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Résumé

Nous explorons la structure des vides dans une déformation massive de la théorie de Yang-Mills
maximalement supersymétrique en quatre dimensions. Sur un espace-temps topologiquement
trivial, la théorie des orbites nilpotentes dans les algèbres de Lie rend possible le calcul exact de
l’indice de Witten. Nous en donnons les fonctions génératrices pour les algèbres classiques, et
recourons à un calcul explicite pour les exceptionnelles. Après compactification sur un cercle, un
lien entre les théories de jauge supersymétriques et les systèmes intégrables est exploitable pour
réduire la chasse aux vides à une extrémisation du hamiltonien de Calogero-Moser elliptique
twisté. Une analyse soigneuse des propriétés globales du groupe de jauge et des opérateurs de
ligne est nécessaire pour obtenir un accord parfait. En combinant exploration numérique sur
ordinateur et contrôle analytique grâce à la théorie des formes modulaires, nous exhibons la
structure des vides massifs pour des algèbres de rang petit, et mettons en évidence de nouvelles
propriétés modulaires. Nous montrons que des branches de vides de masse nulle existent, et
nous en donnons la structure exacte pour les algèbres de rang deux.

Mots clés : Théories de jauge supersymétriques, Systèmes intégrables, Modularité
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Abstract

We investigate the vacuum structure of a massive deformation of the maximally supersymmetric
Yang-Mills gauge theory in four dimensions. When the topology of spacetime is trivial, the
Witten index can be computed exactly for any gauge group using the theory of nilpotent orbits
in Lie algebras. We provide generating functions for classical algebras and an explicit calculation
for the exceptional ones. Upon compactification on a circle, one can use a bridge between
supersymmetric gauge theories and complex integrable systems to reduce the analysis of vacua
to the search of extrema of the twisted elliptic Calogero-Moser Hamiltonian. A careful inspection
of global properties of the gauge group and line operators are needed to reach total agreement.
Using a combination of numerical exploration on a computer and analytical control through
the theory of modular forms, we determine the structure of massive vacua for low-rank gauge
algebras and exhibit new modular properties. We also show that massless branches of vacua can
exist, and provide an analytic description for rank two gauge algebras.

Keywords : Supersymmetric gauge theories, Integrable systems, Modularity
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Preface

This work is based on three articles [1, 2, 3] by Jan Troost and myself that have been published
in the Journal of High Energy Physics in 2015 and 2016. Large portions of these articles have
been used with only formatting changes with the agreement of Jan Troost. The table 1 gives a
list of sections of this thesis that are reproduced from the three papers. While I have chosen to
focus this document on the content of the three aforementioned articles, I have also worked on
other topics with Jan during the last three years [4, 5, 6].

Sections in this document [1] [2] [3]
Sections 2.5 and 2.6 ×

Section 3.3 ×
Section 3.4 ×
Chapter 4 ×
Section 5.3 ×

Chapter 6 and 7 ×

Table 1: The sections listed here are in essence taken from the indicated papers.

The chapter associated to number 0 is roughly a translation in French of the presentation
chapter 1, supplemented with some elements from other chapters and the conclusion.
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Chapter 0

Présentation

0.1 Difficultés en Théorie Quantique des Champs

Dans cette thèse, nous nous intéressons à des théories quantiques des champs en 3+1 dimensions
d’espace-temps. Ce choix est principalement motivé par le fait que l’espace dans lequel nous
vivons semble posséder trois dimensions (du moins, à notre échelle), auxquelles il faut ajouter
le temps. Les interactions fondamentales de la nature telles que nous les comprenons depuis
les années 1970 sont régies par le Modèle Standard de la physique des particules, selon lequel
les différentes particules élémentaires sont décrites par des champs quantiques décrits par une
théorie de jauge, dite de Yang-Mills. Les particules élémentaires sont celles qui n’admettent
pas de description en termes de sous-composants dans le cadre de la théorie considérée. Dans
le modèle standard, les particules élémentaires sont de deux types : d’une part, les bosons de
jauge qui sont les vecteurs des interactions fondamentales (ce sont le photon, responsable de
l’électromagnétisme, les bosons Z et W± qui véhiculent la force nucléaire faible, et les gluons
pour l’interaction nucléaire forte), et d’autre part les champs de matière. Ces champs de matière
sont en général des fermions de spin 1

2 (électrons, neutrinos et quarks), mais il faut leur adjoindre
le boson de Higgs, de spin 0, observé en 2012. Un ingrédient fondamental des théories de Yang-
Mills est leur groupe de jauge qui gouverne leurs symétries – les bosons de jauge sont alors
associés à chacun des générateurs de ce groupe, et les champs de matière peuvent être regroupés
en paquets qui se transforment de façon précise sous son action – ils forment une représentation
du groupe de jauge.

Dans le cas du Modèle Standard, le groupe de jauge est SU(3)×SU(2)×U(1), où le premier
facteur SU(3) est le secteur fort et le reste SU(2)×U(1) est appelé secteur électrofaible. En dépit
d’une formulation mathématique très similaire pour les deux secteurs, que nous allons expliciter
sous peu, la physique y présente de forts contrastes. Plus exactement, il s’agit de la physique
à nos échelles de taille et d’énergie qui est différente quand on passe du secteur électrofaible
au secteur fort : l’un des effets marquants est l’impossibilité d’observer un quark (particule
chargée de l’interaction forte) isolé, alors que les électrons isolés sont légion. En revanche, à
haute énergie, ou de façon équivalente, à des échelles de distance très petites, la formulation au
travers du Lagrangien est très semblable en ce qui concerne les bosons de jauge.

