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Abstract: The present study reports the identification of two new staurosporine 

derivatives, 2-hydroxy-7-oxostaurosporine (1) and 3-hydroxy-7-oxostaurosporine (2), 

obtained from mid-polar fractions of an aqueous methanol extract of the tunicate 

Eudistoma vannamei, endemic to the northeast coast of Brazil. The mixture of 1 and 2 

displayed IC50 values in the nM range and was up to 14 times more cytotoxic than 

staurosporine across a panel of tumor cell lines, as evaluated using the MTT assay.  
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1. Introduction 

Tunicates are a group of marine invertebrates particularly abundant along coastal regions, often 

found as the dominant organisms in sessile benthic communities [1]. In Brazil, as in many other 

regions, information regarding these animals is restricted to faunal inventories and, in many cases, is 

inaccurate or incomplete [2]. In regards to Brazilian tropical waters, the deficiency in species 

inventories is quite evident, as very few references are available [3–5]. 

The faunal list for the state of Ceará, on the northeastern coast of Brazil, indicated that 22 species of 

ascidians were registered [5,6], including novel species and many cases of regional endemism. This 

coastline has been scarcely explored as a source of natural products. In 2003, a pioneering study 

investigated the cytotoxicity of aqueous methanol extracts of the ten most abundant ascidians of Ceará. 

The results of these assays suggested that Eudistoma vannamei Millar, 1977 (Figure 1a) might be of 

interest due to its marked bioactivity, especially the inhibition of growth in tumor cell lines [7]. 

Evaluation of the cytotoxicity data from these extracts suggested the presence of amino acid-derived 

compounds in fractions of intermediate polarity. Treatment of leukemia cells with the amino  

acid-derived compounds resulted in apoptosis [8]. 

Figure 1. (a) Eudistoma vannamei; (b) Structures of 2-hydroxy-7-oxostaurosporine (1),  

3-hydroxy-7-oxostaurosporine (2) and staurosporine (3).  

 
(a) (b) 

The genus Eudistoma is the most diverse among the Polycitoridae, with most of its species living in 

tropical regions [9]. On the Brazilian coast, only one species of Eudistoma was found in temperate 

waters [10], while in the warmer Northeast region, there are at least seven species of this genus.  

E. vannamei is endemic to the Northeast coast of Brazil where it forms large colonies on the underside 

of ledges of the beach rocks and is characterized by its conspicuous orange or yellow bulbus heads [3,5]. 

E. vannamei’s sessile habit and apparent lack of mechanical defenses would make it an easy target for 

predators. However, taking into account its dominance on the intertidal reefs, the species most 

probably relies on chemical deterrents for protection. 

Several cytotoxic substances have been isolated from Eudistoma ascidians, including the alkaloids 

eudistomins A–T, eudistomidins A–F and eudistalbin [11–19] and the macrolides iejimalides  
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A–D [20,21]. The present study reports the bioactivity-guided isolation of two new members of the 

staurosporine group of alkaloids from the extract of E. vannamei. 

2. Results and Discussion 

The aqueous methanol extract from E. vannamei was submitted to cytotoxicity-guided fractionation 

(flowchart provided in the supplementary material), resulting in the isolation of 5 mg of an active 

fraction, which appeared as a single spot by TLC and a single peak via LC-MS analysis. 

This material was submitted to NMR and HRMS analysis. The ESI-HRMS spectrum showed one 

signal at m/z 497.1830 (error value: 2.21 ppm), suggesting the molecular formula C28H24N4O5. The 

initial analysis of the 13C NMR contained more carbons than expected, and appeared as two sets of 

peaks with similar chemical shifts. Detailed analysis of the MS and MS/MS data along with evaluation 

of the 13C NMR data suggested that the material was a mixture of two staurosporine derivatives, 

compounds 1 and 2.  

