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ABSTRACT 

 

This dissertation investigates the processes of hybridation, polyploidy, and 

apomixis and their roles in the evolution of myriopterid ferns. First, I examine patterns 

of hybridization in members of the Cheilanthes yavapensis complex using a suite of 

techiniques, ranging from molecules to morphology—including isozymes, spore 

measurements, and molecular phylogenetics based on chloroplast and nuclear markers 

to elucidate relationships in this notorious group of ferns. Second, I utilize the rules of 

traditional taxonomy set by the Code of Botanical Nomenclature to recircucmscribe and 

resurrect the genus Myriopteris from within cheilanthoid ferns. This revised classification 

is bolstered by results from my molecular phylogenetic analysis of DNA sequence data 

in the subsequent chapter. Then, using morphological and cytological analyses, I 

examine the evolution of indument, leaf and rachis shape, vernation, chromosome 

number, and reproductive mode across the myriopterid tree. In my concluding chapter I 

develop microsatellite markers for the apomictic triploid, M. lindheiemeri and explore 

whether premeiotic chromosome duplications in this apomict result in the production of 

genetically variable offspring. 
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The Myriopteris yavapensis complex.  Myriopteris lindheimeri (A), Myriopteris fendleri 
(B), Myriopteris covillei (C), and Myriopteris yavapensis (D). 

 



INTRODUCTION 

 2 

 

This disseration has been a labor of love, punctuated by moments of extreme 

curiousity and intrigue together with long nights of sluggish persistence. It was initially 

borne out of a seemingly simple investigation—as are most interesting things—

conducted while I was still an undergraduate at the University of North Carolina–

Wilmington. The summer preceding my senior year, I was offered the opportunity to 

participate in an NSF-REU summer program at Duke University studying plant 

systematics. I was immediately drawn to ferns based on their complicated (and large) 

genomes, not to mention their curious morphology, ecology, and life history. During 

that summer, I investigated chloroplast inheritance in the apomictic tetraploid fern, 

Myriopteris yavapensis. What was expected to be a straightforward study showing M. 

covillei to be the maternal parent of that fern became a far more circuitous story (as you 

will see in Chapter I). I was driven to elucidate patterns of hybridization underlying the 

diversity of genotypes surrounding M. yavapensis and its relatives. Fortunately, after 

being accepted to the Department of Biology at Duke University, I was offered the 

opportunity to do just that.  

 Thus, Chapter I, completed in my first years of graduate school, examines the 

origins of apomictic polyploids in the M. yavapensis complex. I continue to be grateful to 

my coauthors (and mentors), K. M. Pryer and M. D. Windham for guiding me through 

the process of generating data through to publishing my first scientific article. As you 

read this chapter, you will notice that the species names used therein are not Myriopteris, 

but Cheilanthes. The reason for this discrepancy is made clear in Chapter II, wherein I 

formally recognize the newly recircumscribed genus Myriopteris Fée. 
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 Many long hours, over the course of several years, went into the construction of 

Chapter II. Cheilanthoid ferns are a notoriously difficult group with respect to 

traditional classification. This fact has resulted in a veritable nomenclatural nightmare 

for many genera comprised therein. Cheilanthes is no exception. In order to bring the 

taxonomy of myriopterid Cheilanthes current, and corresponding with now known 

phylogenetic relationships, I anguished over the complicated historical nomenclature of 

this group to produce a refined classification of Myriopteris. While this exercise was 

completed independently, I am deeply indebted to my coathor, M. D. Windham, for his 

encouragement and expertise through this process. Michael is truly an expert in this 

group of ferns and without his enthusiasm (and oversight) it is unlikely that this chapter 

would have made it through to publication. 

 Chapter III represents a transtion in my research focus from pure systematics to a 

focus on evolutionary processes. Using plastid markers and molecular phylogenetics, I 

constructed a highly supported and well-resolved phylogeny of the newly 

circumscribed genus, Myriopteris. This phylogeny served as a starting point for further 

investigations of character evolution among myriopterid ferns, including morphological 

aspects such as leaf and rachis shape, vernation, and (perhaps most interesting of all) 

leaf indument. A further exploration of variation in ploidy level and reproductive mode 

across this phylogeny coincided with, and further motivated, the beginning of my 

intense focus on experiments conducted in Chapter IV. 

 The final chapter of this dissertation was truly a labor of love; it is a project for 

which I independently procured funding, designed an experimental approach, executed 

that experimental approach, and discovered intriguing results that are propelling me to 

continue studying asexuality in ferns in the next stage of my career. This investigation of 

the genomic underpinnings of apomixis in M. lindheimeri elegantly caps a journey that 



 4 

began with my simple study of chloroplast inheritance in tetraploid M. yavapensis from 

its maternal progenitor, a rare sexual diploid cytotype of M. lindheimeri, and concludes 

with observations of understudied and complex patterns of genetic diversity in 

apomictic M. lindheimeri, a byproduct of which allowed me recently to discover a 

previously undetected apomictic diploid cytotype of that same parental plant.  

 These investigations track my interests from early on, with polyploidy and 

genome evolution, abreast to my experiments with classical taxonomony and molecular 

systematics, and back again to my detailed investigations of the evolutionary processes 

that are intimately tied to hybridization, polyploidy, and apomixis—all of which have 

inspired and reinforced my love of seed free vascular plants. I feel privedged to have 

spent these years gaining expertise in the field of fern biology and look forward to 

expanding my knowledge in the future. 
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DECIPHERING THE ORIGINS OF APOMICTIC POLYPLOIDS IN 

THE CHEILANTHES YAVAPENSIS COMPLEX (PTERIDACEAE) 

Summary 

 

Deciphering species relationships and hybrid origins in polyploid agamic species 

complexes is notoriously difficult.  In this study of cheilanthoid ferns I demonstrate 

increased resolving power for clarifying the origins of polyploid lineages by integrating 

evidence from a diverse selection of biosystematic methods.  The prevalence of 

polyploidy, hybridization, and apomixis in ferns suggests that these processes play a 

significant role in their evolution and diversification. Using a combination of systematic 

approaches, I investigated the origins of apomictic polyploids belonging to the 

Cheilanthes yavapensis complex.  Spore studies allowed me to assess ploidy levels; plastid 

and nuclear DNA sequencing revealed evolutionary relationships and confirmed the 

putative progenitors (both maternal and paternal) of taxa of hybrid origin; enzyme 

electrophoretic evidence provided information on genome dosage in allopolyploids.  I 

show here that the widespread apomictic triploid, Cheilanthes lindheimeri, is an 

autopolyploid derived from a rare, previously undetected, sexual diploid.  The 

apomictic triploid Cheilanthes wootonii is shown to be an interspecific hybrid between C. 

fendleri and C. lindheimeri, whereas the apomictic tetraploid C. yavapensis is comprised of 

two cryptic and geographically distinct lineages.  I show that earlier morphology-based 

hypotheses of species relationships, while not altogether incorrect, only partially explain 

the complicated evolutionary history of these ferns. 
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Introduction 

 

Hybridization, polyploidy, and apomixis are each common processes in plants 

(Grant 1981). When combined in a single lineage, the resulting evolutionary complexity 

can frustrate even the most dedicated attempts to circumscribe species and understand 

relationships among them. The best-known examples of this are the polyploid agamic 

species complexes of such angiosperm genera as Amelanchier (Campbell and Wright 

1996), Antennaria (Bayer,1987), Boechera (Schranz et al. 2005), Crataegus (Talent and 

Dickinson 2005), Crepis (Whitton et al. 2008), Poa (Soreng 1990), Rubus (Einset,1951), and 

Taraxacum (Verduijn et al. 2004). However, such taxonomic complexity is by no means 

limited to the angiosperms, and examples abound in the ferns as well. Polyploid agamic 

species complexes are especially common in the family Pteridaceae, where members of 

both the pteroid (Walker 1962) and cheilanthoid (Benham 1989; Windham 1993a; 

Windham and Rabe 1993) lineages show extensive reticulate evolution. In this study of 

cheilanthoid ferns I integrate evidence from a diverse selection of biosystematic 

approaches to provide a comprehensive example of the investigative depth required for 

complex speciation studies. 

Here I investigate the evolutionary complexity that has resulted from the 

interplay of hybridization, polyploidy, and apomixis in the Cheilanthes yavapensis Reeves 

ex Windham complex. This complex, which is endemic to the southwestern United 

States and adjacent Mexico, consists of several sexual diploids, as well as apomictic and 

sexual polyploids, all of which hybridize to form various polyploid lineages (Windham 

and Rabe 1993).  In this group, apomictic triploids and tetraploids represent a major 
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source of taxonomic confusion because they are able to hybridize with sexual taxa and 

form higher ploidy hybrids that are reproductively competent.  A prime example of this 

complicated scenario is provided by Cheilanthes yavapensis itself. 

Prior to 1993, C. yavapensis was included within the circumscription of C. wootonii 

Maxon.  The first suggestion that the latter might comprise more than one taxon came 

from Reeves’ (1979) morphological investigation of relationships within Cheilanthes 

subg. Physapteris.  Based on disparities observed in rhizome and costa scale 

morphologies, Reeves (1979) concluded that C. wootonii harbored two distinct taxa: C. 

wootonii s.s. and an entity that he tentatively called “C. yavapensis.”  Because C. wootonii 

shares many features with C. fendleri Hook. and C. lindheimeri Hook., Reeves (1979) 

hypothesized that it arose through hybridization between these species (Fig. 1), which 

are sympatric over much of its range.  Cheilanthes “yavapensis,” on the other hand, 

appeared intermediate between C. covillei Maxon and C. lindheimeri and was 

hypothesized to be a fertile apomictic hybrid between them (Fig. 1).   

 

Figure 1 

 

Proposed relationships of taxa belonging to the C. yavapensis 
complex as described by Reeves.(1979). Arrows point from putative parents 
to hypothesized offspring. 
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Subsequent work on this group provided additional evidence that populations referred 

to C. wootonii s.l. included at least two distinct taxa.  Typical C. wootonii was determined 

to be an apomictic triploid (n = 2n = 90) with spores averaging < 64 µm in diameter 

(Windham 1983). Cheilanthes “yavapensis” proved to be an apomictic tetraploid (n = 2n = 

120) with spores > 64 µm in diameter (Windham 1993b). Results from enzyme 

electrophoretic analyses (Gastony and Windham 1989) supported Reeves’ (1979) 

hypothesis that these taxa had separate origins and distinct genetic makeups. Based on 

these data, Windham (1993b) formally published C. yavapensis Reeves ex Windham. 

Despite evidence that C. wootonii and C. yavapensis are distinct entities, they 

remain difficult to distinguish by superficial observation of morphological traits.  

Although Windham and Rabe (1993) provided a suite of morphological characters 

(pinna pubescence, costal scale ciliation, rhizome scale color and persistence) that 

allowed the identification of most specimens, one of the most useful characters—spore 

size—requires the use of a compound microscope.  Identification becomes particularly 

difficult in the northwestern and southeastern portions of their ranges (Nevada and 

Texas, respectively), where intermediate morphologies occur.  Using a combination of 

systematic approaches—spore studies, plastid and nuclear DNA sequencing, and 

enzyme electrophoresis—I aim to clarify the relationships between C. wootonii and C. 

yavapensis and decipher the events and processes that gave rise to these apomictic 

polyploids. 
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Materials and Methods 

 

Taxon sampling.  A total of twenty-one specimens representing the five 

members of the C. yavapensis complex (C. covillei, C. fendleri, C. lindheimeri, C. wootonii, 

and C. yavapensis) were selected for study (Appendix A).  Based on its position as an 

early diverging member of the clade containing the C. yavapensis complex (i.e., the 

myriopterid cheilanthoids; Windham et al., in review; Grusz et al., unpublished data), C. 

newberryi was chosen as the most appropriate outgroup. 

Spore number per sporangium and spore diameter.  Only fertile (sporulating) 

specimens were included in my analyses.  Intact, mature sporangia were removed from 

each specimen, placed in a drop of glycerol on a slide, and gently ruptured with a needle 

tip. These preparations were used to determine the number of spores per sporangium 

(64 or 32), which, in cheilanthoid ferns, is strongly correlated with reproductive mode 

(sexual or apomictic, respectively; Tryon 1968; Gastony and Windham 1989).  Because 

spore size is a good indicator of ploidy (Barrington and Paris 1986), the diameter of 

twenty-five spores from each individual was measured and then compared to spores 

from chromosome vouchers cited by Windham and Yatskievych (2003) to establish the 

ploidy level of each accession.     

cpDNA sequencing.  For each sampled individual (Appendix A), genomic DNA 

was extracted from silica-dried material using the DNeasy Plant Mini Kit (Qiagen, 

Valencia, California, USA) following the protocol described in Schuettpelz and Pryer 

(2007).  Four plastid loci—rbcL-atpB (~1200 bp), trnG-trnR (~1138 bp), trnPUGG-petG (~540 

bp), and rps4-trnSGGA (~980 bp)—were amplified by PCR using 1X PCR buffer IV 
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containing MgCl2 (ABgene, Epsom, United Kingdom), combined with 200 µM each 

dNTP, 100 µg/ml BSA, 50 U/ml Taq polymerase, 0.5 µM of each locus-specific primer 

pair (Table 1), and 1 µl template DNA for a 25 µl reaction.  PCR amplifications entailed 

an initial denaturation step (94°C for 5 min) followed by 35 denaturation, annealing, and 

elongation cycles (94°C for 1 min, locus-specific annealing temperature for 1 min, and 

72°C for 2 min) and a final elongation step (72°C for 10 min).  Amplicons were 

visualized on a 1% agarose gel.  PCR purification and sequencing followed the protocol 

of Schuettpelz et al. (2008).  All plastid sequences (86 newly obtained) were 

subsequently deposited in GenBank (Appendix A). 

 

Table 1 

DNA Region Primer 5’-3’ Primer Sequence Primer Source 

rbcL-atpB ESRBCL26Ra GCTTTAGTCTCCGTTTGTGGTGACAT Korall et al., 2007 

rbcL-atpB ATPB609R TCRTTDCCTTCRCGTGTACGTTC Pryer et al., 2004 

rbcL-atpB ATPBSPACER703Ra CCAATGATCTGAGTAATSTATCC Korall et al., 2007 

trnG-trnR TRNG1Fa GCGGGTATAGTTTAGTGGTAA Nagalingum et al., 2007 

trnG-trnR TRNGR353F TTGCTTMTAYGACTCGGTG Korall et al., 2007 

trnG-trnR TRNG63R GCGGGAATCGAACCCGCATCA Nagalingum et al., 2007 

trnG-trnR TRNR22Ra CTATCCATTAGACGATGGACG Nagalingum et al., 2007 

trnPUGG-petG trnPUGGa  TGTAGCGCAGCYYGGTAGCG Small et al., 2005 

trnPUGG-petG petG2a CAATAYCGACGKGGYGATCAATT Small et al., 2005 

trnSGGA-rps4 trnSGGAa  TTACCGAGGGTTCGAATCCCTC Shaw et al., 2005 

trnSGGA-rps4 rps4.5’a ATGTCSCGTTAYCGAGGACCT Souza-Chies et al., 1997 

gapCp ESGAPCP8F1a ATYCCAAGYTCAACTGGTGCTGC Schuettpelz et al., 2008 

gapCp ESGAPCP11R1a GTATCCCCAYTCRTTGTCRTACC Schuettpelz et al., 2008 

 

Primers used to amplify and sequence DNA for members of the 
Cheilanthes yavapensis complex. 
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Nuclear DNA sequencing.  Amplification, cloning, and sequencing of the low-

copy nuclear locus, gapCp, for each individual sampled (Appendix A) followed the 

protocol of Schuettpelz et al. (2008).  More than one copy of gapCp is recovered in this 

group of cheilanthoid ferns, one ~900 bp copy and one ~600 bp copy.  The ~900 bp copy 

coincides in length with a copy of nuclear gapC, which also occasionally amplifies using 

the given primers.  Therefore, I chose to sequence only the ~600 bp copy (i.e., the “short 

copy” of gapCp; Schuettpelz et al. 2008).   

In order to account for false sequence variation attributable to PCR error, 

consensus allele sequences were compiled for the “short copy” gapCp locus for each 

individual sampled.  This was done by first combining all sequence clones obtained 

from a given individual into a single alignment in MacClade 4.08 (Maddison and 

Maddison,2005).  The alignments (each corresponding to a given individual) were then 

analyzed separately using a maximum parsimony optimality criterion with the default 

parsimony settings in PAUP* (Swofford 2001).  The resulting trees were used to 

determine unique alleles present in each individual.  Alleles were recognized when one 

or more clones from a given individual were united by one or more shared characters.  

After identifying all sequence clones for a given allele, those sequences were combined 

in a single project in Sequencher 4.8 (Gene Codes Corporation, Ann Arbor, Michigan, 

USA) and edited by hand using a “majority-rule” criterion to form a final consenus allele 

sequence; instances of PCR error and chimeras were easily identified in this way and 

never occurred in more than one sequence read.  Consensus allele sequences (48 newly 

obtained) were used in all subsequent analyses of the nuclear data set and deposited in 

GenBank (Appendix A).   
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Sequence alignment and phylogenetic analyses.  Manual alignments of the 

plastid rbcL-atpB, trnG-trnR, trnPUGG-petG, rps4-trnSGGA, and nuclear gapCp sequences 

were carried out using MacClade and are deposited in TreeBase 

(http://www.treebase.org; Submission P.I.N. 23241).  Unambiguous indels were not 

recoded nor were they excluded from the alignments; ambiguous indels were excluded.  

A total of six data sets were analyzed: the four plastid single-gene data sets, a combined 

plastid four-gene data set, and the nuclear single-gene data set.  The six data sets were 

analyzed using both a Bayesian Markov chain Monte Carlo (B/MCMC) approach 

employing the GTR + I + Γ model of sequence evolution, as implemented in MrBayes 

3.1.1 (Huelsenbeck and Ronquist 2001; Ronquist and Huelsenbeck 2003), as well as a 

likelihood approach as implemented in GARLI version 0.951 (Zwickl 2006).  Conflict 

among the resulting phylogenies was assessed according to a 0.95 posterior probability 

(PP) measure for B/MCMC and a 70% maximum likelihood bootstrap (BS) criterion 

(Mason-Gamer and Kellogg 1996).  Because a comparison of the phylogenies that 

resulted from each of the four individual plastid data set analyses revealed no 

incongruence supported across methods (e.g., ML vs. B/MCMC) or across data sets 

(e.g., rbcL-atpB  vs. trnG-trnR), the data from the four plastid partitions were combined 

into a single data set. 

All B/MCMC analyses comprised four independent runs, each with four chains 

(one cold and three heated).  Default (i.e., flat) priors were used, with the exception of 

the rate prior that was set to allow rates of evolution to vary among loci (ratepr = 

variable) in the combined analysis.  Chains were run for 10 million generations and trees 

were sampled from the cold chain every 1000 generations.  To identify when analyses 
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had reached stationarity, the standard deviation of the split frequencies among the 

independent runs (as calculated by MrBayes) was examined and the output parameter 

estimates were plotted using Tracer 1.2.1 (Rambaut and Drummond 2005).  Based on 

these convergence diagnostics, the first 2.5 million generations were excluded from each 

analysis before obtaining a consensus phylogeny and clade posterior probabilities with 

the “sumt” command (contype = allcompat).  In GARLI, a most likely topology was 

identified for each of the six data sets and branch support was assessed using a 

maximum likelihood BS approach.  Maximum likelihood BS analyses (500 replicates) 

employed the default model of sequence evolution and parameter values estimated by 

GARLI (Zwickl 2006).  

Enzyme electrophoresis.  Fresh leaves of each ingroup taxon were obtained from 

populations included in the DNA and spore studies and analyzed for electrophoretically 

detectable enzyme markers.  Samples were extracted by crushing a small section (ca. 50 

mm2) of fresh leaf tissue in ten drops of the phosphate grinding buffer-PVP solution of 

Soltis et al. (1983).  This extract was absorbed into paper wicks that were then inserted 

into 12.5% starch gels for electrophoresis. Twelve enzyme loci (list available from 

authors) were surveyed using standard buffers and stains (Soltis et al. 1983).  Following 

this initial survey, my work focused exclusively on the cytosolic locus of 

triosephosphate isomerase (TPI-2), which was resolved on gel/electrode buffer system 6 

of Soltis et al. (1983). Stained gels were photographed using a red filter and Kodak 

Technical Pan 2415 high contrast film. 
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Results 

 

Spore number per sporangium and spore diameter.  The samples of C. fendleri 

and C. covillei included in my analyses all had 64 spores per sporangium and spore 

diameters < 50 µm, which is characteristic of sexual diploids. All samples of C. wootonii 

and C. yavapensis had 32 spores per sporangium, in agreement with previous work 

(Windham and Yatskievych 2003), demonstrating that all were apomictic. Average spore 

diameters of C. wootonii ranged from 59-63 µm (characteristic of apomictic triploids), 

whereas those of C. yavapensis ranged from 64-68 µm (apomictic tetraploid). Unlike the 

other ingroup taxa, C. lindheimeri exhibited variation in both spore number per 

sporangium and average spore diameter. The majority of specimens had 32 spores per 

sporangium and spore diameters > 59 µm, consistent with earlier studies (Reeves,1979; 

Windham and Yatskievych 2003) that identified C. lindheimeri as an apomictic triploid.  

However, three samples yielded 64 spores per sporangium and average spore 

measurements in the 47-50 µm range.  These represent a rare, previously undetected, 

sexual diploid cytotype of C. lindheimeri (see Schuettpelz et al. 2008). 

cpDNA  phylogeny.  Trees resulting from maximum likelihood and Bayesian 

analyses of the combined plastid four-gene data set had identical topologies.  Maximum 

likelihood analysis resulted in a single most likely tree (ln L = -6280.9384; Fig. 2).  Three 

well-supported clades were resolved, corresponding to the C. covillei, C. fendleri, and C 

lindheimeri genomes. The C. covillei clade included only accessions of diploid C. covillei 

(PP = 1.0, BS = 100%), whereas the C. fendleri clade (PP = 1.0, BS = 100%) included all 

samples of diploid C. fendleri plus all accessions of the apomictic triploid C. wootonii.  
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Figure 2 

C. newberryi 1 

C. yavapensis 3

C. yavapensis 4

C. lindheimeri 1

C. yavapensis 1

C. yavapensis 2

C. lindheimeri 2

C. lindheimeri 3

C. lindheimeri 4

C. lindheimeri 5

C. lindheimeri 6

C. covillei 1

C. covillei 5

C. covillei 4

C. covillei 2

C. covillei 3

C. wootonii 3

C. fendleri 2

C. wootonii 2

C. fendleri 3

C. fendleri 1

C. wootonii 1

0.001 substitutions/site

 

C. lindheimeri

C. covillei

C. fendleri

+ / +

+ / +

+ / +

0.62 / 88

0.99 / 70

Plastid phylogeny for members of the Cheilanthes yavapensis complex 
based on combined analysis of rbcL-atpB, trnG-trnR, trnPUGG-petG, and rps4-
trnSGGA. The best maximum likelihood topology is shown (ln L = -6280.9384); 
accessions of the apomictic allopolyploids C. wootonii and C. yavapensis are 
shown in bold.  Following each taxon name is a unique identification number 
corresponding to a particular individual (Appendix).  Circles, triangles, and 
squares depict ploidy level (diploid, triploid, and tetraploid, respectively).  
Numbers below branches correspond to posterior probability and maximum 
likelihood bootstrap support (PP / BS), respectively.  Thickened branches 
indicate posterior probability ≥ 0.95 and maximum likelihood bootstrap support 
≥ 70%.  Plus signs highlight branches that have PP = 1.0 and/or BS = 100%, 
respectively. 
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The C. lindheimeri clade (PP = 1.0, BS = 100%) included all samples of that species 

(regardless of ploidy level), plus all accessions of C. yavapensis. Sexual diploid and 

apomictic triploid samples of C. lindheimeri have identical plastid sequences, suggesting 

that genetic divergence between the cytotypes is minimal.  

Nuclear phylogeny.  Trees resulting from maximum likelihood and Bayesian 

analyses of the ~600 bp “short copy” gapCp data set had identical topologies.  Maximum 

likelihood analysis resulted in a single most likely tree (ln L =  -12712.6944; Fig. 3) with 

three strongly supported clades corresponding to C. covillei (PP = 1.0, BS=100%), C. 

fendleri (PP = 1.0, BS = 89%), and C. lindheimeri (PP = 1.0, BS = 99%).  All consensus allele 

sequences obtained from the apomictic triploid samples of C. lindheimeri (41 clones) 

formed a well-supported clade with the diploid accessions (Fig. 3), supporting an 

autotriploid origin for the apomictic cytotype (see Schuettpelz et al. 2008). By contrast, 

both C. wootonii and C. yavapensis showed strong evidence of allopolyploid origins. The 

three accessions of triploid C. wootonii each yielded sequences that clustered with C. 

fendleri and C. lindheimeri. The situation encountered in tetraploid C. yavapensis was even 

more complex; all four accessions contained sequences derived from C. covillei, C. 

fendleri, and C. lindheimeri (Fig. 3).  

Enzyme electrophoresis.  Triosephosphate isomerase (TPI) was the only enzyme 

surveyed that provided genome specific markers.  Figure 4 summarizes my findings 

with respect to this enzyme.  In all plants sampled, TPI was expressed as two loci (TPI-1 

and TPI-2) active in the plastid and cytosol, respectively. As in most ferns (Gastony 

1988), the plastid locus (TPI-1) was represented by a highly conserved (i.e., invariant 

across this sample), three-banded pattern in which the fastest migrating band was  
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gapCp. The best maximum likelihood topology is shown (ln L = -12712.6944).  
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distinctly fainter than the other two. This triplet generally migrated farther into the gel 

than products of the cytosolic locus and is most apparent in lanes 1 and 2 of Figure 4. In 

contrast to the plastid locus, the cytosolic form of the enzyme (TPI-2) was variable across 

my study group, with each species exhibiting a distinctive band pattern.  

Samples of C. covillei appear in lanes 1 and 2, which show a single band (labeled 

C-C homodimer) at the cytosolic locus. Though not represented by diploids on this gel, 

the marker bands for C. fendleri (F-F homodimer) and C. lindheimeri (L-L homodimer) are 

apparent in the samples of C. wootonii (lanes 5 and 6). The F-F homodimer is the fastest 

migrating band at the cytosolic locus and overlaps the slowest band of the plastid locus; 

the L-L homodimer is the slowest migrating band. Because TPI is a dimeric enzyme, the 

presence of both F and L in the cytosol results in a band of intermediate mobility (F-L 

heterodimer; see lanes 5 and 6). This F-L heterodimer migrates the same distance as the 

C-C homodimer (see lanes 1 and 2).  In individuals where both the F-L heterodimer and 

the C-C homodimer are present (see lanes 3, 4, and 7), these bands are indistinguishable, 

yet detectable due to the additional presence of F-C and C-L heterodimers in the cytosol. 

The relative intensity of the three cytosolic bands in lanes 5 and 6 is useful for 

determining the genomic constitution of C. wootonii. The F-F homodimer and F-L 

heterodimer are approximately equal in intensity and significantly darker than the L-L 

homodimer. This pattern is congruent with the 4:4:1 ratio expected in a triploid that 

contains two genomes of C. fendleri and one of C. lindheimeri. 

 Cheilanthes yavapensis shows all bands that would be expected in a hybrid 

containing the C, F, and L genomes (Fig. 4). The F-F and L-L homodimers are apparent,  
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Figure 4 

as are the F-C and C-L heterodimers. The F-L heterodimer and the C-C homodimer 

comigrate, but the unmistakable F-C and C-L heterodimers confirm that both are 

present. Despite the superficial similarity of the three separate C. yavapensis accessions, 

there are subtle differences between the samples on the left (lanes 3 and 4) and the 

sample on the right (lane 7). The samples in lanes 3 and 4 show enhanced expression of 

the L-L homodimer, indicating that these individuals may represent CFLL hybrids.  In 

CC CC CFLL CFLL FFL FFL CCFL
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TPI enzyme gel for Cheilanthes yavapensis and relatives.  Lanes 1 and 2 
represent diploid C. covillei, lanes 3 and 4 are tetraploid C. yavapensis (CFLL form), 
lanes 5 and 6 correspond to triploid C. wootonii (used here also as a proxy for C. 
fendleri and C. lindheimeri), and lane 7 is tetraploid C. yavapensis (CCFL form).  Note 
the difference in genomic dosage between CFLL and CCFL (especially notable at 
the L-L homodimer) as well as the partial overlap of plastid and cytosolic loci.  
Vertical dotted line between lanes 4 and 5 indicates an excised portion of the gel 
not relevant to the conclusions of this study2. 
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lane 7, all bands that include C are more intense, suggesting that this plant (from the 

type locality of C. yavapensis) is a CCFL hybrid. 

