A SIMPLIFIED ANALYSIS OF PROPULSION INSTALLATION

LOSSES FOR COMPUTERIZED AIRCRAFT DESIGN

Shelby J. Morris, Jr., Walter P. Nelms, Jr., and Rodney O. Bailey

Ames Research Center Moffett Field, California 94035

August 1976

${ }^{\text {1. }}$ Neport No. ${ }^{\text {No }}$ TM $\mathrm{X}-73,136$	2. Government Accession No.		3. Recipient's Catalog No.	
4. Titte and Subtitle A SIMPLIFIED ANALYSIS OF PROPULSION INSTALLATION LOSSES FOR COMPUTERIZED AIRCRAFT DESIGN			5. Report Date	
			6. Performing Organization Code	
7. Author(s) Shelby J. Morris, Jr., Walter P. Nelms, Jr., and Rodney 0. Bailey			a. Performing Orgenization Report No.A-6608	
9. Performing Organization Name and Address NASA-Ames Research Center Moffett Field, Calif. 94035			10. Work Unit No. 791-40-15	
			11. Contrect or Grant No.	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D. C. 20546			Technical Memorandum	
			14. Sponsoring Agency Code	
15. Supplementary Notes				
16. Abstract A simplified method is presented for computing the installation losses of aircraft gas-turbine propulsion systems. The method has been programmed for use in computer-aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the $F-5 A$ and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.				
17. Key Words (Suggested by Authon Propulsion instal Engine installati design; Additive bypass drags; Inl	osses; Aircraft eed and ure recovery	18. Distribution Statement Unlimited STAR Category - 05		
19. Security Classif. (of this report) Unclassified	20. Security Clasif. (of this pege) Unclassified		$\begin{aligned} & \text { 21. No. of Pages } \\ & 71 \end{aligned}$	22. Price* $\$ 4.25$

[^0]The notation used in the following sections is defined with the corresponding FORTRAN name used in the program indicated parenthetically. Figure 1 shows the nomenclature used for the various inlet and nozzle locations. The values below are defined per engine and the drag coefficients are based on inlet capture area unless noted. The starred (*) items are required program inputs which are either user input or are supplied by another subroutine in the aircraft synthesis program.

Symbol	Code	
A		area, $\mathrm{m}^{2}, \mathrm{ft}^{2}$
${ }^{A_{A U X}} / A_{E N G}$	(AUAENG)*	auxiliary systems area ratio
$A_{B L} / A_{c}$	(ABLEAC)	bleed mass flow ratio
$\mathrm{A}_{\mathrm{BP}} / \mathrm{A}_{\mathrm{c}}$	(ABYPAC)	bypass mass flow ratio
A_{c}	(AC)	inlet capture area (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
${ }^{\text {A }} \mathrm{CC}$	(ACC)	area of exit nozzle (joint point between engine and fuselage)
A_{E}		area of exit, $\mathrm{m}^{2}, \mathrm{ft}^{2}$
$A_{E F}$	(AEF)*	engine face flow area (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
$A_{\text {ENG }}$	(AENG)*	engine face total area (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
${ }^{\text {A EXIT }}$	(AEXIT)	nozzle exit area (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
$\mathrm{A}_{\mathrm{NOZ}}^{\mathrm{TH}}$	(ANOZT)	nozzle throat area (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
A_{0}	(AO)	area of free-stream stream tube (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
A_{0} / A_{c}	(AOAC)	mass flow ratio of inlet (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
A_{s}	(AS)	projected frontal area of compression surface, $\mathrm{m}^{2}, \mathrm{ft}^{2}$
$\mathrm{A}_{\text {TH }}$	(AT)	inlet throat area (per engine), $\mathrm{m}^{2}, \mathrm{ft}^{2}$
$\mathrm{A}_{\mathrm{TH}}^{\mathrm{D}}$	(ATD)	inlet throat area (per engine) at M $\mathrm{MES}, \mathrm{m}^{2}, \mathrm{ft}^{2}$
$A_{V E N T} / A_{c}$	(AVEACD)	ratio of engine ventilation flow area to inlet capture area (per engine)

$A_{\text {WEDGE }} / A_{c}$	(AWAENG)*	boundary-layer diverter area ratio
${ }^{\text {A }} \mathrm{y}$	(AY)	```projected frontal area of compression surface forward of point of normal shock impingement, m```
$C_{\text {D }}$		drag coefficient
$\mathrm{C}_{\mathrm{D}_{\mathrm{AD}}}$	(CDAD)	supersonic spill additive drag coefficient
$\mathrm{C}_{\mathrm{D}}{ }_{\mathrm{AUX}}$	(CDAUX)	auxiliary systems drag coefficient
$\mathrm{C}_{\mathrm{D}_{\mathrm{BL}}}$	(CDBE)	bleed drag coefficient
$\mathrm{C}_{\mathrm{D}_{\mathrm{BP}}}$	(CDBP)	bypass drag coefficient
$\mathrm{C}_{\mathrm{D}_{\mathrm{BT}}}$	(CDBT)	nozzle boattail drag coefficient
$\mathrm{C}_{\mathrm{D}}{ }_{\mathrm{DIV}}$	(CDDIV)	boundary-layer diverter drag coefficient
$\mathrm{C}_{\mathrm{D}_{\mathrm{INF}}}$	(CDI)	nozzle interference drag coefficient
$C_{D_{B}}$		boattail drag coefficient based on ${ }^{\text {A }} \mathrm{CC}$
${ }^{C_{P}}{ }_{\text {DIV }}$		pressure coefficient on diverter surface
${ }^{C_{P}}$	(CPCS)	pressure coefficient on compression surface
$\mathrm{C}_{\mathrm{S}} \text { or } \mathrm{C}_{\mathrm{D}_{S P}}$	(CS or CDADS)	subsonic spill additive drag coefficient
C_{T}		thrust coefficient
${ }^{\mathrm{D}} \mathrm{CC}$	(DCC)	nozzle diameter at customer connect, m, $f t$
$\mathrm{D}_{\text {ENG }}$	(DENG)	engine face diameter, m, ft
g		acceleration of gravity, m/sec ${ }^{2}, \mathrm{ft} / \mathrm{sec}^{2}$
$\mathrm{D}_{\mathbf{g}}$	(DEXIT)	nozzle exit diameter, m, ft
h		altitude, m, ft
IPR	(IPR)*	inlet pressure recovery code
L		distance between normal shock position and inlet 1ip

L/ y_{c}	(XLVD)	distance between normal shock position and inlet lip ratioed to inlet capture diameter
$\mathrm{L}_{\mathrm{NOZ}}$	(XLNOZ)	nozzle length, m, ft
M		Mach number
$\dot{\text { m }}$		mass flow, kg/sec, $1 \mathrm{~b} / \mathrm{sec}$
\dot{m}_{AUX}		auxiliary systems mass flow, $\mathrm{kg} / \mathrm{sec}, \mathrm{lb} / \mathrm{sec}$
$\dot{\mathrm{m}}_{\mathrm{BP}}$		bypass mass flow, $\mathrm{kg} / \mathrm{sec}, \mathrm{lb} / \mathrm{sec}$
$M_{\text {cone }}$	(XMCONE)	compression surface Mach number
M DES	(XMDES)*	inlet design Mach number
M_{E}		exit Mach number
\dot{m}_{E}		exit mass flow, $\mathrm{kg} / \mathrm{sec}, \mathrm{lb} / \mathrm{sec}$
$M_{E F}$	(XMEF)*	engine face Mach number
$M_{\text {EXIT }}$	(XMEX)	nozzle exit Mach number
M_{TH}	(XMT)*	inlet throat Mach number
M_{∞}	(XMO)*	free-stream Mach number
$N_{\text {ENG }}$	(EN)*	number of engines
NPR	(NPR)*	nozzle pressure ratio
P		static pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
P_{E}		exit static pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{PR}_{\text {DES }}$	(PRDES)	supersonic diffuser pressure recovery at MES
$\mathrm{PR}_{\text {SUB }}$	(PRSUB)	subsonic diffuser pressure recovery
$\mathrm{PR}_{\text {SUP }}$	(PR)	supersonic diffuser pressure recovery
$\mathrm{PR}_{\text {TOT }}$	(PRTOT)	total pressure recovery to engine face
PSPIN		cone surface pressure ratio
P_{t}		total pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{P}_{\mathrm{t}_{\mathrm{E}_{\mathrm{Ble}}}}$	(PTBLE)	bleed exit total pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$

$\mathrm{P}_{\mathrm{t}_{\text {Bypas }}}$	(PTBYP)	bypass exit total pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$P_{t_{E F}}$		total pressure at engine face, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{P}_{\text {TH }}$		cone static pressure at the throat, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{P}_{\mathrm{t}_{\mathrm{NOZ}}}$	(PTNOZ)*	nozzle exit total pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$\mathrm{P}_{\mathrm{t}_{\mathrm{TH}}}$		total pressure at inlet face, $N / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
$P_{t_{\infty}}$	(PTO)*	free-stream total pressure, $\mathrm{N} / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}^{2}$
P_{∞}	(PINF)*	free-stream static pressure, $N / \mathrm{m}^{2}, 1 \mathrm{~b} / \mathrm{ft}^{2}$
Q or q_{∞}	(Q)*	free-stream dynamic pressure, $N / \mathrm{m}^{2}, \mathrm{lb} / \mathrm{ft}{ }^{2}$
SFC		specific fuel consumption, $\mathrm{kg} / \mathrm{N}-\mathrm{hr}, \mathrm{lb} / \mathrm{lb}-\mathrm{hr}$
S / D_{g}	(SODG)*	nozzle spacing ratio
$S_{\text {ref }}$	(SWING)*	wing reference area, $\mathrm{m}^{2}, \mathrm{ft}^{2}$
T		thrust, $\mathrm{N}, 1 \mathrm{l}$
T_{g}	(FIP)*	gross thrust per engine, N, lb
T_{t}		total temperature, K, R
$\mathrm{T}_{\mathrm{t}_{\mathrm{NOZ}}}$	(TTNOZ)*	nozzle exit total temperature, K, R
$\mathrm{T}_{\mathrm{t}_{\infty}}$	(TTO)*	free-stream total temperature, K, R
V_{E}		exit velocity, m/sec, ft/sec
V_{∞}		free-stream velocity, m/sec, ft/sec
W_{a}	(WA)*	engine airflow, kg/sec, lb/sec
$\mathrm{x}_{\text {cone }} / \mathrm{yc}$	(XCOYC)	distance from cone tip to inlet face ratioed to inlet capture diameter
y_{c}	(YC)	inlet capture diameter, m, ft
y_{s}		diameter of inlet centerbody at inlet throat, m, ft
β	(BETA)	nozzle boattail angle, deg

$\triangle \mathrm{PR}$	(DELPR)*	incremental pressure recovery correction
Y	(GAMMA)	isentropic constant
λ	(LAMBDA)	angle at inlet lip between average direction of flow and longitudinal axis of inlet
ρ_{∞}	(RHO)	free-stream static density, $\mathrm{kg} / \mathrm{m}^{3}, \mathrm{lb} / \mathrm{ft}^{3}$
θ	(THETA)	cone half angle, deg
${ }^{\theta} \mathrm{D}$	(THDIV)	boundary-layer diverter wedge angle, deg
${ }^{\theta} \mathrm{E}$		exit angle, deg (COSDE is cosine of exit angle in program)

LOSSES FOR COMPUTERIZED AIRCRAFT DESIGN

Shelby J. Morris, Jr., Walter P. Nelms, Jr., and Rodney O. Bailey
Ames Research Center

SUMMARY

A simplified method is presented for computing the installation losses of aircraft gas-turbine propulsion systems. The method has been programmed for use in computer-aided conceptual aircraft design studies that cover a broad range of Mach numbers and altitudes. The items computed are: inlet size, pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drags, auxillary air systems drag, boundary-layer diverter drag, nozzle boattall drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects are described and computer codes for the calculation of these effects are furnished. The results of these methods are compared with selected data for the F-5A and other aircraft. The computer program can be used with uninstalled engine performance information which is currently supplied by a cycle analysis program. The program, including comments, is about 600 FORTRAN statements long, and uses both theoretical and empirical techniques.

INTRODUCTION

The design of advanced aircraft systems requires the consideration of many different tradeoffs and parameters to arrive at an optimum design for a particular requirement or group of requirements. One is the effect of interaction between the aerodynamics and the propulsion of these systems. Propulsion installation effects on high-speed aircraft can amount to 10 percent or more of the aircraft drag and can also degrade the propulsion thrust via inlet total-pressure recovery penalties and nozzle-flow penalties. These effects are significant in high-speed aircraft design, and thus require attention, even in early design studies.

Tradeoff studies are usually done manually or, more recently, by many large computer programs with manual communication between them. As computer capabilities have increased, it has become possible to communicate between these disciplines within the computer in an automated or integrated fashion. This integration allows computation of the trajectory of the aircraft over its entire mission, thereby providing the ability to determine the effects of various parameters and to optimize the aircraft for specific requirements subject to various constraints. The method and computer code presented in this report is intended to supply the propulsion installation losses as required in this process. The code is designed to work as part of a propulsion module
in the framework of the Aircraft Synthesis Program, ACSYNT (fig. 2), which has been developed at the Ames Research Center (ref. 1).

The purpose of this report is to document the methods and the computer code for propulsion installation losses as presently employed in ACSYNT. Limited example comparisons of calculations with data are made and areas of further research identified. It should be emphasized that, at present, the methods are preliminary in nature and further work is needed to improve the techniques and to perform additional correlations with data.

PROGRAM PHILOSOPHY

The purpose of the Propulsion Installation Calculation (PRINC) module is to compute the air induction system and nozzle/afterbody effects in the ACSXNT program. The procedures employed in the present subroutine are general, since the methods must be applicable to a variety of inlet, engine, and nozzle types over a broad range of Mach numbers and altitudes. An additional important requirement is that the calculations be very rapid, since installation losses are computed many times (over 1000) in a run of the ACSYNT program.