Des changements radicalement importants se produisent donc lorsque l’on modifie l’échelle
de distance d’observation ; l’ensemble de ces changements est appelé flot de renormalisation.
Dans le domaine électrofaible, la dynamique non-abélienne est brisée à basse énergie par le

15
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mécanisme de Brout-Englert-Higgs, qui donne une masse aux bosons Z etW±, et par conséquent
ces bosons peuvent être négligés la plupart du temps. Seul le photon, qui reste de masse nulle,
est partie intégrante de la physique à basse énergie décrite par l’electromagnétisme, dont le
groupe de jauge est U(1)em. Dans le secteur fort, il n’y a pas de boson de Higgs disponible
pour briser la symétrie SU(3) qui demeure présente à notre échelle et qui est responsable du
confinement des quarks décrit précédemment. Le confinement peut être décrit de façon simplifiée
en utilisant l’analogie des trois couleurs fondamentales : chaque quark est associé à une de ces
trois couleurs, et les seules particules observables de façon isolée (on parle d’état asymptotique)
doivent correspondre à la couleur blanche. A cause de ce phénomène, les particules que l’on
observe sont des mésons (paires d’un quark et d’un antiquark) ou des baryons (composés de
trois quarks), qui ne correspondent pas directement aux champs fondamentaux présents dans le
Lagrangien. Plusieurs questions surgissent alors:

• N’est-il pas possible de réécrire le Lagrangien en utilisant de nouveaux degrés fondamen-
taux, de sorte que ceux-ci soient observables à basse énergie ?

• Quel est le mécanisme responsable du confinement ?

• A quel point le confinement dépend-il du groupe de jauge et du contenu en matière d’une
théorie donnée ?

Répondre à ces questions revient à comprendre les différentes phases des théories de Yang-Mills
en fonction du groupe de jauge et du contenu en matière. Dans la section 1.1, nous passons en
revue certains concepts de théorie quantique des champs liés à ces questions.

En particulier, la notion sous-jacente dans la première question est la notion de dualité, qui
permet de formuler une même théorie de deux façons apparemment différentes. Un exemple
que nous allons développer plus loin, puis généraliser amplement, est la dualité entre aspects
électriques et magnétiques. Il s’agit d’un exemple de dualité reliant faible couplage et fort cou-
plage, à l’instar de la S-dualité dont nous reparlerons. Cette dualité est une composante de la
modularité, qui regroupe de nombreuses autres dualités et symétries au sens propre dans un
groupe infini, et rend nécessaire l’introduction d’objets inaccessibles à la théorie des perturba-
tions, comme les monopoles et les instantons. Ces objets jouent par ailleurs un rôle crucial dans
notre compréhension du phénomène du confinement, et sont donc la clé de toute réponse à la
seconde question ci-dessus. Enfin, concernant la troisième question, la richesse de la réponse
repose sur le fait qu’en plus de dépendre du groupe de jauge et du contenu en matière, la phase
à basse énergie dépend du vide précis autour duquel on observe la théorie. Rappelons qu’un
vide dans une théorie classique correspond à un minimum d’énergie potentielle. Il se peut qu’à
cause d’une symétrie de la théorie, il existe plusieurs vides à la même énergie, on parle alors de
dégénérescence. Dans ce cas, la physique peut être différente dans les différents vides.

Bien que les physiciens aient acquis au cours des dernières décennies une compréhension
satisfaisante des phénomènes décrits dans le paragraphe précédent, il demeure difficile d’obtenir
des résultats exacts sans hypothèse supplémentaire, cette hypothèse prenant souvent la forme de
la supersymétrie, reliant bosons et fermions. Quelques aspects importants des théories de Yang-
Mills avec supersymétrie sont décrits dans la section 1.2. En particulier, l’algèbre de symétrie
impose dans ce cas que l’énergie dans un vide qui préserve la supersymétrie soit exactement
nulle, et il est donc typique d’observer une forte dégénérescence, et possiblement différentes
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phases. Ainsi, comprendre la physique à basse énergie d’une théorie supersymétrique donnée se
ramène à un processus en deux étapes :

1. Trouver tous les vides de la théorie;

2. Dans chaque vide, caractériser la phase.

Grâce aux progrès réalisés au cours des dernières décennies, la seconde tâche est relativement
facile à accomplir, du moins dans les théories avec supersymétrie, comme nous allons le voir dans
ce chapitre introductif. La première étape, en revanche, est plus ou moins ardue, en fonction
de la théorie considérée. Cette thèse est consacrée à cette seconde étape, dans le cas particulier
d’une théorie supersymétrique appelée N = 1∗, que l’on peut présenter comme le cas non trivial
le plus intéressant – cette affirmation péremptoire sera étayée par des arguments dans les sections
à venir. Mais avant cela, regardons de plus près les théories de jauge en quatre dimensions.

0.2 Théories de Yang-Mills en quatre dimensions

0.2.1 Dualité électromagnétique classique

Nous commençons par une rapide description de la dualité électro-magnétique, qui est un
bon point de départ en tant que prétexte pour introduire des objets non perturbatifs comme
les monopoles magnétiques, et aussi parce que cette dualité est l’inspiration de la dualité de
Montonen-Olive qui peut être vue comme sa généralisation non-abélienne. Considérons donc la
théorie classique de l’électromagnétisme, c’est-à-dire une théorie de jauge avec groupe U(1), sans
matière. Son Lagrangien se réduit aux termes cinétiques pour le champ de jauge A = Aµdxµ,
qui fait intervenir le tenseur Fµν = ∂µAν − ∂νAµ :

Lpure QED = − 1
4e2FµνF

µν . (1)

Nous utilisons ici et dans le reste de la thèse une normalisation légèrement inhabituelle, qui se
révélera plus pratique par la suite. Ce Lagrangien conduit directement aux équations de Maxwell
dans le vide, que nous écrivons ici sous leur forme non explicitement relativiste :

~∇ · ~E = 0 (2)
~∇× ~B − ∂t ~E = ~0 (3)

~∇ · ~B = 0 (4)
~∇× ~E + ∂t ~B = ~0 . (5)

Les deux premières lignes (2) et (3)sont les équations du mouvement pour le champ de jauge,
tandis que (4) et (5) sont des équations de contrainte qui sont enracinées dans la description
que nous avons choisie, qui se base sur un champ de jauge défini de façon globale. Une ob-
servation remarquable à propos de ces équations est leur symétrie sous l’action de la dualité
électromagnétique décrite par

~E → ~B (6)
− ~B → ~E . (7)
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Si nous avions écrit les équations sous la forme dF̃ = dF = 0, la symétrie aurait été encore plus
évidente :

F ↔ F̃ . (8)