 

Discussion 

 

Deciphering species relationships and hybrid origins in polyploid agamic species 

complexes is difficult due to the cryptic nature of the morphological characters that 

distinguish species.  In this study of cheilanthoid ferns I combine spore studies, plastid 

and nuclear DNA sequencing, and enzyme electrophoresis to resolve the contentious 

origin of the apomictic tetraploid hybrid C. yavapensis and to determine its relationship 

to C. wootonii. 

 Identifying maternal parents.  In all ferns analyzed to date, the chloroplast 

genome has been shown to be maternally inherited (e.g., Gastony and Yatskievych 1992; 

Vogel et al. 1998; Guillon and Raquin 2000).  Thus, it is possible to use plastid 

phylogenies to identify the maternal parents of hybrid ferns.  In my plastid phylogeny 

(Fig. 2), all sampled accessions of the apomictic triploid C. wootonii have plastid 

sequences that are essentially identical to those of sexual diploid C. fendleri, suggesting 

that this species is the maternal progenitor of C. wootonii.  Conversely, plastid sequences 

from all sampled accessions of the apomictic tetraploid C. yavapensis indicate that its 

maternal parent is C. lindheimeri (Fig. 2).  These results provide unequivocal evidence 

that C. wootonii and C. yavapensis are distinct entities. 

Other genomes present in the hybrids.  The phylogeny resulting from my 

analysis of nuclear gapCp allows for the identification of additional genomes (other than 



 

21 

21
 

the maternally-inherited chloroplast) present in these hybrids. All cloned sequences 

from accessions of the apomictic triploid C. wootonii group with either C. lindheimeri or C. 

fendleri, supporting Reeves’ (1979) hypothesis regarding the hybrid origin of this taxon 

(Fig. 1). In contrast, the four accessions C. yavapensis contained sequences derived from 

C. covillei, C. fendleri, and C. lindheimeri (Fig. 3). These data indicate that C. yavapensis is a 

trigenomic allotetraploid, contradicting earlier hypotheses (Reeves 1979; Gastony and 

Windham 1989; Windham 1993b) that considered tetraploid C. yavapensis a hybrid 

between sexual diploid C. covillei and apomictic triploid C. lindheimeri (Fig. 1).  

Within each of the three ingroup lineages identified by analysis of nuclear DNA 

sequences, subclades that appear to reflect allelic variation at the gapCp locus are evident 

(Fig. 3).  The phylogenetic distribution of these alleles may provide additional insights 

into the origins of C. wootonii and C. yavapensis.  In the case of apomictic triploid C. 

wootonii, each of the three accessions sampled includes a single allele derived from C. 

lindheimeri.  Samples of the other parent, C. fendleri, exhibit two gapCp alleles, both of 

which are found in every sampled accession of C. wootonii (Fig. 3).  This suggests that C. 

wootonii contains two genomes from C. fendleri and one from C. lindheimeri, which is 

consistent with the dosage (FFL) seen at the TPI-2 enzyme locus (Fig. 4).  In addition, the 

presence of a distinctive C. lindheimeri allele in one accession of C. wootonii suggests that 

the latter species may have arisen through multiple, independent hybridization events. 

The evidence for multiple origins is even more compelling in apomictic 

tetraploid C. yavapensis (Fig. 4). This species is represented in my analyses by four 

separate accessions that comprise two genetically distinct forms with non-overlapping 

geographic ranges. One form includes ‘C. yavapensis 4’ (from the type locality of C. 
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yavapensis) and ‘C. yavapensis 3,’ which were collected near the western and northern 

edges of the species’ distribution, respectively.  The other form comprises ‘C. yavapensis 

2’ and ‘C. yavapensis 1,’ collected near the center of the range in central and southeastern 

Arizona.  Within these two forms, there is little or no variation in the gapCp sequences 

representing the three constituent genomes. However, a close comparison of the two 

forms reveals that they have incorporated different alleles from each parental species 

(Fig. 4), supporting multiple origins for C. yavapensis.  These putative independent 

origins correspond exactly to the genetic variants encountered in the enzyme analyses 

discussed below. 

Determining genome dosage.  Nuclear DNA evidence indicates that these 

accessions of C. wootonii contain two different genomes, whereas those of C. yavapensis 

contain three (Fig. 3).  Because these accessions are triploid and tetraploid respectively, it 

can be deduced that, in each case, one of the constituent genomes is present as two 

copies. To determine genome dosage, the relative intensity of bands was examined at 

the TPI-2 enzyme locus (Fig. 4; Danzmann and Bogart 1982).  Turning first to triploid C. 

wootonii (Fig. 4; lanes 5 and 6), the enzyme data clearly show that it is the C. fendleri 

genome that is duplicated (note the relative intensities of the F-F homodimer and the F-L 

heterodimer compared to the L-L homodimer). Therefore, I conclude that the genome 

dosage of C. wootonii is two C. fendleri to one C. lindheimeri (symbolized as FFL).  The two 

distinct origins of C. yavapensis apparent in the nuclear DNA phylogeny (Fig. 3) find 

additional support in the enzyme analyses, which indicate that this “species” 

encompasses two geographically correlated entities characterized by different genome 

dosages.  These two “forms” of C. yavapensis are designated CFLL and CCFL in the TPI 
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gel photo (Fig. 4).  The CFLL combination is represented by lanes 3 and 4, while CCFL is 

seen in lane 7.  These two forms have the same number of bands, but the marker alleles 

are present in different dosages.  This is most apparent in the L-L homodimer produced 

by the C. lindheimeri genome (the band closest to the lower edge of Fig. 4).  In CFLL 

(lanes 3 and 4), the L-L homodimer is the darkest/thickest band; in CCFL this band is 

less intense (about the same intensity as in the FFL samples in lanes 5 and 6), reflecting a 

lower dosage of the C. lindheimeri genome.   

Origins of the apomictic polyploids.  Based on the nuclear gapCp data, 

Schuettpelz et al. (2008) demonstrated that the apomictic triploids C. lindheimeri and C. 

wootonii had autopolyploid and allopolyploid origins, respectively. Although these 

authors were able to identify the genomes (C. fendleri and C. lindheimeri) present in C. 

wootonii, their data did not permit an examination of its possible origins. My analyses, 

summarized as a phyloreticulogram (Fig. 5), reveal two additional and important details 

about C. wootonii; namely, genome dosage (FFL) and the maternal parent (C. fendleri).  

Based on these data, I can offer two possible scenarios for the origin of C. wootonii.  The 

simplest explanation involves direct hybridization between a normal (n) male gamete 

derived from diploid C. lindheimeri and an unreduced (2n) female gamete from diploid 

C. fendleri.  A second, more complex, scenario involves the formation of a sterile 

homoploid hybrid between C. fendleri and C. lindheimeri, followed by the production of 

an unreduced gamete that backcrossed with a normal gamete of C. fendleri.  My ongoing 

studies of other likely hybrids involving these species, coupled with analyses of 

geographically correlated allelic variation in C. fendleri, may eventually reveal both how 

and where C. wootonii was formed. 
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   Contrary to earlier morphology-based hypotheses (Reeves, 1979; Windham, 

1993b), my data indicate that apomictic tetraploid C. yavapensis did not arise through 

hybridization between sexual diploid C. covillei and apomictic triploid C. lindheimeri  

(Fig.1). The nuclear gapCp locus reveals that every sampled accession of C. yavapensis 

contains a genome derived from C. fendleri, in addition to the expected contributions 

from C. covillei and C. lindheimeri (Fig. 3).  Additionally, the enzyme and gapCp data 

indicate that populations referred to C. yavapensis are polyphyletic; they are the result of 

independent hybridization events that have given rise to two entities (CCFL and CFLL) 

with different genomic constitutions and distinct geographic ranges.  

Despite the unexpected complexity of C. yavapensis, it is possible to offer some 

robust hypotheses regarding the origins of this taxon. I have demonstrated that two 

distinct apomictic tetraploids are referred to C. yavapensis, each representing a unique 

genomic combination (UGC).  Because each apomictic tetraploid cheilanthoid fern 

analyzed to date has been shown to be a hybrid between a sexual diploid and an 

apomictic triploid (e.g., see Gastony and Yatskievych 1992), this is a good working 

hypothesis for the origin of the two UGCs referred to C. yavapensis.  As in most 

organisms, hybridization between sexual and apomictic ferns is highly constrained with 

regard to directionality. Apomictic ferns reproduce by generating a sporophyte directly 

from gametophytic tissue without fertilization.  Though they occasionally give rise to 

functional antheridia, they do not produce functional archegonia (Gastony and 

Yatskievych 1992, and references therein).  Therefore, when sexual fern species 

hybridize with apomicts, the sexual taxon must be the maternal parent.  
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The plastid phylogeny (Fig. 2) provides critical insight into the origins of the two 

UGCs included within C. yavapensis.  Most importantly, it identifies C. lindheimeri as the 

maternal (i.e., sexual diploid) parent of all sampled accessions.  By “subtracting” this 

maternal contribution (one L genome) from the two C. yavapensis UGCs identified above 

(CCFL and CFLL), it is possible to predict the genomic makeup of the paternal triploids. 

Based on this simple exercise, I hypothesize that the apomictic triploid (paternal) parent 

of the CCFL form of C. yavapensis had the genomic constitution CCF, whereas the sperm 

donor for the CFLL form was a CFL triploid (Fig. 5). Although neither of these triploids 

has been reported by previous authors, ongoing studies (Grusz et al., unpubl.) indicate 

that both exist in nature. 

A full understanding of the origins of C. yavapensis will require tracking the 

various genomic components back to the sexual diploids that initiated the hybridization 

events.  A major thrust of this effort will be to explain the origins of the two predicted 

triploids CCF and CFL (Fig. 5).  There are two possible scenarios for the origin of CCF 

(analogous to the proposed origin of C. wootonii discussed earlier) and three distinct 

pathways that could yield the CFL triploid. The most likely explanation (requiring the 

fewest steps and no new taxa) is indicated by dashed lines in Figure 5. In this scenario, 

the sexual diploids C. covillei and C. fendleri hybridize to form a sterile homoploid 

intermediate (CF), the existence of which has been confirmed (Windham and Rabe 1993). 

Through the production of unreduced CF gametes, this homoploid hybrid could  

backcross to C. covillei (yielding CCF) and hybridize with sexual diploid C. lindheimeri 

(yielding CFL). Studies are ongoing to determine whether this is an accurate portrayal of 

the earliest stages of evolution in the C. yavapensis complex.  
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Figure 5 

C. yavapensis

C. covillei C. lindheimeriC. fendleri

C. wootonii

LLL

CC

CFLL

FFL

FF LL

CCFL

CFLCCF

Grusz et al. Figure 5

CF

Phyloreticulogram summarizing hypothesized origins of apomictic 
polyploids in the C. yavapensis complex.  Diploids, triploids, and tetraploids are 
represented by circles, triangles, and squares, respectively.  All triploid taxa exhibit 
apomictic reproduction, all diploids are sexually reproducing, and the two 
tetraploid UGCs of C. yavapensis (CCFL and CFLL) are apomictic.  Solid lines 
terminating in arrows point from the paternal parent to its offspring.  Solid lines 
terminating in crosses point from the maternal parent to its offspring.  Dashed lines 
represent hypothesized (or as yet unresolved) relationships, for which evidence of 
maternal and paternal parentage is yet to be determined.  Lines originating in stars 
represent unreduced gametes.   
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Despite the molecular and morphological features that seem to unite C. 

yavapensis, this study provides unmistakable evidence of independent hybridization 

events that gave rise to two cryptic taxa (CCFL and CFLL).  Cheilanthes wootonii was not 

involved in the origin of either form of C. yavapensis; thus, it should continue to be 

treated as a separate species, despite the subtlety of morphological characters that 

distinguish it from C. yavapensis.  As currently defined, C. yavapensis encompasses two 

genetically distinct allotetraploids that share one parent (C. lindheimeri) but not the other. 

This situation is not unusual among plants and would typically be resolved by 

recognizing two species.  In the case of C. yavapensis, however, preliminary observations 

of the two UGCs suggest that they differ only slightly in morphology.  For practical 

purposes of identification, they may prove impossible to differentiate.  They are, 

however, critical pieces of the puzzle when it comes to understanding the evolution of 

cheilanthoid ferns in the North American Southwest.   
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TOWARD A MONOPHYLETIC CHEILANTHES: THE RESURRECTION 

AND RECIRCUMSCRIPTION OF MYRIOPTERIS (PTERIDACEAE) 

Summary 

 

The fern genus Cheilanthes (Pteridaceae) has perplexed taxonomists for more than 

two centuries. Complex patterns of evolution involving rampant morphological 

convergence, polyploidy, hybridization, and apomixis have made the taxonomy of this 

group especially difficult. Fortunately, recent phylogenetic analyses have helped to 

clarify relationships among cheilanthoid taxa. Based on these findings, I formalized an 

updated taxonomy for one monophyletic clade comprising 47 primarily North and 

Central American taxa usually included in Cheilanthes. Because the type species of 

Cheilanthes (C. micropteris) is only distantly related to this clade, Michael Windham and I 

resurrected the genus Myriopteris to accommodate these taxa, and here present the 

revised circumscription for the group, including 36 new combinations.  

 

Introduction 

 

A “practical and natural” generic classification of cheilanthoid ferns 

(Pteridaceae) has eluded taxonomists for more than 200 years and was viewed by Tryon 

and Tryon (1982) as one of the most contentious issues in fern systematics. Central to the 

problem is the circumscription of the large genus Cheilanthes, which all molecular 

studies with sufficient sampling indicate is polyphyletic (see Gastony and Rollo 1998; 

Kirkpatrick 2007; Prado et al. 2007; Schuettpelz et al. 2007; Zhang et al. 2007; Rothfels et 
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al. 2008; Eiserhardt et al. 2011). Since the initial description of Cheilanthes (Swartz 1806) 

encompassing 16 species, various authors have moved hundreds of taxa into (e.g., 

Domin 1913, Mickel 1979) and out of (e.g., Fée 1852, Smith 1875, Ching 1941) the genus. 

Of the ca. 500 validly published species names in Cheilanthes, some 60% have, at some 

point, resided in other genera. The lack of definitive taxonomic characters in this group 

often is attributed to widespread convergent evolution in the drought-prone habitats 

occupied by these ferns (Tryon and Tryon 1973, 1982), and the problem is likely 

insoluble based on morphology alone. However, the same genetic evidence that 

highlights shortfalls in the current classification provides a key to solving this puzzle. As 

DNA sequence data proliferate and morphological features are reexamined in light of 

molecular phylogenies, it eventually becomes possible to recognize monophyletic 

assemblages of species that can be circumscribed as genera. We now have reached this 

point with certain groups of cheilanthoid ferns, at least in terms of removing taxa and 

clades that cannot reasonably be included within Cheilanthes (Link-Perez et al. 2011; Li et 

al. 2012). 

Here, we focus on the primarily New World lineage previously referred to as the 

“American Cheilanthes” (Kirkpatrick 2007), myriopteroid (Rothfels et al. 2008), or 

myriopterid (Windham et al. 2009, Eiserhardt et al. 2011) ferns. Limited sampling in each 

of those analyses indicated that these ferns might represent a well-supported, 

monophyletic group, an assumption fully supported by the more complete (85%) taxon 

sampling of Grusz et al. (in review). In addition to suggesting the monophyly of the 

myriopterid lineage, the analyses of Rothfels et al. (2008) and Eiserhardt et al. (2011) 

conclusively demonstrated that this clade was quite distantly related to the type 
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Figure 6 

species of Cheilanthes, C. micropteris (results summarized in Fig. 6). This improved 

understanding of phylogenetic relationships among cheilanthoid ferns necessitates a 

taxonomic revision that can be achieved by one of two options: 1) all taxa derived from 

the most recent common ancestor of C. micropteris and the myriopterid ferns could be 

assigned to a single genus (which would not be called Cheilanthes because of the priority 

Summary phylogeny for cheilanthoid ferns. Indicating the placement of 
Cheilanthes micropteris (the type species for Cheilanthes) within the hemionitid clade 
which is only distantly related to the myriopterid clade. The six major clades of 
cheilanthoid ferns are shown with tips roughly proportional to clade size. The most 
recent common ancestor (MRCA) of C. micropteris and the myriopterid clade is 
indicated. Modified with permission from Windham et al. (2009). 
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of Hemionitis), or 2) myriopterid ferns could be transferred to a different genus, 

reflecting their phylogenetic distinction from Cheilanthes s.s. The first option would 

require 400+ new combinations in Hemionitis (or the conservation of Cheilanthes against 

it followed by more than 100 new combinations in that genus). It would also subsume a 

number of cohesive, well-characterized genera that are clearly distinct based on 

morphological, molecular, and cytological grounds, including Adiantopsis (Link-Pérez et 

al. 2011), Argyrochosma (Windham 1987, Sigel et al. 2011), Astrolepis (Beck et al. 2010), 

Doryopteris (Yesilyurt 2004), Gaga (Li et al. 2012), and Notholaena (Rothfels et al. 2008). 

This approach would maximize the number of nomenclatural changes while 

simultaneously obscuring well-documented phylogenetic relationships, resulting in the 

inclusion of all but six cheilanthoid species in one genus. Because we consider this 

option untenable, we have, instead, chosen to remove the myriopterid ferns from 

Cheilanthes.  

When any species or clade is removed from Cheilanthes, the first issue that must 

be addressed involves their relationship to Allosorus pusillus (Willd. ex Bernh) Bernh. [= 

Cheilanthes pteridioides (Reich.) C. Chr.]. This species was designated the lectotype of 

Allosorus Bernh. by Pichi-Sermolli (1953), a choice subsequently validated by the ICBN 

when Cheilanthes was conserved over Allosorus (Appendix II of the Montreal Code, 

Stafleu et al. 1961). The only phylogenetic study published to date that includes the type 

species of both Allosorus and Cheilanthes is that of Eiserhardt et al. (2011). In that analysis, 

it is unclear whether the divergence between C. maderensis (= C. pteridioides; see Nardi 

and Reichstein 1985, Rothfels et al. 2012) and C. micropteris is sufficient to justify the 

recognition of two genera. The two taxa appear in distinct, well-supported clades (clade 
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A vs. clade C in Fig. 2B of Eiserhardt et al. 2011), but deeper relationships are poorly 

resolved and both clearly belong to the rapidly diversifying hemionitid lineage (clade 

H). The unequivocal assignment of Allosorus to the hemionitids by Eiserhardt et al. 

(2011) does, however, prevent the application of this generic name to the myriopterid 

clade. Any attempt to expand Allosorus to include myriopterids would encompass both 

Cheilanthes (conserved over Allosorus) and Hemionitis (which has priority over both). 

One potentially viable option for generic placement of the myriopterid clade 

would be to include it within a revised circumscription of Pellaea Link. All recent 

phylogenetic studies with adequate sampling of the two groups (e.g., Kirkpatrick 2007, 

Rothfels et al. 2008, Eiserhardt et al. 2011) strongly support the position of myriopterids 

as the sister group of the pellaeid clade, which includes Pellaea atropurpurea, the 

lectotype of the oldest generic name applicable to that clade. We are not in favor of 

expanding the definition of Pellaea to encompass the myriopterids for a variety of 

reasons. First, the two are quite distinct, both in terms of phylogenetic divergence and 

morphology. The myriopterids have significantly smaller ultimate segments, pubescent 

and/or scaly (vs. mostly glabrous) leaf blades, and sporangia that are confined to vein 

tips (vs. distributed along the veins near the segment margins). Because of these 

differences, the two groups generally have not been considered closely related, and most 

myriopterids would require new combinations in Pellaea. Adding to this nomenclatural 

upheaval is the fact that other well-defined genera, including Argyrochosma (Sigel et al. 

2011) and Astrolepis (Beck et al. 2010), would be subsumed within such a circumscription 

of Pellaea, which would require additional new combinations and serve only to further 

undermine the distinctions among the major genera of cheilanthoid ferns. 
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If the expansion of Pellaea is ruled out, there remain three other generic names 

typified by species belonging to the myriopterid clade: 1) Myriopteris, described by Fée 

(1852) and typified by M. marsupianthes Fée; 2) Cheilosoria, named by Trevisan (1877) and 

lectotypified by Copeland (1947) based on C. allosuroides (Mett.) Trev.; and 3) 

Pomataphytum, published by Jones (1930) and typified by P. pocillatum M. E. Jones (= M. 

lendigera). Phylogenetic reconstructions (Grusz et al. in review), confirm that the type 

species of Myriopteris and Pomataphytum fall within a single, well-supported clade. In 

fact, the diploid species M. marsupianthes is thought to be one of the parents of sexual 

tetraploid M. lendigera (see Mickel and Smith 2004). Thus, the generic name 

Pomataphytum is appropriately considered a synonym of the earlier described Myriopteris 

and can be eliminated as a potential name for the myriopterid clade. Copeland’s (1947) 

lectotype of Cheilosoria belongs to the well-supported and morphologically distinctive 

alabamensis clade that diverges earlier in the myriopterid phylogeny (Grusz et al. in 

review), and the name Cheilosoria could be used for this particular group if the 

myriopterids were subdivided into two or more genera. However, Myriopteris predates 

Cheilosoria by 25 years and, when these species are assigned to a single genus (our 

preferred approach), Myriopteris is the correct generic name for the inclusive 

myriopterid clade. 
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Historical use of the name Myriopteris 

 

The original concept of Myriopteris (Fée 1852) included 11 species, these split 

between two sections (Eumyriopteris and Cheilanthastrum) distinguished by the presence 

or absence of a well-developed, inframarginal false indusium. The Latin and French 

descriptions of the genus are only partly overlapping; shared elements include the 

highly divided fronds, the small, orbicular ultimate segments with recurved margins 

(“formant un bourrelet très-contracté”), and a tendency to be covered by hairs and/or 

scales. Myriopteris was accepted and significantly expanded by J. Smith (1875: 280) who 

stated “the genus consists of about 20 species, distinguished from Notholaena and 

Cheilanthes by their small, concave, lenticular segments.” The segregation of Myriopteris 

from Cheilanthes was, however, rejected by most subsequent authors (e.g., Christensen 

1906, Copeland 1947, Lellinger 1965, Tryon and Tryon 1982, Kramer et al. 1990), with 

two notable exceptions. Pichi-Sermolli (1977) advocated a narrowed circumscription of 

the genus, including only the two species with prominent false indusia, viz., M. 

marsupianthes and M. lendigera. As shown by Grusz et al. (in review), this definition of 

Myriopteris is phylogenetically indefensible because it excludes M. mexicana, the 

apparent maternal progenitor of allotetraploid M. lendigera. About the same time Pichi-

Sermolli was narrowing the definition of Myriopteris, Löve and Löve (1977) expanded it 

slightly by proposing a new combination for the species known as Cheilanthes covillei 

Maxon. This was done without explanation, though almost certainly reflects the fact that 

this species has the small, bead-like ultimate segments emphasized in earlier 

circumscriptions of the genus.  
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Although this “microphyllous” leaf morphology is common within Myriopteris, it 

does not characterize the entire clade (Grusz et al. in review) and has evolved 

independently in other cheilanthoid lineages. Thus, the possession of small, bead-like 

ultimate segments does not constitute a synapomorphy for the genus as defined herein. 

In fact, our list of excluded names (see Taxonomic Treatment) includes seven taxa with 

bead-like segments previously ascribed to Myriopteris but more closely related to 

Cheilanthes s.s. (Windham et al. unpublished). Because all morphological characters used 

by previous authors to define Myriopteris are subject to strong, positive selection in xeric-

adapted cheilanthoid lineages (Hevly 1963), it is not surprising that none of them 

uniquely define the genus. The totality of evidence, however, indicates that the 

myriopterids represent a deeply divergent clade that cannot reasonably be combined 

with any other in a single genus. Therefore, we propose to resurrect Myriopteris and 

recircumscribe it to encompass the entirety of this well supported cheilanthoid lineage.  

 

Distinguishing Myriopteris Fée emend. Grusz & Windham from Cheilanthes s.s. 

 

Ideally, morphological and/or cytological synapomorphies would substantiate 

phylogenetic relationships inferred from DNA sequence data. However, easily observed 

synapomorphies distinguishing the various clades of cheilanthoid ferns are few, and 

homoplastic characters abound. To paraphrase Sir William Hooker (1852: 75), “Vain is 

the attempt to form a definite character which shall decide the limits of [Cheilanthes],” a 

statement that applies equally well to Myriopteris. Highly divided (decompound) leaf 

blades with small ultimate segments are scattered across the cheilanthoid tree and, 
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indeed, are characteristic of ferns in general, and an indument of hairs and/or scales is 

one common strategy among plants used to reduce water loss in xeric habitats (Hevly 

1963). Other characters useful for species-level identification within myriopterids, such 

as vernation, are, without exception, shared with other distantly related cheilanthoid 

ferns.  

Molecular analyses spanning the diversity of cheilanthoid species (Windham et 

al. unpublished) illuminate one particularly useful character distinguishing Myriopteris, 

as defined herein, from Cheilanthes s.s. The taxa most closely related to the type species 

of the latter [C. micropteris plus all Australian Cheilanthes and a group of South American 

species including the C. scariosa (Sw.) C. Presl complex of Tryon and Tryon (1982), C. 

obducta Mett. ex Kuhn, and C. fractifera R.M. Tryon] have 32 small spores per 

sporangium when sexual, and 16 large spores per sporangium when apomictic. This 

intriguing cytological synapomorphy results from the elimination of a premeiotic 

mitosis in the cell lineages generating the sporocytes (Windham et al. unpublished). 

Aside from a few species of the distantly related genus Notholaena, all other cheilanthoid 

ferns so far examined (including every Myriopteris species; Grusz et al. in review) 

produce 64 small spores per sporangium in sexual individuals and 32 large spores per 

sporangium in apomicts. This character appears to provide an absolute separation 

between Myriopteris and Cheilanthes s.s., and is easily observed using a dissecting 

microscope. In combination with differences in spore ornamentation (see Tryon and 

Lugardon 1991), leaf venation (Pryer et al. 2010), and geographic distribution, this 

feature provides a clear distinction between the two genera. For diagnostic purposes, 

then, Myriopteris Fée emend. Grusz & Windham differs from Cheilanthes s.s. (i.e., C. 
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micropteris and its close relatives) in its production of 64 small or 32 large (vs. 32 small or 

16 large) spores per sporangium; mostly cristate or rugulose (vs. echinate, granulose, or 

verrucate) spore ornamentation; a lack of obvious vein endings near the margins of the 

ultimate segments (vs. often prominent hydathodes), and a largely North and Central 

American (vs. exclusively South American/Old World) distribution. 

 

Taxonomic Treatment 

 

Myriopteris Fée emend. Grusz & Windham 

 

Type. Myriopteris marsupianthes Fée, Mém. Fam. Foug. 5: 149, t. 12A. f. 1. 1852 

 

Description. Plants rupestral or terrestrial. Rhizomes compact to long-creeping, 

ascending or horizontal, scaly. Rhizome scales lanceolate to acicular, concolorous (tan to 

dark brown) or bicolorous (with dark central stripe and brown margins). Leaf vernation 

non-circinate to circinate. Petioles castaneous to black, scaly and/or pubescent, rarely 

almost glabrous. Rachises terete or flattened or grooved adaxially, with indument 

similar to that of the petioles. Blades 2- to 4-pinnate (rarely pinnate-pinnatifid), 

lanceolate to ovate-deltate, occasionally linear or pentagonal; adaxial surfaces glabrous 

or pubescent; abaxial surfaces scaly and/or pubescent or rarely glabrous. Ultimate 

segments round to oblong-ovate, minute to >1 cm long, the veins obscure and not 

ending in prominent hydathodes. Segment margins usually recurved, with a poorly 

differentiated false indusium (strongly differentiated in M. lendigera and M. 
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marsupianthes). Sori usually partly to completely covered by the recurved segment 

margins, the sporangia clustered at vein tips. Sporangia 64-spored (in sexual species) or 

32-spored (in apomicts). Spores globose-tetrahedral, tan to brown, cristate to rugulate. 

Chromosome numbers n = 29, 30, 58, 60 (sexual species); n = 2n = 87, 90 (apomictic 

triploids); n = 2n = 120 (apomictic tetraploids). 