Figure 3 shows a block diagram of the method. A modular approach is used so that future additions and improvements can be easily incorporated. Items computed include (1) inlet pressure recovery, (2) inlet size, (3) additive and spillage drags, (4) bleed and bypass drags, (5) auxiliary system drag, (6) boundary-layer diverter drag, (7) nozzle boattail drag, and (8) nozzle interference drag. In figure 3, those parameters listed inside the boxes are output from the various modules and those parameters listed beneath each box are required inputs to each module.

There are varied accounting approaches for the aerodynamic propulsion system and propulsion system/airframe interaction losses. The method employed in the PRINC module is to charge all losses (listed above) to the engine thrust and specific fuel consumption (SFC) as indicated in figure 4. However, the total propulsion installation drag as well as the individual propulsionrelated drags are computed separately so that any desired accounting method may be adopted by the user. An available option in the program is a multiplying factor for any or all of the propulsion installation losses to adjust the level of these penalties at the user's discretion.

DESCRIPTION OF METHODS

This section documents the methods used in the propulsion installation loss module (PRINC) and diagrammed in figure 3. It is assumed, for the inlet drag calculations, that the inlet is an axisymmetric, external compression design and, for the additive drag calculation, that the surface pressures are for a cone of an average half angle of 20°. The drag coefficients computed in the following development are based on inlet capture area, except where
noted. The equations, derivations, and programming details are presented in appendix A. A FORTRAN listing of all the modules is included in appendix B.

Inlet Pressure Recovery - The inlet pressure recovery is divided into two parts, the pressure recovery in the region ahead of the inlet face and the pressure recovery in the subsonic diffuser after the inlet face. The pressure recovery in the region ahead of the inlet face is estimated by the use of the standard AIA or Military Specification 5008 B methods or by the assumption of normal shock pressure recovery (appendix A). The pressure recovery versus Mach number computed by these three methods is shown in figure 5 .

The subsonic diffuser pressure recovery is estimated by the empirical method of Ball (ref. 2), which gives this pressure recovery as a function of the throat Mach number, the inlet lip bluntness, and the free-stream Mach number. For the present study, the inlet lip has been assumed to be sharp and, thus, the inlet subsonic diffuser pressure recovery is independent of lip bluntness or free-stream Mach number. Also, the geometric inlet throat Mach number is equal to the effective inlet throat Mach number as described in reference 2 .

A fourth method available in the program is to input the inlet total pressure recovery as a function of free-stream Mach number in tabularized form.

Inlet Sizing - The inlet face flow area is determined by a mass balance (conservation of mass) between the inlet face and the engine face. The mass flow at the engine face is determined by the requirements of the engine. The inlet face flow area is increased over that of the engine to allow for bypass, bleed, and powerplant ventilation mass-flow requirements. The free-stream stream-tube cross-sectional area is determined by a mass balance between the free stream and the inlet face. The inlet design Mach number is used to define the inlet capture area, which is equal to the free-stream stream-tube crosssectional area at the engine's maximum power setting. The inlet capture area is held constant at off-design conditions; however, the centerbody is allowed to move so that the inlet throat Mach number is held at some specified value. No check is made on the mechanical difficulty of achieving this variation. The key assumption in this analysis is that the inlet throat Mach number is constant. The programming details of this subroutine are included in appendix A.

Additive Drag - The engine thrust is referenced to free-stream conditions. The loss in momentum of the airflow ahead of the inlet system must be accounted for in the bookkeeping system. This loss in momentum ahead of the inlet face is called "additive drag" and is a function of the inlet geometry, the freestream Mach number, and the mass flow of the engine.

The inlet additive drag is computed by a momentum balance between the inlet face and the free stream. The cosine of average flow angle (with respect to the inlet centerline) at the inlet face is assumed to be 1.0. The inlet is assumed to be external compression (that is the normal shock is outside of the cowl lip). The inlet throat Mach number is held constant at some specified
value. The inlet geometry is assumed to be axisymmetric. The additive drag can be computed (ref. 3) from

$$
\begin{aligned}
C_{D_{A D}}= & \frac{2}{\gamma M_{\infty}^{2}}\left[\frac{A_{T H}}{A_{c}} \frac{P_{t_{\infty}}}{P_{\infty}} \frac{P_{t_{T H}}}{P_{t_{\infty}}} \frac{P_{T H}}{P_{t_{T H}}}\left(\gamma M_{T H}^{2}+1\right) \cos \lambda\right. \\
& \left.+\frac{A_{c}-A_{T H}}{A_{c}} \frac{\overline{P_{c o n e}}}{P_{\infty}}-1.0-\frac{A_{o}}{A_{c}} \gamma M_{\infty}^{2}\right]+C_{S}
\end{aligned}
$$

The cone pressure calculation uses a polynomial approximation presented by Lighthill (ref. 4). The subsonic spillage effect C_{s} is computed using an empirical technique described by Sibulkin (ref. 3). A complete description of the method is included in appendix A.

Bypass Drag - In high-Mach-number aircraft design the inlet is usually sized at the maximum design Mach number. During off-design operation at lower Mach numbers, the inlet usually has the capacity to supply an excess airflow to the engine. This excess airflow must be either taken onboard the aircraft and passed (bypassed) around the engine or diverted (spilled) around the inlet system.

The bypass drag is computed from a momentum balance between the freestream and the bypass exit. The bypass exit nozzle can be either sonic or fully expanded. After considerable simplification (see appendix A), the momentum balance yields

$$
\begin{aligned}
\frac{C_{D}}{\left(A_{B P} / A_{c}\right)}= & 2\left[1-\cos \theta_{E} \frac{M_{E}}{M_{\infty}}\left(\frac{1+0.2 M_{\infty}^{2}}{1+0.2 M_{E}^{2}}\right)^{0.5}\right] \\
& +\left\{\frac{\cos \theta_{E}}{0.7 M_{\infty}^{2}} \frac{M_{\infty}}{M_{E}}\left(\frac{1+0.2 M_{E}^{2}}{1+0.2 M_{\infty}^{2}}\right)^{3}\left[\frac{1}{\left(P_{t_{E}} / P_{t_{\infty}}\right)}-\left(\frac{1+0.2 M_{\infty}^{2}}{1+0.2 M_{E}^{2}}\right)^{3.5}\right]\right\}
\end{aligned}
$$

where γ is assumed to be 1.4. If it is assumed that the bypass exit nozzle is sonic, then

$$
M_{E}=1.0
$$

If it is assumed that the bypass exit nozzle is fully expanded, then

$$
\begin{aligned}
& P_{E}=P_{\infty} \\
& \left.M_{E}=\left[5\left(P_{t_{E}} / P_{\infty}\right)^{0.286}-1\right)\right]^{0.5}
\end{aligned}
$$

The bypass exit pressure recovery is assumed to be a fraction of the inlet total pressure recovery (to the engine face). Typical values for this fraction are

$$
P_{t_{E}} / P_{t_{\infty}}=K P_{t_{E F}} / P_{t_{\infty}}
$$

where $0.3 \leq K \leq 0.7$.

Bleed Drag - The inlet compression ramp or cone for typical supersonic inlet designs often have a considerable length exposed to an adverse pressure gradient. This can create a boundary layer which is thick enough to cause losses in engine performance. The problem is particularly acute in regions where a shock wave interacts with this boundary layer. In order to maintain efficient engine performance, part of the boundary layer is removed on these compression surfaces in some inlets, and it is necessary to account for the momentum loss of this bleed flow. A momentum balance between the free stream and the bleed exit yields an expression similar to the bypass drag formulation. The bleed exit can be assumed to be either sonic or fully expanded. The momentum balance yields

$$
\begin{aligned}
\frac{C_{D}}{\left(A_{B L} / A_{C}\right)}= & 2\left[1-\cos \theta_{E} \frac{M_{E}}{M_{\infty}}\left(\frac{1+0.2 M_{\infty}^{2}}{1+0.2 M_{E}^{2}}\right)^{0.5}\right] \\
& +\left\{\frac{\cos \theta_{E}}{0.7 M_{\infty}^{2}} \frac{M_{\infty}}{M_{E}}\left(\frac{1+0.2 M_{E}^{2}}{1+0.2 M_{\infty}^{2}}\right)^{3}\left[\frac{1}{\left(P_{t_{E}} / P_{t_{\infty}}\right)}-\left(\frac{1+0.2 M_{\infty}^{2}}{1+0.2 M_{E}^{2}}\right)^{3.5}\right]\right\}
\end{aligned}
$$

where γ is assumed to be equal to 1.4. If it is assumed that the bleed exit nozzle is sonic, then

$$
M_{E}=1.0
$$

If it is assumed that the bleed exit nozzle is fully expanded, then

$$
\begin{aligned}
& P_{E}=P_{\infty} \\
& M_{E}=\left[5\left(P_{t_{E}} / P_{\infty}\right)^{0.286}-1\right]^{0.5}
\end{aligned}
$$

The bleed exit pressure recovery is assumed to be a fraction of the inlet total pressure recovery (to the engine face). Typical values for this fraction are

$$
\mathbf{P}_{t_{E}} / P_{t_{\infty}}=K P_{t_{E F}} / P_{t_{\infty}}
$$

where $0.3 \leq K \leq 0.7$.
A complete derivation of these equations is contained in appendix A.

Auxiliary Systems Drag - The auxiliary systems drag accounts for the airflow taken into the aircraft for systems cooling and auxiliary power generation. Many aircraft have small auxiliary inlets mounted at some convenient place to serve this purpose, and the drag created can be significant. It is assumed that the total momentum of the flow into these systems is lost. Therefore the auxiliary system drag is

$$
C_{D_{A U X}}=\frac{\dot{m}_{A U X} V_{\infty}}{Q A_{c}}=\frac{\rho_{\infty} A_{A U X} V_{\infty}^{2}}{\frac{1}{2} \rho_{\infty} V_{\infty}^{2} A_{c}}=2 \frac{A_{A U X}}{A_{c}}
$$

where $A_{A U X} / A_{c}$ is the ratio of the auxiliary system inlet capture area to aircraft inlet capture area. Typical values for this quantity range from 0.005 to 0.01 .

Boundary-Layer Diverter Drag - In many inlet installation systems, the inlets are located close to the aircraft's larger components (i.e., wings, fuselage) which generate regions of low momentum ahead of the inlet. The ingestion of these boundary layers into the inlet creates a nonuniform flow distribution which can cause considerable performance degradation in the engine. This problem has been avoided by the addition of a ramp (a plow) between the inlet and the boundary-layer generating surface. The turning of the flow in these systems adds drag to the aircraft, which must be accounted for. A fit of data (refs. 5 and 6) yields

$$
\begin{aligned}
C_{D_{\text {DIV }}} & =\frac{1.2}{M_{\infty}^{2}} \frac{\theta^{D}}{20} \frac{A_{\text {WEDGE }}}{A_{c}} ; M_{\infty} \geq 1.55 \\
& =0.499 \frac{\theta_{D}}{20} \frac{A_{\text {WEDGE }}}{A_{c}} ; 0.95 \leq M_{\infty} \leq 1.55 \\
& =0.499 \frac{M_{\infty}-0.8}{(0.95-0.80)} \frac{\theta_{D}}{20} \frac{A_{\text {WEDGE }}}{A_{c}} ; 0.80 \leq M_{\infty} \leq 0.95 \\
& =0.0 ; M \leq 0.8
\end{aligned}
$$

Details on the data and a comparison with the fit are given in appendix A.
Boattail Drag - The boattail drag on the airframe back to the point where the nacelle and engine are joined (see fig. 1b) is calculated as part of the aircraft drag. The boattail drag on the portion of the engine which includes the engine nozzle after this joint is charged to the engine performance in the present accounting system. The boattail drag estimation method used is an empirical technique developed by Ball (ref. 2) from wind-tunnel data on isolated boattail nozzles. The nozzle interference drag described in the next section corrects this for installations of more than one engine. The boattail drag is based on the area at the point where the engine is joined to the airframe. The formulation is for an engine nozzle pressure ratio (engine exit
total pressure to free-stream static pressure) of 2.5 ; however, correction terms are included for different nozzle pressure ratios. The engine nozzle exit area is computed from the engine thermodynamic data. The boattail angle is computed from the engine diameter and the assumption that the length of the boattail is equal to the engine diameter. It is also assumed that the diameter of the boattail at the connection point between the engine and aft fuselage or nacelle is 10 percent greater than the engine diameter. A complete description of this procedure is included in appendix A.

Nozzle Interference Drag - The nozzle interference drag accounts for the drag on the base area between multiple nozzles. The independent variables are free-stream Mach number and nozzle spacing ratio S / D_{g} (ratio of the distance between nozzle centerlines to nozzle exit diameter). ${ }^{G}$ The calculation technique, developed by Ball (ref. 2) from wind-tunnel data, estimates the ratio of the drag due to nozzle interference divided by ideal gross thrust at a nozzle pressure ratio of 2.5 . This value is corrected to a drag coefficient based on inlet capture area. A complete description of this computation is included in appendix A.

EXAMPLE CALCULATIONS

This section presents example computations from the PRINC module of typical installation drags, net propulsive thrust, and specific fuel consumption values. After PRINC module calculations of inlet mass flow and propulsion installation drags for a simulated $F-5 A$ are presented, these results are then used to determine the overall installed thrust and SFC of an ACSYNT simulated F-5A. Comparisons are made of these results with $\mathrm{F}-5 \mathrm{~A}$ flight test data.

