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ABSTRACT 

The big-oui hybrid catfish (female C. macrocephalus x male C. gariepinus) was 

successfully achieved using artificial hybridization. This hybrid combines the superior 

taste of the C. macrocephalus with the faster growth rate and higher resistance to 

environmental conditions of the C. gariepinus and is now the biggest fresh-water 

aquaculture product in Thailand. In this thesis the results of experiments involving 

hybridization and genetic manipulation were used to investigate the nature of the 

hybridization event. This information was used to develop broodstock for Clarias 

catfish breeding programme. 

Allozyme studies resolved 18 protein loci encoding different enzyme systems in C. 

batrachus, C. macrocephalus, C. gariepinus and the big-oui hybrid. GPI-2*, MDH-2* 

and LDH-l* show clearly variation between the hybrid and the parental species and 

were used for species diagnostic loci. Comparisons of fertilisation and survival of the 

big-oui hybrid, reciprocal cross hybrid, F2 hybrid, back cross hybrid and their 

parental species were carried out. The only cross involving the F 1 big-oui hybrid still 

gave viable embryos and fry was between female F 1 hybrid and male C. gariepinus. 

The F2 hybrid never developed to hatch. Karyotyping studies showed a modal 

chromosome number of 2n=54 in C. macrocephalus; 2n=56 in C. gariepinus; 2n=55 

in the big-oui hybrid, the reciprocal hybrid and the back cross hybrid. Using male C. 

gariepinus from two other stocks ('Malawee' and 'Wageningen') were carried out. to 

produce the big-oui hybrid. Cold shock at 2°C administered for 15 mins duration and 

4 mins after fertilisation was the most effective in inducing 100% triploidy in big-oui 
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hybrid while heat and pressure shock were less effective. Growth performance of 

diploid and triploid hybrids was not significantly different. The triploid hybrid were 

shown to be functionally and endocrinologically sterile. Gynogenetic diploids were 

produced by fertilizing C. macrocephalus eggs with C. gariepinus sperm that had 

been genetically inactivated with ultraviolet (UV) light, and then cold shocking the 

eggs after fertilisation. The UV dose of 200 Il W cm -2 for 2 mins using a sperm 

concentration of 2.5 x 108 mrl was optimal in genetically inactivating sperm without 

seriously compromising motility. Cold shock at 2°C, started at 4 mins after 

fertilisation and 15 mins duration gave the maximum number of meiotic gynogenetic 

offspring. The parental contribution in the gynogenetic offspring was check by using 

the species diagnostic allozyme loci and showed no evidence of male contribution. 

Gynogenetic offspring were grown on to investigate the sex ratio. All gynogenetic 

offspring were female suggesting female homogamety in this species. 

The possible implications of the above results of hybridization and genetic 

manipUlation studies in Clarias catfish culture are discussed. 
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CHAPTER ONE 

GENERAL INTRODUCTION AND LITERATURE REVIEW 

1.1 General introduction 

1.1.1 Aquaculture and World fisheries 

The cultivation of aquatic organisms under controlled conditions is not new, but has 

benefited from man's technical progress during the last century which has turned the 

art of animal husbandry into a science. Fish fanning has developed to the stage where 

the annual world production from aquaculture is over 22 million tonnes, which was 

over 20 per cent of the total aquatic harvest by fishing and fanning in 1993 (F AO, 

1994). 

After the second world war, the global fish catch increased rapidly from less than 20 

million tonnes to about 65 million tonnes, before coming to a virtual halt in the early 

1970s. Figures published by the Food and Agriculture Organization (F AO) show that 

total aquatic harvest was 85 million tonnes in 1989. A combination of escalating fuel 
\ 

costs and declining wild fish stocks has resulted in a current annual growth rate of 

less than 8 % for the capture fish production worldwide, opposed with a current 

growth in world population approaching 2 % per year and the growing interest in the 

health advantages as a protein source compared with poultry and red meat. According 

to these various factors, it is 110 surprise that aquaculture is now making such a large 

contribution to world fish supplies (F AO: RAP A, 1989). 

1.1.2 Aquaculture in Thailand 

Fish farming or aquaculture in Thailand stems from the ancient practice of trapping 
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fish. During the rainy season (May-August) the southwest monsoon wind dominates 

and brings about heavy rainfall so that flooding occurs in different parts of the 

country. Because of its topography, central Thailand is the most flooded area. When 

flooding occurs, fish from the upstream-waters follow the flood along the canals into 

the lower land rice fields. Fish that enter into wetlands or small swamps in rice fields 

grow well and are caught for food consumption after the rice is harvested in the dry 

season. 

Equally interesting are the fish that follow the flood along the streams and enter small 

ponds constructed and maintained by the farmers living along the banks of the 

wetlands. Those ponds, constructed for water holding purposes, are deeper than the 

adjacent canals and are connected with them by short narrow passages through which 

fish enter into the ponds at the time when the water level is high. Attracted by large 

quantities of fish caught from these ponds after the water is drained out, the farmers 

have constructed numerous small ponds for the purpose of trapping fish during the 

flooding season, or even in some places where canals and streams are filled with 

water throughout the year. At intervals of about 2-4 months, the ponds are blocked 

and water is drained out and the fish are caught with simple hand nets. Operations of 

this kind may be regarded as an origin of fish culture. 

The foregoing simple trapping method was steadily improved and gradually 

developed from trapping-holding to trapping-holding-growing, and finally into 

complete husbandry practices when people learned how to collect fingerlings or 

produce fry for stocking. 

At present, aquaculture is widespread in Thailand with well developed technology, as 

indicated by increasing of the average annual production (table 1.1) and increasing of 

farms and culture areas (table 1.2). The annual aquacultural production reported in 

1992 was 371,400 metric tonnes, valued at 29,712.7 million Baht (25 Baht=IUS$). 
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This tonnage is about 12 % of the combined total catch and aquacultural yield of the 

entire country. Accounting for most of the aquacultural production are some 78,473 

aquaculturists whose pond surface areas range from less than 1 rai (1 rai=1,600 m
2
) to 

some 300 rai. The total water surface involved is about 308,134 rai (47,405 ha), a 

figure that is estimated at only 2 % of the total potential area of the country 

(Department of Fisheries, 1994). 

Table 1.1 Fisheries production of Thailand in quantity and by sub-sectors, 1988-1992 

(Department of Fisheries, 1994). 

Type CAPI1JRE CULTURE TOTAL 

Year Quantity 1,000 Value Quantity 1,000 Value M.Baht Quantity 1,000 Value M.Baht 

tonnes MBaht* tonne. tonnes 

1988 2,418.7 21,607.7 211 10,814.8 2,629.7 32,422.5 

1989 2,479.6 22,163.4 260.4 13,706.8 2,740.0 3!!,870.0 

1990 2,489.4 24,040.1 297 17,35S.6 2,786.4 41,395.7 

1991 2,614.6 29,694.5 353.1 23,331.3 2,967.7 53,025.8 

1992 2,868.4 35,831.8 371.4 29,712.7 3,239.8 65,544.5 

• Approx. 25 Baht= 1 US$ or 40 Baht = £1 

Of all the operations of fish farming in Thailand, pond fish culture recieves the most 

attention. This kind of operation can be conducted under controlled conditions and 

yields high production if properly managed. It is, therefore, extensively practised in 

different parts of the country, mostly around the Bangkok area and the central area of 

the country in which good transportation and markets are available. Predictable values 

as food habits, feeding frequencies, stocking rate, stocking size and species. 
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Table 1.2 Number of farms and area (rai) of fresh-water farms in Thailand (Source: Department of Fisheries, 1988-1992). 

Type Pond Culture Paddy Field Culture Ditch Culture Cage Culture Total 

Year Farms Area Farms Area Farms Area Farms Area Farms Area 

1988 66965 175340 8257 149164 847 1938 904 50 76973 326500 

1989 68972 159837 8420 149372 806 1660 935 82 79133 310952 

1990 75310 160354 8536 148495 826 1783 891 134 85563 310766 

1991 86491 160783 8976 152375 1002 1926 865 127 97334 315211 

1992 108356 201672 9440 159488 1286 2332 760 114 119842 363606 

'--- -~- - -- -- -- -

1 rai = 1,600 m2 
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1.1.3 Catfish production in Thailand 

Fresh-water catfish especially Clarias spp. are widely distributed in southeast and 

south Asia and Africa. They exist in a variety of habitats from brackish water in 

estuaries and mangroves to fully freshwater rivers and lakes. Recently, they have 

become a popular food fish and subsequently become popular species for culture 

because they can be spawned, grow very fast, can tolerate farming conditions and are 

easy to culture. 

In Thailand, Clarias catfish are now one of the most important cultured fish 

(production of 29,136 tonnes in 1991) (FAO, 1994). The names of the fish that have 

been most commonly propagated in freshwater ponds, along with their draft synopsis 

of aquaculture practices, are listed in table 1.3. The catfish in Thailand mostly belong 

to the family Clariidae, of which five species are present, Clarias meladerma 

Bleeker, Clarias batrachus (Linnaeus), Clarias teymanni Bleeker, Clarias 

leiacanthus Bleeker and Clarias macrocephalus Gunther, (Smith, 1945). The 

common name "walking catfish" in English, or "pia duk" in Thai, is a generic name 

for a numer of species belong to the family Clariidae. The two most economically 

important native species in Thailand are Clarias batrachus and Clarias 

macrocephalus, locally known as ''pIa duk dan" and pia duk oui", respectively. The 

fry of C. batrachus are easily obtained from the spawning pond. Unfortunately, C. 

macrocephalus does not readily reproduce in captivity. However, they can be induced 

to breed if injected with gonadotropic hormones. An interesting fact about culturing 

catfish in ponds is the feeding of C. batrachus, with a mixture of fresh ground trash 

fish (90%) plus rice bran (10%). This kind of feeding is done by commercial fish 

farmers whose farms are located near the central area where trash fish can easily be 

obtained. The average production is 60 to 90 metric tonnes per ha when the fish were 

stocked at the rates of 100-180 fry per m2 of pond surface area In recent time, 

culturing also revealed that catfish can successfully and commercially be fed with dry 
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floating pellets. Thai consumers have a preference for C. macrocephalus but due to 

limitations in fry availability and slow growth, its culture is still limited in comparison 

to that of C. batrachus. 

In 1987, another species of catfish, Clarias gariepinus (Burchell, 1822), was 

introduced to Thailand from Laos. This species was distributed and cultured in the 

northeast region and some provinces in the central region. The local people called it 

"pia duk Russia" because it had been introduced to Laos by the Russians. Studies on 

this species have been carried out at the National Inland Fisheries Institute, 

Department of Fisheries since May 1988. C. gariepinus is the most important of the 

32 African catfish species for aquaculture because of its size, fast growth. 

omnivoracity, resistance to extreme environmental conditions and because it can be 

spawned using relatively simple artificial reproduction techniques. The preliminary 

studies in Thailand showed that C. gariepinus grows very fast in earthen ponds on 

Thai fish farms and can be spawned by hormone induction. 

Furthermore, the breeding of the hybrid catfish was achieved by a team of fishery 

biologists from the National Inland Fisheries Institute by using female C. 

macrocephalus and male C. gariepinus. The hybrid shows faster growth than C. 

macrocephalus, has high resistance to environmental conditions (similar to C. 

gariepinus) and intermediate morphological characteristics and meat quality 

compared to the parental species. The hybrid between female C. macrocephalus and 

male C. gariepinus, named "pia duk big-oui" has become increasingly important and 

generated high demand in the markets. From 1988 until 1991, the annual production 

grew from nothing to an estimated over 20,000 metric tonnes. In the culture ponds, 

the hybrids can grow up to marketable size within 3 months which means the farmers 

can produce at least 3 crops per year. This is an advantage in animal protein 

production. 



Table 1.3 The most commonly cultivated fresh-water species in Thailand and their production in the whole country by type of culture in 1991, 

Quantity: metric tonnes, Value: 1,000 Baht (Source: Department of Fisheries, 1992). 

Culture Pond culture Paddy field Ditch culture Cage culture Total 

specIes Quantity Value Quantity Value Quantity Value Quantity Value Quantity Value 

C/arias spp. 
28,883 721,258 249 13,843 3 63 1 12 29,135 735,176 

Ophiocepha/us 3,154 129,352 1,222 48,980 
spp. 

1,190 45,264 1,630 49,648 7,196 273,245 

Pangasius suchi 13,524 152,363 - - - 68 987 15,847 14,518 168,277 

Puntius 14,363 281,026 1,814 38,092 93 1,475 5 127 16,274 320,720 
gonionotus 

Oreochromis 22,406 336,356 5,453 56,465 244 2,700 3 72 28,106 395,593 
niloticus 

Cyprinus carpio 2,106 49,143 366 8,938 3 67 - - 2,475 58,148 

Chinese carp 838 12,777 319 3,205 - - - - 1,157 15,983 

- - - -- --

I 
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The increased awareness that fish is a healthy source of protein has further driven 

demand of more fish worldwide. The Thai Department of Fisheries plans to develop 

the culture system of catfish and tilapia to produce fish for export (especially as a 

fillet product). Although the hybrid catfish has a fast growth rate in the early stage 

(growing up to an average of 300 gin 3 months), after this the growth rate decreases. 

Production of individual fish of one kilo gramme (for making fillets) needs a grow out 

period of one year. Larval survival of the hybrid is lower than in intraspecific C. 

macrocephalus batches, whilst survival in the reciprocal hybrid cross (female C. 

gariepinus X male C. macrocephalus) is almost zero. These two main problems 

create the need to investigate ways of increasing the growth rate and early stage 

survival rate in these hybrid crosses. 

1.1.4 Genetic aspects for aquaculture and fisheries management 

The causes of the variations that exist for the phenotypes and the way that the 

differences are inherited is the science called genetics. Breeding is the applied science 

of genetics that exploits the heritable component of variation in order to change the 

population for man's benefit. 

The study of genetics for aquaculture is relevant to the aquatic environment and all of 

man made impacts on the aquatic environment. Direct implications are obvious for 

fish cultivation in all its many forms, but the genetic consequences of exploitation by 

commercial fishing must also be considered, and any habitat change must also have 

its genetic consequences. Form and function are amalgams of the inherited 

potentialities of organisms and the environmental constraints applied to them, and 

change in either has a genetic consequence. 

Basic breeding concepts have only recently been applied to aquaculture. Fish culture 

lags far behind other areas of animal husbandry in that fish culturists raise animals 



9 

that either come from wild stocks or are only a few generations removed from the 

wild, few domesticated stocks of fish exist. Because aquaculture genetics is 

comparatively new, but especially because most aquaculturists feel that genetics and 

geneticists are incomprehensible, genetic aspects of fish husbandry have had 

comparatively little impact on productivity and profits, except in the ornamental fish 

industry. However, several breeding programmes have been developed and are being 

used. Despite the fact that breeding has had minimal impact on improving 

productivity in the aquaculture industry, it is imperative that aquaculturists have a 

good grasp of genetics and breeding principles because they are among the major 

factors that govern productivity. One reason why it is imperative that farmers 

understand the basic principles governing genetics and breeding is the unfortunate 

fact that some effort is often needed simply to maintain the situation as it was before. 

It is also unfortunate that inattention to the genetic aspects of fish farming can actually 

cause productivity to decline as inbreeding or other genetic consequences of 

mismanagement result in slower growth, decreased viability, decreased disease 

resistance, and decreased egg production. 

To date, most effort in fish culture has been directed toward improved diets, health 

management, and water quality management. As important as they are, these 

disciplines deal with the environment in which fish live, and improvements in these 

areas simply improve the environments. The aims of aquaculture are more economical 

as to raise the fish that have a faster growth rate, greater dressing percentage, lower 

food conversion, and greater disease resistance. Because of this, one of the goals of 

hatchery management should be to incorporate basic genetic and breeding concepts 

into routine hatchery management in order to maximize the productivity potential of 

the fish. 
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1.1.5 Genetic researches need for improvement of commercial fish stocks 

Perpetuation of the resource is the common goal of all fisheries management 

programmes. Genetic factors affect this goal because fish are the product of their 

genes, the environment, and of the interaction between the genes and the 

environment. The genetics of fish, in connection with the environment, determine the 

quality and persistence of the fishery resource. Fisheries managers must realize that 

implementation of regulations, stocking strategies, and other management activities 

affect the genetic make-up of fish stocks. Management activities that impact the 

genetics of fish stocks include: 1) maintenance of a fishery with adequate natural 

reproduction, 2) enhancement of a fishery with marginal or inadequate natural 

reproduction by stocking, 3) rehabilitation of a depleted fishery by stocking or control 

of harvest, and 4) maintenance of a input and uptake fishery. 

Hatchery management should, in general, try to preserve genetic variation in breeding 

populations while producing fish that are suitable for their intended use. The principal 

concerns are: 1) the hatchery practices may detrimentally alter survival, yield, or 

reproduction, and 2) small effective population sizes in hatcheries can lead to 

inbreeding and loss of genetic diversity. 

Concerns about the genetic impacts of hatchery management depend on the use 

intended for the hatchery fish. Hatchery bred fish may be stocked in an aquacultural 

facility for food production, in a natural environment, or in some captive setting as 

broodstock. The reproductive fitness of fish destined for slaughter is not important; in 

fact, reproduction is often undesirable. In contrast, the fitness of fish used as 

broodstock or for stocking in natural environments is of paramount importance 

because the fitness of future generations depends on genetic characteristics of the 

present generation. Improvements to the management of genetic resources m 

hatcheries will increase the benefits due to stocking hatchery fish. 
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1.1.6 "Genetic Manipulation" the new technology in aquaculture 

At present, most of fish propagation is under artificial conditions. The techniques of 

artificial insemination developed, make it possible to manipulate the sperm, egg, and 

zygote in different ways so that the genetic constitutions of the offspring populations 

are changed dramatically. The genetic manipulation techniques recently developed for 

fish species can be categoried as shown in Table 1.4. 

Chourrout (1987) described how the production of individuals whose genomes 

originate from only one parent is permitted by three types of manipulation: 

1. Self fertilisation, which requires the development of induced 

hermaphrodites in fishes, because most cultivated species are gonochoristic. 

2. Induced gynogenesis, which also involves two parents~ the sperm is 

inactivated by radioactive rays or UV light, its genomes is destroyed prior to 

fertilisation. The genome of the embryo is provided by an intact egg, and it can be 

doubled by suppression of the first meiosis or the first mitosis. 

3. Induced androgenesis, which also involves two parents~ the egg is only a 

host for development, because its genome is destroyed prior to fertilisation. The 

genome of the embryo is provided by an intact spermatozoa, and it can be doubled 

only by suppression of the first mitosis. 

If the genomes of both parents contribute to the development, treatments blocking 

meiosis or mitosis give rise to two kinds of polyploids: 

1. Triploids resulting from the fusion of diploid female and haploid male 

nuclei. The suppression of meiosis II induced after fertilisation of gametes from two 

different species similarity provides triploid hybrids. 

2. Tetraploids resulting from the doubling of the first diploid nucleus in the 

embryo suppression of the first mitosis. 
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Table l.4. The results of different manipulation techniques on the sperm used for 

fertilisation and on fish zygotes (modified from Nagy, 1987) 

Sperm Eggs Zygotes Zygotes 
Treatments intact early shock late shock 

intact normal diploid heterozygous heterozygous 
triploid tetraploid 

genetically haploid heterozygous homozygous 
inactivated gynogenetic diploid diploid 

gynogenetic gynogenetic 

Sperm Eggs Zygotes Zygotes 
intact Treatments early shock late shock 
intact genetically - homozygous 

inactivated androgenetic 

Finally, the addition of foreign genes carried either by active chromosome fragments 

to the genome of the species, or by cloned plasmids through gene transfer are the new 

techniques applied to confer new chacteristics to the aquatic animals. 

The genetic inactivation of sperm is usually achieved by administering large doses of 

ionizing or UV radiation. After radiation has completely destroyed the chromosomes, 

the spermatozoa retain the ability to penetrate into the eggs; the cell division they 

initiate proceeds normally. 

Experiments to increase ploidy have been developed for many fish species. Usually 

these are sublethal temperature treatments, either cold or heat shock of the zygotes, 

but high pressure treatment of zygotes is also very effective in some species. 

Depending on the timing of these physical shocks, the mechanisms of diploidization 

are different. The shock applied shortly after fertilisation causes the retention of the 

second polar body. Thus, in the case of gynogenesis, it results in the union of two 

haploid complements produced in the second meiotic division. Late treatments are 
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applied shortly before the expected time of first cleavage, and they therefore prevent 

spindle formation, resulting in endomitosis. The ploidy of the embryos is doubled 

after these shocks. It is easy to understand that completely homozygous, diploid, 

gynogenetic offspring can be produced by late shocks applied to haploid, gynogenetic 

zygotes. Similarly, late shocks applied to normal diploid zygotes result in tetraploid 

fish. 

Genetic manipulation, if incorporated with hormone sex reversals, allows us to 

produce monosex, usually all female populations, which have advantages over the 

bisexual populations of numerous species. Other possibilities arise from the 

combination of sex reversal with gynogenesis or tetraploid production to alter the 

genetic constitutions, the sex and ploidy, of their offspring populations. In future, we 

can expect the appearance of new techniques to manipulate the genome of the species 

and we will able to design the genomes of farm fish according to our needs to produce 

required disease resistance and special characteristics. 

1.2 Literature review 

1.2.1 Biology of Clarias catfish use in this thesis 

African species: Clarias gariepinus (Burchell, 1822) 

Early in the twentieth century, colonists realised that Clarias might have an economic 

value since they were highly prized by local inhabitants and wild catches demanded 

high market prices. By the early 1950's Belgian workers started cultures of Clarias in 

the former Belgian Congo. The results were disappointing compared with those from 

Tilapia culture. Even though C/arias was considered as an alternative fast growing 

productive protein source, due to the unsatisfactory state of taxonomy, in part, it was 

often not known which species is being reared (Teugels, 1986). Lack of basic 
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information on the biology and taxonomy of the species in this region made it difficult 

to overcome these problems. 

The catfish is now widely accepted as a most distinquished candidate for aquaculture. 

The attributes of C. gariepinus of relevance to its culture include: wide native 

distribution, ability to utilize atmospheric oxygen, high consumer preference ranking, 

suitable reproductive strategy, favourable nutritional efficiency and feeding habit, fast 

growth rate, tolerance of environmental extremes, resistance to disease and tolerance 

of high density culture (Hayler, 1993). 

Morphological identification in C gariepinus 

The head is somevvhat between rectangular and pointed in dorsal outline; the snout is 

broadly rounded. The eyes have a supero-lateral position and are relatively small. The 

four pairs of circum-oral barbels show a negative allometric growth: small specimens 

have relatively long barbels, while the barbellengtb decreases in larger fish. The oval 

occipital fontanel partially invades the occipital process. The distance between the 

occipital process and the base of the dorsal fm is short. The dorsal fin almost reaches 

the caudal fin. An adipose fin is absent. The original of the anal fin is closer to the 

base of the caudal fin than to the snout; it nearly reaches the caudal fin. The pelvic fin 

is closer to the snout than to the caudal fin base. The pectoral spine is robust, serrated 

only on its outer face, the number of serrations increasing with age. The pectoral fin 

extends from the operculum to below the first dorsal fin rays. The lateral line appears 

as a small, white line from the posterior end of the head to the middle of the caudal fin 

base. The openings to the secondary sensory canals are clearly marked. There are two 

patterns of body coloration; the uniform and the marbled pattern. In the former, the 

dorsal surface and the flanks of the body and the dorsal parts of the pectoral and the 

pelvic fins are generally dark greyish-greenish black, while the belly and the ventral 

parts of the paired fins are lightly colored. In the marbled pattern, the fish show 
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irregular dark blotches on a light colored background above and laterally. The belly 

and the ventral parts of the paired fins are whitish. A series of light and dark bands 

may occur on the caudal fin, the proximal third of the fin is lightly colored while its 

other part is dark (Boulenger, 1911; Bell-Cross, 1976; Teugels, 1986). 

Thai Quills species: Clarias macrocephalus Gunther and C batrachus 

(Linnaeus) 

The Clariid catfish are of great interest because they have, in addition to gills, an 

accessory breathing organ occupying the upper part of each branchial cavity. These 

organs, having an arborescent shape, enable the fish to breathe atmospheric air. The 

catfish of the genus Clarias are among the most abundant, most widely distributed, 

and most economically important of the fresh-water fishes of Thailand. They are 

eaten extensively in the households of fishermen and farmers, and are regularly 

offered for sale in the markets of Bangkok and other communities throughout the 

country. Fish are exposed for sale alive in baskets, in shallow tubs with little or no 

water, or on stone slabs, like Anabas and Ophiocephalus, and if not sold in a day they 

are taken back to market the next day. The fish have a great reputation for their 

wholesome qualities, and are in special demand for convalescents and invalids 

(Smith, 1945). 

The common name "walking catfish " in English, or ''pIa duk" in Thai, is a generic 

name for a number of species belong to the familly Clariidae which five species have 

been ascribed to Thailand but only two species can be definitely accredited on the 

information now available. The two most economically important species are Clarias 

macrocephalus, locally known as ''pIa duk oui" and Clarias batrachus, known as ''pIa 

dukdan". 
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Spawning in the wild occurs during the rainy season, from May to October. C. 

batrachus spawns in small horizontal holes of 25 cm in diameter and about 30 cm 

deep in the earthen bank 30 cm under water surface. About 2,000-5,000 yellowish­

brown eggs are laid at a time. The C. macrocephalus female makes a small round nest 

with grassy bottom. The eggs are deposited in the nest and attached to the roots of 

aquatic vegetation. The male will take charge of these eggs until they are hatched out. 

A female weighting 300-500 g can produce between 5,000-10,000 eggs. 

They are nocturnal and can live at very high stocking density because of their air 

breathing capability. They are usually found in canals, swamps and paddy fields. In 

the wild, the fry feed on protozoa and small crustaceans, and when they grow bigger 

they feed on worms, insects and organic matter at the bottom of the pond. As a food, 

both species are the commonest and commercially the most important of the Thailand 

clariids. C. macrocephalus is rated higher than C. batrachus because its flesh is 

richer, better flavored, and more nourishing, according to the popular opinion. 

Morphological identification in C mtlCl'ocephaJus and C boJrachus 

The native species, C. macrocephalus is closely related to C. batrachus. The species 

can be morphologically distinguished by the shape of the occipital process, which is 

more pointed in C. batrachus and evenly curved in C. macrocephalus (Figure 1.1). 

The occipital process extends close to the dorsal fin. 

The body is elongate with head broadly depressed, four pairs of well developed 

barbels and small eyes. The nasal barbels reach to or beyond the gill openings, 

maxillary barbels extend to the middle or tip of the pectorals, vomero-palatine teeth 

are obtusely conical and form a crescent-shaped band, which in its center is broader 

than the intermaxillary band, and there is a nearly smooth pectoral spine. 
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Genetical identification 

The taxonomy of catfishes of the genus Clarias (Clariidae) has for a long time 

been very confusing and only recently have detailed systematic revisions become 

available, enabling the correct identification of the species (Teugels, 1986). The 

foregoing monographs are based on analyses of morphological and osteological 

characters of large collections of fishes, and may be regarded as a classical 

taxonomic approach. In some cases, however, problems in identification remain 

unresolved. Teugels (1984) used a new systematic revision of the 120 nomeinal 

African Clarias species to recognises only 32 valid species. He also clarified the 

systematic status and the more important synonyms of Clarias gariepinus and C. 

anguillaris, two species of considerable importance in aquaculture. Other, more 

recent techniques, such as cytology and electrophoresis, have lately been applied 

to better effect than the classical approach. Several papers have reported efficient 

electrophoretic methods for species identification; these methods prove useful in 

strain identification and also in hybrid recognition (Teugels, et al., 1992b). The 

Clariidae and the Ictaluridae represent the best studied families. The systematic 

status of a number of species and families has been either elucidated or confirmed 

by genetic approaches. Duplication of ancestral genes occurred in catfishes just as 

in other vertebrates. The genetic structure of and gene flow among natural 

popUlations have been documented in relatively few cases, while the evaluation of 

strains for aquaculture is in progress (Volckaert and Agnese, 1995). 
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C. macrocephalus C. batrachus C. gariepinus 

Figure 1.1 The occipital process of C. macrocephalus (left), c. batrachlls (centre) 

and C. gariepinus (right) (Boulenger, 1911; Smith, 1945) 

1.2.2 Recent studies in fish genetics. 

Fishery biology has much to gain from the advances in technology that now permit 

the study of gene products and of components of genes themselves. Several of the 

most important questions in fisheries , e.g., those of stock assessment and biochemical 

identification, can be addressed readily through the study of genetic variability within 

among populations of fishes (Whitmore, 1990). The geneticist can explained how the 

genetic material is transmitted from generation to generation via the gametes (sperm 

and eggs). The basic genetics have information that shows how the genetic 

information passes from parents to offspring. The facts about genes and 

chromosomes; DNA and protein synthesis; cell divisions (mitosis and meiosis), and 

sex determination are c1earify investigated. This information builds up the basic laws 

of genetics, particularity those dealing with molecular genetics and cytogenetics, since 

the laws of inheritance were established by Gregor Mendel, an Austrian monk who 
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studied how seven morphological differences in the garden pea are inherited (Purdom, 

1993; Tave, 1993). 

Genetics has been defined as the study of differences among individuals. If all the 

individuals in a particular species were identical, we could still study their 

morphology, physiology, ecology, etc. The study of inheritance depends upon finding 

individual differences so that the similarity of parents and their offspring can be 

compared relative to the similarity among unrelated individuals (Allendorf and 

Ferguson, 1990). 

Genetic variability can be thought of as existing at two levels: (1) genetic differences 

between individuals within populations, and (2) genetic differences between 

populations within the same species. The first level is investigated by the traditional 

Mendelian genetics. However, the study of how individual variability becomes 

transformed into differences between populations is fundamental to the study of 

evolution (Naevdal and Dalpadado, 1987) 

Fish genetics is of relevance to fish breeding, whether in the context of fish 

cultivation or the exploitation of fish by fishing (Kras7l1ai, 1987; Purdom, 1993). The 

genetics of fish interacts with their culture in four main areas of study: (1) the 

quantitative genetics, hybridization and inbreeding, which are approached at the 

organismal and phenotypic level; (2) ploidy manipulation which the advances made 

by using the techniques of exploring the chromosomal level; (3) single-locus 

allozyme studies which have increased our understanding of the genetic consequences 

of bring wild populations under domestic control and of releases of cultured stocks 

into the wild; and (4) the application of recent DNA techniques to the development of 

gene transfer in fish (Kapuscinski and Jacobson, 1987; Tave, 1993; Beaumont, 1994). 
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Quantitative aenetics: traits of importance of aquaculture are generally controlled by 

a number of genes and are therefore best studied by quantitative genetic techniques. 

From the commercial point of view, artificial selection needs to be carried out to 

enhance those features or traits which increase commercial potential or to instigate the 

process of domestication (Kapuscinski and Jacobson, 1987). 

Hybridization and inbreedina: the existence of hybrid vigour, or heterosis and 

inbreeding depression have been recognized for a long time. The degree of 

differentiation between strains required to produce measurable hybrid vigour is an 

important criterion. Very closely related strains may produce none while more 

distantly related groups may suffer from outbreeding depression, possibly brought 

about by the break-up of coadapted gene complexes or other changes in genetic 

architecture (Purdom, 1993). Hybrids between salmonid species tend not to show 

measurable hybrid vigour and have little advantage in fish farming when compared 

with S. salar (Chevassus, 1979). Nevertheless, it is still important to explore 

interspecies hybridization in any new fish species with aquaculture potential 

(Chevassus, 1983). In practical ways it may be advantageous to breed for ease of 

capture and this is the case with catfish which are grown for angling. Dunham et al. 

(I990) reported that the hybrid cross between channel catfish, letalurns punctatus, 

and the blue catfish /. jurcatus, was more vulnerable to angling than either parental 

species and showed heterosis for growth rate when stocked at high density. 

Interspecies hybridization can be used in tilapine fish to produce all male offspring, a 

valuable feature because a major constraint on tilapia production is their uncontrolled 

reproduction in grow-out ponds (Hulata et al., 1983). Interstrain crosses in 

Oreochromis nilotica can produce significant heterosis in both F1 and F2 generations 

(Tave et aI., 1990) 
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In contrast to the rather varied success in the search for hybrid vigour in interstrain or 

interspecies crosses in aquaculture species, the deleterious effects of inbreeding are 

usually strongly expressed even in the first inbred generation (Gjedrem, 1992; Tave, 

1993). 

Ploidy manipulation: the ability to manipulate the ploidy of aquaculture organisms 

was initially brought to prominence by Purdom (1969) who was working on fish, and 

the technology was only later taken up for use on molluscan shellfish and amphibians. 

During the 1980's many fish and shellfish species have been the subject of ploidy 

manipulation and these developments have been reviewed by Thorgaard and Allen 

(1987); Thorgaard (1992) and Tave (1993). Triploid and gynogenetic diploid fish are 

valuable for aquaculture. The most important feature of triploids is their sterility. 

Homologous chromosomes in the germ cell of triploids cannot synapse during early 

meiosis I and normal gametogenesis does not occur. Thus energy usually diverted to 

gamete production in mature fish is available for somatic growth in triploid. In fish 

the undesirable side effects of sexual maturation, such as high mortality, reduced meat 

quality and slower growth, are not always eliminated in male triploids though they are 

functionally sterile. Gynogenetic diploids have two important features of relevance to 

aquaculture. First, in fish which exhibit female homogamety, such as carp and many 

salmonids, all gynogenetic offspring should be female (XX). The second important 

aquaculture potential for gynogenesis is its allows the possibility of rapid 

development of inbred lines for domesticated hatchery broodstocks (Beaumont, 1994). 

Allozyme genetics: the development of the techniques of protein allozyme 

electrophoresis over the last 25 years has enabled allozyme data to be used to address 

a number of questions of importance in aquaculture. There are three important aspects 

of fish or shellfish hatchery practice which are likely to have a significant impact on 

genetics of culture species, and all can be investigated using allozyme data. First, if 

the number of progenitors is small then genetic drift will lead to loss of rare alleles 
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and a reduction in heterozygosity. Second, inbreeding, and consequent inbreeding 

depression, will occur if the offspring of the original broodstock are retained as new 

broodstock. Third, cultured aquatic organisms are protected from some aspects of 

natural selection but are subjected to artificial selection for size and other aspects of 

culture as an unintentional result of normal husbandry procedures (Allendorf and 

Ryman,1987; Tave, 1 993). 

Transgenic studies: The principal involvement of DNA technology is currently in 

transfection, the introduction of novel genes into aquaculture organisms. There are 

many potential benefits of this approach, including, for example the development of 

disease resistant stocks, faster growth animals or freeze resistant stocks. Fish are 

currently a valuable group of animals for application of gene technology and 

trangenic induction because ethical considerations which tend to constrain the use of 

genetic manipulation in mammals and other higher animals are less likely to apply to 

fish involved in aquaculture. Transgenic fish have been developed with a number of 

uses in mind, and as the technology develops, more uses can be envisaged. 

Woodwark, et al. (1994) reported that the literature lists 40 constructs used in 

attempted genetic modification of fish. Of these 40 constructs, 25 are reporter genes, 

mostly of bacterial and viral origin, one is the antifreeze gene from winter flounder 

and the other 14 are growth hormone constructs. Enhanced growth rates have been 

reported in several fish species used in aquaculture ( e.g. common carp, Atlantic 

salmon and channel catfish). The increase in growth rate achieved by genetic 

modification has not been predictable. It is expected that experimentation with 

different types of gene construct will be necessary to determine the appropriate level 

of expression of growth hormone. The role of growth hormone in promoting faster 

growth is not fully understood. Du et al. (1992) reported that the fastest growing 

Atlatic salmon contained the lowest amounts of growth hormone in blood plasma, 

although in general, there was no significant difference between the plasma GH levels 

between transgenic fish and controls. The principal methodology for introduction of 
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novel DNA into fish is by microinjection of a solution containing around 106 
- 10

8 

copies of the DNA into the eggs following insemination but before first cleavage 

(Maclean et aI., 1987; Penman et aI., 1987a). 

1.1.3 Hybridisation in fish. 

The interbreeding of different taxonomic groups has been attempted in many 

domesticated animals and plants. Among animals, fish are very well suited to this 

approach and a vast literature exists on artificial hybridization, even greater than that 

for natural hybridization. Moreover, the scale and range of studies in artificial 

hybridization is very much wider than that of natural events (Krasmai, 1987). 

The importance of natura1 hybridization lies not so much in its positive implications 

for fish breeding, although artificial hybridization is a powerful tool in fish culture, 

but more in its implications for evolutionary relationships. Hybridization in the 

natural environment is more relevant today as an environmental issue in the sense that 

introduced, or exotic, species might interbreed with and upset the natural genetics of 

native populations of fish. This problem is widely known as part of the trouble arising 

from the introduction of non-native species (Chevassus, 1983). 

There are four basic ways of achieving artificial hybridization. The most natural way 

is the simple cohabitation in captivity of males of one species and females of the 

other. This is the usual way for aquarium species to be crossed, but pond or farm fish 

such as the tilapias can also be brought to a successful spawning with this approach. 

In one sense, this method is very close to natural hybridization brought on following 

introduction of a new species into the habitat of another. A further development of 

natural cohabitation is to use hormone stimulated sexual maturation, usually done by 

injection of the fish with extracts of pituitary gland, often on an empirical basis. This 
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method is suitable for unreliable spawners such as some species of catfish and carp 

(Krasmai, 1987). 