Distribution. Species of Myriopteris range from southern Canada through the 

Caribbean and Central America to southern Chile, with one species (M. rawsonii) 

endemic to Namibia and South Africa. Mexico is the center of species diversity for the 

genus; 34 of the 44 species can be found in Mexico, and seven of these are endemic. 

 

New and Resurrected Combinations in Myriopteris 

 

1) Myriopteris aemula (Maxon) Grusz & Windham, comb. nov. Cheilanthes aemula 

Maxon, Contr. U.S. Natl. Herb. 10: 495. 1908. Type: Mexico. Tamaulipas: Victoria, 

in river canyon, under overhanging rocks, altitude about 320 meters, February 1 

to April 9, 1907, Palmer 187 (holotype: US; isotype: US). 

 

2) Myriopteris alabamensis (Buckley) Grusz & Windham, comb. nov. Pteris alabamensis 

Buckley, Amer. J. Sci. Arts 45: 177. 1843. Cheilanthes alabamensis (Buckley) Kunze, 

Linnaea 20: 4. 1847. Type: USA. Alabama: Growing in tufts on limestone rocks that 

form the banks of the Tennessee River, at the foot of Muscle Shoals, Buckley s.n. 

(holotype: PH; isotypes: MO, NY). 
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3) Myriopteris allosuroides (Mett.) Grusz & Windham, comb. nov. Cheilanthes 

allosuroides Mett., Abh. Senckenberg. Naturf. Ges. 3: 78. 1859. Pellaea allosuroides 

(Mett.) Hieron., Hedwigia 62: 18. 1920. Type: Mexico, Schmitz s.n. (holotype: 

location unknown). 

 

4) Myriopteris aurea (Poir.) Grusz & Windham, comb. nov. Pteris aurea Poir. 

Encyclopédie Méthodique, Botanique 5: 710. 1804. 

 Type: Peru. Elle a été recueillie au Pérou par Joseph de Jussieu s.n. (sheet 1333 in hb. 

Jussieu; holotype: P). 

 

Acrostichum bonariense Willd., Sp. Pl., ed. 4, 5(1): 114. 1810. Notholaena 

bonariensis (Willd.) C. Chr., Index Filic. 459. 1906. Cheilanthes bonariensis (Willd.) 

Proctor, Bull. Inst. Jamaica, Sci. Ser. 5: 15. 1953.  

 

In Cheilanthes, this has been called C. bonariensis (Willd.) Proctor because use 

of the oldest applicable epithet (based on Pteris aurea Poir.) was blocked by the 

earlier publication of Cheilanthes aurea Baker (Proctor 1953). With the transfer of this 

species to Myriopteris we revert to the older epithet and thus avoid the typification 

difficulties associated with the basionym Acrostichum bonariense Willd. (Ponce and 

Zimmer 2011). 

 

5) Myriopteris chipinquensis (Knobloch & Lellinger) Grusz & Windham, comb. nov. 

Cheilanthes chipinquensis Knobloch & Lellinger, Amer. Fern J. 59: 8. 1969. Type: 
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Mexico. Nuevo Leon: Chipinque Mesa, outside Monterey, Knobloch 1996B 

(holotype: MSC; isotypes: F, GH, MEXU, MICH, UC, US). 

 

6) Myriopteris cinnamomea (Baker) Grusz & Windham, comb. nov. Notholaena 

cinnamomea Baker in Hook. & Baker, Syn. Fil. ed. 2. 515. 1874. Cheilanthes cinnamomea 

(Baker) Domin., Biblioth. Bot. 20: 133. 1913. hom. illeg. non Cheilanthes cinnamomea D. 

C. Eaton, Proc. Amer. Acad. Arts 18: 186. 1883. Type: Guatemala. Mo[n]tagua, 1862, 

Salvin & Goodman s.n. (holotype: K; isotype: BM).  

 

 Cheilanthes tryonii T. Reeves, Brittonia 32: 504. 1980.  

 

In Cheilanthes, this species has been called C. tryonii T. Reeves because use of the 

oldest applicable epithet (based on Notholaena cinnamomea Baker) was blocked by the 

earlier publication of Cheilanthes cinnamomea D. C. Eaton (Reeves 1980). With the transfer 

of this species to Myriopteris, we revert to the older epithet. 

 

7) Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, comb. nov. Cheilanthes 

clevelandii D. C. Eaton, Bull. Torrey Bot. Club 6: 33. 1875. Type: USA. California: 

Growing on a mountain about forty miles from San Diego at an elevation of about 

2500 feet, Cleveland s.n. (holotype: YU; isotypes: GH, P, US). 

 

8) Myriopteris cooperae (D. C. Eaton) Grusz & Windham, comb. nov. Cheilanthes 

cooperae D. C. Eaton, Bull. Torrey Bot. Club 6: 33. 1875. Type: USA. California: near 
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Santa Barbara, Mrs. Ellwood Cooper (syntype: YU); Sierra Valley, Lemmon s.n. 

(syntype: YU). 

 

9) Myriopteris covillei (Maxon) Á. Löve & D. Löve, Taxon 26: 325. 1977. Cheilanthes 

covillei Maxon, Proc. Biol. Soc. Wash. 31: 147. 1918. Type: USA. California: Surprise 

Canyon, Panamint Mountains, 13 April 1891, 1550 meters, Coville & Funston 593 

(holotype: US). 

 

10) Myriopteris cucullans (Fée) Grusz & Windham, comb. nov. Cheilanthes cucullans Fée, 

Mém. Foug. 7: 39, t. 25, f. 4. 1857. Type: Mexico, ad vallem Mexicanum, Schaffner 82 

[holotype: RB; isotypes: K, US (fragment)]. 

 

11) Myriopteris fendleri (Hook.) E. Fourn., Mex. Pl. 1: 125. 1872. Cheilanthes fendleri 

Hook., Sp. Fil. 2: 103, p. 107b. 1852. Type: USA. New Mexico, 1847, Fendler 1015 

[holotype: K; isotypes: GH, MO, NY, US (fragment)]. 

 

12) Myriopteris × fibrillosa (Davenp.) Grusz & Windham, comb. nov. Cheilanthes 

lanuginosa var. fibrillosa Davenp., Bull. Torrey Bot. Club 12: 21. 1885. Cheilanthes 

fibrillosa (Davenp.) Davenp., Bull. Torrey Bot. Club 15: 225. 1888. Type: USA. 

California: San Jacinto Mountains, June 1882, Parish & Parish s.n. (holotype: GH). 

 

13) Myriopteris fimbriata (A. R. Sm.) Grusz & Windham, comb. nov. Cheilanthes 

microphylla (Sw.) Sw. var. fimbriata A. R. Sm., Amer. Fern J. 70: 19, 21., f. 9–10. 1980. 
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Type: Mexico. Chiapas: Munic. Frontera Comalapa, 6–8 km east of Frontera 

Comalapa, Breedlove 39018 (holotype: DS). 

 

 Cheilanthes fimbriata (A. R. Sm.) Mickel & Beitel, Mem. New York Bot. Gard. 46: 112. 

1988. hom. illeg., non Cheilanthes fimbriata Vis. Fl. Dalmat. 1. 42 t. 1 f. 1. 1842. 

 

14) Myriopteris gracilis Fée, Mém. Fam. Foug. 5: 150, t. 29, f. 6. 1852. Cheilanthes gracilis 

(Fée) Mett. ex Riehl, Abh. Senckenberg. Naturf. Ges. 80. 1859. hom. illeg. non 

Cheilanthes gracilis (Michx.) Kaulf., Enum. Filic. 209. 1824. Type: USA. Missouri: 

Jefferson County, Habitat ad rupes circa Hillsboro, Americâ septentr., Riehl 529 

(isotypes: MO, US). 

 

 Cheilanthes feei T. Moore, Index Fil., 38. 1857. 

 

 Myriopteris lanuginosa J. Sm. Hist. Fil. 280. 1875. (non M. lanuginosa (Mart. & Gal.) E. 

Fourn. Mexic. Pl. 1: 125. 1872.) 

 

In Cheilanthes, this has been called C. feei T. Moore because use of the oldest 

applicable epithet (based on Myriopteris gracilis Fée) was blocked by the earlier 

publication of Cheilanthes gracilis (Michx.) Kaulf. With the transfer of this species to 

Myriopteris, we revert to the original name published by Fée in 1852. 
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15) Myriopteris gracillima (D.C. Eaton) J. Sm., Hist. Fil. 280. 1875. Cheilanthes gracillima 

D. C. Eaton, Rep. U.S. Mex. Bound. Botany 2: 234. 1859. Type: USA. Oregon: 

Cascade Mountains, 7000 feet of altitude, latitude 44º, Bigelow s.n. (lectotype: YU). 

 

16) Myriopteris intertexta (Maxon) Grusz & Windham, comb. nov. Cheilanthes covillei 

Maxon subsp. intertexta Maxon, Proc. Biol. Soc. Wash. 31: 149. 1918. Cheilanthes 

intertexta (Maxon) Maxon in Abrams, Ill. Fl. Pacific States 1: 28. 1923. Type: USA. 

California: Santa Clara County, Santa Cruz Mountains, collected at the top of Black 

Mountain, 6 July 1903, Dudley s.n. (holotype: DS). 

 

17) Myriopteris jamaicensis (Maxon) Grusz & Windham, comb. nov. Cheilanthes 

jamaicensis Maxon, Contr. U.S. Natl. Herb. 24: 51. 1922. Type: Jamaica. Below 

Cinchona, 28 February 1919, Harris 12905 (holotype: US; isotypes: GH, MO, NY). 

 

18) Myriopteris lanosa (Michx.) Grusz & Windham, comb. nov. Nephrodium lanosum 

Michx. Fl. Bor.-Amer. 2: 270. 1803. Cheilanthes lanosa (Michx.) D. C. Eaton, Rep. U.S. 

Mex. Bound., Botany 2(1): 234. 1859. Type: USA. Tennassee (sic) et Carolinae 

septentrionalis (non designatus).  

 

Myriopteris vestita (Sw.) J. Sm., Cul. Ferns 29. 1857. (fide C. Chr. 1906.) 

Adiantum vestitum Spreng., Anleit. Kenntn. Gew. 3: 122. 1804.  
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19) Myriopteris lendigera (Cav.) Fée, Mém. Fam. Foug. 5: 149. 1852 (as M. lentigera). 

Pteris lendigera Cav., Descr. Pl. 268. 1801. Cheilanthes lendigera (Cav.) Sw., Syn. Fil. 

128, 328. 1806. Type: Mexico. Hidalgo: Ixmiquilpan en la Nueva España, Nee s.n. 

[syntype: MA, US (fragment)]; Ecuador. Bolivar: junto á Guaranda en el Reyno de 

Quito, Nee s.n. (syntype: MA). 

 

Cheilanthes minor Mart. & Gal. Mém. Act. Brux. 75, pl. 21, f. 1. 1842. 

Myriopteris minor (Mart. & Gal.) Fée, Mém. Fam. Foug. 5: 150. 1852. 

 

Cheilanthes lanuginosa Mart. & Gal. Mém. Act. Brux. 75, pl. 20, f. 2. 1842. 

Myriopteris lanuginosa (Mart. & Gal.) E. Fourn. Mex. Pl. 1: 125. 1872. 

 

Myriopteris villosa Fée, Mém. Fam. Foug. 5: 149. t. 28, f. 1. 1852. 

 

Cheilanthes frigida Linden ex T. Moore, Gard. Chr. 772. 1857. Myriopteris 

frigida (Linden ex T. Moore) J. Sm. Cat. Cult. Ferns 28. 1857. 

 

Myriopteris lendigera (Cav.) J. Sm., Cat. Cult. Ferns 28. 1857. hom. illeg. 

 

 Pomataphytum pocillatum M.E. Jones, Contributions to Western Botany 16: 12. 1930 
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20) Myriopteris lindheimeri (Hook.) J. Sm., Bot. Voy. Herald. 340. 1856. Cheilanthes 

lindheimeri Hook., Sp. Fil. 2: 101, t. 107a. 1852. Type: USA. Western Texas, 1847, 

Lindheimer 744 [lectotype: K; isolectotypes: GH, P (2 sheets), SD, US, YU]. 

 

21) Myriopteris longipila (Baker) Grusz & Windham, comb. nov. Cheilanthes longipila 

Baker, Ann. Bot. (Oxford) 5: 211. 1891. Type: Mexico. San Luis Potosi, 22º N. Lat., 

6000–8000 ft., Parry & Palmer 989 [holotype: K; isotype: US (fragment)]. 

 

22) Myriopteris longipila subsp. brevipila (Mickel) Grusz & Windham, comb. nov. 

Cheilanthes longipila var. brevipila Mickel, Mem. New York Bot. Gard. 88: 198–199, f. 

84N–Q, 87J–M. 2004. Type: Mexico. Guerrero: 2 km al SE de Amatitlán, 1600 m, 13 

August 1994, Soto 1052 (holotype: NY; isotype: FCME). 

 

23) Myriopteris marsupianthes Fée, Mém. Fam. Foug. 5: 149, t. 12A. f. 1. 1852. 

Cheilanthes marsupianthes (Fée) T. Reeves ex Mickel & A. R. Sm. Mem. New York Bot. 

Gard. 88: 201, f. 83M–P. 2004. Type: Mexico. Veracruz: Pic d’Orizaba, Martens & 

Galeotti 6256 (holotype: P; isotype: BR). 

 

24) Myriopteris maxoniana (Mickel) Grusz & Windham, comb. nov. Cheilanthes 

maxoniana Mickel, Mem. New York Bot. Gard. 88: 201, f. 87A–D. 2004. Type: Mexico. 

Tamaulipas: San Lucas, Viereck 76 (holotype: US). 
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25) Myriopteris mexicana (Davenp.) Grusz & Windham, comb. nov. Cheilanthes mexicana 

Davenp., Bull. Torrey Bot. Club 15: 227. 1888. Type: Mexico. Chihuahua: on the 

verge of a high cliff near the summit of Potrero Peak (Santa Eulalia Mts.), October 

1886, 7300 ft., Pringle 827 (holotype: GH; isotypes: MO, BR, DS, NY, P, UC, US, YU). 

 

26) Myriopteris mickelii (T. Reeves) Grusz & Windham, comb. nov. Cheilanthes mickelii 

T. Reeves, Brittonia 32: 502, f. 1–5. 1980. Type: Mexico. Oaxaca: Distr. Yautepec, 

Mickel 4210 (holotype: NY; isotypes: MO, UC). 

 

27) Myriopteris microphylla (Sw.) Grusz & Windham, comb. nov. Adiantum 

microphyllum Sw., Prodr. 135. 1788. Cheilanthes microphylla (Sw.) Sw., Syn. Fil. 127. 

1806. Type: Jamaica, Swartz s.n. (holotype: S). 

 

28) Myriopteris moritziana (Kunze) Grusz & Windham, comb. nov. Cheilanthes 

moritziana Kunze, Linnaea 23: 307. 1850. Type: Venezuela. Caracas: La Guayra, 

Moriz 263 (lectotype: B; isolectotype: GH). 

 

29) Myriopteris myriophylla (Desv.) J. Sm., Bot. Voy. Herald, 340. 1856. Cheilanthes 

myriophylla Desv., Ges. Naturf. Freunde Berlin Mag. Neuesten Entdeck. Gesammten 

Naturk. 5: 328. 1811. Type: South America. Anon. s.n. (holotype: P). 

 

 Cheilanthes elegans Desv. Ges. Naturf. Freunde Berlin Mag. 5: 328. 1811. Myriopteris 

elegans (Desv.) J. Sm. Cat. Cult. Ferns 29. 1857. 
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Cheilanthes paleacea M. Martens & Galeotti, Mém. Fam. Foug. Mexique 76, pl. 

21, f. 2. 1842. Myriopteris paleacea (M. Martens & Galeotti) Fée, Mém. Fam. Foug. 5: 

149, t. 29, f. 6. 1852. 

 

 Myriopteris intermedia E. Fourn., Bull. Soc. Bot. Fr. 27: 328. 1880. hom. illeg., non Fée, 

Mém. Fam. Foug. 5: 149. 1852. 

 

30) Myriopteris newberryi (D. C. Eaton) Grusz & Windham, comb. nov. Notholaena 

newberryi D. C. Eaton, Bull. Torrey Bot. Club 4: 12. 1873. Cheilanthes newberryi (D. C. 

Eaton) Domin, Biblioth. Bot. 20: 133. 1913. Type: USA. California: San Diego, 

Newberry s.n. (syntypes: Wood s.n., Brewer s.n., YU). 

 

31) Myriopteris notholaenoides (Desv.) Grusz & Windham, comb. nov. Pteris 

notholaenoides Desv., Mém. Soc. Linn. Paris 6: 299. 1827. Cheilanthes notholaenoides 

(Desv.) Maxon ex Weath., Contr. Gray Herb. 114: 34. 1936. Type: Hispaniola, Anon. 

s.n. (holotype: P). 

 

32) Myriopteris × parishii (Davenp.) Grusz & Windham, comb. nov. Cheilanthes parishii 

Davenp., Bull. Torrey Bot. Club 8: 61–62. 1881. Type: USA. California: San Diego 

County, W. J. Parish s.n. (holotype: GH; isotypes: GH, YU). 
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33) Myriopteris parryi (D. C. Eaton) Grusz & Windham, comb. nov. Notholaena parryi D. 

C. Eaton, Amer. Naturalist 9: 351. 1875. Cheilanthes parryi (D. C. Eaton) Domin, 

Biblioth. 85: 133. 1913. Type: USA. UT, Charles C. Parry 263 (holotype: YU; isotypes: 

GH, US, YU). 

 

34) Myriopteris peninsularis (Maxon) Grusz & Windham, comb. nov. Cheilanthes 

peninsularis Maxon, Contr. U.S. Natl. Herb. 10: 496. 1908. Type: Mexico. Baja 

California, T. S. Brandegee s.n. (holotype: US). 

 

35) Myriopteris peninsularis subsp. insularis (Weath.) Grusz & Windham, comb. nov. 

Cheilanthes peninsularis (Maxon) var. insularis Weath. Amer. Fern 21: 25. 1931. Type: 

Mexico. Socorro Island, Mason 1616 (holotype: CAS). 

 

36) Myriopteris pringlei (Davenp.) Grusz & Windham, comb. nov. Cheilanthes pringlei 

Davenp., Bull. Torrey Bot. Club 10: 61, t. 34. 1883. Type: USA. Arizona, C. G. Pringle 

s.n. (holotype: GH; isotypes: DS, MO, NY, US, YU). 

 

37) Myriopteris pringlei subsp. moncloviensis (Baker) Grusz & Windham, comb. nov. 

Cheilanthes moncloviensis Baker, Ann. Bot. (Oxford) 5: 210. 1891. Cheilanthes pringlei 

var. moncloviensis (Baker) Mickel, Mem. New York Bot. Gard. 88: 207–208, f. 79J–M. 

2004. Type: Mexico. Coahila: Soledad, Edward Palmer 1378 (holotype: K; isotypes: 

MO, NY, US). 
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38) Myriopteris rawsonii (Mett ex. Kuhn) Grusz & Windham, comb. nov. Cheilanthes 

rawsonii Mett. ex. Kuhn, Filices Africanae 75. 1868. Type: Africa. Cape Province: 

Namaqualand, between Specktakel and Komaggas, Whitehead s.n. (holotype: BM; 

isotype: K). 

 

39) Myriopteris rufa Fée, Mém. Fam. Foug. 8: 77. 1857. Type. Mexico. Veracruz: Volcan 

de Orizaba, Schaffner 83 (holotype: RB). 

 

 Cheilanthes eatonii Baker in Hook. & Baker, Syn. Fil. 140. 1867.  

 

 Cheilanthes castanea Maxon, Proc. Biol. Soc. Wash. 32: 111. 1919. 

 

In Cheilanthes, this has been called C. eatonii Baker. Examination of putative type 

specimens of Myriopteris rufa housed at RB (digital image) and P indicates that the latter 

name very likely represents the same species as broadly defined by recent authors (e.g., 

Mickel and Smith 2004). Because M. rufa (published in 1857) has priority over C. eatonii 

(1867), we take up Fée’s original name for this taxon in Myriopteris. 

  

40) Myriopteris scabra (C. Chr.) Grusz & Windham, comb. nov. Pellaea scabra C. Chr., 

Index Filic. 483. 1906. Type: USA. Texas: crevices of rock on hills, Turkey Creek, 25 

June 1849, Wright 824 (holotype: K; isotypes: GH, NY, US) 
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Cheilanthes aspera Hook., Sp. Fil. 2: 111t. 108 A. 1852. hom. illeg. non 

Cheilanthes aspera Kaulf. Linnaea 6(1): 186. 1831. 

 

Cheilanthes horridula Maxon, Amer. Fern J. 8: 94. 1918.  

 

In Cheilanthes, this has been called C. horridula Maxon because use of the oldest 

legitimate epithet (based on Pellaea scabra C. Chr.) was blocked by the earlier publication 

of Cheilanthes scabra H. Karst. (Maxon 1918). With the transfer of this species to 

Myriopteris, we revert to the older, exceedingly appropriate epithet. 

 

41) Myriopteris tomentosa (Link) Fée, Mém. Fam. Foug. 5: 149. 1852. Cheilanthes 

tomentosa Link, Hort. Berol. 2: 42. 1833. Type: Mexico. Anon. s.n. (holotype: B; 

isotypes: PH, US (fragment)). 

 

 Cheilanthes bradburii Hook., Sp. Fil. 2: 97, t. 109, b. 1852. Myriopteris bradburii (Hook.) 

J. Sm. Hist. Fil. 280. 1875. 

 

42) Myriopteris viscida (Davenp.) Grusz & Windham, comb. nov. Cheilanthes viscida 

Davenp., Bull. Torrey Bot. Club 6: 191. 1877. Type: USA. Arizona: Chiricahua 

Mountains, Lemmon s.n. [holotype: GH; isotype: US (fragment)]. 
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43) Myriopteris windhamii Grusz, Amer. Fern Journ. 103: 112–117. 2013. Type: USA. 

Arizona: Huachuca Mountains, Windham 4165 (holotype: DUKE; isotypes: ARIZ, 

ASC, ASU, GH, MO, NMC, NY, TEX/LL, UNM, US, UT). 

 

Cheilanthes villosa Davenp. ex Maxon, Proc. Biol. Soc. Wash. 31: 142. 1918.  

 

In Cheilanthes, this has been called C. villosa Davenp. ex Maxon. Because transfer of 

the epithet villosa to Myriopteris is blocked by the earlier publication of M. villosa Fée (= 

M. lendigera fide Reeves 1979), we use the replacement name for this distinctive taxon 

published by Grusz (2013). 

 

44) Myriopteris wootonii (Maxon) Grusz & Windham, comb. nov. Cheilanthes wootonii 

Maxon, Proc. Biol. Soc. Wash. 3: 146. 1918. Type: USA. Arizona: Santa Rita 

Mountains, Wooton s.n. (holotype: US). 

 

45) Myriopteris wrightii (Hook.) Grusz & Windham, comb. nov. Cheilanthes wrightii 

Hook., Sp. Fil. 2: 87, t. 110A. 1858. Type: USA. Texas–New Mexico, Wright 823 

(holotype: K; isotypes: GH, NY, US). 

 

46) Myriopteris yatskievychiana (Mickel) Grusz & Windham, comb. nov. Cheilanthes 

yatskievychiana Mickel, Mem. New York Bot. Gard. 88: 212–213, f. 74F–K. 2004. Type: 

Mexico. Sonora: Sierra del Aliso, Alberto Búrquez M. 96-302 (holotype: MO). 
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47) Myriopteris yavapensis (T. Reeves ex Windham) Grusz & Windham, comb. nov. 

Cheilanthes yavapensis T. Reeves ex Windham, Contr. Univ. Michigan Herb. 19: 32. 

1993. Type: USA. Arizona: Yavapai County, Windham 202 (holotype: UT; istotypes: 

ASC, ASU, US). 

 

Names of uncertain application 

 

Myriopteris cheiloglyphis Fée, Mém. Fam. Foug. 8: 77. 1857.  

 

Excluded names 

 

Myriopteris contracta (Kunze) Fée, Mém. Fam. Foug. 5: 149. 1852. = Cheilanthes contracta 

(Kunze) Mett. ex Kuhn  

 

Myriopteris hirta (Sw.) J. Sm., Ferns Brit. and For. 174. 1866. = Cheilanthes hirta Sw.  

 

Myriopteris induta (Kunze) Fée, Mém. Fam. Foug. 5: 149. 1852. = Cheilanthes induta Kunze 

 

Myriopteris intermedia (Kunze) Fée, Mém. Fam. Foug. 5: 149. 1852. = Cheilanthes hirta Sw. 

fide Christensen (1906) 

 

Myriopteris macleanii J. Sm., Hist. Fil. 280. 1875. = Cheilanthes pilosa Goldm. fide 

Christensen (1906) 
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Myriopteris scariosa (Sw.) Fée, Mém. Fam. Foug. 5: 149, t. 29, f. 6. 1852. = Cheilanthes 

scariosa Sw.  

 

Myriopteris szovitzii (Fisch. and Meyer) J. Sm. Hist. Fil. 281. 1875. = Cheilanthes persica 

(Bory) Mett. ex Kuhn fide Christensen (1906) 



CHAPTER III 
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PATTERNS OF DIVERSIFICATION IN THE XERIC-ADAPTED FERN 

GENUS MYRIOPTERIS (PTERIDACEAE) 

Summary 

 

Strong selective pressures imposed by drought-prone habitats have contributed 

to extensive morphological convergence among the 400+ species of cheilanthoid ferns 

(Pteridaceae). As a result, generic circumscriptions based exclusively on 

macromorphology often prove to be non-monophyletic. Ongoing molecular 

phylogenetic analyses are providing the foundation for a revised classification of this 

challenging group and have begun to clarify its complex evolutionary history. As part of 

this effort, I generated and analyzed DNA sequence data for three plastid loci (rbcL, 

atpA, and the intergenic spacer trnG–trnR) for the myriopterid clade, one of the largest 

monophyletic groups of cheilanthoid ferns. This lineage encompasses 47 primarily 

North and Central American taxa previously included in Cheilanthes but now placed in 

the recircumscribed genus Myriopteris. Here, I infer a phylogeny for the group and 

examine key morphological characters across this phylogeny. I also include a brief 

discussion of the three well-supported Myriopteris subclades, along with a review of 

reproductive mode and known ploidy levels for members of this early diverging lineage 

of cheilanthoid ferns.  
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Introduction 

 

Cheilanthoid ferns have been called “the most contentious group of ferns with 

respect to practical and natural generic classification” (Tryon and Tryon 1982: 248). 

Members of this clade are best known for their ability to thrive in habitats too dry for 

most other ferns, and the taxonomic confusion plaguing the group has often been 

attributed to extensive morphological convergence resulting from selection imposed by 

arid environments (Tryon and Tryon 1973, 1982; Kramer et al. 1990; Rothfels et al. 2008). 

A recent series of molecular systematic studies (Gastony and Rollo 1998; Kirkpatrick 

2007; Prado et al. 2007; Schuettpelz et al. 2007; Zhang et al. 2007; Rothfels et al. 2008; 

Windham et al. 2009; Beck et al. 2010; Eiserhardt et al. 2011; Link-Perez et al. 2011; Sigel 

et al. 2011; Li et al. 2012) has begun to clarify relationships among the 400+ species of 

cheilanthoid ferns and provides the foundation for a new, phylogenetically-based 

classification of the group.   

These studies indicate that the most significant barrier to recognizing 

monophyletic genera within the cheilanthoid clade is the current circumscription of the 

genus Cheilanthes Sw. Every molecular phylogenetic analysis with broad sampling 

across cheilanthoids has shown that Cheilanthes is polyphyletic; species currently 

assigned to the genus reside in five of the six major cheilanthoid clades identified by 

Rothfels et al. (2008), Windham et al. (2009), and Eiserhardt et al. (2011). For this reason, 

taxonomists are working to redefine the genus by segregating out monophyletic groups 

that are not closely related to the generitype, Cheilanthes micropteris Sw. One such clade 

that is phylogenetic distant from Cheilanthes s. s. has recently been transferred to the 
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genus Myriopteris (Fig. 6, Chapter II). Aside from a single disjunct species endemic to 

southern Africa and a few widespread species that extend to South America and certain 

Caribbean islands, members of this group are limited to North and Central America 

whereas Cheilanthes s. s. is largely confined to the Southern Hemisphere. Previously 

referred to as the myriopterid ferns, this clade contains roughly 10% of all cheilanthoid 

species diversity (Fig. 6, Chapter II; Windham et al. 2009) and thus constitutes a critical 

group for phylogenetic analysis.  