A detailed set of NMR spectral data was then collected including 1H, 13C, COSY, HSQC and 

HMBC spectra to identify the structures of 1 and 2. Each of the protons in 1 and 2 were assigned using 

a combination of chemical shift data and coupling constants from the 1H NMR spectrum (Table 1) and 

correlations from a COSY spectrum (Figure 2). Analysis of the chemical shift and coupling constant 

data indicated that the glycosidic unit matched that in staurosporine [22–25]. An HSQC experiment 

enabled the assignments of each methine, methylene and methyl carbon (Table 1). The COSY 

spectrum revealed the scalar coupling correlations for the most deshielded proton attached to sp3 

carbons H-6′ (δH 6.62 for 1 and 6.69 for 2) with the heterotopic methylene protons 2H-5′ (δH 2.36/2.72 

for 1 and δH 2.46/2.74 for 2) which, in turn, showed geminal coupling. The oxymethine protons at δH 

3.95 (H-3′ for 1) and 3.97 (H-3′ for 2) showed correlations with the azomethine protons at δH 3.23 and 

3.26 (H-4′) for 1 and 2, respectively. In the aromatic region, the most deshielded proton at δH 9.94  

(H-8 for both 1 and 2) coupled to one at δH 7.46 (H-9 for both 1 and 2), which coupled with one at δH 

7.61 (H-10 for both 1 and 2) and that, in turn, coupled with the ones at δH 8.15 (for 1) and 8.17 (for 2). 

On the hydroxyl substituted benzene ring, the most deshielded doublet (J = 8.4 Hz) at δH 9.63 (H-4 for 1) 

correlated with the one at δH 7.40 (H-3 of 1), while the correspondent H-4 of 2 at δH 9.58 (br, d) 

coupled weakly with the proton at δH 7.61 that, in turn, coupled with the one at δH 7.54  

(d, J = 8.7 Hz, H-1 of 2).  

Table 1. NMR Data (500 MHz, pyridine-d5) for 2-hydroxy-7-oxostaurosporine (1) and  

3-hydroxy-7-oxostaurosporine (2).  

 2-Hydroxy-7-oxostaurosporine (1) 3-Hydroxy-7-oxostaurosporine (2) 

Position δC, mult. δH (J in Hz) HMBC d δC, mult. δH (J in Hz) HMBC d 

1 95.6, CH 7.39 br. s 2, 3, 4a 109.7, CH  7.54 d (8.7) 3 

2 159.5, C   117.4, CH 7.61 c 3 

3 111.3, CH 7.40 d (9.6) 4a 153.8, C    

4 126.6, CH 9.63 d (8.4) 2, 4b, 13a 111.7, CH 9.58 br. d 2, 13a 

4a 115.8, C   123.8, C   

4b 117.0, C   117.0, C   

4c 120.2 a, C   120.0 a, C   
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Table 1. Cont. 

5 172.7 b, C   172.6 b, C   

7a 123.4 a, C   122.1 a, C   

7b 116.8, C   116.8, C   

7c 124.7, C   124.7, C   

8 125.8, CH 9.94 d (7.9) 7b, 10, 11a 125.9, CH 9.94 d (7.9) 7b, 10, 11a 

9 120.7, CH 7.46 d (7.5) 7c, 11 120.7, CH 7.46 t (7.5) 7c, 11 

10 126.4, CH 7.61 c 8, 11a 126.4, CH 7.61c 8, 11a 

11 116.1, CH 8.15 d (8.7) 7c, 9 116.8, CH 8.17 d (8.7) 7c, 9 

11a 141.9, C   141.8, C   

12a 132.3, C   132.4, C   

12b 131.2, C   131.8, C   

13a 141.1, C   133.3, C   

2′ 91.7, C   91.8, C   

3′ 84.1, CH 3.95 d (3.3) 2′, CH3O, CH3 84.2, CH 3.97 d (3.3) 2′, CH3O, CH3 

4′ 50.8, CH 3.23 br. q (3.1) 2′, 3′, 6′, CH3N 50.8, CH 3.26 br. q (3.4) 2′, 3′, 6′, CH3N 

5′ 29.9, CH2 2.72 m 3′, 4′, 6′ 29.8, CH2 2.74 m 3′, 4′, 6′ 

  2.36 m   2.46 m  

6′ 80.8, CH 6.62 d (5.0) 2′, 4′, 12b 80.9, CH 6.69 d (5.0) 2′, 4′, 12b 

CH3-NH 30.5, CH3 1.48 s 4′ 30.5, CH3 1.48 s 4′ 

CH3O-C3′ 57.2, CH3 3.31 s 3′ 57.2, CH3 3.32 s 3′ 

CH3-C2′ 33.8, CH3 2.37 s 2′, 3′ 33.8, CH3 2.38 s 2′, 3′ 
a,b Values with the same superscript are interchangeable in the same column; c Due to partial overlapping the multiplicity 

and J values could not be determined precisely; d HMBC correlations, optimized for 7.25 Hz, are from proton(s) stated to 

the indicated carbon. 