Mass Flow Summary

The effect of Mach number on engine mass flow ratio A_{0} / A_{c} for the PRINC module simulated $F-5 A$ is presented in figure 6. Note that the $F-5 A$ has no bleed or bypass. The spillage mass flow is the difference between $A_{o} / A_{c}=1.0$ and the A_{0} / A_{c} set by the engine (plotted). This difference would be much larger for an aircraft with a higher inlet design Mach number MDES. The method is capable of handling bleed and bypass in the manner described in the section on bypass and bleed drag.

Total Installation Drag

Figure 7 is an example PRINC module calculation of the installation drag coefficients based on wing reference area as a function of M_{∞} for a simulated F-5A inlet system. The total installation drag coefficient is shown, as well as the various components for maximum afterburning (A/B) and military power settings. For this same inlet system, the effects of engine throttling at $M=0.9$ and 1.2 are shown in figures $8 a$ and b.

Net Propulsive Thrust Correlation

A comparison of the thrust calculated by the ACSYNT propulsion subroutine and the PRINC module with data determined from F-5A flight tests is shown in figures 9 a and b for maximum A / B and military power settings. The results are presented for two engines over a range of Mach numbers at 10973 m (36000 ft). The upper portion of each figure compares the uninstalled thrust from the ACSYNT propulsion module with corresponding values from the J-85-GE-13 engine specifications (ref. 7). Both thrust values are based on the AIA standard ram recovery schedule. The table shows the percentage difference between the calculated results and data for selected Mach numbers; that is,

$\frac{\text { Calculated-Actual }}{\text { Actual }} \times 100$

The lower portion of the figure shows a comparison between the installed thrust calculated by the ACSYNT propulsion subroutine with corrections calculated by the PRINC module and flight-test modified data from reference 8 . The PRINC module calculations include corrections for a pressure recovery schedule based on a corrected airflow of $20.4 \mathrm{~kg} / \mathrm{sec}(45 \mathrm{lb} / \mathrm{sec}$) (ref. 9) and for the following installation losses - additive drag, auxiliary systems drag, boundarylayer diverter drag, and nozzle boattail and interference drags. Bleed and bypass drags are zero. Exactly what corrections are included in the flighttest modified data of reference 8 is not clear, but it is suspected that losses for the boundary-layer diverter and the nozzle are not included. This would account for some of the overcorrection by the PRINC module. With a few exceptions, the percentage differences for both power settings are within 10 percent.

SFC Correlation

Figures 10a and b show comparisons between specific fuel consumption values from the ACSYNT propulsion subroutine and the PRINC module and data determined from $F-5 A$ flight tests. These comparisons correspond to the thrust correlations shown in figures 9 a and b . As with thrust, the percentage differences are generally within 10 percent. It should be noted that the $\mathrm{F}-5 \mathrm{~A}$ flight-test evaluation may use a different method of bookkeeping, which could account for some of the differences.

CONCLUDING REMARKS

A simplified method has been presented for computing the installation losses of aircraft gas-turbine propulsion systems. The program employs rapid and sufficiently accurate estimating procedures suitable for use in computeraided conceptual design studies of aircraft systems over a broad range of Mach numbers and altitudes. The items which can be computed are: inlet size and pressure recovery, additive drag, subsonic spillage drag, bleed and bypass drag, auxiliary air systems drag, boundary-layer diverter drag, nozzle boattail
drag, and the interference drag on the region adjacent to multiple nozzle installations. The methods for computing each of these installation effects have been described and compared with either data or the results of more elaborate computing procedures. Finally, a comparison of the overall results of the method with F-5A performance specifications indicates an accuracy within about 10 percent in installed thrust and specific fuel consumption. This is considered sufficiently accurate for computerized design at the early stages of vehicle definition.

DEVELOPMENT OF PROGRAMMED EQUATIONS

This appendix contains a brief development and description of the equations that are used in the PRINC program. The equations are presented by subroutine.

INLET PRESSURE RECOVERY
(MODULES PRSUBS AND PRINL)

This section is divided into two modules, one to calculate the subsonic diffuser pressure recovery $P R_{S U B}$ and another to calculate both the supersonic diffuser recovery $P R_{S U P}$ and the total pressure recovery to the engine face $\mathrm{PR}_{\text {TOT }}$.

Subsonic Diffuser Recovery
The empirical method of reference 2 is used. For $\gamma=1.4$,

$$
P_{S U B}=\frac{P_{t_{E F}}}{P_{t_{T H}}}=1.0-E P S\left\{1.0-\frac{1.0}{\left[1.0+0.2\left(M_{\mathrm{TH}}\right)^{2}\right]^{3}} 3.5\right.
$$

where

$$
\mathrm{EPS}=0.37148\left(\mathrm{M}_{\mathrm{TH}}\right)^{2}-0.231428\left(\mathrm{M}_{\mathrm{TH}}\right)+0.06
$$

Supersonic Diffuser Recovery
Four different options are available for calculating the supersonic diffuser recovery:
(1) AIA standard ram recovery - From reference 10, we have

$$
\begin{aligned}
P_{R U P} & =\frac{P_{t_{T H}}}{P_{t_{\infty}}}=1.0 ; M_{\infty} \leq 1.0 \\
P_{S U P} & =\frac{P_{t_{T H}}}{P_{t_{\infty}}}=1.0-0.1\left(M_{\infty}-1.0\right)^{1.5} ; \quad M_{\infty}>1.0
\end{aligned}
$$

(2) Military Specification 5008B - Also from reference 10 , we have

$$
\begin{aligned}
& P_{\text {SUP }}=\frac{{ }^{P_{t}}}{P_{T H}}=1.0 ; \quad M_{\infty} \leq 1.0 \\
& P_{S U P}=\frac{{ }_{\mathrm{P}_{\mathrm{tH}}}}{\mathrm{P}_{\mathrm{t}_{\infty}}}=1.0-0.075\left(\mathrm{M}_{\infty}-1.0\right)^{1.35} ; \quad M_{\infty}>1.0
\end{aligned}
$$

(3) Normal shock - From reference 11, we have

$$
\begin{aligned}
\mathrm{PR}_{\mathrm{SUP}} & =\frac{{ }^{P} t_{T H}}{P_{t_{\infty}}}=1.0 ; \quad M_{\infty} \leq 1.0 \\
\mathrm{PR}_{\mathrm{SUP}} & =\frac{{ }^{\mathrm{t}} \mathrm{t}_{\mathrm{TH}}}{P_{\mathrm{t}_{\infty}}}=\left(\frac{6 \mathrm{M}_{\infty}^{2}}{M_{\infty}^{2}+5.0}\right)^{7 / 2}\left(\frac{6}{7 M_{\infty}^{2}-1.0}\right)^{5 / 2} ; \quad M_{\infty}>1.0
\end{aligned}
$$

(4) Input table of $\mathrm{PR}_{\text {SUP }}$ vs M_{∞} - See program listing in appendix B.

Figure 5 shows a comparison of the first three supersonic diffuser pressure recovery schedules described above.

The particular total pressure recovery schedule to be used is selected by use of the control parameter IPR, as follows:

| IPR Code | \quad Recovery schedule | |
| ---: | :--- | ---: | :--- |
| $=1$, | | ALA standard ram recovery $-\triangle \mathrm{PR}$ |
| $=2$, | | MIL Specification 5008B $-\triangle \mathrm{PR}$ |
| $=3$, | | normal shock $-\triangle \mathrm{PR}$ |
| $=4$, | | table look up |

where $\triangle P R$ is an input incremental pressure recovery correction. If IPR is positive the installation effects are included. If IPR is input with a minus sign, the installation effects are neglected and the thrust is corrected only for the pressure recovery losses (i.e., IPR $=-1$ gives AIA ram recovery $\triangle P R$ and no installation losses).

If IPR is input as a positive number, but preceded by a one (i.e., 11, 12, 13, or 14), the installation effects are included and the subsonic diffuser pressure recovery is computed from the empirical results of reference 2 (see subsonic diffuser recovery in the previous section). Thus, $I P R=11$ gives the AIA ram recovery multiplied by $\mathrm{PR}_{\text {SUB }}$ with the installation effects included.

The subsonic diffuser pressure recovery is multiplied by the supersonic diffuser pressure recovery to give the total pressure recovery to the engine face. That is,

$$
P R_{T O T}=\frac{{ }_{P_{E F}}}{P_{t_{T H}}} \times \frac{P_{t_{T H}}}{P_{t_{\infty}}}=P R_{S U B} \times P R_{S U P}
$$

Also in this module, the supersonic diffuser pressure recovery at the inlet design Mach number ($P_{\text {DES }}$ at $M_{D E S}$) is multiplied by the subsonic pressure recovery to give the total pressure recovery to the engine face.

INLET SIZING (MODULE SIZIN)

This module is used to compute the inlet capture area A_{c}. The inlet capture area is defined to be the total projected frontal area of the inlet, including the projected frontal area of the centerbody (see fig. l). The inlet capture area is computed at the design Mach number, altitude, and power setting, and is held fixed for off-design operation.

A useful relationship which is needed in the following development is the corrected airflow per unit area, which is defined to be

$$
\begin{aligned}
W F F & \equiv \frac{W_{a} \sqrt{T} t}{P_{t} A}=g \sqrt{\frac{\gamma}{R}} M\left(1+\frac{\gamma-1}{2} M^{2}\right)^{-\left(\frac{\gamma+1}{2(\gamma-1)}\right)} \\
& =0.92 M\left(\frac{1}{1+0.2 M^{2}}\right)^{3} ; \quad \gamma=1.4, \quad g=32.2, \quad \text { and } \quad R=1716
\end{aligned}
$$

WFF(M) denotes the corrected airflow per unit area (sometimes called the weight flow function) calculated for the Mach number specified in the parenthesis. For example, WFF($M_{E F}$) means the weight flow function calculated for the engine face Mach number.

Inlet Throat Area

For external compression inlet designs with sharp lips the inlet face flow area is equal to the inlet throat area. The inlet throat Mach number is input to the program and the engine face Mach number and engine face flow area $A_{E F}$ are obtained from the engine description. Therefore, using conservation of mass between the engine face and inlet throat, the inlet throat area can be calculated.

$$
A_{T H}=A_{E F}\left[\frac{W F F\left(M_{E F}\right)}{W F F\left(M_{T H}\right)}\right] \frac{{ }^{t_{E F}}}{P_{t_{T H}}}\left[1+\frac{A_{B P}}{A_{c}}+\frac{A_{V E N T}}{A_{c}}\right]
$$

The above relation is used with the appropriate design point input values to calculate the design point inlet throat area.

Inlet Capture Area
The inlet capture area can be computed by using the conservation of mass relation between the inlet throat and the free-stream conditions. The inlet capture area is equal to the free-stream flow area (i.e., $A_{0} / A_{c}=1.0$) at the inlet design point. Therefore,

$$
A_{c}=A_{0}=A_{T H}\left[\frac{W F F\left(M_{\mathrm{TH}}\right)}{W F F\left(M_{D E S}\right)}\right]\left(\frac{P_{t_{T H}}}{P_{t_{\infty}}}\right)_{D E S}\left[1+\left(\frac{A_{B L}}{A_{c}}\right)_{D E S}\right]
$$

ADDITIVE DRAG (MODULE CDADDI)

The additive and subsonic spillage drag computational approach follows Sibulkin (ref. 3). The inputs and outputs of the module are shown in figure 3. If the design Mach number (MDES) is less than or equal to one, the bleed and bypass area ratios, as well as the additive and subsonic spill drags, are set equal to zero. If the design Mach number (MDES) is greater than one, the following are assumed:

1. Axisymmetric cone geometry
2. External compression inlet
3. 20° cone half angle (THETA $=20^{\circ}$) can be varied internally
4. $\cos \lambda=1.0$
5. Throat Mach number is constant at input value.

The ratio of A_{0} / A_{c} for the engine airflow is calculated to be

$$
\left(\frac{A_{0}}{A_{c}}\right)_{E N G}=\frac{\rho_{\infty} A_{0} V_{\infty}}{\rho_{\infty} A_{c} V_{\infty}}=\frac{W_{a}}{\rho_{\infty} A_{c} V_{\infty}}
$$

where

$$
\rho_{\infty} V_{\infty}=\frac{W F F\left(M_{\infty}\right) P_{t_{\infty}}}{\left(T_{t_{\infty}}\right)^{1 / 2}}
$$

The bleed and bypass area ratios are then computed from a predetermined schedule which can be changed if desired. The schedules are currently

$$
\begin{aligned}
& \frac{A_{B L}}{A_{c}}=0.10 \operatorname{SFBEP}\left(\frac{M_{D E S}}{3.0}\right)^{3}\left(\frac{M_{\infty}-1.0}{M_{D E S}-1.0}\right) \\
& \frac{A_{B P}}{A_{c}}=\operatorname{SFBPP}\left[1.0-\left(\frac{A_{0}}{A_{c}}\right)_{E N G}\right] 0.5
\end{aligned}
$$

where

$$
\begin{aligned}
& \text { SFBEP }=\text { an input scale factor for the bleed flow schedule } \\
& \text { SFBPP }=\text { an input scale factor for the bypass flow schedule }
\end{aligned}
$$

(Note: If the bleed and/or bypass airflow schedules are changed here, they must also be changed in subroutine SIZIN.)