Previous studies have shown that the myriopterids constitute a well-supported 

clade (e.g., Windham et al. 2009; Eiserhardt et al. 2011), yet phylogenetic relationships 

among the species of this group are poorly known. To better understand the 

evolutionary history of the newly recircumscribed genus Myriopteris, I estimate a 

phylogeny for the clade and map key morphological characters across this phylogeny. 

Because polyploidy and apomixis are important evolutionary processes among 

myriopterid ferns, I also summarize the available data on reproductive mode and ploidy 

level for all species included in my analyses, and examine their distribution across the 

myriopterid tree. 
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Materials and Methods 

 

Taxon sampling.  A total of 68 accessions representing 40 (of 47 total) 

myriopterid taxa were included in my molecular phylogenetic analyses (Table 2). Four 

outgroup taxa (Argyrochosma microphylla, Astrolepis windhamii, Paragymnopteris marantae, 

and Pellaea atropurpurea) were selected from the pellaeid clade, which was resolved as 

sister to Myriopteris in all previous molecular studies with sufficient sampling (Gastony 

and Rollo 1998; Kirkpatrick 2007; Rothfels et al. 2008; Windham et al. 2009; Eiserhardt et 

al. 2011). I included multiple accessions of wide ranging taxa within Myriopteris, 

attempting to sample across their geographic distribution.  

DNA extraction, amplification, and sequencing.  For each individual sampled 

(see Appendix B), genomic DNA was extracted from silica-dried leaf fragments or air-

dried herbarium specimens using the DNeasy plant mini kit (Qiagen, Valencia, 

California, U. S. A.) following the protocol described in Schuettpelz and Pryer (2007). 

Three plastid loci, rbcL (1,343 bp), atpA (1,872 bp), and the intergenic spacer, trnG–trnR 

(1,293 bp), were amplified for all accessions. The PCR reactions were conducted using 1× 

PCR buffer IV containing MgCl2 (ABgene, Epsom, U. K.), combined with 200 µM each 

dNTP, 100 µg/ml BSA, 50 U/ml Taq polymerase, 0.5 µM of each locus-specific primer 

pair (Table 3), and 1 µl template DNA for a 25 µl reaction. The PCR amplifications 

entailed an initial denaturation step (94°C for 5 min) followed by 35 denaturation, 

annealing, and elongation cycles (94°C for 1 min, 45ºC for 2 min, and 72°C for 2 min) 

and a final elongation step (72°C for 10 min). Amplicons were visualized on a 1% 

agarose gel. The PCR purification and sequencing followed the protocol of Grusz et al. 
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(2009). All 178 newly obtained sequences were subsequently deposited in GenBank 

(Appendix B). 

Sequence alignment and data sets.  Sequence fragments were assembled and 

edited using Sequencher 4.8 (Gene Codes Corporation, Michigan). Manual alignments of 

the resulting consensus sequences were then performed in MacClade 4.08 (Maddison 

and Maddison 2005). Because alignments could be completed by eye (i.e., they lacked 

extensive indels and/or ambiguous regions), implementation of a specific alignment 

criterion was unnecessary. For each alignment, portions of the 5' and 3' ends with large 

amounts of missing data were excluded; ambiguously aligned indels were also 

excluded.    

A total of four data sets were subjected to phylogenetic analysis: the three plastid 

single-locus data sets (rbcL, atpA, and trnG–trnR), and a combined three-locus data set 

(rbcL + atpA + trnG–trnR). 

The alignment of non-coding regions within the trnG–trnR spacer included a 

substantial number of ambiguous regions when both ingroup and outgroup taxa were 

included. For this reason, outgroup taxa were removed from the trnG–trnR single-locus 

alignment, as well as from the trnG–trnR portion of the three-locus combined alignment.  

Phylogenetic analyses.  Each of the four data sets was evaluated using 

maximum likelihood (ML; Felsenstein 1973) and Bayesian inference (BI; Yang and 

Rannala 1997). The ML analyses were run on CIPRES (www.phylo.org; Miller et al. 

2010) and BI analyses were run on the Duke University DSCR cluster. The ML analyses 

were implemented in GARLI 2.0 (Zwickl 2006), where a most-likely topology was 
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identified for each of the four data sets and branch support was assessed separately 

using a maximum likelihood bootstrap approach (MLBS). Initial searches using a GTR + 

I + Γ model of sequence evolution (the most complex yet computationally tractable 

model currently available, and thus interpreted to best reflect reality) failed to reach 

stationarity in the BI analyses; therefore, the second most complex model, GTR + Γ (not 

allowing for estimation of the proportion of invariant sites; invariantsites = none), was 

used in both ML and BI analyses. The optimal-tree search was repeated for eight 

replicates to ensure a most-likely topology (Garli Manual, Zwickl 2006); MLBS analyses 

were conducted using 1,000 bootstrap replicates, each with a single pseudoreplicate.  

The BI analyses were implemented in MrBayes 3.1.1 (Ronquist and Huelsenbeck 

2003). All BI analyses comprised four independent runs, each with four chains (one cold 

and three heated). A GTR + Γ model of sequence evolution (rates = gamma) was applied 

with otherwise default (i.e., flat) priors, with two exceptions: (1) rates of evolution were 

allowed to vary among loci (ratepr = variable) in the combined analyses, and (2) the 

heating parameter was decreased to 0.08 (temp = 0.08) in the three-locus combined 

analysis in order to improve the frequency of swapping between chains. Chains were 

run for 10 million generations and trees were sampled from the cold chain every 1,000 

generations. To identify when analyses had reached stationarity, the standard deviation 

of the split frequencies among the independent runs (as calculated by MrBayes) was 

examined and the output parameter estimates were plotted using Tracer 1.2.1 (Rambaut 

and Drummond 2005). Based on these convergence diagnostics, the first 2.5 million 

generations were excluded from each analysis before obtaining a consensus phylogeny 

and clade posterior probabilities with the “sumt” command (contype = allcompat). 
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Conflict among the resulting topologies was assessed according to a 0.95 

posterior probability (PP) measure for BI and a 70% MLBS criterion (Mason-Gamer and 

Kellogg 1996). A comparison of the phylogenies resulting from analysis of each of the 

three individual plastid data sets revealed no mutually well-supported incongruence 

between methods (ML vs. BI) or among data sets (e.g., rbcL vs. trnG–trnR). The three-

locus combined data matrix and resulting trees are deposited in Treebase (submission 

ID: 15192; http://purl.org/phylo/treebase/phylows/study/TB2:S15192). 

Character mapping.  To explore the distribution of individual characters, a 

variety of features considered to be taxonomically informative by previous authors were 

mapped onto a trimmed (single terminal per taxon) Myriopteris phylogeny. Specimens 

representing every species assigned to Myriopteris were obtained on loan from the 

following herbaria: ASU, B, DUKE, GH, JEPS, K, MO, NY, P, UC, UNM, US, UT, and 

YU. Morphological features examined included: shape of ultimate segments (bead-like 

[= round] or oval with margins recurved such that the ultimate segments resemble small 

spherical beads) vs. not bead-like (= elongate, the margins recurved or not)], shape of 

rachis in cross-section (terete vs. flattened or grooved adaxially), vernation (circinate vs. 

non-circinate), and indument type (glabrous, with scales only, hairs only, or having 

hairs and scales). Information on chromosome base number (x = 27, 29, or 30) and ploidy 

level (2x, 3x, or 4x) was obtained from the relevant literature (Knobloch 1965, 1967; 

Reeves 1979; Tryon and Tryon 1982; Windham and Rabe 1993; Windham and 

Yatskievych 2003; Mickel and Smith 2004).  

Alternation of generations without fertilization (i.e., apomixis) is common in 

myriopterid ferns [e.g., the “Cheilanthes myriophylla group” in Windham and 



 

61 

61
 

Yatskievych (2003)] and may play an important role in their diversification. As part of 

their life cycle, apomictic ferns undergo an incomplete mitosis just prior to meiosis that 

results in fewer spores being produced in mature sporangia relative to sexually 

reproducing species. Among leptosporangiate ferns, sexual taxa usually produce 64 

spores per sporangium, whereas apomicts produce either 16 or 32 spores (Manton 1950; 

Gastony and Windham 1989; Beck et al. 2011; Sigel et al. 2011). To determine whether 

apomixis is concentrated in particular evolutionary lineages, I counted spore number 

per sporangium for all 29 fertile accessions included in my phylogenetic analyses , as 

well as for 22 additional individuals not included in the phylogeny (Table 2; Appendix 

B). For each fertile specimen, one to four sporangia were examined and the number of 

spores per sporangium was counted manually. To count spores, individual sporangia 

were removed from the fertile pinnae using a needle moistened with glycerol. The intact 

sporangium was then placed in a drop of glycerol on a microscope slide. Each 

sporangium was ruptured and the spores dispersed in the drop using a pair of 

dissecting needles. Following the removal of sporangial-wall fragments, a cover slip was 

placed over the drop of glycerol. Spore count images were taken using a Canon EOS 

Rebel XSi digital camera attached to a Leica MZ 125 dissecting microscope at either 80× 

or 100× magnification. All specimens having at least one sporangium with 64 well-

formed spores were scored as sexual; individuals displaying only 32 or 16 spores per 

sporangium were scored as apomictic.



Taxa of Myriopteris and related outgroups studied, along with voucher information, data on inferred reproductive 
mode, ploidy level, chromosome number, and DNA sequence availability. Rows in bold text summarize the infor-
mation known about a given taxon. Rows not in bold text document information available for a unique voucher 
specimen included in this study; taxa represented by more than one voucher specimen are numbered sequentially 
(corresponding to numbering in Fig. 2 and Appendix 1). Reproductive mode is inferred based on spore number per 
sporangium (raw data are available in Appendix 1): 32 spores per sporangium is inferred as A (apomictic); 64 spores 
per sporangium as S (sexual); taxa (or unique voucher specimens) with sporangia containing either 32 or 64 spores 
as A, S (either apomictic or sexual). Where known, ploidy level for each taxon is listed; those based on chromosome 
counts reported in Windham and Yatskievych (2003), Windham and Rabe (1993), Mickel and Smith (2004), or Fraser-
Jenkins and Dulawat (2009) are designated with one (*), two (**), three (***), or four (****) asterisks, respectively. 
Ploidy estimates based on spore diameter measurements from Grusz et al. (2009) are designated by a hat (^). DNA 
sequence data available for voucher specimens is indicated with the following abbreviations: T (trnG–trnR), A (atpA), 
and R (rbcL); a dash reflects the absence of data; GenBank accession numbers for each are reported in Appendix 1. 
aNote that Mickel and Smith (2004) doubled the original determination of n = 87 to erroneously report 2n = 174 for 
Cheilanthes (= Myriopteris) notholaenoides; this species is an apomictic triploid, thus n = 2n = 87.

Table 2.

Taxon Voucher Information
Inferred 

Reproductive 
Mode

Ploidy 
Level

Chromosome 
Count

DNA 
Sequence 

Data
T A R

M. aemula (Maxon) Grusz & Windham S* 2x n = 29*

     M. aemula 1 U. S. A., Texas, Beck 1037 (DUKE) S T A R

     M. aemula 2 MEXICO, Tamaulipas, Yatskievych & Gastony 89-222 (IND) — T A R

M. alabamensis (Buckley) Grusz & Windham S*, A** 2x, 3x n = 29*, n = 
2n = 87**

     M. alabamensis 1 U. S. A., Arizona, Schuettpelz 468 (DUKE) — T A R

     M. alabamensis 2 U. S. A., Missouri, Windham 3450 (DUKE) A T A R

     M. alabamensis 3 U. S. A., North Carolina, Blomquist 9602 (DUKE) A

M. allosuroides (Mett.) Grusz & Windham — — —

     M. allosuroides 1 MEXICO, Jalisco, Yatskievych & Gastony 89-237 (IND) — T A R

M. aurea (Poir.) Grusz & Windham A* 3x n = 2n = 90*

     M. aurea 1 ECUADOR, Carchi, Rothfels 3591 (DUKE) — T A R
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     M. aurea 2 MEXICO, Guerrero, Beck 1192 (DUKE) A T A R

     M. aurea 3 U. S. A., Arizona, Schuettpelz 466 (DUKE) — T A R

     M. aurea 4 ECUADOR, Pichincha, Schuettpelz 991 (DUKE) A T A R

     M. aurea 5 U. S. A., Texas, Beck 1038 (DUKE) — T A R

M. chipinquensis (Knobloch & Lellinger) Grusz & 
Windham

S*** 2x n = 30*

     M. chipinquensis 1 MEXICO, Nuevo Leon, Knobloch 1996B (IND) — T A R

M. clevelandii (D.C. Eaton) Grusz & Windham S** — —

     M. clevelandii 1 U. S. A., California, Metzgar 180 (DUKE) S T A R

     M. clevelandii 2 U. S. A., California, Cleveland s.n. (YU, type specimen) S —

M. cooperae (D. C. Eaton) Grusz & Windham S** 2x 2n = 60**

     M. cooperae 1 U. S. A., California, Taylor 15925 (UC) — T A R

M. covillei (Maxon) Á. Löve & D. Löve S* 2x n = 30*

     M. covillei 1 U. S. A., Arizona, Schuettpelz 443 (DUKE) —

     M. covillei 2 U. S. A., California, Windham 3436 (DUKE) S T A R

     M. covillei 3 U. S. A., California, Beck 1090 (DUKE) S —

     M. covillei 4 U. S. A., Arizona, Rothfels 2571 (DUKE) S —

     M. covillei 5 U. S. A., California, Covillei & Funston 593 (US, type speci-
men)

S —

M. cucullans (Fée) Grusz & Windham — — —

     M. cucullans 1 MEXICO, Guanajuato, Beck 1137 (DUKE) — T A R

M. fendleri (Hook.) E. Fourn. S* 2x n = 30*

     M. fendleri 1 U. S. A., Arizona, Schuettpelz 470 (DUKE) — T A R

M. fimbriata (A.R. Smith) Grusz & Windham S — —

     M. fimbriata 1 MEXICO, Oaxaca, Hallberg 1656 (DUKE) S T A R

M. gracilis Fée A* 3x n = 2n = 90*

     M. gracilis 1 U. S. A., Arizona, Schuettpelz 416 (DUKE) — T A R

     M. gracilis 2 U. S. A., Texas, Rothfels 2470 (DUKE) A —

     M. gracilis 3 U. S. A., Arizona, Windham 0221A (DUKE) A —

M. gracillima (D.C. Eaton) J. Sm. S — —
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     M. gracillima 1 U. S. A., Washington, Windham 3630 (DUKE) — T A R

     M. gracillima 2 U. S. A., California, Schuettpelz 1356A (DUKE) S T A R

     M. gracillima 3 U. S. A., Oregon, Pryer 06-03 (DUKE) S T A R

M. intertexta (Maxon) Maxon S — —

     M. intertexta 1 U. S. A., California, Greenhouse 5086 (JEPS) — T A R

     M. intertexta 2 U. S. A., Arizona, Dudley s.n. (US, type specimen) S — —

M. jamaicensis (Maxon) Grusz & Windham A*** — —

     M. jamaicensis 1 DOM. REP., San Juan de La Maguana, Clase 3856 (US) — T A R

M. lanosa (Michx.) Grusz & Windham S** 2x 2n = 60**

     M. lanosa 1 U. S. A., Alabama, Schuettpelz 1224A (DUKE) — T A R

     M. lanosa 2 U. S. A., North Carolina, Rothfels 2717 (DUKE) S T A R

     M. lanosa 3 U. S. A., Indiana, Hegeman s.n. (IND) — T A R

M. lendigera (Cav.) Fée S* 4x n = 60*

     M. lendigera 1 COSTA RICA, San Jose, Grusz 110 (DUKE) — T A R

     M. lendigera 2 U. S. A., Arizona, Beck 1226 (DUKE) — T A R

     M. lendigera 3 U. S. A., Arizona, Yatskievych 89-432 (IND) S T A R

     M. lendigera 4 U. S. A., Arizona, Schuettpelz 460 (DUKE) S T A R

M. lindheimeri (Hook.) J. Sm. S^, A* 2x^, 3x n = 2n = 90*

     M. lindheimeri 1 U. S. A., Arizona, Schuettpelz 450 (DUKE) A T A R

     M. lindheimeri 2 U. S. A., Texas, Rothfels 2490 (DUKE) — T A R

     M. lindheimeri 3 U. S. A., Arizona, Schuettpelz 471 (DUKE) — T A R

     M. lindheimeri 4 U. S. A., Texas, Lindheimer 744 (K) A —

M. longipila (Baker) Grusz & Windham S* 2x n = 30*

     M. longipila 1 MEXICO, Oaxaca, Mickel 6317 (DUKE) — T — R

M. marsupianthes Fée S*** 2x 2n = 60***

     M. marsupianthes 1 MEXICO, Mexico, Jankiewicz 13 (UC) — T A R

M. mexicana (Davenp.) Grusz & Windham S*** 2x

     M. mexicana 1 MEXICO, Guanajuato, Beck 1151 (DUKE) — T A R

M. mickelii (T. Reeves) Grusz & Windham — — —
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     M. mickelii 1 MEXICO, Oaxaca, Salas et al. 1848 (NY) S T A R

M. microphylla (Sw.) Grusz & Windham S**, A*** 4x, 3x*** n = 2n = 87, 
2n = 116***

     M. microphylla 1 ECUADOR, Pichincha, Schuettpelz 994 (DUKE) — T A R

     M. microphylla 2 BOLIVIA, Cochabamba, Kessler 9568 (UC) — T A R

     M. microphylla 3 PUERTO RICO, Guánica, Proctor (US) — T A R

M. moritziana (Kunze) Grusz & Windham S — —

     M. moritziana 1 ECUADOR, Carchi, Rothfels 3589 (DUKE) S T A R

     M. moritziana 2 VENEZUELA, Distrito Federal, Moritz 263 (GH, isolecto-
type)

S —

M. myriophylla (Desv.) J. Sm. A* 3x* n = 2n = 90*

     M. myriophylla 1 ECUADOR, Pichincha, Schuettpelz 989 (DUKE) A T A R

     M. myriophylla 2 MEXICO, Guanajuato, Rothfels 3082 (DUKE) A T A R

     M. myriophylla 3 MEXICO, Oaxaca, Rothfels 3281 (DUKE) — T A R

     M. myriophylla 4 MEXICO, San Luis Potosí, Brown 83-31-4 (IND) — T A R

     M. myriophylla 5 A —

M. newberryi (D.C. Eaton) Grusz & Windham S* 2x n = 30*

     M. newberryi 1 U. S. A., California, Metzgar 174 (DUKE) S T A R

M. notholaenoides (Desv.) Grusz & Windham A 3x***, a n = 2n = 87a

     M. notholaenoides 1 MEXICO, Nuevo Leon, Windham et al. 481 (DUKE) A T A R

     M. notholaenoides 2 COSTA RICA, San Jose, Grusz et al. 08-020 (DUKE) A T A R

M. parryi (D.C. Eaton) Grusz & Windham S** 2x 2n =  60**

     M. parryi 1 U. S. A., Arizona, Metzgar 149 (DUKE) S T A R

     M. parryi 2 U. S. A., Arizona, Windham & Yatskievych 0340A (DUKE) S —

M. peninsularis (Maxon) Grusz & Windham — — —

     M. peninsularis 1 MEXICO, Baja California Sur, Leon de la Luz 9764 (MO) — T A R

M. pringlei (Davenp.) Grusz & Windham S* 2x 2n = 60*

     M. pringlei 1 U. S. A., Arizona, Schuettpelz 502 (DUKE) — T A R

     M. pringlei 2 U. S. A., Arizona, Windham & Yatskievych 0248A (DUKE) S —

65



M. pringlei var. moncloviensis (Baker) Grusz & 
Windham

S — —

     M. pringlei var. moncloviensis 1 MEXICO, Coahila, Palmer 1378 (NY) S —

M. rawsonii (Mett. ex Kuhn) Grusz & Windham S — —

    M. rawsonii 1 NAMIBIA, Smook 11325 (MO) S T A R

    M. rawsonii 2 NAMIBIA, Goldblatt 7014 (MO) S —

M. rufa Fée A* 3x n = 2n = 90*

     M. rufa 1 U. S. A., New Mexico, Rothfels 2515 (DUKE) A T A R

     M. rufa 2 U. S. A., Texas, Schuettpelz 323 (DUKE) A T A R

     M. rufa 3 U. S. A., Texas, Windham 3545 (DUKE) A T A R

     M. rufa 4 U. S. A., Texas, Rothfels 2493 (DUKE) — T A R

     M. rufa 5 U. S. A., Arizona, Metzgar 161 (DUKE) A T A R

     M. rufa 6 U. S. A., Virginia, Rothfels 3902 (DUKE) A —

     M. rufa 7 U. S. A., New Mexico, Windham & Windham 0021B (DUKE) A —

M. scabra (H. Karst) Grusz & Windham S* 2x n = 29*

     M. scabra 1 MEXICO, Nuevo Leon, Gastony 90-10-1 (DUKE) — T A R

     M. scabra 2 U. S. A., Texas, Beck 1036 (DUKE) S T A R

M. tomentosa Fée A* 3x n = 2n = 90*

     M. tomentosa 1 U. S. A., North Carolina, Christenhusz 3823 (DUKE) — T A R

M. viscida (Davenp.) Grusz & Windham A, S** — —

     M. viscida 1 U. S. A., California, Metzgar 169 (DUKE) A T A R

M. windhamii Grusz A* 3x n = 2n = 90*

     M. windhamii 1 U. S. A., Arizona, Windham 458 (DUKE, paratype) A T A R

     M. windhamii 2 U. S. A., New Mexico, Beck 1050 (DUKE) A T A R

     M. windhamii 3 U. S. A., Arizona, Lemmon s.n. (US, type specimen of C. 
villosa)

A —

M. wootonii (Maxon) Grusz & Windham A* 3x n = 2n = 90*

     M. wootonii 1 U. S. A., Arizona, Schuettpelz 488 (DUKE) — 3x T A R

M. wrightii (Hook.) Grusz & Windham S* 2x n = 30*

     M. wrightii 1 U. S. A., Arizona, Schuettpelz 441 (DUKE) — T A R
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     M. wrightii 2 U. S. A., Arizona, Windham 0341A (DUKE) S —

M. yatskievychiana (Mickel) Grusz & Windham — — —

     M. yatskievychiana 1 MEXICO, Sonora, Burquez 96-302 (MO, type specimen) — T A R

M. yavapensis (T. Reeves ex Windham) Grusz & 
Windham

A* 4x n = 2n Taxo= 
120*

     M. yavapensis 1 U. S. A., Arizona, Schuettpelz 415 (DUKE) A T A R

     M. yavapensis 2 U. S. A., Arizona, Licher 778 (DUKE) A —

Argyrochosma microphylla (Mett. ex Kuhn) Wind-
ham

S* 2x n = 27*

      A. microphylla U. S. A., New Mexico, Worthington 34623 (DUKE) — — A R

Astrolepis windhamii D. M. Benham A* 3x n = 2n = 87*

      A. windhamii U. S. A., Arizona, Schuettpelz 431 (DUKE) — — A R

Paragymnopteris marantae (L.) K. H. Shing S**** 2x n = 29****

      P. marantae CHINA, Yunnan, Yatskievych 02-35 (MO) — — A R

Pellaea atropurpurea (L.) Link A** 3x n = 2n = 87**

      P. atropurpurea U. S. A., Virginia, Schuettpelz 312 (DUKE) — — A R
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Table 3 

DNA 
region Primer 5’–3’ Primer sequence Primer source 

rbcL ESRBCL1F* ATGTCACCACAAACGGAGACTAAAGC Schuettpelz and Pryer 2007 

rbcL ESRBCL654R AGAYCGTTTCYTATTYGTAGCAGAAGC Schuettpelz and Pryer 2007 

rbcL ESRBCL1361R* TCAGGACTCCACTTACTAGCTTCACG Schuettpelz and Pryer 2007 

rbcL ESRBCL628F CCATTYATGCGTTGGAGAGATCG Schuettpelz and Pryer 2007 

trnG–R TRNG1F* GCGGGTATAGTTTAGTGGTAA Nagalingum et al. 2007 

trnG–R TRNR22R* GCGGGAATCGAACCCGCATCA Nagalingum et al. 2007 

trnG–R TRNG63R GCGGGAATCGAACCCGCATCA Nagalingum et al. 2007 

trnG–R TRNG353R TTGCTTMTAYGACTCGGTG Metzgar et al. 2007 

atpA ESATPA535F ACAGCAGTAGCTACAGATAC Schuettpelz et al. 2006 

atpA ESATPA557R ATTGTATCTGTAGCTACTGC Schuettpelz et al. 2006 

atpA ESATPA856F CGAGAAGCATATCCGGGAGATG Schuettpelz et al. 2006 

atpA ESATPA877R CATCTCCCGGATATGCTTCTCG Schuettpelz et al. 2006 

atpA ESATPA412F* GARCARGTTCGACAGCAAGT Schuettpelz et al. 2006 

atpA ESTRNR46F* GTATAGGTTCRARTCCTATTGGACG Schuettpelz et al. 2006 
 

Primers used for DNA amplification and sequencing for all taxa 
included in this study. *Asterisks indicate primers used for both the 
initial PCR amplification and for DNA sequencing; all others primers were 
used for DNA sequencing only. 
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Results 
 

Phylogenetic analyses.  Each of the four phylogenetic analyses produced well-

resolved topologies, with most branches receiving strong support from both Bayesian 

PP and MLBS measures. Summary statistics for all phylogenetic analyses are listed in 

Table 4. The most-likely tree (lnL = -16,790.1213) resulting from the analysis of my 

 combined three-locus data set is presented in Fig. 7. Taxon names displayed in Fig. 7 

reflect placement within Myriopteris (Table 2); a list of synonyms in Cheilanthes is 

provided in Appendix C.  

My results confirm the monophyly of Myriopteris with maximal support 

(100/1.0). Myriopterid diversity is divided among three major clades (Clades A, L, C, 

Fig. 7), each of which is maximally supported (100/1.0). Relationships among these three 

groups remain uncertain, though the best likelihood topologies (for all single-locus 

analyses, as well as the combined three-locus data set) resolve the alabamensis clade 

(Clade A, Fig. 7) as sister to a combined covillei + lanosa clade with low support. 

Plastid phylogeny of Myriopteris based on combined analysis of rbcL, 
atpA, and trnG–trnR. The maximum likelihood topology is shown (ln L = -
16,790.1213). Names follow the updated taxonomy for Myriopteris (Table 1; 
Appendices 1 and 2); numbers following names correspond to voucher 
specimens listed in Table 1. Support values are provided for branches with ≥ 70 
MLBS and/or 0.95 PP (MLBS/PP, respectively). Lightly thickened branches 
indicate moderate support (≥ 70 MLBS and/or 0.95 PP); heavily thickened 
branches indicate maximal support (100 MLBS and 1.0 PP; designated as +/+). 
The three primary Myriopteris clades are designated A (= alabamensis clade), C (= 
covillei clade), and L (= lanosa clade); the M. aurea clade (au) is distinguished from 
the core covillei (cc) clade. 

Figure 7 
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Figure 7 
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Table 4 

Data set             
(# individuals) 

Characters                   
(base pairs) 

 

Missing data 
(%) 

 

 
Ingroup bipartitions with good branch 

support 

       

 Total Variable  MLBS ≥ 70 PP ≥ 0.95 MLBS ≥ 70 and 
and PP ≥ 0.95 

       

rbcL (71) 1,345 172 0.2 35 (53%) 35 (53%) 33 (50%) 

atpA (71) 1,873 282 1.0 38 (57%) 36 (55%) 35 (53%) 

trnG–trnR (68) 1,290 228 2.3 38 (57%) 36 (55%) 35 (53%) 

Combined (72) 4,508 916 9.5 50 (75%) 47 (70%) 42 (63%) 

 

THE ALABAMENSIS CLADE—This lineage (Clade A, Fig. 7) includes 13 of the 40 

Myriopteris species sampled for this study. In the ML tree based on the combined data 

set, M. wrightii (a Sonoran/Chihuahuan Desert endemic) is sister to the remainder of the 

clade, but with low statistical support (< 70). The remaining members of this clade fall 

into two well-supported monophyletic groups (Fig. 7). Clade 1, which is resolved with 

strong support (98/1.0), includes four species endemic to Mexico and the adjacent 

southwestern U. S. A.; although the relative positions of M. mickelii and M. allosuroides 

are uncertain, M. peninsularis and M. pringlei are unequivocally supported as sister 

species. The maximally supported Clade 2 encompasses eight species widely distributed 

across the Americas. Although the phylogenetic backbone of Clade 2 is not well 

resolved, there are several species groupings that receive maximal support, including a 

sister relationship between M. notholaenoides and M. cucullans and a similar relationship 

between M. scabra and M. fimbriata. Interestingly, M. moritziana, the only Myriopteris 

Summary statistics for phylogenetic analyses in this study. 
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endemic to South America, is genetically indistinguishable from two of the three 

accessions of M. microphylla at the plastid loci analyzed. 