Cette symétrie est cependant violée dès que l’on ajoute des sources dans les équations (c’est-à-
dire une densité de charges électriques et une densité de courants électriques), et elle ne peut
être restaurée qu’à condition d’ajouter également des sources magnétiques (ce que l’on appelle
des monopoles de Dirac, et les courants magnétiques associés), avec le postulat supplémentaire
que la dualité échange les deux types de sources. Il est clair que dans une configuration où des
monopoles magnétiques sont présents, ~∇ · ~B 6= 0 et il est simplement impossible de définir le
champ Aµ. Cependant, supposons un instant que l’on ajoute uniquementy des sources magné-
tiques, et pas de sources électriques. Dans ce cas, les deux équations (2) et (3) peuvent être
résolue à l’aide d’un nouveau potentiel vecteur que nous appelons ADµ et qui achève la description
duale :

Aµ
~B = ~∇ × ~A

~E = −∂t ~A − ~∇A0

ADµ
~E = −~∇ × ~AD

~B = −∂t ~AD − ~∇AD0 (9)

Jusqu’à maintenant, nous nous sommes restreint à de la physique classique. Bien qu’aucun
monopole magnétique n’ait encore été observé dans la nature, les équations ci-dessus sont math-
ématiquement cohérentes. Mais c’est une autre paire de manche que de donner un sens à la
théorie quantique : dans celle-ci, le degré de liberté fondamental est le photon Aµ. Si la théorie
contient des monopoles électriques et magnétiques, alors le champ de jauge ne peut être défini,1

et des contraintes d’ordre topologique émergent. Dans le cadre de la théorie U(1), la charge
électrique2 e et la charge magnétique ẽ sont reliées par la condition de quantification de Dirac

eẽ = 2π , (10)

dans laquelle nous avons posé ~ = 1. En d’autres termes, pour chaque paire composée d’un objet
électrique et d’un objet magnétique, le produit de leurs charges est un multiple entier de 2π.
Cela implique par exemple la quantification de la charge électrique dès qu’il existe au moins un
monopole magnétique. Si l’on considère des dyons, c’est-à-dire des objets chargés électriquement
et magnétiquement, avec des charges (ne, nm) et (n′e, n′m), alors la condition de Dirac devient
nen

′
m − nmn′e ∈ 2πZ.
Une autre conséquence cruciale de cette équation est que si la charge électrique élémentaire

e est grande, alors sa duale magnétique est petite. Ainsi la dualité electromagnétique appartient
à la famille des dualités reliant fort couplage et faible couplage. Il faut néanmoins insister sur le
fait que la dualité électromagnétique est une équivalence entre deux théories U(1) libres, alors
que la S-dualité que nous utilisons par la suite identifiera des théories interagissantes avec des
constantes de couplages différentes.

1Notons cependant qu’avec de la matière dynamique, on peut construire des configuration régulières qui présen-
tent une charge magnétique, comme par exemple le monopole de ’t Hooft-Polyakov mentionné un peu plus loin.

2Nous notons e la constante de couplage dans le cas abélien. Dans le reste de la thèse, nous nous focaliserons
sur le cas non-abélien, où la constante de couplage sera notée gYM . Il n’y a pas de différence fondamentale entre
ces deux constantes, il s’agit simplement d’une affaire de conventions.
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0.2.2 Physique non-perturbative

Le langage de base de la théorie quantique des champs est celui de la théorie des perturbations
autour d’un vide donné, sur lequel agissent des opérateurs d’excitation que l’on peut voir comme
des particules. Une observable physique, comme une fonction de corrélation, peut être calculée
au moyen d’une série infinie dont les termes successifs sont représentés par des diagrammes de
Feynman. Cela mène généralement à une série divergente, mais si la constante de couplage
(qui est le paramètre du développement perturbatif) est petite, on obtient une approximation
correcte en tronquant la série après quelques ordres. Le résultat est alors donné sous la forme
d’une série en puissances positives de gYM . Cependant, il existe des quantités qui ne peuvent être
représentées sous cette forme, et en cela requièrent d’aller au-delà de la théorie des perturbations.
Les monopoles magnétiques sont de tels objets, comme nous l’expliquons maintenant.

La construction des monopoles magnétiques peut être illustrée de façon simple dans le modèle
de Georgi-Glashow avec groupe de jauge SU(2), et un champ de Higgs dans la représentation
adjointe, donc le Lagrangien est

LGG = − 1
4g2
YM

F aµνF
a,µν + 1

2Dµφ
aDµφa − λ(φaφa − v2)2 . (11)

Les termes qui contribuent à l’énergie d’une configuration sont F aµνF a,µν , Dµφ
aDµφa et λ(φaφa−

v2)2. Ainsi, une configuration d’énergie minimale est obtenue en prenant 〈Aaµ〉 = 0 et 〈φa〉
constant de sorte que

〈φaφa〉 = v2 . (12)

Dans ce cas la symétrie de jauge est brisée selon le schéma SU(2)→ U(1). Nous appelons cette
configuration le vide de Higgs. Dans ce vide, le champ de jauge abélien résiduel peut être utilisé
pour définir une charge magnétique, qui est ici nulle.

Il existe d’autres configurations stables qui sont des minima locaux d’énergie. On peut com-
prendre cela à partir de l’équation (12) qui doit être satisfaite sur la sphere S2

∞ à l’infini spatial,
et qui est l’équation d’une seconde sphère S2

Higgs. Nous en concluons que toute configuration
d’énergie finie est associée à une application S2

∞ → S2
Higgs. Pour le vide de Higgs, cette applica-

tion envoie S2
∞ sur un point 〈φa〉. Mais d’autres applications sont possibles, et cela coûterait une

quantité infinie d’énergie de changer de secteur topologique. Ainsi chaque classe d’applications
topologiquement équivalente, appartenant au second groupe d’homotopie π2

(
S2
Higgs

)
= Z est

un candidat pour un vide stable, où l’entier correspond à la charge magnétique. De telles so-
lutions partout régulières ont été construites explicitement [7, 8] et sont connues sous le nom
de monopoles de ’t Hooft-Polyakov. Plus généralement, pour une brisure de symétrie de jauge
G→ H, le groupe qui les classifie est π2 (G/H).