Artificial fertilization, whereby eggs and milt are hand stripped from the fish for 

mixture, is the most practical way of producing hybrids or, indeed, producing any 

genetic cross. It is widely practiced with many fish species and may need stimulation 

by gonadotropic hormone prior to hand stripping as for example with c1ariid catfish 

which are the subject of this thesis and where the two species differ in size and natural 

period for ovulation and spermiogenesis (Longwell, 1987). 

The spread of the artificial propagation techniques has made more crossing and 

hybridization works possible. No accurate data concerning artificial and natural 

hybrids are available, but their number can be estimated at perhaps 5,000 to 6,000 

(Chevassus, 1979) and there is an unlimited potential in this field. Krasmai (1987) 

stated that it is merely a technical problem to develop a new "product" i.e. a hybrid 

with genetic manipulation. Close genetic relationship naturally renders the possibility 

of successful crossing more feasible. 

More logical approaches to hybridization address specific problems such as the 

clarification of taxonomic relationships, the development of experimental tools for 

studying physiology, the production of genetic variance for selection programmes, the 

control of sex ratio and the production of superior fish for aquaculture purposes. 

Krasmai, (1987) classified some of the most important aspects from interspecific 

hybridization as following: 

-combination of different genetic features 

-development of new properties 

-changing etology 

-development new feeding habits 
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-producing new heterosis hybrids to increase productivity 

-enlarging the structure of the fauna 

-producing infertile stock 

-development of monos ex populations 

-inducing polyploidy 

-inducing gynogenesis or androgenesis. 

The production, by hybridization, of new forms of fish which are more suited to 

specific needs is by far the most purposeful approach in this branch of fish breeding. 

In many cases, however, the aspiring breeders simply hope that a hybrid will perform 

better than the parents in general terms, i.e., in exhibiting hybrid vigour. This 

approach is seldom rewarded. Most of the fish hybrids which have been produced in 

the last ten centuries are significantly less fit than the parents and are of little practical 

value. In most cases, the hybrids show intermediate inheritance, poor viability and 

sterility, and have limited practical potential (Purdom, 1983; Chevassus, 1983; and 

Longwell, 1987). 

Chevassus (1983) in his study of interspecific hybridization mentioned all the 

possible products that may arise from the hybridization of two species (Table 1.5). 

The progeny might be haploid or diploid gynogenetic, haploid or diploid 

androgenetic, or diploid, triploid or tetraploid hybrid. Which of will actually develop 

depends upon the genetic combination of the parental gametes of the two different 

species. He also described two main types of results from hybridization: 

1) parthenogenetic development, gynogenesis or androgenesis, according to the origin 

of the genetic stock; 

2) development of hybrid diploid, triploid, or tetraploid genomes, according to the 

ploidy of the parents. 
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Table 1.5 Possible results of a hybridization, according to the nature and ploidy of 

the parental genetic input (modified from Chevassus, 1983). 

Male 0 Na 2Na 

Female (Elimination) (Haploid pronucleus) (Diploid pronucleus) 

0 -- Haploid Diploid 

(Eliminate) androgenetic Na androgenetic 2Na 

Nb Haploid Diploid Triploid 

(Haploid pronucleus) gynogenetic Nb hybrid Na + Nb hybrid 2Na +Nb 

2Nb Diploid Triploid Tetraploid 

(Diploid pronucleus) gynogenetic 2Nb hybrid Na + 2Nb hybrid 2Na + 2Nb 

The types of sterility in hybrids were also summarized by Chevassus (1983) as 

showed in Table l.6. There are reports stating that some artificial hybrids are fertile, 

e.g., tilapia hybrids (Pruginin et al.,1975; Hussain, 1992), carp (Hume et al.,1983), 

channel catfish (Scott and Crossman, 1973) and catfish Clarias gariepinus X 

Heterobranchus longifilis (Teugels et aI., 1992a). 

The conclusions of hybridization remain largely valid but with some qualification. In 

the majority of cases, hybrids are intermediate for those characteristics which 

normally distinguish the parents, but a bias towards one parent or the other is very 

common. This non-additivity of inheritance is compatible with the concepts of 

developmental homeostasis and with the seemingly low levels of additive genetic 

variance for metrical traits in fish. Hybrid vigour is not uncommon, but appears 

frequently only in crosses of closely related species or subspecies. Heterosis is found 

in some racial crosses but more often in crosses of domesticated stocks where past 

history indicates that some inbreeding has taken place (Naevdal and Dalpadado, 1987; 

Krasznai, 1987). 
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Table 1.6 Type of sterility in fish hybrids (Chevassus, 1983) 

Gonads 

~ Normal 
in size 

and 
slructure 

~ Normal 

in size 

• Abnormal 

gameto genesiS ;·; 

~ Size reduction 

• Abortive 

gametogenesis 

):::;:: 

Fertility 

Zygotic 
SterililY 

Gamelic 
Slerility 

Gonadic 
Sterility 

Gametes 

~ Normal 
in size 

and 
slructure 

-7 Abnormal 

in size 
number or · 

structure 

-7 Absent 

Zygotes 

~ Viable 

~ Non viable 

-7 Absent 
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1.2.4 Genetic manipulations in fish 

In a normal fertilization, the spermatozoon triggers the resumption of the second 

meiotic division of the egg, which ends in the extrusion of the second polar body and 

the formation of a haploid female pronucleus. The fusion of the female and male 

pronuclei results in the first diploid nucleus of the embryo, which is then multiplied 

by a long series of mitoses (Chourrout, 1987). The techniques of artificial 

insemination developed make it possible to manipulate the sperm, eggs and zygote in 

a way that the genetic constitutions of the offspring and the populations are changed 

dramatically (Nagy, 1987). The main genetic manipulation techniques recently 

developed and used in different fish species are summarized in Figure 1.2. 

Several methods which involve manipulation are preliminary to developing a 

broodstock for use in a breeding programme. Manipulations may alter productivity, 

fish quality and a mixture of natural physiological and genetic elements. The breeding 

approach is more purely genetic but is complicated, and that may affects 

practicability. These approaches seek to produce all male or all female fish through 

some forms of manipulation for each individual. Absolute success cannot be expected 

since individuals altered by the treatment are usually mixed in with unaffected fish in 

the same population. 

Polyploidization 

The production of polyploids can be achieved by manipulation of the early events 

following fertilisation. This usually means physical treatment (temperature shock or 

high pressure shock) of the zygote shortly after the fertilization to restore the second 

polar body (triploid induction) or shortly before the first mitotic division to cause 

endomitosis (tetraploid induction). Usually heat shocks are very effective for cold 

water fish (Chourrout and Quillet, 1982; Thorgaard et aI., 1983; Johnstone, 1985), but 



29 

these have also been successful applied to channel catfish (Bidwell, 1985) and tilapia 

(Chourrout and Itskovitch, 1983). The application of cold shock is more frequent for 

warm water fish, for tilapia (Valenti, 1975), carp (Gervai et al., 1980), channel catfish 

(Wolters et aI., 1982b), and African catfish (Richter et aI., 1987). However, in some 

species, heat shocks have become the preferred treatment because they require a 

shorter duration than cold shocks. 

Beyond scientific interest, the polyploidization of fish has commercial applications 

too. One of the first expectations was a higher growth rate of the polyploids, since it 

was hoped that the increased gene complement might positively affect the phenotype, 

especially its growth hormone production. However, this expectation has not been 

fulfilled, at least in the species that have been examined. Wolters et al. (1982b) 

reported that the triploid channel catfish grew faster than normal diploids during the 

second season but no difference in the first season of growth in tanks. The accelerated 

growth of the triploids during the second season may be associated with lack of 

sexual development and not a direct effect of triploidy. Richter et al. (1987) studied 

the growth rate of the African catfish, and concluded that there was no significant 

effect of triploidy. However, Kowtal (1987), who studied white sturgeon reported that 

body composition was strongly affected. Triploid fish deposited less protein and more 

fat per unit weight than their diploid controls. No appreciable difference in growth 

was observed between triploids and diploids during the 10 weeks grow out period. As 

a general conclusion, in most cases, the growth rate differences, if there are any, may 

not become apparent in triploids until the onset of sexual maturation. Due to their 

sexual sterility and retarded gonad development, more energy can be utilized for 

growth during the normal period of maturation (Thorgaard, 1983; Scheerer and 

Thorgaard, 1989). 
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The sterility of triploids has a direct advantage in species with uncontrolled 

reproduction that cause difficulties in their culture. Gonad development of triploid 

males and females usually differs from that of their diploid fish. Usually, the gonad of 

a triploid male is less developed than that of the diploid, although the weight of both 

may not differ significantly. Spermiogenesis of triploids is disturbed by the irregular 

pairing of the three sets of chromosomes, and if spermatogonia develop, they are 

aneuploid (Thorgaard, 1983). 

Manipulation of meiotic and mitotic events may produce polyploid individuals from 

ova that have been inseminated with genome-bearing sperm (Purdom, 1983; 

Thorgaard, 1983). The sperm status is the main distinction between induction of 

polyploids versus gynogenetics. The gynogenetic induction regime with reference to 

treatment, type and intensity of shock, time of application and duration can be readily 

optimized for a species by evaluating the yield of viable diploids, since the haploids 

die before swim-up. The analogous regime can be applied to polyploidization with 

anticipated optimal results simply by omitting the DNA-denaturing treatment of 

sperm. Evaluation becomes more complex since both diploid and polyploids are 

viable. Whether the sperm is from the same species as the ova donor or a related 

species will determine whether a polyploid species or a polyploid hybrid is produced, 

respectively. If an early shock is applied to increase the incidence of second polar 

body retention, triploid induction results. If shock is delayed until the period 

associated with the first cleavage, tetraploidy may result (Shelton, 1987) 

Viability of intergeneric hybrids is a phenomenon that is frequently associated with 

polyploidy (Chevassus, 1983). Hybrids between remotely related species may result 

in sporadic production of viable offspring (Bakos et al., 1978). Diploid hybrid 

viability may be low while triploids produced by retention of the polar body are more 

likely to survive, presumably because the complete genome from one parent species is 

only modified or influenced by the haploid set from the other parent species 
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(Chevassus et al.,1983; Scheerer and Thorgaard, 1989). The frequency of triploid 

hybrids should be increased by shock treatment as in gynogenesis. An application of 

this approach was reported with female grass carp, Ctenopharhygodon idella and 

male bighead carp, Aristichthys nobillis (Marian and Krasmai, 1978), to produce a 

sterile triploid hybrid (Krasmai et a/., 1984b). Contaminants included some viable 

diploid hybrids and female grass carp gynogens. These three phenotypes could be 

differentiated and culled (Cassani et aI., 1984; Krasmai et aI., 1984b), but the need to 

confirm ploidy led to improved techniques for separation. In addition to karyotyping, 

the larger nuclear size of polyploids permits differentiation based on red blood cell 

measurement, either microscopically (Allen and Stanley, 1978; Krasmai et al., 1984a) 

or through use of a Coulter Counter (Benfey et al., 1984; Johnson et al., 1984). Flow 

cytometry has also used to measure the greater DNA content in polyploid cells (Allen, 

1983). 

Subsequent testing of the triploid hybrid grass carp demonstrated the low weed 

control effectiveness, which reduced the attractivenesss of this sterile hybrid 

(Shireman et a/., 1983). The former successfully produced triploid grass carp, which 

further contributed to the demise of interest in triploid hybrid. The specific treatments 

to induce triploidy in grasss carp are largely the result of proprietary developments by 

commercial producers. Cassani and Caton (1986) have reported increased yield of 

triploids through various thermal shocks. Histological studies of gonads from triploid 

loach, Misgurnus anguil/icaudatus (Suzuki et al.,1985), carp (Gervai et al., 1980) and 

grass carp (Doroshov, 1986) have demonstrated probable sterility, however because 

of the differential gonadal development between the sexes, fertility tests should be 

applied to verify sterility. 

Induction of triploidy has been reported for a variety of other fish, including rainbow 

trout (Chourrout, 1980; Lincoln and Scott, 1983), channel catfish (Wolters et aI., 

1981), tilapias (Chourrout and Itskovich, 1983), Pacific salmonids (Utter et al., 1983). 
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Atlantic salmon (Benfey and Sutterlin, 1984; Johnstone, 1985), European catfish, 

Silurus glanis (Krasznai et al., 1984a), African catfish, Clarias gariepinus (Richter et 

al., 1987), Asian catfish Clarias macrocephalus (Vejaratpimol and Pewnim, 1990) 

and Asian catfish Clarias batrachus (Manickam, 1991). 

Gynogenesis 

Gynogenesis is the development of an ovum without a paternal genetic contribution 

(Thorgaard, 1983). The first application for gynogenesis is as a means of producing 

single-sex offspring, assuming the involvement of only the maternal genome which is 

of the homogametic sex. The genetic inactivation of the sperm is usually achieved by 

administering large doses of ionizing or UV radiation. After the radiation has 

completely destroyed the chromosomes, the spermatozoa retain the ability to penetrate 

into micropyle and activate the eggs and the cell division they initiate proceeds 

normally. Then, shocks to increase ploidy were applied shortly after fertilization, 

causing the retention of the second polar body. Thus, in the case of gynogenesis, it 

results in the union of two haploid complements produced in the second meiotic 

division. Late treatments are applied shortly before the expected time of first cleavage, 

and they therefore prevent spindle formation, resulting in endomitosis. The ploidy of 

the embryos is doubled after these shocks. It is easy to understand that completely 

homozygous diploid gynogenetic offspring can be produced by late shocks applied to 

haploid gynogenetic zygotes. Similarly, late shocks applied to normal diploid zygotes 

results in tetraploid offspring. A brief diagram of gynogenetic procedure is shown in 

Figure 1.3 (Chevassus, 1983; Purdom, 1983; Chourrout, 1987; Shelton, 1987). 
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In natural conditions, several fish species are represented by females only. One of the 

mechanisms of the reproduction of such species is gynogenesis, a kind of sexual 

parasitism. The oocyte of the female is fertilized by a male from a closely related 

species, but the genetic material of the sperm is eliminated during the early stage of 

embryo development (Nagy, 1987). 

The various types of manipulation have been reviewed by Chourrout (1987). Most of 

them have been more or less precisely evaluated, particularly with regard to 

gynogenesis and polyploidization (Chevassus, 1987). The production of 

gynogenetics, androgenetics and polyploids has been described in several reviews 

(Cherfas, 1981; Chourrout, 1982; Thorgaard, 1983; Purdom, 1983; Chourrout,1987; 

Purdom, 1993 and Tave, 1993). 

The artificial induction of gynogenesis is a very promising method for the aquatic 

sciences. Using this technique, the establishment of highly inbred lines can be 

achieved very quickly in aquatic species. These lines will surely improve fish culture 

by promoting the production of heterosis hybrids rather than selected lines (Tave, 

1993). 

The treatments used to produce diploid gynogenetic fishes have to overcome two 

problems: first, they must inactivate the genetic material of the sperm needed to 

initiate embryo development, and second, they must restore diploidy to the zygote, 

either by retention of the second polar body or by preventing the cellular division after 

the first mitosis. The solution of the first problem is based on the 'Hertwig effect'. 

The sperm, which were irradiated with ionizing or UV radiation in much higher doses 

than the lethal level, are used to initiate gynogenetic development. The restoration of 

the diploid stage is usually achieved by temperature or physical shocks to the zygote, 

as in triploidy induction (Nagy, 1987). 
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The variability of sex determination in fish is a critical consideration (Cherfas, 1981). 

Functional homogamety in fish has been demonstrated through gynogenesis in 

various cyprinids (Stanley, 1976b; Nagy et al.,1984; Siraj et al., 1993; and Fujioka, 

1993) and salmonids (Johnstone et al.,1978; Chourrout and Quillet, 1982; and Refstie 

et al., 1982). Spontaneous gynogenesis through second polar body retention is rare, 

although the frequency can be increased by a variety of physical or chemical shocks at 

the appropriate time in relation to the second polar body formation. Chourrout and 

Itskovich (l983) and Chourrout (1984) demonstrated the value of optimization of 

various treatment parameters to increase the yield of heterozygous and homozygous 

diploid gynogenetics. Optimization has enhanced diploid production in some species, 

such as the plaice, Pleuronectes platessa; flounder, Platichthys flesus (Purdom and 

Lincoln, 1973); grass carp Ctenopharyngodon idella (Stanley, 1976a); common carp 

Cyprinus carpio (Nagy et aI., 1978); rainbow trout, Salmon gairdneri (Chourrout and 

Quillet, 1982); tilapias (Chourrout and Itskovich, 1983; Penman et al. 1987; Don and 

Avtalion, 1988b) and catfish Clarias macrocephalus (Na-Nakom et al., 1993). Some 

results were met to the levels that might be considered practical. Stanley (l979) 

produced enough female grass carp (Ctenopharryngodon idella) through gynogenesis 

for a large scale stocking test, but this was considered effort as diploid yield generally 

on the range of 0.1-10 %, principally without enhancement by shock. He also found 

little increase in yield with various treatments (Stanley, 1982). The females produced 

are fully fertile, and therefore, reproductive control through monosex stocking may be 

compromised if prior mixed-sex stocking has occurred. However, the main problem 

with many species is the low yield of diploids despite shock to enhance production 

(Nagy, 1987). 

Induced gynogenetic diploidy can also be achieved through suppression of the first 

mitotic division in developing haploids. While this may be accomplished by judicious 

application of late shock (Thorgaard, 1983), the success is lower than in early shock. 

One aspect of optimizing gynogenetic treatments that has not been adequately 
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exploited is its value as an effective estimator of the most probable optimal treatment 

conditions for polyploidization. Shelton (1987) suggested that optimizing diploid 

production by either early (meiotic gynogenesis) or late shock (mitotic gynogenesis) 

should correlate with the greatest yield of polyploids: evaluation is direct through 

counting of surviving diploids in contrast to the necessity of ploidy evaluation when 

optimizing polyploidy directly. 

1.2.5 Sex determination in fish 

Fishes stand out in a special place among other vertebrates, as regards the gonosomal 

complement and sex determination mechanisms. First, among fishes, there is variety 

of sex chromosome types, from the undifferentiated sex chromosomes proper of most 

species of fishes to XV-XX; ZZ-ZW; XO-XX and multiple gonosome systems. 

Furthermore, these gonosomal types are found among many separate families and 

genuses, mostly without close phyletic relationships. Whenever there is a species 

having differentiated sex chromosomes, often there are other, closely related species 

displaying homomorphic chromosomes. Thus, the emergence of gonosomes seems to 

have occurred in many independent instances in fish. Second, fish show the only 

instances among vertebrates of natural hermaphroditism in a significant number of 

species, while separate sexes are present in the majority of teleostean species (Solari, 

1994). Therefore, these characteristics, which show a large degree of plasticity in sex 

determinatio and in the occurrence of gonosome systems suggest that the study of sex 

determination in fishes may reveal important clues about the origin and function of 

sex chromosomes of other vertebrates. 

The methods to control and manage fish reproduction, included: storing gametes; 

changing fish gender; manipulating the timing of reproduction and sterilizing fish are 

nescessary in this study, which concerns the ways to determine reproductive status 

and to manipulat various aspects of reproduction in catfish. 
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Dead fish can be sexes easily by direct examination of the gonads, however, 

indeveloping rapid and practical methods of sexing live fish would lead to improved 

estimates of stock reproductive potential, more efficient feeding and marketing of 

domesticated stocks, and more efficient sample sizes for sex specific experiments, 

among other advantages. live juvenile fish are especially difficult ti sex because they 

usually lack external features associated with sexual maturation, such as breeding 

tubercles or sexually dimorphic pigment patterns and urogenital pores (erim and 

Glebe, 1994). 

1.2.6 The histology of fish gonads 

Efficient management of broodstock depends on an accurate prediction of ripening 

time to facilitate the collection of high quality eggs and sperm. From histological 

samples, ovarian tissues may be divided into eight stages of maturity (Marte and 

Lacanilao, 1986) based upon the dominant gametogenic cell types present: 

Previtellogenic (immature) oocytes are small, spherical ovarian cells containing a 

central nucleus and increasing amounts of cytoplasm (stage 1-3). Vitellogenic 

(maturing) oocytes (stage 3-6) incorporate the yolky materials produced by the liver. 

Yolk granules aggregate first at the periphery and later towards the center of the egg. 

Mature oocytes (stage 7) are the largest and are fIlled with yolk, which hardens during 

fixation and makes their histological preparation in paraffin difficult. The spent ovary 

(stage 8), found in females that have spawned, contains emtry follicles and 

postovulatory structures termed corpora lutea. 

The developmental cycle of the fish testes can be divided into six stages based upon 

the appearance of the maturing germ cells. The cycle begins with spermatogonial cell 

proliferation (stage 1). Germ cell maturation proceeds with the appearance of 

spermatocytes (stage 2), spermatids (stage 3), and spermatozoa (stage 4). When males 
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are ripe (stage 5), termed the period of functional maturity, the testicular lumina are 

packed with sperm masses and milt flows freely when the abdomen is compressed. 

Stage 6, after spawning ceases, comprises a period of testicular involution and 

phagocytic absorption of residual sperm (erim and Glebe, 1990). 

1.3 Aims and structure of this thesis 

The main aims of this study are concerned with the status of the pure species and the 

genetic manipulations of the hybrid catfish. This will involve: 

1.3.1 Electrophoretic study of Thai clariid species to estimate variability and to 

determine the genetic relationships among the hybrid catfish and their parents. 

1.3.2 Karyotype analysis of the parental and hybrid catfish. 

1.3.3 Triploidy induction in hybrid catfish between female Clarias macrocephalus 

X male C. gariepinus and their reciprocal hybrids and its effect on survival rate, 

growth rate, gonad development and fertility. 

1.3.4 Investigate sex determination using gynogenesis. 

1.3.5 Look at the effects of using different Clarias gariepinus strains in hybrid 

crosses. 



CHAPTER TWO 

GENERAL MATERIALS AND MEmODS 

2.1 Origin of fish. 

The pure species (Clarias macrocephalus and C. gariepinus) used in this study 

were imported from the hatchery of the National Inland Fisheries Institute, (NIFI) 

Bangkok, Thailand to the Institute of Aquaculture, University of Stirling, United 

Kingdom in September-October 1991. Further generations were produced under 

laboratory conditions and maintained in the tropical aquarium of the Institute. The 

C. macrocephalus were originally wild stock from a paddy rice-field nearby 

Bangkok and had been kept at the NIFI hatchery for more than 8 years, while the 

Mrican species was introduced to Thailand from Laos in 1987 ( no other 

information is available on the origin of this stock). 

2.2 Identification of Clariid catfish. 

Identification of the species used the keys of Boulenger (1911), Smith (1945), 

Bell-Cross (1976) and Teugels (1986). 

2.3 Fish stocks and their maintenance. 

The newly imported catfish were placed in quarantine tanks and kept separately 

from other fish for at least 4 weeks. Mter the quarantine period, fish were 

transferred to stock tanks in recirculating systems. The system contained 2 x 180 

litre head tanks plus 1 x 115 litre overflow tank, 4 x 180 litre plus 2 x 540 litre 

settling tanks with biofilters and 2 x 180 litre sump tanks attached to a 0.75 H.P. 

electric pump. There was a total of 16 fiber glass tanks (100 x 100 x 30 cm
3

) 
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arranged in double rows of 8 tanks each on a two tier system. The tanks had valve 

controlled inlet pipes for incoming water and central standpipe venturi for 

discharging excess water and solid wastes (Figure 2.1). The flow rate of 

approximately I litre/ min/tank came directly from the header tank by gravity into 

each tank through 1 cm diameter inlet pipes and the waste water was discharged 

through a 25 mm stand pipe into a common settling tank and through a series of 

biofilter tanks into the sump tank before being pumped back to the header tank. 

All the tanks were kept at constant temperature of 2S±lO C by a thermostatically 

controlled 3 KW heater (Howden Ltd.) placed in the header tank. Aeration was 

provided in each tank with one 15 cm length air stone linked to the central blower 

unit. Most of the tanks in this system were used for grow out fish as well as for all 

broodstock maintenance. Fish in all the above systems were maintained under 12 

hour photoperiod, controlled by electric timers. Water qualities such as dissolved 

oxygen (5.0-7.0 mg/l), pH (6.5-7.S), ammonia (0-0.4 mg/I), nitrite (0.08-0.lS 

mg/I) and nitrate (10-20 mg/I) were regularily measured in all these systems. The 

fish were regularily monitored for diseases and parasites. 

2.3.1 Egg incubation, fry rearing and on-growing system. 

The egg incubation system for Clarias catfish was established in the tropical 

aquarium of the Institute of Aquaculture in 1992. The egg incubation system 

consisted of a 180 litre header tank, 1 x 180 litre and 1 x 540 litre settling tanks, a 

0.25 H.P. pump and a unit of incubation tanks consisting of 12 x 20 litre plastic 

aquaria (Figure 2.2). The aquaria were connected to a recirculating system, where 

warm water was maintained at 2S±l ° C having a thermostatically controlled 3 

KW heater (Howden Ltd.) placed in the header tank, the flow rate of water in 

each aquarium was approximately 1 litre/min. The water came directly from the 

header tank by gravity into each aquarium and the waste water was discharged 

into a common settling tank and through a biofilter tank before being pumped 
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back to the header tank, resulting a recirculating flow and removal of most of the 

waste products automatically. 

The fertilised eggs were incubated at 28±1° C in 20 litre plastic aquaria in a 

recirculating water system as described above. Each plastic aquarium contained a 

small hapa with a piece of nylon mesh inside (0.5 mm mesh-size). The fertilised 

eggs were placed on this piece of nylon mesh : after hatching, the embryos passed 

through this mesh into the bottom of a hapa. The piece of nylon mesh containing 

egg chorions, dead embryos and unfertilised eggs was then removed from the 

incubation system. 

The grow-out system for fry and fmgerlings contained 2 x 540 litre header tanks 

plus 2 x 540 litre overflow tanks, 4 x 2,000 litre fibre glass settling tanks with 

biofilters and 2 x 180 litre sump tanks attached to a 0.75 H.P. pump (Beresford 

Pump Ltd.). There were 2 sets of circular rearing tanks connected with this water 

system, each set contained 32 x 20 litre circular plastic tanks arranged in double 

row 2 x 8 tanks each on a two tier sytem (Figure 2.3). 

The advanced fmgerlings rearing system consisted of 2 x 180 litre header tanks, 4 

x 180 litre setting tanks, 2 x 180 litre sump tanks and a 0.75 H.P. pump and 2 sets 

of circular rearing tanks. Each sets consisted of 12 x 20 litre circular plastic tanks 

arraged on a two tier system which 6 tanks on each row (Figure 2.4) 

2.3.2 Feeds and feeding. 

The newly hatched fry can not swim up and settled at the bottom of the hapa until 

their yolk sac was resorbed, approximately 2 days after hatch. The early stages of 

fry were fed with Artemia nauplii for one week then changed to feed with wet 

trout pellet (No. 3 pellet). The fry were kept in the incubation system for at least 
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Figure 2.1 Glass fiber tank for broodstock rearing system. 

Figure 2.2 Eggs and embryos incubator system. 
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Figure 2.3 Fry and fingerling rearing system . 

Figure 2.4 Advanced fingerlings rearing system. 



45 

one week and then were transferred to the on-growing tanks or were sampled or 

disposed of if not needed. 

All fish from fry to broodstock were fed commercial trout feeds (Ewos Baker 

Ltd. No.3 to NO.5 pellet; 40-50 % crude protein, 15 % oil, 15 % carbohydrate, 10 

% ash, 1 % fibre and 9 % moisture). The late fry received wet micronised No.3 

• pellet which was blended to give a range of particle sizes (250-500 !-tm). The fry 

were fed initially at 25 % of body weight per day using the wet blended pellet, 3-

4 times daily. The size of the pellet was increased to No.3 as the fish grew after 

one month of age, they were given feed 2 times daily, at 5 -7 % body weight. 

The amount of the feed was reduced to 3-4 % body weight and the pellet size 

increased as the fish grew: No.4 for 30 g up to 120 g and No.5 for 120 g up to 

broodstock size. The fish were fed 7 days a week except on the periodical 

sampling days. 

2.4 Anaesthesia. 

In order to calm down or minimise handling stress, all fish were anaesthetized 

using ethyl 4-aminobenzoate (benzocaine) at a concentration of 100 ppm before 

all procedures which required handling fish (induced spawning, egg stripping, 

size measuring, tagging and blood sampling etc.). As benzocaine is not water 

soluble, a 10 % stock solution was first prepared in ethanol and required 

concentration was made by diluting the stock solution in water at the time of 

using. The fish were immersed in the diluted solution until their opercular 

movement ceased; in this condition they could be handled for up to 5 minutes. 

After carrying out the necessary sampling fish were moved to a bucket or 

aquarium with warm, clean water and strong aeration in order to aid their 
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recovery from anaesthesia and to avoid post- sampling mortalities. Generally, the 

fish recovered to normal condition within a few minutes. 

2.5 Fish propagation, hormonal application, egg stripping and fertilisation 

To prepare broodstock for propagation, it is necessary to keep the sexes 

separately to prevent the interruption from some feromones of the opposite sex 

which will be influence maturation circulate freely. The females were selected 

and pooled in one tank while special maintenance and feeding schedule was 

applied. Fish were fed with minimum 2 % body weight daily and kept with a 

good water flow and aeration for 2-3 months. 

Sexually mature female catfish spawn at approximately 6-8 weeks intervals 

during the breeding season or under the experimental conditions described above 

: some mature females were implanted with synthetic LHRHa hormone (Hoechst, 

Germany) encapsulated in silastic tubing (Down Coming, USA). Readiness of 

females to spawn was ascertained by examining the degree of swelling of the 

belly and colouration of the urogenital papilla. The ripe females were collected 

and removed from the rearing tank to incubating tank. Spawning was induced by 

injecting the female with a mixture of LHRHa hormone and domperidone 

(Motilium-M:domperidone maleate; Janssen, Thailand). The dose applied was 20 

J,1g of LHRHa plus 5 mg of domperidone per 1 kg of brooder weight. The 

brooders were kept individually in small incubating tanks which contained 

shallow static water. After a latency time of 15-18 hours, the eggs were manually 

stripped, by applying gentle downward pressure with the thumb and index fingers 

from just below the pectoral fms up to the genital opening of the fish. The eggs 

were collected in a clean, dry plastic bowl. 
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Immediately after stripping, the eggs were sub-divided into Petri dishes as the 

experimental design required. Milt from males can not be obtaining by stripping. 

The males have to be killed to get the testis for artificial fertilisation. Fertilisation 

of the eggs with the milt from macerated testes of the male fish was carried out 

later by using the semi-dry method (mixture of diluted sperm with modified 

Cortland's saline), followed by the addition of 10-20 ml of 28° C water. Eggs and 

sperm were mixed and stirred gently with a feather. Next, a little clean water was 

added and mixed two or three times to clean the fertilized eggs. Mter that 

fertilised eggs were left in the petri dishes for a few minutes before using for 

further treatments or transfer to the incubation system. 

2.6 Collection, preservation and ultraviolet ray irradiation of sperm. 

Milt was collected from macerated testes of the male fish. The sexually mature 

males were selected from broodstock tanks by examining the shape and coloration 

of the urogenital papilla. The male fish were killed, the testes was taken out, 

minced in a fme nylon net, then the milt were transfered to microcentrifuge tubes 

and centrifuged at 1,500 g for 10 min. at 4° C. The top clear supernatant was 

removed. Approximately 500- 1,000 ,..tl of undiluted sperm was obtained in this 

way and kept separately for control in each experiment. Before any milt was used 

for normal fertilisation in hybridization (Chapter 3), triploidy (Chapter 4) or 

gynogenesis (Chapter 5), the motility of the sperm sample was always examined 

under a microscope. A small amount of milt (5-10 Ill) was sampled and diluted 

with modified Cortland's saline (Appendix lA) using an appropriate dilution 

factor depending on the initial concentration. The motility of the spermatozoa was 

checked by mixing 5 III of diluted milt with 50 III of water in a microcentrifuge 

tube and then rapidly placing a drop of the mixture on a glass slide for 

microscopic examination. The sperm motility in all samples was scored on a 

subjective rating scale system of 0 to 10. A rating of 10 denoted that 100 % of the 
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spermatozoa under observation were motile, moving actively, while 0 rating 

indicated that no sperm were moving after activation. Only diluted sperm samples 

with a motility score of 9-10 after activation were used. For short storage 

undiluted milt was held at 40 C in a refrigerator and found quite viable to fertilise 

eggs until 2-3 days after collection, while diluted milt with Modified Cortland's 

saline (approximately 1: 600) was viable to fertilise eggs until one week after 

collection. 

Sperm concentration was estimated using a Neubauer counter (Haemacytometer, 

O.lmm, 1/400 mm2
, Weber Scientific, England). Before the milt was used for any 

purpose, sperm head counts were made to estimate the whole sperm sample 

density. Dilution was done by taking 10 III of sperm sample added in 490 III of 

diluent (Modified Cortland's Saline), making a total of 500 III sperm suspension 

in microcentrifuge tube. From the first dilution, 10 J.11 was drawn and added in 90 

J.11 of diluent making a I :50 and 1: 10 dilution respectively. A small amount of 

sample was dropped on the Haemacytometer for counting (details as described in 

Appendix IB). 

Milt samples used for ultraviolet ray irradiation in all gynogenetic experiments 

described in Chapter 5 were first checked for motility and then sperm samples 

were diluted with a deactivator (Modified Cortland's Saline) to give cell 

concentrations of 2.5 x 107 or 2.5 x 108 
mrl before irradiation with a 6 W 

ultraviolet lamp (wave length 254 nm) set using a radiometer (Ultra-Violet 

Products Inc., USA) to give a dose of 200 IlW cm-2 or 300 IlW cm-2 (Figure 2.5). 

Irradiation was carried out in a 4.5 cm diameter petri dish which contained 2 ml 

of diluted sperm and constantly agitated using an electric stirrer (Jencons 

miximatic, USA) at 40 C for durations as per design for each experiment. 
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2.7 Application of temperature and pressure shocks. 

2.7.1 Application of temperature shocking. 

Chapter 4 (induction of triploidy) and 5 (gynogenesis) describe the experiments 

involved in determining optimal shock treatments for ploidy manipulations. In 

this section, therefore, the apparatus and basic method are detailed. An 18 I water 

bath ( temp. range 0-100° C capable of maintaining ±O.I° C) equipped with a 

heater, a cooler coil, a thermostatically controller and a water recirculating 

system (Julabo F 18, lulabo Ltd.) was used for heat and cold shocking of fertilised 

eggs (Figure 2.6). About 30 minutes before the shock treatments were to be 

initiated, the water bath was filled with clean water and allowed to reach the 

required water temperature (typically between 2_5° C or 39-42° C). For extra 

accuracy, a mercury thermometer having 0.1 ° C division was used to finally 

adjust the temperature. Fertilised eggs to be treated were first placed in drip net(s) 

or piece(s) of nylon mesh floating on a bucket full of water (approximately 28° C) 

and then the drip net(s) or piece(s) of nylon mesh with fertilised eggs were shifted 

quickly into the water bath for the required duration as per design of the 

experiments. After the completion of temperature shock, drip nets or pieces of 

nylon mesh containing eggs were immediately moved back to the bucket full of 

water (approximately 28° C) and then directly transferred to the incubation 

system. 

2.7.2 Application of hydrostatic pressure shocking. 

The hydrostatic pressure shock treatments were used for optimising the inducing 

triploidy experiments described in Chapter 4. The machine used in these 

experiments had two vessels, which each contained 1.5 litre inside volume and 

was designed and built by Mr. Brian Howie, Chief Engineering Technician, 
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Figure 2.5 A 6 W (254 nm wave length) Ultraviolet lamp and an electric 

agitated stirrer setting in the refrigerator. 

Figure 2.6 A thermostatically controlled 50 litre water bath for heat or cold shock 

treatment. 



51 

Institute of Aquaculture, University of Stirling, Stirling, Scotland (Figure 2.7). 

Before the shock treatments were to be initiated, the pressure vessel and hydraulic 

pump reservoir were first filled with clean water (temperature approximately 28° 

C). Fertilised eggs were placed in small pieces of nylon mesh which held on a 

bucket full of water (280 C) before being transferred into the vessels. After the 

vessels had been sealed and purged of air, the pressure release valve was closed 

and pressure was applied gradually by a manually operated hydraulic pump. The 

time taken to raise the pressure level from ambient to 8,000-9,000 p.s.i . was in the 

region of 30 sec. with the passage from 8,000 to 10,000 p.s.i. taking a futher 10 

secs. Pressure was released by gradually opening the valve and the pressure 

dropped to ambient typically in 30 sec. After the pressure treatment, the pieces of 

nylon mesh containing the eggs were removed from the vessels and put back to 

the bucket full of water (approximately 280 C) before transfer to the incubation 

system. 

Figure 2.7 A hydrostatic pressure machine which contained 2 x 1.5 litre vessels . 
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2.8 Criteria use for checking of embryonic development. 

Fertilised treated and control eggs on the pieces of nylon mesh or drip nets were 

removed from the shocking equipment and floated in a bucket full of warm water 

(approximately 28° C). They were thoroughly cleaned and the number of eggs in 

each batch was estimated and recorded prior to incubation. After that the pieces 

of nylon mesh or drip nets containing the eggs were transferred and separately 

incubated in recirculating system as described above. 

According to the previous results of microscopic examination of the development 

stage of fertilized eggs in Clarias macrocephalus as shown in Figure 2.8. The 

survival rate of embryos in each batch was checked at four development stages : 

fertilisation rate 6-8 hours after fertilisation (a.f.); somite stage 10-12 hours a.f.; 

hatching 22-24 hours a. f. and yolk sac resorption 3 days after hatch out, which 

were sampled three times in each batch of eggs and calculated as: (Average 

number of surviving embryos sampled at a given development stagel average 

original number of sampled eggs) x 100. 