The ratio of A_{0} / A_{c} for the inlet is computed from the engine airflow characteristics and the bleed, bypass, and vent airflow characteristics:
where

$$
\frac{A_{0}}{A_{c}}=\left(\frac{A_{0}}{A_{c}}\right)_{\text {ENG }}(1.0+\text { WEXWEF })
$$

$$
\text { WEXWEF }=\frac{\rho_{\infty} A_{c} V_{\infty}}{W_{a}}\left(\frac{A_{B L}}{A_{c}}+\frac{A_{B P}}{A_{c}}+\frac{A_{V E N T}}{A_{c}}\right)
$$

and

$$
\frac{A^{V_{V E N T}}}{A_{c}} \text { is input (0.03 is typical) }
$$

The additive drag is computed using Sibulkin's formulation (ref. 3):

$$
\begin{aligned}
C_{D_{A D}}= & \frac{2}{\gamma M_{\infty}^{2}}\left[\frac{A_{T H}}{A_{c}} \frac{t_{\infty}}{P_{\infty}} \frac{P_{t}}{P_{t_{\infty}}} \frac{P_{T H}}{P_{t_{T H}}}\left(\gamma M_{T H}^{2}+1\right) \cos \lambda\right. \\
& \left.+\frac{\left(A_{c}-A_{T H}\right)}{A_{c}} \frac{P_{c o n e}}{P_{\infty}}-1.0-\frac{A_{0}}{A_{c}} \gamma M_{\infty}^{2}\right]+C_{S}
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{P_{t_{\infty}}}{P_{\infty}}=\left(\frac{1+M_{\infty}^{2}}{5}\right)^{3.5} \\
& \frac{P_{t_{T H}}}{P_{t_{\infty}}}=P R_{S U P} \\
& \frac{P_{\mathrm{TH}}}{\mathrm{P}_{\mathrm{t}_{\mathrm{TH}}}}=\frac{1}{\left(\frac{1+\mathrm{M}_{\mathrm{TH}}{ }^{2}}{5}\right)^{3.5}} \\
& A_{T H}=\frac{W_{a}(1.0+W E X W E F)\left(T_{t_{\infty}}\right)^{0.5}}{\operatorname{WFF}\left(M_{T H}\right) \operatorname{PR}_{S U P} P_{t_{\infty}}}
\end{aligned}
$$

For $M_{\infty} \leq 1.0$, the cone surface Mach number and cone surface pressure ratio are estimated, as follows:

$$
\begin{aligned}
\mathrm{M}_{\text {cone }} & \approx \mathrm{M}_{\infty} \\
\frac{\mathrm{P}_{\mathrm{TH}}}{\mathrm{P}_{\infty}} & =\left[\frac{1}{\left(\mathrm{P}_{\infty} / \mathrm{P}_{\mathrm{t}_{\infty}}\right)}\right]\left(\frac{{ }^{\mathrm{t}} \mathrm{t}_{\mathrm{TH}}}{\mathrm{P}_{\mathrm{t}_{\infty}}}\right)\left(\frac{\mathrm{P}_{\mathrm{TH}}}{\mathrm{P}_{\mathrm{t}_{\mathrm{TH}}}}\right)
\end{aligned}
$$

where $P_{T H}$ is the cone static pressure at the throat. The cone average pressure is

$$
P_{\text {cone }}=\frac{\left(\frac{P_{\mathrm{TH}}}{\mathrm{P}_{\infty}}\right) \mathrm{P}_{\infty}+\mathrm{P}_{\infty}}{2}
$$

and the cone surface pressure ratio is

$$
\text { PSPIN }=\frac{P_{\text {cone }}}{P_{\infty}}
$$

For $M_{\infty}>1.0$, the cone surface pressure coefficient can be estimated using an approximation presented by Lighthill (ref. 4):

$$
\begin{aligned}
C_{P_{S}}= & \text { cone average pressure coefficient } \\
= & -\theta^{2}+2 \theta^{2} \ln \left[\frac{2}{\left(M_{\infty}^{2}-1\right)^{1 / 2} \theta}\right] \\
& +3\left(M_{\infty}^{2}-1\right) \theta^{4}\left\{\ln \left[\frac{2}{\left(M_{\infty}^{2}-1\right)^{1 / 2} \theta}\right]\right\}^{2} \\
& -\left(5 M_{\infty}^{2}-1\right) \theta^{4}\left\{\ln \left[\frac{2}{\left(M_{\infty}^{2}-1\right)^{1 / 2} \theta}\right]\right\} \\
& +\left[\frac{13}{4} M_{\infty}^{2}+\frac{1}{2}+\frac{(\gamma+1) M_{\infty}^{4}}{\left(M_{\infty}^{2}-1\right)}\right] \theta^{4}
\end{aligned}
$$

where θ is the cone half angle in radians.
The cone surface pressure ratio can be obtained from the definition of the pressure coefficient

$$
\text { PSPIN } \equiv P_{\text {cone }} / P_{\infty}=C_{P_{S}} \times\left(Q / P_{\infty}\right)+1.0
$$

where

$$
Q / P_{\infty}=0.7 M_{\infty}^{2}
$$

The cone surface Mach number can be approximated by using a formulation of Lighthill (ref. 4):

$$
M_{\text {cone }}=\left\{\frac{M_{\infty}^{2}\left[\frac{1}{4} M_{\infty}^{2} C_{P_{S}}(\gamma+1)+1\right]-M_{\infty}^{2} C_{P}\left(\frac{\gamma}{4} M_{\infty}^{2} C_{P}+1\right)}{\left[\frac{1}{4} M_{\infty}^{2} C_{P_{S}}(\gamma-1)+1\right]\left(\frac{\gamma}{2} M_{\infty}^{2} C_{P_{S}}+1\right)}\right\}^{1 / 2}
$$

or, for $\gamma=1.4$,

$$
M_{\text {cone }}=M_{\infty}\left[\frac{\left(0.6 M_{\infty}^{2} C_{P_{S}}+1.0\right)-C_{P_{S}}\left(0.35 M_{\infty}^{2} C_{P_{S}}+1\right)}{\left(0.7 M_{\infty}^{2} C_{P_{S}}+1\right)\left(0.1 M_{\infty}^{2} C_{P_{S}}+1\right)}\right]^{1 / 2}
$$

To complete the additive drag calculation, it is necessary to evaluate the subsonic spillage drag C_{S}. C_{S} is the drag of the inlet spillage that occurs behind a normal shock. This drag is equal to zero if the free-stream Mach number is subsonic.

Using Sibulkin's formulation (ref. 3), we have

$$
\begin{aligned}
& C_{S}=\frac{2}{\gamma M_{\infty}^{2}}\left(\frac{A_{s}-A_{y}}{A_{c}}\right) \frac{\left(\bar{P} / P_{\text {cone }}-1\right) P_{c o n e}}{P_{\infty}} \\
& A_{s}=A_{c}-A_{T H} \cos \lambda \quad \text { (see fig. 1) } \\
& A_{y}=A_{c}\left\{\left[\left(\frac{A_{s}}{A_{c}}\right)^{1 / 2}-\frac{L \tan \theta}{y_{c}}\right]\right\}^{2} \\
& y_{c}=\left(\frac{A_{c}}{\pi}\right)^{1 / 2} \\
& \theta=\operatorname{cone} \text { half angle } \\
& \frac{L}{y_{c}}=\mathrm{K}\left(1.0-\frac{A_{0}}{A} \frac{1}{B}\right) \\
& K=f\left(M_{\infty}\right)=0.2505 M_{\infty}^{2}-1.492625 M_{\infty}+2.8921 \\
& \\
& \text { (see ref. } 3, p .7)
\end{aligned}
$$

where β is the ratio of mass flow with supersonic flow at the inlet to the maximum theoretical capture area mass flow.

Note that β is a function of X cone $/ y_{c}, M_{\infty}, \theta$ and, according to sibulkin (ref. 3), B can be considered equivalent "in most cases" to the supercritical mass flow ratio. The supercritical mass flow ratio is presented by Barry (ref. 12) where B is equal to Barry's A_{∞} / A_{0}. For the present purposes, it is assumed that

$$
\begin{aligned}
\beta & =1.0 ; \quad \text { for } X_{c o n e} / y_{c}<1.2 \\
& =1.0-\left(X_{\text {cone }} / y_{c}-1.2\right) /(2.75-1.2) ; \quad \text { for } X_{c o n e} / y_{c} \geq 1.2 \\
\bar{P} / P_{\text {cone }} & =P N S P C=\left(7 M_{\text {cone }}^{2}-1\right) / 6
\end{aligned}
$$

For $M_{\infty}<0.4$ or $A_{o} / A_{c}>1.0$,

$$
\begin{aligned}
C D_{A D} & =0.0 \\
C_{S} & \equiv C D_{S P}=0.0
\end{aligned}
$$

Figure 11 shows a comparison of additive drag coefficient as computed by the methods of reference 3 and by the PRINC program. Sibulkin (ref. 3) assumes the spike position to be a function of M_{∞}. The PRINC method assumes a spike position that is a function of M_{∞} and throttle setting such that the inlet throat Mach number $M_{T H}$ is a constant at the input value.

BYPASS AND BLEED DRAGS
(MODULE CDBYPA)

This module computes the drag coefficients associated with the bypass (CDBP) and bleed (CDBL) systems. The derivation of these drag effects is the same; however, it is usually assumed that the pressure recovery for the bleed system is lower than for the bypass system.

Two assumptions may be made for the bleed and bypass exit nozzles; namely, that they are either (1) sonic nozzles, with $M_{E}=1$, or (2) fully expanded nozzles, with

$$
\begin{aligned}
& P_{E}=P_{\infty} \\
& M_{E}=\left\{5 \left[\left(P_{T_{E}} / P_{\infty}\right)^{0.286-1]\}^{1 / 2}}\right.\right.
\end{aligned}
$$

The assumption currently used in the bleed and bypass subroutine is that the exit nozzles are sonic; however, if it is desired to use the fully expanded assumption, the changes necessary are contained in subroutine CDBYPA as comment cards. Also, the bleed and bypass drags consider momentum losses only, and do not include any drag that may be associated with the exits themselves. The derivation of the governing equation for the bypass (or bleed) drag is discussed next.

The thrust for the bypass (or bleed) is (see fig. 4)

$$
T=\left(\dot{m}_{E} V_{E}+P_{E} A_{E}-P_{\infty} A_{E}\right) \cos \theta_{E}-\dot{m}_{B P} V_{\infty}
$$

where ($)_{E}=$ exit conditions for the bypass and $\dot{m}_{B P}=\dot{m}_{E}$ from continuity considerations.

The thrust coefficient (based on A_{c}) is

from reference 13,

$$
\begin{aligned}
& \frac{F}{P} \equiv \frac{\dot{m} V+P(A)}{P}=A\left(1+\gamma M^{2}\right) \\
& \frac{f}{p}=\frac{F}{P A}=\left(1+\gamma M^{2}\right)
\end{aligned}
$$

where F is stream thrust, A is area, and P is static pressure. Using the definition of dynamic pressure,

$$
Q=\frac{1}{2} \rho_{\infty} V_{\infty}^{2}=\frac{1}{2} \gamma M_{\infty}^{2} P_{\infty}
$$

and using the f / p definition, the thrust coefficient can be rewritten

$$
C_{T}=\frac{\cos \theta_{E}}{(1 / 2) \gamma M_{\infty}^{2}}\left(\frac{f}{p}\right)_{E} \frac{P_{E}}{P_{t_{E}}} \frac{P_{t_{E}}}{P_{t_{\infty}}} \frac{P_{t_{\infty}}}{P_{\infty}}-\left[\frac{2 A_{E} \cos \theta_{E}}{\gamma M_{\infty}^{2} A_{c}}+\frac{A_{B P}}{(1 / 2) A_{c}}\right]
$$

However,

$$
\begin{aligned}
\dot{m}_{B P} & \equiv \rho_{\infty} A_{B P} V_{\infty}=\rho_{E} A_{E} V_{E} \\
\frac{1}{P_{\infty}} & =\frac{P_{E}}{P_{t_{E}}} \frac{P_{t_{E}}}{P_{t_{\infty}}} \frac{P_{t_{\infty}}}{P_{\infty}} \frac{1}{P_{E}} \\
\left(\frac{f}{P}\right)_{E} & \equiv \frac{\dot{m}_{E} V_{E}+P_{E} A_{E}}{P_{E} A_{E}}=\left(1+\gamma M_{E}^{2}\right)
\end{aligned}
$$

and, from conservation of energy,

$$
T_{t_{\infty}}=T_{t_{E}}
$$

Using the weight flow function, which, for $\gamma=1.4$, is

$$
\operatorname{WFF}(M)=0.92 M\left(\frac{1}{I+0.2 M^{2}}\right)^{3}=\frac{W_{a} \sqrt{T_{t}}}{P_{t}{ }^{A}}
$$

Therefore, the ratio of the exit flow area to the free-stream flow area for the bypass (or bleed) is

$$
\frac{A_{E}}{A_{B P}}=\frac{0.92 M_{\infty}\left(\frac{1}{1+0.2 M_{\infty}^{2}}\right)^{3} P_{t_{\infty}}}{0.92 M_{E}\left(\frac{1}{1+0.2 M_{E}^{2}}\right)^{3} P_{t_{E}}}=\frac{M_{\infty}}{M_{E}}\left(\frac{1+0.2 M_{E}^{2}}{1+0.2 M_{\infty}^{2}}\right)^{3} \frac{P_{t_{\infty}}}{P_{t_{E}}}
$$

and thus the thrust coefficient for the bypass (or bleed) is

$$
C_{T}=\frac{\cos \theta}{(1 / 2) \gamma M_{\infty}^{2}} \frac{A_{B P}}{A_{c}}\left\{\frac{P_{t_{\infty}}}{P_{t_{E}}} \frac{M_{\infty}}{M_{E}}\left(\frac{1+0.2 M_{E}^{2}}{1+0.2 M_{\infty}{ }^{2}}\right)^{3}\left[\left(\frac{f}{P}\right)_{E} \frac{P_{E}}{P_{t}} \frac{P_{E} t_{E}}{P_{t_{\infty}}} \frac{P_{t_{\infty}}}{P_{\infty}}-1\right]\right\}-2 \frac{A_{B P}}{A_{c}}
$$

or, rearranging terms and using the definition of C_{D}, gives

$$
\begin{aligned}
\frac{C_{D}}{\left(A_{B P} / A_{C}\right)}= & 2\left[1-\cos \theta_{E} \frac{M_{E}}{M_{\infty}}\left(\frac{1+0.2 M_{\infty}^{2}}{1+0.2 M_{E}^{2}}\right)^{0.5}\right] \\
& +\left\{\frac{\cos \theta_{E}}{-(\gamma / 2) M_{\infty}^{2}} \frac{M_{\infty}}{M_{E}}\left(\frac{1+0.2 M_{E}^{2}}{1+0.2 M_{\infty}^{2}}\right)^{3}\left[\frac{1}{\left(P_{t_{E}} / P_{t_{\infty}}\right)}-\left(\frac{1+0.2 M_{\infty}^{2}}{1+0.2 M_{E}^{2}}\right)^{3.5}\right]\right\}
\end{aligned}
$$

Note: The derivation of the bleed drag coefficient is identical to the above derivation with the exception of the appropriate subscripts.