Les monopoles magnétiques sont des objets non perturbatifs. On peut déduire cela de la
formule donnant leur masse classique,

mmonopole = 4π|nm|
v

gYM
(13)

où nm est la charge magnétique. On s’aperçoit que cette masse diverge quand la constante de
couplage gYM est très petite, ce qui empêche de l’écrire comme une série en puissances positives
de gYM .
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Un autre aspect non-perturbatif dans les théories de Yang-Mills est la possibilité d’inclure
dans le Lagrangien un terme

Lθ = θYM
32π2F

a
µνF̃

a,µν = θYM
8π2 Tr (F ∧ F ) . (14)

Bien qu’il viole la symétrie CP , il préserve la renormalisabilité de la théorie, et est invisible en
théorie des perturbations. Cependant, il a un effet sur la masse des monopoles magnétiques :
en présence de (14), la formule pour la masse (13) reçoit une correction additive proportionnelle
à θ2

YM .

0.2.3 Phases des théories de Yang-Mills

Le Lagrangien d’une théorie de Yang-Mills pure est

LYM = − 1
4g2
YM

F aµνF
a,µν = − 1

2g2
YM

Tr
(
F 2
)
. (15)

Notre but est d’étudier une théorie basée sur ce terme, avec un certain contenu en matière.
Nous voulons une théorie suffisamment riche afin de comprendre des phénomènes physiques
intéressants, et suffisamment simple pour qu’elle soit manipulable. Nous allons donc considérer
une simplification du modèle standard :

• On prend un groupe de jauge G, qui peut être abélien ou non, mais nous supposons qu’il
est simple et connexe. Nous ajoutons les bosons de jauge correspondants dans la théorie.
L’algèbre de Lie associée est notée g. Quand g = su(N), on dit que N est le nombre de
couleurs de la théorie.

• Puis on ajoute un certain nombre de champs de matière ψk, que nous nommons générique-
ment des quarks. Nous entendons par là des champs de spin 1

2 qui se transforment dans
la représentation fondamentale. Nous mettons Nf quarks dans la théorie, de sorte que
l’indice k va de 1 à Nf si Nf 6= 0.

• Nous nous réservons aussi la possibilité d’ajouter des champs scalaires complexes φj dans
une représentation R du groupe de jauge. Nous en prenons Ns, avec j = 1, . . . , Ns.

Le Lagrangien s’écrit alors

L = − 1
4g2
YM

F aµνF
a,µν +∇µφ̄j∇µφj − V (φ) +

[
iψ̄k /∇ψk −

∑
k

mkψ̄kψk

]
. (16)

Nous avons supposé qu’il n’y avait pas d’interaction entre les quarks et les champs scalaires.
Le modèle standard est beaucoup plus compliqué que ce modèle-ci, car le groupe de jauge n’y
est pas simple, les fermions se transforment dans des représentations différentes les unes des
autres, et il y a des interactions entre les différents types de fermions et le champ de Higgs.
Cependant, ce modèle reproduit la plupart des phénomènes intéressants du modèle standard, et
nous servira de champ d’expérimentation pour le reste de cette thèse.3 Maintenant que la scène

3En fait, ce n’est pas entièrement vrai. Les théories N = 1∗ que nous allons étudier – nous les introduisons un
peu plus loin –, contiennent un champ de jauge et trois scalaires massifs en ce qui concerne les bosons, ainsi que les
fermions qui leur sont reliés par supersymétrie. Ces fermions doivent avoir la même masse que leurs partenaires
bosoniques, et ils interagissent avec les bosons à cause de la forme du superpotentiel.
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microscopique est en place, nous pouvons poser la question centrale : quelle physique à grande
distance ce Lagrangien décrit-il ? La réponse à cette question est fort riche, et dépend de façon
complexe des (quelques) paramètres de la théorie : le nombre de couleurs, de fermions, et le
potentiel scalaire V (φ). Nous allons à présent donner un bref aperçu des différentes réponses
possibles. On rappelle à cette fin la fonction β à une boucle pour la constante de couplage,

β1-loop =
[ dgYM
d log(µ/Λ)

]
1-loop

= − g
3
YM

(4π)2

[11
3 T (adjoint)− 2

3T (fermions)− 1
3T (scalars)

]
. (17)

Il est de notoriété publique que les théories de Yang-Mills sont plus subtiles que les théories
abéliennes : la non-commutativité du groupe se traduit par des termes additionnels [A,A] dans
la définition du champ de courbure F , qui donnent lieu à des interactions en A3 et A4. Supposons
donc dans un premier temps que le groupe de jauge est G = U(1). La physique à basse énergie
dépend du contenu en matière. S’il n’y a pas de matière du tout, alors la théorie est libre, donc
peu intéressante. Tournons-nous donc vers les deux cas les plus simples qui soient non triviaux.

(C) Supposons qu’on ne mette qu’un fermion de Dirac de masse m, que l’on peut appeler un
électron. Alors β1-loop = e3

12π2 > 0, où e est la charge électrique. Ainsi, quand l’échelle
d’énergie µ décroît, la constante de couplage décroît également,

e2 ∼ − 1
log(µ/Λ) . (18)

Quand µ devient de l’ordre de la masse m de l’électron, ce dernier découple et l’évolution
de la constante de couplage s’arrête à une certaine valeur (e2)0.

(H) Maintenant mettons uniquement un champ complexe scalaire massif φ avec un potentiel
V (φ) qui est un polynôme en |φ|2, de sorte que l’invariance de jauge soit préservée, avec un
coefficient dominant positif, afin que l’énergie soit minorée. Il est clair que le point φ = 0
est un extremum du potentiel, mais il peut être soit un maximum, soit un minimum. La
situation intéressante est celle où il y a un minimum en un point |φ0|2 6= 0. Alors la
symétrie U(1) qui agit par φ → eiθφ est spontanément brisée par le choix de φ0. C’est
le mécanisme de Brout-Englert-Higgs : le champ de jauge devient massif et le champ de
Higgs complexe est réduit à une composante réelle.