2.9 Sampling, weighing and measuring 

2.9.1 Weighing, and measuring fish 

Fish sampling, weighing and measunng were essential procedures for data 

collection during experiments, periodical sampling and harvesting time in growth 

experiments (Chapter 3 and Chapter 4). Weighing of fish ~2 g was carried out 

individually after anaesthetization (section 2.12) on a digital balance ranging 

0.00-400.00 g (Metler PC 400, Metler Instrument AG). Early fry or fish ~2 g 

were weighed wet in groups in a preweighed beaker containing water in order to 
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avoid handling mortalities. Measurements of standard length of the fish were 

carried out using Vernier callipers for small fish or a scaled ruler fitted on a 

wooden board for larger fish. 

2.9.2 Fish tissue sampling. 

Fish tissues for electrophoresis or histology were sampled from freshly killed or 

frozen fish using a scalpel, scissors and forceps. These tissues were frozen in a 

microcentrifuge tube at -250 C for electrophoresis or fixed in natural buffer (10% 

formalin) or Bouin's solution (Appendix 6) for histology until required. Special 

procedures for sampling skeletal muscle fins and barbels while the fish or 

broodstock were maintained alive for further experimental purposes were applied 

in this study, using biopsis. The fish were anaesthetized before all procedures. A 

small piece of caudal fin or barbels or a small piece of skeletal muscle were cut 

off using a sterile scalpel, scissors and forceps. Mter this a powder containing a 

mixture of an antibiotic and special glue (Orahesive protective powder, E.R. 

Squibb & Sons Ltd., England) was placed in the wound. The fish were tagged and 

moved to a 20 I plastic bucket with clean water and well aerated in order to aid 

their recovery from anaesthesia. Mter this, the fish were kept seperately in small 

tanks or glass aquaria until their wound recovered, then they were transferred to 

their former tank. 

2.9.3 Fish blood sampling 

Blood samples were drawn from the caudal vein of fish after anaesthetization 

(section 2.12) using a 25-gauge 2.54 cm hypodermic needle fitted to a 1 ml 

syringe using the same technique described in section 2.9.2. A few drops of blood 

were smeared and fixed on a glass slide for erythrocyte nuclear measurement or 
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the blood sample was allowed to clot and the serum and red blood cells were 

separately stored at _25
0 

C until further use for starch gel electrophoresis. 

2.10 Assessment of ploidy status. 

2.10.1 Karyotyping 

Karyotypes were prepared from newly hatched or 1 day old larvae from each 

batch by colchicine treatment and counting chromosomes according to the solid­

tissue technique of Kligerman and Bloom (1977) and following modifications of 

published methods (Chourrout, 1982; Chourrout and Itskovich, 1983; Don and 

Avtalion, 1986; and Teugels et ai., 1992b). Embryos from each treatment group 

were placed in a 2.5 cm diameter petri dish containing 2-4 ml of freshly prepared 

colchicine (Sigma Ltd.) solution (approximate concentration 0.002-0.005 %) for 

4-6 hrs. at 28±1° C. Body tissues were dissected from the embryos after transfer 

to chilled 0.7 % normal saline (NaCl) solution under a binocular microscope. The 

head, tail and yolk sac were removed using a pair of needles or fine forceps and 

the tissues were transferred into the distilled water (hypotonic solution) for 10-15 

minutes. The tissues were then fixed in 4: 1 methanol- acetic acid, if tissues were 

to be stored then two further changes of fixative were given and the samples were 

kept in a refrigerator at 40 C for a maximum of 30 days. 

For slide preparation, tissues were removed from the fixative, blotted to remove 

the excess fixative and then placed in the cavity of a perspex slide with 2-3 drops 

of 50 % glacial acetic acid (Analar Grade, Sigma Ltd.) and were minced for one 

minute with a glass rod or scraped by using fine forceps to dissociate epithelial 

cells. After 15- 20 minutes, 3-5 drops of cell suspension were dropped from 30-

40 cm height on to a clean glass slide on a hot plate (45-500 C). The remaining 

liquid was then sucked back within 8-12 seconds into the micro-pipette dropper 
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(Drummond Scientific Co., USA.) leaving a fine and clean ring of cell spread. 

Slides were left for air drying for 30 minutes and stained with freshly prepared 10 

% Giemsa stain (prepared by mixing Giemsa stain with 0.01 M phosphate buffer 

pH 7.0 ; Appendix 2A) for 20 minutes. Slides were rinsed in distilled water, air 

dried and mounted with DPX mountant (BDH Ltd.) after 10 minutes of xylene 

(BDH Ltd.) wash. 

Metaphase spreads of chromosome were checked and chromosome numbers 

were scored by placing the slides under x400 and xl,OOO (oil immersion) 

magnifications respectively using a compound microscope (Olympus Ltd.). 

Karyological examination was assessed by counting chromosomes of several (~3) 

karyotypes per individual slide and 15-20 individuals per designed treatment 

group. Good metaphase chromosome spreads were photographed through a Leitz 

Orthomat photomicroscope (Leitz, Leitz & Wizard, Germany) under x1,000 (oil 

immersion) magnification. For establishing the karyotypes, the best photographs 

were used for cutting out, pairing and classifying chromosomes in increasing size, 

so that the karyotypes could be compared with each other. 

2.10.2 Erythrocyte nuclear measurement. 

Fish from each treatment group were anaesthetized (section 2.11) before 

collecting the blood samples. Two techniques were used to withdraw blood from 

the fish samples: 1) in the case of small fish (:::;;30 g body weight), the individuals 

were killed and the tail of each individual was severed behind the anal fin, a few 

drops of blood were placed at one end of a slide and smeared along the slide 

using the edge of another slide; 2) in the case of bigger fish, blood (0.1-0.2 ml) 

was sucked from the caudal vein of each fish using a 1 ml syringe and 25 G 

hypodermic needle. The needle was inserted at the position below the lateral line 

and level with behind the urogenital opening as to enter the vein just below the 

spine. The slides were prepared as mentioned before. Slides were air dried and 
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strained with Wright's blood stain (Appendix 2B) for 2 mins. and then dipped for 

3 mins. in I: I Wright's blood stain : Sorensen's buffer pH 6.7 (Appendix 2C). 

Slides were rinsed in distilled water, air dried and mounted with D.P.X. mountant 

(BDH Ltd.). Nuclear major axes were measured for ~IO stained erythrocytes 

(RBe) on each slide (per individual fish) using an eye piece graticule at xlOOO 

magnification using a compound microscope (Olympus Ltd.) as described by 

Penman et ai., (1987) or alternatively, fields of erythrocytes were photographed 

through a Leizt orthomat photomicroscope at x 1,000 on Ilford PAN F 50 film 

and developed using Kodak developer (Procedure described in Appendix 3). 

Negatives were projected with an enlarger to give a final magnification of x 

3,000. This magnification enables an accuracy of ±G. I J..I.m. Major and minor axes 

of 20 erythrocytes from each fish were measured with calipers. The volume of 

each erythrocyte nucleus was calculated using the formula, volume = 4/3 1t ab 2 , 

where a was the major semi-axis and b the minor semi-axis of a perfect ellipsoid. 

The volume may have been slightly overestimated due to cell flattening. 

Frequency distributions plotted from these measurements and major axis/minor 

axis ratio were compared with the ploidy levels established from chromosome 

preparations. Mean major nuclear axis was selected for future experiments as 

being the only one of these variables for which the frequency distribution of 

diploid and triploid fish showed no overlap (Wolters et al., 1982a). 

2.11 Starch gel electrophoresis. 

The species of catfish, involved in this study were collected for the 

electrophoresis study (details are described in Chapter 3-5). Sixteen enzymes 

were surveyed and the procedure of electrophoresis is as given in the previous 

section. Types of alleles at the same locus were determined by the banding 

position of isozymes on the same gel and was based on the assumption that the 

isozyme bands migrating at the same position would have the same amino acid 
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composition and be coded by the same gene. Alleles were numbered 

consecutively as A, B, C, ...... or by relative mobility and so on, from the most 

anodal to the most cathodal side. Allelic frequencies were calculated by directly 

counting the phenotypes. Chi-square tests were used to examine the distribution 

of phenotypes in relation to their expected Hardy-Weinberg equilibrium 

distribution. 

Starch gel electrophoresis (Sodsuk and McAndrew, 1991) was used as a 

technique to verify the genotype of various samples from broodstock, hybrid, 

triploid hybrid and gynogenetic diploid catfish. The general procedure of this 

technique is described as follow:-

2.11.1 Sample collection and preparation. 

Tissue samples of the species of catfish were collected from fresh specimens. 

Small pieces of skeletal muscle, the entire liver and kidney, small pieces of caudal 

rm and barbel and the eye (without lense) from fresh killed or frozen fish were 

taken by scalpels, scissors and forceps. The number of individuals tested and 

sampling date were recorded. Identification of the species followed Smith (1945), 

Bell-Cross (1976) and Teugels (1986). Samples were obtained alive or kept in 

cool condition with dry ice during transportation, frozen and stored separately in 

microcentrifuge tube at _250 C in the laboratory until further use. 

For electrophoresis, tissue samples were taken from cold storage thawed for a few 

minutes and then homogenized using a glass rod or plastic homogenizing rod 

placed into the microcentrifuge tube, then a small piece of Whatman NO.3 filter 

paper (square cut in size 2 x 6 mm) was placed in the tube to absorb the crude 

homogenates of tissue sample onto the piece of paper. 
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For newly hatched embryos or early stages of fry, the samples were obtained 

alive and killed by refrigerating for 30 minutes. An individual fry was then 

placed in a microcentrifuge tube to which a few drops of homogenizing buffer 

(Aebersold et al.,1987; details in Appendix 4) were added, the embryos were 

homogenized using a plastic homogenizing rod fitted into the micro centrifuge, 

then a small piece of filter paper (square cut in size 2 x 6 mm) was placed in the 

tube, let the crude homogenates of hold fish sample to absorb onto a piece of 

paper for 15 minute. The samples were then loaded in the gel or kept at _2S0 e 

until further use. 

2.11.2 Preparation of starch gel 

About 23 g of hydrolised potato starch (Sigma Ltd.) was mixed with 220 ml of 

diluted TEB (22 ml buffer in 198 ml of distilled water) or eTC (8.8 ml buffer in 

211.2 ml of distilled water) buffer (Appendix SA) respectively in a Buchner flask. 

The mixture was heated with constant rotation of the flask to an almost 

translucent jelly state, quickly degassed using a vacum water pump and then 

poured into a 6 mm thick gel former. The gel, covered with a glass plate, was 

allowed to set at room temperature or left to cool down in the refrigerator at 40 e 

if required quickly. 

2.11.3 Loading samples, runing, slicing and staining the gel 

Mter setting hard, the gel was taken out of the former and a cut parallel to and 3 

cm from the edge of the gel was made. The small pieces of filter paper which had 

absorbed crude homogenates of tissue samples were individually loaded along 

this cut with a maximum of 30 samples per gel. When all samples were correctly 

arranged the former was placed back on the gel and a perspex spacer (10 mm 

thick) was positioned between the gel and former to keep the sample slot closed. 
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The number and sequence of individuals loaded and sample species were 

recorded. After that the gel was placed in the electrophoretic bath with the 

appropriate buffer. A gauze wick soaked in the buffer was applied to either end of 

the gel to connect the gel and buffer solution. The bath tray covered with a 

transparent lid was placed in a refrigerator at 4° C, the power pack connected and 

set up with appropriate voltage and current and the gel allowed to run for 5-6 

hours. 

At the end of the run the gel was removed from the bath and loading sample 

papers were removed from the gel which was then sliced horizontally into three 

slices, each of which could be stained for a different enzyme system (Appendix 

5). The appropriate stains (Appendix 5B) for the enzyme system to be examined 

were weighed and mixed with stain buffer solution and 2 % heated agar 

(approximately 50-60° C). The stain mixture was poured over the slice, allowed 

to set hard and then transfered to incubate at 40° C until the banding patterns 

became visible. The electropherograms were then analyzed and scored for the 

respective genotypes. When necessary for keeping records, the gels were 

preserved in gel fixative solution (Appendix 5C), dried and sealed between two 

layers of plastic or the top layer of agar was removed and fixed on a piece of filter 

paper, dried and kept sealed in plastic. 

2.12 Sexing 

In catfish broodstock and fish larger than 20 g (age over 3 months), sex was 

easily ascertained by examining the urogenital papilla. The urogenital papilla in 

male fish has a pointed shape, is comparatively longer than female and has a 

single common posterior opening; in the female fish it has a round-flat shape and 

shorter papilla with separate urinary and genital openings. Many hybrids and 

triploid fish with undifferentiated or poorly developed genitalia required 
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comparison on direct internal observation of gonads. If there was still doubt, the 

gonads were histologically examined to clarify identification of ovary and testis. 

2.13 Histological procedure for gonadal tissue 

Gonadosomatic Index and gonad histology , accurate assessment of reproductive 

maturity is most easily accomplished with dead fish. The relative gonad weight or 

gonadosomatic index (GSI) = 100x gonad weight(g) / body weight(g) is 

commonly used as a simple index of reproductive maturity. For microscopic 

analysis, whole gonads from dead fish, or gonad biopsies from live fish, will be 

preserved in formalin or other suitable fixatives and further processed according 

to standard histological techniques. 

2.13.1 Gonadal collection and fixation 

Fish gonads (testes or ovaries) were removed from freshly killed fish and 

immediately fixed in natural buffer (10 % formalin pH 7.6) or Bouin's solution 

(Appendix 6). The next day the gonadal tissues were rinsed and preserved in 70 

% ethanol and stored in refrigerator at 4° C until further processong. 

2.13.2 Tissue processing 

The fixed gonadal tissues were cut into appropriate pieces (thickness~4 mm), 

cassetted, labelled and autoprocessed on a Histokine tissue processor 

(Histokinette 2000, England). This involved passing tissues through different 

alcohol grades, followed by absolute alcohol, chloroform and then impregnation 

in molten wax. The processing procedure is described in Appendix 3. 

2.13.3 Embedding 



61 

When the dehydration and infiltration of both testicular and ovarian tissues were 

completed, the tissues were embedded and blocked in a suitable size moulds using 

warmed paraffm (55-60° C) and cooled rapidly on a cold plate. After becoming 

hard the paraffin blocks were removed from moulds and stored at room 

temperature until sectioning. 

2.13.4 Sectioning 

The paraffm blocks were trimmed in order to bring the tissue to the surface. The 

blocks were then washed and cooled on a cold plate and tissues were sectioned to 

a thickness of 5 IJ.ID. using a Leitz-Wetzlar microtome and Richert-Jung disposable 

microtome blades. Thin complete sections were floated on a warm water in water 

bath at 40° C and were collected on pre-washed glass slides. The slides were then 

labelled and dried overnight in an oven (at 60° C) before they were stained. 

2.13.5 Slide staining. 

The section slides were stained with haematoxylin and eosin (detailed in 

Appendix 3). Stained slides were washed with xylene for 5 mins. before 

mounting with DPX (BDH Ltd.). The permanent slides were stored in slide boxes 

for further examination and analysis. 

2.14 Cruelty to Animals Act, 1876 

The removal of blood samples and the administration of hormones, and 

colchicine were carried out under licence from the Home Office; they fell into the 

categories A (experiments performed without anaesthetics) and B (experiments 

performed under anaesthesia) as appropriate. 
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CHAPTER THREE 

ALLOZYMES STUDY IN CLARIAS BATRACHUS, 

C MACROCEPHALUS, C GARIEPINUS AND THE BIG-OUI HYBRID 

(FEMALE C MACROCEPHALUS x MALE C GARIEPINUS) 

3.1 Introduction 

Allelic and genotypic infonnation obtained by electrophoretic methods permits 

genetic monitoring of hatchery and wild stocks. This important application of 

electrophoretic data has received relatively little attention to date in many countries. 

Monitoring can provide managers with critical genetic insights related to a 

population. Some uses of genetic monitoring with respect to hatchery practices 

have already developed in tilapiines, salmonids and cyprinides (Utter et al., 1987, 

Whitmore, 1990). The collection and interpretation of genotypic data by 

electrophoresis is currently the primary means for measuring genetic variability 

within and among wild and cultured species of fish. It also has many practical 

applications within other genetic manipulation techniques such as comparisons 

between mitotic and meiotic gynogenomes (Hussain et al., 1992). 

Knowledge of taxonomy, accuracy in the identification of species and awareness of 

relationships among species are important for fish culture when attempting to 

introduce a new species, to produce large individuals and to control breeding lines. 

It is also necessary to investigate genetic characteristics of a population such as 

genetic variation in fish culture. Isozyme genes have been widely used as genetic 

markers to describe the genetic relationships among populations, subspecies, and 

closely related species (Whitmore, 1990; Utter et aI., 1987). 
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Nowadays, there is much information on genetic variation at the isozyme level in 

many fishes, but there are few investigations in Clarias catfish (patimah et ai, 

1989; Teugels et al., 1992). The nomenclature of the African clariid species has 

recently been revised by Teugels (1984). The African catfish, Clarias gariepinus 

(Burchell, 1822) and Clarias lazera (Cuvier and Valenciennes, 1840) are 

synonyms. Van der Walt, et al. (1993) selected four different C. gariepinus 

breeding pairs which each pair displaying different allele combinations 

(heterozygous) at the glucose-6-phosphate isomerase (GPI-l Or 2) loci. They found 

that growth performance of the F 1 progeny of each breeding pair indicated the 

differences exist between different genotypes. 

The objectives of the electrophoretic study described here were to estimate genetic 

variability within and between species and the inheritance of this variation using 

breeding experiments. This information will be used to identify species diagnostic 

alleles which will be essential to determine the specific status of broodstock and 

their purity, and the mode of inheritance in the hybrids and in genetic manipulation 

experiments. 

3.2 Materials and methods 

Samples of four groups of catfish namely the species Clarias macrocephalus, C. 

batrachus, C. gariepinus, and the big-oui hybrid (female C. macrocephalus x male 

C. gariepinus) were collected for the present study. The number of individuals 

tested and sampling dates are shown in table 3.1. Identification of the species 

followed Smith (1945), Boulenger (1911), Bell-Cross (1976) and Teugels (1986). 

Samples were obtained alive or kept cool with dry ice during transportation, frozen 

and stored at -20°C in laboratory. The cell-lysate obtained by freezing and thawing 

of these samples was then directly subjected to electrophoresis. A range of enzymes 

and proteins (following Patimah et al., 1989 and Daud et aI., 1989) were surveyed 
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in liver, muscle and rm using starch gel electrophoresis. Electrophoresis was carried 

out in 12 % starch in appropriate buffer systems. A voltage of 40-60 rnA (current) 

and 200 V (constant voltage) were applied for S hours at 4°C. The procedure of 

electrophoresis was as described in the previous chapter. The enzyme detection 

followed the methods used by Sodsuk and McAndrew (1991) in which the 

identification of the different alleles at the same locus was decided by the banding 

position of isozymes in the same gel. It was based on the assumption that the 

isozyme bands migrating to the same position were of the same amino acid 

composition and were coded by the same gene. Alleles were designated according 

to their mobilities relative to the most common allele in all species, which was 

designated 100; allelic variants were given numbers that indicate the mobility of 

their products relative to the common allele. Alleles were also numbered 

consecutively as A, B, C, .... and so on, from the most anodal to the most cathodal 

side (Shaklee et al. 1990). Allele frequencies were estimated from genotypic 

frequencies by gene counting, since all protein variants observed in this study were 

interpreted to reflect products coded by codominant alleles. Allelic frequencies 

were calculated by directly counting the phenotypes. Chi-square tests were used to 

examine the distribution of phenotypes in relation to their expected Hardy­

Weinberg equilibrium distribution. Expected heterozygosities (unbiased estimate of 

Nei, 1978) and the proportion of polymorphic loci were calculated for genetic 

variability measures in each species. Genetic differentiation was determined using 

the F-statistics of Wright (1978). The calculating formulae employed are shown in 

Appendix SD. The software package BIOSYS-l (Swofford & Selander, 1989) was 

used for calculation in this Chapter. 
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Table 3.1 Species, number, and date of collection of sampling specimens in this 

study. 

Species (Abbreviation) No. Date of sampling Origin of fish stock 

of 

fish 

Clarias macrocephalus (Cm) 20 October 1991 Thailand, hatchery 

Clarias batrachus (Cb) 20 September 1991 Thailand, hatchery 

C/arias gariepinus (Cg) 20 September 1991 Thailand·, hatchery 

Big-oui hybrid (Hyb) 20 April 1992 Artificial breeding 

* imported from Africa to Thailand in 1987: no further information is available. 

3.3 Results 

Allozyme interpretation and description of enzyme banding patterns. 

The electrophoretic conditions used in this study are given in Table 3.2. The 18 

protein loci encoding the different enzyme systems were assessed from the 

comparison of the phenotypes observed in liver, muscle and fin and the variation 

among individuals in these three tissues. When no variation among individuals was 

observed within species, the enzyme was assumed to be encoded by only one locus 

in this tissue. The electrophoretic polymorphism observed in the 18 loci is shown in 

Table 3.3. The tissue specificity of the various enzymes did not appear to vary in 

any of the species studied. 
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ASPARTATE AMINOTRANSFERASE (AAT) 

Two different loci, AAT-l* and AAT-2* were found. One of them, AAT-2*, which 

appeared at the anodal zone, was not adequately resolved in all samples and 

therefore was not further taken into account. The products of AA T-l * which was 

observed in the most of studied tissue appeared near the origin. AA T-l * was 

monomorphic, a single invariant band in all the species studied. 

ADENOSINE DEAMINASE (ADA) 

A single ADA * locus encoding for this monomeric enzyme was detected. This 

enzyme was observed in liver, muscle and fin tissue, but fin gave the stronger and 

clearer activity. Homozygotes were single-banded, heterozygotes double-banded. 

Polymorphisms with two different alleles of their parental species were found in 

big-oui hybrid. This enzyme system was a fixed heterozygote with two alleles 

expressed in the big-oui hybrid. 

FUMARATE HYDRATASE (PH) 

A single anodally migrating monomorphic locus was resolved for FH*. This 

enzyme system was monomorphic in all species studied. The hybrids showed the 

interspecific allelic fixation of two different alleles between C. macrocephalus and 

C. gariepinus. 

GL YCEROL-3-PHOSPHA TE DEHYDROGENASE (G3PDH) 

Only one locus, G3PDH* was scored for this enzyme. The products of G3PDH* 

were observed in liver, muscle and fin tissues. This enzyme system was fixed for 

alternate alleles in C. macrocephalus and C. gariepinus. 
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GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PDR) 

A single G6PDH* locus encoding for the dimeric enzyme was detected. This 

enzyme was observed in the three tissues studied and moved to the anodal zone. 

Monomorphism was detected in C. batrachus and C. macrocephalus with fixed 

interspecific mobility differences between C. macrocephalus and C. gariepinus. 

GLUCOSE-6-PHOSPHA TE ISOMERASE (GPI) 

Two anodal loci, GPI-I* and GPI-2*, were scored for this enzyme in all species 

studied. The GPI-i* products moved to the anodal zone and were usually observed 

near the origin, while the GPI-2* migrated anodally. Both loci were observed in 

muscle tissue, whereas the GPI-2* locus alone was observed in liver and fin in all 

species studied. Polymorphisms and fixed interspecific allelic mobility differences 

were observed in GPI-2* loci. The three-banded heterozygotes, as well as 

heterodimeric hybrid bands between loci were observed (Fig. 3.1), indicating the 

dimeric structure of this enzyme molecule. Two GPI loci have been consistently 

recorded in Mrican Clariid catfishes by Teugels et al. (1992). 

ISOCITRA TE DEHYDROGENASE (IDHP) 

Two anodally migrating loci, IDHP-] * and IDHP-2* were observed in muscle and 

fin for IDHP-i* and liver for IDHP-2* respectively. IDHP-]* was monomorphic 

in big-oui hybrid and their parental species. Polymorphisms as well as interspecific 

allelic differences between C. macrocephalus and C. gariepinus were observed at 

IDHP-2*. 

L-LACTATE DEHYDROGENASE (LOR) 
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Two loci, LDH-l* and LDH-2* were detected for this enzyme. These loci showed 

tissue specific activity. Muscle tissue was only active for LDH-l* whereas liver and 

fIn expressed LDH-2* but LDH-2* was the predominant locus in liver tissue. The 

products of both loci migrated anodally in all species. WH-l* was polymorphic 

and shared fixed interspecific allele mobility differences between C. macrocephalus 

and C. gariepinus. Five-banded heterozygotes, as well as heterotetrameric hybrid 

bands between loci were observed in the big-oui hybrid. 

MALATE DEHYDROGENASE (MDH) 

Two anodally migrating loci, MDH-J * and MDH-2'" were observed. Tissue specific 

activity was found: MDH-l* was predominantly active in liver and fm tissues, 

while MDH-2 * was found in muscle tissue. Single fixed monomorphic allele 

differences were observed between C. macrocephalus and C. gariepinus for MDH-

1 *. MDH-2* was polymorphic and shared fixed interspecific allele mobility 

differences between C. macrocephalus and C. gariepinus. Heterodimeric hybrid 

bands between loci were observed in the big-oui hybrid. 

PHOSPHOGLUCONATE DEHYDROGENASE (PGDH) 

A single anodally migrating PGDH* locus was observed in liver, muscle and fin 

tissues in all species studied. Some mobility differences were observed between C. 

gariepinus and big-oui hybrid, while monomorphism and no interspecific mobility 

differences were found in both C. batrachus and C. macrocephalus. 

PHOSPHOGLUCOMUTASE (PGM) 
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A single anodal PGM* locus was observed in liver, muscle and fin tissues in all 

species. The structure of this enzyme could not be ascertained due to the expression 

of a single banded homozygotes with the same mobility between species. However, 

Teugels et al., (1992) found a single PGM* locus which showed double-banded 

heterozygotes in hybrids between C. gariepinus and Heterobranchus longifilis, 

suggesting that this enzyme is a monomer. 

SUPEROXIDE DISMUTASE (SOD) 

Activity reflecting only a single locus SOD* was observed. This enzyme was 

detectable in liver, muscle and fin tissue and appeared in the anodal zone. A fixed 

difference was observed between C. macrocephalus and C. gariepinus, with three­

banded heterozygotes, confirming the dimeric structure of this enzyme, present in 

liver tissue of the big-oui hybrid. 

XANTHINE DEHYDROGENASE (XDR) 

A single locus, XDH*, was scored. This enzyme system which was observed in 

liver, muscle and fin in all species, appeared in the anodal zone. Only single­

banded homozygotes were observed with the same mobility in all species. 

XANTHINE-OXIDE DISMUTASE (XOD) 

A single XOD* locus encoding the dimeric enzyme was observed in liver, muscle 

and fin tissues of all species. Only single-banded homozygotes were observed 

which fixed for alternate allele between C. batrachus and C. macrocephalus. 

Allozymic differences in species studied 



71 

Six loci, ADA*. GPI-2*. IDHP-2*. LDH-l*. MDH-2* and SOD* always clearly 

showed variation between the two parental species of big-oui hybrid. Two of these, 

GPI-2* and MDH-2* were found in later gels to be polymorphic in C. gariepinus, 

with two alleles (Figure 4.7;4.8 Chapter 4 and Figure 6.7 Chapter 6). The hybrids 

examined were heterozygous for these loci, with one of the C. gariepinus alleles 

and the single C. macrocephalus allele. No intraspecific variation was observed for 

ADA*. GPI-2*. IDHP-2*. LDH-l*. MDH-2* and SOD*: all hybrids showed the 

same heterozygote pattern for these loci. Figure 3.1 and Figure 3.2 shows the 

electrophoretic variation seen in GPI-2*, MDH-2* LDH-l* and ADA*. The hybrids 

also exhibited codominant alleles from C. gariepinus and C. macrocephalus at the 

other loci. These results confirm that interspecific fertilisation between both species 

resulted in hybrid progenies. No polymorphic loci were detected in the two Thai 

native species. The heterozygosity levels are shown in Table 3.3. It was found that 

the values in the two Thai native species were 0.000, C. gariepinus 0.078 and big­

oui hybrid 0.667 respectively. 

Genetic variability 

Allele distribution and frequencies at 18 loci in the four groups of catfish are shown 

in Table 3.3. Genetic variability in the four groups was estimated by calculating 

heterozygosity from allele frequencies (Table 3.3). However, there were no 

polymorphic loci detected in the populations of C. hatrachus and C. 

macrocephalus. Differences between C. batrachus and C. macrocephalus were 

observed at 6 discriminating loci. 

The average number of alleles per locus was found to be highest in hybrids (1.7) 

and lowest in C. hatrachus and C. macrocephalus (1.0). The proportion of 

polymorphic loci ranged from 0.000 in both C. batrachus and C. macrocephalus to 

0.722 in hybrid. The observed average heterozygosity ranged from 0.000 in both C. 
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batrachus and C. macrocephalus, 0.078 in C. gariepinus and 0.667 in hybrid. The 

observed/expected average heterozygosity were 1.66 in C.gariepinus and 1.884 in 

hybrid. From these results, the big-oui hybrid catfish was found to be the most 

variable, followed by C. gariepinus, while the other two Thai native species 

showed less variability. 

Some morphological characters of live and frozen specimens were examined during 

this study. The summary results are shown in Table 4.4 (Chapter 4). The hybrids 

have intermediate morphology between the parental species, corroborating the 

electrophoretic results. 

3.4 Discussion 

Genetic variability was estimated by calculating heterozygosity from the allele 

frequencies (Table 3.3). However, there were no polymorphic loci detected in the 

two Thai native species. For some loci, allele mobilities in C. gariepinus and big­

oui hybrid did not appear to be identical. The big-oui hybrids came from a hatchery 

in Thailand where they were produced by pooled milt and eggs from different 

brooders during propagation. The hybrid samples did not came from a single pair 

of parents and the C. gariepinus used were not the actual parents of the hybrids. 

The same conclusions resulted from a karyological analysis (in Chapter 4&5) of the 

species as studied in this chapter: C. gariepinus has the chromosome number of 

2n=56, C. macrocephalus has 2n=54 and the big-oui hybrid has 2n=55, while C. 

batrachus was reported to have 2n=52 (Manickam, 1991). The cytogenetical data 

confirmed the electrophoretic results in this study. However, Teugels et al (1992) 

mentioned that it is a mistake to assume that a phenetic similarity in electrophoretic 

protein patterns or in karyotypes necessarily implies a close phyletic relationship or 

that these biochemical and cytogenetical data are some how more profound than 

morphological data. Using all three techniques should result in greater precision. 
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It was not appropriate to use the information on allele frequency to make 

assumptions about the populations of species used in this study because all of the 

fish had come from hatchery stocks, artificially maintained populations in which 

many of the assumptions underlying Hardy-Weinburg expectations would have 

been invalid. In this study, it was originally intended to obtain wild samples but 

those could not obtained due to a lack of time for collection. 

However the main objectives of this electrophoretic study were to estimate genetic 

variability, within and between species and the inheritance of this variation using 

breeding experiments. The allozyme information from this study was used to 

identify species-diagnostic alleles, essential to determine the specific status of 

broodstock and offspring, and as markers for the mode of inheritance in the hybrids 

and genetically manipulated catfish described in the following Chapters. 

Further electrophoresis work should be done, focussing on different wild 

populations in Thai native Clarias species. These and other allozyme techniques 

will be used to study the pure species broodstock and hybrids and develop 

techniques as markers in further genetic manipulation studies. 
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Table 3.2 Electrophoretic conditions used and genetic determination of the enzyme 

systems. 

Enzyme E.C. Tissue Locus Buffer 

Number 

Aspartate aminotransferase 2.6.1.1 L,M,F AAT-/'" TC 

L AAT-]'" 

Adenosine deaminase 3.5.4.4 L,M,F ADA'" TC,TBE 

Fumarate hydratase 4.2.1.2 L,M,F FH* TC 

Glycerol-3-phosphate 1.1.1.8 L,M,F G3PDH'" TC 

dehydrogenase 

Glucose-6-phosphate 1.l.l.49 L,M,F G6PDH'" TC 

dehydrogenase 

Glucose-6-phosphate isomerase 5.3.1.9 M GPI-I'" TC 

L,M,F GPI-2'" 

Isocitrate dehydrogenase 1.1.1.42 M,F IDHP-/* TC 

L IDHP-2'" 

L-Lactate dehydrogenase 1.1.1.27 M LDH-/'" TC,TBE 

L,F LDH-2'" 

Malate dehydrogenase 1.1.1.37 L,F MDH-I* TC,TBE 

M MDH-2* 

Phosphogluconate 1.1.1.49 L,M,F PGDH* TC 

dehydrogenase 

Phosphoglucomutase 5.4.2.2 L,M,F PGM'" TC 

Superoxide dismutase 1.15.1.1 L,M,F SOD'" TC,TBE 

Xanthine dehydrogenase 1.2.1.37 L,M,F XDH'" TC 

Xanthine-oxide dismutase 1.1.3.22 L,M,F XOD'" TC 
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Table 3.3 Allele frequencies in the four species of Clariid catfish. 

Locus Allele Species 

Cb Cm Cg Hyb 

AAT-l* A 0 0 1.000 0.500 

B 1.000 1.000 0 0.500 

ADA * A 0 0 1.000 0.500 

B 1.000 1.000 0 0.500 

FH* A 0 0 1.000 0.500 

B 1.000 1.000 0 0.500 

G3PDH* A 1.000 1.000 0 0.500 

B 0 0 1.000 0.500 

G6PDH* A 1.000 1.000 0 0.500 

B 0 0 1.000 0.500 

GPI-i* A 0 1.000 0 0.500 

B 1.000 0 1.000 0.500 

GPI-2* A 0 1.000 0 0.500 

B 1.000 0 1.000 0.500 

IDHP-l* A 0 1.000 1.000 1.000 

B 1.000 0 0 0 

IDHP-2* A 1.000 1.000 0 0.650 

B 0 0 1.000 0.350 

LDH-i* A 1.000 ].000 0 0.500 

B 0 0 1.000 0.500 

LDH-2* A 1.000 0 0 0 

B 0 1.000 1.000 1.000 
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Table 3.3 (cont'd) 

Locus Allele Species 

Cb Cm Cg Hyb 

MDH-l* A 0 0 1.000 0.500 

B 1.000 1.000 0 0.500 

MDH-2* A 1.000 0 1.000 0.500 

B 0 1.000 0 0.500 

PGDH* A 1.000 1.000 0.800 0.850 

B 0 0 0.200 0.150 

PGM* A 1.000 1.000 1.000 1.000 

SOD * A 0 0 1.000 0.500 

B 1.000 1.000 0 0.500 

XDH* A 1.000 1.000 1.000 1.000 

XOD* A 0 1.000 1.000 1.000 

B 1.000 0 0 0 

Average No.ofa1lele 1.0 1.0 1.1 1.7 

Proportion of polymorphic loci 0 0 0.111 0.722 

Observed average heterozygosity 0.000 0.000 0.078 0.667 

Expected average heterozygosity 0.000 0.000 0.047 0.354 

Observed I Expected 1.000 1.000 1.660 1.884 

Abbreviations (Cb, Cm, Cg and Hyb) as used in Table 3.1. 
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Figure 3.1 Some electrophoretic vllriatios obscn'cd from muscle tissue in 10 ellch 

of C. garlep;IIl1s. C ma('roeep/taills Ilnd Big-oui hybrid in: 
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(8) LDH-l" (start from left hand side) 
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CHAPTER FOUR 

HYBRIDIZATION STUDIES IN 

CLARIAS MACROCEPHALUS AND C GARIEPINUS 

4.1 Introduction 

The advantage of artificial propagation techniques has made more crossing and 

hybridization work possible and there is an unlimited potential in this field. 

Interspecific hybridization can be regarded as a crossing between species or 

heterospecific insemination (Chevassus, 1983), though some scientists call 

interspecific hybrids the crosses of wild and domestic strains of species. In most 

experiments, artificial fertilisation is used to eliminate the ecological and 

ecological segregation of the species. Numerous viable artificial hybrids of warm­

water fishes produced in this way have become important (Krasznai, 1987). 

In catfish, several hybrid combinations of species belonging to the family 

Ictaluridae have been produced, and some of these hybrids showed heterosis. The 

hybrids of blue catfish (Ietalurus jurcatus) and channel catfish (Ietalurus 

punctatus) have increased yield, dressing percentage (Chappell, 1979) and 

catchability (Tave et al., 1981) over those of the parental species. Since no reliable 

spawning technique has been developed, the commercial culture of these hybrids 

has not begun. In Clarias catfish, artificial hybridization between two Mrican 

catfish, Clarias gariepinus and Heterobranchus longijilis was performed. The 

hybrids revealed an intermediate karyotype and it appears as if they have totalized 

a haploid chromosome set from both parental species. The hybrid karyotype is 

considered as aneuploid, although the hybrids proved to be fertile (Teugels et 

al.,1992). 
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The hybrid between female Clarias macrocephalus and male C. gariepinus has 

become an increasingly important fish for aquaculture in Thailand and some 

neighbouring countries. Since the first successful artificial hybridzation in 1988, 

no detailed analysis of the genetic characteritics of this hybrid have been 

undertaken. The present investigation has been carried out aimed at improving the 

efficiency of production and to gain an understanding of the genetic status in this 

hybrid catfish. This has included comparisions of fertilisation and hatching rates 

and survival to yolk-sac resorption in the hybrid, its reciprocal hybrid and the 

parental pure species. Genetic studies included, karyotyping of each species, 

electrophoretic studies to estimate genetic variability and to determine the genetic 

relationships between the hybrid and the parents and morphological 

characteristics of the pure species and the hybrid. 