It is currently assumed that

It is also assumed that both the bleed and bypass systems have sonic exit nozzles.

Figures 12 and 13 show example calculations of bypass and bleed drag coefficients for sonic exit Mach numbers. Engine face total pressure recovery and bypass and bleed mass flow schedules for a study supersonic transport configuration from reference 14 are presented in figure 12. These values are used as inputs to the PRINC module and the calculated drag coefficients that are based on inlet capture area are shown in figure 13. The bypass results (fig. 13a) of reference 14 , and the PRINC module calculations (dashed curve) are based on an exit angle of 10° and on a bypass pressure recovery that is assumed equal to the engine face recovery. The PRINC module results agree well with those of reference 14. A calculated curve from PRINC module that indicates the effects of bypass recovery and exit angle is also shown in figure 13a. PRINC module calculated bleed drag coefficients, shown in
figure $13 b$, are compared to reference 14 values for a recovery that is threetenths the engine face recovery. Again, the agreement is good. Also, the effect of changing bleed exit angle on the PRINC module results is indicated in the figure.

AUXILIARY SYSTEMS DRAG

(MODULE CDAUXI)

This module computes the drag coefficient (based on A_{c}) associated with the auxiliary system ($C_{D_{A U X}}$) such as losses for cooling air ${ }^{C}$ for various equipment and compartments. A description of this drag increment is given in reference 6. For these calculations, the total momentum is assumed lost.

Therefore,

$$
\begin{aligned}
C_{D_{A U X}} & =\frac{\dot{m}_{A U X} V_{\infty}}{Q A_{c}}=\frac{\rho_{\infty} A_{A U X} V_{\infty}^{2}}{(1 / 2) \rho_{\infty} V_{\infty}^{2} A_{c}} \\
& =2 \frac{A_{A U X}}{A_{c}}
\end{aligned}
$$

where $A_{A U X} / A_{C}$ is a user input and is generally a small value on the order of 0.005 to 0.01 .

BOUNDARY-LAYER DIVERTER DRAG
(MODULE CDDIVI)

This module computes the drag coefficient (based on A_{c}) of the nacelle/ airframe boundary-layer diverter system $C_{D_{D I V}}$. A diverter half angle θ_{D} of 20° is assumed and the ratio of diverter height to boundary-layer height is approximately 0.5. The procedure used is to curve fit the empirical diverter pressure coefficients from two references:

Reference 5, pg. 3-24, gives data at $M=0.9,1.57$ and 1.97 .
Reference 6, pg. III.B.4.2, gives data at $M=2.0$ and 3.0 .
The curve fit yields the following relations:

$$
\begin{aligned}
C_{D_{D I V}} & =\frac{1.2}{M_{\infty}^{2}} \frac{\theta_{D}}{20} \frac{A_{\text {WEDGE }}}{A_{c}} ; \quad \text { for } M_{\infty} \geq 1.55 \\
& =0.499 \frac{\theta_{D}}{20} \frac{A_{\text {WEDGE }}}{A_{c}} ; \quad \text { for } 0.95 \leq M_{\infty} \leq 1.55
\end{aligned}
$$

$$
\begin{aligned}
C_{D_{D I V}} & =\frac{\left(M_{\infty}-0.8\right)}{(0.95-0.80)} \frac{\theta_{D}}{20} \frac{A_{\text {WEDGE }}}{A_{c}} \times 0.499 ; \text { for } 0.80 \leq M_{\infty} \leq 0.95 \\
& =0.0 ; \quad \text { for } M_{\infty} \leq 0.8
\end{aligned}
$$

where $A_{W E D G E} / A_{c}$ is a user input.
Figure 14 shows a comparison of the diverter pressure coefficients computed by the PRINC module with data from the two references for various Mach numbers.

BOATTAIL DRAG (MODULE CDBTA)

The drag on the airframe back to the fuselage end point (the "customer connect" point, see fig. lb) is calculated as part of the airplane drag. The drag on the portion of the engine nozzle aft of this point is defined as the boattail drag. The boattail drag is a function of the free-stream Mach number, the boattail angle, and the length of the boattail. The performance penalty for this drag is charged to the engine performance in accordance with the ACSYNT bookkeeping system. The boattail drag estimation method used here is described in reference 2. The boattail drag coefficient is based on the nozzle area per engine at the "customer connect" point in reference 2 ; however, the basis is changed to the inlet capture area per engine in the program. The ratio of nozzle area per engine at the customer connect to inlet capture area per engine required for the change is

$$
\frac{A_{C C}}{A_{C}}=\frac{\pi\left(D_{C C}\right)^{2}}{4 A_{C}}
$$

The curve fit of drag coefficients based on $A_{C C}$ (from ref. 2, fig. 41) yields

$$
\begin{array}{ll}
C_{D}=0.0102\left(\frac{\beta}{16}\right) \frac{1}{\left(1-M_{\infty}^{1.5}\right)} ; & \text { for } M_{\infty} \leq 0.95 \\
C_{D_{B}}=\frac{1.4 \tan \beta}{M_{\infty}^{1.53}}\left[1-\left(\frac{D_{g}}{D_{C C}}\right)^{2}\right] ; & \text { for } M_{\infty} \geq 1.0
\end{array}
$$

For Mach numbers between 0.95 and 1.0 , interpolate linearly between the above relations. These equations are for a nozzle pressure ratio of 2.5 .

Values for the above equations are

$$
D_{E N G}=\sqrt{\frac{4 A_{E N G}}{\pi}}
$$

where $A_{E N G}$ is an input from the engine calculation.

$$
\mathrm{D}_{\mathrm{CC}}=1.10 \mathrm{D}_{\mathrm{ENG}}
$$

$$
M_{E X I T}=\left[\frac{\left(\frac{P_{\infty}}{\left.P_{t_{N O Z}}^{-\left(\frac{\gamma-1}{\gamma}\right)}\right)^{\gamma}-1}\right.}{\frac{\gamma-1}{2}}\right]^{1 / 2} ; \quad \text { (ref. 11) }
$$

where $P_{\infty} / P_{t_{N O Z}}=1 / N P R$ which is input.

$$
\mathrm{A}_{\mathrm{NOZ}_{\mathrm{TH}}}=\frac{1}{\mathrm{WFF}(1)} \frac{\sqrt{\mathrm{T}_{t_{\mathrm{NOZ}}}}}{\mathrm{P}_{\mathrm{t}_{\mathrm{NOZ}}}} \mathrm{~W}_{\mathrm{a}}
$$

where $W F F(1)$ is the weight flow function at $M=1.0 ; T_{t_{N O Z}}, P_{t_{N O Z}}$, and W_{a}
are input.

$$
\begin{aligned}
\frac{A_{N O Z}^{T H}}{A_{E X I T}} & =\left(\frac{\gamma+1}{2}\right)^{\frac{\gamma+1}{2(\gamma-1)}} M_{E X I T}\left(1+\frac{\gamma-1}{2} M_{E X I T}\right)^{-\frac{\gamma+1}{2(\gamma-1)}} ; \quad \text { (see ref. 11) } \\
A_{E X I T} & =\frac{A_{N O Z}}{A_{N O Z} / A_{E X I T}} \\
D_{G} & =\sqrt{\frac{4 A_{E X I T}}{\pi}} \\
\text { Assume } L_{N O Z} & =D_{E N G}, \text { then }
\end{aligned}
$$

$$
\begin{aligned}
B^{\prime} & =\tan ^{-1}\left(\frac{D_{C C}-D_{g}}{2 L_{N O Z}}\right) \text { in radians } \\
B & =57.3 \times B^{\prime} \text { in degrees }
\end{aligned}
$$

To correct for nozzle pressure ratio $N P R$, which is an input value from the engine calculation, use reference 2, figure 42:

$$
\begin{aligned}
& \Delta C_{D_{B}}=0 ; \quad \text { if NPR } \leq 3 \\
& \Delta C_{D_{B}}=0.005(N P R-3) ; \quad \text { if NPR is between } 3 \text { and } 4 \\
& \Delta C_{D_{B}}=0.01(N P R-4)+0.005 ; \quad \text { if NPR is between } 4 \text { and } 8
\end{aligned}
$$

and

$$
\Delta C_{D_{B}}=0.045 ; \quad \text { if } N P R \geq 8
$$

The corrected $C_{D_{B}}$ is then

$$
C_{D_{B}}=C_{D_{B} .5}-\Delta C_{D_{B}}
$$

To base coefficient on capture area,

$$
C_{D_{B T}}=C_{D_{B}}\left(\frac{A_{C C}}{A_{C}}\right)
$$

where $A_{C C}=\pi D_{C C}{ }^{2 / 4}$, as previously described. Finally, if

$$
\mathrm{C}_{\mathrm{D}_{\mathrm{BT}}} \leq 0, \text { set } \quad \mathrm{C}_{\mathrm{D}_{\mathrm{BT}}}=0
$$

Figure 15a is a plot of the PRINC module computed $C_{D_{B T}}$ (based on a customer-connect area of $3 \mathrm{ft}^{2}$) for a nozzle pressure ratio of 2.5 and for two different boattail angles. Data from reference 2 is also shown (symbols) for the same conditions, indicating the ACSYNT calculations are low for Mach numbers below about 0.8.

A comparison of Boeing lightweight fighter data (ref. 2) and PRINC module calculations for the same nozzle (based on a reference area of $20.2 \mathrm{ft}^{2}$) is shown in figure 15b. The nozzle pressure ratio for the data is not known, so several values are shown for the calculations. The PRINC module overpredicts at supersonic speeds and underpredicts at subsonic Mach numbers for this nozzle configuration.

NOZZLE INTERFERENCE DRAG (MODULE ENGCDI)

This module calculates the interference drag on the base between multiple nozzle afterbodies. The procedure used is an interpolation between the curves $\left(C_{D_{T}}{ }^{\prime}\right.$) of reference 2, figure 46 , which have been tabularized and put into the program. $C_{D_{T}}^{\prime}$ is the interference drag coefficient between two engines for a nozzle pressure ratio of 2.5 . The independent variables are Mach number (M_{∞})
and nozzle spacing ratio S / D_{g}, where S is the distance between adjacent nozzle centerlines and D_{g} is the jet diameter. The value S / D_{g} is a user input to the program. The final interference drag coefficient $\quad C_{D_{\text {INF }}}$ is based on capture area per engine. For a given S / D_{g} and $M_{\infty}, C_{D}{ }_{I}$ is obtained from the table look up for a nozzle pressure ratio of 2.5. To determine the final $C_{D_{\text {INF }}}$ for any given nozzle pressure ratio and capture area, the following correction is applied:

$$
C_{D_{I N F}}=\left(\frac{2.5}{N P R}\right)\left(\frac{N_{E N G}-1}{N_{E N G}}\right)\left(\frac{C_{D_{I}} \times 2 \times T_{g}}{Q_{c}}\right)
$$

where $2.5 / \mathrm{NPR}$ is a correction for nozzle pressure ratio and NPR is input to the program from the engine calculation; (NENG - 1)/NENG is a correction for number of engines since desired output is per engine and NeNG is input to the program; and T_{g} is gross thrust per engine for the given M_{∞} and power setting and is input to the program from the engine calculation.

Figure 16 is a plot ACSYNT determined $C_{D_{\text {INF }}}$ for several values of S / D_{g} compared with the data of reference 2. The graph simply shows the accuracy of the table look up procedures while giving an indication of the magnitude and variation of the results with Mach number.

CONTROL ROUTINE (XINLET)

This portion of the program controls the sequence of calling the various modules. In addition, it converts all the drag coefficients to the wing reference area and to the proper number of engines, since the values from the various modules are based on capture area per engine.

APPENDIX B

MODULE LISTING

This appendix contains the FORTRAN listing for the Propulsion Installation Calculation (PRINC) module for the ACSYNT program.