Des électrons statiques permettent de sonder la physique du premier cas (C). Ils ressentent un
potentiel de Coulomb,

VCoulomb ∼
(e2)0
r

. (19)

Voilà pourquoi on parle de phase de Coulomb. Le potentiel à longue portée avec la dépendance
caractéristique en r−1 est du à la présence de champs de jauge de masse nulle. D’autre part, la
phase (H) est naturellement appelée la phase de Higgs. Ici, à grande distance le potentiel ressenti
est

VHiggs ∼
exp(−mphotonr)

r
, (20)

où mphoton est la masse donnée au boson de jauge par le mécanisme BEH.
Tournons-nous maintenant vers les théories de jauge non abéliennes. La fonction β peut

recevoir une forte contribution négative de la part du boson de jauge, qui sera dominante si le
nombre de champs de matière est suffisamment faible. Cela signifie que la constante de couplage
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est grande dans l’infrarouge, et que la théorie entre dans sa phase de confinement. Le spectre est
très différent de ce à quoi on pourrait s’attendre naïvement en inspectant le Lagrangien. Ainsi,
en plus des phases déjà présentes dans les théories abéliennes, nous devons prendre en compte
la phase de confinement, qui est caractérisée par un potentiel

VConfining ∼ r (21)

entre des charges test. On peut se représenter cette interaction par une corde reliant ces charges,
qui est constituée par un tube de flux.

Un critère pratique peut être utilisé pour diagnostiquer le confinement, en utilisant des lignes
de Wilson. On associe à toute boucle fermée C de l’espace-temps un opérateur

W (C ) = tr
[
P exp

(
i

∮
C
A

)]
(22)

où P exp est l’exponentielle ordonnée. Il est très utile de calculer la valeur moyenne dans le vide
d’un tel opérateur car cela permet de déterminer le comportement asymptotique du potentiel
entre deux quarks sondes. En général, 〈W (C )〉 se comporte dans la limite d’un grand contour
comme exp(−κA ) ou exp(−κP), avec A l’aire entourée par la boucle et P son périmètre. En
règle générale, et à certaines subtilités près [9], une loi en exp(−κA ) signale que l’on est dans
la phase confinante.

0.2.4 Structure globale du groupe de jauge

Jusqu’à présent, nous avons essentiellement utilisé l’algèbre de Lie g, et pas le groupe de jauge
G qui présente une structure plus riche. La raison en est que les quantités physiques semblent
ne dépendre que de la structure algébrique de G, et pas de ses propriétés topologiques. Cela
est correct pour une large classe d’observables, qui contient en particulier tous les corrélateurs
d’opérateurs locaux d’une théorie formulée sur R4. Cependant, comme démontré récemment
par Aharony, Seiberg et Tachikawa, [10], les aspects globaux ont au moins trois effets qui auront
de l’importance dans cette thèse :

• La structure des phases de la théorie sur R4 ;

• La dynamique des opérateurs locaux quand la théorie est compactifiée sur R3 × S1 ;

• L’indice de Witten de la théorie compactifiée.

Les outils appropriés pour tenir compte des propriétés topologiques sont les corrélateurs d’opérateurs
de ligne, généralisant les quantités 〈W (C )〉 qui sondent le confinement. Mais quels sont les
opérateurs possibles dans une théorie donnée ?

En plus des lignes de Wilson introduites précédemment, il est naturel de définir des lignes de
’t Hooft [11] où le champ de jauge est remplacé par son dual magnétique. Ainsi, les propriétés
des lignes de Wilson vis-à-vis du groupe de jauge G ont un équivalent dans les lignes de ’t
Hooft vis-à-vis du groupe magnétique G∨ qui est le dual de Langlands de G. Ainsi, les lignes
de Wilson sont paramétrées par le réseaux des poids P de G alors que celles de ’t Hooft sont
paramétrées par le réseau dual, celui des co-poids P∨. Plus généralement, on peut définir des
lignes dyoniques, indexées par des paires dans l’espace

P × P∨

Weyl Group , (23)
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comme expliqué par Kapustin dans [12]. En fait, les lignes existent toujours par familles com-
plètes générées par le réseau Q×Q∨, où Q est le réseau des racines et Q∨ son dual, et ces familles
sont en réalité indexées par Z(G̃)2, où Z(G̃) est le centre du recouvrement universel de G. Les
charges possibles sont contraintes par une généralisation de la condition de quantification de
Dirac (10). Pour résumer, afin de déterminer complètement le secteur de jauge d’une théorie, il
faut procéder en trois temps : choisir une algèbre de jauge g, puis un groupe de jauge G = G̃/H

où H est un certain sous-groupe du centre Z(G̃), et enfin un spectre de lignes qui satisfasse à
la condition de Dirac généralisée, les différents choix possibles étant numérotés par un indice i.
La théorie qui en résulte est alors notée (G̃/H)i.

Pour illustrer cela, nous décrivons la structure de phase de la théorie pure su(N). Dans ce
cas, nous avons G̃ = SU(N) et Z(G̃) = ZN . Les sous-groupes de ZN sont les groupes Zd pour
d diviseur de N . La condition de quantification de Dirac requiert que deux classes de lignes
ayant pour charges (n,m) et (n′,m′) ∈ ZN × ZN doivent satisfaire nm′ − mn′ = 0 modulo
N . On s’aperçoit alors que pour un groupe de jauge SU(N)/Zd donné il y a exactement d
choix possibles pour un ensemble de lignes. Ainsi, le nombre de théories de jauges distinctes
est la somme des diviseurs de N . Il est souhaitable de connaître la physique à grande distance
dans chacune de ces théories : c’est une question délicate, et nous allons la contourner en
ajoutant plus de symétrie à notre théorie. Plus précisément, ajoutons un champ fermionique
très massif dans la représentation adjointe du groupe de jauge – cela ne change pas la physique
à basse énergie, de laquelle ces fermions sont absents – puis diminuons progressivement sa masse
jusqu’à atteindre zéro. Il n’est pas exclus qu’une transition de phase se produise au cours de cette
opération, et c’est l’une des raisons pour lesquelles il est si difficile d’analyser les théories non
supersymétriques. Car c’est bien la supersymétrie que nous sommes en train d’ajouter : lorsque
la masse du fermion adjoint est nulle, on peut le relier au boson de jauge par une supercharge,
ce fermion devenant un gaugino. Une myriade de nouvelles techniques sont alors disponibles
pour sonder la structure des vides, comme nous allons le voir dans la prochaine section.