Figure 2. A summary of the NMR data including (top) coupling constants and COSY 

correlations (bottom) key long-range 1H,13C-correlations (depicted by arrows) observed in 

the HMBC experiment. 
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Subsequent HMBC data facilitated the assignment of the remaining carbons (Table 1) with the 

exception of C-4c, C-5, C-7 and C-7a, which were interpreted by comparison with the literature [22–25]. 

Further long range correlations observed in the HMBC spectrum (Figure 2) provided definitive proof 

for the connectivity and thereby confirmed the structural assignment of 1 and 2 as 2-hydroxy-7-oxo 

staurosporine and 3-hydroxy-7-oxostaurosporine, respectively. 

Staurosporines are a group of highly cytotoxic indole-carbazole alkaloids of which the parental 

molecule was isolated in 1977 from the fermentation broth of the soil actinomycete Streptomyces 

staurosporeus in a screening protocol directed to identify PKC (protein kinase C) inhibitors [26]. 

Currently, the staurosporines are a group of over 50 structurally related substances of natural and 

synthetic origins and have been found frequently in extracts from Eudistoma tunicates.  

11-Hydroxystaurosporine and 3,11-dihydroxystaurosporine were isolated from Eudistoma sp. collected 

on a Micronesian island [27], while the staurosporine aglicone (K252-c) was obtained from another 

Eudistoma species found on the west coast of Africa [28]. Between 1999 and 2002, Schupp and  

co-workers published three articles covering the isolation and nM-range cytotoxicity of five new  

(3-hydroxy-4′-N-methylstaurosporine, 3-hydroxy-4′-N-demethylstaurosporine, 3′-demethoxy-3′-hydroxy- 

4′-N-demethylestaurosporine, 3-hydroxy-3′-demethoxy-3′-hydroxystaurosporine and 11-hydroxy-4′-N-

demethylstaurosporine) and seven previously known staurosporines found in the Micronesian ascidian 

Eudistoma toealensis and its predatory flatworm Pseudoceros sp. [24,29,30]. 

The mixture of compounds 1–2 presented strong cytotoxic activity against a panel of seven human 

tumor cell lines (HL-60, Molt-4, Jurkat, K562, HCT-8, SF-295 and MDA-MB-435) and normal 

proliferating lymphocytes (PBMC), with an IC50 ranging from 10.33 nM in Jurkat leukemia cells to 

687.08 nM in normal PBMC cells (Table 2). Standard staurosporine (3), used as a positive control, was 

generally less potent than compounds 1–2 against tumor cells. Against normal proliferating 

lymphocytes, both 3 and 1–2 presented similar activity, suggesting a better selectivity index for 1–2 

(Table 2). For example, 1–2 was 26.46 times more active against HL-60 cells than against PBMC, 

whereas STP was 2.00 times more active against HL-60 cells when compared with normal cells.  

Table 2. Cytotoxicity of 2-hydroxy-7-oxostaurosporine/3-hydroxy-7-oxostaurosporine 

(1/2) and staurosporine (3), evaluated using the MTT assay after 72 h of incubation. The 

IC50 (nM) values and 95% CI were obtained via nonlinear regression (first values); the 

95% CI are set in brackets. 

Cell Line IC50 (nM) 1–2 

Selectivity Index a 
PBMC vs. 

Cancer Cells 

IC50 (nM) 3 

Selectivity Index a 

PBMC vs.  

Cancer Cells 

HL-60 
25.97  

[22.42–30.09] 
26.46 

391.83  

[316.81–484.86] 

2.00 

Molt-4 
18.64  

[15.97–21.74] 
36.86 

154.50  

[128.12–186.33] 

5.08 

Jurkat 
10.33  

[7.12–15.00] 
70.08 

83.96  

[51.38–137.25] 

9.34 

K562 
144.47  

[103.88–200.9] 
4.75 1960.86 N.C. 

0.40 
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Table 2. Cont. 