THE LANOSA CLADE—This lineage (Clade L, Fig. 7), weakly resolved as sister to 

the covillei clade (Clade C, Fig. 7), includes seven sampled species. Relationships among 

taxa belonging to the lanosa clade are generally well resolved, though the apparent sister 

relationship between M. longipila and M. lanosa has low statistical support in the MLBS 

analysis. My analyses indicate that two species endemic to the Californian Floristic 

Province (M. viscida and M. cooperae) are sequentially sister to the remaining taxa. 

Although members of this clade are primarily North American, the sole African 

representative of Myriopteris (M. rawsonii) is deeply nested within the lanosa clade (Clade 

L, Fig. 7) and maximally supported as sister to the Mohave/Sonoran Desert endemic, M. 

parryi.    

THE COVILLEI CLADE—This lineage (Clade C, Fig. 7) is the most species-rich, 

including 20 of the 40 Myriopteris taxa sampled for this study. The first major split 

separates the M. aurea clade (M. aurea + M. yatskievychiana; ‘au’ in Fig. 7) from other 

members of the group with maximal support. Myriopteris aurea (previously Cheilanthes 

bonariensis) is the most widely distributed species in the genus and shows notable 

phylogenetic substructure. Among the remaining species, the Californian Floristic 

Province endemic M. newberryi is sister to the highly supported (90/1.0) core covillei clade 

(‘cc’, Fig. 7). The latter constitutes three well-supported monophyletic groups (Clades 3, 

4, and 5, Fig. 7), the relationships among which are unresolved. Clade 3 (92/1.0) 

includes the eight species sampled from the western North American M. yavapensis 

complex. The phylogenetic backbone of Clade 3 is not well resolved but there are several 

maximally supported species pairs. Three of these pairs involve known polyploid 

hybrids (M. yavapensis, M. wootonii, and M. intertexta; Fig. 7; Table 2) grouping with (and 
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nearly indistinguishable from) their known sexual diploid maternal progenitors (M. 

lindheimeri, M. fendleri, and M. gracillima respectively; Grusz et al. 2009). Clade 4 

(100/1.0) consists of the widespread tetraploid species M. lendigera and its putative 

diploid parents, M. mexicana and M. marsupianthes. Lastly, Clade 5 (100/1.0) includes six 

sampled species, five of which are apomictic polyploids (Table 2) of uncertain origin. 

Myriopteris myriophylla, the most widespread among these, is maximally supported as 

sister to all other species now informally referred to the M. rufa (previously C. eatonii) 

complex. Relationships among the species in this complex are poorly resolved, but 

multiple accessions of single taxa occupy discrete branches with moderate to strong 

support. The maximally supported pairing of M. chipinquensis and M. tomentosa may 

indicate that the former (a known sexual diploid; Table 2) was involved in the origin of 

the latter (an apomictic triploid). 

Mapping Characters across Myriopteris.  The distribution of various 

morphological, cytological, and reproductive character states across the Myriopteris 

phylogeny is shown in Figures 8–10. The shape of ultimate segments (Fig. 8A) is the 

least homoplasious morphological character examined. All members of the core covillei 

clade (‘cc’) have bead-like ultimate segments, as does M. gracilis in the lanosa clade. All 

other taxa, including outgroups, lack bead-like ultimate segments. 

Figure 8B illustrates the phylogenetic distribution of the three character states 

relating to leaf-rachis shape. The majority of myriopterid taxa have rachises that are 

terete (i.e., round) in cross section. This includes all members of Clade 2 within the 

alabamensis clade (Clade A, Fig. 8B), all representatives of the covillei clade (Clade C, Fig. 

8B), and all but two sampled species of the lanosa clade (Clade L, Fig. 8B). Three of the 

four outgroup taxa (Pellaea atropurpurea, Astrolepis windhamii, and Paragymnopteris 

marantae) also have terete rachises. Within the alabamensis clade (Clade A, Fig. 8B), M. 
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wrightii plus all members of Clade 1 have grooved rachises. Flattened rachises are 

characteristic of two early-diverging members of the lanosa clade (M. viscida and M. 

cooperae) and one outgroup species (Argyrochosma microphylla). 

The shape of young, unfurling fronds (vernation) is variable across Myriopteris, 

as well as the four outgroup species from the pellaeid clade (Fig. 8C). Of the 44 taxa 

included in the study, a majority exhibits non-circinate (i.e., “hooked”) vernation.  

This includes all sampled members of the covillei clade, all but one representative of the 

alabamensis clade, and the outgroup species Pellaea atropurpurea and Paragymnopteris 

marantae. By contrast, all taxa belonging to the lanosa clade (Clade L, Fig. 8C) have 

circinate (i.e., “fiddlehead”) vernation, as do M. wrightii (the earliest branching member 

of the alabamensis clade) and the outgroup taxa Argyrochosma microphylla and Astrolepis 

windhamii.  

Hairs and scales, collectively referred to as indument, are commonly found on 

the leaves of cheilanthoid ferns. Within Myriopteris, variation in leaf indument (ranging 

from glabrous in some taxa to having both hairs and scales in others) is the most useful 

taxonomic character for identification of individual species (Fig. 9A). Here, I separately  

map the type of indument found on the adaxial (Fig. 9B) and abaxial (Fig. 9C) surfaces of 

the ultimate segments for each taxon represented in the phylogeny. 
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Figure 8 

 

Mapping leaf characters in Myriopteris. A. Shape of ultimate segments: black 
boxes = bead like, white boxes = not bead-like. B. Cross-sectional rachis shape: white 
boxes = slightly flattened, grey boxes = adaxially grooved, black boxes = terete. C. 
Vernation: hooked = non-circinate, spiraled = circinate. 



76 

 
I recognize five types of indument occurring on the surfaces of the ultimate segments 

proper (excluding the costae and any subtending stalks). These include simple hairs, 

branched hairs, skeletonized scales (differing from branched hairs in being biseriate to 

multiseriate for part of their length), ciliate scales, and entire scales. These indument 

types are often different on adaxial and abaxial surfaces and can occur alone or in 

combination (on the abaxial surfaces only); in a few species, indument is entirely lacking 

on the green tissue of the ultimate segments. 

The majority of taxa in Myriopteris have only simple hairs on the adaxial surfaces 

of their ultimate segments (Fig. 9B). With the exception of M. fendleri (a member of Clade 

3 in the covillei clade), ingroup species with glabrous adaxial surfaces are confined to 

early-diverging branches of the alabamensis clade (Clade A, Fig. 9B). Myriopteris rawsonii, 

the only African species of the group, differs from all other taxa in having nothing but 

branched hairs on adaxial leaf surfaces. Another interesting pattern involves the 

distribution of skeletonized scales, which appear to be a synapomorphy for Clade 3 (Fig. 

9B). With the exception of M. fendleri, which I hypothesize has become glabrous through 

the loss of skeletonized scales, all members of Clade 3 exhibit this distinctive indument 

type on their adaxial surfaces though they may be lost when the leaves reach maturity. 

Outgroup taxa are highly variable with regard to adaxial indument; each of the four 

species has a different character state. With the addition of two indument types (entire 

scales and ciliate scales) and the appearance of three unique combinations (‘entire scales 

+ simple hairs’, ‘ciliate scales + simple hairs’, and ‘ciliate scales + skeletonized scales’), 

the indument of the abaxial surfaces of the ultimate segments is even more diverse than 

that of the adaxial (Fig. 9C). 
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Figure 9
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Mapping of indument in Myriopteris. A. Line illustrations of indument on the 
lower (abaxial) surfaces of the ultimate segments across Myriopteris (modified from Mickel 
and Smith 2004); left to right: glabrous; only scales; only hairs; both scales and hairs. B–C. 
Indument type on the adaxial (B) and abaxial (C) surface of the ultimate segments for 
members of Myriopteris. Indument type is coded as glabrous (= white boxes), simple hairs 
(= yellow boxes), branched hairs (= orange boxes), skeletonized scales (= blue boxes), 
ciliate scales (= purple boxes), or entire scales (= green boxes). On far right, images of each 
indument type are shown below its corresponding label; scale bars = 0.5 cm. 

Figure 9 
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 A plurality (but not a majority) of Myriopteris species produce only simple hairs 

on the lower surfaces of the leaves, and species with glabrous abaxial surfaces are 

confined to early-diverging branches of the alabamensis clade (Clade A, Fig. 9C). 

Myriopteris rawsonii is again distinguished from all other taxa by having only branched 

hairs, and Clade 3 (with the usual exception of M. fendleri) exhibits a singular 

synapomorphy of having ciliate scales (occasionally accompanied by skeletonized 

scales) on the abaxial surfaces of the ultimate segments. Myriopteris fendleri is unique in 

producing nothing but entire scales on the abaxial surfaces. The second most common 

indument type on abaxial surfaces is a combination of simple hairs and entire scales, 

which is scattered across the alabamensis clade and also appears to be a synapomorphy of 

Clade 5 within the covillei clade (Clade C, Fig. 9C). As in the case of adaxial indument, the 

four outgroup taxa show four different character states. They are glabrous abaxially 

(Argyrochosma microphylla), have both simple hairs and entire scales (Paragymnopteris 

marantae), have simple hairs and ciliate scales (Astrolepis windhamii), or have only simple 

hairs (Pellaea atropurpurea) on the lower surfaces of the ultimate segments. 

Chromosome counts, from which base numbers and ploidy levels can be 

inferred, are available for 26 of the 40 myriopterid taxa included in this phylogeny (Fig. 

10). With the exception of Clade 2, all members of Myriopteris for which data are 

available have a chromosome base number of x = 30. The five members of Clade 2 that 

have been counted to date all show x = 29, a base number shared with the outgroup taxa 

other than A. microphylla, which has a unique base number of x = 27.  

Reproductive mode was inferred for a total of 51 specimens and these data are 

mapped, along with published information on ploidy level, in Fig. 10. Based on my 

sampling of one to four sporangia per fertile specimen, 25 individuals showed 

approximately 64 spores/sporangium (or at least significantly more than 32) and were 
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inferred to be sexual. Another 23 exhibited no more than 32 larger spores/sporangium 

and were presumed to be apomictic. My results reaffirm that Myriopteris encompasses 

an array of sexual and apomictic taxa and, based on existing reports, a variety of ploidy  

levels. Sexual diploids appear in every lettered/numbered clade in the phylogeny 

except for the aurea group (‘au’, Fig. 10), and ongoing work by Beck et al. (unpubl.) 

indicates that they exist there as well. Apomictic triploids are scattered across the major 

clades, apparently absent only from Clade 1 (where reproductive mode and ploidy level 

are unknown for three of the four species included in the analysis) and Clade 4. Sexual 

tetraploids are relatively uncommon in Myriopteris; based on the current data, M. 

lendigera appears to be exclusively tetraploid whereas M. microphylla and M. scabra have 

sexual tetraploid populations in addition to other cytotypes. Apomictic tetraploids are 

even less common; the only documented example in my analysis being M. yavapensis in 

the covillei clade (Clade C, Fig. 10). Myriopteris viscida, M. rawsonii, M. clevelandii, M. 

gracillima, and M. intertexta are all confirmed to be sexual but do not have documented 

chromosome counts, and ploidy levels remain unconfirmed. Myriopteris jamaicensis is an 

apomict of unknown ploidy, though its large spores suggest that it, like all other 

apomicts in my analyses, is polyploid. Sexual taxa predominate in all ingroup clades 

except the isolated aurea group (‘au’, Fig. 10) and Clade 5. Among the outgroup taxa, A. 

microphylla and P. marantae are both sexual diploids, whereas A. windhamii and P. 

atropurpurea are apomictic triploids. 
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Figure 10

Mapping of cytological and reproductive characters in Myriopteris. A. 
Chromosome base numbers, gathered from existing chromosome counts (see Table 2), 
are indicated as follows: x = 27 is indicated with grey circles, x = 29 with white circles, 
and x = 30 with black circles. B. Inferred reproductive mode (based on spore number 
per sporangium): 64 spores per sporangium = sexual (black circles), 32 spores per 
sporangium = apomictic (red circles); taxa exhibiting sexual and apomictic 
reproductive modes in different individuals are indicated by red circles outlined in 
black. Ploidy level for each taxon is noted to the immediate left of the circle showing 
reproductive mode (2X = diploid, 3X = triploid, 4X = tetraploid, ?X = unknown ploidy 
level; black font = sexual, red font = apomictic). Missing data are indicated by a dash 
‘—’. 
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Discussion 

 

Here, I explore evolutionary relationships among taxa belonging to the newly 

segregated genus, Myriopteris (Grusz 2013; Grusz and Windham 2013). My sampling of 

the myriopterid clade represents a two-fold increase over the most comprehensive study 

to date (Eiserhardt et al. 2011), encompassing 40 of the 47 currently recognized taxa.  

Phylogenetic Analyses––My results agree with earlier studies (Kirkpatrick 2007; 

Rothfels et al. 2008; Windham et al. 2009; Eiserhardt 2011) in demonstrating that 

members of this group form a maximally supported clade (Fig. 7) only distantly related 

to Cheilanthes s. s. (Chapter II, Fig. 6). My maximum likelihood topology depicts three 

maximally-supported myriopterid clades (Clades A, L, C, Fig. 7), of which the covillei 

and lanosa clades (Clades C and L) together are weakly supported as sister to the 

alabamensis clade (Clade A). Members of Clade A show the greatest morphological 

resemblance to the outgroup taxa; several species therein were originally named in 

Pellaea or have, at some point, been included within it. All taxa belonging to Clade 2 

(comprising the bulk of the alabamensis clade) that have been analyzed chromosomally 

show a base number of x = 29, a character state shared with most of the pellaeid 

outgroup, but otherwise absent from Myriopteris (Fig. 10). Finally, species belonging to 

the alabamensis clade are not known to form hybrids with members of the other two 

clades, whereas hybridization does occur between the covillei and lanosa clades. 

Morphological (Reeves 1979) and isozymic (Windham unpubl.) analyses reveal that 

M.covillei (the namesake of Clade C) and M. parryi (Clade L) have hybridized repeatedly 

to form M. x parishii (Davenp.) Grusz & Windham. The existence of such cross-clade 

hybrids suggests that the covillei and lanosa clades may be more closely related to one 

another than either is to members of the alabamensis clade.  
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All 18 myriopterid species included in the molecular analyses of Eiserhardt et al. 

(2011) were included in this study, along with 22 additional taxa. The phylogenetic 

relationships presented by Eiserhardt et al. (2011) generally match those in my 

maximum likelihood tree (Fig. 7); their well-supported myriopterid clade comprises 

three major subgroups (equivalent to my alabamensis, covillei, and lanosa clades), and the 

lineages include M. covillei and M. lanosa (as Cheilanthes) are also weakly supported as 

sister to one another. Within the alabamensis clade, the Eiserhardt et al. (2011) dataset 

provides robust support for Clade 2 in this study, though the conflicting branching 

arrangement of species and the nearly identical sequences of “Cheilanthes alabamensis” 

and “Cheilanthes notholaenoides” in their study suggests that one of their samples was 

misidentified. The four species of the lanosa clade included in their analyses show 

precisely the same branching pattern in my tree (Fig. 7) and also support the unexpected 

sister relationship between the southern African endemic “Cheilanthes rawsonii” and the 

Sonoran/Mojave Desert endemic “C. parryi”. Within the covillei clade, Eiserhardt et al. 

(2011) identify “Cheilanthes bonariensis” (= Myriopteris aurea) as the earliest-diverging 

taxon, in full accord with my analyses. Although some other relationships portrayed by 

Eiserhardt et al. (2011) are at odds with my reconstruction (specifically their placement 

of “C. newberryi” within the equivalent of the core ‘cc’ clade of this study, Fig. 7), there is 

no well-supported conflict between the two studies.  

Beyond the notable congruence between these two molecular studies, there also 

is significant agreement with some of the morphologically-based hypotheses of 

relationships proposed by Reeves (1979), who divided the New World species assigned 

to “Cheilanthes” into four subgenera and a fifth group of taxa he considered insertae sedis. 

One of the subgenera (Othonoloma Link ex C. Chr.) recently has been recognized as a 

distinct genus, Gaga (Li et al. 2012). The other four groups identified by Reeves (1979) 
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are, in whole or in part, equivalent to clades within Myriopteris as defined herein. The 

“Cheilanthes alabamensis group” [treated as a subgenus without a formal name by Reeves 

(1979)] exactly corresponds to Clade 2 in this analysis, and his insertae sedis group 

comprises a subset of the taxa belonging to Clade 1, plus Myriopteris wrightii (Fig. 7). His 

subgenus Physapteris (C. Presl) Baker exactly corresponds to my core covillei clade (‘cc’, 

Fig. 7), and the only patently polyphyletic subgeneric construct is his subgenus 

Cheilanthes. Reeves (1979: 47) stated “this subgenus includes most of the South American 

species of Cheilanthes together with the North American C. parryi, C. cooperae, C. viscida, 

C. kaulfussii, C. leucopoda, C. feei, C. lanosa, and C. longipila Baker.” The discordant 

elements here are: 1) the South American species of Cheilanthes, which include the type 

species of that genus, and are not closely related to Myriopteris; 2) C. kaulfussii, which 

belongs to the genus Gaga (Li et al. 2012); and 3) C. leucopoda, which is sister to 

Notholaena (Rothfels et al. 2008). With the removal of these taxa, Reeves’ (1979) fourth 

subgenus (incorrectly called subg. Cheilanthes following elimination of the South 

American species) is largely congruent with my lanosa clade (Fig. 7). 

Tryon and Tryon (1982) divided the American taxa of Cheilanthes s. l. into 11 

informal groups, three of which contain species belonging to the myriopterid clade. 

With the exception of C. regularis Mett. [= Adiantopsis regularis (Mett.) Moore], the species 

they list as representatives of the “C. microphylla group” all belong to the alabamensis 

clade. And, with the exception of C. horridula (= Myriopteris scabra, another member of the 

alabamensis clade), their “C. myriophylla group,” includes only members of the core covillei 

clade (‘cc’, Fig. 7). Tryon and Tryon’s (1982) “C. fraseri group” is the largest and most 

diverse, containing 12 representative taxa now known to be widely dispersed across the 

cheilanthoid phylogeny (Eiserhardt et al. 2011; Windham et al. unpubl.). This grouping 

includes five species that appear in these analyses: C. feei (= M. gracilis), C. lanosa, C. 
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parryi, C. bonariensis (= M. aurea), and C. newberryi. The first three are members of the 

lanosa clade; the other two are sequentially sister to the core covillei clade (‘cc’, Fig. 7).  

LEAF ULTIMATE SEGMENTS––The latter finding (i.e., the robust positioning of M. 

aurea and M. newberryi as the earliest branches of the covillei clade), is one of the most 

surprising results of this study. Prior to the work of Tryon and Tryon (1982), these two 

species generally had been included in the genus Notholaena because of their poorly 

differentiated, unrecurved segment margins. With its linear, pinnate-pinnatifid fronds 

and large, flat ultimate segments (pinna lobes), M. aurea stands in stark contrast to Fée’s 

(1852) original description of Myriopteris. His characterization of the genus as having 

laminar margins folding over the developing sporangia such that the ultimate segments 

often form a contracted “bead” clearly applies to a limited subset of the species in this 

study, including all members of the core covillei clade (‘cc’, Fig. 8A) as well as M. gracilis, 

one of the more derived members of the lanosa clade (Clade L, Fig. 8A). Based on the 

distribution of bead-like ultimate segments across my well-sampled phylogeny, it 

appears that this particular character state has arisen just twice during the evolution of 

the group.  

Despite their apparent stability on a local phylogenetic scale, bead-like ultimate 

segments are present in fewer than half the species here assigned to Myriopteris, and also 

occur in several other, distantly related cheilanthoid genera such as Notholaena and 

Cheilanthes s. s. (Windham et al. unpubl.). It is no wonder that the use of this character as 

the primary diagnostic feature of Myriopteris by both Fée (1852) and Smith (1875) led to 

the recognition of patently non-monophyletic assemblages of species (see Grusz and 

Windham 2013). The taxa of Myriopteris that lack bead-like ultimate segments (ca. 60% of 

the total) all have more elongate, flatter segments but are otherwise diverse, with some 
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taxa exhibiting recurved margins with well-differentiated, false indusia and others 

showing plane margins essentially lacking false indusia. 

LEAF RACHISES––The shape of leaf rachises in cross-section furnishes a valuable 

taxonomic character in several cheilanthoid genera (e.g., Anthony 1984; Link-Perez et al. 

2011), including Myriopteris. While most species of the genus exhibit terete rachises (Fig. 

8B), early-diverging members of the alabamensis clade (M. wrightii + Clade 1) have 

rachises that are deeply grooved adaxially, and the first two branches of the lanosa clade 

(M. viscida and M. cooperae) have flattened rachises that become shallowly grooved 

distally. Based on the maximum likelihood tree shown in Fig. 8B, it is tempting to view 

terete rachises as independently derived from grooved rachises in the alabamensis clade, 

but the low statistical support for the placement of M. wrightii (Fig. 7) allows for other 

evolutionary scenarios. Similarly, the concentration of grooved and flattened rachises on 

early diverging branches of the Myriopteris phylogeny might be an indication that terete 

rachises are derived (and homoplastic), but the sporadic distribution of these character 

states among the outgroups makes it impossible to draw any firm conclusions at this 

time. 

LEAF VERNATION––One of the most characteristic morphological features of ferns 

is the coiled or “fiddlehead” shape of young, unfurling fronds, also known as circinate 

vernation. Some ferns [e.g., Ophioglossum (Eames 1936); Anemia (Mickel 1962); Pteris 

(Knobloch 1965)] differ in having their young fronds expand in a “hook” shape, a 

condition variously referred to as imperfectly circinate or non-circinate vernation. 

Among cheilanthoids, non-circinate vernation was first reported by Wherry (1926) and 

Weatherby (1926) based on observations of Cheilanthes tomentosa (= M. tomentosa) and C. 

eatonii (= M. rufa), respectively. Knobloch (1965) observed non-circination vernation in 

14 additional species here included in Myriopteris, and Reeves (1979) stated that all 
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species belonging to Cheilanthes subgenus Physapteris (equivalent to the core covillei clade 

‘cc’, Fig. 8C) had hooked rather than coiled vernation. To augment these observations, I 

documented vernation type in all remaining species of Myriopteris. Non-circinate 

vernation, while not unique to Myriopteris (see outgroups, Fig. 8C), characterizes the 

majority of ingroup taxa, with the exception of M. wrightii in the alabamensis clade (Clade 

A) and all members of the lanosa clade (Clade L). Vernation type appears to be conserved 

within each of the three major myriopterid clades (Clades A, L, and C), confirming 

Reeves’ (1979) hypothesis that vernation is a useful systematic character among 

cheilanthoid ferns. 

Leaf indument.  Leaf indument is arguably the most useful morphological 

feature for identifying species among myriopterid ferns (Reeves 1979; Tryon and Tryon 

1982; Windham and Rabe 1993; Mickel and Smith 2004). The presence, absence, and 

distribution of hairs and/or scales on the laminar surfaces vary widely among species, 

and the character states tend to be additive in hybrids (Reeves 1979; Grusz et al. 2009). In 

addition to being crucial for identification purposes, mapping indument data onto my 

molecular phylogeny illustrates that indument type is also a phylogenetically 

informative character (Fig. 9B–C), with certain indument types (or combinations thereof) 

providing synapomorphies for well-supported clades. Evolution of indument on the 

adaxial surfaces of the ultimate segments is more easily understood because there are 

fewer character states involved and no amalgamation of different types. Nevertheless, 

variability among outgroups, as well as the early-diverging branches of the ingroup, 

makes it difficult to ascertain the plesiomorphic adaxial character state for Myriopteris, 

which could be either simple hairs or a lack of indument. Hairs simple is slightly more 

parsimonious than glabrous (six vs. seven character-state changes) based on the 

maximum likelihood tree (Fig. 9B). In its simplest form, this scenario would involve 
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three independent transitions from simple hairs to no indument (all within the 

alabamensis clade), one change from simple to branched hairs (on the branch leading to 

M. rawsonii), one transition from simple hairs to skeletonized scales (a synapomorphy 

for Clade 3), and one further change from skeletonized scales to no indument (in M. 

fendleri). I note here that Reeves (1979) scored all members of Clade 3, except M. 

gracillima and M. intertexta, as glabrous on the upper surfaces of the ultimate segments. 

My recoding of adaxial indument shown in Fig. 9B is based on my observations that the 

young leaves of all Clade 3 species (aside from the truly glabrous M. fendleri) have 

scattered skeletonized scales, though these often are lost on older leaves. The 

evolutionary scenario that we advance here (that branched hairs and even multiseriate, 

scale-like structures are derived from simple hairs) is in accord with hypotheses 

proposed for ferns in general by Eames (1936). 

The indument of abaxial surfaces in Myriopteris is often different (and, in those 

cases, more complex) than that of adaxial surfaces (compare Figs. 9B and 9C; Reeves 

1979). This suggests that the observed phenotypes may involve multiple genes, as well 

as differential regulation/expression, with respect to the two surfaces (e.g., as with 

Arabidopsis; Hülskamp and Schnittger 1998; Szymanski et al. 2000). Setting aside 

pervasive (and sometimes profound) differences in density, exactly half the sampled 

ingroup taxa (20 of 40) have basically the same indument type on the adaxial and abaxial 

surfaces of the ultimate segments. This includes seven taxa belonging to the alabamensis 

clade, all members of the lanosa clade and Clade 4, plus the two species of the aurea clade 

(au) and M. newberryi (Figs. 9B and 9C). In M. fendleri, glabrous adaxial surfaces contrast 

with abaxial surfaces producing rare, entire scales. The greatest disparity between upper 

and lower surfaces is observed in M. cucullans and M. notholaenoides, in which the 

adaxial surfaces are glabrous whereas the abaxial show a mixture of simple hairs and 
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entire scales. The abaxial surfaces of the other 17 ingroup species exhibit combinations of 

two different indument types, one of which also occurs on the adaxial surfaces. These 

admixtures involve either simple hairs and entire scales (in six species of the alabamensis 

clade plus the entirety of Clade 5) or skeletonized scales and ciliate scales (all species of 

Clade 3 except M. fendleri). Although these indument types are quite distinctive in 

theory, they intergrade completely.  

Reeves (1979) used the apparent transition from ciliate scales to branched 

trichomes (herein called “skeletonized scales”) to simple trichomes among the species of 

“Cheilanthes subgenus Physapteris” (our core covillei clade; ‘cc’) to argue for the exclusive 

evolution of uniseriate trichomes from multiseriate scales in this group. The existence of 

a continuum does not establish character polarity but, based on my maximum likelihood 

phylogeny (Fig. 9B and 9C), I hypothesize that the dominant evolutionary pathway for 

indument is the reverse of that proposed by Reeves (1979). The early diverging branches 

of the covillei clade (i.e., the aurea clade (au) and M. newberryi) have only simple hairs on 

the adaxial surfaces (Fig. 9B), as do many of the more derived species (Clades 4 and 5). 

Therefore, I interpret the skeletonized scales found on the adaxial surfaces of nearly all 

species in Clade 3 as derived from simple hairs. Identical skeletonized scales occur on 

the abaxial surfaces of these same species, where they are completely transitional to 

ciliate scales and, ultimately, entire scales. Based on my phylogenetic tree, it also seems 

likely that entire scales evolved directly from simple hairs in some lineages. Although 

we disagree on some particulars, we concur with Reeves (1979: 27) in that “the nature 

and derivation of trichomes in cheilanthoid ferns deserves (further) critical analysis.” 