4.2 Materials and methods 

Pure species (c. macrocephalus, C. gariepinus) and the hybrid (female C. 

macrocephalus x male C. gariepinus) were imported from the hatchery of the 

National Inland Fisheries Institute, Thailand in 1991-1992 and reared in the tropical 

aquarium of the Institute of Aquaculture, University of Stirling, under simulated 

normal photoperiod (12D: 12L) and ambient temperature (280 C). The African species 

C. gariepinus was introduced to Thailand from Laos: no other information is 

available on the origin of this stock. Another two stocks of C. gariepinus which were 

used in this studied were imported to the Institute of Aquaculture in 1985, one from 

Malawi and another from Wageningen, the Netherlands. Morphological identification 

of the species used the keys produced by Boulenger (1911), Smith (I945), Bell-Cross 

(1976) and Teugels (1986). 

Hybrid crosses were produced under laboratory conditions by injecting the female of 

either species with LHRHa hormone: after a latency time of 15-18 hours, the eggs 
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were hand-stripped and fertilized with milt from the macerated testes of a mature 

male. The fertilized eggs were incubated at 28° C in 20 L plastic aquaria in a 

recirculating water system. Each plastic aquarium contained a small hapa, within 

which the eggs were placed on a piece of nylon mesh (0.5 mm mesh-size) to assist in 

the removal of egg debris after hatching. At about 22-26 hours after fertilization, 

hatching takes place. Fertilizations, hatching rates and survival rates were compared 

among the hybrid, reciprocal crosses, and parental pure species. 

The back cross hybrids were studied using the big-oui hybrid (PI) stock produced 

during the first year of this study in 1992. The F I hybrids were crossed back to their 

parental species, both C. macrocephalus and C. gariepinus. Fertilizations, hatching 

rates and survival rates were compared in the back cross hybrids relative to the big­

oui hybrid. 

The investigation on effects of using different C. gariepinus male broodstocks in 

hybrid crosses were carried out following the same procedure as above, by using the 

sperm from another two stocks of C. gariepinus (Malawi and the Department of Fish 

Culture and Fisheries, Wageningen Agricultural University, Wageningen, the 

Netherlands). Fertilisation rates, hatching rates and survival rates were compared with 

the hybrid crosses producing from male broodstocks from Thailand. 

About 20 newly hatched larvae from each batch were sampled and karyotyped 

according to the solid-tissue technique of Kligerman and Bloom (l977). Metaphase 

chromosome spreads were photographed through a photo microscope under xl,OOO 

magnification (oil immersion). The clearest photographs were used for classifying 

chromosomes and karyotypes (details in Chapter 2). 

Samples for allozyme studies were collected from freshly killed fish tissue samples 

(muscle, livers and fins), frozen and stored at -20°C until tested. Nineteen enzymes 
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were surveyed using starch gel electrophoresis. Electrophoresis was carried out with 

12 % starch in a continuous buffer system of Tris-citrate pH 8 (TC) or Tris-borate­

EDTA pH 8.5 (TBE), both at a voltage of 40-60 mA and 200 V (constant voltage) for 

5 hours at 4°C (for details see section 2.10, Chapter 2). The enzyme detection 

followed the methods used by Sodsuk and McAndrew (1991) and Teugels et al., 

(I 992b). The nomenclature and allele designation followed that of Shaklee et aI., 

(1990). 

4.3 Results 

4.3.1 Fertilisation and survival of big-oui hybrid, reciprocal cross hybrid and their 

parental species 

The comparisions of fertilisation rate, survival to somite stage, hatch out and yolk-sac 

resorption from 3 replicate experiments are shown in table 4.1. The big-oui hybrid 

had fertilisation rates and survival rates at the various developmental stages which 

were similar to those of the pure species. The survival in the reciprocal hybrid was 

always significantly lower at every stage of larval development: the means with 

standard error of survival of embryos are shown in table 4.1. 

4.3.2 Back cross hybrid 

The comparisions of fertilisation rates and survival rates at various development 

stages from 3 replicate experiments are shown in Table 4.2. All back cross hybrids 

and F2 hybrids were always significantly lower at every stage of larval development 

than the big-oui hybrid. Most back crosses produced very poor viability in embryos 

with a small number of deformed hatchings which died soon after hatching. Only the 

crosses between female F I hybrid and male C. gariepinus produced vilable embryos 
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and fry, giving 8.00±O.42 % survival to yolk sac resorption relative to normal big-oui 

hybrid. 

A few of these backcross hybrid fry were reared for more than one year but did 

not reach maturity. Most of these fish have abnormal body shape (Figure 4.1), 

more aggressive behaviour than the big-oui hybrid and tolerance to environmental 

changes. 

The cross between female F 1 hybrid and male F 1 hybrid (F 2 hybrid) never 

developed to hatching. The fertilized eggs developed to somite stage, then 

suddenly stopped developing and died at this stage. 

4.3.4 Karyotyping 

Karyotyping of pure C. macrocephalus showed a modal chromosome number of 

2n=54, C. gariepinus showed a number of 2n=56 and the big-oui hybrid had a 

modal chromosome number of 2n=55, as results were described by Lawonyawut 

et al. (I 993b). The reciprocal hybrid karyotype of 2n=55 indicated that the hybrid 

receives a single haploid complement from each parent species (table 4.3 and 

figure 4.2-4.6). The back cross hybrid also had a modal count of 2n=55 

chromosomes. 



84 

Table 4.1. Mean survival rate ofbig-oui hybrids, reciprocal crosses hybrids and the 

parental pure species at different development stages. 

Pair- Expected %±SE 

crosses 

female X Larvae Fertilisation Somite stage Hatch out 3 days of age 

male rate 

CgXCg Clarias 83.59±2.87a 75.08±4.59a 56.04±22.33a 37. 89±4.59a 

gariepinus 

CrnXCg Big-oui 85.14±4.59a 73.59±12.12a 63.27± 16.26a 42.48±2.29a 

hybrid 

CgXCm Reciprocal 30.78±1.72b 14.18±9.21b 3.29±2.29b O.Ol±0.57b 

hybrid 

CmXCm C1arias ma- 80.60±1.72a 68.2S±9.79a 54.91±S.16a 41.69±4.59a 

crocephalus 

± S.E.M. ±2.73 ±8.93 ±1l.SI ±3.01 

Superscripts denote significant differences between values by ANOY A at level p 

<0.05 

Abbreviation~ Cg = C. gariepinus, em = C. macrocephalus 
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Table 4.2 Mean survival rate (relative to control; big-oui hybrid) of back crossing 

hybrid and F2 hybrid. 

Crosses mean survival % ± S.E. 

female x male Fertilisation Somite stage Hatch out 3 days of age 

CmxCg IOO.OO±O.OOa lOO.OO±O.OOa lOO.OO±O.OOa 100.00±O.00a 

HybxCg 94.48±O.33b 86.44±O.64b 16.66±O.27b 8.00±O.42b 

HybxCm 54.43±1.36c 27. 93±O.46c 3.09±O.23c O.OO±O.OOc 

CgxHyb 52. 13±O.58c 12.19±O.16d 1.94±O.57cd O.OO±O.OOc 

CmxHyb 53.82±O.52c 24.24±O.12c 0.07±O.02de O.OO±O.OOc 

HybxHyb 25.66±O.06d 11.7S±O.ISd O.OO±O.OOe O.OO±O.OOc 

±SEM 0.48 0.26 0.18 0.07 

Data in the same column carrying different superscripts denote significant difference by 

ANOVA between values in each development stage at 95 % confident level. 

Abbreviation, 

Cg: C. gariepinus 

Cm: C. macrocephalus 

Hyb: big-oui hybrid 
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Figure 4.1 The back cross hybrid (female F1 big-oui hybrid X male C. 

gariepinus), showing abnormal body shape. 
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Table 4.3. Frequency distribution of diploid chromosome numbers in big-oui hybrid, 

reciprocal hybrid, back cross hybrid and their parental species. 

Crosses No. of Chromosome numbers No.of Modal 

pairPxM larvae 50 51 52 53 54 55 56 57 spreads count 

CgXCg 20 1 0 3 4 10 14 41 3 76 56 

cmXCg 20 5 8 16 27 28 66 3 0 142 55 

CgXCm 20 2 0 5 3 10 18 0 0 38 55 

HybXCg 20 5 3 11 9 15 53 0 0 96 55 

CmXCm 20 0 6 19 24 59 4 1 0 113 54 

Abbreviation; Cg = C. gariepinus, Cm = C.macrocephalus, Hyb = big-oui hybrid. 

4.3.4 Maturity and gonad development 

The big-oui hybrids had a 50 : 50 sex ratio and both sexes developed gonads. In the 

males, the testes were reduced compared to the pure species but contained some 

spermatozoa which were incapable of fertilizing either parental species. In the female 

hybrids usually only one of the ovaries developed, but the eggs matured and could be 

succesfully fertilized by C. gariepinus. Crosses between male and female big-oui 

were unsuccesful as was also noted by Nukwan et al (1990). 

4.3.5 Morphometry and electrophoretic studies 

The allozyme study analysed 18 different loci, of which 3 (GPI-2*, LDH-l* and 

MDH-2*) were clearily diagnostic for the two parental species (fixed allele 

differences). The big-oui hybrids were always heterozygous for these (Figure 4.7) as 

were the few surviving reciprocal hybrids that could be analysed. 



88 

I \ 
,ff 

I \ , t: 
• \j 

• 1 -l 5 b 7 

'( ,,\,t; 

" 
(I "" 1" J. 

I' ,t , 

\ t.,~ I '. \ . 
• .:J J . 

R I) 10 II 12 13 1-1 

(~ ~ 
,V nl 

15 16 17 18 19 20 21 

(I,:) ( .- "I' )~ " ~.' (. .. c:~ .~ t .' ~ I i! ~ 

21 l' 
-~ H 25 26 27 28 

Figure 4.2 Representative karyotype of C. gariepinus, 211 = 56 

~A .",.. At 
2 3 -I 6 7 

J'-I" 11:' f\. ,,)l. jA..Jl 1 ~ ,.'1 
I 

8 9 10 11 12 13 14 

Xi ~ '1\) n' I . 'I ~"'" 
,..)1;1. _A, \ 

I S 16 17 111 19 20 2 1 

.X )(1" - IW,' k It, 
1 

22 23 24 27 ' . ') 
25 26 

Figure 4.3 Representative karyotype or C. rnacrocep/7aills , 211 = S4 



8 

I ~ 

F 

~2 

15 

89 

3 -! 6 

~r~ 
;jI' ~ J\ .t+ 

9 10 11 12 13 

X to- ~ , , .. '. 
16 17 18 19 20 

I 

l' _ .) 2-f 15 16 27 

c.macrocephalus X male C. gariepinus), 211 = 55 

3 

10 II 12 13 

16 17 III 1<) 20 

14 ,. 
-~ 17 

Figure 4 .5 Representalive karyotype of reciprocal cross hybrid ([emale 

Cgariepinus X male Cl71acrocephallls), 211 = 55 

7 

14 

21 

28 

7 

14 

] 1 

2M 



90 

\~ 
2 -I 5 (, 

~R 
i v ( H .' 

8 9 10 II 12 13 14 

n X' 
' j \, ~( i} \ 

15 16 17 ]8 19 20 21 

) X X7f )f\-l ft i( )t " ; ~ IJ 

22 " -, H 25 26 27 28 

Figure 4.6 Representative kalyotype of back cross hybrid (fcmalc F j big-oui 

hybrid X male C. gariepinus), 2n =55 



91 

The back cross hybrids in Figure 4.8 (9 individuals) were all heterozygous for these 

three loci, similar to the F I big-oui hybrids. In total, the back cross hybrid tested (29 

individuals: 20 newly hatch fry and 9 adult fish) were all heterozygotes and 

significantly different from the expected ratio of 1: 1 heterozygotes: homozygotes (c. 

gariepinus allele). The '1.2 value was 14.5 (p<O.Ol). 

Back cross hybrid genotype Male C. gariepinus Female FI big-oui hybrid 
(F) (PIS) 

Expected FIP: F/S 
14.5: 14.5 

Observed FIP: F/S 
0: 29 

Some morphological characters of live specimens were examined during this study, 

the results are shown in table 4.4 and figure 4.9. Both hybrids have intermediate 

morphology between the parental species, particularly for the occipital process and 

body coloration. A few reciprocal hybrids were reared until two months, when some 

morphological characters were examined. The results are shown in table 4.4. 

4.3.6 Effect of using different stocks of male C.gariepinus on fertilisation and 

survival of hybrid 

The fertilisation rates, survival rates to somite stage, hatch out and 3 days of age 

in big-oui hybrid using three difference original stocks of male C. gariepinus 

from 4 replicate experiments are shown in Table 4.5. The big-oui hybrid using the 

male imported stocks from Thailand had higher fertilisation and survival rates at 

the various development stages than the hybrids produced by using the two other 

stocks of male fish. Only the survival rate to the somite stage of development of 

all hybrid crosses did not show a significant difference. The fertilisation rate and 

survival in the hybrid produced by using the males from Wageningen stock was 

always significantly lower at every stage of larval development. 
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7-12 13-24 25-36 

1-6 7-12 13-24 25-36 

Figure 4.7 Diagnostic loci observed in larvae tissue of 12 big-oui hybrid (No.13-24) 

and 12 reciprocal cross hybrid (No.2S-36) compared with muscle tissue 

from 6 C. gariepinus (No. 1-6) and 6 C. macrocephalus (No.7-12):-

A) GPI-2*,dimer and B) MDH-2*, dimer. 
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16-24 
....;....,.-~-

11-15 6-10 1-5 

1-5 6-10 11-15 16-24 

Figure 4.8 Diagnostic loci observed in muscle tissue of 5 C. garirpinus (No.l-

5),5 C. macrocephalus (No.6-1O), 5 big-oui hybrid (No. 11-15) and 

9 back cross hybrid (No.16-24): A) GPI-2 * dimer, B) WH-l* 

tetramer and C) MDH-2* dimer. 



Figure 4.9 
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Shows pure C gariepinus (1), Pure Cmacrocephalus (2) and hybrid 
(3) showing most obvious morphological differences (a) shows the 
differences in the occipital process among pure species and hybrid 
(b) shows the differences in body coloration . 
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Table 4.4 . Some morphological characters of Clariid catfishes studied in this chapter. 

Characters C. macrocephalus C. gariepinus Big-oui hybrid Reciprocal hybrid 
cross 

C. macrocephalus (F) C. macrocephalus (M) 

x C. gariepinus (!vi) x C. gariepilllls (F) 

1 . Shape of Body Rather short More slender Rather short Rather short 
(compared with C. (compared with C. (compared with C. (compared with C. 
gariepinlls); body macrocephalus); gariepinus), more gariepinlls), shorter 
depth 5-6 times in body depth 6-7 slender than C. than big-oui hybrid; 
total length times in total length macrocephaills but body depth 5-6 time in 

shorter than C. total length 
gariepill!is; body 
depth 5-7 time in 

2. Head 
total length 

2.1 Frontal part Rather convex Distinctly flattened Not much flattened Not much flattened 
of head 
2.2 Upper Smooth Distinctly Granulated, more Granulated 
surface of head granulated distinctly in bigger 

fish 
3 Occipital Process Wide, low, broadly Sharply angular Angular, intermediate Angular, intermediate 

curved, its based between C. between C. 
width 3-5 times its macrocephaills and macrocephalus and C. 
length, extending C. gariepinlls gariepinlls 
close to the dorsal 
fin 

4. Pectoral Spine Not serrated on the Serrated on the Serrated on the outer Serrated on the outer 
outer border outer border border border 

5. Colour Pattem 
5.1 Body Nearly dark, with Olive above, Marbled with dark Marbled WiUl dark 

tiny white spots in marbled with dark brown above, white brown above, white 
vertical lines brown, white below below; vertical lines below; with tiny white 

of tiny white spots in spots in vertical lines 
young fish in young fish 

5.2 Caudal Fin Without vertical bar With light vertical With light vertical With light vertical bar 
on the base of bar on the base of bar on the base of on the base of caudal 
caudal fin caudal frn caudal fin , quite fm, quite distinct ill 

distinct in yOWlg fish young fish but fainter 
but fainter in older in older fish 
fish 

6. Distance from Contained 5-7 3.5-5 times Less than 5 times Less than 5 times 
Dorsal Fin to times the length of 
Occipital Process the head (measured 

along upper median 
line) 

7. Fin Rays 
7.1 Dorsal 62-70 (variable) 68-79 (variable) 67-70 (variable) 67-70 (variable) 
7.2 Anal 45-50 (variable) 49-60 (variable) 50-54 (variable) 50-55 (variable) 
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Table 4.5 Mean survival rate of hybrid offspring produced by using different 

stocks of male C. gariepinus (data calculated from 4 replicated experiments). 

Pair crosses 

male(stock) 

x female 

Cg(TH)xCm 

Cg(MA)xCm 

Cg(WA)xC 

m 

±SEM 

Fertilisation 

rate 

87.08±O.03b 

81.79±O.Osab 

74.S2±O.12a 

±O.02 

Somite stage 

S7.09±O.na 

49.36±O.17a 

4S.17±O.34a 

±O.07 

%±SE 

Hatch out 

S1.16±O.07b 

4S.36±O.17ab 

37.44±O.06a 

±O.03 

3 days of age 

43.08±O.OI c 

30.SS±O.09b 

19.62±O.lla 

±O.02 

Data in the same column carrying different superscripts denote significant 

difference by ANOV A between values in each development stage at 95 % 

confident level. 

Abbreviations; Cg(TH): C.gariepinus original imported stock from Thailand. 

Cg(MA): C.gariepinus original imported stock from Malawi. 

Cg(W A):C.gariepinus original imported stock from Wageningen, 

the Netherlands. 

Cm: c.macrocephalus imported stock from Thailand. 
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4.4 Discussion. 

Hybrid crosses between Thai native catfish (c. macrocephalus) and the Mrican 

sharptooth catfish (c. gariepinus) were accomplished and analysed in this study. 

The karyotype of the big-oui hybrid, reciprocal crosses hybrid and back crosses 

hybrid were prepared and revealed each to have 2n = 55 chromosomes. 

Chromosomes of the parental species, 2n = 54 in C. macrocephalus and 2n = 56 

in C. gariepinus, could be distinguished in the hybrid. For all hybrid crosses, the 

starch gel electrophoresis of GPI-2*, LDH-l* and lv1DH-2* confirmed true 

hybridization. These results correspond with morphometrical data. Most 

morphological characteristic counts were intermediate between parental counts. 

The occipital process features in hybrids were intermediate between those of the 

parental species. A surprising result was that the back cross hybrids were 

heterozygotes for the three diagnostic loci (as observed in F 1 big-oui hybrid), 

different from the expected I: 1 homozygotes:heterozygotes. 

Hybrids, which are intermediate in size and quality of flesh revealed features of 

maternal species, are cultured on a commercial scale. The fish flesh quality of this 

hybrid is better than that of C. gariepinus. A similar result was reported by 

Teugels et al. {1992b), where the hybrids between C. gariepinus and 

Heterobranchus longifilis were shown to be intermediate between the parental 

species. The hybrids of blue catfish (Ictalurus jUrcatus) and channel catfish 

(Jctalurus punctatus) have increased yield, dressing percentage and catchability 

over those of the parental species (Yant et al.,1975; Chappell, 1979; and Tave et 

al., 1981 cited by Krasmai, 1987). The hybrid of channel x blue catfish tolerated 

seawater longer than the parental species (Stickney and Simco, 1971). Dunham 

and Smitherman (1981) investigated growth in response to winter feeding and 

found that the outstanding winter growth of white catfish (I. caws) was not 

transmitted to channel x white catfish or white x blue hybrids. Winter growth 
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exhibited by all hybrids was less than of white catfish and the same as that of the 

channel and blue catfish. Na-Nakorn, et al. (1993a) found two morphotypes 

(confIrmed by karyotyping) in first generation offspring from the artificial 

hybridization between Clarias macrocephalus and Pangasius sutchi. 

Understanding the big-oui hybrid characteristics should, in addition to 

determining the potential for aquaculture, contribute to current efforts to clarify 

the role of the parental species. 

The hybrid of carp (Cyprinus carpio) and goldfish (Carassius auratus) showed 

more carp-like features. This hybrid has been reported to be fertile and to be able 

to back-cross (Hume et al., 1983). The F 1 generations of silver carp and bighead 

carp reciprocal hybrids showed a heterosis effect with strong maternal dominance 

in their morphology (Bartholomew and Smitherman, 1984). The catla x rohu 

hybrid (Catla catla x Labeo rohita) showed intermediary inheritance in most 

features, the growth rate of the hybrid was greater than that of the rohu 

(Bhowmick et aI., 1981). 

Since big-oui hybrid has been produced, only a few topics have been studied, and 

these are limited to some aspects of biology, such as morphology, growth rate and 

culture qUalities. With the availability of a number of ponds at the National Inland 

Fisheries Institute, Thailand, research has been initiated for screening the qualities 

of promising hybrids for aquaculture. Culture of hybrid with parent species have 

been initiated for assessing the performance of this hybrid (Nukwan et al., 1990). 

The success achieved in gynogenesis and androgenesis of several fishes have 

paved way for rapid genetic improvement of hybrids by intergeneric 

hybridization among the highly inbred, pure parental lines of culturable species. 

This is expected to yield valuable hybrid lines exhibiting a very high growth rate 

and other qualities for culture superior to those of the parental species. Crossing 

of tetraploid female carp and diploid male cyprinids results in viable allotriploids, 
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while their reciprocal crossing produces non-viable, weak aneuploid hybrids 

(Bakos et at., 1978; Marian et at., 1985). Carp x silver carp triploid hybrids were 

sterile fish with high productivity and good flesh quality, showing strong 

maternal ( carp) dominance (Bakos et at., 1978). 

One reason for producing artificial hybrids has been to obtain sterile fishes for 

aquaculture. However various papers have described maturation of hybrids and 

subsequent crosses, usually back crosses to one or both of the parental species 

(Naevdal and Dalpadado, 1987). The results from this study showed that both of 

big-oui hybrids and back cross hybrids were fertile, especially female big-oui 

hybrids which were able to back-cross to C. gariepinus. Lincoln (1981a,b) found 

that males predominated among plaice x flounder hybrids and six out of nine 

diploid hybrids yielded milt with mobile spermatozoa, all female hybrids were 

mature normally. Naevdal and Dalpadado (1987) suggested that crosses with a 

high degree of survival also generally had a good chance of producing fertile 

gametes. For example, both male and female gametes of crosses between 

Oncorhynchus masou and O. rhodurns were about equally viable as those of the 

parent species. 

At this moment, the conclusion must be that in spite of clear advantages of the 

big-oui hybrids in intensive aquaculture, lack of interest in the pure native species 

(especially c. batrachus) may have deteriorated effects on conservation. This 

conclusion is supported by the fact that big-oui hybrids appear to be fertile, and 

they are able to back cross to the paternal species. For stocking purpose, the big­

oui hybrid should not be stocked in natural water, if in the future they can adopt 

their natural breeding habit of C. gariepinus. However, triploid hybrids are 

observed to be sterile and more reliable than their diploid counterparts in this case 

(purdom, 1972; Lincoln, 1981a; Chevassus, 1983). Genetic manipulations 

investigated on promising hybrids are being carried out simultaneously. 
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Production of sterile hybrids by intergeneric hybrization will be intensified and 

attempted for other species in Thailand as well. 

The production of big-oui hybrids by using the male fish from Malawi stock and 

Wageningen stock gave lower fertilisation and survival than big-oui hybrid 

produced by using the male fish from Thailand. One reason could be suggested to 

explain this: the males from both stocks were very old (more than 8 years). 

The F2 hybrid never gave development to hatch out stage and no viable embryos 

at all. This might be caused by a reduction in size and poor development of the 

male testes in F 1 hybrids (even when they were more than one year old) or caused 

by incompatible chromosome of 2n = 55 in F 1 big-oui hybrid. 

The low survival of the reciprocal hybrids and back cross hybrids may be due to 

the genetic incompatibility of the two parental species. The small number of 

hatchlings were deformed. The chromosomes in the parent species show 

differences in numbers and morphology (Fig. 4.2-4.3). This investigation showed 

that both reciprocal hybrids and the back cross hybrid have 2n = 55, the same as 

the chromosome number of the big-oui hybrid, although the samples were 

collected from newly hatched and deformed embryos. 

The reciprocal cross and back cross hybrids do not appear promising for 

aquaculture. These hybrids did not survive long enough to enable studies on their 

performing growth rate and their fertility. Only a small number of the back cross 

hybrid between female F I hybrid and male C. gariepinus produced in this study 

were viable for growing up to one year of age, but they did not reach maturity. 

The back cross hybrid phenotype from electrophoresis showed a difference from 

the expected 1: 1 (all were heterozygotes). This might be a hybridogenetic effect. 

Hybridogenetic species in nature are invariably diploid and, indeed, triploidy 
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would seem to preclude hybridogenesis (Moore, 1984). In hybridogenetics, a 

reduction division occurs and haploid gametes are produced, but the same 

genome is always segregated, intact, into functional gametes. Thus, a single 

genome is inherited clonally (Moore, 1984; Quattro et al., 1991). Poecilliopsis 

monacha-Iucida is the classic example and serves to illustrate this mode of 

inheritance. This fish arose via hybridization between two bisexual species, P. 

monacha and P. lucida. The monacha genome is transmitted through the germ 

line, whereas the lucida genome is discarded each generation. Poecilliopsis 

monacha-Iucida has been synthesized in the laboratory by crossing female P. 

monacha with male P. lucida (Schultz, 1973 cited by Moore, 1984). This cross 

results in only female offspring, which then reproduce by hybridogenesis. In 

nature P. monacha-Iucida mates with males of P. lucida; thus, the genotype of an 

F 1 hybrid between monacha and lucida is perpetuated ad infinitum where a newly 

assorted lucida genome is combined with the clonally inherited monocaha 

genome in each generation (Moore, 1984). In this study, the back cross hybrids 

which were sexed (9 individuals) were of both sexes where four out of six males 

yielded testes with undeveloping spermatozoa and the another two had reduced 

testis size. All females had ovaries which were reduced in size and seem to be 

retarded in development. The another preliminary study needs to be extended in 

the future. The production of the back cross hybrid would be a convenient method 

of obtaining sterile progeny of the F 1 hybrid and need the futher investigation of 

induced triploidy in the back crosses. 

C. macrocephalus does not breed in cultured ponds: its breeding conditions are 

limited and naturally the breeding period is confined to 3-4 months a year. There 

is no indication that the big-oui hybrid is suitable to be naturally bred. 

Hybridization between C. macrocephalus and C. gariepinus was initially 

attempted to see if hybrids could breed over a prolonged period and adopt the 

pond breeding habit of C. gariepinus. It was feared that such a situation would 



102 

lead to a deleterious effect on native fish populations. Research into the genetics 

of this group, including aspects such as chromosome manipulation, may help to 

solve such problems and conserve the genetic integrity of native species. 

The big-oui hybrid is now the single biggest fresh-water aquaculture product in 

Thailand, combining the superior taste of the native C. macrocephalus with the 

faster growth rate and better survial in intensive ponds of C. gariepinus. Due to a 

huge demand for the native species, C. macrocephalus which is difficult to 

produce in a large number for food or for broodstock to produce hybrids there is 

now a shortage of this species. They are often reared on a fairly extensive basis in 

ricefields and the harvested fish of both sexes are sold as broodstock. The males 

cannot be used in hybrid production as the reciprocal cross does not survive. The 

implications of the results from this study suggested that more genetic research in 

the native stocks of C. macrocephalus should be investigated for solving the 

shortage of this species. Genetic knowledge including chromosome manipulation 

was required to solve this problem. 



CHAPTER FIVE 

TRIPLOIDY STUDIES IN THE BIG-OUI HYBRID 

(FEMALE CLARIAS MACROCEPHALUS X MALE C GARIEPINUS) 

S.l Introduction 

Although polyploidy can be induced readily in a wide variety of plants by chemical and 

physical agents which affect spindle function, similar studies in animals are rare and 

restricted to only arthopods, amphibians and fishes. Polyploid fish are frequently 

viable, however, as evidenced by examples of spontaneous polyploidy (Allen and 

Stanley, 1978). There is considerable interest in the application of induced triploidy in 

fish culture. Temperature or pressure shocking of fertilized eggs to induce triploidy has 

been successful for many fish species (Table 1). Both methods (temperature and 

pressure shocking) have been used to induce triploidy in fish by inhibiting the extrusion 

of the second polar body during the second meiotic division of newly fertilized eggs 

(Thorgaard, 1983; Purdom, 1983). Triploidy has been successfully induced by 

immersion of fertilized eggs in a cold water bath shortly after fertilisation (purdom, 

1972; Valenti, 1975; Wolters et a!., 1981; Cassani and Caton, 1985). Induction of 

polyploidy has also been reported when fish eggs were treated shortly after fertilisation 

with cytochalasin B (Refstie et ai., 1977; Allen and Stanley, 1979) and colchicine 

(Smith and Lemoine, 1979). 
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Triploid individuals might be expected to be larger than their diploid counterparts, in 

accordance with the general hypothesis that nuclear size increases in proportion to 

chromosome number while the nuclear-cytoplasmic volume ratio is maintained. 

However, Swamp (1959) reported triploid threespine sticklebacks to be no larger than 

diploids. Even though the cellular size increased, the number of cells per organ 

decreased. Purdom (1976) and Valenti (1975) found induced triploid plaice-flounder 

hybrids and blue tilapia to be significantly larger than normal diploids. These triploids 

differed from triploid threespine sticklebacks in their indeterminate growth pattern. 

Triploid fish are often sterile because gonadal development is blocked or retarded. The 

effect of induced triploidy is often different for the two sexes. Female triploids usually 

have very reduced ovaries with few, if any, vitellogenic eggs, and do not usually show 

any signs of maturation. Male fish often produce normal sized testes but these contain 

watery milt with low numbers of aneuploid sperm. Secondary sexual characteristics are 

often present because the testes appear to be endocrinologically competent. Therefore, 

culture of all female triploid fish might be more profitable than that of non-sterile 

diploid fish. 

In salmonids, triploids have often been shown to survive better during early 

development than diploid hybrids, for example "tiger trout", a vigorous hybrid between 

female brown trout (Salmon lrulta) and male brook trout (Salvelinus lontina/is) which 

has good growth rates but poor survival. Attempts to produce this hybrid have been 

plagued by low survival rates, averaging only five percent to the initiation of feeding. 

Triploidization using heat shock has increased the survival rate to an average of 34 %. 
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Both triploid and diploid tiger trout are sterile. These sterile hybrids, particularly the 

female, may devote the energy that would otherwise go into the production of large 

volumes of eggs into increased growth. The production of all-female populations of 

triploid tiger trout might be ideal in this regard (Scheerer and Thorgaard, 1989). 

This study was undertaken in Clarias hybrid catfish to determine the optimum time 

after fertilisation of zygotes, the optimum temperature level and duration of thermal 

shock, which ensures 100 % triploidy rate and maximum survival. Also it compares 

growth and sex ratio of the triploid and diploid fish. In addition the triploidization 

techniques could be applied to later production of gynogenetic diploids. 

5.2 Materials and methods 

5.2.1 Origin of broodstock 

Parental catfishes, male C. gariepinus and female C. macrocephalus used in these 

experiments were supplied from the hatchery of the National Inland Fisheries Institute, 

Thailand and reared separately in fibre glass tanks for about 3-5 months under ambient 

temperature (27±1 DC) for the production of good quality eggs. 

5.2.2 Induced spawning and fertilisation 

Spawning was induced by injection of female C. macrocephalus with LHRH analog 

hormone and a dopamine antagonist (Nukwan et aI., 1990). After a latency time of 15-
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18 hrs the eggs can be hand-stripped and fertilized with milt from macerated testis of 

male C. gariepinus. About 500-800 fertilized eggs per treatment were incubated at 27± 

1°C in 20 liter plastic aquaria in a recirculating incubation system. The plastic aquaria 

contained small screens (0.5 mm2 mesh-size) to support the developing eggs; hatched 

embryos can pass through this mesh allowing easy removal of unhatched eggs and egg 

debris. 

5.2.3 Temperature shock (cold and heat) 

Cold-shock and heat-shock experiments were carried out by transferring the screens 

with eggs into a controlled temperature water bath. For optimizing the cold shock, the 

temperature was varied from I-SOC. These shocks were applied at 1-8 minutes after 

fertilisation at 1 minute intervals. The durations of the shocks were varied from 10- 30 

minutes at 5 minutes intervals (Vejaratpimol and Pewnim, 1990; Richter et al., 1987). 

For optimizing heat shock, the temperature was varied from 37-41oC, the times after 

fertilisation were varied from 2-8 minutes at 1 minute intervals and the durations of the 

shocks were varied from 2-5 minutes at 1 minutes intervals (the details of application 

were described in section 2.7.1). 

5.2.4 Pressure shock 

The hydrostatic pressure shock experiments were carried out by transferring the screens 

with fertilized eggs into a pressure vessel which had first been filled with clean water. 

After the vessels had been sealed and purged of air, the pressure release valve was 
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closed and pressure was applied gradually by a manually operated hydraulic pump. The 

pressure was varied from 8,000.10,000 p.s.i. at 1,000 p.s.i. intervals, the times after 

fertilisation were varied from 20·30 minutes at 2 minute intervals and the duration of 

the shocks were varied from 2-6 minutes at 1 minute intervals (the details of application 

as described in section 2.7.2). 

5.2.5 Egg incubation and fry rearing 

After the shocking, the eggs were transferred again to the recirculating water incubation 

system at 27±1°C. At about 22·26 hrs after fertilisation, hatching takes place. The 

larvae were subsequently reared in a recirculating water system at 27±1°C. They were 

fed with Artemia nauplii during the first two weeks after yolk sac resorption. After this 

the fry were fed with various sizes of trout pellet (commercial catfish pellets are not 

available in U.K). 

5.2.6 Estimation of induction efficiency 

The survival rate of the controls was defined as the percentage of eggs that developed 

into normal larvae. The survival rate of the treated eggs were expressed as a percentage 

of the survival rate of the controls. Triploidy rates were expressed as a percentage of 

the number of normal individuals examined. 
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5.2.7 Determination of ploidy 

Cytogenetic method. 20 embryos from each treatment group were sampled, 

karyotypes were prepared from newly hatched or 1 day old larvae from each batch by 

colchicine treatment. Ploidy was determined by counting chromosomes per spread in 

larval tissue prepared according to the solid tissue technique of Kligerman and Bloom 

(1977). Metaphase chromosome spreads were checked and the frequency of individual 

chromosome counts were recorded, then the percentage of triploidy induction was 

calculated. 

Erythrocyte nuclear volume method, one group each of triploid and control larvae 

from the optimized cold shock treatment was reared separately in 100 I aquaria until 6 

months of age at a stocking rate of 25 fishes per aquarium for comparision of the 

growth rate. At the end of the experiment all fishes were killed for examination of the 

gonads and blood samples were drawn from the dorsal artery of the caudal fin. Blood 

smears were prepared and stained with Wright's stain. Major and minor axes of the 

nuclei of 10 erythrocytes from each individual fish were measured. Nuclear volume 

were calculated as 4/3 x ab3, where a is the major, and b is the minor semi-axis 

(Wolters et al., 1982b). 
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5.2.8 Comparison of the growth rate and feed ultilization between triploid and diploid 

hybrids. 

The larvae from untreated and the optimized cold shock experiment were reared 

separately in two replicate 100 I glass aquaria until 6 months of age, at a stocking 

density of 25 fish per aquarium and were fed with commercial catfish pellets (available 

in Thailand; 40 % protein). The fish were fed ad libitum three times daily and may 

therefore be considered to be growing at the maximum rate. The mean fresh body 

weight and lenght were determined every two weeks. Finally, all fishes were used to 

determine the gonadosomatic index (GSI) and blood samples were drawn for 

erythrocyte nuclear volume measurement (see section 5.2.7) The data on survival rates, 

growth rate and GSI were analyzed with analysis of variance (ANOV A). 

5.3.Results 

5.3.1 Triploidy induction using temperature and pressure shocks 

The results of the present study for the identification of treatments in inducing triploidy 

by exposing fertilized eggs of the big-oui hybrid to altered intensities, durations of 

shock and times after insemination of cold shock, heat shock and pressure shock are 

described. It is convenient to begin by first explaining the preliminary results of those 

experiments conducted in Thailand (1992-1993). 
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5.3.1.1 Cold shocks 

The results of experiments performed using cold shock treatments are detailed in Table 

S .1. The percentage of triploid yield compared with control diploid hybrids at different 

times after fertilisation and durations of cold shock are presented in Figure S.1-S.3. 

Triploids were produced by all temperatures of cold shock in the range I-SOC, at 

timings in the range of 1-8 mins after insemination and the shock duration of 10, 15, 

20, 2S and 30 min. Any duration above this level resulted in lower survival rates which 

consequently lowered triploid rates. No triploids were produced when eggs were 

submitted to cold shocks of above 8°C for 30 mins duration. Earlier (1-5 mins TAP) 

and later (6-8 min TAP) application of every temperature and duration. 

resulted in lower survival rates and triploid rates. Triploidy rates declined sharply 

(close to 0 %) with later (7-8 mins TAF) application of cold shock. At 2-SoC the most 

effective time of administration of 10, IS and 20 min duration shock was 4 mins T AF 

to induce maximum triploid yield. Triploidy rate (100%) and survival rate to hatch 

(96.15%) were apparently highest yield after the application of 10 min duration at 4°C 

shock administered at 2 min T AF. Cold shock at 2°C for 15 min duration and 4 min 

T AF gave also a high yield with prolonged time of administration. (Table 5.1 and 

Figure 5.1-5.3). Although triploids were induced by the application of lower 

temperature (2-S0C), lower triploid yields were associated with increased numbers of 

deformed embryos at these temperatures. Higher temperatures of cold shock (6-8°C) 

were generally less effective in inducing triploidy. 
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Table 5.1 The effects of difference intensities, durations and timings of application of 
cold shock on survival rate and triploid rate in big-oui hybrid catfish. 