HCT-8 
58.24  

[50.96–66.58] 
11.80 

83.83  

[66.43–105.80] 

9.36 

SF 295 
57.90  

[47.10–71.16] 
11.87 

569.52  

[444.13–730.28] 

1.38 

MDA MB 

435 

28.68  

[25.64–32.06] 
23.96 

215.42  

[153.64–301.80] 

3.64 

PBMC 
687.08  

[452.55–1043.48] 
- 

784.51  

[566.95–1085.89] 

 

N.C.: value was not converted; a ratio between the cytotoxicities expressed as IC50 (nM) against peripheral blood 

mononucleated cells (PBMCs) (normal cells) and cancer cell lines. 

Structure-activity relationship studies involving staurosporine and structurally related compounds 

have shown that slight changes in structure lead to drastic changes in functionality or, essentially, 

selectivity towards a target [31–34]. A preliminary investigation on the mode of action of compounds 

1 and 2 was conducted using HL-60 leukemia cells as a model. The mixture of 1 and 2 (80 nM) 

induced a notable and sustained cytostatic effect against HL-60 cells throughout the 72 h analysis. This 

observation was accompanied by an increase in the accumulation of cells in G2/M and a decrease of 

those in G0/G1 and S phases. The toxicity of STP (430 nM), however, was kinetically less consistent. 

Moreover, after 24 h, almost the entire STP-treated culture was arrested in G2/M, which was followed 

by an increase in polyploid cells at further time points, showing a less strict blockage. When the 

concentration of the mixture was increased to 160 nM, extensive DNA damage occurred, leading to 

cellular apoptosis (results not shown). However, in order to access the contribution of each isomer in 

the observed antiproliferative activity, it will be necessary to isolate the compounds and to access the 

mode of action of each one individually.  

3. Experimental Section 

3.1. Reagents 

Cell culture media, fetal bovine serum and antibiotics were acquired from Gibco (Grand Island, 

NY, USA). Staurosporine, MTT and resazurin were obtained from Sigma-Aldrich (St. Louis, MO, 

USA). All other reagents used were of analytical grade. 

3.2. Collection and Identification of Eudistoma vannamei 

Samples of Eudistoma vannamei were collected in crevices or on the underside of beach rocks in 

the intertidal zone of Taíba Beach (03°34,931′S; 038°54,469′W), on the west coast of Ceará state, 

Brazil. The material was immediately immersed in methanol and stored at −4 °C. Part of the material 

was fixed in 70% ethanol and sent for identification. A voucher specimen #198 has been deposited at 

the ascidian collection from the Institute of Marine Sciences, Federal University of Ceará (Instituto de 

Ciências do Mar, Universidade Federal do Ceará). 
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3.3. Extraction and Bioguided Fractionation 

The collected specimens (8.8 kg) were extracted with MeOH (1:5, m/v, wet weight). The 

suspension was filtered, concentrated under reduced pressure (TECNAL, model TE-120) and 

lyophilized (Thermo Electron Corporation, model: MicroModulyo Freeze Dryer 115) to obtain the dry 

raw methanol extract (351.80 g). The raw extract was then resuspended in MeOH to precipitate the 

salt, filtered and afterwards diluted with water to a proportion of 7:3 (MeOH:H2O). A successive 

partition of the aqueous phase followed, first with CH2Cl2 (2:1, v/v, 3-fold) and then with n-BuOH  

(2:1, v/v, 3-fold). The solvent of all the fractions was removed under reduced pressure. The CH2Cl2 

partition was fractionated by flash chromatography on a glass column (55 × 25 cm) filled with 800 g of 

silica gel 60 GF254 70–230 mesh ASTM (Sigma), using an n-hexane/EtOAc gradient from  

20–100% EtOAc. After analysis with thin layer chromatography (TLC), 20 fractions (1 to 20) were 

obtained and further studied. Fraction 14 (1.81 g) exhibited the most promising biological potential 

and therefore was subjected to flash chromatography on silica gel 60 GF254 (glass column 55 × 25 cm; 

170 g silica) in an isocratic elution with CH2Cl2:MeOH (9:1, v/v), which provided six sub-fractions. 