Cytogenetic and reproductive variability within Myriopteris.  As documented 

by Windham and Yatskievych (2003), Myriopteris species exhibit two chromosome base 

numbers (x = 29 and x = 30). Although variability in base number is relatively 



90 

uncommon among closely related fern species (Britton 1974), such variation is known to 

occur in some large genera where different base numbers often prove to be 

phylogenetically informative [e.g., in Thelypteris; Smith (1971, 1990); He and Zhang 

(2012)]. This pattern holds true in Myriopteris, with all cytogenetically studied species of 

Clade 2 having the chromosome base number x = 29 and all other ingroup species 

studied to date having x = 30 (Fig. 10A).  

In addition to variation in chromosome base number, both apomixis and whole 

genome-duplication (i.e., polyploidy) are prevelant among species of Myriopteris. As 

with most other apomictic plant lineages (Stebbins 1950; Grant 1981), these processes are 

closely linked, and all known apomicts in the genus are polyploid (mostly triploid). 

Given these circumstances, evolutionary changes in reproductive mode should be 

effectively unidirectional [from sexual to apomictic; Beck et al. (2011, 2012)]. This is 

congruent with my phylogeny (Fig. 10B), which reveals that sexual diploids 

predominate in all but Clade 5, and that apomictic polyploids generally are nested 

among the sexual taxa. Based on simple parsimony, we hypothesize at least nine 

independent origins of apomixis within Myriopteris. Apomixis in ferns requires two 

major changes in the life cycle (Gastony and Windham 1989): 1) a non-reductive meiosis 

(owing to an endomitosis preceding meiosis), which results in the production of 

diplospores rather than haplospores (n = 2n); and 2) the mitotic production of 

sporophytes from somatic tissue (rather than from a zygote produced via the fusion of 

gametes). Even so, frequent switches from sexual to apomictic reproduction across the 

myriopterid tree indicate that this transition may involve relatively simple genetic 

and/or environmental controls.  

Findings of note.  This study utilizes the power of molecular sequence data to 

elucidate patterns of species diversification in the genus Myriopteris. It provides an 
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improved view of relationships among the morphologically disparate taxa included in 

this newly recircumscribed genus, and allows us to assess the evolution of several 

morphological, cytological, and reproductive characters within this well-supported 

monophyletic group. Beyond these broad-scale patterns of diversification, my findings 

also illuminate multiple interesting sub-stories involving the geography, parentage, and 

species-level distinctions of particular taxa. Here, we briefly highlight a few of these 

notable findings, which we hope will inspire further research.     

MYRIOPTERIS RAWSONII—One of the most surprising results of this study is the 

corroboration of evidence put forth by Eiserhardt et al. (2011) for inclusion of the 

southern African endemic Cheilanthes rawsonii (= M. rawsonii) within the myriopterid 

clade. Myriopteris rawsonii, the only member of the group known to occur outside the 

New World, is deeply nested within the lanosa clade (L, Fig. 7) where it is maximally 

supported as sister to M. parryi, a sexual diploid confined to the southwestern U. S. A. 

and adjacent Mexico. Myriopteris rawsonii has long been considered a disparate element 

in African flora, and Anthony (1984) noted that its spores are unlike those of any other 

Cheilanthes on that continent. However, the species seems no less anomalous in 

Myriopteris, where the branched hairs on the upper and lower leaf surfaces are unique. It 

is interesting to note that there are ecological similarities between M. rawsonii and its 

sister species M. parryi; these two species occupy some of the driest, most inhospitable 

desert habitats in their respective ranges. Based on my counts of spore number per 

sporangium, M. rawsonii appears to be sexual, but its ploidy level remains unknown 

(Table 2; Fig. 10B). 

MYRIOPTERIS AUREA—This species, known in the literature as Cheilanthes 

bonariensis or Notholaena aurea, is one of the most widely distributed cheilanthoid ferns 

(Tryon and Tryon 1973; Tryon 1986), with a range extending from the southwestern U. S. 
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A. and Hispañola south to Argentina and Chile. Previously known only as an apomictic 

triploid, recent work by Beck et al. (unpubl.) has identified a few, highly-localized 

populations that produce 64 spores per sporangium; these presumably represent a 

relictual sexual progenitor of the widespread apomict. Interestingly, the five samples of 

M. aurea included in this analysis (all apomictic) form two highly divergent sister clades 

(‘au’, Fig. 7), suggesting either multiple origins or substantial divergence following 

polyploidization. Both clades of M. aurea are widely distributed, and there is no clear 

geographic or morphologic distinction evident in the current dataset.  

MYRIOPTERIS LENDIGERA—Reeves (1979) proposed that this tetraploid species 

arose through hybridization between the sexual diploids M. marsupianthes and M. 

mexicana. In my phylogenetic tree (Fig. 7), these three taxa constitute a maximally 

supported monophyletic group (Clade 4), with the four accessions of tetraploid M. 

lendigera paraphyletic to M. mexicana. Two accessions of M. lendigera (1 and 2) and the 

only available sample of M. mexicana form a well-supported (97/1.0) clade that is sister 

to the other two M. lendigera collections. From this we infer that a genotype very similar 

to that of the sampled M. mexicana individual functioned as the maternal progenitor of 

the tetraploid lineage represented by M. lendigera 1 and 2. However, the two northern 

accessions of M. lendigera (3 and 4) are highly divergent at the plastid loci analyzed (Fig. 

7). These results suggest that M. lendigera, like the majority of hybrids studied to date 

(see Soltis and Soltis 1999), has arisen through recurrent hybridization between 

genetically distinct parental lineages.  

MYRIOPTERIS MORITZIANA—Our molecular results confirm previous 

morphologically- based hypotheses (e.g., Yatskievych and Moran 1995) that the South 

American endemic M. moritziana is very closely related to the wide-ranging Caribbean 

taxon M. microphylla (Clade 2, Fig. 7). There are subtle but critical differences between 
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the two, however. Examination of an isolectotype of M. moritziana from GH indicates 

that this taxon is sexual (i.e., produces about 64 spores per sporangium) and reveals that 

spore sizes approximate those documented in closely related sexual diploid taxa 

(Windham unpubl.). Myriopteris microphylla, on the other hand, has significantly larger 

spores and the available chromosome counts are exclusively polyploid [sexual tetraploid 

in Knobloch (1967) and Walker (1966); apomictic triploid in Mickel et al. (1966)]. Based 

on this evidence, we hypothesize that M. mortiziana may be a diploid progenitor of 

polyploid M. microphylla. Given the reproductive and cytogenetic disparities involved, 

we tentatively maintain these two entities as separate species despite their identical 

sequences at the three maternally inherited loci analyzed.  
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ARE LIP FERNS LIKE LIZARDS?  

EXAMINING PREMEIOTIC CHROMOSOME DUPLICATION AND 

GENOTYPIC DIVERSITY IN THE APOMICTIC DESERT FERN 

MYRIOPTERIS LINDHEIMERI 

 

Introduction 

 

During the last century, our understanding of the evolution and maintenance of 

sex across the tree of life has improved exponentially (e.g., Weismann 1904; Fisher 1930; 

Muller 1932, 1964; Crow and Kimura 1965; Hill and Robertson 1966; Maynard Smith 

1968, 1971; Eshel and Feldman 1970; Lewontin 1971; Felsenstein 1974; Judson and 

Normark 1996; Archetti 2004, 2010; Kim and Orr 2005). In concert with this improved 

understanding of sexual reproduction has come an enhanced grasp of the complex and 

dynamic nature of asexual reproduction, and its role in organismal evolution 

(Darlington 1939; Mogie 1992; Schön et al. 2009). Even so, asexual organisms remain 

burdened by a widespread reputation for being “evolutionary dead ends” (Darlington 

1939; Mather 1943, 1953; Clausen 1954; Stebbins 1950, 1958; Maynard Smith 1978). They 

are essentially clonal and lack genotypic diversity, which is critical for adaption by 

natural selection to ever-changing environments. And, while they are known to exhibit 

high levels of fixed heterozygosity, asexual populations are expected to generally lack 

genotypic diversity and be dominated by a single (or few) heterozygous genotype(s) 

(e.g., Hughes and Richards 1988; Delmotte et al. 2002). 
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Contrary to these expectations, however, apomictic lineages have been known to 

exhibit relatively high population-level genotypic diversity, and they often dominate 

broad ecological and geographical landscapes compared to their sexual relatives 

(Stebbins 1950; Bierzychudek 1985; Suomalainen et al. 1987). These observations have 

led investigators to speculate on the possible source(s) of this diversity (e.g., Gustafsson 

1947; Stebbins 1950; Haskell 1953; Ellstrand and Roose 1987; Campbell and Dickinson 

1990; Menken et al. 1995; Van Baarlen et al. 2000). Many investigators hypothesize that 

multiple origins, accumulation of new mutations, and/or hybridization with sexual 

relatives explain high levels of genetic variation in apomictic populations (e.g., Stebbins 

1959; Evans, 1969; Mogie 1992; Van Dijk 2003; Verduijn et al. 2004; Whitton et al. 2008; 

Lu et al. 2010). Alternatively, a few have suggested that apomicts may generate the 

unexpectedly high number of variable genotypes witnessed in natural populations via 

subsexual processes (Darlington 1937; Gustafsson 1946; Klekowski 1973), such as 

independent assortment (IA), recombination, and gene conversion (Birky 1996; 

Mantovani 1998; Van Baarlen et al. 2000; Van der Hulst et al. 2000; Adolfsson and 

Bengtsson 2007).  

  Subsexual processes have been investigated in a variety of organisms, ranging 

from parthenogenetic lizards to apomictic orchids (e.g., Bi and Bogart 2006; Van Baarlen 

et al. 2000; Stenberg and Saura 2009; Lutes et al. 2010; Lu et al. 2010; Neaves and 

Baumann 2011). The role of such processes in generating genetic variation is especially 

well documented in Ambystoma salamanders, whereby apomictic reproduction involves 

an endomitosis that immediately precedes meiosis, thereby ultimately resulting in the 

production of unreduced gametes. Following endomitosis, each cell enters meiosis with 

a duplicated set of chromosomes (i.e., with twice the parental number of chromosomes; 

Macgregor and Uzzell 1964).  This mechanism of pre-meiotic chromosome duplication is 
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especially important in the case of apomictic polyploids with an odd number of 

genomes (e.g., triploids, pentaploids, etc.).  In these cases, pre-meiotic duplication 

facilitates the production of functional gametes in organisms that would otherwise 

produce largely nonfunctional aneuploid gametes due to the formation of univalents 

and multivalents during meiosis I (Fig. 11a).  Pre-meiotic duplication allows regular 

bivalent formation in apomictic triploids, for example, because it results in an even 

number of homologous chromosomes (a duplicated triploid genome becomes 

hexaploid) as the cell enters meiosis. Most importantly, this pathway to chromosome 

pairing also provides an avenue for the production of genetically variable offspring via 

the potential for the pairing of non-sister chromosomes (i.e., non-identical homologues 

or homeologues) during meiosis (Bi and Bogart 2006). 

Ferns are an ideal plant analogue for examining the role of subsexual processes 

in generating genetically variable offspring in apomictic lineages.  Unlike the various 

forms of apomixis that are known to occur angiosperms (Asker and Jerling 1992; Mogie 

1992), ferns—like most parthenogenetic animals—undergo a pre-meiotic duplication 

event via endomitosis, yielding unreduced gametes that reproduce asexually. This form 

of apomixis in ferns is referred to as meiotic obligate apogamy (DeBenedictis 1969; 

Walker 1984; Gastony and Windham 1989) and combines the production of unreduced 

spores via Döpp-Manton sporogenesis (= DMS; Döpp 1932; Manton 1950; Fig. 11a) with 

the apogamous production of sporophytes from somatic gametophyte tissue (Fig. 11b).  

Klekowski (1972, 1973) was the first to recognize the potential implications of 

homeologous chromosome pairing in ferns. Yet, since then, there have been only a few 

studies that have thoroughly investigated this phenomemon empirically and, of those, 

most have focused on homeologous chromosome pairing in sexual tetraploid ferns, 

usually of allopolyploid origin (Klekowski and Hickok 1974; Hickok 1978a, 1978b; 
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Chapman et al. 1979). Only three studies have explored homeologous pairing in 

apogamous ferns, and they focus on the gametophytic offspring of only a single 

individual and make no attempt to assess the generality of this phenomenon in natural 

populations (Bierhorst 1975; Ishikawa et al. 2003; Ootsuki et al. 2012).   

 The goals of this study are therefore, to explore (1) whether DMS permits the 

pairing of homeologous chromosomes in apomictic polyploid ferns, leading to the 

production of genetically variable offspring, and (2) to document the extent to which this 

phenomenon occurs in natural populations.  
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Figure 11 

Meiotic obligate apogamy in ferns.  (a) Döpp-Manton sporogenesis (DMS) is shown 
with ploidy level indicated above and number of cells indicated below. The top row of meiotic 
cells represents an apomictic triploid attempting “normal” meiosis, resulting in 64 abortive 
spores; the bottom row of cells represents an apomictic triploid undergoing DMS, resulting in 32 
functional diplospores (modified from Gastony and Windham, 1989). (b) The production of 
sporophytes via apogamy. Diplospores are produced; they germinate, grow into mature 
gametophytes, and then produce sporophytes without the fusion of gametes. 
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Experimental Approach 
 

Lip ferns of the desert southwest (formally Myriopteris) are classic in their ability 

to circumvent sex and undergo apomictic reproduction in extreme desert environments. 

Here, I examine one apomictic autotriploid from this group, Lindheimer’s Lip Fern, i.e., 

Myriopteris lindheimeri (Hook.) Grusz & Windham. First, I developed microsatellite 

markers for M. lindheimeri and used these to survey individuals (both field collected and 

from herbarium material; Appendix D) for genetic variation across a large part the 

species range. I then used these microsatellite markers to identify highly heterozygous 

parental sporophytes by fragment analysis. From those highly heterozygous 

individuals, I sowed spores and allowed them to develop into mature gametophytes, 

until the first sporophyte leaves were produced. These offspring were then genotyped 

using the same microsatellite markers used for the parent sporophytes. By comparing 

the offspring genotypes to their respective parents, I was able to detect whether 

subsexual processes took place during DMS. Sampling individuals across the northern 

range of M. lindheimeri also allowed me to assess the generality of this phenomenon in 

natural populations and provided a snapshot of range wide genotypic diversity in this 

apomictic desert fern. 

 

Materials and Methods 

 

Microsatellite development.  Genomic DNA of a single individual of diploid M. 

lindheimeri (Schuettpelz 450, collected from the Tonto National Forest, Pinal Co., AZ; 

voucher housed at DUKE) was extracted from silica-dried material using the DNeasy 

plant mini kit following the manufacturers protocol (Qiagen, Valencia, California, U. S. 
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A.). Genomic DNA was then run on two lanes (¼-plate = 24 wells) using the Roche 454 

GS-FLX Titanium sequencing platform at the IGSP DNA Sequencing Facility, Duke 

University. Raw reads generated by 454 sequencing were then scanned for di-, tri-, tetra- 

and pentanucleotide microsatellite repeats using MSATCOMMANDER version 0.8.2 

(Faircloth 2008). Traditional (unlabeled) primers were designed for a subset of the 

identified repeats using the standard settings in Primer3 (Rozen and Skaletsky 1999).  

The selected repeat regions were then amplified following the protocol of Grusz 

et al. (2009), except that the annealing temperature was set to 60 ºC (to decrease non-

specific primer binding). Amplicons were then visualized on a 1% agarose gel after 

being run for 35 minutes at 75 volts. Amplicons that produced a single bright band were 

then purified and sequenced following the protocol of Grusz et al. (2009). Clean 

sequence fragments (assumed to represent single-copy markers) were assembled in 

Sequencher 4.8 (Gene Codes Corporation, Michigan) and examined to confirm the 

presence of the anticipated microsatellite repeat. For single copy regions in which the 

anticipated repeat was present, new forward primers were designed with a 6-FAM 

fluorescently labeled CAG nucleotide tag (5’-CACGACGTTGTAAAACGAC-3’) 

incorporated proximal to the primer annealing sequence, to be used for subsequent 

genotyping. 

Each microsatellite marker was then tested on genomic DNA from the same 

individual for which 454 sequencing was completed (Schuettpelz 450). Genotyping 

reactions were conducted using 10X PCR buffer IV containing MgCl2 (ABgene, Epsom, 

U. K.), combined with 2.4 mM dNTPs, 100 µg/ml BSA, 5 U/µl Taq polymerase, 2 µM 

reverse primer, 10 µM CAG-tagged forward primer (CAG tag: 5’-CACGACGTTGTAAA 

ACGAC-3’), 10 µM fluorescently-labeled CAG complementary primer, plus 1 µl DNA 

template for a 12 µl reaction.  Genotyping reactions entailed an initial denaturation step 



101 

(94ºC for 7 min) followed by 10 denaturation, annealing, and elongation cycles (94ºC for 

30 sec, 62ºC [-1ºC per cycle] for 30 sec) and 27 additional denaturation, annealing, and 

elongation cycles (94ºC for 30 sec, 51ºC for 30 sec, 72ºC for 30 sec) and a final elongation 

step (72ºC for 12 min).  

Fragment analyses were run on a 3730xl DNA sequencer and the resulting data 

were visualized using GeneMarker 2.2.0 (SoftGenetics, State College, Pennsylvania). 

Polymorphic loci with unambiguous peaks were used for genotyping of M. lindheimeri 

accessions in subsequent analyses (Table 5). 

Survey of genetic variation in apomictic M. lindheimeri.  An initial survey of 

genetic variation across eight microsatellite markers (Table 5) was conducted for 109 

individuals distributed across the species range of M. lindheimeri (Fig. 12A; Appendix D). 

Four genetic diversity measures, including: % polymorphic loci, heterozygote frequency 

(over all loci), mean number of alleles per locus, and genetic diversity, were then 

summarized for all populations consisting of more than 3 individuals (Fig. 12B). From 

these 109 individuals, a subset of individuals that: (1) exhibited highly heterozygous 

genotypes, (2) were fertile, and (3) possessed mature sporangia, were selected for 

parent-offspring genotype comparisons. 
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Table 5 

      

Locus Primer sequence Tm (ºC) Motif Allele size range (bp) # Alleles 
      

FYM3K F: AGAGTGAAACCAGAAACCTGC 59.2 ATC 190-202 5 

 R: GTGTGCCGCTTAAACAATGAAG 59.8    

HGGWA F: ACCCACGCATGTAAACAGATTG 60.3 AAC 182–185 2 

 R: ACCATTTCTGTGGGAGGTC 57.4    

HL9PJ F:  CTCACCAACTAAGCTCCTTGAC 59.4 CT 409–419 5 

 R: CTCACCAACTAAGCTCCTTGAC 59.6    

HY3SM F: TTGTCACTGTGCGACATGC 59.8 ATGC 345–359 3 

 R: TCTTTCTAGCAATCTCAGAAGACC 58.9    

IQLI0 F: ACGCCAATCGATCTCAAGC 59.1 ACCTCC 184–202 3 

 R: ACGCCAATCGATCTCAAGC 58.0    

JGM27 F: AGCGGGCCTATTCCAGATAC 59.8 AGC 258–267 3 

 R: CTGTAGGTGGTGCGGAAAC 59.2    

JS90I F: CTTAAAGCTGCCTGCGACC 59.9 CT 351–355 3 

 R: GTTGCTGTCGGCTAAGGAC 59.3    

JW1YD F: GATCGTCGGCCGGGAAG 60.7 CCG 194–200 3 

 R: GATCGTCGGCCGGGAAG 59.9    

 

Microsatellite markers developed for use in M. lindheimeri.  
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Culturing apomictic offspring of M. lindheimeri.  Spores were sown from a total 

of 41 highly heterozygous apomictic parent sporophytes of M. lindheimeri (Fig. 12B; 

Appendix D). The presence of apomixis in parent sporophytes was determined based on 

the number of spores produced per sporangium (32-spored sporangia were inferred to 

be apomictic; Tryon 1968; Barrington and Paris 1986; Gastony and Windham 1989; Sigel 

et al. 2011). From each apomictic parent, individual sporangia were removed using a 

dissecting pin and placed on Hevly’s medium (pH 7; Hevly 1963) in a small petri plate. 

Each sporangium was ruptured using two needles and the spores contained therein 

were manually separated from one another and distributed evenly across the plate. This 

was done for multiple sporangia from each parent plant and, in later steps, care was 

taken to record the sporangium from which each spore was derived. Spores were then 

placed under artificial light on a 12-hour light-dark cycle and observed daily. Upon 

initial germination, each gametophyte was then transferred to its own isolated well in a 

48-well petri plate (also on Hevly’s medium, pH 7) to avoid any potential for interaction 

with gametophytes germinating nearby (Schneller et al. 1990). 

As gametophytes developed they were examined periodically for the production 

of antheridia and archegonia; these reproductive organs are usually absent or abortive in 

apogamous ferns and I did not observe any functional reproductive structures. Once the 

gametophytes began to produce their first sporophyte leaves they were processed for 

DNA extraction and genotyping. 

 Genotyping of apomictic progeny.  A total of 847 offspring derived from 47 

sporangia were genotyped for each microsatellite locus that was polymorphic in their 

respective parent plants (Table 6; Appendix D). Genotyping of offspring followed the 

same protocol as for the parent plants.   
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Spore diameter measurements.  For each parent sporophyte that exhibited 

evidence of producing offspring via subsexual processes, ploidy level was assessed 

using spore diamter and known chromosome vouchers as a proxy following the method 

of Sigel et al. (2011. For each individual, spore number per sporangium was counted for 

1–4 sporangia. The diameter of spores contained within those sporangia were measured 

and the mean and standard deviation for each sporangium was calculated.
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Figure 12 

Distribution map of M. lindheimeri sampled for this study. A. Samples 
included in the range-wide survey of genetic variation in M. lindheimeri. B. 
Populations from which summary statistics of genetic diversity were collected. 
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Results 

 

Microsatellite development.  Sequencing of genomic DNA from M. lindheimeri 

(Schuettpelz 450) via 454 technology produced a total of 234,428 sequence reads. The 

survey of raw sequence reads for di-, tri-, tetra-, and pentanucleotide repreats performed 

with MSATCOMMANDER identified 25,295 sequences containing a total of 33,955 

repeats, of which 19,666 were non-complementry repeats (Table 6). Given the surplus of 

repeat regions, I focused efforts toward primer development for repeats that fit the 

following criteria: long repeat length, the presence of flanking sequence on either side of 

the repeat in which to develop primers, and regions with di-, tri-, and tetranucleotide 

repeats. 

 

Table 6. 
    

Repeat Motif Minimum # Repeats 
# Non-

complementary 
Repeats 

Length Range (bp) 
 

   

Dinucleotide 6 16809 12–380 

Trinucleotide 4 2317 12–402 

Tetranucleotide 4 501 16–368 

Pentanucleotide 4 39 20–55 
    

Total repeats:  19666 

 

Survey of genetic variation in apomictic M. lindheimeri.  My initial survey of 

genetic variation across the northern range of M. lindheimeri sporophytes (109 

individuals; Fig. 12A) showed that in general, populations are highly polymorphic (Fig. 

12B; Table 7; Appendix D), with percent polymorphic loci, P, ranging from 57.1% to 

Summary of microsatellite repeats identified in M. lindheimeri. 



107 

100%.  For several populations, a minimal number of individuals were genotyped.  As 

expected, these populations tend to have lower P than those with more samples (Table 7; 

e.g., collections from Oracle [n = 4], Bear Canyon [n = 6], and Mt. Lemmon Road [n = 8] 

compared to those from Paradise [n = 16] and Jacobson Canyon [n = 51]). Individuals 

sampled from Carr Canyon, even though more numerous than those sampled at other 

sites, had relatively lower values of P.  

 

 
Table 7.  

 

 

 

 

 

Calculations of heterozygote frequency (per population over all loci; Het), 

indicate that with increased polymorphism at individual loci in a population generally 

comes an increase in Het (Table 7). Samples taken from Paradise (Table 7; Fig. 12B) 

deviate from this pattern; even though all markers are polymorphic (P = 100 %), 

heterozygote frequency is relatively lower than in other populations (Het = 0.42). 

      

Population n P Het A G 

Mt. Lemmon Road 4 87.5 0.55 2.5 0.9 

Bear Canyon 6 85.7 0.36 1.9 0.3 
Carr Canyon 10 66.7 0.30 2.6 0.2 

Gardner Canyon 6 57.1 0.57 1.7 0 

Jacobson Canyon 51 100 0.56 2.5 0.3 

Mt. Lemmon Road 8 71.4 0.50 1.9 0.5 

Paradise 16 100 0.42 1.9 0.5 

Summary of genetic diversity measures for populations sampled across 
the northern range of M. lindheimeri. Populations correspond to those 
indicated in Fig. 12B.  P = % polymorphic loci out of 7 or 8 loci (8th locus 
failed to amplify for some populations); Het = heterozygote frequency 
over all loci; A = mean number of alleles per locus; G = genetic diversity 
= 1 - Σ Gi

2, where Gi = frequency of the ith genotype. For raw data see 
Appendix D. 
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Calculations of genotypic diversity range from 0 (no diversity; Gardner Canyon) to 0.9 

(distinct genotype in nearly every individual; Oracle); however, the Oracle population 

was poorly sampled, and samples from that population were taken somewhat further 

apart from one another than those in other canyons / populations (for specific localities, 

see Appendix D).  

Culturing and genotyping apomictic offspring of M. lindheimeri.  Spores of M. 

lindheimeri consistently germinated ca. 10 days after sowing with the exception of those 

sown from older herbarium specimens (> 10 years post collection) whose spores took as 

long as two weeks to germinate, or did not germinate at all. Spores sown from chemical-

/ pestiside-treated herbarium specimens failed to germinate.   

For each of the 41 polymorphic parent sporophytes from which spores were 

successfully germinated, an average of 20 (± 7.9; min. = 5, max. = 44) offspring were 

subsequently genotyped. The total number of offspring genotyped for each parent, and 

the marker(s) for which they were genotyped, are indicated in Table 8. Of the 41 parent 

plants, a total of 11 individuals produced offspring with microsatellite profiles that were 

distinct from their own (Table 6); offspring genotypes were, however, these were always 

a subset of the variation present in the parental genotype (Fig. 13). Most instances of 

genotypic variation between parents and their offspring were observed at the JW1YD 

locus, but were also seen (to a lesser extent) at FYM3K, HY3SM, JS90I, HL9PJ, and IQLI0.  

In some cases distinct offspring genotypes were seen for multiple offspring derived from 

the same sporangium (e.g., Beck G9, Beck G1.2, Beck G8, Grusz 171.8, Franklin 4532, and 

Grusz 171.6; Table 8). Grusz 171.6 was noteworthy in having 5 offspring derived from the 

same sporangium with a distinct genotype from that of the parent plant (at JS90I; Table 

8).  In all cases, when offspring derived from the same sporangium exhibited different 

microsatellite profiles from their parent, those offspring all shared identical genotypes 

for that marker.  



Summary of genotyping results across polymorphic M. lindheimeri and their offspring. Individuals for which mul-
tiple sporangia were sampled have their total number of offspring per sporangium separated by a comma. Sporangia 
in which decay of heterozygosity was observed are indicated with a single asterisk. Black circles (l) indicate poly-
morphism detected in parental sporophyte for a given microsatellite marker; red circles (l) signify observed decay 
of heterozygosity in offspring generated by that individual. Red circles denoted with two (**) or three (***) asterisks 
signify whether two or three offspring underwent decay of heterozygosity, respectively; circles marked with two hats 
(^^) had five offspring exhibit decay of heterozygosity. Raw data (i.e., fragment lengths) are listed in Appendix D.