0.3 Théories supersymétriques et modularité

Comme nous l’avons vu, il est important de déterminer la structure des vides des théories
de jauges en quatre dimensions, et la supersymétrie rend cette tâche plus accessible – nous
y reviendrons. D’autre part, il serait agréable de disposer d’un principe supplémentaire qui
permettrait de mettre de l’ordre dans les vides. Nous allons voir qu’un tel principe existe, il
s’agit de la modularité, qui généralise la dualité électro-magnétique mentionnée dans la section
0.2.1.

0.3.1 La théorie maximalement supersymétrique

La première apparition de la S-dualité en physique remonte aux travaux sur les théories de Yang-
Mills dans les années 1970. Dans [13], Montonen et Olive ont proposé une symétrie échangeant
fort et faible couplage, champs électrique et magnétique, et le groupe de jauge G avec son dual
de Langlands G∨. Cette symétrie est par essence non-perturbative, et il est par conséquent
difficile, si ce n’est impossible, de la vérifier par des moyens classiques. L’introduction de la
supersymétrie fournit le contrôle non-perturbatif suffisant pour effectuer des tests.

En fait, la version la plus simple de la symétrie proposée par Montonen et Olive n’est vraie
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qu’en présence de beaucoup de supersymétrie. Le point de départ est le travail de Witten
et Olive [14], où il est démontré que lorsque des monopoles ou d’autres solitons sont inclus
dans des théories supersymétriques, des charges centrales reliées aux nombres topologiques des
solitons sont générées. Dans un contexte quadri-dimensionel, les charges électrique et magnétique
joueront le rôle de charges centrales de l’algèbre de supersymétrie, et la masse m de tout état
est bornée inférieurement par la condition de Bogomol’nyi-Prasad-Sommerfield (BPS). Dans
la version N = 2 du modèle étudié par Montonen et Olive (le nombre N compte le nombre
de supercharges, comme expliqué dans l’appendice A), cette borne est saturée par toutes les
particules au niveau classique, y compris les monopoles et les dyons. Ainsi, puisque le nombre
d’états dans les supermultiplets ne peut pas sauter à mesure que la constante de Planck est
activée, Witten et Olive concluent que la borne BPS doit rester saturée dans la théorie quantique,
ce qui donne accès au spectre non-perturbatif (au moins en partie). Osborn [15] poursuit ce
travail dans la théorie N = 4 super Yang-Mills, qui est maximalement supersymétrique. En
imposant une brisure spontanée de symétrie, il génère un multiplet N = 2 massif qui sature la
borne BPS, et montre qu’un monopole magnétique correspond au même multiplet, et avec la
même masse ! Ainsi, dans la théorie N = 4, l’accord entre les contenus des multiplets électrique
et magnétique est une forte indication que la dualité est réalisée.

Bien sûr, comme nous l’avons expliqué, l’algèbre de jauge ne suffit pas pour spécifier com-
plètement la théorie, et il faut également en donner les opérateurs de ligne? Ainsi, même si
g∨ = g, les théories ne sont pas nécessairement invariantes par S-dualité (et la transformation
T n’est pas non plus nécessairement une symétrie). Un exemple est représenté sur la figure 1
extraite de [10].

Figure 1: Ce diagramme représente comment les sept théories avec algèbre de jauge su(4) sont
échangées par les symétries modulaires. En rouge, nous montrons l’action de la S-dualité, et en
vert, l’action de T . Quand il n’y a pas de flèche de la couleur correspondante, cela signifie que
la théorie est invariante. Ce diagramme est à comparer avec la figure 4.1 dans le chapitre 4.

0.3.2 De la S-dualité à l’invariance modulaire

A l’origine observé dans des modèles sur réseaux [16, 17], l’effet de l’angle θYM a pu être intégré à
notre histoire. D’après l’effet de Witten [18], l’inclusion d’un tel angle dans le Lagrangien donne
aux dyons une charge électrique qui peut être un multiple non entier de la charge élémentaire.
Cependant lorsque l’angle est varié continûment de zéro à 2π, le spectre est rebattu mais demeure
globalement invariant. Dans le contexte des théories de jauge supersymétriques, avec un groupe
de jauge simple, il est naturel d’assembler l’angle θYM et la constante de couplage gYM dans
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une combinaison complexe

τ = 4πi
g2
YM

+ θYM
2π , (24)

que l’on peut interpréter comme la composante scalaire d’un superchamp, de sorte que le La-
grangien de la théorie (A.14 puisse être considéré comme un terme de superpotentiel. La S-
dualité et la symétrie θYM → θYM + 2π génèrent à eux deux un groupe modulaire SL(2,Z) de
dualités. Cependant, l’accord dans les multiplets trouvé par Osborn dans la théorie maximale-
ment supersymétrique n’est plus réalisé dans les théories N = 2, ce qui exclut une réalisation
simple de la dualité électro-magnétique dans ces théories, et par la même occasion dans toutes
les théories avec moins de supersymétrie. Cependant, une version différente des mêmes idées
émerge du travail de Seiberg et Witten dans les années 1990.

Dans la théorie pure SU(2) avec des monopoles [19], la partie scalaire du multiplet vecteur
et de son dual (aD, a) se transforme sous l’action du groupe modulaire SL(2,Z). Le générateur

S =
(

0 1
−1 0

)
(25)

est identifié avec la dualité électro-magnétique, et échange deux descriptions équivalentes de la
même théorie. D’autre part, le générateur

T =
(

1 1
0 1

)
(26)

est la symétrie θYM → θYM + 2π décrite précédemment. Au niveau classique, τcl = aD
a , et

l’action du groupe modulaire est l’action habituelle sur τcl. Cela reste vrai dans la théorie
quantique dans le cas de N = 4, mais en général le flot de la constante de couplage sous l’action
du groupe de renormalisation gâche la modularité.

Dans les théories avec encore moins de supersymétrie, la modularité est plus cachée. Ainsi,
la chromodynamique quantique N = 1 avec le nombre adéquat de quarks et de squarks est reliée
par la dualité de Seiberg [20, 21] à une théorie différente, mais qui évolue dans l’infrarouge vers
la même physique. Il s’agit ici encore d’une version de la dualité électro-magnétique, les quarks
étant par exemple envoyés sur les quarks du groupe dual magnétique dans l’autre théorie, mais
il est important de noter que les deux théories sont très différentes. Dans la version la plus
simple, une théorie SU(N) avec 3

2N < Nf < 3N quarks est reliée à une théorie SU(Nf − N)
avec Nf quarks ainsi que des mésons. De plus, la dualité n’est réalisée que dans la limite de
basse énergie.