SLUKLUTINE（OBYPA（XAA，ABYPAC，ABLEAC，CDBE，CDBP，PRTOT，PINF，PTO）

```
    GGMFUTES TMF BYPASS AND BLEED LFFECIS
```

 THE ACUITIVF DRAG CALCULATIDN IS FOR THE TOTAL AIRFLCW
 fr.teking the inlet. using This bojkkeeping the effect of
 TH: EYPASS AND BLEED MUST BE AJDED IN.
 XMOFFREE STREAM MACH NO
 \(\triangle\) SYPAC \(=A B Y P A S S / A C\) AT FREESTREAM
 \(A B L E ̈ A C=\triangle B L E E D / A C\) AT FREESTREAM
 CDBI =INCREMENTAL DRAG CJEF FOR BLEED BASED ON AC
 CUEP = INCKEMENTAL DRAG CTEF FJK EYPASS BASED ON AC
 FKTOT=INL - T TCTAL FKESSURF RECIVERY TJ ENúNE FACE
 HIHF=FRESSTREAM STATIC PRESSURE (PSF)
 ftc=fresstaeam Tutal pressure (pSf)
 fIEPPT=3YPASS TUTAL PRESSURE MECOVERY (. T*ENGINE FACE PRES REC)
 FTBEPT=3L:EC TOTAL PRESSURE RECOVERY (.3*ENGIN: FACE PPES REC)
 טPT(XM) \(=.7 * X M * X A *(1 .+.2 * X M * X M) * *(-3.5)\)
 FमT \((X M)=(1 .+1.4 * X M * X M) *(1 .+.2 * X M * X, Y) * *(-3.5)\)
 fFT(XM) \(=(1 .+.2 * X X M * X=1) * *(-3.5)\)
 ASSLME EXIT ANGLE FJR gLEFD ANU BYFASS = 15 DÉg
 XMCD \(=X M J * X M O\)
 LCSCE=.766
 PTBPPT=.7*FFTJT
 DTEY? \(=\) ? TGPFT*PTU
 + TBFIN=PTBYP/PINF
 IF (FTBPIN.GT.1.) GT TO IO
 CDEP \(=C\).
 GE TU 20
 AJSLME THE RYPASS EXIT IS FULLY EXPANDED. FOR A SCNIC
 BYFASS NUZZLI SET XHEBY (NOZZLE EXIT MACH NO) \(=1\).
 \(X M E B Y=\) SGRT(L.* ((PTGYP/PIAF)**.286-1.))
 assume a SCNIC EXIT
 1) XNEもy=1.
 \(X\) MEMCK \(=(1 .+.2 * X M E B Y * X M E \exists Y) /(2 .+.2 * X M D * X M D)\)
 CLEP2=2.*(1.-((XAEEY/XMT)*(XMEMOR**(-.5))*COSO:)

1 -(XMEMJK**(-3.j))))
$C L B P=C O B P 2 \neq A B Y P A C$
If (COBP.LE.O.) CDBP=0.
FiF 3LEET
26 FTELPT=.3*PRTUT
PTELこ=PTBEFT*PTJ
~TULFI=PTBLF/PINF
IF (PTBLPI.GT.1.) GO TO 30
CLEE=C.
RETUNN

ASELME THE BYPASS EXIT IS FULLY EXPANDED．FOR A SCNIC

COBYUuご
COBYOCOE
CDBYOOC
CDBYOUD4
COBYJOCE
cobyocoe
cobyucu 7
cobyocose
CDBYOOOS
CDBYOS．
CDBYJCil
CDBYOC12
COBYOこ13
CDBYOC14
CDBYOCLS
CDBYOOLG
COBYCOL 7
cobyoole
CUBYOOL9
CDeYOUCO
CDBYOC21
CDBYOC． 22
COBYOO23
CDBYJC24
COBYCO25
CDBYOO2O
CDBYOU27
CDBYCC28
CDBYOG29
CDBYJC 30
CDBYOO31
COBYOC 32
COBYOO33
COBYOU34
COBYOL35
COBYOこ36
CDBYOO3 7
CDBYOC3
CDBYO：35
CDBYOC4
COBYOO41
CDBYOO4 2
CDBYOU43
CDBYOC44
CDBYOC 45
CDBYOO46
COBYOU47
CDBYOG4E
CDBYCE4S
CDBYO～5C
COBYOO51
CDBYOOS2
CDBYOU53
CDBYOU54
CDBYOL5E
CDBYOO56

```
C PLIED NUZZLE SET XMEBZZ (BLEEUNUZZLEEXIT AACHI=1. CDBYLE5
C AAE3E=50KT(E.*((PTBLE/PINF)**.28G-2.))) CDBYOCJ
C ASSUME A SCNIC EXIT vOZLLE FJK} The bleEC
C
3C XMEAE=1.
    \MRM]E({.+.2*XMEBt*XME3E)/(1.+.2*XMO2)
    CLBE?=?.*(ב.-((XMEBC/XM1) *(XMEMUE**(-.5))*COSDE))
```



```
    ; -(XMEMOE**(-3.5)))
    CDE!=CDSE<*AOLEAこ
    IF (CDBE.LE...) CUbL=\mp@code{.}
    IF (CDBU.LE.O.) CDAP=0.
    FETLON
    ENL
COBYOC5.
CDBYjCe
cOBYOLG
CDBYOCO:
COBYOLO
CDBYこよょ.
CDBYOCE:
COBYOCG:
COBYCCO
CDBYCCO!
coBruco
COSYOC7:
```



```
    GlPr.uTIM. PaSUnS(x1T,PRSUB)
```



```
C
XNTE=XMT*XトT
```



```
FRSLせ=1.-ミPS*(!.-1./(1.+.L*XMTL)**3.ち)
kこうt*N
E^L
```

PRSUC： 1 PRSUOC PRSUOG： PRSUCCO PRSUOON PRSUCR：
PrSUOOU
PRSUOLO PRSUCCJ

```
            دGFGUTINE CUHTA(XMO,XNPR,PTNCZ,TTNOZ,AENG,CDBT,WA,AC,AEXIT,BETA) COBTU,
C
    XML=ENES STREAM YACH NUMBER
                                    COBTOC
    XINFA=NSZZLE PRESSURE RATIO
    FTHRL=NJZZL? EXIT TJTAL PFESSUK:
    TTM,jlzvzzzle Exit TuTal TEmperature
    ALFG=: VEIME FACE TETAL AFEA, SU FT
    CRLT=dJATTAIL UFIG PER ENGINE, REFGRENCED TU AC
    k&=\mp@code{NINE AIr+LOW, LdS/SEC}
    LC=INLET CAFTURE AFEA, SQ FT
    CGFAFM=DRAG CURRECTION FACTITR FGN}\mathrm{ NPR
    ALXIT=NJZZLE EXIT AरEA PER ËNGLNE, SO FT
```



```
    xm:x=SurT((XNPR**.2b6-1.)/.c)
    \DeltaN[7T=SJKT(TTH5ZL)/PTYuZ*WA/WFF(1.)
    ANTAE=1.7!E*XMEX/(1.+.2*XMEX*XNEX)**3
    AEXIT=).
    If (aNTAL.GT...) aEx[T=AMOZT/AMTAE
    GSSLME
    A CUSTJMEF CONNECT = 1.2I*AENO
    LNEL = LIA OF ENG
    IIMII THL MAX EXHAUST UIAMETER TO CUSTUMEK LONNECT dIAMETER
    ACC = AE_A AT CUSTOHER EINNECT POINT, SUFT
    \triangleTHSL=1.2\*AENG
    If (aExit.gT.atesi) aExitmatesl
    CENC=2゙.*SQFT(AENG/3.141j9)
    LCC=1.1*UENG
    DEXIT=2.*SGRT(AEXIT/3.14159)
    DEXCLC=JEXIT/OCC
    AEXIT=ATESI
    XLNLZ=OENG
    BFTAI=ARSIN((UCC-DEXIT)/(2.*XLNOZ))
    IF (SETAI.LT.C.) BETAI=0.
    BETA=57.ごに77シュ*日ETAI
    TbI=:.4*TAN(BETAI)
    CCNTEI=TEI*(1.-DEXCCC*DEXDCC)
    IF (XMS.LE..95) CDET=.C102/(1.-XMO**1.5)*BETA/16.
    IF (XMU.GE..45) CDRTI=CDNTBI/XMO**1.53
    IF (XMJ.LT..9j.OR.XMU.GT.I.) GJ TJ io
    COBT2=CUNTBI
    CCET=CO4TB1/. 子b**j.53
    CCET=CJ&T+EC.*(COBT2-CDST)*(XMU-.75)
&:IF (XMC.GE.I.) COBT=CDST1
SET ALL CJET > (CDET AT M=1.2) EQUAL TO (CUST AT M=1.2)
THEN CDRRECT UOATTAIL DRAG DUE TO XNPR VARIATIONS
CDBT:2=CONTEI/1.2**1.53
IF (CLSTL2.LT.CDST) CDAT=COSTI2
COKNPR=:.
IF (XNPR.GT.3..ANO.XNPR.LT.4.) CORNFR=.305#(XNPR-3.)
IF (XNPR.GE.4..AND.XNPR.LE.8.) CORNPR=.O1*(XNPR-4.)+.005
```

```
IF (XMPR.j1.0.) CUKMPR=.045
CNET=CJET-CERNPR
ACC=.7E537E*DCC*UCC
CLFT=CU3T*aCこ/AL
If (CIBT.LT.S.) CDBT=%.
KEIURN
ERC
CDSTOO5:
COBTUS5C
CDBTOOSS
COBTJO6:
CDBTJOOJ
```

CDBTUCOZ COBTOUO?


```
SUs*CUTINL CJuIV
```

```
SLG& UTIE CWUIVI (XMO,AWAENG,こCO(V)
\imath
C FII OATA AT M=?. IN GID HEK PG 3.8.4.2
ASELME UIVIET 员 HEIGHT = .j
FIT DLTA +I M=.9 IN INT AERO MANUAL (i&/A) JG 3-24
ThLIV = BIVEGTER INCLUDED ANGLE
ANA:NO = iAEA OF UIV:RTER NLDGE DIVIJEU BY AC
TmuIv=?_.
CDCIV=こ.
```



```
IF (XFJ.GE..9今.4ND.XMU.LT.1.55) GJOIV=.024%5*THDIV
If (xN:0.Gこ.].5s) CLDIV=.0t.*THDIV/(xmu*xME)
CLGIV=CGUIG*AWAENG
ietuka
FA[
```

coDIUCO
COOIOCO
coulucu CODIOOS．
coolers！
CODIOOS．
CDUICOU CDDICC CDDICOO COUI：OL：
CODICC．
CODI OOL：
CDOIGC1：
CuOIOCl
cuoloci：
CDOIOCic

```
&!M, UT,N: SIMIV(ALF,XMEF,XMT,PRUES,AC,XMCOJ,FKSIJR,SFBEP)
```



```
i. :ISM ILEL AN: BYPASS SCHEJULES FGR INLET
I., T: THAT TH:SE JLHEDULES MJST RE LGMPATIILE mITH PHE
bLL:: AH EYPASS S:HEJULES IN SUBRJUTIT, CEAODL
A:H = =|GIPE FACE FLSIW AREA, FT*FT
AF F = rollG F:CL FLIJW MLCH NJ
XNT = THATAI NACH NT
FK = SUR кESNIC JIFF. &.K.
FRSI: = دUESENIC LIFF. P.R.
ATL = J.SIUN THRJAT FLUd AREA, FT*FT
:T = TH&G\DeltaT FL[W akEA, FT*FT
A = ING:T CODTUKE AAEA, FT*FT
xNE = I\LST O.SIGN MACH
FHT'T = TJTAL PNESS 2.こ., 1J tF
!+GEF= S:ALE rAこTCK +JZ JNLST BLEED JRAG
Srapo = SLALE FAGTCR FUR INLET DYPASS LFAG
Hf(x;)=.4.4*x*/(1.+.2*x4*x*)**3
```



```
AVLACL=.:3
HFFXMT=SFF(XMT)
:TL=APF*(dFF(XMSF)/WFFXMT) #PQSJB*(1.+AVEACD)
LC=\triangleTL*(*rFXMT/mFF(XMUES))*PRDES*(1.+ABLACU)
If (DC.L--ATU) AC=ATU
FETLAN
&MD
```

SIZI．3：
SIZIO～
SIZIつく。
SIZIOご
SIZIOO．
SI2IU：
SIIIUN
SIZIOUO
S12I06．
SI21001：
SILIOC
SIZIOC．
S121ごが．
SIZICl．
sizioul：
SIZIいい。
SI2IU．
SILIC：．
SIZIGし．
SIIIUنス
SIZIU：
SIZIOCL
SI2IOC2：
SI2IOU？
SILIいく2！
SILIUO26
SIZICO27
SILIOC2E
SILIUC29

```
        Sl&aGLTINE ENGCOI(xML,EN,SOOGgLUI,FIP,G,AC,XNPr)
        ENGCO%u
```



```
    : Cicए(4),j(1)(4),CD2こ(4)
```



```
    CAlf SJ#ン/1.,2.2.2.6,3.5/,0095/.(157,.)37ン,2*.025/
```



```
    C!]=!.
    l| (-N.L:.A..IIR.XMC.IL.O.1 RETURN
    If (xMG.LT.!.2) G0 T1 3)
```



```
C
    XFE GKEATEP. IHAN LK LGUAL TO I.3
    C[i]=.j,
    G6 15 1%)
c
C XMG ŻTwEN 1.2 ANC I.O
    \r It (xr.o.uT.I.j) Gi TU 2)
```



```
    CLi-=.\i4゙-.「i.5*DM
    CG TJ ミ:
    2二 [ir=(<NJ-l.5)/.3
    CUI&=.0こ7)ー.0025*OM
    Cf, Te 1%:
    xp: leSj TMAN l.Z, TABLE LOUKUP kEOUIKEL
    31. LHLIN=3.
    CMTM:L=j.
    Jf (xr.j.ET.1.) G! TJ 80
    If (X:M.GT..GE) iO TU 72
    IF (XMJ.GT..85) GO TO 5)
    Jf (x*J.UT..75) G: TJ 52
    If (xMJ.GT...こう) Gी\ TJ 43
    ANE geTNEEN O. AND . 25
    CLLL TAINT(SOt5,EO55,SOUG,COU,4,1,AERR,DHO4U)
    Cul=%.
    SM14%=.35
    \GammaM=yME
    6 TL 90
    XNE SETNEEN .55 ANC •Tう
    4: CALL TAINT(SO75,CU7ち,SJDG,CDU,4,L,NERR,DMONU)
    CALL TAIfYT(SUS5,CD:5,SCOG,CDL,4,H,NERR,UMONL)
    [MTGj=.?
    CH=XNO-.55
    G% T0 7:
    )MC3+THE:N.7う AND . Sb
    ENGCO
    ENGC:%いる
    ENGCOL
    ENGCUO:
    ENGCUCE
    ENGC%Lに:
    ENGCUこい
    ENGCOUL:
    ENGCOC1.
    ENGCOO_:
    ENGCOC1:
    ENGCOS:
    ENGCOC::
    ENGCOCIt
    ENGC:山!-
    ENGCOOL`
    ENGCJOM
    EMGCu.32:
    ENGCOC2]
    ENGCCうご
    ENGCCC2
    ENGCOO24
    ENGCOC2E
    ENGCOO2E
    ENGCEL27
    ENGCOE2t
    ENGCOO25
    ENGCOO3O
    ENGCOO31
    ENGCOCj2
    ENGCOU32
    ENGCOO34
    ENGCOOj5
    ENGCJu3E
    ENGCOO37
    ENGCCO3:
    ENGCU`30
    ENGCOU44
    ENGCJU4+1
    ENGCOO42
    ENGCOC43
    ENGCJ:44
    ENGCOU4E
    ENGCOC46
    ENGCSU47
    ENGCO048
    ENGCOC44
    ENGCOLSO
    ENGCOひj1
ENGCuO52
ENGCOC53
ENGCOr:54
ENGCOOSE
ENGCOO50
```



```
    CALL TAIVT(SC75,CO75,SOJG,CDL,4,I,NERR,LMONL)
    DPTAB=.:
    LN=XMO-.75
    G10 7,
C
C XFGE OETMFEN.OS AND . 95
C
    t: (ALL TALNT(SUQJ,CUG5,SOJG,COU,4,1,NERR,[MINU)
    CALL TAINT(SO85,CO85,SODG,CDL,4,I,NERR,DMJNL)
    CHTA3=.1
    CM=XMO-.8%
    E! 1U Эこ 
C
C XMC 3ETMEEN . 95 AND &.O
l
    7C CALL TAINT(SO10,CL10,SGOG,CDU,4,i,NERR,DMUNU)
    CALL TAINT(SDO5,CDG5,SOUG,CDL,4,1,NERR,CMGNLI
    CMTAB=.Oy
    EF=XM[i-.95
    GLTO ЭO
C
C XIT! EETNEEN 1.O AHO 1. 2
C
    おCCJU*.cl9
        CALL TAINT(SO10,CD1O,SOUG,COL,4,I,NERR,UMONL)
        LMTAB=.2
        CH=XMC-1.
        *(CDII=COL+ICLU-COLI*OH/DYTAB
C
C DETERMLN: CDI FOR THE ENGINES
C
15C COIT=(2.t/XAPR)*CDI1*2.*FIP/(O*AC)
    CLI=(EN-1.)*CDIT/EN
    RETLRN
    FNO
```

