.77 ± 0.48 0.78 0.482 2.78 ± 0.82 1.98 ± 1.37 2.55 0.064
P (umol/nr') 0.15 ± 0.02 0.18 ± 0.03 -3.12 0.035 0.14 ± 0.04 0.13 ± 0.09 0.42 0.694
K (j.tmol/m2

) 1.62 ± 0.09 1.61±0.16 0.13 0.902 1.23 ± 0.10 1.02 ± 0.53 0.89 0.425
Ca (umol/rrr') 0.60 ± 0.09 0.45 ± 0.05 2.84 0.047 0.57 ± 0.19 0.33 ± 0.21 5.35 0.006
Mg (umol/rn") 0.46 ± 0.19 0.39 ± 0.08 0.97 0.385 0.45 ± 0.21 0.30 ± 0.18 5.73 0.005
Na (urnol/rrr') 86.82 ± 25.05 65.96 ± 20.61 3.48 0.025 98.37 ± 24.04 56.57 ± 28.79 2.53 0.065
Mn (umol/rrr') 0.72 ± 0.17 0.67 ± 0.21 0.72 0.512 1.55 ± 0.38 0.91 ± 0.42 3.41 0.027
Fe (umol/rrr') 1.84 ± 0.62 4.40 ± 3.47 -1.90 0.130 13.65 ± 15.1 9.48 ± 6.59 0.39 0.716
Cu (umol/rrr') 0.09 ± 0.09 0.06 ± 0.02 0.66 0.545 0.07 ± 0.03 0.05 ± 0.03 2.19 0.094
Zn (umol/rrr') 0.07 ± 0.01 0.07 ± 0.02 -0.78 0.481 0.11 ± 0.04 0.08 ± 0.04 2.47 0.069
B {gmol/m2

} 0.47 ± 0.07 0.51 ± 0.11 -0.97 0.387 0.46 ± 0.06 0.41 ± 0.16 0.70 0.521
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Chapter 5: General conclusion

Large and rapid changes in climate are predicted for high latitude ecosystems over the

next 100 years (IPCC, 2001). These changes will have diverse effects on communities

and their constituent species due to species-specific sensitivity to different

environmental parameters (Chapin et aI., 1997). However, due to the

disproportionately large influence of dominant and/or keystone species on community

structure and function (Begon et aI., 1996), understanding their responses can greatly

improve predictions of the ecological consequences of climate change. In many sub-

Antarctic fellfield habitats, the cushion plant Azorella selago is both a dominant and

keystone species (Huntley, 1971, 1972), and thus its response will strongly influence

the entire fell field community.

The three complementary approaches used in this study showed that A. selago

is sensitive to changes in climate, despite expectations for the species to be relatively

unresponsive (as a stress-tolerator; sensu Grime, 1979). First, experimental

microclimate modifications demonstrated that A. selago could show rapid vegetative

responses to changes in environmental conditions (Chapter 4). Second, altitudinal

trends in A. selago morphology suggested that the species also shows a vegetative

response to more gradual changes in climate (Chapter 3). Finally, the age structure of

A. selago populations suggested that the establishment of seedlings is dependent on

specific environmental conditions, and therefore that species' population dynamics

may be affected by changes in climate (Chapter 2). While adult plants survived the

climate manipulation experiment, it is possible that reproductive and establishment

processes of A. selago are more vulnerable to shifts in climate. Therefore, further

changes in climate are likely to have both (rapid) vegetative and (gradual)

demographic effects on the species.

The epiphytes growing on the cushion plants also appeared responsive to

changes in environmental conditions. Changes in epiphyte cover can alter the

environmental conditions experienced by the cushion plants (particularly because of

shading by the epiphytes), and climate change may thus indirectly affect A. selago

through its effects on the epiphytes. The abundance and cover of the cushion plant's

dominant epiphyte, Agrostis magellanica, was affected by microclimate
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modifications, and observations across the island suggest that its distribution is also

strongly dependent on climatic conditions. Furthermore, the altitudinal zonation of

epiphyte species suggests that changes in climate could cause elevational shifts in the

distribution of these species, leading to changes in epiphyte cover and composition

across the island. Therefore, considering the sensitivity of A. selago to shading, the _

indirect effects of climate change on A. selago (i.e. climate change-driven shifts in

epiphyte abundance, cover and distribution) could overshadow any direct effects.