Le travail récent de Gaiotto [22] éclaire d’un jour nouveau les dualités des théories N = 2,
en associant à ces dernières une courbe ultraviolette C avec insertions, de telle sorte que la
courbe de Seiberg-Witten, qui contrôle la physique dans l’infrarouge, soit donnée par l’équation
λ2 − ϕ(z) = 0, où z est un paramètre de C, λ est la forme de Seiberg-Witten et les propriétés
asymptotiques de ϕ(z) sont déterminées par le superpotentiel. Un exemple important est celui
de la théorie N = 2∗, dans laquelle la matière est composé d’un hypermultiplet de masse m
dans la représentation ajointe. Dans ce cas, la courbe C est un tore avec une insertion, et en
utilisant les propriétés des fonctions elliptiques, on obtient [23]

ϕ(z) = (m2℘(z; τ) + u)dz2 , (27)
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où u = trφ2, avec φ la composante scalaire du multiplet vecteur. Cela fournit une interprétation
géométrique du groupe modulaire SL(2,Z), qui apparaît ici comme le groupe des symétries
discrètes de la structure complexe du tore.

La théorie N = 4 est un cas particulier de cette situation, et on peut comprendre le dia-
gramme de la figure 1 de ce point de vue. En effet, il existe une interprétation des données
discrètes nécessaires pour définir les théories dites de classe S à quatre dimensions, à savoir
le spectre des opérateurs de ligne, en termes d’une géométrie à six dimensions [24], comme le
sous-réseau maximal isotrope de H1(C,Z(G̃)), où C est la courbe ultraviolette. Pour les théories
N = 4, nous venons de voir que C est un tore, et donc H1(C,Z(G̃)) est isomorphe à Z(G̃)2.
Cela explique pourquoi le même diagramme de dualité apparaîtra plus tard dans notre analyse
des extrema du potentiel de Calogero-Moser elliptique et des vides des théories N = 1∗. On
pourra comparer avec les figures 4.1 et 5.1.

0.3.3 La structure des vides

L’espace des vides est un outil de base de l’analyse des théories de jauge supersymétriques, qui
est basé sur l’holomorphie. La classification des vides massifs et de masse nulle, et l’analyse
de leurs symétries et de leurs propriétés de dualité sont des traits fondamentaux d’une théorie.
Rappelons quelques théorèmes centraux :

• Dans les théories N = 1, le superpotentiel n’est pas renormalisé en théorie des perturba-
tions. Cependant, il peut être affecté par des effets instantoniques.

• Dans les théories N = 2, la fonction β à une boucle (A.25) est exacte.

• Les théories N = 4 sont finies.

Nous devons faire la distinction entre les espaces de modules classique et quantique. En
général, une dégénérescence entre des vides d’une théorie classique qui n’est pas causée par
une symétrie (on parle de dégénérescence accidentelle) est détruite par les effets quantiques.
Cependant, en présence de supersymétrie, la situation générique correspond à une préservation
quantique de la dégénérescence en théorie des perturbations, bien que des effets non-perturbatifs
puissent générer un superpotentiel additionnel et détruire les vides classiques. Le superpotentiel
effectif sur l’espace des modules contient toute l’information concernant la limite à basse énergie,
avec son contenu en particules et sa structure de phase.

L’espace des modules classique est singulier aux points où il y a des champs additionnels de
masse nulle par rapport à un point générique. Une question naturelle concerne alors le destin de
ces singularités dans l’espace des modules quantique [25]. En fait, à peu près tout peut arriver
: une singularité peut disparaître, rester mais changer de nature, ou ne pas être affectée. Nous
verrons un exemple dans le cas de la théorie SU(2) pure N = 2. Avant cela, penchons-nous sur
la théorie maximalement supersymétrique.

N = 4

Dans le langage des théories N = 1, la théorie de Yang-Mills N = 4 possède six scalaires φi,
i = 1, . . . , 6 dans la représentation adjointe, en plus du multiplet vecteur, pour ce qui est du
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contenu bosonique. Le superpotentiel fournit alors un terme

1
8g2
YM

∑
i,j

[φi, φj ]2 (28)

qui est nul si les φi commutent deux à deux. On peut ainsi les voir comme des éléments de la
sous-algèbre de Cartan : ils brisent le groupe de jauge à U(1)r, où r est le rang, et nous parlons
donc de phase de Coulomb. Quand toutes les valeurs dans le vide sont nulles, on parle de phase
superconforme – et on peut naturellement trouver toute une série de phases intermédiaires avec
une symétrie résiduelle non abélienne.

Ainsi, nous avons trouvé l’espace des modules classique :

MN=4 = R6r

Weyl group , (29)

qui est singulier aux points de R6r qui sont fixés par le groupe de Weyl. Ces singularités signalent
de nouveaux degrés de libertés de masse nulle, qui sont nécessaires pour construire les bosons de
jauge non abéliens qui apparaissent à ces points. On peut montrer que cet espace classique n’est
pas corrigé dans la théorie quantique [26], de sorte que (29) reste vrai dans la théorie complète.

N = 2

Maintenant que nous avons décrit la situation pour la théorie N = 4 très contrainte, nous nous
tournons vers N = 2 où la physique est beaucoup plus riche. A titre d’exemple du mécanisme
évoqué précédemment, dans la théorie SU(2) pure l’espace des modules est C avec une singularité
à l’origine où la symétrie non-abélienne est restaurée. L’espace des modules n’est pas détruit
dans la théorie quantique, mais la singularité se scinde en deux singularités quantiques qui
correespondent à des valeurs non nulles du paramètre de la branche de Coulomb.