ENGCOO57
ENGCOL58
ENGC J゙っ9
ENGCOjto
ENGCOC61
ENGCJCS2
ENGCOCO3
ENGCOC64
ENGCDO65
ENGCOC60
ENGCご二百
ENGCごC68
ENGCGO69
ENGCO：7C
ENGCUへ71
ENGCOO72
ENGCUJ73
ENGC JU74
ENGCOO75
ENGC） 76
ENGCJC77
EMGCOC78
EvGCOU79
ENGCOCoso
ENGCUOB1
ENGC5002
ENGCOCB3
ENGCJO84
ENGCTC85
ENGCOOd6
ENGCUCB7
ENGCOC88
ENGCOC39
ENGCJC90
ENGCOUY1
ENGCOO72

SLFRGUTIS：CDADOIIAT，AC，XMJ，PR，XMT，XMDES，FTU，TTO，CDAD，CDADS，


```
    AT=INL:T THROAT FLJW AFEA, FT*FT
```

 \(A C=I N L T\) CAPTUPE AREA, FT*FT
 X'R = FRES STEEAM MACH
 भi = SUP: zSONIC DIFFUSER TOTAL PRESJURE KECUVERY
 \(x M y=\) INLET Thxijat MACH ND
 xトしたS \(=1\) NLET \(D E S I\) GAM MACH NO
 YTG = FPE: STEEAM TUTAL PRESSUR.
 TTE = FKEE STPEAM TOTAL TEMP
 CUAD = SUOEFSONIC SPILL ADOITIVE JRAG BASED ON AC
 CLACS = SUESONIC SPILL ADOITIV: DRAG BASED JA AC
 \(A C A C=\) N'J/AC
 \(\triangle F E E A C=\triangle E L E / A C\)
 AEYPAC = AEYP/AC
 ha = ENGINt AIRFLOm, LBS/SEC
 XMCLVE \(=\) CCAL SURFACE MACH NUMEER
 CfCS = Cuvl SURFACE PRESSURE KECUVEKY
 FSPIN = OSTATAC ON CONEIPSTATIC FREE JTKEAM
 PMSPC = STATIC PRESS. RATIJ ACROSS N.S. AT CLNE SURF MACH
 FPTGI \((X M)=(1 .+.2 * X M * X M) * *(-3.5)\)
 WFF \((X M)=.5 \zeta * X, 1 /(1 .+.2 * X 4 * X M) * * 3+.) \geqslant こ 1\)

FR.SPCR(XA1)=(7.*xi1 $\ddagger x_{M} 1-1.1 / 6$ 。
hFFYMO=WFF (XMO)
$\triangle C A C O=W A * S Q F T(T T O) /(N F F X M O * P T O * A C)$
$A L A C=\triangle D A C S$
$C 5=0$.
XNJ: = XMJ* (MO
IF (XNDES.GT.1.) GC TO 10
CLGご=C。
CiACj=j。
$A E Y P A C=$.
$A B L F \angle C=$).
がこしでか
1C GANEI.4
Thr TA $=2 \mathrm{C}$.
THSTA1=THETA/57.2957795
CLSLAM=1.
C
C
C
C
C
Tre next cakos are the bleed and bypass schtdules for the inlet
THESE SHCOLD QE MADE COMPATIBLE WITH THE INLET OESIGN POINT
vELU:S IA SLBUUTINE SIZIN
AGLFAC=.?*SFBEP*(XMDES/3.) **3*(XMJ-1.) /(XMOES-1.)
$A B Y P A C=O$ *SFBPP*(1.-ACACG)
If (XNJ.GT.1.) GE TJ 20
CUAC=i.
AHLEAC=u
XNC[N: $=(X M G+X M T) / 2$.
MSDIF=1.
2: IF (AUACG.ET..G7) $\triangle B Y P A C=0$.
$A V E A C=.-3$
WCAP = AC*WFFXMO*PTU/SOKT(TTI)

CDADOOJJ
CDADJにご
CDADORL
CDADUĆC
CDADOCJ：
CDADびうE
CDADOこう
COADUJJC
CDADOCOS
CDADOLa
COADOG11
CDADOOL2
COADOC：3
COADUS：4
COADOC1＝
CDADOO16
CDADO． 17
CDAD：5：－8
COADJC14
COADJC20
CDADOC22
CDADA： 22
COADOC23
CDADOO24
CDADJLZ5
COADJC 26
COADOCC7
CCADOO28
COADOU29
COADVE30
CDADOO31
COADOO 3 ？
COADOK 33
CDADOO34
COADUC3
COADJU30
CDADCO37
CDADJC 38
CDADCO 39
CDADCC40
CDADOU41
CDADOC42
CDADOO43
CDADOC44
CDAD 2045
CDADOC46
CUADOC47
CDADOC48
CDADJU49
CDADOU5C
CDADOOS 1
CDAOOOS2
CDADOO 3
CDADOC54
CDADOC55
COADOC56

DRIGInal page is
DE POOR QUALITY

C
C IIL, I GUMITEY
C
HMGTVT=AFF(X才T)*DE*PTG

I: (AT.U:, AC) $A J=. \because \neq A C$

XUiYし = XACJNF/YC
C

C HLTL THAT THE INLIT GEOMETEY HAS 3EEN JPECIFIED EY ASSUMING THE
C
C
C
c
c
C
C
c
C
C ILTE THAT THE INLCT GEOMETEY HAS 3EEN JPECIFIED EY ASSUMING THE
$C \quad$ THFGAT MACH NUMBE

AI = INLET THKDAT + LON AREA, FT*FT
$\Delta S=F R M N T A L$ AREA CF INLET C/B AT INLET T,RUAT, FT*FT
*Claj = facius if CJNE at INLFT THRCAT, FT
XACUNE = SISTINCE +KGM ZUNE TIP TO INLET THRUAT, FT
YL = AADISS LGRRESHENELING IJ INLET CAPTUKE AREA. FT
XCUYC $=X C$ CNE/YC
flf fatp fr cune static pfejsuke use averiage of
FKFE STKEAM AND THROAT STLTIC PKESSUR:

PSFI: = (0. $\mathrm{F}+\ldots) / \mathrm{O}$ 。
If (XMO.L:1.) GJ TJ 30
c
c
C
Cline Sulifa:e pressure ratit
$X M L: 1=X M J 1-1$.

ALU=ALJU(こ./(SUXMOI*THETAこ))
THETA4 $\mathrm{TH} \mathrm{H}=\mathrm{T}$:1***

$4 \leq=-(5 . * \times M C 1-1) * T H E T A 4 * A L$.

C CCS $=A 1+A C+A 3+A 4$
IF (CPCS.ST...7) $\because P C S=.9$
PSPI:N=CPCSHOINPIN(X:MJ)+2.
36 1t $(x+J . G T \ldots 4)$ G] $T 1,40$
CLAU=:。
CLALS = 3 .

- ETUKM

4. C UA $=2.1(G A R * X M O 1)$
$([A S=A T / A C * F ; P G *(G A M * X M T * X M T+j) * C O S L A M$.
$C L A 2=(A S / A C) * F S P I N-1,-A J A C * G A M * X M D 1$
Thi APDROX FJR THF CIME SURFACE DRESSUPE CJEFF INTRODUCES AN
EMELK IS THE ADUITIVE URAG GAL WHICH SAUSES THE ADDITIVE DRAG
TC $B \mathrm{H}$ NDiv ZERO AT $\angle U A C=I . ;$ THE NEXT CARDS INTRCDUCE A

COADCC5
CUADJC:
CDADUC5.
CDADUCS'
CDADJEO:
CDADOOE:
CDADU-D.
CDADOCO:
CUADOCO:
CDADOU
CDADOご
CJADUCS:
CJADCOC
CUADOCOL
CDADOGO
CDAODC7;
CDADOCT:
CDADOC7:
CDADuじ
CDADJO74
COADJO
CUADG:
CDADCO
CDADCC7C
COADUL7
COADUC 77°
CDADJC $7 \circ$
COADC:75
CDADOCAC
CDADUOOI
CDADEC8
CDADOO83
CDADIUB4
CDADCUZS
CDADJCB
CuADJCBG
CDADOC 87
COADOC88
COADOL: 9
CuADOL:9
CDADGCヲう
CDADOC91
CDADOC 52
CDADOC\&2
COADCJY

CDADOC 74
CDADOC

CDADOC 95
CDADOC
COADOUS
CD
CUADUCG7
CDADOC98
CDADUO99
CDADJ1JO
COADCIこ1
CDADO102
CUADO103
CuADO103
CDADC1 04
COADC1 15
CDADCIJ5
COADOLIS
CDADOJ.4 7
CDADO108
CDADO109
COADO1O9
CDADO110
COFRECTIUV TU THE ADDITIVE DRAG, TO COMPENSATE FOR THIS ERROR
CDADO111
COADO112

C

```
DA00113
    Li=Ai coadoish
```



```
    fI=んC-4TOL*CDSL4M
    CL&Lこ&=(A゙_/AC)*PSPIN-1.-GAN*XMLIL
```



```
    CliこR=-CこA*(LJADIこ+CUAD?1)
    IF (XMJ.LS.D.) CJ TO 5)
```



```
    EETA = FCN(XCOYC,XMO,THETA)
    1~ PrOSEVT LSS APPROA VALUS FGR 2O DEG LUNE ANO YME=1.4
    F:TA=官.
    If (xCuri.Gr._.2) 5%TA=1.-(xCOYC-1.<)/i.j5
    It (BETA.LE...) BETA=.)UOB2
    TAPITY=TA!A(THETA:)
    X Y YC=X\*(1.-AL.AC/BETA)
    AY=LC゙*(S\alpha2T(AS/AC)-XLYC*TANTH)**2
    CLNE SUKFACE MACH NUMBER
    B]=xMこl*C2CS
    ど心.と*3l+1.
    Eミ=.35*G」なこ。
    E4=.7*&1+!.
    ๕と=.1*31+l.
    XMC[NE=XMO*SOんT((b&-LPCS*B3)/(B4**ち))
    IF (XMCOCN=.LT.1.) XYCUNE=1.
    FHSPC=PNJPC[(XMCONI)
    CS=(2./(GAN*XMO1))*((AS-AY)/AC)*(PNSPC-1.)*PSPIN
\thereforeC[A[=CUA*(C[A景凉的)+CDCOP
    * [ng and anderson formulation jf aduitive drag
    FSF NASA TM D-7445
    VIV:=(.2*XMT/XMO)*S.JRT((1.+.2*XMO1)/(1.+XMT*XMT))
    (HST.=(PIP:-1.)/JINPIN(XMO)
    CCADZ=2.*ACAC*(VIVO*COSLAM-I.) +CPST1*AT*CUSLAM/AC+CPCS*AS/AC
    CCACLZCOA.)Z+COCUR
    CLALS =CS
    IF (AGAC.LT.i.) SO TO OC
    CiAD=C.
    CCADS=3.
    FitukN
OG iF (CCAD.LT.R.) CUAD=0.
    IF (CDAUS.LT.E.) CDAOS=%.
    FETLRN
    [NC
    CDADO%1:
    CDADOllt
    COADOL17
    COAOC.18
    CUADU119
    COAOOI2C
    COADO22.
    CUADO122
    COADC=23
    COADNI24
    CDADO1C5
    CDADO:26
    CDADO127
    COADO12B
    COADO127
    CDADO130
    CDADC:31
    COADO132
    CDADO133
    CDADU134
    CUADU13j
    COADJ136
    CUADU137
    CDADO138
    COAOUI3G
    COADJi40
    COADO141
    CDAD0142
    CDADJ143
CDADS144
CDADC145
CDADO140
CDADC144
COADO148
COADJま49
CDADO150
CDADO151
COADOLう2
CDADO153
CDADO134
COAUO155
CDADCLE6
CDADO157
CDADJ158
CDADO159
CDADO160
COADOLÓ1
CDADO102
```