Temperature Time after Duration Survival rate Triploid rate Triploid 
fertilisation yield 

(OC) (min) (min) % %RC* % % 

1 1 0 83.08 100 0 0 

1 1 10 74.68 98.88 0 0 

1 1 15 46.15 55.55 0 0 

1 1 20 43.59 52.46 0 0 
1 1 25 35.63 42.88 0 0 
1 1 30 39.47 47.51 0 0 
1 2 0 84.75 100 0 0 
1 2 10 67.03 79.09 0 0 
I 2 15 65.64 77.45 0 0 
1 2 20 43.21 50.98 0 0 
1 2 25 4.17 4.92 0 0 
1 2 30 22.94 27.26 0 0 
1 3 0 87.50 100 0 0 
1 3 10 83.91 95.89 0 0 
1 3 15 80.82 92.36 0 0 
1 3 20 62.82 71.79 0 0 
1 3 25 0 0 0 0 
1 3 30 0 0 0 0 
1 4 0 87.10 100 0 0 
1 4 10 48.00 55.11 0 0 
1 4 15 9.93 11.40 0 0 
1 4 20 10.95 12.57 0 0 
1 4 25 11.69 13.42 0 0 
1 4 30 0 0 0 0 
1 5 0 76.19 100 0 0 
1 5 10 31.03 40.73 0 0 
I 5 IS 58.44 76.70 0 0 
1 5 20 30.77 40.39 0 0 
1 5 25 71.43 93.75 0 0 
1 5 30 24.78 32.52 0 0 
1 6 0 71.74 100 0 0 
1 6 10 65.00 90.60 0 0 
1 6 15 60.81 84.76 0 0 
1 6 20 42.19 58.81 0 0 
1 6 25 65.06 90.69 0 0 
1 6 30 24.73 34.47 0 0 
I 7 0 83.10 100 0 0 
1 7 10 56.34 67.80 0 0 
1 7 15 46.39 55.82 0 0 
I 7 20 52.33 62.97 0 0 

1 7 25 48.94 58.89 0 0 

1 7 30 40.00 48.23 0 0 

I 8 0 56.07 100 0 0 

1 8 10 42.86 76.44 0 0 

I 8 IS 49.33 87.98 0 0 

1 8 20 39.39 70.25 0 0 

1 8 25 8.41 15.00 0 0 

1 8 30 31.37 55.95 0 0 
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Table 5.1 cont. 

Temperature Time after Duration Smvival rate Triploid rate Triploid 

fertilisation yield 

(OC) (min) (min) % %Re· % % 

2 1 0 72.13 100 0 0 

2 1 10 60.19 83.45 0 0 

2 1 15 55.14 76.45 0 0 

2 1 20 0 0 0 0 

2 1 25 0 0 0 0 

2 1 30 0 0 0 0 

2 2 0 87.50 100 0 0 

2 2 10 82.69 94.50 0 0 

2 2 15 78.57 89.79 0 0 

2 2 20 67.52 77.17 0 0 

2 2 25 47.54 54.33 0 0 
2 2 30 31.58 36.09 0 0 
2 3 0 71.43 100 0 0 
2 3 10 41.09 57.52 0 0 
2 3 15 30.10 34.32 50 17.16 
2 3 20 35.44 40.40 40 16.16 
2 3 25 35.95 40.98 20 8.200 
2 3 30 5.93 6.76 0 0 
2 4 0 76.72 100 0 0 
2 4 10 75.68 98.64 70 69.05 
2 4 15 73.37 95.63 100 95.63 
2 4 20 44.69 58.25 100 58.25 
2 4 25 60.25 78.53 100 78.53 
2 4 30 75.93 98.98 80 79.18 
2 5 0 73.72 100 0 0 
2 5 10 49.15 66.67 50 33.34 
2 5 15 17.99 24.40 60 14.64 
2 5 20 33.83 45.89 80 36.71 
2 5 25 14.09 19.11 100 19.11 
2 5 30 0 0 0 0 
2 6 0 78.44 100 0 0 
2 6 10 66.14 84.32 20 16.86 
2 6 15 64.82 82.63 20 16.53 
2 6 20 70.15 89.43 80 71.54 
2 6 25 35.17 44.84 60 26.90 
2 6 30 25.31 32.27 100 32.27 
2 7 0 74.88 100 0 0 
2 7 10 46.75 62.44 0 0 
2 7 15 39.00 52.08 40 20.83 
2 7 20 12.32 16.45 60 9.87 

2 7 25 9.29 12.41 100 12.41 

2 7 30 0 0 0 0 

2 8 0 70.75 100 0 0 

2 8 10 22.64 32.00 0 0 

2 8 15 28.57 40.38 0 0 

2 8 20 29.52 41.72 0 0 

2 8 25 25.23 35.66 0 0 

2 8 30 20.37 28.79 0 0 
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Table 5.1 cont. 

Temperatur Time after Duration Survival rate Triploid rate Triploid 

e fertilisation yield 

(OC) (min) (min) % %RC· % % 

3 1 0 71.96 100 0 0 

3 1 10 44.79 62.43 0 0 

3 1 15 27.49 38.20 0 0 

3 1 20 19.01 26.42 0 0 

3 1 25 17.65 24.53 0 0 

3 1 30 1.10 1.53 0 0 

3 2 0 73.98 100 0 0 

3 2 10 40.82 55.18 0 0 
3 2 15 33.70 45.55 0 0 

3 2 20 42.02 56.80 0 0 
3 2 25 43.95 59.40 0 0 
3 2 30 47.62 64.37 0 0 
3 3 0 85.41 100 0 0 
3 3 10 72.09 84.40 - -
3 3 15 76.67 89.77 70 62.84 
3 3 20 45.45 53.21 100 53.21 
3 3 25 41.38 48.45 100 48.45 
3 3 30 28.00 32.78 100 32.78 
3 4 0 82.86 100 0 0 
3 4 10 82.15 99.14 0 0 
3 4 15 60.12 72.55 40 29.02 
3 4 20 54.67 65.98 100 65.98 
3 4 25 61.29 73.96 50 36.98 
3 4 30 45.06 54.38 100 54.38 
3 5 0 88.64 100 0 0 
3 5 10 72.73 82.05 0 0 
3 5 15 57.14 64.46 10 6.45 
3 5 20 65.00 73.73 80 58.66 
3 5 25 40.00 45.12 0 0 
3 5 30 0 0 0 0 
3 6 0 82.01 100 0 0 
3 6 10 74.62 90.99 0 0 
3 6 15 73.16 89.21 0 0 
3 6 20 66.93 81.61 0 0 
3 6 25 47.67 58.13 0 0 
3 6 30 54.99 67.05 0 0 
3 7 0 70.42 100 0 0 
3 7 10 38.18 54.22 0 0 
3 7 15 18.69 26.54 0 0 
3 7 20 2.99 4.25 0 0 

3 7 25 0 0 0 0 

3 7 30 0 0 0 0 

3 8 0 84.29 100 0 0 

3 8 10 79.75 94.62 0 0 

3 8 15 40.37 47.89 0 0 

3 8 20 25.68 30.46 0 0 

3 8 25 14.29 16.95 0 0 

3 8 30 4.23 5.02 0 0 
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Table 5.1 cont. 

Temperatur Time after Duration Survival rate Triploid rate Triploid 

e fertilisation yield 

(DC) (min) (min) % %Re· % % 

4 1 0 85.66 100 0 0 

4 1 10 80.43 93.89 0 0 

4 1 15 43.08 50.29 0 0 

4 1 20 34.76 40.58 0 0 

4 1 25 22.22 25.94 0 0 

4 1 30 10.93 12.76 0 0 

4 2 0 94.55 100 0 0 

4 2 10 90.91 96.15 100 96.15 

4 2 15 88.24 93.32 100 93.32 
4 2 20 51.78 54.76 100 54.76 
4 2 25 12.56 13.28 40 5.31 
4 2 30 1.48 1.58 0 0 
4 3 0 87.71 100 0 0 
4 3 10 78.79 89.83 100 89.83 
4 3 15 24.24 27.64 100 27.64 
4 3 20 41.38 47.18 100 47.18 
4 3 25 7.19 8.20 66.67 5.46 
4 3 30 10.11 11.53 70 8.07 
4 4 0 85.00 100 0 0 
4 4 10 80.65 94.88 100 94.88 
4 4 15 48.39 56.93 20 11.39 
4 4 20 53.33 62.74 100 62.74 
4 4 25 17.86 21.01 60 12.61 
4 4 30 22.22 26.14 0 0 
4 5 0 69.81 100 0 0 
4 5 10 67.74 97.04 0 0 
4 5 15 48.86 69.99 0 0 
4 5 20 43.93 62.93 0 0 
4 5 25 12.36 17.71 0 0 
4 5 30 18.00 25.78 0 0 
4 6 0 76.92 100 0 0 
4 6 10 46.00 52.00 0 0 
4 6 15 30.00 39.00 0 0 
4 6 20 64.29 83.58 0 0 
4 6 25 4.19 5.45 0 0 
4 6 30 0 0 0 0 
4 7 0 76.19 100 0 0 
4 7 10 71.67 94.07 0 0 
4 7 15 35.29 46.32 0 0 
4 7 20 17.20 22.58 0 0 
4 7 25 0 0 0 0 
4 7 30 0 0 0 0 

4 8 0 96.97 100 0 0 

4 8 10 71.19 73.41 0 0 

4 8 15 60.00 61.88 0 0 

4 8 20 17.24 17.78 0 0 

4 8 25 23.81 24.55 0 0 

4 8 30 20.00 20.63 0 0 
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TOable 5.1 cont. 

Temperatur Time after Duration Survival rate Triploid rate Triploid 

e fertilisation yield 

(OC) (min) (min) % %RC· % % 

5 1 0 65.05 100 0 0 

5 1 10 60.90 93.62 0 0 

5 1 15 54.21 83.34 0 0 

5 1 20 28.10 43.20 0 0 

5 1 25 4.61 7.09 0 0 

5 1 30 3.08 4.74 0 0 

5 2 0 79.66 100 0 0 

5 2 10 53.15 66.72 50 33.36 
5 2 15 46.67 58.59 0 0 
5 2 20 47.49 59.62 100 59.62 
5 2 25 32.96 42.10 0 0 
5 2 30 8.49 10.85 0 0 
5 3 0 90.60 100 0 0 
5 3 10 81.65 90.12 100 90.12 
5 3 15 71.59 79.02 40 31.61 
5 3 20 66.82 73.75 100 73.75 
5 3 25 65.90 72.74 0 0 
5 3 30 71.23 78.62 0 0 
5 4 0 80.16 100 0 0 
5 4 10 76.92 95.96 0 0 
5 4 15 62.29 77.71 100 77.71 
5 4 20 73.68 91.92 100 91.92 
5 4 25 57.42 71.63 30 21.49 
5 4 30 44.98 56.11 20 11.22 
5 5 0 88.24 100 0 0 
5 5 10 81.87 92.78 100 92.78 
5 5 15 69.11 78.32 30 23.50 
5 5 20 70.76 80.19 50 40.10 
5 5 25 33.33 37.77 40 15.11 
5 5 30 8.82 9.99 0 0 
5 6 0 90.44 100 0 0 
5 6 10 86.21 95.32 0 0 
5 6 15 70.89 78.38 100 78.38 
5 6 20 52.63 58.19 50 29.10 
5 6 25 56.57 62.55 80 50.04 
5 6 30 47.17 52.16 0 0 
5 7 0 74.09 100 0 0 
5 7 10 25.83 34.86 0 0 
5 7 15 20.53 27.71 0 0 
5 7 20 6.45 8.71 0 0 
5 7 25 6.90 9.31 0 0 
5 7 30 4.17 5.63 0 0 

5 8 0 81.48 100 0 0 
5 8 10 24.36 29.90 0 0 

5 8 15 26.72 32.79 0 0 

5 8 20 7.43 9.12 0 0 

5 8 25 0 0 0 0 

5 8 30 0 0 0 0 
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Table 5.1 cont. 

Temperatur Time after Duration Survival rate Triploid rate Triploid 

e fertilisation yield 

(OC) (min) (min) % %Re· % % 

6 1 0 65.22 100 0 0 

6 1 10 60.46 92.70 0 

6 1 15 38.10 58.42 0 0 

6 1 20 33.01 50.61 0 0 

6 1 25 19.05 29.21 0 0 

6 1 30 0 0 0 0 

6 2 0 82.73 100 0 0 

6 2 10 36.21 43.77 0 0 

6 2 15 24.67 29.82 0 0 
6 2 20 2.53 3.06 0 0 
6 2 25 16.29 19.69 0 0 
6 2 30 0 0 0 0 
6 3 0 83.33 100 0 0 
6 3 10 27.50 33.00 20 6.60 
6 3 15 32.43 38.92 30 11.68 
6 3 20 33.33 40.00 0 0 
6 3 25 56.41 67.70 60 40.62 
6 3 30 24.44 29.33 0 0 
6 4 0 100 100 0 0 
6 4 10 76.92 76.92 100 76.92 
6 4 15 69.50 69.50 100 69.50 
6 4 20 57.14 57.14 60 34.28 
6 4 25 44.90 44.90 10 4.49 
6 4 30 35.29 35.29 0 0 
6 5 0 70.46 100 0 0 
6 5 10 20.45 29.02 0 0 
6 5 15 24.73 35.10 20 7.02 
6 5 20 18.52 26.28 10 2.63 
6 5 25 8.54 12.12 0 0 
6 5 30 0 0 0 0 
6 6 0 89.13 100 0 0 
6 6 10 88.16 98.91 0 0 
6 6 15 80.67 90.51 0 0 
6 6 20 21.67 24.31 0 0 
6 6 25 10.07 11.30 0 0 
6 6 30 0 0 0 0 
6 7 0 74.87 100 0 0 
6 7 10 44.19 59.02 0 0 
6 7 15 35.45 47.35 0 0 
6 7 20 32.11 42.89 0 0 
6 7 25 0 0 0 0 
6 7 30 0 0 0 0 
6 8 0 71.90 100 0 0 
6 8 10 38.10 52.99 0 0 

6 8 IS 23.15 32.20 0 0 

6 8 20 23.08 32.10 0 0 

6 8 25 12.28 17.08 0 0 

6 8 30 0 0 0 0 
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Table 5.1 cont. 

Temperatur Time after Duration SUtVival rate Triploid Triploid 
fertilisation rate yield 

(DC) (min) (min) % %RC* % % 

7 1 0 80.00 100 0 0 

7 1 10 44.44 55.55 0 0 

7 1 15 40.89 51.11 0 0 

7 1 20 39.78 49.73 0 0 

7 1 25 29.26 36.58 0 0 

7 1 30 11.86 14.83 0 0 
7 2 0 70.77 100 0 0 
7 2 10 32.93 36.53 0 0 
7 2 15 26.32 37.19 0 0 
7 2 20 14.02 19.81 0 0 
7 2 25 19.61 27.71 0 0 
7 2 30 12.12 17.13 0 0 
7 3 0 82.80 100 0 0 
7 3 10 78.36 94.64 0 0 
7 3 15 69.77 84.26 0 0 
7 3 20 57.14 69.01 0 0 
7 3 25 58.63 70.81 0 0 
7 3 30 46.15 55.74 0 0 
7 4 0 85.09 100 0 0 
7 4 10 70.57 82.94 0 0 
7 4 15 72.97 85.76 20 17.15 
7 4 20 22.44 26.37 50 13.19 
7 4 25 1.75 2.06 0 0 
7 4 30 0 0 0 0 
7 5 0 89.20 100 0 0 
7 5 10 87.80 98.43 0 0 
7 5 15 84.97 95.26 20 19.05 
7 5 20 53.19 59.63 40 23.85 
7 5 25 6.89 7.72 0 0 
7 5 30 0 0 0 0 
7 6 0 90.57 100 0 0 
7 6 10 53.58 59.16 20 11.83 
7 6 15 44.20 48.80 0 0 
7 6 20 27.45 30.31 0 0 
7 6 25 20.00 22.08 0 0 
7 6 30 0 0 0 0 
7 7 0 80.00 100 0 0 
7 7 10 67.55 84.44 0 0 
7 7 15 45.10 56.38 0 0 
7 7 20 13.54 16.93 0 0 
7 7 25 2.88 3.60 0 0 
7 7 30 0 0 0 0 
7 8 0 75.97 100 0 0 
7 8 10 65.42 86.11 0 0 
7 8 15 35.16 46.28 0 0 

7 8 20 1.81 2.38 0 0 

7 8 25 0 0 0 0 

7 8 30 0 0 0 0 
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Table 5.1 cont. 

Temperatur Time after Duration Survival rate Triploid Triploid 
e fertilisation rate yield 

(DC) (min) (min) % %RC* % % 

8 1 0 91.78 100 0 0 

8 1 10 68.81 74.97 0 0 

8 1 15 4.63 5.05 0 0 

8 1 20 2.33 2.54 0 0 

8 1 25 0 0 0 0 

8 1 30 0 0 0 0 

8 2 0 70.48 100 0 0 
8 2 10 57.62 81.75 0 0 
8 2 15 39.02 55.36 0 0 
8 2 20 16.83 23.88 0 0 
8 2 25 0 0 0 0 
8 2 30 0 0 0 0 
8 3 0 84.54 100 0 0 
8 3 10 78.13 92.42 0 0 
8 3 15 28.57 33.80 0 0 
8 3 20 16.67 19.72 0 0 
8 3 25 6.02 7.12 0 0 
8 3 30 0 0 0 0 
8 4 0 90.70 100 0 0 
8 4 10 38.81 42.79 0 0 
8 4 15 34.08 37.57 0 0 
8 4 20 34.29 37.81 0 0 
8 4 25 9.19 10.13 0 0 
8 4 30 0 0 0 0 
8 5 0 77.27 100 0 0 
8 5 10 39.75 51.44 0 0 
8 5 15 33.67 43.57 0 0 
8 5 20 30.92 40.02 0 0 
8 5 25 8.l6 10.56 0 0 
8 5 30 0 0 0 0 
8 6 0 82.50 100 0 0 
8 6 10 36.84 44.66 0 0 
8 6 15 22.22 26.93 0 0 
8 6 20 13.04 15.81 0 0 
8 6 25 27.59 33.44 0 0 
8 6 30 0 0 0 0 
8 7 0 91.35 100 0 0 
8 7 10 58.61 64.16 0 0 
8 7 15 42.33 46.34 0 0 
8 7 20 13.51 14.79 0 0 
8 7 25 0 0 0 0 
8 7 30 0 0 0 0 
8 8 0 88.24 100 0 0 
8 8 10 58.45 66.24 0 0 

8 8 15 40.53 45.93 0 0 

8 8 20 18.81 21.32 0 0 

8 8 25 0 0 0 0 

8 8 30 0 0 0 0 
... RC Relatlve to control after adjustment of the latter to 100% . 
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Figure 5.1 Triploid yield (%) derived from cold shock at varied times after fertil i ation 

(1-8 min) and durations (10, 15,20,25, and 30 min) A) cold shock at 2° 8) 
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Figure 5.2 Triploid yield (%) derived from cold shock at varied times after fertili ation 
(1 -8 min) and durations (10,15,20,25, and 30 min) A) cold shock at 4° 
B) cold shock at 5°C. 
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Figure 5.3 Triploid yield (%) derived from cold shock at varied times after fel1ilisation 

(1-8 min) and durations (10, 15, 20, 25, and 30 min) A) cold shock at 6° C 

B) cold shock at 7°C 
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5.3.1.2 Heat shock 

The results of heat shock experiments are presented in Table 5.2. Heat shocks at 38, 39, 

40 and 41°C were applied at 4, 5 and 6 mins T AF and for 5 or 10 mins duration. The 

heat shocks, even those of longer duration were more effective on survival rates but 

were not very effective in inducing triploidy. Increased temperatures and duration of 

heat shocks were effect to low survival rate of larvae. The most effective temperature 

of shock was 38°C, administered 5 mins TAF and 5 mins shocking duration. This dose 

gave the highest survival rate of embryos and a high triploid rate. Shocking temperature 

higher than 40°C were less effective because they produced lower survival rate. 

5.3.1.3 Pressure shock 

The results of the pressure shock experiments are presented in Table 5.3. These 

preliminary results, showed poor survival rates and triploid rates of following pressure 

level and timings of application of 2 mins duration shocks at 4-8 mins T AF and 

temperature of 2SoC. All levels of 2 mins duration shock indicated very low survival 

rate to hatch of embryos, From this, it can be assumed that pressure shocks in this range 

are not suitable for inducing triploidy in Clarias catfish. 
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Table 5.2 The effects of different intensities, durations and timings of application of 

heat shock on survival rate and triploids rate in big-oui hybrid catfish. 

T(OC) TAP D Smvival rate %RC* Triploidy rate Triploid yield 

(min) (min) (%±SD) (%±SD) (%±SD) (o/o±SD) 

28 (control) 0 0 73.44±S.52 100±O.0 0 0 

38 4 5 39.06±10.34 52.26±8.02 80±20 40.20±4.04 

4 10 26.11±5.67 35.13±3.65 85±5 30.04±4.S6 

5 5 42.02±5.34 57.l4±O.64 90±10 51.36±5.14 

5 10 lS.58±2.15 25.30±O.01 100±O.0 25.30±O.01 

6 5 33.55±4.87 45.53±1.35 80±O.0 36.42±1.08 

6 10 20. 12±2.52 27.37±O.26 80±10 21.87±2.54 

39 4 5 16.42±7.34 21.49±7.50 80±1O 17.94±8.15 

4 10 11.04±6.60 14. 15±7.62 l00±O.O 14. 15±7.62 

5 5 15.66±4.55 20.S9±3.78 75±5 15.66±1.97 

5 10 0.37±O.37 0.45±O.45 0 0 

40 4 5 4.62±1.68 6. 1 l±1.58 SO# 6.15 

4 10 l.51±O.59 1. 99±O. 57 65±5 1.32±O.47 

5 5 2.32±O.38 3.l4±O.15 85±5 2.68±O.29 

5 10 O.S5±O.65 l.O7±O.76 100# 1.83 

41 4 5 2.64±1.68 3.38±1.90 80±O.0 2.70±1.52 

4 10 3.89±1.44 5.14±1.37 75±5 3.79±O.77 

5 5 1.95±1.95 2.38±2.38 40# 1.90 

5 10 0 0 0 0 

Experiments were conducted using 2 different females as replications. 

RC* Relative to control after adjustment of the latter to 100%. 

# Missing data in one replication. 
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Table 5.3 The effects of different intensities, durations and timings of application of 

pressure shock on survival to hatch and triploidy rates in big-oui hybrid catfish. 

Pressure TAF 0 Swvival rate Smvival rate Triploidy rate 

(p.s.i.) (min) (min) (o/o±SO) (%RC*±SD) (o/o±SD) 

control 0 0 57.4±12.5 100 0 

7000 4 2 0 0 0 

5 2 0 0 0 

6 2 O.87±O.54 1.38±O.65 0 

7 2 4.17±O.36 7.49±l.OI 25±5 

8 2 4.33±2.51 6.92±2.87 35±15 

8000 4 2 0 0 0 

5 2 1.66±O.53 2.83±O.31 20±lO 

6 2 2.89±1.37 4.74±1.35 35±15 

7 2 3.90±2.20 6.26±2.40 65±15 

8 2 3.83±l.lS 6.54to.64 9O±1O 
9000 4 2 0 0 0 

5 2 0 0 0 

6 2 O.Slto.26 l.3Sto.16 65±15 

7 2 l.59to.55 2.69to.37 73.33±6.67 

8 2 3.l1±O.93 5.32to.46 70±10 

Expenments were conducted usmg 2 dIfferent females as replIcatIOns 
RC· Relative to control after adjustment of the latter to 100%. 

5.3.2 Optimization of cold shock 

Triploid yield 

(o/o±SO) 

0 

0 

0 

0 

1. 96±O.63 

2.39±1.58 

0 

O.60±O.35 

1. 87± 1.1 9 

4.44±2.54 

5.S2to.OS 

0 

0 

O.92±O.30 

1. 95±O.09 

3.68±O.21 

The preliminary results of the experiments conducted using cold shock had a maximum 

triploid rate (l00%) at 2°C and timings of application of 20 min duration shocks. The 

later experiments were set up to maximize the effects of cold shock on survival rates at 

different stages of larval development and to optimize the intensities, timings of 

application and duration of cold shocking at a fixed temperature of 2°C. The full list of 

experiments conducted and results obtained is shown in Table 5.4. The mean survival 

rates at different development stages of embryos showing the effects of cold shock at 



125 

2°C are presented in a more convenient format in Figure 5.4. All levels of 2°C cold 

shock were most effective to induce triploidy and survival of larvae when given in the 

period of 3-6 min TAF and 15-30 min durations. The treatment of 5 min TAF and 20 

min duration give the highest survival to hatch out of embryos at 66.56±2.85 %, while 

the treatment of 4 min T AF and 15 min duration give the maximum rate of viable 3 day 

old fry at 63.85±O.1O % relative to control diploid hybrids. All of these applications of 

cold shock resulted in 100% triploid rates, confirmed by chromosome counts. The 

optimum timing identified for treating fertilized eggs for 15 min duration to induce 

high survival rate and high triploid rate at most effective temperature of 2°C was 4 min 

TAP. Later timings of administration of cold shock (5-6 min TAF) resulted in a 

generally lowered survival rate of embryos. The treatment administered at 3 min T AF 

gave generally lowered survival rate as well as higher rates of deformed bodies of 

embryos. At later TAF (5-6 min), survival rate was once again reduced but in this case, 

it was a consequence of both abnormality and fewer embryos surviving the treatments. 

The intermediate timing administered at 4 min T AF of 2°e cold shock for 15 min 

duration was found to be close to the treatment optima in inducing 100 % triploid rate. 

Cold shock treatment of 6 min TAF and 30 min duration gave very low survival to 

hatch and 0 % of embryo servived to 3 days of age (Table 5.4). 

The ploidy of all treatment and control batches was determined by chromosome 

preparation from a subsample of newly hatched or one day old larvae. The triploid big­

oui hybrid metaphases are composed of three sets of chromosome (3n=82). Although it 

was difficult to count the number of chromosomes exactly, the easily identified by the 

presence of three sets of chromosome which high complexity were of individual 
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chromosome spreads (Figure S.SA). The triploid rate was determined by the 

karyological analysis of several (more than 3) karyotypes per individual larvae and 20 

individuals per treatment. The results were expressed as mean triploid rates which were 

combined with survival rates for determination of the optimum treatment parameters in 

inducing triploidy. 

Erythrocyte nuclear measurements were also used for determination of ploidy levels in 

this study. Blood samples were drawn from the caudal vein of 20 individual catfish 

species of grow-out experiment. Blood smears were prepared and stained with Wright's 

stain, fields of erythrocytes were photographed and negatives were projected with an 

enlarger to give a final magnification of xlOOO. A sample photograph of diploid and 

triploid erythrocyte was shown in Figure S.5B. 

5.3.3 Comparative studied on grow out of diploid, triploid big-oui hybrid and pure 

species 

The comparative data for growth experiments on diploid, triploid and pure species, 

conducted in 8 glass aquaria (2 replications) for 184 days showing the results in detail 

by mean survival rate, mean initial length and weight, mean final length and weight and 

specific growth rate (SGR) are given in Table 5.5 and Table 5.6. The pooled data for 

mean weight gain and mean length gain of 4 groups of catfish are shown in Table 5.7-

5. 8andFigure5. 6A-Brespectively. 
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Table 5.4 Mean fertilisation and survival rate (relative to control) at different 

development stage of triploid hybrid embryos from cold shocking experiment at 2°C 

Treatment %±SE 

TAF(min)lD(min) Fertilisation Somite stage Hatch out 3 days ofage 

O/O(cont) lOO.OO±O.oog lOO.OO±O.OOc 100.00±O.001 100.00±0.001 

(Actual) (78.86±8.0 I) (61.50±10.71) (42. 14±7.9 l) (32.2S:1:6.94) 

3/15 93.80±0.17f 72. 75±O. 76abcd S6.29±1.63fgh 36.57±2.76fg 

3120 88. 54±O.88ef 52.66±1.26abc 28.2I±O.28bcdef 19.36±1.78def 

3/25 74.00±0.19cd 43.S3±1.29ab I S.l S±O.02abcd 1.30±0.S9ab 

3130 S8.22±O.46abc 33.09±O.23ab 6.69±O.IOab 0.36±O.36a 

4/15 90.43±O.1l ef 99.43±16.69de 53.29±1.24fgh 63.8S±O. lOh 

4120 84.6S±O.18def 91.17±17.16cde 30.63±O.43bcdefg 50.33±1.6Sgh 

4125 81.60±0.34de 58. 16±7.47abc 11.70±0.35abc 15.06±1.40dc 

4130 58.27±1.13abc 59.62±O.42abc 6.47±O.:21ab 1.98±O.72abc 

5/1S 91.88±O.23ef 77.42±O.25bcde 64. 36±7.I 5h 33.l6±O.85cfg 

5120 83.35±O.19de 74. 82±O.66bcd 66.56±2.85efgh 12.67±O.23cd 

512S 73.79±O.17cd 55.12±O.68abc 34.44±4.19cdefgh 1.99±O.28abc 

5130 61.80±0.59bc 36.79±O.11 ab 8.46±O.36abc O.OO±O.OOa 

6/15 83.66±O.24de 58.16±O.08abc 60.11±2.00gh 10.43±O.15bcd 

6120 65.54±O.70bc S3.07±O.44abc 40.9S±4.56defgh 1.59±O.23ab 

6m SS.88±O.66ab 41.34±O.60ab 18.01±1.76abcde 0.63±O.09a 

6130 39.65±O.16a 20.9S±O.29a 3.08±O.0Ia O.OO±O.OOa 

±SEM 0.02 0.20 0.08 0.04 

Data in the same column carrying different superscripts denote a significant difference 

by ANOVA at p<O.05 between values in each development stage. 
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At stocking (26 days of age), the mean initial weight of fish belonging to diploid, 

triploid and pure C. macrocephalus groups was not significantly different, although 

there were differences between pure C. gariepinus and the other 3 groups of fish. The 

mean initial length of fish belonging to diploid and triploid groups was not significantly 

different, while there were significantly differences between these 2 groups of hybrids, 

pure C. macrocephalus and pure C. gariepinus. At the end of experiments (184 days of 

age), the mean final length, mean final weight and SGR were not significantly different 

in the fish belonging to diploid, triploid hybrid and pure C. macrocephalus groups: only 

the fish in the pure C. gariepinus group were significantly different to the other groups. 

During the whole on-growing period of 6 months, the pure C. gariepinus group grew 

faster compared to the other groups, while it had a lower survival rate than the other 

groups. However the growth rate (both weight and length comparisions) of diploid and 

triploid big-oui hybrid were not significantly different at p<0.05 (Table 5.6). 

At the end of the on-growing experiment, all of the fish in each group were measured 

and weighed and the length-weight relationship of each groups were calculated. The 

linear regression lines and equations of 4 groups of catfish are shown in Figures 5.7-

5.10. 
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Table 5.5 Mean survival rate of diploid hybrid, triploid hybrid and pure species on 

grow out experiment 

Age (days) Diploid Triploid C. macrocephalus C. gariepi1l1ls ±S.E.M 

26 100.0±0.00" 100±0.00" 100.010.0" 100.Oto.Oa 0.00 

40 89.S±3.Sa 8S.0±3.0a 92.0±2.0a 89.0±3.0a 1.46 

S4 78.S±1.5a 74.S1O.Sa 86.0±3.0a 78.S±6.Sa 1.83 

68 74.S±10.Sa 71.0±1.0a 81.5to.Sa 68.S±S.Sa 2.98 

72 71.0±8.0a 68.0±2.0a 79.0±1.0a 63.S±4.Sa 2.36 

86 64.0±8.0a 6S.0±4.0a 78.Sto.Sa S7.S±4.Sa 2.51 

100 61.0±9.0ab S7.0±3.0ab 73.0±1.0b 49.S±2.Sa 2.47 

114 SS.O±IO.Oab Sl.O±I.Oab 64.0±4.0b 37.0±2.0a 2.7S 

128 SO.S±7.Sab 46.S±2.Sab 62.S±3.Sb 3S.0±2.0a 2.22 

142 4S.S±6.Sb 43.0±1.0b S9.0±6.0b 22.00±1.0a 2.24 

IS6 42.0±4.0b 39.0±1.0b S7.0±6.0c 18.S±Ua 1.86 

170 34.S±S.Sb 37.S±1.5bc S6.0±2.0c 16.0±3.0a 1.69 

184 34.0±S.Ob 33.0±1.0b 46.S±S.Sb IS.0±3.0a 2.02 

Mean survival rate at the same age (days) carrying the superscripts denote statistically 
significant difference by ANOVA at p::;;O.05 between the value in each species. 
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5.3.4 Effects oftriploidy on sexual development 

Data of average gonad weight and gonado-somatic index (GSI) together with mean 

standard length and body weight for male and female in the four groups at the end of 

the on-growing experiment (6 months) are presented in Table 5.7. At 6 months of age, 

the GSI's of both the diploid and triploid hybrids in both sexes were lower than in the 

pure species, while comparision between diploid and triploid hybrids shared relatively 

little difference for both sexes. 

5.3.5 Gonadal histology of diploid, triploid hybrid and pure species. 

Histological sections of diploid and triploid hybrid ovaries at 6 month of age contained 

mainly oogonia and a few small primary or previtellogenic oocytes. Most of the cells 

were of similar size with very few undergoing divisions, some of the primary 

previtellogenic oocytes started to show retarded development. In most of histological 

slides, very few secondary vitellogenic oocytes were found in triploid ovaries or in 

diploid hybrids at the same age (Figure S.IIA and S.IIB). 

Histological sections of both pure C. macrocephalus and pure C. gariepinus ovaries at 

6 months of age had strongly basophilic cytoplasm and lightly stained round nuclei in 

the developing primary and secondary previtellogenic oocytes. Some ovaries sampled 

contained oogonia and maturing vitellogenic oocytes with regular nuclei and vacuolated 

cytoplasm which is associated with endogenous yolk formation (Figure 5.12A and 

5. 12B). 
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Figure 5.11 Histological section of gonad in diploid and triploid big-oui hybrid at 6 

months of age. 

A:diploid ovary 

B:triploid ovary 

C:diploid testis 

D:triploid testis 
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figure 5.12 Histological section of gonads in pure species CIt 6 months or age. 

A:c. macrocephalus ovary 

B:c. ga/'iepinus ovary 

c:c. macrocephalus testis 

D:C. gariepil1us testis 



Table 5.6 Comparision on growth rate of diploid, triploid big-oui hybrid and the pure species 

, 

Measurements Diploid hybrid Triploid hybrid Pure Pure C.gariepinus ±SEM I 

I 

c.macrocephalus ! 

Mean initial length 2.SS±O.OSab 2.S3±O.01 ab 2.49±0. 03 a 2.69±O.03b 0.02 

Mean initial weight 0.S5±O.01a 0.58±O.02a 0.S4±O.00a 0.71±O.0Ib 0.01 

Mean fmallength 13. OO±O. 09a 13.20±O.17a 12.81±O.06a 17.66±O.77b 0.20 

Mean fmal weight 19.66±O.S6a 20.49±O.73 a 16.75±O.41a 74. 66±6.46b 1.63 

SGR(%) 2.27±O.02a 2.26±O.04a 2.17±O.02a 2. 94±O.06b 0.02 

----~-

Data in the same row carrying the superscript denote a significant difference by ANOV A at p::;O. 05 between values in each characteristic 

measurement 
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Table 5.7 Mean body weight, gonadal weight and gonadosomatic index (%GSI) of 

male and female in 4 groups of catfish in grow out experiment at 184 days of age. 

Species Sex No.of Mean body Mean gonad Mean OSI 

fish weight weight (%) 

2nhybrid male 25 20.60±5.37 O.O6±O.O4 O.29±O.15 

female 25 20.34±S.39 O.12±O.O9 O.SS±O.29 

3n hybrid male 22 19.87±5.72 O.O7±O.O7 O.30±D.26 

female 28 19.51±4.l8 O.l8±O.55 O.37±O.20 

c.macrocephalus male 24 IS.94±3.65 O.O7±O.O4 O.39±O.lS 

female 26 17.50±4.74 O.23±O.l1 1.26±O.30 

C.gariepinus male 14 69.66±48.61 O.64±O.54 O.84±O.34 

female 16 76.61±41.85 1.71±1.l6 1.90±O.74 

% GSI == Mean gonad weight / Mean body weight x 100 

Histological sections of diploid and triploid hybrid testes at 6 months of age contained 

very few cysts with spermatogonia and spermatocytes in which the cells were under 

going active divisions and had developed into spermatozoa. In most of the testicular 

sections of triploid hybrids, there were very few primary sperm cells resulting in nearly 

empty tubules having lightly stained seminal fluid containing only a few spermatozoa 

(Figure S.lle and 5.110). 

The histological sections of pure species showed they contained highly distinct cysts 

surrounded by the basal lamina at all stages of development. There were 
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spermatogonia, spermatocytes, spermatids and a large number of spermatozoa (Figure 

5.12C and 5.12D). 