Table 8.
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Microsatellite Locus

Vourcher Information # Offspring 
Sampled HGGWA FYM3K JW1YD JGM27 HY3SM JS90I HL9PJ IQLI0

U.S.A, AZ: Cochise Co., Grusz 173.2 14 l l l l l

U.S.A, AZ: Cochise Co., Grusz 173.3 21 l l l

U.S.A, AZ: Cochise Co., Grusz 173.17 16, 11 l l

U.S.A, AZ: Cochise Co., Grusz Carr 1 27 l l

U.S.A, AZ: Cochise Co., Grusz Carr2 16 l l

U.S.A, AZ: Cochise Co., Grusz Carr 3 27* l l l

U.S.A., AZ: Graham Co., Beck G1.1 23 l l l l

U.S.A., AZ: Graham Co., Beck G1.2 17*, 22 l l l l** l

U.S.A., AZ: Graham Co., Beck G5 20, 24 l l

U.S.A., AZ: Graham Co., Beck G6 19 l l l

U.S.A., AZ: Graham Co., Beck G7 18 l l l l

U.S.A., AZ: Graham Co., Beck G8 19* l l l l**
U.S.A., AZ: Graham Co., Beck G9 20* l l l l l**
U.S.A., AZ: Graham Co., Grusz 171.2 24* l l l l

U.S.A., AZ: Graham Co., Grusz 171.4 14 l l l l



Vourcher Information # Offspring 
Sampled HGGWA FYM3K JW1YD JGM27 HY3SM JS90I HL9PJ IQLI0

U.S.A., AZ: Graham Co., Grusz 171.5 18 l l l l

U.S.A., AZ: Graham Co., Grusz 171.6 20* l l l^^ l

U.S.A., AZ: Graham Co., Grusz 171.7 12* l l l l

U.S.A., AZ: Graham Co., Grusz 171.8 17 l l l l***
U.S.A., AZ: Graham Co., Grusz 171.12 24 l l l l

U.S.A., AZ: Graham Co., Grusz 171.13 24 l l l l

U.S.A., AZ: Graham Co., Grusz 171.14 23 l l l l

U.S.A., AZ: Graham Co., Grusz 178.2 17 l l

U.S.A., AZ: Graham Co., Grusz 178.6 7 l l l l l

U.S.A., AZ: Graham Co., Grusz 178.8 18* l l l l l

U.S.A., AZ: Pima Co., Cottam 12886 (UT) 8* l l l l

U.S.A., AZ: Pima Co., Grusz 177.1 14* l l

U.S.A., AZ: Pima Co., Grusz 177.3 12, 16 l l

U.S.A., AZ: Pinal Co., Grusz 41B 17 l l l l l l l

U.S.A., AZ: Pinal Co., Grusz 45 20 l l l l

U.S.A., AZ: Pinal Co., Grusz 47 9 l l l l

U.S.A., AZ: Santa Cruz Co., Franklin 4532 (NY) 11, 18, 18* l l** l l

U.S.A., AZ: Santa Cruz Co., Franklin 5376 (NY) 20 l l

U.S.A., AZ: Santa Cruz Co., Grusz 175.2 25 l l l l

U.S.A., AZ: Santa Cruz Co., Grusz 175b.4 26 l l l l

U.S.A., NM: Hidalgo Co., Worthington 12682  (NY) 2, 21 l l

U.S.A., NM: Luna Co., Worthington 19958 (NY) 26 l l
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Vourcher Information # Offspring 
Sampled HGGWA FYM3K JW1YD JGM27 HY3SM JS90I HL9PJ IQLI0

U.S.A., TX: Jeff Davis Co., Bridges s.n. (SRSC) 5 l

MEX, Chihuahua, Spencer & Atwood 1176 (UT) 20 l

MEX, San Luis Potosí, Rothfels 3066 13 l l l l l l

Proportion of parents polymorphic: 0.17 0.51 0.73 0.05 0.56 0.80 0.53 0.17

Total offspring genotyped: 91 30 626 27 456 716 460 111

Total decay events observed: 0 1 6 0 0 7 9 2
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Figure 13. 

Subset of microsatellite profiles for apomictic M. lindheimeri 
sporophytes and their genetically distinct offspring. For all panels A–D, 
parental genotypes are shown above their offspring. A. JW1YD genotype for 
Beck G9 and one offspring that is lacking the 196 bp parental allele. B. HL9PJ 
genotype for Grusz 171.6 and one offspring individual that is lacking the 419 
bp parental allele. C. HGGWA genotype for Grusz Carr 3 and one offspring 
individual that is lacking the 185 bp parental allele. D. FYM3K genotype of 
Grusz 177.1 and one offspring that is lacking the 200 bp parental allele. 
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Spore diameter measurements.  For each of the 11 parents that produced genetically 

distinct offspring, ploidy was assessed using spore diameter as a proxy (Sigel et al. 

2011). Mean spore diameter for those individuals was then compared to the spore 

diameter of individual chromosome vouchers of M. lindheimeri and closely related taxa 

for which chromosome number had been previously documented (Fig. 14; Appendix D). 
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Figure 14 
Summary of spore number per sporangium and spore diameter for 

sporophytes that produced genetically distinct offspring. Dots and whiskers 
signify mean ± one standard deviation. Filled dots = 64 normal spores per 
sporangium (black) or ca. 64 irregular spores per sporangium (gray); white dots = 
32 spores per sporangium. Vouchers of known chromosome base number are 
designated with a dashed line. Individuals producing either 32 or ca. 64 irregular 
(i.e., abortive) spores per sporangium on the same plant have arrows connecting 
their two respective sporangial counts / measurements. 
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Discussion 
 

Premeiotic chromosome doubling is, more often than not, the rule of 

reproduction for many parthenogenetic vertebrates.  This process is well documented 

across the animal kingdom, but seems to have variable consequences in different 

parthenogenetic lineages. In some cases, as in the parthenogenetic whiptail lizards, 

premeiotic duplication is implicated to be a mechanism by which asexual lineages 

maintain heterozygosity. Lutes et al. (2010) demostrate that during meiosis in the 

allotriploid lizard Aspidoscelis exsanguis, sister chromosomes form bivalent pairs with 

high fidelity. They suggest that pairing of sister chromosomes during meiosis is a 

surefire mechanism for maintaining fixed heterozygosity in these parthenogenetic 

reptiles. MacGregor and Uzzell (1964) came to a similar conclusion many years earlier, 

based on their studies of parthenogenetic triploid salamanders of the Ambystoma 

jeffersonianum complex. They inferred that following endomitosis, sister chromosomes 

synapse with their identical homologues. Unlike studies in whiptail lizards, this 

conclusion did not hold true for long. Subsequent studies of Ambystoma allotriploids 

clearly documented the pairing of homeologous chromosomes following endomitosis in 

certain allotriploid lineages (Bi and Bogart 2006).  

The only plant analogue to premeiotic doubling in parthenogenetic animals (to 

my knowledge) is Döpp-Manton sporogenesis in the ferns (DMS; Döpp 1939; Manton 

1950; Gastony and Windham 1989). The outcome of DMS in ferns was first explored by 

Bierhorst (1975). Rather by accident, he stumbled upon an easily traceable, paracentric 

inversion that allowed him to observe homeologous pairing in a single apomictic 

individual of Trichomanes pinnatum Hedw. from French Guiana. A few years prior to 

Bierhorst’s finding, Klekowski (1973) had argued that homeologous pairing could 
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provide an adaptive advantage in homosporous ferns by permitting the storage and 

release of genetic variability in the face of extreme inbreeding. He subsequently found 

empirical evidence for this hypothesis in a sexual tetraploid fern, Ceratopteris thalictroides 

(L.) Brongn., by cytologically /visually following the inheritance of a similar paracentric 

chromosomal inversion (Klekowski and Hickok 1974; Hickok 1978a, 1978b). 

Exploration of homeologous (or non-sister) chromosome pairing was next 

investigated years later by Ishikawa et al. (2003). These authors genotyped 284 progeny 

of one apomictic allotriploid individual of Dryopteris nipponensis Koidz. at one isozyme 

locus, Pgi-2. Of those 284 progeny, they observed 5 instances of genetic segregation 

(from abc in the parent plant to aab (x3), bbc (x1), and bcc (x1) in the segregating 

offspring). Recently, Ootsuki et al. (2012) explored the same processes in the apogamous 

triploid fern, Cyrtomium fortunei J. Sm. These authors genotyped 732 progeny from one 

individual of C. fortunei at the nuclear marker pgiC and found 19 progeny revealing 

evidence of autosegregation. Based on these few studies, it seems safe to conjecture that 

premeiotic duplication in apomictic ferns does indeed—unlike in whiptail lizards (e.g., 

Fig. 13A)—provide a vehicle for the pairing of non-sister chromosomes, thereby 

generating genetically distinct (albeit more homozygous) offspring (Figs. 13A, B). 

In each of the studies described above, the pairing of non-sister chromosomes 

after premeiotic duplication (and the occurrence of subsexual processes following that 

pairing) was only observed in one (or two) individuals; thus limiting assessment of the 

generality of this phenomemon in natural apomictic populations. To assess the 

generality of subsexual processes, I developed eight highly polymorphic microsatellite 

markers for Lindheimer’s Lip Fern, Myriopteris lindheimeri. Using these markers, I 

identified 41 highly heterozygous individuals from across the species range to test for 
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the occurrence of subsexual processes. I then genotyped a total of 847 offspring of those 

parent plants (an average of 20 offspring per parent) at the eight microsatellite loci 

developed for this study (Table 5). The genotypes of parental sporophytes at those 

eight loci were then compared to the genotypes of their offspring: 

 

H0:  Parent sporophyte genotype = Offspring gametophyte genotype  (Fig. 13a) 

H1:  Parent sporophyte genotype ≠ Offspring gametophyte genotype (Fig. 13b,c) 

 

In ferns, each spore, and thus each gametophyte, is a single product of 

meiosis; therefore, if apomictic offspring genotypes are not identical to the parental 

sporophyte it can be concluded that subsexual processes are acting during DMS in 

these apomictic triploid ferns (Fig. 13b,c). It is also possible that random mutation 

may contribute to variation in the offspring, but for the purposes of this study 

random mutation is assumed to occur at extremely low levels (although mutation 

rate is not known in these ferns). 
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Figure 15 

 
   

!" #" $"

ENDOMITOSIS

(3x)

(3x)

(3x)

(6x)

Possible outcomes of Döpp-Manton sporogenesis.  Endomitosis 
prior to meiosis is shown in red.  Three possible outcomes of Döpp-Manton 
sporogenesis include: (a) pairing of homologous duplicated chromosomes 
and lack of independent assortment (IA), resulting in meiotic products 
identical in ploidy level and genomic constitution to the parent plant; (b) 
pairing of nonhomologous/homeologous chromosomes and IA, resulting in 
genetically variable meiotic products; and (c) pairing of 
nonhomologous/homeologous chromosomes, recombination and IA 
leading to genetically variable meiotic products with unique chromosome 
haplotypes. 

Identical offspring Recombinant offspring Recombinant offspring 
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 My results show that across the 847 progeny sampled, 25 instances of decay of 

heterozygosity were observed at the eight markers examined (Table 8; Appendix D), 

demonstrating that subsexual processes are acting in this apomictic lineage. It is 

noteworthy that, even given the shallow sampling of progeny from given individuals, 

27% of parent sporophytes sampled showed evidence of subsexual processes.  Among 

those, some individuals produced multiple individual offspring derived from the same 

sporangium with identical patterns of decay (e.g., at JW1YD in offspring of Franklin 

4532; Table 8). As illustrated in Figure 15, we expect to find the reciprocal product of 

decay in offspring produced from the same sporangium (provided all spores from that 

sporangium germinate). This was not observed in the majority of segregating offspring 

of M. lindheimeri. One explanation for the lack of reciprocal decay is that most parents 

were diallelic at a given microsatellite marker (Appendix D). Had they been triallelic, it 

would have been an expectation to observe this decay, but in individuals with only two 

alleles decay may be present but masked by an initial double dose of one allele (e.g., aab 

produces aaa and abb via subsexual processes, only the former result of which is visible 

using microsatellite genotyping).  

My survery of genetic variation among wild individuals (and in natural 

populations) of M. lindheimeri (Fig. 11A,B; Appendix D) showed that heterozygote 

frequency (Het; Table 7) was generally high in natural populations of this apomictic 

triploid. Unfortunately, I was not able to estimate allele frequencies, and hence He, 

because the majority of triploid heterozygotes observed only exhibited two alleles 

(therefore, not allowing me to distinguish which of those two alleles was present in 

higher frequency); I was unable to determine whether Het was higher than expected in a 

population undergoing random mating. It is true though, that asexual populations are 
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known for their tendency to produce an excess of heterozygotes. In tandem with this 

increase in fixed heterozygosity, asexual populations are expected to have relatively low 

levels of genotypic diversity (G; Table 7). This held true for populations of M. 

lindheimeri, especially in the Gardner Canyon population; with the exception of Oracle 

(G = 0.9), but this is probably best explained by sampling effect given that only 4 

individuals were collected from that locality. 

The population at Carr Canyon had low average heterozygosity relative to the 

other populations sampled; interestingly, one of the segregating apomicts observed in 

this study (Grusz Carr 3) came from that population.  If autosegregation is common in 

this population, it may explain the low heterozygosity observed at Carr Canyon. The 

population at Jacobson Canyon did not have a particularly low average heterozygosity 

even though 7 of the 11 segregating individuals observed were collected from that site. 

A large number of samples from Jacobson Canyon were analysed because many 

collections from that population were highly heterozygous. Subsequent spore 

measurements of segregating apomicts from this site (Fig. 14) indicate that both triploid 

(Beck G8, Grusz 171.8, Grusz 171.6, Grusz 171.2) and diploid (Beck G9, Beck G1.2) apomicts 

occur at this location. These putatively diploid apomictic individuals produced two 

types of sporangia—some that produce 32 spores as a result of premeiotic duplication, 

and others that produce ca. 64 irregularly shaped spores (Fig. 14).  Prior to this study, 

diploid apomicts were never observed in the Lip Ferns (Myriopteris), or in the larger, 

globally distributed cheilanthoid clade (comprised of xeric-adapted ferns among which 

apomixis is common). Based on these observations, Jacobson Canyon may represent a 

cradle of apomixis in a population with mixed reproductive modes. 
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Conclusion 

 

My results show that—as seen in apomictic triploid Ambystoma salamnders—

premeiotic chromosome duplication in apomictic M. lindheimeri is a source of genotypic 

diversity, both at the individual and population levels and that this process could very 

well be widespread in apomictic fern lineages that undergo DMS. Thus, Lip Ferns are 

not like (Aspidoscelius) lizards, at least when it comes to “mixing” things up. 
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FURTHER CONTRIBUTIONS 

 

In addition to the research undertaken for the completion of my dissertation, I 

have also contributed to a variety of collaborations and their resulting peer-reviewed 

publications. These papers span a range of topics—from molecular and morphological 

systematics through to the evolution of fern genomes—each of which has served to 

expand our current understanding of fern evolutionary biology. 

 Grusz (2013) formally named the taxon previously referred to Cheilanthes villosa 

within the genus Myriopteris. This new species was named in honor of Michael D. 

Windham, in acknowledgement of his lifelong study of cheilanthoid ferns, as well as his 

many in-depth investigations into the origins of apomictic polyploid lineages. 

Lagomarsino & al. (2012) explored the evolution of primary hemiepiphytism 

and gametophyte morphology in Elaphoglossum amygdalifolium (Dryopteridaceae). 

Because E. amygdalifolium holds the critical phylogenetic position as sister to the 

remaining 600+ species within the Dryopteridaceae, documenting its status as a primary 

hemiepiphyte provided a foundation for understanding epiphytism in general across 

this large, cosmopolitan fern family. This study was the first to document 

hemiepiphytism in the species, and the first of my publications to be completed with a 

student coauthor. 

Wolf & al. (2011) was a collaborative paper on the evolution of chloroplast genes 

and genomes in ferns. This collaboration was spurred by analysis of next generation 454 

sequencing data obtained for the completion of my dissertation research. Here, we 

published the first complete, annotated chloroplast genome of the apomictic triploid 
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fern, Cheilanthes (i.e., Myriopteris) lindheimeri. We also described broad evolutionary 

patterns and processes in fern plastid genomes, including a review of RNA editing and 

nucleotide substitution patterns across all currently available fern plastomes. 

Pryer & al. (2010) utilizes DNA barcoding as a resource for unveiling a case of 

mistaken identity in the fern horticultural trade. We used three plast regions to confirm 

that indivuals marketed as Cheilanthes wrightii (= M. wrightii), which is native to deserts 

of the southwestern United States, are actually Cheilanthes distans, an Australian 

endemic. Our results reinforce the importance of DNA barcoding in the international 

horticultural industry.  

Windham & al. (2009) provides an overview of the cheilanthoid fern phylogeny, 

which encompasses a monophyletic group containing nearly 500 spp. of mostly xeric-

adapted ferns in the Pteridaceae. We recognize seven major clades within cheilanthoid 

ferns and present the informal name ‘myriopterids’ in reference to the genus now 

described (herein, Part 2) as Myriopteris.  

Schuettpelz & al. (2008) describes primers for the amplification of a novel low-

copy nuclear gene in ferns, gapCp. Historically, the exceptional lack of primers that 

successfully amplify low-copy nuclear genes in ferns has greatly inhibited our progress 

in understanding fern evolution. This broadly useful region is presented as a tool for 

phylogenetic analyses, particularly for the study of hybridization and polyploidy in 

leptosporangiate ferns. 

Rothfels & al. (2008) was the first of many papers published as a result of our 

research into the molecular phylogeny and evolution of cheilanthoid ferns. This effort 

provided a monophyletic definition of Notholaena (Pteridaceae), one genus within the 

pellaeid ferns, which, combined, comprise the sister clade to Myriopteris.
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Taxa sampled for DNA sequence data in this study, including voucher 

information and GenBank accession numbers.  Taxon names are in bold italics followed 

by the nomenclatural authority.  Numbers in bold are identification numbers used in 

this study followed by corresponding Fern DNA database numbers 

(http://www.pryerlab.net/DNA_database.shtml).  These are followed by ploidy level 

(bold), then by collector and number (italics), location of voucher (herbarium acronym in 

parentheses), and finally by the loci sequenced (italics).  Each consensus allele sequence 

of nuclear gapCp is identified, followed by the number of clones included in that 

consensus, the length of the sequence reported, and its corresponding GenBank 

accession number.  Sequence data for plastid loci (rbcL-atpB, trnG-trnR, trnPUGG-petG, and 

rps4-trnSGGA) for each accession are followed by their corresponding GenBank accession 

numbers. 

 

Cheilanthes covillei Maxon, 1: 3485 (diploid), Windham 2945 (UT), gapCp, allele 

1, 4 clones, 600bp, FJ870860, allele 2, 3 clones, 600bp, FJ870861, rbcL-atpB, FJ870813, trnG-

trnR, FJ870771, trnPUGG-petG, FJ870791, rps4-trnSGGA, FJ870835, 2: 3150 (diploid), 

Schuettpelz 443 (DUKE), gapCp, allele 1, 7 clones, 600bp, FJ870857, allele 2, 4 clones, 

596bp, FJ870858, rbcL-atpB, FJ870814, trnG-trnR, EU268697, trnPUGG-petG, FJ870792, rps4-

trnSGGA, FJ870836, 3: 3487 (diploid), Windham 3322 (DUKE), gapCp, allele 1, 9 clones, 

600bp, FJ870862, rbcL-atpB, FJ870815, trnG-trnR, FJ870772, trnPUGG-petG, FJ870793, rps4-

trnSGGA, FJ870837, 4: 3156 (diploid),  Schuettpelz 449 (DUKE), gapCp, allele 1, 6 clones, 

600bp, FJ870859, rbcL-atpB, FJ870816, trnG-trnR, FJ870773, trnPUGG-petG, FJ870794, rps4-

trnSGGA, FJ870838, 5: 3845 (diploid),  Windham 3436 (DUKE), gapCp, allele 1, 4 clones, 

600bp, FJ870863, allele 2, 3 clones, 600bp, FJ870864, rbcL-atpB, FJ870817, trnG-trnR, 

FJ870774, trnPUGG-petG, FJ870795, rps4-trnSGGA, FJ870839;  Cheilanthes fendleri Hooker, 1: 
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3690 (diploid), Windham 3408 (DUKE), gapCp, allele 1, 4 clones, 602bp, FJ870866, allele 2, 

2 clones, 602bp, FJ870867, rbcL-atpB, FJ870818, trnG-trnR, FJ870775, trnPUGG-petG, 

FJ870796, rps4-trnSGGA, FJ870840, 2: 3177 (diploid), Schuettpelz 470 (DUKE), gapCp, allele 

1, 8 clones, 602bp, FJ870865, rbcL-atpB, FJ870819, trnG-trnR, FJ870776, trnPUGG-petG, 

FJ870797, rps4-trnSGGA, FJ870841, 3: 3691 (diploid), Windham 3410 (DUKE), gapCp, allele 

1, 6 clones, 602bp, FJ870868, rbcL-atpB, FJ870820, trnG-trnR, FJ870777, trnPUGG-petG, 

FJ870798, rps4-trnSGGA, FJ870842;  Cheilanthes lindheimeri Hooker, 1: 3490 (diploid), 

Windham 97-015 (DUKE, UT), gapCp, allele 1, 4 clones, 601bp, FJ870879, allele 2, 1 clone, 

601bp, FJ870880, rbcL-atpB, FJ870821, trnG-trnR, FJ870778, trnPUGG-petG, FJ870799, rps4-

trnSGGA, FJ870843, 2: 3157 (diploid), Schuettpelz 450 (DUKE), gapCp, allele 1, 3 clones, 

601bp, FJ870872, allele 2, 3 clones, 601bp, FJ870873, rbcL-atpB, FJ870822, trnG-trnR, 

FJ870779, trnPUGG-petG, FJ870800, rps4-trnSGGA, FJ870844, 3: 3692 (diploid), Spellenberg et 

al. 5056 (NMC), gapCp, allele 1, 3 clones, 601bp, FJ870881, allele 2, 2 clones, 600bp, 

FJ870882, rbcL-atpB, FJ870823, trnG-trnR, FJ870780, trnPUGG-petG, FJ870801, rps4-trnSGGA, 

FJ870845, 4: 3205 (triploid), Schuettpelz 498 (DUKE), gapCp, allele 1, 5 clones, 601bp, 

FJ870877, allele 2, 5 clones, 601bp, FJ870878, rbcL-atpB, FJ870824, trnG-trnR, FJ870781, 

trnPUGG-petG, FJ870802, rps4-trnSGGA, FJ870846, 5: 3196 (triploid), Schuettpelz 489 (DUKE), 

gapCp, allele 1, 9 clones, 601bp, FJ870874, allele 2, 3 clones, 600bp, FJ870875, allele 3, 5 

clones, 601 bp, FJ870876, rbcL-atpB, FJ870825, trnG-trnR, FJ870782, trnPUGG-petG, 

FJ870803, rps4-trnSGGA, FJ870847, 6: 3147 (triploid), Schuettpelz 440 (DUKE), gapCp, allele 

1, 5 clones, 601bp, FJ870869, allele 2, 6 clones, 601bp, FJ870870, allele 3, 3 clones, 600bp, 

FJ870871, rbcL-atpB, FJ870826, trnG-trnR, FJ870783, trnPUGG-petG, FJ870804, rps4-trnSGGA, 

FJ870848;  Cheilanthes newberryi (D.C. Eaton) Domin, 1: 3827 (diploid),  Metzgar 174 

(DUKE), gapCp, allele 1, 4 clones, 582bp, FJ870883, rbcL-atpB, FJ870827, trnG-trnR, 

EU268685, trnPUGG-petG, FJ870805, rps4-trnSGGA, FJ870849;  Cheilanthes wootonii Maxon, 
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1: 3195 (triploid), Schuettpelz 488 (DUKE), gapCp, allele 1, 3 clones, 602bp, FJ870884, allele 

2, 3 clones, 602bp, FJ870885, allele 3, 5 clones, 601bp, FJ870886, rbcL-atpB, FJ870828, trnG-

trnR, FJ870784, trnPUGG-petG, FJ870806, rps4-trnSGGA, FJ870850, 2: 3693 (triploid), 

Windham 3409 (DUKE), gapCp, allele 1, 4 clones, 600bp, FJ870887, allele 2, 3 clones, 

602bp, FJ870888, allele 3, 3 clones, 602bp, FJ870889, rbcL-atpB, FJ870829, trnG-trnR, 

FJ870785, trnPUGG-petG, FJ870807, rps4-trnSGGA, FJ870851, 3: 3694 (triploid), Spellenberg & 

Mart 10407 (NMC), gapCp, allele 1, 4 clones, 600bp, FJ870890, allele 2, 8 clones, 602bp, 

FJ870891, allele 3, 2 clones, 602bp, FJ870892, rbcL-atpB, FJ870830, trnG-trnR, FJ870786, 

trnPUGG-petG, FJ870808, rps4-trnSGGA, FJ870852;  Cheilanthes yavapensis T. Reeves ex 

Windham, 1: 3489 (tetraploid), McGill 6156 (UT), gapCp, allele 1, 3 clones, 600bp, 

FJ870902, allele 2, 2 clones, 600bp, FJ870903, allele 3, 6 clones, 602bp, FJ870904, rbcL-atpB, 

FJ870831, trnG-trnR, FJ870787, trnPUGG-petG, FJ870809, rps4-trnSGGA, FJ870853, 2: 3151 

(tetraploid), Schuettpelz 444 (DUKE), gapCp, allele 1, 3 clones, 600bp, FJ870899, allele 2, 5 

clones, 602bp, FJ870900, allele 3, 4 clones, 600bp, FJ870901, rbcL-atpB, FJ870832, trnG-

trnR, FJ870788, trnPUGG-petG, FJ870810, rps4-trnSGGA, FJ870854, 3: 3122 (tetraploid), 

Schuettpelz 415 (DUKE), gapCp, allele 1, 16 clones, 601bp, FJ870893, allele 2, 7 clones, 

602bp, FJ870894, allele 3, 8 clones, 600bp, FJ870895, rbcL-atpB, FJ870833, trnG-trnR, 

FJ870789, trnPUGG-petG, FJ870811, rps4-trnSGGA, FJ870855, 4: 3145 (tetraploid), Schuettpelz 

438 (DUKE), gapCp, allele 1, 9 clones, 601bp, FJ870896, allele 2, 2 clones, 602bp, FJ870897, 

allele 3, 3 clones, 600bp, FJ870898, rbcL-atpB, FJ870834, trnG-trnR, FJ870790, trnPUGG-petG, 

FJ870812, rps4-trnSGGA, FJ870856. 
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Taxon—Fern DNA Database number (fernlab.biology.duke.edu), Voucher collector 

and collector number (Herbarium Acronym); GenBank accession numbers (with citations 

for previously published sequences, if existing) for trnG–trnR; atpA; rbcL (in that order); 

(# sporangia studied) spore number per sporangium observed for each sporangium 

studied. For selected taxa represented by more than one duplicate of the same collection, 

a herbarium accession number is specified next to the herbarium acronym. Taxa that 

were not included in the molecular analyses or those that were not included for inferring 

reproductive mode have a long dash ‘——’ in place of either the GenBank accession 

number or spore number per sporangium observations, respectively. Those accessions 

not included in molecular analyses do not have a Fern DNA Database number 

(designated here as ‘no DB #’). 

 

Argyrochosma microphylla—4583, Worthington 34623 (DUKE); HQ846476 (Sigel et 

al. 2011); HQ846374 (Sigel et al. 2011); HQ846423 (Sigel et al. 2011); ——. Astrolepis 

windhamii—3138, Schuettpelz 431 (DUKE); JF929936 (Beck et al. 2011); KF961705; 

KF961768; ——. Myriopteris aemula—1: 5653, Beck 1037 (DUKE); KF961828; KF961701; 

KF961764; (2) 58, 59. 2: 4496, Yatskievych & Gastony 89-222 (IND); KF961827; KF961700; 

KF961763; ——. Myriopteris alabamensis—1: 3175, Schuettpelz 468 (DUKE); KF961829; 

KF961702; KF961765; ——. 2: 4510, Windham 3450 (DUKE); KF961830; KF961703; 

KF961766; (1) 32. 3: no DB #, Blomquist 9602, (DUKE); ——; (3) 29, 29, 31. Myriopteris 

allosuroides—1: 4497, Yatskievych & Gastony 89-237 (IND); KF961831; KF961704; 

KF961767; ——. Myriopteris aurea—1: 7355, Rothfels 3591 (DUKE); KF961836; KF961710; 

KF961773; ——. 2: 6914, Beck 1192 (DUKE); KF961835; KF961709; KF961772; (1) 23. 3: 

3173, Schuettpelz 466 (DUKE); KF961832; KF961706; KF961769; ——. 4: 4477, Schuettpelz 

991 (DUKE); KF961833; KF961707; KF961770; (1) 26. 5: 5654, Beck 1038 (DUKE); 
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KF961834; KF961708; KF961771; ——. Myriopteris chipinquensis—1: 4498, Knobloch 1996B 

(IND); KF961839; KF961714; KF961776; ——. Myriopteris clevelandii—1: 3833, Metzgar 180 

(DUKE); KF961840; KF961715; KF961777; (2) 62, 63. 2: no DB #, Cleveland s.n. (YU); ——; 

(1) 56. Myriopteris cooperae—1: 6445, Taylor 15925 (UC); KF961841; KF961717; KF961778; 

——. Myriopteris covillei—1: 3150, Schuettpelz 443 (DUKE); EU268679 (Rothfels et al. 