XINLOE5

CLんLうが＝－
CLHE $=$ 天。
（Lutr
しいい入F＝．．．
CしこIよP＝？

C1．1：＝C
CUINLP＝．．
GLうFTP＝：。
CEIN：PP＝。
$6=.7 * x$ どaxpr＊pINF
It（NEYZ．$=6.2$ ）GO TO $: O$
r！5 ： $3=1$ ．
Tre IALEI IS ASSUME TJ HAVE G־GMETRY THAT CAN BF VARIED IN SLCH \triangle MAVAER TC KEEP THE THROAT MACH NUMUER AT THE INPUT VALLE．THE INLET MCOEL IS IFOR THE PRES．NTI FUR AN EXTERVAL CLMPRESSIJN AXISYMETRIC INLET．IFIT IS DESIKEC TU MODIFY THE COUEXINLJCT TL hardle a fixeo inlit the thrlat flow area shoulo be Set fuUAL T；THE DESIGA VALJE AHD THE SUBSUNIC DIFFUSER PPESSURE ficuvery jhoulo be computeu from iomtinulty．

If（IPK．LT．LG）CALL PRSJBS（XMT，PRJUB）
CALL PRINL（XMU，DELPR，PR，IPR，PRTLT，PRSJU，XMPRI，XPRI，PRDES，XMDES）
If（IPR．LT．C）keTUKN

CALL SIZAN（AEF，XMEF，XMT，PRUES，AC，XMDEJ，FKSUB，SFBEP）
CALL CUAUTI（AT，AC，XMU，PR，XMT，XMDES，PTJ，TTJ，CDAD，CDADS，ABYPAC，
〕 $\triangle A L E A C, A G A C, W A, S F E E P, S F G F D)$
LALL CDBYPA（XNU，ABYPAC，ASLEAC，CESE，CDBP，PKTUT，PINF，PTO）
CALL CDAUXI（AUAENG，COAUX）
CALL CJUIVI（XMO，AWAENG，COUIV）
IF（KEYZ．EC．1）RETURN
IC CALL CDATA（XMO，XNPE，PTNJZ，TTNUZ，AENG，CDET，WA，AC，ANOZ，BETA）
CALL ENOCOI（XMO，EN，SGUG，COI，FIP，Q，AC，XNPR）
KATID＝AC \＃EN\＃PCDFAC／S－ING
CLADR＝CDAT＊RATIEFSFADP
CLACSP＝CDALS＊PATIO＊SFADSP
CLUEP＝C゙OJ三＊RATIO
CEBPP＝COBD＊FATIU
CEAUXP＝CUALX\＃RATIU\＃SFAUXP
CDDIVF＝CDUIV＊RATID＊SFDIVP
CUETF＝CJBT＊KATIU＊SFBTP
CDIF＝CDI＊RATIO＊SFIP
$C L \perp R F=C U A D P+C D A D S P+C D B E P+C O Y P P+C J A U X P+C C O I V P$
CCAFTP＝COSTP＋COI？
LUINSF＝（心OINLP＋CDAFTP）＊SFINSP
KETURN
END

XINL：し，
XINLOCシ
XINLCCO
XIMLioc
XINLOC
XINLOCO
XINLJこ6
XINLJE
XINLOUS
XINLOGO
XINLJCG
XINL：
XINLJCT 7
XINLOC 7
XINLOO7
XINLOU 7
XINLOC7
XINL S． 7
XINLJC 7
XINLOC7
XINL」と 7
XINLJC 7
XINLUOO
XINLOJE
XINLOOB
XINLOCS
XINLJC8
XINLGOB
XINLJ00
XINLOE8
XINLこC
XINLOUO
XINLOO9
XINLOOT
XINLつけ？
XINLGO
XINLごも
XINLCC． 9
XINLOC9
XINLJO9
XINLOO9
XINL009
XINLOIJ
XINLOIO
XINLOLO
XINLO10
XINLO： 0
XINLOIC
XINLOLO
XINLOLO

```
    SURF':UTIME CGAUXI(AUAENG,EDAUX)
C HEF: LMTINNAL AERUUYNAMICS MANLAL, NAR, PP 7-C4 SEC 7.8
C Clilx = AuxlliANY SYSTEMS DRAG
C ALA:OG= aFFA JF AUXILIARY SYSTFMS EIVICEL BY AC
C
LL&じA=2.*1しAENG
FLILKN
EN[
```

CDAVOJU
coalores
coaves： CDAUCCO
cuaucez CDAUFE： CDAVOCL CDAJOCO coAvisa


```
C
i SULKNUTI.. TG CEMPUTR THE INLET TSTAL PKESSLORE RECOVEPY
C LHt = PG+JSLAE KECONIKY 3FANCH CJOE
            = 1, IIA STAVOARD
            = 2. K\L SPre E%,se
            =3, \OFYAL SHCCK
            = +" TAELT LJUK-JP, PR VS M&CH
    XN = FREZ SIFEAM KACH NLMEER
    L:LFF= IMCFFMENTAL PKESSLRE RECINENY REDUETIUN
                lOFLT AS A POSITIVL NUMOEN
    FHILI=TJTAL PE TEINLET FACL
        LNET:SIIN x+RRI(t),XPRI(E)
        I+FDUS:=
        x*1.2=xM)***L,
        ANLद=x.Oここう*xNCES
        Ir (IFR.G:C) 心uTO 2O
        IFRDuN=IPZ
            ]fe=1A3j(IPE)
        \thereforeIf (IPR.LE.EV) GJ TJ 2%
            IFREUM=ION
            IFR=1PR-_;
        ?C G: TO (3J,4C,5.3,7C1,IPQ
    ame stangame
    \C 「K=1.
    PrLES=1.
    It (XMO.UT.1.) PK=Z.-.1*(XMO-1.)**I.S
    1F (xMS:=S.ET.1.) PRDES=2.-.i*(XMUEJ-1.)**1.J
    GLTO
C
C
    #- Fr=1.
    F&[ESここ.
    It (xN-3.uT.1.) P&=1.-.075*(xM0-1.)**1.35
    It (XMDEJ.GT.J.) PKDES=L.-.CフV*(XYDE`゙1.)**I.3:
    GU 10 6:
C
C nermal shjck
&& FK=2.
    HRCE#`=1.
```



```
    If (XAD:S.CT.1.) PKUES=(6.*XMC2/(X4O2+5.))**3.S
        **(0./(7.*xM02-2.))**2.5
    c.C FR=PK-DELPF
        FF[ES=PRDES-DELP2
    GG TC 12j
C
    HIL jPzC jCCyF
    1AOLE LOHK-LF
7! FH=x+k[(:)
    PrINuOj2
PRI|O)ころ
    PNNO
C
C
C
c
c
C
c
C
C
C
    PkIN:%:4
    PRINOCO:
    PPINOU心O
    PRINECLT
    PKIN%O.%
    PRINuCEG
    PRINOOLO
    PRIN)<&1
    PRINSCI?
    PRINCO23
    PRINOO14
    PRIN:N+iS
    PRINOO1t
    PR {NL.. }1
    PRINE~l&
    PKINOC17
    PRINC:20
    PRIN:<<<
    PRINOLLL2
    PRINOC23
    PRINJ:24
PRINCUZS
PRINJC26
PRINOC27
PRINOC2R
PRINOC29
PRINOM3?
PRINOC31
PRINOO32
PRINOC3.3
PRINOC34
PRINCG35
PRINJ036
PRINOC37
PRINOC38
PRINEC3?
PRINOC40
PRINOO41
PRINOL42
PRINOO43
PRINOC44
PRIN0045
PR INOO46
PR INOO46
PRINOC48
PRINOU49
PRINOC5O
PRINOCSi
PRINU:S2
PRINOO53
PRINOC5's
PRINOO:j
PRINOCS5
```

```
        y!={x)=1(:)-xpqI(:))/(xMP{I(e)-xmpmI(こ)) PRINO:E
        IF (XHJ.LI.XMPKI(&)) 6OTU Fi PM, PRINOC.
        &) I=_,=
    x!I:=T=xMPKI(I)
        IF (XHJ.LI.XMPKI(&)) 6OTU Fi PMOMOM.
    PRINSE,
    PRIN-C.
```



```
    36じいつIHリ!
```



```
    It (!i..(T...:) P&=.!
->( Pu![j=x-2I(j)
Ir (x,O.S.LT.XMPRI(il) UU T] ii,a
```



```
    It (NA)
```



```
    & x,if-1(I))/(xMPRI(I+_)-x@T:ST)*(XPRI(I+_)-xPNI(I))
    IF (AFJ S.GI.XMTEST.AND.XMOES.LE.XMPRI(I+I)I Gi TI 110
1:C CiNTINU
```



```
    11 (rトjrgelT..2) P%J:ja.l
116 FKSL:=
1LE F:T,T=BR*NOSUB
    Ir (i%ぶしy.NE.N) (H2*IP&&OM
    Fitlum
    EM,
        PRINO:C
    PRINごL
    PRINDCO
    Primkine
    PRINJCO
    PRINJCO
    PRINGi,G
    PRINOLO
    PRINOUI
    PRIN心`7
    PRIN.JU7
    PRINJO7
    PKINOE7
    PRINOC7
PRINOCS
PRINLCO
```


REFERENCES

1. Gregory, T. J.: Computerized Preliminary Design at the Early Stages of Vehicle Definition. NASA TM X-62,303, 1973.
2. Ball, W. H.: Propulsion System Installation Corrections. USAF Contract AFFDL-TR-72-147, The Boeing Company, 1972.
3. Sibulkin, Merwin: Theoretical and Experimental Investigation of Additive Drag. NACA Report 1187, 1954.
4. Lighthill, J. J.: Higher Approximations in Aerodynamic Theory, Princeton University Press, 1960.
5. Little, F. K.: Internal Aerodynamics Manual. North American Rockwell Corp., Columbus, Ohio, 1968.
6. Aerospace Handbook. General Dynamics, Fort Worth, Nov. 1962.
7. Model Specification E1075-A, Engine, Aircraft, Turbojet. J-85-GE-13, General Electric Company, June 30, 1969.
8. Crane, C. A.; Spencer, B. L.; and Vance, C. H.: Flight Manual and Standard Aircraft Characteristics Performance Substantiation -F-5A/B Tactical Fighter with Two J-85-GE-13 Engines. NOR-67-29, Northrop Corporation, Norair Division, July 1967.
9. Kline, R. E.; Crews, A. H.; and Knight, W. J.: F-5A Category II Performance Test. Technical Report No. 65-15, Air Force Flight Test Center, 1965.
10. Hesse, W. J.; and Mumford, N. V. S.: Jet Propulsion for Aerospace Applications. Pitman Publishing Corp., 1964.
11. Ames Research Staff: Equations, Tables, and Charts for Compressible Flow. NACA Report 1135, 1953.
12. Barry, F. W.: Conical Flow Properties for Use in the Design of Supersonic Inlets, Report M-1266-1, Research Department, United Aircraft Corporation, Nov. 18, 1958.
13. Shapiro, A. H.: The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. I. Ronald Press Co., 1953.
14. Anderson, W. E.; and Nelms, Walter P., Jr.: Performance and Control of Air Induction Systems for a Commercial Supersonic Transport 1. Geometry and Steady State Performance. Presented at the AIAA/AFSC Vehicle Design and Propulsion Meeting, Nov. 1963.

Note: A denotes areas
(a) inlet.

Figure l.- Nomenclature.

(b) Nozzle.

Figure 1.- Concludeã.

Figure 2.- Block diagram of ACSYNT.

Figure 3.- Block diagram of propulsion installation losses subroutine (PRINC); values computed are in the boxes; inputs are in parentheses below each box.

Figure 4.- Accounting method used in PRINC module.

Figure 5.- Supersonic diffuser pressure recovery schedules.

Figure 6.- Mass flow ratio versus Mach number for simulated F-5A with (2) J85-13 engines.

(a) Maximum A/B power setting.

Figure 7. - Example propulsion installation drag calculated by lPaNC for simulated F-5A with (2) J85-13 engines; based on Gref.

(b) Military powir setting.

Figure 7.- Concludej.

Figure 8.- Example installation drag versus mass flow ratio calculated by lerive for simulated F-5A with (2).135-13 sing:nes; bacod on sref.

Figure 8.- Concludea.

Figure 9.- Thrust correlation for simulated F-5A with (2) J85-13 engines; $h=10973 \mathrm{~m}(36000 \mathrm{ft})$.

(a) Maximum aftierburning.

Figure 10. - epecific fuel consumption correlation for simulated F-5A with (2) J85-13 engines; $h=10973 \mathrm{~m}$ (36000 ft).

Figure 10.- Concluded.

Figure 12.- Pressure recovery and mass flow schedules for a study supersonic transport concept from reference 14.

(a) Bypass drag.

Figure 13.- Correlation of bypass and bleed drag coefficients for sonic exit Mach numbers; based on capture area.

(b) Bleed drag.

Figure 13.- Concluded.

Figure 14.- Correlation of boundary-layer diverter pressure coefficient.

(a) Boattail angle effects.

Figure 15.- Correlation of nozzle boattail drag enofficient.

(b) Nozzle pressure ratio effects.

Figure 15.- Concluted.

Figure 16. - Correlation of nozzle interference drag cotfficiont; nozzle pressure ratio $=2.50$.

[^0]: "For sale by the National Technical Information Service, Springfield, Virginia 22161