5.3.6 Gonadal condition and reproduction of triploid big-oui hybrid 

In this study, some of triploid big-oui hybrids and diploid hybrids (control) produced 

from optimizing cold shock experiments were kept for over one year of age until they 

reached (expected) maturation stage. The gonadal condition in 10 individuals of both 

sexes in each group of fish were examined and compared the size and weight. The 

comparision between triploid and diploid hybrid GSI of matured fish is shown in Table 

5.8. It was observed that diploid female ovaries were 5-10 times bigger than triploid 

ovaries and packed with numerous developing oocytes, while triploid ovaries of the 

same age of fish were very small compared to the body size, without developing 

oocytes. The ovaries of triploid fish contain mainly oogonia. When triploid females 

have reached an age of six months, follicular atresia of the previtellogenic oocytes 

occur (Figure 5.11). Diploid male testes were soft, elongate, unpairing lobe, clear 

brown-red coloured and with few spermatozoa. Triploid male testes were usually a 

little smaller consisted of harder tissue, more white in colour and without spermatozoa 

and when the males have reached the age of six months, the primary spermatocytes 

start to degenerate, and the cysts start to fuse, giving rise to degenerating tubules 

(Figure 5.11 and 5.13). Morphologically, triploid males showed similar development of 

secondary sexual characters, having the pointed prominent urogenital papilla as in 

mature diploid hybrid males. 
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Figure 5.13 Morphological different of gonad in mature diploid and trip l id big- UI 

hybrid at the age > 1 Y2 years . 
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Table 5.8 Mean standard lenght, body weight, gonad weight and GSI of mature diploid 

and triploid hybrid catfish 

Species Sex No.offish Body Body weight Gonad GSI (%) 

length (em) (g) weight (g) 

2nhybrid male 10 37.69±O.98 795.50±6S.97 6.88±2.53 O.87±O.34 

female 10 37. 17±1.65 940.50± 18.12±3.18 1.96±O.39 

178.04 

3nhybrid male 8 36. 14±2.24 700.00±87.05 S.33±2.28 0.74±O.27 

female 10 36.77±1.40 812.00±63.S2 9.86±3.55 1.21±O.42 

5.3.7 Erythrocyte nuclear measurements of diploid, triploid big-oui hybrid and pure 

species 

Minor axis, major axis and volume measurements of erythrocyte nuclei in 4 groups of 

catfish from grow-out experiments were compared by ANOV A to determine which 

variable best predicted ploidy levels. The average values of major axis, minor axis and 

erythrocyte nuclear volume of each were calculated (Table 5.9) and the frequency 

distribution of erythrocyte nuclear measurements of diploid and triploid big-oui hybrid 

were compared (Figure 5.14). Diploid hybrid, C. gariepinus and C. macrocephalus 

have an average major axis, minor axis and nuclear volume not significant different 

while only triploid hybrid has significant different with other groups of fish. The 

nuclear volume of diploid hybrids is nearly 2/3 of that of triploid hybrids. 
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Table 5.9 Mean erythrocyte nuclear measurements for diploid, triploid big-oui hybrid 

and pure parental species. 

Species Variable 

Major axis(~) Minor axis().1m) Volume(~3) 

Diploid Hybrid 4.IS±O.2Sa 3.33±O.16a 24.24±2.93" 

Triploid Hybrid 4.8S±O.18b 3.74±O.14b 3S.78±3.43b 

C. gariepinus 4.1S±O.168 3.31±O.OS8 23.94±1.59" 

C. macocephalus 4.12±O.168 3.34±O.O98 24.11±1.81a 

Different superscripts denote a significant difference by ANOVA at p<O.05 between 

values in the same column. 
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5.4 Discussion 

5.4.1 Optimisation of treatment parameters for triploidy induction 

The results of cold shock treatments performed to induce triploidy are consistent with 

the hypothesis that during the 2nd meiosis, the spindle apparatus of fertilized eggs is 

susceptible to disturbance in a very short period of time, approximately 1-2 min, 

between 4-5 min after fertilisation at 27±I°C. Later treatments, although allowing some 

survival, are progressively less effective in inducing triploidy because the 2nd meiotic 

division has already been completed. Earlier treatments of cold shock resulted in no 

triploidy induction and caused lower survival of embryos, possibly because improper 

timing and deterious effects of the treatments resulted in the production of inviable 

aneuploids. Cold shock intensities over or below the optimum resulted in incomplete 

retention of the 2nd polar body which produced aneuploidy, deformed and killed more 

embryos and also reduced triploid rates. Longer or shorter cold shock durations than the 

optimum also reduced the triploid rates and yields due to a drastic effect on survival 

rate. 

From the above discussion it is clear that cold shock treatments can be deleterious if the 

conditions are sub-optimal. Chourrout (1984) observed a high frequency of abnormal 

aneuploid embryos caused by incomplete retention of the second polar body at the low 

shock intensities in rainbow trout. Therefore, treatment optima can be considered as 
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residing on a plateau, on the slopes of which the triploid yield is reduced due to a 

drastic effect on survival rate and! or triploid rate. 

In this study, the results of optimisation of cold shock treatments are comprehensive 

and slightly different from previous works on cold shock induction of triploidy in C. 

gariepinus (Richter et al.,1987), in C. macrocephalus (Vejaratpimol and Pewnim, 

1990), and in Clarias batrachus (Manickam, 1991). Previous workers used only one 

temperature (5°C), fixed 40 min duration, 2-4 min TAP (Richter et al.,1987), various 5, 

10, 15, 30,45, and 60 min D, fixed 2 min TAP (Vejaratpimol and Pewnim, 1990) and 

fixed 1.0 h duration, fixed 5 min TAP (Manickam, 1991) of application of shock. 

These shock temperatures gave poor results in the present experiments. Less viable 

triploidy could be induced because of greater lethality and deleterious effect of cold 

shock on embryonic survival of this particular shock intensity. This study further 

revealed that colder shock temperature (2°C) induces 100 % triploidy without an 

increased number of deformed embryos. 

The cold shock (2°C) administered for 15-20 min duration at 4 min TAP was most 

effective in inducing 100 % triploidy in big-oui hybrid. This indicates that pressure 

shock treatments might be species specific. The temperature for application of cold 

shocks on fertilised eggs are not consistent with other studies, because the present 

fmdings in big-oui hybrid revealed that any cold shock at lower than SoC resulted in 

induced triploidy and few deformed embryos. On the other hand, SoC cold shock 

intensity was effective and reliable in inducing triploidy but gave lower larval survival 

rates. The only other report on ploidy manipulation using cold shock in Clarias catfish 

is a study on feed utilization between diploid and triploid African catfish by Henken et 
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al. (1987). They reported that triploid fish were obtained by cold-shocking at SoC for 

40 min starting 3 mins after fertilisation. This dose produced about 95 % triploidy. This 

is lower than those shown to be maximally efective in the present study for inducing 

triploidy. Although it was shown earlier that this temperature of cold shock is effective, 

when of sufficient duration to induce triploidy by itself, the duration of 40 mins shock 

used by Henken et al. (1987) and Richter et al. (1987) is longer than that reported by 

this study to be maximally effective. This may mean that the difference in cold 

temperature ranges reported by those studies are the result of the administering time 

and cold shock acting synergistically for interference with the meiotic event. 

From the present results it appears that the most effective heat shocks must be 

administered in the same TAF period of the most effective cold shocks (5 min). It could 

be concluded at the time of the second meiosis in this species is about 4-5 min after 

fertilisation. The results from this study observed a high frequency of abnormal 

aneuploid embryos caused by incomplete retention of the second polar body at the low 

intensities of heat shocks during the induction of triploidy in big-oui hybrid. In a 

detailed experiment on the effect of sub-optimal heat shock on mortality and deformity 

in young fish, Elahi (1990) reported that sub-optimal shock durations, time after 

fertilisation and low intensity produced higher rates of aneuploidy, lower survival and 

fewer triploids. Shock intensities between 38-39°C were found to be optimal in the 

present trials and shorter shock durations performed poorly in inducing triploidy. 
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The pressure shock in this study was less effective as an agent for triploidy induction. It 

was observed to be less ideal, even lethal, compared to cold and heat shock, resulting in 

high variations in survival rates of embryos and low effectiveness in inducing triploidy. 

On the basis of the previous studies a conclusion could be drawn that pressure shocks, 

as they cause a suppression of the role of spindle fiber of the meiotic division events, 

have to be applied at a relatively later time after insemination than are necessary for 

either cold or heat shock but must be applied at the optimum duration and intensities, in 

order to be effective. The present results suggest that the timing of initiation of 

optimum cold shock should be slightly earlier than heat shock and pressure shock. This 

may indicate that these agents have different lag times before exerting their effects. 

Confumation of triploid induction by karyotyping and erythrocyte nuclear 

measurement compared with diploid hybrids showed that the chromosome number of 

the triploid hybrid is 3n=82 while the diploid hybrid has 2n=55 and the mean 

erythrocyte nuclear volume of diploid hybrid is nearly 2/3 of that of triploid hybrid. 

Erythrocyte nuclear volumes have been widely cited as well established means for the 

determination of ploidy because an increase in the number of chromosome sets causes a 

proportional increase in the size of the cell nucleus. Theoretically a change in 

chromosome set from a diploid state to a triploid would result in a 113 increase in 

nuclear size. The mean values for erythrocyte nuclear volumes in this study closely 

agree with the predicted increase. Triploid big-oui hybrid erythrocyte nuclei were 1.48 

times larger than diploid hybrid nuclei. Previous studies using nuclear volumes have 



149 

found similar results for fish of known ploidy (Swamp, 1959; Purdom, 1972; Wolters, 

et al., 1982b). 

5.4.2 Performance of growth in diploid and triploid big-oui hybrid. 

In the context of the present study, although the overall growth performance of triploids 

big-oui hybrid was not significantly better than the diploids, it can be concluded that 

triploid big-oui hybrid might show better performance under natural pond conditions as 

opposed to laboratory aquaria. The reason is that in natural condition diploid big-oui 

hybrid have fertile gonads, while sterile triploid hybrids may devote the energy that 

would otherwise go into the production of large volumes of eggs into increased growth. 

5.4.3 Gonadal development and sexual maturation in diploid and triploid big-oui hybrid 

The main aim of inducing triploidy in fish was to develop a sterile population in an 

attempt to prevent precocious sexual maturation and fertility. Early maturation 

processes in diploid fish, particularly females, often have profound and ultimately 

limiting effects on growth resulting from lossing of energy that would go into the 

production of large volumes of eggs. In conclusion, the present study can be 

summarised with the hypothesis that triploid male and females are functionally and 

endocrinologically sterile because their germ cells can not continue meiosis (Ihssen, et 

al., 1990). In triploid females, their ovaries might produce less steroidogenic tissue and 

less hormone, therefore, they exhibit none of the endocrine changes relative to normal 

sexual maturation and ultimately no success in functional oocyte development (Billard, 
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1989). Triploid males are functionally sterile and not able to produce spermatids 

leading to aneuploid spermatozoa as same as Richter, et aI., (1987) whose reported that 

the testes of triploid fish contain cysts with spermatogonia and cysts with primary 

spermatocytes, which blocked in prophase I of meiosis. 



CHAPTER SIX 

GYNOGENETIC DIPLOID INDUCTION IN WALKING CATFISH C 

MACROCEPHALUS USING SPERM OF THE AFRICAN SHARPTOOTB 

CATFISH C GARIEPINUS 

6.1 Introduction 

In animals, meiosis m the egg is the principal cell division phase where 

manipulation is possible, and in fish and other animals with external fertilization, 

artificial processes can be applied to either gamete before fertilization or to the 

fertilized eggs at any period during the formation of the zygote. Two basic fields of 

practical importance involve the processes of parthenogenesis and induced 

polyploidy, respectively (Purdom, 1983). Gynogenesis is accomplished by 

initiating the second meiotic division in the egg by fertilizing the egg with DNA­

deactivated sperm. DNA-deactivated sperm are produced by irradiating the milt 

with ultraviolet light (UV light) or gamma radiation until all the nuclear DNA is 

denatured but the sperm is still motile. If the fertilized egg is shocked prior to the 

extrusion of the second polar body or at first cleavage then this will be retained 

within the egg and effectively made diploid. The egg shocked at the time of the 

second meiotic division (as for triploidy induction) produces a "meiotic 

gynogenome". Alternatively, it can be shocked to interfere with the first cell 

division (as for tetraploid induction), producing a "mitotic gynogenome" (Hussain, 

et al., 1991). 

The genomes of meiotic and mitotic gynogenetics are different. Meiotic 

gynogenetics are highly inbred (approximately 50 %) particularly for genes near 

the centromeres of the chromosomes. This variation results from the reassortment 

of genes during recombination. Mitotic gynogenetics are 100 % homozygous 
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because they are produced by the replication of chromosomes at mitosis. 

Androgenesis has been also successfully induced in fish by irradiation of ova, 

fertilisation of eggs with normal sperm, and suppression of the first mitosis with 

high pressure or temperature treatments (Ihssen et ai., 1990). Gynogenetic diploids 

have been used for cytogenetic studies of meiotic phenomena and gene mapping. 

At present, gynogenesis has more applications in aquaculture research than 

aquaculture production. Diploid gynogenesis has been used to investigate sex 

determination in fish. By artificial gynogenesis fish produced carrying two sets of 

maternal chromosomes with no paternal genetic contribution will be monosex all­

female populations if sex inheritance of the species in question is of female 

homogametic type (Suzuki, et al., 1985). Gynogenesis can also be used extensively 

in the genetic analysis of crossing over frequencies and gene mapping because the 

technique of gynogenesis gives precise estimates of cross-over frequencies, 

allowing construction of good maps. Gynogenesis offers advantages in selective 

breeding, as gynogenetic offspring are useful for selecting uncommon recessive 

traits or new mutants. The expression of recessive traits in most populations occurs 

at a frequency equal to the square of the gene frequency whereas mitotic 

gynogenetic offspring express a recessive trait with a frequency equal to the gene 

frequency in the population (Chourrout, 1984). 

Artificial gynogenesis is easily induced in fish, but the resulting progeny are 

usually haploid: diploid progeny result only if the maternal chromosomes are 

duplicated as described above. These duplicated chromosomes produce a pattern of 

inheritance that yields offspring of significance to genetics or fish culture. Early 

work to produce haploid and diploid gynogenesis used x-rays, gamma-rays and uv 

irradiation in various fish sperm; common carp (Romashov et ai., 1960; Nagy et 

ai., 1978), loach (Romashov et ai., 1960), sturgeons (Romashov et ai., 1963), 

flatfishes (purdom, 1969), several salmonids (Purdom, 1969; Lincoln et ai., 1974; 



153 

Chourrout, 1980; Refstie et al., 1982; Onozato, 1982; Thorgaard et al., 1983; 

Chourrout, 1984; Thompson and Scott, 1984; Kaastrup and Horlyck, 1987); grass 

carp (Stanley and Sneed, 1974); medaka (Ijiri, 1980); zebra fish (Streisinger et al., 

1981); tilapia (Chourrout and Itskovich, 1983, Penman et al., 1987); paradise- fish 

(Gervai and Csanyi, 1984); Indian major carps (John et al., 1984); European 

catfish, Silurus glanis (Krasznai and Marian, 1987); Cirrhinus mirgala (John et al., 

1988) and red sea bream (Sugama et aI., 1990). For a review of gynogenesis see 

section 1.2.4 Chapter 1. 

Gynogenetic grass carp (Ctenopharyngodon idella) were produced by x-rays or uv­

irradiated sperm, or by crossing grass carp with remotely related species. The 

diploid larvae were produced by gynogenesis, to be used in pratical weed 

management where assurance against reproduction was needed (Stanley, 1982). In 

common carp (Cyprinus carpio L.), gynogenesis was achieved by cold shocking 

eggs, fertilized with irradiated sperm, at different times after fertilisation. 

Consistent yields of 25-50 % viable, gynogenetic fry were obtained when eggs 

were incubated at 24°C and cold shocked (O°C, 45 min) 1-2 or 7-9 minutes after 

fertilisation (Komen et al., 1988). 

Gynogenesis induction can be coupled with sex inversion to produce :xx males 

(Nagy, 1987; Thorgaard and Allen, 1987). These hormonally sex-reversed 

gynogenetic males can be useful in crossbreeding experiments to produce all 

monos ex female populations where female fish are more preferable or the growth 

rate of females is superior to that of males i.e. in cyprinids, clariids and salmonids. 

Previous research on Oreochromis niloticus has shown that a spontaneously sex­

reversed XY female and hormone treated genetic males can produce YY male 

progeny gynogenetically (Scott et al., 1989; Mair, 1993). 
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The main rationale for gynogenesis induction in fish, besides the progressive 

research in this field has been its potential for rapidly generating inbred lines 

(Streisinger et al., 1981; Nagy, 1987). The efficiency of meiotic gynogenesis for 

the production of inbred lines depends on the frequency of recombination between 

any given gene and its centromere during meiosis. Initially, it was expected that 

these gene centromere crossing over frequencies would be very low in fish and a 

very high degree of homozygosity could be produced even in the first generation of 

meiotic gynogenetics (Nagy, 1987). Therefore, it was believed that meiotic 

gynogenetic offsprings might be useful for producing inbred lines (Ihssen et al., 

1990). In fact, the application of allozyme markers in several studies revealed that 

the rate of crossing over in the first meiotic metaphase generates high levels of 

heterozygosity in chromosome regions distant from the centromere (Cherfas, 1977; 

Streisinger et al., 1981; Thorgaard et al., 1983; Gervai and Csanyi, 1984; Allendorf 

et al., 1986). The homozygous inbred lines will never be produced by using meiotic 

gynogenetic diploids, even when such lines have been repeatedly reproduced for 

several generations (Han et al., 1991). The conventional methods of sib-mating to 

produce inbred lines required the maintenance of several lines with close 

inbreeding for up to 20 generations (Purdom and Lincoln, 1973). The suppression 

of the first cleavage to produce mitotic gynogenetic diploids is considered to be 

more useful than the meiotic gynogenesis, as it could shorten the time required by 

producing completely homozygous progeny in the first generation and a fully 

inbred line in the second generation. 

In Clarias macrocephalus the application of gynogenesis has been investigated by 

using UV irradiated sperm of Pangasius sutchi (Na-Nakom et al., 1993). The aims 

of this research are: to investigate the methods of induction, to optimize the 

induction factors and to examine the sex of gynogenetic progeny to provide an 

insight into the sex determinating system in these species. 



155 

6.1 Materials and methods 

6.2.1 Catfish broodstock 

In this study, diploid gynogenesis was induced using eggs from female walking 

catfish (C. macrocephalus) ferti1ilized with African sharp tooth catfish (c. 

gariepinus )sperm that had been genetically inactivated with ultraviolet (UV) light. 

6.2.2 Sperm collection 

The testes of a C. gariepinus male were taken out, minced in a fine nylon net, the 

milt was transferred to microcentrifuge tube and centrifuged at 1,500 x g at 4°C for 

10 min, then the top clear fluid was removed. Approximately 500 III of undiluted 

sperm was sampled and kept separately for positive control. A small amount of milt 

(5-10 J.lI) was sampled and diluted with Modified Corland' s saline at an appropriate 

dilution factor depending on initial concentration. The concentrated sperm sample 

was stored at 4°C. 

6.2.3 Sperm motility tests 

Generally, spermatozoa are immotile before and after release from the testis. They 

only become motile once they come into contact with metabolic waste (urine, 

faeces), mucus and water. If the spermatozoa are motile, then they will die quickly. 

The motility of the spermatozoa was checked by mixing 5 III of milt (diluted from 

the concentrated sample with Modified Cortland's saline) with 50 III of water in a 

microcentrifuge tube and then rapidly placing a drop of this mixture on a glass slide 

for microscopic examination. Only diluted sperm samples with motility score of 9-

10 (on a scale of 0-10) after activation were used. 
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6.2.4 Estimation of sperm concentration 

Sperm concentration was estimated using a Neubauer counter (Haemacytometer, 0.1 

mm, 1/400 mm2
, Weber Scientific, England). Before the diluted sperm was used for an 

experiment, sperm head counts were made to estimate the sperm concentration, 10 III of 

the sperm sample was diluted in 490 III of Modified Cortland's Saline(MCS). From the 

first dilution, 10 III was removed and added to a firster 90 III of MCS making a 1150 

and 1/10 dilution respectively. A small volume of this diluted sperm was placed on the 

8 
Haemacytometer for counting. Concentrations of 2.5 x 107 mr} or 2.5 x 10 mr} were 

used for irradiation and fertilisation. 

6.2.5 Sperm irradiation 

Sperm samples were diluted with a deactivator (Modify Cortland's Saline) to give 

cell concentrations of 2.5 x 107 mrl or 2.5 x 108 mr} before irradiation with a 6 

watts W lamp (wave length 254 nm). This was situated approximately 28 em 

above the diluted sample fluid which produced a dose rate of 200 IlWcm-2 

(measured by using a UV radiometer, UVP Inc., USA). During irradiation, 2 ml of 

diluted sperm were placed in a 5.2 em diameter petri dish which was constantly 

agitated using an electric stirrer (Jencons Miximatic, USA). 

6.2.6 Induced spawning and artificial fertilisation 

Sexually mature female C. macrocephalus spawn at approximately 6-8 weeks 

intervals under the experimental conditions described in Chapter 2. Some mature 

females were implanted with LHRHa to induce development of the eggs as 
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described in Chapter 2. The readiness of females to spawn was ascertained by 

examining the degree of swelling of the belly and the colour of the urogenital 

papilla. Ovalation was induced by injecting the female with LHRHa hormone and 

domperidone (details described in Chapter 2). After a latency period of 15-18 

hours, the eggs were manually stripped immediately after a first batch of eggs had 

been deposited. Once stripped, the fertilisability with the diluted and UV-light 

treated milt from macerated testes of the male declined rapidly, probably due to 

desiccation of the eggs. Since, however, most of the experimental series were time­

consuming, it was considered appropriate in some cases that eggs be obtained by 

sequental stripping over a period of up to 1 hour. Preliminary data suggested that 

this method of obtaining the eggs resulted in uniformly high fertilisation rates (in 

agreement with the method used by Nukwan, et ai., 1990) . Fertilisation was 

carried out in vitro by mixing 2 ml of diluted sperm (concentration of 2.5 x 107 mrl 

or 2.5 x 10
8 

mrl ) per batch of eggs followed by the addition of 10-20 ml of 

incubator water (28°C). Mter collection of eggs female fish were tagged (PIT tag) 

and kept alive for future experiments. 

6.2.7 Experimental design 

The effect of UV irradiation on the survival rate of haploid embryos ( measured 

asfertilisation of eggs and survival of embryos at somite and hatch stages) fertilized 

with UV treated sperm at a concentration of 2.5 x 107 mrl or 2.5 x 108 mrl and 

subjected to different UV doses (0-32 min) at 200 ~Wcm·2 was carried out through 

fertilizing the eggs with sperm sample followed by the addition of 10-20 ml water 

for activation and incubated as described in section 2.3 and 2.5 in Chapter 2. 

Control: Three controls were designed; i.e. (i) eggs fertilized with undiluted sperm 

stock as the primary criterion of success of fertilisation, (ii) eggs fertilized with 

diluted non-irradiated sperm as a positive control (the hatching rate of normal 
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larvae is the primary criterion for estimating the relative success of induced 

gynogenetic diploidization, with all percentages expressed in relation to the initial 

number of eggs and the hatching rate of the larvae in this control group) and (iii) 

eggs fertilized with diluted; non- irradiated sperm with cold shocking applied prior 

to the extrusion of the second polar body (triploid hybrid). 

Induction of gynogenetic diploids by suppression of the second meiotic division 

(early shocking) a fixed cold shock temperature at 2°C, varied time after 

fertilisation (TAP) from 2-6 min (1 min intervals) and varied shocking duration (D) 

of 15,20, 25, or 30 min were tested to attempt to coincide with the second meiotic 

division and the extrusion of the second polar body in C. macrocephalus eggs. 

Induction of gynogenetic diploids by suppressIon of the first cleavage (late 

shocking): the first cleavage of this hybrid larvae development takes place about 

30-35 min after fertilisation under the conditions described in 2.5 Chapter 2, as 

determined by microscopic observation (See figure 2.8). Cold shock treatments 

were applied at the approximate time of the first cleavage: a fixed cold shock 

temperature at 2°C was applied at 1 min intervals from 30-35 min after fertilisation 

for 20 min duration. 

Each experiment was repeated three times (as the replications) using different 

female brooder fish with the same condition of treated sperm and cold shocking. 

6.2.8 Estimation of induction efficiency and control 

Fertilized eggs in each treatment and each control (i.e. diploids, diploids positive 

control and triploids negative control) were incubated separately in small hapas at 

28°C in a recirculating water system (as described in section 2.5). The embryos 

hatched out in 22-26 hours and the survival rate in each group was checked at three 
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development stages as described in section 2.8. The data were collected and 

expressed relative to the positive control and about 20 fry in each treatment were 

sampled for chromosome counting. The fry were reared in the incubation system 

until three days after hatching, when the survival rate data was collected and 

expressed in relation to the survival rate of the positive control and about 20 fry 

derived from each treatment and control were randomly sampled to identify 

ISOzyme genotypes of parents and offspring by starch gel electrophoresis. 

Electrophoresis techniques and allele designation followed procedures and results 

as described in Chapter 3. A diploid maternal karyotype and the absence of paternal 

gene expression were the main criteria in determining the success of induced 

diploid gynogenesis. 

6.2.9 Karyological examination 

About 20 newly hatched or 1 day-old larvae from each batch were karyotyped by 

colchicine treatment and counting chromosome, prepared according to the solid­

tissue technique of Kligerman and Bloom (1977). Metaphase chromosomes of each 

individual larvae were counted and recorded. Good metaphase chromosome spreads 

were photographed through a photo microscope under x 1,000 magnification. For 

establishing the karyotypes, the best photographs were used for cutting out, pairing 

and classifying chromosomes in increasing size (details described in section 

2.10.1). 

6.2.10 Electrophoretic confirmation 

About 20 fry (three days post-hatch) from each batch were sampled, obtained alive 

and killed by refrigerating for 30 minutes, homogenized with homogenizing buffer, 

frozen and stored at -20°C until tested. Electrophoresis was carried out and 

followed the methods used by Sodsuk and McAndrew (1991), details as described 
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in section 2.11. The identification of the different alleles at the same locus was 

decided by the banding position of isozymes in the same gel. 

6.2.11 Sexing and gonad development 

Viable 3 day old gynogenetic and control fry were transferred from the incubating 

system into 25 I plastic aquaria. During that time the fry were fed with Artemia 

nauplii. At 7 days after hatch, gynogenetic (pooled between treatments), diploid 

hybrid, triploid hybrid and pure C. macrocephalus fry were each stocked into 40 I 

round plastic tanks in a controlled system and left for on-growing at a density of 

less than 100 fry/tank for 3 months (section 2.3.1). The early fry and on-growing 

fish were fed three and two times daily respectively with the recommended amount 

of various sizes of trout feeds (section 2.3.2). The experiment was terminated at 3 

months or more, when all the fish belonging to the four treatment groups were 

manually sexed on the basis of the morphology of the urogenital papilla to 

determine the sex ratio (section 2.12). All the fish were then killed and where 

possible, fish were also sexed by examining the gonads. Unidentified gonads were 

transferred to Bouin's fluid overnight before being finally fixed in 70 % ethanol. 

Dehydrating, paraffin embedding and sectioning and staining of gonadal samples 

were made according to the recommended procedures (Appendix 6). General 

histological examination was carried out under xl00, x250, x400 and xl,OOO (oil 

immersion) magnifications and photographed through an Orthomat 

Photomicroscope. It was necessary in this study to check the sexes of all viable 

gynogenetic diploids, including immmature young fish, derived from all the 

experimental trials along with controls in an attempt to determine their sexual 

status. The estimation of growth body weight and standard length were made on a 

sampling from each treatment group. All the sexed data are given as percentages of 

each sex observed from each treatment group. 



161 

6.3 Results 

6.3.1 Determination of the effects ofUV irradiation on the motility of the sperm 

Sperm motility scores at two different concentrations, 2.5 x 107mr! and 2.5 x 

10
8
mr

l
, subjected to various durations of a fixed 254 nm UV irradiation at 200 

J,lWcm-
2 

are shown in Figure 6.1. This was done in 3 replicates. For concentration 

of 2.5 x 10
7 

mr! (Figure 6. 1 a), a marked decline in motility (lower than 50 %) was 

observed when it had been exposed to UV light for ~2 min. A zero motility score 

was observed after it had been irradiated for 16 min. At concentration 2.5 x 108 mr 

1 (Figure 6.1 b), motility started to decline to lower than 50 % when the 

spermatozoa had been exposed to UV light for 4 min. Subsequently, zero motility 

was observed after it had been irradiated for 32 min. These results showed that the 

duration of UV irradiation and sperm concentration affected the motility of 

spermatozoa. 

6.3.2 Determination ofUV irradiation on survival of haploid embryo 

Mean fertilisation and survival (relative to control) of embryos at somite and hatch 

stages from eggs fertilized with two concentrations of sperm treated with UV for 

different durations are given in Table 6.1-6.2 and Figure 6.2. At sperm 

concentrations of 2.5 x 107 mr! and 2.5 x 108 mr! , a decline in the number of 

somite stage embryos fertilized with UV treated sperm relative to the control was 

observed at the lowest UV dose, 0.25 min. As the UV irradiation dosage was 

increased embryo survival increased and then declined to zero at the maximum 

dose of 32 min. The dose yielding the highest frequency of hatched embryos for 

concentration 2.5 x 107 mr! was 1 min and for concentration 2.5 x 108 mr! was 2 

min No viable haploid larvae survived after hatch out for more than a few hours. 
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Based on these results (the embryo survival to hatch out appeared to decline at 

lower UV dose, increased as the UV irradiation exposure was increased and then 

continuously declined to zero at the maximum dose) a pseudo-Hertwig effect was 

observed at both concentrations. Mean fertilisation and survival at somite and hatch 

stage of the control (untreated sperm) with the two sperm concentrations are shown 

in Table 6.1 and Table 6.2. 

6.3.3 Determination of optimum time after fertilisation and duration for cold 

shocks. 

The variation of fertilisation rate, survival rate to somite stage of larval 

development, survival rate to hatch out and survival rate to 3 days of age for each 

treatments are shown in table 6.3 and figure 6.3-6.6. These results were derived 

from 3 repeated experiments using three different females. 

The C. macrocephalus eggs fertilized with normal sperm of C gariepinus (diploid 

hybrid) show normal viability and the hatching rate was comparable to that of 

normal hybrid production: the survival rate of the triploid hybrid control was very 

low (as seen for this treatment in the results in chapter 5). The average fertilisation 

rate and hatching rate of the diploid controls were 88.03 ±6.34 % and 44.62 ±16.40 

% respectively, indicating good quality of eggs and sperm, as for normal artificial 

insemination. Eggs fertilized with UV -irradiated sperm of the African catfish 

resulted in hatching of only abnormal larvae (usually eye not developed, mouth 

closed and head deformed), with these abnormalities known generally as the 

haploid syndrome. The non-viability of these individuals indicates that the paternal 

DNA in the UV -irraiated sperm were indeed genetically inactivated (Chourrout, 

1982). 
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Figure 6.1 Spenn motility scoring subjected to different UV dose (min) at p rm 
concentration (A) 2.5 x 107 cell ml- I and (8) 2.5 x 108 cell ml-1. A m tilit 
score of 10 denoted that 100% of spermatozoa under b ervati n wer m til 
and moving actively, while a 0 score indicated that no p rm were m in an r 
activation. Controls received no UV treatment. 
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Table 6.1 Mean survival to morula, somite and hatch stage of haploid embryos 

fertilized with UV treated sperm at concentration of2.5x107 mrl 

UVdose O/oRC±SE (%Control±SE) 

(min) Morula Somite stage Hatch out 

0 100(64.98±3.52) 100(63.7HI0.ll) lOO(49.02±2.58) 

0.25 94.78±O9.56 70.32±12.44 43.16±O5.68 

0.5 S1.75±l3.40 6S.67±20.06 39.73±lS.09 

1 77.67±O6.93 50.90±12.61 47.S3±22.79 

2 73.61±16.S0 4S.87±11.61 3S.20±22.S3 

4 69.72±O5.54 17.05±O7.27 21.91±1S.17 

S 30.09±O3.99 13.1l±10.40 9.54±OS.84 

16 16.53±OS.84 S.S3±OS.SS 0 

32 18. 17±O2.16 6.S4±OS.16 0 
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Table 6.2 Mean survival to morula, somite and hatch stage of haploid embryos 

fertilized with W treated sperm at concentration of2.5x 108 mrl 

UVdose O/oRC±SE (%±SE) 

(min) Morula Somite stage Hatch out 

0 lOO(79.66±4.84) lOO(62.47±14.83) lOO(49.62±l7.76) 

0.25 91.22±6.41 52.48±13.49 19.62±l2.57 

0.5 94.93±8.17 SO.7S±l5.72 14.16±11.45 

1 83. 14±7.00 62.32±6.78 9.38±l1.89 

2 78.53±lO.53 64.81±13.45 15.02±11.32 

4 73.28±7.76 50.33±18.62 l.O2±O.84 

8 41.75±14.74 24. 50±20. 63 0 

16 23.38±6.36 4.38±3.41 0 

32 11.32±6.64 2.88±4.99 0 
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Figure 6.2 Survival of haploid embryos at different development stages (means of 4 

replicates) UV (254 nm) dose treated at 200 ~W cm-
2

. Concentration of 

sperm (A) 2.5 x 107 cell mr' (B) 2.5 x 108 cell mr'. All results ar expr d 

relative to the non-irradiated control. 
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In cold shock treated eggs, the fertilisation rate and hatching rate of normal larvae 

varied with the treatments. A fixed cold shock at 2° C for longer than 30 min 

caused 100 % mortality in larvae at 3 days of age (yolk sac resorption). The highest 

fertilisation rate relative to the control after adjustment of the latter to 100% (85.30 

±1.42%) and the highest survival to 3 days of age (28.57±9.49%) were obtained in 

the shock treatment 2° C for 15 min applied 4 min after fertilisation (Table 6.3). 

6.3.4 Induction of diploid mitotic gynogenesis 

The fertilisation rate and hatching rate of larvae were very poor in treatments 

applied at the approximate time of the first cleavage (Table 6.4). A hatching rate of 

more than 2 % was found in the treatment applied at 2° C for 20 min begining 35 

min after fertilisation, but all hatched larvae were deformed and died several hours 

after hatching. Several combinations of time after fertilisations and durations were 

tested to attempt to suppress the first cleavage, but the survival rate of larvae was 

still very poor. 

6.3.5 Efficiency of gynogenetic diploid induction 

Electrophoretic analysis of parental species of C. gariepinus and C. macrocephalus 

confirmed that there are at least 3 fixed differences at enzyme loci between them 

i.e., GPI-2*, LDH-l* and MDH-2* loci. Allelic contributions from both parental 

species were observed in every diploid hybrid (20 individuals each batch of 

experiments) at each of the loci showing parental allelic differences, confirming 

that these fish were not spontaneous androgenetic or gynogenetic offsprings (Figure 

6.7). However, paternal alleles did not appear in 



Table 6.3. The effect of different times after fertilisation (T AF) and durations (0) of application of fIxed cold shock at 2°C on 
gynogenetic diploid induction in walking catfIsh (c. macrocephalus) using UV treated sperm of the Mrican catfIsh (c. gariepinus). 

Treatments Expected Fertilisation mte Somite stage Hatch out 3 days of age 

UV treated Cold shock T~ ~tion larvae O/oRC#±SE O/oRC#±SE O/oRC#±SE O/oRC#±SE 
spenn at 2°C (rom) (rom) 

- - - - 2n 100a looa 100a 100a 

- + 2 30 3n 58.99±10.80b 14.41±5.81b 5.49±4.87c 3.29±2.70c 

* + + 2 15 2n 84.18±5.2~ 32.33±15.96ab 2.46±1.48c 2.93±1.0Ic 

* + + 2 20 2n 84.89±6.97ab 38.48±17.5~ 2.06±1.61c 1.51±1.12c 

* + + 2 25 2n 74.31±9.57ab 24.89±13.86b Oc Oc 

* + + 2 30 2n 64.07±6.22ab 24. 19±9.28b Oc Oc 

- + 3 30 3n 77.33±10.59ab 22.05±13.19b 2. 18±1.24c 1.51±o.76c 
I 

* + + 3 15 2n 71.55±3.94ab 32.38±14.64ab 6.03±4.01c 5.97±3.78c 

* + + 3 20 2n 74.23±o.79ab 32.78±19.09ab 5. 17±3.69c 4.46±3.13c 

* + + 3 25 2n 78.33±6.9~ 25.23±20.35b 0.32±o.32c 0.27±o.27c 

+ + 3 30 2n * 74.35±8.26ab 28.59±21.42ab 0.64±o.64c 0.55±o.55c 

- + 4 30 3n 81.07±4.6~ 43.99±16.88ab 13.83±4.04ab lO.87±2.49c 

* + + 4 ~ 2n 85.30±1.41~ _ ~.39±13.44ab __ 41~3±21.16b 28.57±9.49b 



Table 6.3. (cont.) 