2008); EU268733 (Rothfels et al. 2008); EU268733 (Rothfels et al. 2008); ——. 2: 3845, 

Windham 3436 (DUKE); FJ870774 (Grusz et al. 2009); KF961718; KF961779; (2) 57, 59. 3: no 

DB #, Beck 1090 (DUKE); ——; (1) 61. 4: no DB #, Rothfels 2571 (DUKE); ——; (1) 64. 5: no 

DB #, Covillei & Funston 593 (US); ——; (4) 61, 63, 64, 64. Myriopteris cucullans—1: 7138, 

Beck 1137 (DUKE); KF961842; KF961719; KF961780; ——. Myriopteris fendleri—1: 3177, 

Schuettpelz 470 (DUKE); FJ870776 (Grusz et al. 2009); KJ000204; KJ000203; ——. 

Myriopteris fimbriata—1: 6321, Hallberg 1656 (NY); KF961846; KF961723; KF961784; (2) 62, 

64. Myriopteris gracilis—1: 3123, Schuettpelz 416 (DUKE); KF961845; KF961722; KF961783; 

——. 2: no DB #, Rothfels 2470 (DUKE); ——; (4) 30, 30, 32, 32. 3: no DB #, Windham 0221A 

(DUKE); ——; (1) 28. Myriopteris gracillima—1: 6334, Windham 3630 (DUKE); KF961849; 

KF961726; KF961787; (2) 61, 62. 2: 6005, Schuettpelz 1356A (DUKE); KF961848; KF961725; 

KF961786; (2) 52, 57. 3: 3871, Pryer 06-03 (DUKE); KF961847; KF961724; KF961785; ——. 

Myriopteris intertexta—1: 7594, Greenhouse 5086 (JEPS); KF961852; KF961729; KF961790; 

——. 2: no DB #, Dudley s.n. (US); ——; (2) 60, 64. Myriopteris jamaicensis—1: 6444, Clase 

3856 (US); KF961853; KF961730; KF961791; ——. Myriopteris lanosa—1: 5038, Schuettpelz 

1244A (DUKE); KF961855; KF961732; KF961793; ——. 2: 6114, Rothfels 2717 (DUKE); 

KF961856; KF961733; KF961794; (3) 59, 61, 64. 3: 4495, Hegeman s.n. (IND); KF961854; 

KF961731; KF961792; ——. Myriopteris lendigera—1: 5575, Grusz 110 (DUKE); KF961858; 

KF961735; KF961796; (1) 64. 2: 7153, Beck 1226 (DUKE); KF961859; KF961736; KF961797; 

(1) 61. 3: 5074, Yatskievych 89-432 (IND); KF961857; KF961734; KF961795; ——. 4: 3167, 
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Schuettpelz 460 (DUKE); EU268681 (Rothfels et al. 2008); EU268735 (Rothfels et al. 2008); 

EU268784 (Rothfels et al. 2008); ——. Myriopteris lindheimeri—1: 3157, Schuettpelz 450 

(DUKE); FJ870779 (Grusz et al. 2009); KF961737; KF961798; (2) 30, 31. 2: 5364, Rothfels 

2490 (DUKE); KF961861; KF961739; KF961800; ——. 3: 3178, Schuettpelz 471 (DUKE); 

KF961860; KF961738; KF961860; ——. 4: no DB #, Lindheimer 744 (K: K000501493); ——; 

(1) 32. 5: no DB #, Lindheimer 744 (K: K000501491); ——; (2) 32, 44. Myriopteris longipila—

1: 6325, Mickel 6317 (NY); KF961862; ——; KF961801; ——. Myriopteris marsupianthes—1: 

6158, Jankiewicz 13 (UC); KF961864; KF961741; KF961803; ——. Myriopteris mexicana—1: 

7148, Beck 1151 (DUKE); KF961865; KF961742; KF961804; ——. Myriopteris mickelii—1: 

6327, Salas et al. 1848 (NY); KF961866; KF961743; KF961805; ——. Myriopteris 

microphylla—1: 4480, Schuettpelz 994 (DUKE); KF961867; KF961744; KF961806; ——. 2: 

5703, Kessler 9568 (UC); KF961868; KF961745; KF961807; ——. 3: 9246, Proctor 39365 (US); 

KF961863; KF961740; KF961802; ——. Myriopteris moritziana—1: 7353, Rothfels 3589 

(DUKE); KF961869; KF961746; KF961808; (3) 41, 42, 47. 2: no DB #, Moritz 263 (GH); ——; 

(1) ca. 64. Myriopteris myriophylla—1: 4475, Schuettpelz 989 (DUKE); KF961870; KF961747; 

KF961809; (4) 28, 30, 31, 32. 2: 6520, Rothfels 3082 (DUKE); KF961871; KF961748; 

KF961810; (1) 31. 3: 6674, Rothfels 3281 (DUKE); KF961872; KF961749; KF961811; ——. 4: 

4484, Brown 83-31-4 (IND); EU268684 (Rothfels et al. 2008); EU268737 (Rothfels et al. 

2008); EU268786 (Rothfels et al. 2008); ——. 5: no DB #, Schuettpelz 990 (DUKE); ——; (1) 

30. Myriopteris newberryi—1: 3827, Metzgar 174 (DUKE); EU268685 (Rothfels et al. 2008); 

EU268738 (Rothfels et al. 2008); EU268787 (Rothfels et al. 2008); (1) 62. Myriopteris 

notholaenoides—1: 4494, Windham 481 (DUKE); KF961750; KF961750; KF961812; (2) 31, 32. 

2: 5134, Grusz et al. 08-020 (DUKE); KF961874; KF961751; KF961813; (1) 31. Myriopteris 

parryi—1: 3802, Metzgar 149 (DUKE); KF961875; KF961753; KF961815; (2) 50, 63. 2: no DB 

#, Windham & Yatskievych 0340A (DUKE); ——; (1) 63. Myriopteris peninsularis—1: 5030, 
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Leon de la Luz 9764 (MO); KF961876; KF961754; KF961816; ——. Myriopteris pringlei—1: 

3209, Schuettpelz 502 (DUKE); HM003035 (Pryer et al. 2010) HM003027 (Pryer et al. 2010); 

HM003031 (Pryer et al. 2010); ——. 2: no DB #, Windham & Yatskievych 0248A (DUKE); —

—; (1) 42. Myriopteris pringlei var. moncloviensis—1: no DB #, Palmer 1378 (NY); ——; (3) 

40, 49, 64. Myriopteris rawsonii—1: 9185, Smook 11325 (PRE); KF961877; KF961756; 

KF961818; (1) 41. 2: no DB #, Goldblatt 7014 (PRE); ——; (3) 53, 58, 61. Myriopteris rufa—1: 

5391, Rothfels 2515 (DUKE); KF961837; KF961711; KF961774; (1) 31. 2: 5367, Rothfels 2493 

(DUKE); KF961844; KF961721; KF961782; ——. 3: 6199, Windham 3545 (DUKE); 

KF961838; KF961713; KF961775; (1) 31. 4: 2968, Schuettpelz 323 (DUKE); JQ855901 

(Johnson et al. 2012); EF452084 (Schuettpelz et al. 2007); EF452144 (Schuettpelz et al. 

2007); (1) 31. 5: 3814, Metzgar 161 (DUKE); KF961843; KF961720; KF961781; (1) 32. 6: no 

DB #, Rothfels 3902 (DUKE); ——; (1) 30. 7: no DB #, Windham & Windham 0021B (DUKE); 

——; (1) 16. Myriopteris scabra—1: 4500, Gastony 90-10-1 (IND); KF961850; KF961727; 

KF961788; ——. 2: 5652, Beck 1036 (DUKE); KF961851; KF961728; KF961789; (1) 60. 

Myriopteris tomentosa—1: 2721, Christenhusz 3823 (DUKE); KF961878; KF961757; 

KF961819; ——. Myriopteris viscida—1: 3822, Metzgar 169 (DUKE); KF961880; KF961759; 

KF961821; (3) 32, 32, 32. Myriopteris windhamii—1: 4491, Windham 458 (DUKE); KF961881; 

KF961760; KF961822; ——. 2: 5666, Beck 1050 (DUKE); KF961879; KF961758; KF961820; 

(1) 27. 3: no DB #, Lemmon s.n. (US); ——; (1) 32. Myriopteris wootonii—1: 3195, Schuettpelz 

488 (DUKE); FJ870784 (Grusz et al. 2009); KF961761; KF961823; ——. Myriopteris 

wrightii—1: 3148, Schuettpelz 488 (DUKE); HM003034 (Pryer et al. 2010); HM003026 

(Pryer et al. 2010); HM003030 (Pryer et al. 2010); ——. 2: no DB #, Windham 0341A 

(DUKE); (2) 58, 63. Myriopteris yatskievychiana—1: 6333, Burquez 96-302 (MO); KF961884; 

KF961712; KF961825; ——. Myriopteris yavapensis—1: 3122, Schuettpelz 415 (DUKE); 

FJ870789 (Grusz et al. 2009); KF961716; KF961826; (1) 29. 2: no DB #, Licher 778 (DUKE); 



 

131 

——; (3) 21, 31, 31. Paragymnopteris marantae—3736, Yatskievych 02-35 (MO); EU268711 

(Schuettpelz et al. 2007); EU268763 (Schuettpelz et al. 2007); EF452161 (Schuettpelz et al. 

2007); ——. Pellaea atropurpurea—2957, Schuettpelz 312 (DUKE); JQ855913 (Johnson et al. 

2012); JQ855925 (Johnson et al. 2012); EF452162 (Johnson et al. 2012); ——.  
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APPENDIX C

Cheilanthes aemula Maxon = Myriopteris aemula (Maxon) Grusz & Windham
Cheilanthes alabamensis Buckley (Kunze) = Myriopteris alabamensis (Buckley) Grusz & Windham
Cheilanthes allosuroides Mett. = Myriopteris allosuroides (Mett.) Grusz & Windham
Cheilanthes bonariensis (Willd.) Proctor = Myriopteris aurea (Poir.) Grusz & Windham
Cheilanthes chipinquensis Knobloch & Lellinger = Myriopteris chipinquensis (Knobloch & Lellinger) Grusz & Windham
Cheilanthes clevelandii D. C. Eaton = Myriopteris clevelandii (D. C. Eaton) Grusz & Windham
Cheilanthes cooperae D. C. Eaton = Myriopteris cooperae (D. C. Eaton) Grusz & Windham
Cheilanthes covillei Maxon = Myriopteris covillei (Maxon) Á. Löve & D. Löve
Cheilanthes cucullans Fée = Myriopteris cucullans (Fée) Grusz & Windham
Cheilanthes eatonii Baker = Myriopteris rufa Fée
Cheilanthes fimbriata (A. R. Sm.) Mickel & Beitel = Myriopteris fimbriata (A. R. Sm.) Grusz & Windham
Cheilanthes feei T. Moore = Myriopteris gracilis Fée
Cheilanthes gracillima D. C. Eaton = Myriopteris gracillima (D. C. Eaton) Grusz & Windham
Cheilanthes horridula Maxon = Myriopteris scabra (C. Chr.) Grusz & Windham
Cheilanthes intertexta Maxon = Myriopteris intertexta (Maxon) Grusz & Windham
Cheilanthes jamaicensis Maxon = Myriopteris jamaicensis (Maxon) Grusz & Windham
Cheilanthes lanosa (Michx.) D. C. Eaton = Myriopteris lanosa (Michx.) Grusz & Windham
Cheilanthes lendigera (Cav.) Sw. = Myriopteris lendigera (Cav.) Fée
Cheilanthes lindheimeri Hook. = Myriopteris lindheimeri (Hook.) J. Sm.
Cheilanthes longipila Baker = Myriopteris longipila (Baker) Grusz & Windham

List of Myriopteris taxa (from Grusz and Windham 2013) with names commonly applied to them in Cheilanthes.
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Cheilanthes marsupianthes (Fée) T. Reeves & Mickel = Myriopteris marsupianthes Fée
Cheilanthes maxoniana Mickel = Myriopteris maxoniana (Mickel) Grusz & Windham
Cheilanthes mexicana Davenp. = Myriopteris mexicana (Davenp.) Grusz & Windham
Cheilanthes microphylla (Sw.) Sw. = Myrioperis microphylla (Sw.) Grusz & Windham
Cheilanthes moritziana Kunze = Myriopteris moritziana (Kunze) Grusz & Windham
Cheilanthes myriophylla Desv. = Myriopteris myriophylla (Desv.) Grusz & Windham
Cheilanthes newberryi (D. C. Eaton) Domin. = Myriopteris newberryi (D. C. Eaton) Grusz & Windham
Cheilanthes notholaenoides (Desv.) Maxon ex. Weath. = Myriopteris notholaenoides (Desv.) Grusz & Windham
Cheilanthes parishii Davenp. = Myriopteris × parishii (Davenp.) Grusz & Windham
Cheilanthes pringlei Davenp. = Myriopteris pringlei (Davenp.) Grusz & Windham
Cheilanthes rawsonii Mett. ex. Kuhn = Myriopteris rawsonii (Mett. ex. Kuhn) Grusz & Windham
Cheilanthes tomentosa Link. = Myriopteris tomentosa (Link.) Fée
Cheilanthes villosa Davenp. ex. Maxon = Myriopteris windhamii Grusz & Windham
Cheilanthes viscida Davenp. = Myriopteris viscida (Davenp.) Grusz & Windham
Cheilanthes wootonii Maxon = Myriopteris wootonii (Maxon) Grusz & Windham
Cheilanthes wrightii Hook. = Myriopteris wrightii (Hook.) Grusz & Windham
Cheilanthes yatskievychiana Mickel = Myriopteris yatskievychiana (Mickel) Grusz & Windham
Cheilanthes yavapensis Reeves ex. Windham = Myriopteris yavapensis (Reeves ex. Windham) Grusz & Windham
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List of vouchers used in microsatellite analyses and spore measurements.  All 

vouchers are of M. lindheimeri unless otherwise noted.  Format follows: Collector # 

(voucher home herbarium): latitude longitude, population (where applicable); 

microsatellite genotype at HGGWA; FYM3K; JW1YD; JGM27; HY3SM; JS90I; HL9PJ; 

IQLI0.  Missing data are indicated with an em dash.  Chromosome vouchers follow the 

format: Taxon: Collector # (voucher home herbarium); chromosome base number. 

 

Atwood 21622 (BYU): N30.283 W108.283; 182; 197, 200; 193; 261; 355; 351, 353, 355; 

411; 184, 196.  Beck G1.1 (DUKE): N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 

345, 355; 351, 353, 355; 417, 419; —.  Beck G1.2 (DUKE): N32.683 W109.763, Jacobson 

Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; 184, 196. Beck G2 (DUKE): 

N32.683 W109.763, Jacobson Canyon; 197, 200; 193; 261; 355; 353, 355; 417; —.  Beck G3 

(DUKE): N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Beck G5 (DUKE): N32.683 W109.763, Jacobson Canyon; 197, 200; 193; 261; 

355; 353, 355; 417; —.  Beck G6 (DUKE): N32.683 W109.763, Jacobson Canyon; 197, 200, 

203; 193, 196; 261; 355, 359; 353, 355; 417; —.  Beck G7 (DUKE): N32.683 W109.763, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Beck G8 

(DUKE): N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Beck G9 (DUKE): N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 

345, 355; 351, 353, 355; 417, 419; 184, 196. Beck G10 (DUKE): N32.683 W109.763, Jacobson 

Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Beck G11 (DUKE): 

N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 345, 355; —; —; —.  Beck G12 

(DUKE): N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Beck G13 (DUKE): N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 
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345, 355; 351, 353, 355; 417, 419; —.  Beck G14 (DUKE): N32.683 W109.763, Jacobson 

Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Beck G15 (DUKE): 

N32.683 W109.763, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; 

—.  Bridges s.n. (SRSC): N30.541 W103.851; Fort Davis; 182; 197, 200; 193; 261; 355; 351, 

353, 355; 411; 184, 196. Cottam 12886 (UT): N32.066 W112.716; 200, 203; 193, 196; 261; 355, 

359; 351, 353, 355; 409, 411, 415; 184, 202. Franklin 4532 (NY): N31.383 W110.083; 182; 190, 

200; 193, 196; 261; 355; 353, 355; 409, 411, 415; 196. Franklin 5376 (NY): N31.4 W111.2; 182; 

190, 200; 193, 196; 261; 355; 353, 355; 409, 411, 415; 196. Grusz Carr 1 (DUKE): N31.439 

W110.286; Carr Canyon; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz Carr 2 

(DUKE): N31.439 W110.286; Carr Canyon; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  

Grusz Carr 3 (DUKE): N31.439 W110.286; Carr Canyon; 182, 185; 200; 193, 196; 261; 355; 

355; 417; —.  Grusz Carr 4 (DUKE): N31.439 W110.286; Carr Canyon; 182; 197, 200; 193; 

261; 355; 353, 355; —; —.  Grusz Carr 5 (DUKE): N31.439 W110.286; Carr Canyon; 182; 

197, 200; 193; 261; 355; 353, 355; —; —.  Grusz Carr 6 (DUKE): N31.439 W110.286; Carr 

Canyon; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz Carr 7 (DUKE): N31.439 

W110.286; Carr Canyon; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz Carr 8 

(DUKE): N31.439 W110.286; Carr Canyon; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  

Grusz Carr 9 (DUKE): N31.439 W110.286; Carr Canyon; 182; 197, 200; 193; 261; 355; 353, 

355; —; —.  Grusz 19A (DUKE): N33.051 W109.097, Jacobson Canyon; 197, 200; 193; 261; 

355; 353, 355; 411; 184, 196. Grusz 21B (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 

193, 196; 261; 344, 355; 351, 353, 355; 409, 415; 184, 196. Grusz 22A (DUKE): N32.684 

W109.761, Jacobson Canyon; 200; 193, 196; 261; 344, 355; 351, 353, 355; 409, 415; 184, 196. 

Grusz 41B (DUKE): N32.584 W110.721, Oracle; 197, 200, 202; 193, 196; 261; 355, 359; 353, 

355; 411, 415; 184, 196. Grusz 45 (DUKE): N32.584 W110.721, Oracle; 190, 200; 193, 196; 
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261; 355; 353, 355; 409, 411, 415; 196. Grusz 47 (DUKE): N32.584 W110.721, Oracle; 190, 

200; 193; 261; 355; 353, 355; 411, 413; 196, 202. Grusz 171.1 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.2 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; 184, 196. Grusz 171.3 (DUKE): N32.684 W109.761, Jacobson Canyon; 200, 203; 

193, 196; 261; 355, 359; 353, 355; 417; —.  Grusz 171.4 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.5 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Grusz 171.6 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 

261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.7 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.8 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Grusz 171.9 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 

261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.10 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.11 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Grusz 171.12 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 

261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.13 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.14 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 

417, 419; —.  Grusz 171.15 (DUKE): N32.683 W109.761, Jacobson Canyon; 200; 193, 196; 

261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.16 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.17 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 
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417, 419; —.  Grusz 171.18 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; —; 261; 

345, 355; —; —; —.  Grusz 171.19 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 

196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.20 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.21 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; —; 345, 355; 351, 353, 355; 

417, 419; —.  Grusz 171.22 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 

—; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.23 (DUKE): N32.684 W109.761, 

Jacobson Canyon; 200; 193, 196; 261; 345, 355; —; —; —.  Grusz 171.24 (DUKE): N32.684 

W109.761, Jacobson Canyon; 197, 200; 193; 261; 355; 353, 355; 417; —.  Grusz 171.25 

(DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; —; 345, 355; 351, 353, 355; 

417, 419; —.  Grusz 171.26 (DUKE): N32.684 W109.761, Jacobson Canyon; —; —; 261; —; 

—; —; —.  Grusz 171.27 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 

345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.29 (DUKE): N32.684 W109.761, Jacobson 

Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 171.30 (DUKE): 

N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; 

—.  Grusz 171.31 (DUKE): N32.684 W109.761, Jacobson Canyon; 200; 193, 196; 261; 345, 

355; 351, 353, 355; 417, 419; —.  Grusz 171.32 (DUKE): N32.684 W109.761, Jacobson 

Canyon; 200; 193, 196; 261; —; 351, 353, 355; 417, 419; —.  Grusz 171.33 (DUKE): N32.684 

W109.761, Jacobson Canyon; —; 193, 196; 261; —; 351, 353, 355; 417, 419; —.  Grusz 173.1 

(DUKE): N31.959 W109.212, Paradise; 182; 197, 200; 193, 196; 261; 355; 353, 355; 417; —.  

Grusz 173.2 (DUKE): N31.959 W109.212, Paradise; 182, 185; 200; 193, 196; 261, 270; 348, 

355; 353, 355; —; —.  Grusz 173.3 (DUKE): N31.959 W109.212, Paradise; 182; 200; 193, 196; 

261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 173.4 (DUKE): N31.959 W109.212, 

Paradise; 182, 185; 200; 193, 196; 261, 270; 348, 355; 353, 355; —; —.  Grusz 173.5 (DUKE): 
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N31.959 W109.212, Paradise; 182; 197, 200; 193; 261; 355; 353, 355; 417; —.  Grusz 173.6 

(DUKE): N31.959 W109.212, Paradise; 182; 197, 200; 193, 196; 261; 355; 353, 355; 417; —.  

Grusz 173.7 (DUKE): N31.959 W109.212, Paradise; 182; 197, 200; 193; 261; 355; 353, 355; —

; —.  Grusz 173.8 (DUKE): N31.959 W109.212, Paradise; 182; 197, 200; 193; 261; 355; 353, 

355; —; —.  Grusz 173.9 (DUKE): N31.959 W109.212, Paradise; 182; 197, 200; 193; 261; 355; 

353, 355; —; —.  Grusz 173.10 (DUKE): N31.959 W109.212, Paradise; 182; 197, 200; 193; 

261; 355; 353, 355; —; —.  Grusz 173.12 (DUKE): N31.959 W109.212, Paradise; 182; 197, 

200; 193; 261; 355; 353, 355; —; —.  Grusz 173.13 (DUKE): N31.959 W109.212, Paradise; 

182; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz 173.15 (DUKE): N31.959 W109.212, 

Paradise; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz 173.16 (DUKE): N31.959 

W109.212, Paradise; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz 173.16 (DUKE): 

N31.959 W109.212, Paradise; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz 173.17 

(DUKE): N31.959 W109.212, Paradise; 197, 200; 193; 261; 355; 353, 355; —; —.  Grusz 

173.14 (DUKE): N31.959 W109.212, Paradise; 197, 200; 193; 261; 355; 353, 355; —; —.  

Grusz 174.1 (DUKE): N31.363 W110.298; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  

Grusz 174.2 (DUKE): N31.363 W110.298; 182; 197, 200; 193; 261; 355; 353, 355; —; —.  

Grusz 175.1 (DUKE): N31.716 W110.77, Gardner Canyon; 182; 200; 193, 196; 261; 345, 355; 

351, 353, 355; 417, 419; —.  Grusz 175.2 (DUKE): N31.716 W110.77, Gardner Canyon; 182; 

200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 175.4 (DUKE): N31.716 

W110.77; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 175b.1 (DUKE): 

N31.716 W110.77, Gardner Canyon; 182; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 

419; —.  Grusz 175b.2 (DUKE): N31.716 W110.77, Gardner Canyon; 182; 200; 193, 196; 

261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 175b.3 (DUKE): N31.716 W110.77, 

Gardner Canyon; 182; 200; 193, 196; 261; 345, 355; 351, 353, 355; 417, 419; —.  Grusz 175b.4 
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(DUKE): N31.716 W110.77, Gardner Canyon; 182; 200; 193, 196; 261; 345, 355; 351, 353, 

355; 417, 419; —.  Grusz 177.1 (DUKE): N32.354 W110.723, Bear Canyon; 197, 200; 193; 

261; 355; 353, 355; 417; —.  Grusz 177.2 (DUKE): N32.354 W110.723, Bear Canyon; 197, 

200; 193; 261; 355; 353, 355; 417; —.  Grusz 177.3 (DUKE): N32.354 W110.723, Bear 

Canyon; 197, 200; 193; 261; 355; 353, 355; 417; —.  Grusz 177.4 (DUKE): N32.354 

W110.723, Bear Canyon; —; 193; 261; 355; 353, 355; 417; —.  Grusz 177.5 (DUKE): N32.354 

W110.723, Bear Canyon; 197, 200; 193; 261; 355; 353, 355; 417; —.  Grusz 178.1 (DUKE): 

N32.47822 W110.72094, Mt. Lemmon Road; 197, 200; 193; 261; 355; 353, 355; 417; —.  

Grusz 178.2 (DUKE): N32.47822 W110.72094, Mt. Lemmon Road; 197, 200; 193; 261; 355; 

353, 355; 417; —.  Grusz 178.3 (DUKE): N32.47822 W110.72094, Mt. Lemmon Road; 197, 

200; 193; 261; 355; 353, 355; 417; —.  Grusz 178.4 (DUKE): N32.47822 W110.72094, Mt. 

Lemmon Road; 197, 200; 193; 261; 355; 353, 355; 417; —.  Grusz 178.5 (DUKE): N32.47822 

W110.72094, Mt. Lemmon Road; 197, 200, 203; 193, 196; 261; 355, 359; 353, 355; 417; —.  

Grusz 178.6 (DUKE): N32.47822 W110.72094, Mt. Lemmon Road; 197, 200, 203; 193, 196; 

261; 355, 359; 353, 355; 417; —.  Grusz 178.7 (DUKE): N32.47822 W110.72094, Mt. 

Lemmon Road; 197, 200, 203; 193, 196; 261; 355, 359; 353, 355; 417; —.  Grusz 178.8 

(DUKE): N32.47822 W110.72094, Mt. Lemmon Road; 197, 200, 203; 193, 196; 261; 355, 359; 

353, 355; 417; —.  Manning 969 (SRSC): N30.545 W103.856; Fort Davis; 182; 200; 190, 193; 

261; 355; 351, 353, 355; 411; 196. Metzgar 128 (DUKE): N32.09 W108.974; 197, 200; 193, 

196; 261, 270; 347, 355, 363; —; —; —.  Rothfels 3066 (DUKE): N21.597 W100.757; 182, 185; 

194, 197; 193, 196; 258, 261, 267; 355; 353; 409, 415; 184, 196. Schuettpelz 440 (DUKE): N; —

; 193, 196; 261; —; 353, 355; —; 186, 199. Schuettpelz 450 (DUKE): N33.33 W11.032; 200, 

203; 193; 261, 279; 355; —; —; —.  Schuettpelz 450 (DUKE): N33.33 W11.032; 200, 203; 193; 

261, 279; 355; —; —; —.  Schuettpelz 458 (DUKE): N31.437 W110.316; Carr Canyon; —; —; 
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193; 261; 355; —; —; —.  Schuettpelz 498 (DUKE): N32.354 W110.72, Bear Canyon; 200; 

193, 196; 261, 270; 347, 355; 353, 355; —; —.  Spencer & Atwood 1176 (UT): N30.373 

W108.242; 182; 200; 193; 261; 344, 355; —; 411, 415; 196, 202. Windham 97-015 (DUKE): 

N32.591 W110.721, Oracle; 197, 200, 203; 193; 261; 355; —; —; —.  Worthington 12682 

(NY): N31.77 W108.43; 182; 197, 200; 193; 261, 270; 355; 351, 353, 355; 411; 184, 196. 

Worthington 19958 (NY): N31.914 W107.72; 182; 197, 200; 193; 261, 270; 355; 353, 355; 409, 

411, 415; 184, 196. Worthington 20617 (UTEP): N31.7 W108.423; 182; 190, 200; 193; 261; 

355; 351, 353, 355; 411; 184, 196.  Myriopteris covillei: Windham 343 (ASC); n = 30.  

Myriopteris lendigera: Windham 304 (UT); n = 60.  M. lindheimeri: Windham & Yatskievych 

426 (UT); n = 2n = 90.  M. windhamii: Yatskievych 84-08 (IND, UT); n = 2n = 90. M. 

wootonii: Windham & Yatskievych 266 (UT); n = 2n = 90. M. yavapensis: Windham 202 (ASC, 

ASU, US, UT; type collection); n = 2n = 120. 
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