Bioindicators of climate change

Due to their short-term sensitivity to environmental conditions, A. selago and its

epiphytes may be good bioindicators of climate change in the sub-Antarctic

(environmental bioindicator: sensu McGeoch, 2002; see also e.g. Smith, 1994; Molau,

1997). Azorella selago trichome density, leaf size and timing of autumnal senescence

proved sensitive to changes in climate (in agreement with other species: Halloy and

Mark, 1996; Walther et al., 2002), and these characteristics could be used to monitor

the progression of climate change. Because the duration of A. selago's growing

season influences the dynamics of fellfield ecosystems, a change in this parameter

will indicate the effects of climate change on ecosystem functioning. Changes in A.

selago leaf size and trichome density are less easily related to changes in ecosystem

dynamics, but still indicate the response of the cushion plant to climate change. The

altitudinal distribution of epiphyte species also appeared to be strongly related to

climate, and could also be potential indicators of changes in climate. Since species

may be limited by different environmental factors, monitoring a suite of epiphyte

species can indicate changes in a range of environmental factors (e.g. A. magellanica

to indicate shifts in wind patterns, and Sanionia mosses to monitor changes in rainfall:

see McGeoch, 2002). Continued monitoring of these species (as well as further

experimentation) would enable the improvement and refinement of these

biomonitoring systems.

Implications for felljield ecosystems

Under a scenario of warmer and drier conditions, Smith et al. (2001) predicted that

mesic fellfield and polar desert habitats would be succeeded by xeric fellfield
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vegetation. The results of this study agree with this broad prediction since lower

rainfall is likely to reduce epiphyte cover (at least of Agrostis magellanica) in mesic

fellfield and higher temperatures will favour the increase of A. selago in polar desert

(if low temperatures limit the establishment of the species). Further, results from this

study predict lower fellfield (both mesic and xeric) plant production under this

scenario due to a shortened A. selago growing season (assuming the onset of the

species' growing season is not altered) and lower epiphyte abundance. At the same

time higher temperatures, and the associated decline in the frequency of freeze-thaw

events (Boelhouwers et al., 2003), will potentially favour the production of larger A.

selago leaves with lower trichome densities at mid altitudes. In turn, the invertebrate

communities within A. selago cushions are affected by changes in the cushion plants

and their epiphytes (as well as directly by the shifts in climate: E.A. Hugo, M.A.

McGeoch, P.C. le Roux, M. Nyakatya & S.L. Chown, unpublished data). Changes in

foliar nutrient concentrations (in response to changes in temperature) will also have an

effect on the composition and abundance of invertebrate communities (Callaghan and

Jonasson, 1995), although this effect will be diluted by the presence of many previous

years' leaves.

Under a slightly different climate change scenario, where the island's rainfall

stops declining but temperatures continue to rise, vastly different outcomes are

predicted. Under such a scenario, epiphyte cover is likely to increase, leading to

greater shading of cushion plants. In turn, shading strongly affects A. selago

morphology (increased stem growth rate, leaf size and leaf mass, decreased leaf

thickness and trichome density) and physiology (higher foliar concentrations of

nitrogen, potassium, phosphorus, boron and zinc). As a result, increased epiphyte

cover could potentially cause a short-term increase in the quantity and quality of A.

selago biomass produced, favouring detritivorous invertebrates (Callaghan et al.,

1992; Callaghan and Jonasson, 1995). However, as A. selago stem mortality occurs

and cushions lose compactness over the longer-term, a decline in cushion abundance

and production is expected. Any such reduction in cushion abundance will negatively

affect their associated epiphytes and invertebrates, particularly where conditions

outside A. selago cushions are unfavourable for those species (see e.g. Barendse and

Chown, 2001). All predictions, however, concur that further changes in climate will

cause changes in A. selago and its epiphytes, potentially with repercussions for the

entire fellfield ecosystem on Marion Island.
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