Treatments Expected Fertilisation rate Somite Stage Hatch out 3 days of age 

UV treated Cold shock TAF Duration larvae O/oRC#±SE O/oRC#±SE O/oRC#±SE %RC#±SE 
sperm at 2°C (min) (min) i 

* S1.73±5.soab 43. 19±15.53ab 22.45±15.92ab 15.64±9.8Sbc + + 4 20 2n 

* 7l.S7±7.20ab 28.3S±12.02ab + + 4 25 2n 6.00±3.72c 4.53±2.50c 

* 69.20±3.51ab 16.9S±6.40b + + 4 30 2n 0.42±o.42c OC 

- + 5 30 3n 72.55±1.27ab 42.60±16.SSab 5.93±o.26c 5.26±o.40c 

* 7S.96±3.S1ab 40.57±14.05ab 1 1. 13 ±o.84ab + + 5 15 2n !1.32±o.31c 

* + + 5 20 2n 78.01±1.8Sab 32.57±14.17ab 9.S1±o.SOc S.44±o.20c 

* + + 5 25 2n 71.7S±6.40ab 29.44±11.59ab 7.35±1.28c 4.55±1.23c 

* + + 5 30 2n 60.92±7.54b 10.65±2.59b OC OC 

- + 6 30 3n 73.7S±o.9Q3b 22.41±8.0Sb 3.34±1.73c 2.73±1.37c 
I 

* 72.25±I.S3ab 19.36±7.01b 5.S5±l.S9c 4.64±2.33c + + 6 15 2n 

* 61.64±l.S2b 14.76±7.15b + + 6 20 2n 2.97±1.51c 2.49±1.24c 

* 73.21±4.72ab 15.63±6.70b + + 6 25 2n 0.42±o.42c OC 

* + + 6 30 2n 62. S7±4. S2b 16.99±3.2Sb OC OC 
- - -----~--.- .. - - - - -

Superscripts denote a significant difference by ANOVA at p~O.05 between values in each development stage. 2n * =Gynogenetic diploid 
hybrid; 

RC# Relative to control after adjustment of the latter to 100% (mean survival rate to hatch out in controls was 44.62±16.44). 
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any of the gynogenetic offsprings. Only the alleles which were present in the 

female were found in the gynogenetic diploid offsprings, indicating a 100 % 

success rate of induced gynogeneis. During UV treatment, some sperm may receive 

insufficient irradiation, and may caused to produce hyperdiploid or triploid hybrid. 

If donor sperm was used from different species, where different alleles are present 

in the two species, triploid offspring hybrids could be distinguished from 

gynogenetic or hybrid individuals by differencies in relative intensity of maternal 

and paternal alleles (Figure 6.7). In this study, no evidence was found of any male 

contribution in gynogenetic diploid offsprings, and this implies that the UV 

irradiation was effective in inactivation of the sperm DNA. 

Karyotypes of the embryos from gynogenetic induction experiments with control 

diploid big-oui hybrids and triploid hybrids were examined from 3 replications of 

each experiment. The karyotype scores of gynogenetic embryos from cold shocking 

experiments applied at difference times after fertilisation and durations of shocking 

compared with normal diploid and triploid embryos as controls are given in Table 

6.5. Chromosome preparations were made from surviving embryos after hatch out. 

Most of these had deformed bodies. Very few embryos from some treatments were 

taken for chromosome preparation due to their low survival and some were left to 

determine how long they would stay alive and for on-growing experiments. Figure 

6.8 shows the metaphase chromosomes of a diploid gynogenetic embryo. The 

diploid rate based on the karyotype result of embryos fertilized with UV treated 

spermatozoa (200 ",Wcm-2, for 2 min) was high (100%) at every cold shock 

treatment. The diploid rate of control (big-oui hybrid) was 100% while the triploid 

rate of embryos fertilized with untreated sperm was 100% at 4 min T AF and 30 

min D indicating an optimal cold shock for triploidy rate but not for survival rate. 
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GPlfTC, 200 V. 5 hrs. 

No.l :Male C.gtu iepinus, No.2:Female C.macrocepha/us, No.3-12:Diploid offspring hybrid, 

and No.l3-27:Diploid gynogenelic offspring hybrid. 

LDH(TC, 200 V. 5 hrs . 

NO.l :Male C.geriep;nlJs, No.2:Female C.macrocephelus, No.3-12:Diploid offspring hybrid, 

and No.13-27:Diploid gynogenet ic offspring hybrid. 

·:~~-~~-:--~fl 

MDH{TC, 200 V. 5 hrs. 

No.1:Male C.gllriflpinU6, NO.2:Female c.m/lcrocepha/us. No.3-12:0Iplold offspnng hybrid. 

end No. 13-27:Diplold gynogenfllic offspring hybrid. 

Figure 6.7 Zymograms ofGPl~2*, WH-J* and MDH-2rft. illustrating the banding 

patterns of the African catfish, walking catfish, diploid big-oui hybrid nd 

gynogenetic diploid walking catfish. 
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Figure 6.8 Metaphase chromosomes of diploid gynogenetic C. macrocephalus 

obtained from an embryo fertilized with UV treated sperm of C. gariepinus. 
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Table 6.4 Mean fertilisation and survival rate (relative to control) at different 

development stages of 2n gynogenetic larvae from late shocking experiment (data 

from 2 replications) 

Treatment Ploidy %RC±SE 

UV Cold TAP o (min) expect Fertilisation Somite Hatch 

treated shock (min) 

. . 0 0 2n lOod 100c 100d 

. + 30 20 4n 49.69±16.23ab 24.S4±11.06a oa 

+ + 30 10 2n· 63.06±6.98abc 37.76±1.16ab 1.54±O.33b 

+ + 30 20 2n· 64.62±8.46abc 35.43±O.86ab 1. 92±O.09bc 

+ + 30 30 2n· 44.87±14.00a 31.41±4.83ab oa 

+ + 31 20 2n· 60.94±6.03abc 31.89±9.17ab 1.13±O.26ab 

+ + 32 20 2n· 64.21±4.83abc 35.92±6.7Sab 1.12±1.12ab 

+ + 33 20 2n· Sl.08±2.02ab 38.36±7.03ab 1.09±O.17ab 

+ + 34 20 2n· 59.71±7.56abc 37.12±4.97ab 1.31±0.30b 

+ + 35 10 2n· 76.28±3.24cd 44.2I±O.24b 1. 9S±().29bc 

+ + 35 20 2n· 73.52±4.9Sbc 35.S0±7.47ab 2.71±O.lSc 

+ + 3S 30 2n· S9.20±7.21abc 2S.77±O.4Sa oa 

±SEM - - - - 8.09 5.S3 0.37 

2n* gynogenetic diploid catfish 

Superscripts denote a significant difference by ANOVA at p<o.05 between values 

in each development stage 
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Table 6.5 Karyotype scores of the embryos fertilized with untreated and UV 

irradiated spermatozoa with concentration 2.5x108 cell.mrl followed by cold shock 

applied at 2° C with various TAF and durations (data from 3 replications). 

UVdose Cold shock at 2°C No. of Expect Karyotype 

(min) shock TAF(min) D (min) larvae ploidy %2n %3n 

0 - 0 0 60 2n 100 0 

0 + 2 30 13 3n 15.38 84.62 

2 + 2 15 18 2n· 100 0 

2 + 2 20 5 2n· 100 0 

2 + 2 25 0 2n· 0 0 

2 + 2 30 0 2n· 0 0 

0 + 3 30 11 3n 18.18 81.82 

2 + 3 15 60 2n· 100 0 

2 + 3 20 52 2n· 100 0 

2 + 3 25 8 2n· 100 0 

2 + 3 30 4 2n· 100 0 

0 + 4 30 47 3n 0 100 

2 + 4 15 60 2n· 100 0 

2 + 4 20 60 2n· 100 0 

2 + 4 25 16 In· 100 0 

2 + 4 30 3 2n· 100 0 

0 + 5 30 22 3n 0 100 

2 + 5 15 60 2n· 100 0 

2 + 5 20 35 2n· 100 0 

2 + 5 25 14 In· 100 0 

2 + 5 30 0 2n· 0 0 

0 + 6 30 27 3n 0 100 

2 + 6 15 32 In· 100 0 

2 + 6 20 8 2n· 100 0 

2 + 6 25 2 2n· 100 0 

2 + 6 30 0 2n· 0 0 

2n* gynogenetic diploid 
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6.3.6 Effects of gynogenetic induction 

The data for mean survival rate of gynogenetic embryos at hatch stage and 3 days 

of age are presented in Table 6.3. Very few embryos were left alive at yolk sac 

resorption while most surviving embryos could not swim up due to their body 

deformation. Figure 6.9 shows the features of abnormality of diploid gynogenetic 

embyos. These abnormalities might came from inbreeding or the effect of UV 

irradiation or cold shock. However, from the results shown in section 6.3.2, it can 

be concluded that the UV irradiation had efficiently eliminated the paternal 

contribution in all doses over 2 min of irradiation. 

The effect of UV treatments on the survival to 3 day old embryos were found 

significant difference with cold shock at 2°C, 4 min after insemination for 15-30 

min duration while control triploid embryos have significant lower survival rate 

than the control big-oui hybrid (see Table 6.3). 

Experiments in the previous chapter (Chapter 5) revealed that cold shock was the 

best agent to induce triploidy. Following on from this, a more comprehensive study 

of cold shock treatments was made to find the optimum dose for gynogenetic 

induction. Following the work used a fixed temperature at 2°C, four durations (15, 

20, 25 and 30 min) and various times afterfertilisation (2-6 min). These shock 

parameters gave high results in the present trials. Viable triploid hybrids could be 

induced and are therefore important controls to show the lethality and deleterious 

effect of cold shock on embryonic survival at this particular shock intensity and 

durations. This study revealed that cold shock at 2°e induces 100% triploidy in 

control but long shocking duration increases the number of deformed embryos and 

results in lower survival in diploid gynogenetic offsprings. About 10-25 % of 

embryos in each batch of gynogenetic diploids had deformed bodies. Most of these 

could not swim up and eat food after yolk sac resorption and died later. Several 
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batches of normal gynogenetic diploids were reared until at least 3 months of age 

for examination of sexes and gonadal development compared with control trials. 

The gynogenetic diploid catfish had the morphological characteristics of pure C. 

macrocepalus but about 5-10 % in every batch of fish were abnormal and blind 

(Figure 6.10). 

6.3.7 Sex ratio and gonadal condition 

The sex ratio of pooled experimental fish of four groups (diploid big-oui hybrid, 

triploid big-oui hybrid, gynogenetic diploid C. macrocephalus and control 

c.macrocephalus) was determined at the end of each experiment (maximum age of 

fish 135 days). The observed frequency of male and female sexes in triploid big-oui 

hybrid and gynogenetic diploid C. macrocephalus were significantly different from 

the expected 1: 1 ratio while diploid big-oui hybrid and pure C. macrocephalus were 

not significantly different from this ratio (Table 6.6). The sex ratios of these four 

groups of fish are shown in Figure 6.11. 

The final observations of morphological difference and gonadal condition in grow 

out fish in each groups were made at the end of the experiment in 9 batches of 

gynogenetic diploid fish. The diploid gynogenetic offspring were morphologically 

the same as the control C. macrocephalus, most obviously at the occipital process 

(Figure 6.12a). The comparision of gonadal condition in diploid big-oui hybrid, 

dipolid gynogenetic offspring, control C. macrocephalus and pure C. gariepinus at 

135 days of age is shown in Figure 6.12b. In diploid big-oui hybrid, female ovaries 

were mostly thin, string-like and contained mainly undeveloped oogonia and 

oocytes, while diploid gynogenetic fish were all female with larger of ovaries full 

of developing eggs. Both control C. macrocephalus and pure C. gariepinus had 

developed gonads in both sexes. In 2n diploid big-oui, male testes were thread-like 

with undeveloped spermatozoa. 
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Figure 6.9 Body defonnation of embryos produced by diploid gynogenelic induction 

(7Ox magnification). 
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Table 6.6 Observed frequency of male and female sexes and sex ratio of four 

groups of 9 experimental batches at 3-4Y:z months of age. Numbers in parentheses 

are expected value of both sexes with a null hypothesis of a 1: 1 sex ratio. 

Species No.of No. No.male No.female % sex ratio Chi-square 

batches fish (expect) (expect) male:femal (sig. level) 

e 

2nhybrld 9 212 101(106) 111(106) 47.64:52.36 3.84* (p<O.05) 

3nhybrid 9 55 13(22.5) 42(22.5) 23.64:76.36 20.91 *(p<O.05) 

2n gynogenetic 9 153 0(76.5) 153(76.5) 0:100 153* (p<O.05) 

C?~acrocephalus 4 102 51(51) 51(51) 50:50 ONS (p>0.05) 

• p<O.05 

N.S. = Not significantly different from I: I 

6.3.8 Gonadal histology of four groups of experimental fish. 

Histological sections of diploid big-oui and triploid hybrid's ovaries at 3-4Y2 months 

of age showed they contained mainly oogonia and a few small primary or 

previtellogenic oocytes (Figure 6.l3a-b). At this age, most of the cells were of 

similar size with very few undergoing divisions, while some of the primary oocytes 

had started to show retarded development. Histological sections of diploid 

gynogenetic ovaries at 3-4~ months of age had a strongly basophillic cytoplasm 

and lightly stained round nuclei in developing primary and previtellogenic oocytes 

(Figure 6.13c). 

Histological sections of both diploid big-oui and triploid hybrid testes contained 

very few cysts with spermatogonia and spermatocytes. Most testicular sections of 
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triploid hybrids had very rare germ cells which under active divisions and had 

developed into spermatozoa. The testicular sections of pure C. macrocephalus 

contained highly distinct cysts surrounded by the basal lamina at all stages of 

development. There were spermatogonia, primary spermatocytes and a few 

spermatozoa in this age of fish (Figure 6.14). 

6.4 Discussion 

Artificial induction of diploid gynogenesis has been reported in many fishes 

(Purdom, 1983; Thorgaard et al., 1983; Ihssen et al., 1990). The optimum 

conditions for producing the diploid gynogenetics of C. macrocephalus by cold 

shock, using the UV treated sperm of C. gariepinus, were demonstrated in this 

study. The Mrican sharptooth catfish, C. gariepinus was employed as a donor fish 

for foreign sperm in this study because usually C. gariepinus was used as male 

brooder in big-oui hybrid production and because the use of foreign sperm for 

induced gynogenesis has advantages in the case of confirming that paternal genes 

are not transmitted. It is essential in gynogenesis research to use sperm from male 

fish which has distinguishable alleles from the female at at least one locus, allowing 

the presence of any male contribution to be detected by electrophoresis (Thorgaard, 

et al., 1983). For this reason, normal fry achieved from eggs fertilized with uv 
irradiated sperm were identifiable as gynogenetic diploids of C. macrocephalus. 

Similar methods were reported by Suzuki, et al., (1985); Hollebecq, et al., (1986); 

Sugama, et aI., (1990); Taniguchi, et al. (1991); Fujioka (1993) and Pongthana, et 

a/., (1995). 

In this study, the Hertwig effect was clearly demonstrated. A UV dose of 200 

I-l W em·2 for 2 min seems to be adequate to genetically inactivate C. gariepinus 

sperm at the sperm concentrations used. 
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Figure 6.10 Normal gynogenetic diploid C. macrocephalu at 4 months old (upper 

two fish); the dark coloured fish (lower two fish) are abnonnal and blind. 
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Figure 6.13 Histological section of ovaries in 4 groups of fish : A) diploid big-oui 

B) triploid hybrid C) diploid gynogenetic and D) . ma ro llha1u ' 
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Figure 6.14 Testicular section of3 groups offish: A) diploid big-oui B) tripl id hybrid 

and C) C. macrocephalus 
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In this experiment, cold shock treatment was applied following the results of 

triploidy induction (Chapter 5), starting from 2 min to 6 min after fertilisation and 

with 15, 20, 25 and 30 min durations. Changes in survival of embryos were 

correlated with the results of triploidy induction. From microscopic observations of 

the developmental stages of the fertilized eggs of C. macrocephalus (Figure 2.8, 

Chapter 2) the second meiosis and the ftrst cleavage were -10 min and 30-35 min 

after fertilisation, respectively. Therefore, almost all the gynogenetic diploids were 

considered to be induced by the chromosome duplication caused by the prevention 

of formation of the second polar body when normal fry were obtained by cold 

shock during 2-6 min after insemination. On the other hand, the fry which were 

produced from the cold shocked eggs from 30-35 min after insemination might be 

gynogenetic diploids induced by suppression of the first mitosis. However, cold 

shock treatment used in this study was not successful in the suppression of mitosis, 

since viable fry were scarcely obtained. This suggests that cold shock treatment 

may not be suitable for suppression of the first cleavage in fish, as suggestion for 

the red sea bream (Sugama et al., 1990). Alternatively, suppression of karyokinesis 

ratter than cytoclinesis might have been more successful. 

In order to duplicate the haploid set of chromosomes of the egg nucleus, several 

different methods such cold shock, heat shock, high pressure and chemical 

treatment have been employed (Thorgaard, 1983). Onozato (1984) induced 

gynogenetic diploids in salmonids by using hydrostatic pressure and observed the 

disappearance of spindle poles during suppression of the first mitosis. The 

disappearance of aster and spindle fibers at the second meiosis when cold shock 

was applied in the loach (Misgumus anguillicaudatus) eggs was also reported by 

Oshiro (1987). Therefore, the mechanism of diploid gynogenetic induction might 

involve the destruction of the division apparatus such as spindle fibers or spindle 

poles cause by physical shock. In this study, the time after fertilisation of 4 min and 

15 min duration at fixed 2° C cold shock gave the highest survival rate of 
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gynogenetic diploids. At this time, the developmental stage of fertilized eggs was 

the anaphase of the second meiosis, separating the daughter chromosome sets. This 

result shows that the exact time during anaphase of the second meiosis may be an 

important key in inducing the formation of the diploid set of chromosomes by cold 

shock. The optimum time after fertilisation of cold shock applied to induce 

gynogenetic diploids in this study appeared to be the mid to late anaphase of the 

second meiosis of fertilized eggs in this species. 

Fujioka (1993) produced gynogenetic diploids of honmoroko (Gnathopogon 

caurulescens) by cold shock treatment with UV irradiated sperm of nigorobuna 

(Carassius carassius grandocu/is) and studied cytology in fertilized eggs. He 

reported that the egg showed the metaphase of the second maturation division at the 

time of insemination, and advanced to the anaphase by 5 to 7 min after 

insemination. The extrusion of the second polar body was observed 10 min after 

insemination and the metaphase of the first cleavage and the prophase of the second 

cleavage were seen 40 and 60 min after insemination, respectively. He also 

suggested that cold shock treatment (at 0° C for 40 min 3-7 min after insemination) 

is a practical method for induction of gynogenetic diploids in this species, caused 

by prevention of the formation of the second polar body. A similar result was 

reported in the production of gynogenetic diploids in loach (Misgurnus 

angui/licaudatus) by Oshiro (1987). 

The gynogenetic diploid produced by the suppression of the first cleavage (mitotic 

gynogenesis) is considered to be more useful than the meiotic gynogenesis for the 

fixation and establishment of a new race of fish in aquaculture (Taniguchi et al., 

1988). The induction of homozygous diploid gynogenetics in zebra fish, 

Brachydanio rerio, in an attempt to produce cloned lines was demonstrated by 

Streisinger et al. (1981). Subsequently this technique has been applied to other 

species (Chourrout, 1984; Onozato, 1984; Purdom et al., 1985; Ijiri, 1987; Krasznai 
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and Marian, 1987; Nagy, 1987; Taniguchi et al., 1988; Sugama et a/., 1990; 

Komen et al., 1991; Fujioka, 1993). In fact, while mitotic gynogenesis has been 

applied in many species, until recently cloned lines have only been reported in 

zebra fish (Streisinger et al., 1981); medaka (Ijiri, 1987); common carp (Komen et 

al.,1991a) and Ayu (Han et al., 1991). Cloned lines are potentially valuable 

products for selective breeding programmes and improvement of broodstocks. 

In determining sex ratios of gynogenetic diploids at 3-4Y2 months of age in this 

study, a major effect of gynogenesis was the presence of 100 % female sex while 

the control pure C. macrocephalus produced the expected 1: 1 ratio of sexes, The 

diploid big-oui hybrid performed consistently with the ratio of male 47.64 % : 

female 52.36% although gonad development seemed to be retarded (see Table 6.6). 

The sex ratios of mitotic gynogenetic diploids was reported as nearly 50:50% 

functional males and females in tilapia, while the meiotic group was nearly 100% 

female sex (Hussain, 1992). In the Ayu, Plecoglossus a/tive/is, Taniguchi et al. 

(1990) also observed a nearly 50:50% proportion of males:females in mitotic 

gynogenetic progeny. This frequency of mitotic males is consistent with the ratio of 

male: female = 46.7:53.2% in common carp where the mitotic males were 

homozygous for a recessive mutation (mas-I) in a sex determinating gene which 

induces a testis or an intersex gonad in XX offspring (Komen, et al., 1988). Kamen 

et al. (199Ia) produced hybrid clones between homozygous females and XX 

mitotic gynogenetic males of common carp. Komen et al. (1991b) reported that 

heterozygous offspring of F 1 hybrids showed reduction in morphological variation 

compared to homozygous clones. Streisinger et al., (1981) induced homozygous 

gynogenetic diploid inbred lines in zebra fish. They found variation in sex ratios 

among the inbred lines, which they suggested was not consistent with either a 

simple female homogametic or female heterogametic system but possible 

autosomal sex-determining genes or due to environmental effects. 
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In Clarias gariepinus females were found to be heterogametic (ZW) and males 

homogametic (ZZ) by Ozouf-Costaz et al. (1990). Teugels et al. (1992a) reported 

that a ZW heteromorphic pair is found in all female hybrids of female 

Heterohranchus longifilis x male C. gariepinus and female C. gariepinus x male H. 

longiifilis karyotypes while the ZZ chromosome pair in male hybrids is similar to 

that found in male C. gariepinus and in male H. longifilis specimens. From this 

evidence, therefore, in C. macrocephalus, males might have been supposed to be 

homogametic (ZZ) and females heterogametic (ZW). The sex ratio results from this 

study are suggestive of a homogametic female (XX) system. Clearly, further 

investigations of the sex determination system in this species (via e.g.hormonal sex 

reversal of gynogenetic diploid and crossing to normal females; or hormone sex 

reversal of normal fish and crossing to the opposite phenotypic sex and progeny 

testing) are required. 

In this study, the experiment on mitotic gynogenesis was unsuccessful, at least 

partly due to a limited period of study, but the primary investigation has shown 

further potential in this field. Diploid gynogenetics are known to be useful in 

aquaculture for the production of inbred lines or monosexual broods. Therefore, 

further research is needed to characterize the gynogenetic diploids and to establish 

the optimum treatment for producing homozygous gynogenetic diploids by 

Suppression of the frrst cleavage (mitotic gynogenesis). An efficient way of 

producing clonal lines in this species would be useful for future research. 



CHAPTER SEVEN 

GENERAL DISCUSSION AND CONCLUSIONS 

7.1 Aquacultural benefits attempted from tbis research 

Freshwater catfish especially Clarias spp are widely distributed in southeast and south 

Asia and Mrica. They exist in a variety of habitats from brackish water in estuaries and 

mangrove areas to fully freshwater rivers and lakes. Recently, they have become a 

popular food fish and subsequently have become a popular species for culture because 

they can be spawned artificially, grow very fast, can tolerate farming conditions and are 

easy to culture. 

In Thailand, Clarias catfish are now one of the most important cultured fish. The two 

most economically important native species are Clarias macrocephalus and C. 

batrachus. Another species of Mrican catfish, Clarias gariepinus was introduced in 

1987, this species was distributed and cultured in the northeast region and some 

provinces in the central region. Furthermore, the breeding of the big-oui hybrid catfish 

was achieved by using male C. gariepinus and female C. macrocephalus. This hybrid 

gives faster growth than C. macrocephalus, has high resistance to environmental 

conditions (similar to C. gariepinus) and intermediate morphological characteristics and 

meat quality compared to the parental species. The big-oui hybrid has become 

increasingly important and generate high demand in the markets. In the culture ponds, 
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this hybrid can grow up to marketable size within 3 months so that the farmers can 

produce at least 3 crops anually, an advantage in animal protein production. 

The growing awareness that fish is a healthy source of protein has further driven 

demand for more fish worldwide. The increasing importance of cultured fish as a food 

fish has prompted considerable research on genetic improvement of the commercially 

important species. Much of this work has concentrated on the development of genetic 

manipulation techniques with varied applied objectives. The most commonly attempted 

rationale has been the production of sterile offspring to negate the problem of 

precocious sexual maturity and unwanted reproduction in culture. This was first 

successful in hybrid grass carp x big head carp (Marian and Krasznai, 1978 and 

Krasznai et al., 1984b). The justification for sex control in fish stocks introduced from a 

foreign territory may have several bases. The primary consideration may be to prevent 

reproduction and thereby remove the potential for becoming naturalized or established 

within the new range. Thus, eliminating unwanted reproduction through sex control is 

primarily a security measure, either to allow evaluation of an introduced fish in an 

ecologically safe manner or for its ultimate utilization (Shelton, 1987). From the 

perspective of transplantation or introduction, reproductive control may be desired to 

prevent gene pool contamination through hybridization with conspecific races or 

strains. Shelton and Smitherman (1984) discussed how to introduce fishes in 

warmwater aquaculture with considerations for application of sex control. 

Sex control may be very beneficial in a production system, as growth may be enhanced 

by reduced competition from progeny, taking advantage of sexually dimorphic 
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characters, or increasing food conversion efficiency through diversion of gonadal 

energy demands into somatic elaboration. All are benefits to aquaculture through sex 

control and may be considered for research. Donaldson and Hunter (1982) and 

Yamazaki (1983) reviewed control of sex in fishes. Within the perspective of sex 

control through genetic manipulations, it can be considered that the primary 

mechanisms are monosexing or sterilization. Stocking only one sex provides 

considerable security against reproduction, but the monosexing effort must be totally 

effective. Interspecific hybridization may produce highly skewed sex ratios but rarely 

entirely monosex populations. Steriod induced sex inversion, temperature regulation or 

pH influence are physiological alterations that may have genetic implications. Both 

hybridization and hormone sex inversion are used in aquaculture of tilapias where a 

level of 90-98 % effectiveness has been achieved (Hulata et al., 1983 and Mair, 1993). 

Hormone induced sex inversion may be a functional component for production of 

broodstocks, which are used for spawning to produce monosex offspring. There is 

considerable variability in sex determination among fishes which may affect the 

precision of this procedure (Shelton, 1987). Monosexing can be appropriate for 

introduced (exotic) species but has limitations for transplanting species, depending on 

the relationship of resident species. Closely related species with similar reproductive 

biology present the opportunity for hybridization. Considering the selective 

disadvantage for successful reproduction of hybrids in a natural community, Chevassus 

(1983) suggested this may have minimal significance. However, if transplanted species 

overlap sibling SUbspecies, then inbreeding will occur and result in gene pool 

degradation. Thus, under appropriate conditions, some approaches to the production of 
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monos ex populations might be considered for stocking introduced fishes but not 

transplanting species within their natural range (Shelton, 1987). 

Sterility should be the method of best choice in sex control. Genetic-based sterility 

involves polyploidization, especially triploidy, which has been achieved through some 

intergeneric hybridizations or by chromosome manipulation (Stanley, 1982). Hybrid 

reproductive potential may vary from complete sterility to apparently normal fertility 

(Chevassus, 1983). Concern may still be warranted because of differential effects 

between sexes. Triploid females usually have poorly developed ovaries with only 

scattered ova, while males have more extensive morphological development but with 

spermatogenesis usually not culminating in functional spermatozoa (Gervai et aI., 1980 

and Wolters et al., 1982b). The differential development and possibility of some viable 

gametes demands additional investigation. A more involved extension of this approach 

would be to combine techniques to produce triploid monosex populations (Shelton, 

1987). 

7.2 General discussion on genetic approaches using manipulation and related 

techniques in this study. 

In discussing various means of achieving sex control, Shelton (1987) mentioned some 

for completeness despite their perceived impractically and others are included because 

of their potential importance as components of more involved but pertinent systems. He 

generally categorized these into methods that involve a direct treatment or manipulation 

and those which are preliminary to developing a broodstock for use in a breeding 

programme. These methods may have questionable productivity, quality control and a 
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mixture of physiological and genetic elements. These approaches seek to produce 

populations of single sex or sterile fish through some form of manipulation for each 

individual, absolute success cannot be expected since individuals that are not altered by 

the treatment usually are mixed within the populations. 

Steroid induced sex inversion: the development of phenotypic sex in fishes is under 

genetic control but may be mediated by environmentally influenced physiological 

means (Hunter and Donaldson, 1983). Gonadal development in fishes passes through a 

labile indifferent phase prior to phenotypic expression as an ovary or testis. Steroids 

have been widely applied as an exogenous means of directing gonadal differentiation 

indepent of the genotype (Yamazaki, 1983). Exposure has been through immersion, via 

food or through implantation. Absolute monosexing through steroid induced sex 

inversion is not generally uniformly achieved (Shelton, 1987). However, since 100% 

monosex popUlations have not been consistently produced by direct steroid sex 

inverSion, the application of sex control to an introduced fish for stocking in open 

waters cannot be considered as adequate to provide appropriate security. 

Hybridization: A general phenomenon among fishes is the production of progeny with 

a range of moderately to highly skewed sex ratios (Chevassus, 1983). Skewed sex ratios 

have been produced from various interspecific hybridizations, most notable among 

tilapias, particular crosses have yielded nearly 100% male populations, which have 

utility for aquaculture (pruginin et 01.,1975). Interspecific hybrids are fully fertile, 

although reproductive behavior is logically altered, F I hybrid and back-cross with 

parental species are common. For aquacultural purpose, hybrid tilapias have also been 
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androgen treated in an effort to maintain advantage of hybrid vigor and come closer to 

attaining monosex popUlation (Mair, 1993). 

Gynogenesis: the development of an owm without a paternal genetic contribution. The 

fIrst application for gynogenesis is as a means of producing single sex offspring, 

assuming the involvement of only the maternal genome, which is of the homogametic 

sex. Functional homogamety has been demonstrated through gynogenesis in various 

species. Spontaneous gynogenesis through second polar body retention is rare, although 

the frequency can be increased by a variety of physical and chemical shocks at the 

appropriate time in retention to the polar body formation. The females produced are 

fully fertile, and therefore, reproductive control through monosex stocking will be 

compromised if prior mixed sex stocking has occurred. However, the main problem 

with many species is the low yield of diploids despite shocking to enhance production. 

Induced gynogenesis can also be achieved through suppression of the first mitotic 

division in the developing haploids. While this may be accomplished by judicious 

application of a late shock (Thorgaard, 1983), the success is lower than in early shock. 

One aspect of optimizing gynogenetic treatments that has not been adequately exploited 

is its value as an effective estimator of the most probable optimal treatment conditions 

for polyploidization. Optimizing diploid production by either early shock and late 

shock should correlate with the greatest yield of polyploids. Evalution is direct through 

counting of surviving diploids. 

Polyploidization: manipulation of meiotic and mitotic events may produce polyploid 

individuals from ova that have been inseminated with genome-bearing sperm (Purdom, 
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1983 and Thorgaard, 1983). The sperm status is the main distinction between induction 

of polyploids versus gynogenetics. Gynogenetic induction regimen with reference to 

treatment, type and intensity of shock, time of application and duration can be readily 

optimized for a species by evaluating the yield of viable diploids, since the haploids die 

before swim-up. The analogous regime can be applied to polyploidization with 

anticipated optimal results simply by omitting the DNA-denaturing treatment of sperm. 

Evaluation becomes more complex since both diploids and polyploids are viable. 

Whether the sperm is from the same species as the ova donor or a related species will 

determine whether a polyploid species or a polyploid hybrid is produced, respectively. 

If an early shock is applied to increase the incidence of second polar body retention, 

triploid induction results. If shock is delayed until the period associated with the first 

cleavage, tetraploidy may result. 

7.3 Implications of the present results in Clarias catfish culture 

Like salmonids and tilapias, production of expectedly sterile hybrid catfish by genome 

manipulation techniques has attracted considerable attention in recent years. A few 

work has been reported on the effective optima of temperature shock and pressure 

shock in this species (Na-Nakom, et al. 1993b; Volckaert, et al. 1994 and Ezaz, et al. 

1996). The present study was carried out to identify treatment optima for triploidy 

induction and diploid gynogenetic induction by altering intensity, duration and timings 

of applications of cold) heat and pressure shocks and uses, in this instance, perturbation 

of meiotic division of eggs as an experimental model. Cold shock was found to be the 

most effective agent in induction responses while heat and hydrostatic pressure were 
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found to be less effective and to give low viability of embryos. Cold shock treatments 

have some advantages over the other agents and proved to be a very reliable method for 

triploidy induction in these species. 

Triploids do not have normal gonadal development (Thorgaard, 1983), they have much 

lower gonado somatic indices (Lincoln and Scott, 1984) and they are functionally 

sterile because they produce aneuploid gametes (Allen, 1987). The result from this 

research confirmed that triploid big-oui hybrids have functionally sterile gonads. 

Hence, they might grow faster than diploids as they reach the age of sexual maturity 

because they may direct energy from reproduction to somatic growth. Sterility may also 

suppress some of the other undesirable phenomena associated with reproduction such as 

reduced appetite, reduced feed conversion efficiency, deterioration in flesh quality and 

postspawning mortality. Despite abnormal gonadal development, triploid big-oui 

hybrids showed external sexual differentiation similar to that of diploid hybrids. This is 

however of little relevance in Thai aquaculture because diploid hybrids already have 

reduced reproductive performance, and the culture period is not long enough for the 

fish to reach maturation anyway. 

In comparision of growth between diploid and triploid big-oui hybrids, triploid hybrids 

were found to have similar growth to diploids. A few studies of the growth and 

condition of triploid adults have been reported (Swarup, 1959; Purdom, 1972; Lincoln, 

1981b; Valenti, 1975 and Penman et al., 1987b). The results are equivocal: some 

studies reported a slight growth advantage of triploid, whereas others found similar or 

even reduced growth of triploids compared with diploids (Penman et al., 1987b). 

Ihssen, et a/. (l990) suggested that the growth advantage of triploids is species 
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dependent, even for closely related species. Also, the growth advantage may be held 

only by females, not by males that develop pronounced secondary sexual characters and 

even sperm. The faster growth of females, if simply measured as total body weight at 

age, may be partly due to the greater accumulation of fat in the body cavity rather than 

the desired increase in muscle tissue (Lincoln and Scott, 1984). Triploid induction may 

improve the viability of interspecific hybrids (Chevassus, 1983; Scheerer and 

Thorgaard, 1989). Some hybrids such as rainbow trout x brown trout, which are almost 

completely nonviable, have much improved survival if triploidy is induced. The 

induction of triploid big-oui hybrid did not show improvement in this respect. 

In generally, triploid hybrids are derived from the suppression of the second meiotic 

division and thus they possess two maternal haploid sets of chromosomes and one 

paternal set. This property makes it possible to design hybrids that have a higher 

proportion of the characteristics of one species relative to the other in one generation. If 

reciprocal triploid hybrids are also available, a variety of hybrids having different 

Proportions of maternal and paternal characters can be produced. In diploids, such a 

rearrangement of parental characters is possible by backcrossing (if F 1 hybrid is fertile), 

and it would require two generations compared to one for triploids. All of these 

possibilities have been proven impossible events in big-oui hybrids. 

Suppression of the second meiotic division to produce gynogenetic diploids and 

triploids has been much more successful than the suppression of the first mitotic 

division to produce mitotic gynogenetic diploids and tetraploids. However, even for 

meiotic gynogenetic diploids in this study, yields have been extremely variable and 
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often very low because their abnormalities and usually they died after yolk-sac 

resorption. Another complication affecting yields of gynogenetic diploids is that 

partially inactivated sperm, by contributing chromosome fragments to the gynogenetic 

diploids, may lower the viability of those diploids. This phenomenon is primarily 

associated with ionizing radiation, not with UV-irradiation (Chourrout, 1987). The 

method of sperm inactivation may affect yields, but it does not seem to be as critical as 

the other treatment factors because very low yields of gynogenetic diploids are often 

accompanied by high yields of the corresponding haploid. Sperm inactivation and 

vitality effects can be separated from meiotic or mitotic treatment effects by incubating 

haploid and diploid controls alongside the gynogenetic diploids. If the frequency of 

diploids among the haploids is larger than frequencies expected for spontaneous 

gynogenetic diploids, the sperm have not been completely inactivated and irradiation 

dosages should be increased. If, on the other hand, the proportion of nondeveloping 

eggs is larger among haploids than among the diploid controls, the treatment of the 

sperm may have been too severe, causing loss of sperm vitality, and irradiation dosages 

should be decreased. For UV -irradiation, diploids other than spontaneous gynogenetic 

diploids have been found only very rarely among haploid controls, and the proportion 

of developing haploids is usually similar to that of diploid controls. So that, UV­

irradiation effectively inactivated sperm without significant loss of sperm vitality 

(Ihssen et at., 1990). 
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7.4 Further hybridization and genetic manipulation studies in Qarios catfish 

In future, genetic research on Clarias catfish has many potential applications in the 

aquaculture of these fish. Studies and development of hybridization and genetic 

manipulation methodologies to produce improved stocks have just begun to be 

investigated. More trained scientists are essential in the future to develop better 

commercial strains of broodfish and produce suitable fry for economical farming 

conditions in Thailand and Asian countries. Apart from the results of Clarias catfish 

hybridization and genetic manipulation research of previous and present work, there are 

some other interesting tropics for further investigations as follows: 

1) Undertaking of other interspecific hybridizations: There seem to be multiple aspects 

for studies on interspecific hybridization, especially among Clarias catfish. The main 

motivations are to obtain a better fish for commercial purpose and recently also to 

intensify aquaculture. A 'better fish' may be obtained by: 

- Hybrid vigor, i.e., the hybrids perform beyond the range of their parent species and 

their performance is of value for intensification of aquaculture. 

- A combination of traits, for instance, high tolerance of one species may be combined 

with rapid growth of another. 