Further purification, after the biological evaluation, led to the selection of sub-fraction 3 (i.e., SF3), 

which was purified by TLC. The major sub-sub-fraction 1 (i.e., SF3.1) after sequential TLC resulted  

in one active mixture of isomers (5 mg). The structure elucidation was based on infrared spectra  

(IR; Perkin-Elmer, model FT-IR 1000), nuclear magnetic resonance (NMR) and high-resolution mass 

spectrometry. All NMR experiments were recorded on a Bruker DRX-500 spectrometer operating at 

499.80 and 125.69 MHz for 1H and 13C, respectively, using standard pulse sequences supplied by the 

manufacturer. The ESI-MS was performed with Bruker Daltonics™ equipment (UltrO-TOF, Billerica, 

MA, USA). The sample (0.5 µg/mL) was dissolved in methanol/water at a 1:1 ratio and was 

introduced into the electrospray source at 5 µL/min via an infusion pump (Cole-Parmer, Vernon Hills, 

IL, USA). Nitrogen was used as a nebulising gas, and the capillary voltage was set to 3500 V. 

3.4. Evaluation of Cytotoxicity 

3.4.1. Cell Lines and Cell Models  

HL-60 (promyelocytic leukemia), Molt-4 (lymphocytic leukemia), Jurkat (T cell leukemia), K562 

(chronic myeloid leukemia) HCT-8 (colon cancer), MDA MB-435 (melanoma), and SF-295 

(glioblastoma) human tumor cell lines were obtained from the National Cancer Institute, Bethesda, 

MD, USA. Cells were grown in RPMI-1640 medium supplemented with 10% fetal bovine serum,  

2 mM glutamine, 100 μg/mL streptomycin and 100 U/mL penicillin and incubated at 37 °C under a 

5% CO2 atmosphere.  

Peripheral blood mononucleated cells (PBMCs) were used as a model for the evaluation of 

cytotoxicity in normal cells. Peripheral blood samples were obtained from four healthy volunteers. 

Venous blood (8 mL) was collected via routine venipuncture into a sterile tube with EDTA and 

carefully layered over 2 mL of Ficoll-Histopaque (Sigma-Aldrich, St. Louis, MO, USA) and 

centrifuged at 1500 rpm for 20 min. The layer containing the lymphocytes was aspirated, washed twice 

with PBS and tested for viability using trypan blue. PBMCs were suspended to their final 
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concentration in RPMI medium supplemented with 20% fetal bovine serum, 2 mm glutamine,  

100 μg/mL streptomycin, 100 U/mL penicillin and 3% phytohemagglutinin to stimulate proliferation. 

3.4.2. MTT Assay  

Cells were plated into 96-well plates (3 × 105 cells/mL for suspended leukemia cells and  

1 × 105 cells/mL for adherent solid tumor cells). Adherent cells were plated 24 h prior to addition of 

test substances, which were added using the HTS, and incubated for 72 h. Control groups received 

DMSO. Three hours before the end of the incubation, 150 µL of a stock solution (0.5 mg/mL) of MTT 

(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide; Sigma-Aldrich Co., St. Louis, 

MO, USA) was added to each well. Absorbance was measured using a multiplate reader (DTX 880 

Multimode Detector, Beckman Coulter, Inc. Fullerton, CA, USA). The effect was quantified as the 

percentage of the control absorbance at 570 nm [35]. 

3.4.3. AlamarBlue® Assay 

Cells were plated into 96-well plates (3 × 105 cells/mL). After 24 h, substances were added to each 

well using the HTS, and cells were incubated for 72 h. Control groups received DMSO. Twenty-four 

hours before the end of the incubation, 10 µL of a stock solution (0.436 mg/mL) of Alamar Blue 

(resazurin, Sigma-Aldrich Co., St. Louis, MO, USA) was added to each well. Absorbance was 

measured as above. The effect of each sample was quantified as the percentage of the control 

absorbance at 570 nm and 600 nm [36]. 

4. Conclusions 

In the present study, two new 7-oxostaurosporine derivatives were obtained from the Brazilian 

endemic tunicate Eudistoma vannamei. The mixture of these compounds presented a strong 

antiproliferative effect against tumor cell lines, inducing a distinguished and persistent G2 arrest in 

sub-toxic concentrations, while at toxic concentrations, the treated cells underwent apoptosis.  
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