- Sterility to prevent growth reduction in connection with sexual maturity, to obtain 

population control when stocking natural waters with introduced species or' to prevent 

gene introgression between natural and culture stocks. 
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The big-oui hybrid is an example of valuable traits combining the good growth rate of 

C. gariepinus with the good meat quality of C. macrocephalus, which together made 

the hybrids very productive in pond culture. Another interesting, although not yet fully 

investigated application is artificial hybridization between C. gariepinus x C. batrachus 

and artificial hybridization between C. macrocephalus x C. batrachus. Further research 

could be pointed to these topics. 

2) Sterile fish: The induction of triploid big-oui hybrid did not show improvement of 

survival and triploid big-oui hybrids were found to have similar growth to diploids. As 

triploid big-oui hybrids have been found to be functionally and reproductively sterile, 

such sterility of triploid can be of interest in itself, quite apart from other physiological 

and morphological considerations. Therefore, it is necessary to study the behaviour of 

the triploid hybrid in comparison with the diploid hybrid. If mature triploid hybrids 

were completely sterile, then the use of triploidy could guarantee lack of genetic 

interaction by escapees from farms (but would this be feasible in aquaculture: yields, 

growth rates, food ultilization, etc). Although maturation of big-oui hybrid in culture or 

in the wild is not considered a problem at present, this study has shown that back cross 

hybrid can be performed and it is therefore possible that breeding big-oui hybrid may 

become a problem in the future. This technique of sterilization can be applied in 

C/arias catfish or other important culturable species, where control of natural 

reproduction is sometimes essential for the benefit of their aquaculture. Sterile fish also 

permit more precise control of the number of fish per tank or pond until harvest and 

hence better rearing conditions. 
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Triploidy induction in the reciprocal cross hybrid and the back cross hybrid are another 

interesting investigation, aimed to improve the survival of these crosses and growth 

performance. The preliminary experiment of Mohidin (I995), on induction of triploid 

reciprocal cross hybrids was carried out following the techniques developed from this 

study. His results showed that triploid reciprocal cross hybrids can be produced even 

though the survival rates of fry (at 3 day old) were very low. The highest percentage of 

triploidy was 57.1 % when cold shocking (4°C) was applied at 3 min after fertilisation 

and duration of 20 min. 

3) Tetraploidy induction: The induction oftetraploidy in rainbow trout and the viability 

oftetraploids has been reported by Chourrout et aJ., (1986). Induced triploid production 

of big-oui hybrid has limitations in low survival rate and body deformation. Further 

research is therefore needed to develop viable tetraploid broodstocks for using in 

crosses between diploid x tetraploid, to produce subsequent large-scale generations of 

hybrid triploids. The preliminary study in cold shock techniques developed for 

inhibition of mitotic cleavage of eggs may be useful to induce viable tetraploids in big­

oui hybrid. 

4) Further study of induction of mitotic gynogenetics and production of their clones in 

C. macrocephalus is necessary. Such clones are genetically uniform, a reduction in 

phenotypic variation and increased or superior developmental stability is therefore 

expected (Komen et al., 1991b). It is not out of the question, however, homozygous 

clones may have the reverse effect and reduce developmental stability. Interesting 

research with clones as standardised animals could be carried out on heritability. 
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immunoresponse, disease resistance and sex differentiation studies. Clones could be 

used as controls in selection experiments particularly in commercial testing. Further 

research could be initiated to develop the technique for production of clones and 

commercial Clarias catfish strains. Research on clonal lines could be expanded 

involving studies on the growth, other phenotypic traits and investigation of sexual 

development of the outbred and inbred clones. 

5) Monosex culture of C. macrocephalus female broodstock for big-oui hybrid 

production: the big-oui hybrid has become a popular cultured fish and is now the single 

biggest freshwater fish product in Thailand. C. macrocephalus is difficult to produce in 

large numbers and high demand of this species for broodstock to produce hybrids has 

led to a shortage of this species. The results from this study indicate that male C. 

macrocephalus cannot be used in hybrid production because the reciprocal cross 

(female C. gariepinus x male C. macrocephalus) does not survive although genetically 

it appears to be similar to the big-oui. 

There are a number of potential methods for monos ex female culture in such situations, 

including hormone treatments or 'indirect' monosex methods via genetic manipulation 

of broodstock. These can used as specific breeding tools in addition to the more general 

broodstock management and selection programmes which should be ultilised in Clarias 

catfish culture. Work in Thailand had been experimenting with 'direct' methods, 

especially, hormonal feminization of C. macrocephalus fry as reported by Pongthana el 

al., (in press) who had success at producing 100% females without any further 

alteration in culture practices. It may be concluded that hormonal feminisation 
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techniques can potentially be applied in present situations in Clarias culture in 

Thailand. For the long term solution, 'indirect' monos ex culture via genetic 

manipulation, where the fry for broodstock production receive no steroid treatment, 

would be used to produce fish. This relies on an understanding of the sex determination 

system in the species concerned. Further research work aimed at investigating the sex 

determination system in C/arias species will be necessary to solve this problem. In this 

study, 9 batches of 100% female gynogenetics (153 individuals) were produced 

suggesting that C. macrocephalus should have the XY male/XX female sex 

determination system. Following with gynogenetic induction incorporation with 

hormone sex-reversed to produce homogametic males are thought to be useful in 

crossbreeding experiments to produce all female monos ex popUlations where female 

fish are more preferable as in this case. Mirza and Shelton (1985) reported the results of 

the intraperitoneal administration of methyltestosterone-silastic implant to gynogenetic 

silver carp. Examination of the gonads of 17 implanted fish showed that 13 fish had 

testes, one intersexual gonads and three had gonads with no germ cells. Mohidin (1995) 

investigated hormone sex reversal of gynogenetic diploid offspring using the 

gynogenesis techniques developed from this study. He showed that phenotypic males 

were obtained from all treatment groups of oral administration of the synthetic 

androgens (lll3-hydroxy-4 androsten-3, 17-dione and 17-hydroxy-17a.­

methylandrostan-17!3-01-3-one) at different dose levels (10, 50 and 100 mg/kg feed) for 

duration of 4 weeks. This compared to all female untreated gynogenetics. Progeny 

testing of such fish will provide further information on the sex determining system in 

this species. 
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6) DNA fingerprinting: The techniques have been successfully applied in humans and 

are becoming increasingly important and popular for fish. Research in this field using 

DNA probes will open up new avenues to analyze and estimate the degree of 

inbreeding associated with both meiotic and mitotic gynogenetics as well as of natural 

populations. DNA probes have now been isolated that hybridize to a single locus and 

ultimately these locus-specific probes may be of value in establishing linkage to genes 

affecting important traits such as growth rate and disease resistant. 

7) Transgenic fish: In the past 10 years, gene transfer technology was explored in 

various animal species. The transfer of cloned genes to the embryos of mice and several 

domestic animals has been achieved by microinjection of hundreds or thousands of 

copies into the male pronucleus. Some of the integrated genes are expressed, and some 

of the transgenic mice obtained by injection of growth hormone genes grew rapidly 

(Chourrout, 1987). The objectives of producing transgenic fish are particularly focused 

on growth enhancement and disease resistant. The first pUblications in production of 

transgenic fish came from the research group working in the People's Republic of 

China (Zhu et al., 1985; 1986, cited by Woodwark et al., 1994). They introduced a 

DNA construct consisting of the coding sequences of the human growth hormone gene 

fused to a mouse metallothionein promoter into cyprinid and loach species. Chourrout 

et al., (1986) tried to inject 20,000,000 copies of a plasmid containing the human 

growth hormone gene into rainbow trout egg cytoplasm. They suggested the proportion 

of positive embryos was higher when linear plasm ids were used instead of circular 

ones. The similar results were reported by Maclean, et al., (1987), they injected 10
6 

copies of a cloned DNA sequence consisting of the mouse metallothionein gene 
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promoter spliced to a genomic copy of the rat growth hormone gene into fertilised eggs 

of rainbow trout. The original gene construct used a mouse metallothionein promoter 

controlling a rat growth hormone gene. This mammalian constructs have had no or 

modest effects on growth in trangenic fish, prompting the development of fish gene 

constructs with improved effects on growth performance. However, public concern 

over the use of DNA from non homologous sources makes it desirable to develop 

constructs from as close to homologous DNA is now practical. Devlin et al. (1994) 

microinjected linear pOnMTGH-l DNA where all genetic elements were derived from 

sockeye salmon and consisted of the metallothionein-B promoter fused to the growth 

hormone gene. They found that 6.2 % of the individuals surviving to one year and had 

modal weight as controls but contained many larger individuals which retained 

pOnMTGH-I DNA in their fin tissue, indicating that the presence of this gene construct 

was responsible for the growth enhancement. The gene transfer technique may be very 

promising for the genetic improvement of cultivated species, fishes are being an 

excellent material for such investigations, so, much effort is likely to be spent in gene 

transfer in the future. 
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APPENDIX 1 

A ) Examples of salines used for dilution of fish sperm without activation: 

Amount per saline (gl-l) 
Chemical Modified Modified Clar;as Normal 

Cortland's Fish extender Saline 
Saline Ringer's # 1 

NaCl l.88 6.50 5.16 8.50 
KCl 7.20 3.00 1.64 -
Chemical 0.13 0.15 0.14 -
NaCI 0.36 - 0.36 -
NaHC03 1.00 0.20 1.00 -
MgS04 0.11 - 0.11 -
Glucose 1.00 - - -
Fructose - - 1.00 -

pH 7.0 8.0 7.3 -

Remarks: 

Modified Cortland's saline: chemicals should be added to water in order shown, 

with each chemical being allowed to dissolve completely before the next is added 

(to avoid precipitation). Species recommended: tilapia, Clar;as catfish. 

Modified Fish Ringer's saline. Species recommended: tilapia. 

Clarias extender # 1 saline. Species recommended: Clarias catfish. 

Normal saline; 1: 3 or 1: 9 sperm: saline dilution for common carp; 1: 99 for 

Puntius gonionotus. Species recommended common carp, P. gonionolus , etc. 

B ) Procedure for counting sperm concentration: 

1. Strip sperm, collect into a tube and refrigerate. 
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2. Dilute with saline (see Chapter 2, section 2.6). The dilution used will need to be 

determined by trial and error; it is necessary to produce a diluted sample which can 

be scored easily with the haemocytometer. For C. gariepinus, 1: 50-1: 600 is 

appropriate, depending on initial concentration. 

3. Set up the haem cytometer with the cover slip in place. Introduce the diluted 

sperm from the side, without flooding the side channels of the central section. 

4. Haemocytometers vary in the size of their cells: I use a 1120 x 1120 x 1110 mm 
(1/4,000 mm3

) cell size convenient. The arrangement on this type is as shown 
below 

x 

x 

x 

x 

x 

Each square is subdivided into 16 smaller cells (4 x 4). Each of these smaller cells 

has a volume of 114,000 mm3
. 

The sperm suspension is left for about 5 minutes. This allows the sperm (non 

motile at this stage) to settle down onto the surface of the grid, making them easier 

to count. 

5. Counting all the sperm in each cell from the 5 squares marked "x" above gives a 

total of 80 cells (4 x 4 x 5). This is a good sample from which to obtain a mean 
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(Average number of sperm heads I 80 cells). As this is the number of sperm per 

114,000 mm3
, the concentration in the undiluted sperm sample can be obtained as 

follows: 

Concentration (sperm cells mrl) = Average mean x 4,000 x 1,000 x dilution factor 

For example: ideal sperm concentration = 2.5 x 108 cells/ml. 

To obtain such a concentration, we have to follow this procedure: 

-collect sperm 

-check sperm motility post activation by adding 5 ~l of diluted sperm to 50 ~l of 

water in a micro centrifuge tube and then rapidly placing a drop of the mixture on a 

glass slide (ready set up before) for microscopic examination. Only diluted sperm 

samples with a motility score of 9-10 after activation were used. 

-take 490 ~l of Modified Cortland's saline, place into the first microcentrifuge tube. 

-take 1 0 ~l of diluted sperm and add to the same microcentrifuge tube: this will 

make a concentration of 1: 50 

-take 90 IJ.I of Modified Cortland's saline, place into the second microcentrifuge 

tube. 

-take 1 0 ~l from the first microcentrifuge tube and add to the second 

microcentrifuge tube: this will make a concentration of 1: 500 

-take the sample from the second tube and place onto a haemacytometer. 
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-wait for 5 minutes to allow the sperm to settledown, until sperm stops drifting. 

-count sperm heads in each small cells (4 x 4 cells) from the 5 squares marked "x" 

as above (80 small squares in total) 

-fmd out the total number, calculate the average mean, ego the total count = 200 

sperm heads. 

Average mean = 200/80 = 2.5 sperm heads 

Concentration = 2.5 x 4,000 x 1,000 x (50 x 10) cells Iml 

= 5 x 109 cells Iml 

Concentration required = 2.5 X 108 cells I ml 

-if the amount volume of diluted sperm required = 1,000 ~l 

The amount of sperm volume = 1,000 x 2.5 x 108 I 5 x 10
9 

J.11 

= 50 ~l 

-mix 50 ~l of undiluted sperm with 950 ~l of Modified Cortland's saline to meet the 

final concentration of 2.5 x 108 sperm cells/ ml 

The dilution factor = 50 : 1,000 = 1 : 20 
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APPENDIX 2 

KARYOLOGICAL EXAMINATION 

A) Tissue preparation 

Colchicine (0.5 % stock solution) is required to block cell division at metaphase. 

Take 1 ml of the stock solution and add 20 ml of incubator water. 

Add the required number of embryos to the colchicine solution and leave for a 

minimum of 4 hours. The embryos can be left for longer providing they are still 

living. 

Drain off the colchicine and add 0.7 % NaCI, remove the yolksac from the embryos 

and put into distilled water for 20 minutes. This will swell the embryonic cells. 

Finna1ly put the embryos into an ethanol/acetic acid 4: 1 mixture where they can 

be stored for up to 30 days at 4° C. 

B) Chromosome preparation 

Set up a hot plate at a temperature of 45° C. 

Wash microscope slides in ethanol. One slide will be required for each embryo. 

Handle slides by their edges only. 

Add 5 drops of acetic acid (50 %) into each hole. One hole will be required for 

each embryo. 
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Place the embryo into a watch glass. Remove one of the embryos and dry the 

fIxative off using a tissue and place into the first hole (start from left hand side). 

Note the starting time and begin to "shake" the embryo in the acetic acid for 

approximate 45 secounds (the embryo can be minced for 1 minute with glass rod or 

scraped by using fIne forceps to dissociate epithelial cells). The acetic acid breaks 

down cell bonds and the "shaking" should release tissue into the solution. Remove 

embryo. 

Leave the tissue and cell in the acetic acid for 12-15 minutes. 

Remove the acetic acid and tissue solution using a micro-pipette dropper and drop 

solution into the heated slide. Leave for approximate 10 seconds, then draw some 

of the solution up. Leave the slide for a further 10 seconds and then draw more 

liquid up and so on. More than one set of ring can be done on each slide. 

C) Staining slides 

Take 4 ml of Giemsa stain and put into a staining glass. Add 36 ml ofO.O} M 

phosphate buffer: the buffer is freshly made up from 2 stocks namely 0.5 M 

KH2P04 and 0.5 M Na2HP04 (6.8 g 1100 ml distilled water and 17.9 g 1100 ml 

distilled water respectively). Mix 6.26 ml of 0.5 M KH2P04 and 4.56 ml of 0.5 M 

Na2HP04, and dilute with distilled water to 500 ml. 

Place the slides back to back into the staining glass and leave for 20 minutes. 

Wash slides in distilled water and leave to air dry. 

Then put the slides into Xylene and leave for 10 minutes. 

Air dry for 1-3 hours. 
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Mount the slides using 3 drops of DPX mountant. 

Leave to dry and store. 

Procedure for photographing through a Leitz Orthomat 

photomicroscope 

Loading the Leitz Orthomat 35 mm Camera 

1. Remove cassette from camera back. 

2. Open cassette. 

3. Push film lead under the clamping spring of the spool, emulsion side up. 

4. Pull out rewind key and insert 35 mm cartridge. 

5. Tum film spool by knurled knob in direction of the cartridge until the film 

becomes taut and both sides of the perforation are engaged in the sprockets. 

6. Close cassette. 

7. Set frame counter (N.B. This counter indicates the number of unexposed 

frames). 

8. Set the ASAIDIN and type of film on the back of the cassette. 

9. Replace cassette in camera back so the counter is visible through the window at 

the RHS of camera. 

10. Lock camera back. 

11. Set ASAIDIN on control panel (N.B. Separate knobs for BIW and color film). 

12. Press 'flash synch' button. 

13. Press 'expose' button 2-3 times. 

14. Press 'flash synch' button again -light will go off. 

15. The film is now wound on ready to take pictures. 

16. When all of the film has been exposed (indicated by a buzzing sound) press the 

'film reset' button at the side of the camera. 

17. Open camera back and remove cassete. 
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18. Press button on the side of the cassette and rewind film. 

19. Remove film from cassete. 

Operating instructions for the Leitz Orthamat photo microscope 

1. Switch on microscope light. Tum up brightess unti needle is just below red line. 

2. Switch on control box. 

3. Insert clean slide and select field. 

4. Open camera back and remove cassette (See separete instrucyion for loadind 

camera. 

S. Locate focusing screen and magnifier in camera back. 

6. Press 'shutter open' button on control box. 

7. Focus image at film plane i.e. on the focusing screen. 

8. Adjust each eyepiece separately to suit eyes (N.B. Focus on infinity not on the 

specimen or graticule. This prevents accommodation by the eye). 

9. Press 'shutter open' button to close shutter. Remove focusing screen. 

10. Open aperture diaphragm. 

11. Close field diaphragm. 

12. Insert or remove supplimentary condenser as necessary. 

13. Rack condenser up/down to focus. 

14. centre the spot of light. 

15. Open field diaphragm until just clear of field. 

16. Close aperture diaphagm until exit pupil reduced by (N.B. The condenser must 

be refocused and centred each time the objective lense is changed. 

17. Recheck focus. 

18. Check orientation of camera. 

19. Check framing. 

20. Select filter and place in light beam. 
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21. Load and relocate film cassette. Wind on film for 2/3 frames by pressing the 

'expose' button. 

22. Check expose and then shoot. 

23. When film completely exposed (indicated by a buzzing sound) press 'film reset' 

button on the side of the camera. 

Developing 35 mm black&white film 

Put on red light in corridor. 

Paterson spool must be dry 

Set waterbath in sink at 20°C 

Turn on extractor fan 

Arrange dismantled paterson tank on bench with scissors and spool 

Put light off (in total darkness) 

Remove film from spool 

Unwrap film and cut both ends straight with scissors 

Wind film on to paterson spool 

Assemble paterson tank 

Put light on 

Use gloves 

Add developer to paterson tank; at 1: 1 0.1 stock strength 5.5 mins 

Put on white lid, shake occasionally (times vary according to dilution; check bottle) 

Set stopwatch 

Remove developer to bottle; and rinse 3 times with water at 20°C 

Add fixer and shake occasionally for 3-4 mins 

Remove fixer to bottle (can be used several times) 
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Remove film from tank 

Place in running water in waterbath at 20°C for 15-20 mins 

Turn water off and add 10 ml of photoflo and leave for a few mins 

Suspend film in drying cupboard and leave for an hour 

Rinse paterson tank well and place in bottom of drying cupboard 

When negatives dry cut to size and place into plastic strips 

To make contact prints 

Put red light on in corridor 

Put on water to processing machine (tum tap 3 times) 

Tum knob to run possition (it takes 30-45 mins for machine to warm up) 

Make contact prints of all negatives:-

Raise enlarger to highest position (spring mechanism) 

Set aperture on enlarger to 8 or 5.6 (aim for exposure time of 5-8 s) 

Switch on enlarger 

Left hand side 

Exposure time 

Put on yellow light and main light off 

Place large sheet of photopaper on glass press 

Lay negatives on top of paper and close 

Right hand side 

Paper grade 

Contrast 1-5 

Set exposure time and grade (write details on the back of the paper) 

Switch on 
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When exposure complete put print shiny side down into processing machine 

To make enlargements 

Lower enlarger 

Check light source is the small light box (it becomes very hot) 

Place negative in holder 

Press focus button on control and focus enlarger onto white board; adjust fine focus 

so that the papers grain is in focus with the magnifier; adjust sides to mask light and 

center frame 

Decrease aperture setting 

Increase exposure time 

Increase grade setting 

Number for darker prints 

Number for darker prints 

To increase contrast 

Put on yellow light and main light off 

Take out one sheet of paper (close box) 

Write settings on back 

Place paper in frame (shiny side up) 

Press exposure botton 

Take paper and place shiny side thinways into machine 

Repeat and adjust times to improve picture quality 

To turn processing machine off:-

Switch enlarger and light off 

Tum knob from run to off 

Then close water tap 

wind enlarger down to lowest position 
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APPENDIX 3 

BLOOD CELL MEASUREMENTS 

The technique is easiest when fish are large enough to bleed using a hypodermic 

syringe and needle. Blood may be taken from the caudal blood vessel which runs 

ventrally to the spine and can be reached by inserting the needle from the ventral or 

lateral surfaces of the caudal peduncle. 

A) Remove a small blood sample and place 1 drop on a glass slide. Smear the drop 

along the slide using the edge of another slide. Leave to dry. If the slides are to be 

stored before staining, fix by dipping in methanol. 

B) Stain the slides in Wright's blood stain for 2 minutes. Transfer to a 1 : 1 mixture 

of Wright's blood stain: Sorensen's buffer for 3 minutes, then rinse in distilled 

water. Leave to dry. 

Wright's blood stain; dissolve 0.3 g solid Wright's stain in 100 ml methanol and 3 

ml glyerol. Prepare at least 24 hours before use. Test by placing one drop of stain 

on a piece of filter paper; if the drop spreads out to leave an even blue/purple stain, 

the stain is good. If there is a pink halo, do not use. 

Sorensen's buffer; dissolve 9.47 g of Na2HP04 in 1 1 of distilled water, adjust to 

pH 6.7 

C) Mount using cover slips and DPX mountant or similar. 
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Each slide should contain areas where the red blood cells are not overlapping and 

are evenly stained. Using a graticule, measure the major (length) and minor (width) 

axes of the nuclei of at least 20 cells per slide (these can come from 2 or 3 different 

areas of the slide to check for consistency). Mean nucleus major axis, minor axis 

and volume can be calculated for each cell and frequency distributions constructed 

for control and experimental groups. This should be done in conjunction with 

chromosome preparations and the accuracy of each nuclear parameter as a ploidy 

determination tool determined. Nucleus major axis and volume are generally much 

more accurate than minor axis. 

Nucleus volume = 4/3 ab 2 where a = major axis/2; b = minor axis/2 
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APPENDIX 4 

PROTOCOL FOR TISSUE HOMOGENIZING FOR ISOZYME 

Homogenizing buffer prior to electrophoresis: 

10 mM Tris Hel pH 7.1-7.5 

1 mMEDTA 

1 mM Mercaptoethanol 

For AAT (Aspartate aminotransferase); add Pyridoxal-5-phosphate (P5P) 10-25 mg 

11 00 ml of buffer 

For IDHP (Isocitrate dehydrogenase) and G6PDH (Glucose-6-phosphate 

dehydrogenase); add Nicotinamide adenine dinucleotide phosphate (NADP) 10 mg 

/ 100 ml of buffer 

Add 1-4 volumes of homogenizing buffer into the homogenized tissue (Sample 

tissue can be stored at this point as covered tissues, which give better activity). 

Homogenize for no longer than 30 seconds, rechill every 8-10 seconds for grinding. 

Centrifuge at 13,000 g for 15 minutes at 0-40 C. 
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APPENDIX 5 

ELECTROPHORETIC BUFFER AND STAINING RECIPES 

A) ButTer solutions used in electrophoresis 

TRIS CITRATE pH 8 (TC) 

Stock solution : 

(0.250 M) Tris 

(0.07SM) Citric acid 

Adjust to the desired pH 8 before making up volume 

Electrode: Undiluted stock solution 

Gel: 1: 25 dilution of stock solution 

TRIS-BORATE-EDTA pH 8.5 (TBE) 

Stock solution : 

(0.500 M) Tris 

(0.240 M) Boric acid 

(0.016 M) EDTA 

Adjust to the desired pH 8.5 before making up volume 

Electrode: Undiluted stock solution 

Gel : 1: 10 dilution of stock solution 

TRIS-CITRA TE I LITHIUM-DORA TE pH 8.5 (TCD) 

Stock solution A : 

(0.300 M) Boric acid 

0.100 M) Lithium hydroxide 

Stock solution B: 

30.29 gil 

15.76 gil 

60.57 gil 

15.00 gil 

5.99 gil 

18.55 gil 

8.40 gil 



(0.076 M) Tris 

(0.005 M) Citric acid 

(0.015 M) Boric acid 

(0.005 M) lithium hydroxide 
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Adjust to desired pH 8.5 before making up volume 

Electrode: undiluted stock solution A 

Gel: undiluted stock solution B 

TRIS-BCI staining butTer series 

9.21 gil 

1.05 gil 

0.93 gil 

0.21 gil 

0.2 M Tris-HCI pH 8 : dilute Tris 24.2 g in I I of distilled water, adjust pH to 8 

with 5 MHCI 

0.1 M Tris-HCI pH 7.4 : dilute Tris 12.1 g in I I of distilled water, ajust pH to 7.4 

with 5 MHCI 

B) The staining recipes for various enzymes 

AAT (Aspartate aminotransferase, EC 2.6.1.1) (Dimer) 

Tris 300mg 

L-Aspartic acid 65 mg 

a-Ketoglutaric acid 20mg 

Pyridoxal-5-phosphate (P5P) 10mg 

Polyvinylpyrrlidone (PVP) 10 mg 

Fast blue RR salt 25 mg 

Dissolve in 25 ml distrilled water, and then add 25 ml 2 % agar. Incubate the gel 

slice at 37° C for 20-30 mins. 

ADA (Adenosine deaminase, EC 3.5.4.4) (Monomer) 



Adenosine 

MTT (Methyl thiazolyl blue) 

PMS (phenazine methosulphate) 

Xanthine oxidase 

Nucleoside phosphorylase 
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15 mg 

5mg 

1 mg 

0.025 units 

0.625 units 

Dissolve in 25 ml 0.05 M phosphate buffer pH 7.8, and then add 25 ml 2 % agar. 

Incybate the gel slice at 37° C for 15-20 mins. 

FH (Fumarate hydratase, EC 4.2.1.2) (Tetramer) 

Sodium fumarate (Fumaric acid) 

NAD (Nicotinamide adenine dinucleotide) 

Sodium pyruvate (Pyruvic acid) 

Malic dehydrogenase 

MTT 

PMS 

60mg 

20mg 

(20 ~l) 20 mg 

60 units 

5mg 

1 mg 

Dissolve in 25 ml 0.5 M tris-HCI pH 8 and then add 20 ml 2 % agar. Incubate the 

gel slice at 37° C for 15-20 mins. 

G3PDB (Glycerol-3- phosphate dehydrogenase, EC 1.1.1.8) (Dimer) 

DL-ex.-glycerophosphate 200mg 

Sodium pyruvate (Pyruvic acid) 200mg 

EDTA 60mg 

NAD 15 mg 

MTT 5 mg 

PMS 1 mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 20 ml 2 % agar. Incubate the 

gel slice at 37° C for 10-15 mins. 

G6PDB (Glucose-6-phosphate dehydrogenase, EC 1.1.1.49) (Dimer) 
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D-Glucose-6-phosphate 

NADP (Nicotinamide adenine dinucleotide phosphate) 

I MMgC12 

MTT 

PMS 

10mg 

Smg 

I ml 

Smg 

1 mg 

Dissolve in 25 ml 0.2 M Tris-Hel pH 8 and then add 25 ml 2 % agar. Incubate the 

gelslice at 37° C for 20-30 mins. 

GPI (Glucose-6-pbspbate isomerase, EC 5.3.1.9) (Dimer) 

D- Fructose-6-phosphate 

NADP 

I MMgCL2 

MTT 

PMS 

Glucose-6-phosphate dehydrogenase 

20mg 

Smg 

100 ml 

5mg 

1 mg 

1.4 units 

Dissolve in 25 m! 0.2 M Tris-HC! pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 37° C for 7-15 mins. 

IDPH (Isocitrate dehydrogenase NADP+, EC 1.1.1.42) (Dimer) 

DL-Isocitric acid 50mg 

NADP 6mg 

MTT 7mg 

PMS 1 mg 

1 MMgC12 1 mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 37° C for 15-20 mins. 
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LOB (L-Lactate dehydrogenase, EC 1.1.1.27) (Tetra mer) 

Sodium lactate (solution) 

NAD 

MTT 

PMS 

200 J.d 

10mg 

5mg 

I mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 m] 2 % agar. Incubate the 

gel slice at 37° C for 10-15 mins. 

MDB (Malate dehydrogenase, EC 1.1.1.37) (Oimer) 

DL-Malic acid 

NAD 

MTT 

PMS 

60mg 

10mg 

Smg 

I mg 

Dissolve in 25 ml 0.2 M Tris-HCl pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 37° C for 10-15 mins. 

PGOH (Phosphogluconate dehydrogenase, EC 1.1.1.44) (Dimer) 

6-Phosphogluconate (Na3) (6-phosphogluconic acid) 10 mg 

I M MgCl2 100 J.11 

NADP 

MTT 

PMS 

5 mg 

5mg 

I mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 37° C for 10-15 mins. 

PGM (Phosphoglucomutase, EC 5.4.2.2) (Monomer) 

a.-D-Glucose-l-phosphate (Sodium) 

I MMgCl2 

NADP 

50mg 

350 J.11 

5 mg 



MTT 

PMS 
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5mg 

1 mg 

Glucose-6-phosphate dehydrogenase 1.4 units 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 mt 2 % agar. Incubate the 

gel slice at 370 C for 5-10 mins. 

SOD (Superoxide dismutase, EC 1.15.1.1) (Dimer) 

NAD 

MTT 

PMS 

10mg 

5mg 

1 mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 370 C or exposed to light at ambient temperature. 

XDH (Xanthine dehydrogenase, EC 1.2.1.37 or 1.1.1.204) (Monomer/Dimer) 

Hypoxanthine 

NAD 

MTT 

PMS 

20mg 

15 mg 

5mg 

1 mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 370 C for 15-20 mins. 

XOD (Xanthine oxide dismutase, EC 1.1.3.22) (Dimer) 

Hypoxanthine 

MTT 

PMS 

15 mg 

5mg 

1 mg 

Dissolve in 25 ml 0.2 M Tris-HCI pH 8 and then add 25 ml 2 % agar. Incubate the 

gel slice at 370 C for 15-20 mins. 



C) Fixing solution for starch gel stain 

Glacial acetic acid 

Methanol, (ethanol) 

Distilled water 

Mix thouroughly 

D) Calculating formulas employed 
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1. Chi-square test for goodness-of-fit (Sokal& Rohlf, 1969) 

"i = ~ (Obs-Expi(Exp)"l 

'Obs' = observed genotype frequencies 

'Exp' = expected genotype frequencies 

200ml 

1,000 mt 

1,000 ml 

The expected genotype frequencies were calculated using Levene's (1949) formula 

for small samples. 

E(Xi/) = Yi (Yj l)(4n-2)"1 

E(Xij) = 1'1 Yj2n- 1r1 

Where X~ = the number of alai homozygotes in the sample, ~j = the number of 

ala; heterozygotes in the sample, 1'1 = the number of ai alleles in the sample, .lJ = 

the number of OJ alleles in the sample, and n = the sample size. 

2 Expected heterozygosity (unbiased estimate of Nei, 1978) 

For a single locus, an unbiased estimate of heterozygosity is given by 

h = 2n(I-~/)/(2n-l), 

whereas the corresponding unbiased estimat of H averaged over all loci is 

H=~h/r , 
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where Pi is the frequency of the ifJt allele at a locus in a sample from the population, 

hk the value of h for the kfJt locus, and r the total number of loci investigated. The 

sample size n may be vary from locus to locus. 

S.E. = ""Var 

V ar = ,,£(hk-H)/r(r-l) 
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APPENDIX 6 

HISTOLOGICAL PROCEDURE 

A) Fixation 

The aim of fixation is : 

1. To prevent autolysis, bacterial decomposition and putrefaction 

2. To coagulate the tissue so to prevent loss of easily diffusible substances such as 

glycogen. 

3. To safeguard the tissue against the damaging effects of tissue processing. 

4. To leave tissues in a condition which facilitates differential staining with dyes 

and other reagents. 

Material for histological examination should be placed in fixative for at least 24 

hours prior to cassetting. 10 % neutral buffered formal saline is normally used. One 

volume of tissue per 25 volumes of fixative is recommended. Individual tissues 

must be of a suitable size to allow permeability of fixative. 

Formalin is an irritant of eyes, nose and skin. It should be handled only in a fume 

cabinet and disposable gloves worn whilst handling and dissecting sample. 

10 % Neutral ButTer Formalin 

Sodium dihydrogen phosphate (monohydrate) 

Sodium hydrogen phosphate (anhydrous) 

Formaldehyde 

Distilled water 

4.0 g 

6.5 g 

100mi 

900ml 



Bouin's fixative Solution 

Glacial acetic acid 

Formalin (37% formadehyde) 

Saturated aqueous picric acid 

250 

1 part 

5 parts 

15 parts 

Other commonly used fixatives include Gluteraldehyde, Camoy's and Davidson's. 

B) Cas setting 

The allocated case number is entered on the cassette using a pencil (ink will be 

removed by solvents during processing). 

Tissue samples should be trimmed to a suitable size and must not be overcrowded 

in cassettes as this will lead to ineffective dehydration and ultimately difficulty in 

sectioning. 

Small samples are wrapped in tissue paper before placing in the cassette. Soft and 

hard tissues should be kept separate. Cassetted samples should not be allowed to 

dry out and must be left in a bowl of water or fixative until loading onto the 

processor. 

C) Processing 

The aim of processing is to impregnate the tissue with an embedding medium 

which will give support to the tissue during section cutting. Paraffin wax 

embedding is most commonly used. 

First, water is removed from the tissues by immersing them in a graded series of 

alcohols, ending in absolute alcohol. This is followed by immersion in a clearing 
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agent (Chloroform) which is miscible with both alcohol and wax. The clearing 

agent is therefore easily removed by the molten wax in the final stage. 

This procedure is carried out by placing the cassettes into a basket which is moved 

round automatically by a tissue processor at the appropriate time intervals. 

Schedule :-

1. 50 % Methylated Spirit 1 hr. 

2. 80 % Methylated Spirit 2 hrs. 

3. 100 % Methylated Spirit 2 hrs. 

4. 100 % Methylated Spirit 2 hrs. 

5. 100 % Methylated Spirit 2 hrs. 

6. 100 % Alcohol 2 hrs. 

7. 100 % Alcohol 2 hrs. 

8. Chloroform 2 

hrs. 

9. Chloroform 

1 hr. 

10. Molten Wax 1 hr. 

11. Molten Wax 2 hrs. 

12. Molten Wax 2 brs. 

D) BlOCking out 

Cassettes are removed from the processor and placed in molten wax until ready to 

block out. 

The metal lid is removed and the appropriate size of base mould selected to give an 

adequate margin of wax around the tissue. The base is tilled with wax and the 
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tissue sample pressed into the wax. The empty cassette is placed on top of the 

mould and topped up with wax:. 

By placing the mould on the cold plate the wax solidifies and the sample is held in 

position. Orientation of the tissue depends primarily on the type of section required. 

Tissues such as skin should be embedded so that the skin edge is uppermost in the 

block. This makes sectioning easier as the soft tissue underneath is cut through 

before the hard skin surface. The wax is allowed to solidify on a cold plate before 

removing to cut sections. 

E) Microtomy 

1. Trimming in 

The surface layer of wax has to first be removed to expose the complete surface of 

the specimen. This is carried out on the microtome using an old blade. The rate of 

advancement of the block towards the knife is determined manually at this stage. 

2. Section cutting 

Before sections can be obtained from blocks of hard tissue it is often necessary to 

surface decalcify them. This is carried out by placing blocks face down in a vessel 

containing a layer of decalcifying solution for approximately 1 hour. Blocks of soft 

tissue which have been hardened excessively during processing can be soaked in 

water. 

Blocks are cooled using a cold plate prior to sectioning. 



253 

Specimens are clamped into the block holder which is automatically advanced 

every rotation of the operating wheel (normally 5 /lm). When a "ribbon" is obtained 

this is removed and floated out on a water bath. The best section is selected and 

picked up on a clean glass slide. The case number is marked on the slide using a 

diamond pencil and the slide is placed face down on a hotplate. Racked slides are 

then dried in an oven at 60° C for at least one hour before staining. 

F) Staining 

In order to examine sections effectively under the microscope they require to be 

stained. Many different staining techniques can be used, the most common being 

Haematoxylin and Eosin. 

1. Xylene 

2. Alcohol I 

3. Methylated Spirits 

4. Running tap water 

5. Haematoxylin 

6. Wash in tap water 

7. Acid Alcohol 

8. Wash in tap water 

9. Scott's tap water 

Check staining microscopically at this stage 

10. Wash well 

11. Eosin 

12. Quick wash in tap water 

13. Methylated spirit 

14. Alcohol II 

15. Alcohol I 

5 min. 

2 min. 

1.5 min. 

wash 

5 min. 

3 quick dip. 

30 sec. 

5 min. 

30 sec. 

2 min. 

1.S min. 
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16. Xylene 5 min. 

17. Xylene 

Sections must not be left out of Xylene as they will dehydrate. Sections are 

coverslipped after the last Xylene in the staining series. Once CQverslipped, sections 

are labelled with the case number, and mounting fluid allowed to dry before 

examination. 
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