N = 1

Les théories de jauge avec la quantité minimale de supersymétrie sont moins contraintes, et
présentent des propriétés physiques très riches. L’exemple de base est la déformation massive de
la théorie N = 2 du paragraphe précédent. Classiquement, ainsi qu’en théorie des perturbations,
le superpotentiel se réduit au terme de masse, et il n’y a qu’un seul vide avec une valeur moyenne
nulle pour le multiplet chiral. Cependant, en prenant en compte les effets non-perturbatifs, le
superpotentiel Affleck-Dine-Seiberg est généré [27], induisant un effet répulsif dans la région
fortement couplée, et scindant ainsi le vide classique en deux vides quantiques.

Dans la théorie de Yang-Mills pure, le groupe de R-symétrie U(1) est brisé par des instantons
à un sous-groupe discret, et le nombre de vides est le nombre de Coxeter dual h∨ de l’algèbre de
jauge. L’existence de vides isolés implique la possibilité d’existence de murs de domaines entre
les régions d’espace-temps avec différentes configurations de vides. Dans les théories N = 1, la
densité d’énergie sur un tel mur peut être calculée de façon exacte dans le régime à fort couplage
[28],

Tmur = |2∆W| . (30)
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0.3.4 Compactification sur le cylindre

Après avoir décrit l’espace des vides des théories N = 2 sur R4, Seiberg et Witten [29] ont
poursuivi leur exploration sur un espace de topologie non triviale, R3×S1. Un effet intéressant
de cette compactification est alors que la courbe de Seiberg-Witten acquiert une signification
physique. En effet, comme nous le verrons en détail dans le chapitre 5, deux scalaires additionnels
apparaissent (la ligne de Wilson le long du cercle et le dual du photon dans les trois directions
non compactes), que l’on peut combiner en un scalaire complexe Z, voir la figure 2. La théorie
à basse énergie est alors un modèle sigma pour lequel l’espace cible est la courbe de Seiberg-
Witten, et l’espace des modules est précisément cette courbe, avec ses modules. Un potentiel
généré de façon non perturbative sur la branche de Coulomb peut être vu comme un potentiel
additionnel (au sens de la mécanique classique) dans le modèle sigma, ce qui est l’essence du
lien intime entre les théories de jauge supersymétriques et les systèmes mécaniques intégrables
– c’est la supersymétrie N = 2 qui fournit cette structure supplémentaire.

Figure 2: Compactification de la théorie sur le cylindre, et apparition des deux scalaires réels
qui se combinent dans le scalaire complexe Z.

Ainsi, la compactification sur le cylindre est un outil extrêmement puissant pour sonder la
dynamique de jauge, pour au moins trois raisons :

• Elle offre une réalité physique à la courbe de Seiberg-Witten ;

• Elle relie théories de jauges et systèmes intégrables ;

• Elle connecte la physique à quatre dimensions (quand le rayon R → ∞) et la physique à
trois dimensions (quand R→ 0).



0.4. LES VIDES DES THÉORIES N = 1∗ 29

De façon heuristique, si toute théorieN = 2 donne naissance à un système intégrable complexifié,
la compactification sur le cylindre le transforme en un espace hyperkähler manipulable [30]. Nous
allons donc utiliser abondamment ces compactifications dans la suite. Il faut cependant noter
que d’autres topologies permettent d’accéder à des résultats intéressants. Citons par exemple la
compactification sur une sphère à quatre dimensions [31] ou un ellipsoïde [32] où la fonction de
partition peut être calculée exactement en utilisant le principe de localisation supersymétrique.
La correspondance d’Alday-Gaiotto-Tachikawa [33] fait alors un lien avec des théories conformes
à deux dimensions dont les constantes de couplages sont contrôlées par cette géométrie.

0.4 Les vides des théories N = 1∗

Faisons le point sur la situation, avant de présenter le plan de cette thèse. Comme nous l’avons
expliqué, l’un des grands succès de la physique au vingtième siècle fut la découverte selon
laquelle certaines forces de la nature sont décrites avec précision par des théories quantiques
des champs avec invariance de jauge. Résoudre ces théories est difficile, et nous nous rabattons
sur les théories avec supersymétrie, où le pouvoir de l’holomorphie est d’une aide précieuse. La
dynamique à basse énergie de ces théories est un sujet riche et fructueux, et est reliée à des
questions portant sur certains systèmes intégrables classiques. C’est ce pont que nous allons
exploiter dans cette thèse pour explorer les vides d’une théorie N = 1 particulière, et des
avancées seront réalisées aux deux extrémités du pont, comme illustré par la figure 3 qui dépeint
les relations de dépendance entre les chapitres.

A partir de maintenant, nous nous focalisons sur une déformation de la théorie de Yang-Mills
N = 4 obtenue en ajoutant à la main dans le Lagrangien une masse pour les trois multiplets
chiraux, que nous appelons N = 1∗, et qui est présentée en détail au début du chapitre 2.
Il s’agit d’un terrain d’expérimentation très intéressant, car la théorie déformée allie certaines
propriétés modulaires héritées de sa parente maximalement supersymétrique à la richesse de la
structure des vides d’une théorie minimalement supersymétrique. D’une certaine façon, cette
théorie est également parmi les plus naturelles, aux côtés de la théorie pure N = 1 et de la
chromodynamique quantique supersymétrique, de par son contenu en matière minimaliste, et
surtout son caractère fini à haute énergie.

Dans le chapitre 2, nous calculons le nombre de vides massifs de la théorie N = 1∗ sur R4

pour tous les groupes de jauges simples G. Nous utilisons des techniques semi-classiques et
nous reproduisons avec succès les décomptes déjà connus pour les groupes de type A, B et C.
Nous présentons des fonctions génératrices pour les groupes O(2n) et SO(2n), et nous calculons
l’indice de Witten pour les groupes exceptionnels. Un rôle crucial est joué par la classification
des orbites nilpotentes, ainsi que les propriétés globales de leurs centraliseurs dans les groupes
de Lie. Des exemples illustratifs sont donnés pour illustrer les subtilités de l’analyse dans le cas
des algèbres de type D. Les résultats sont résumés par les fonctions génératrices suivantes, pour
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l’index de Witten :

ISU(n) =
∞∑
n=1

σ2(n)qn

IO(n)(q) =
∞∏
k=1

P0(q2k−1)
(1− q2k−1)2(1− q4k)2

ISO(n)(q) =
∞∏
k=1

P0(q2k−1)
(1− q4k)2(1− q2k−1)2 +

∞∏
k=1

1 + q8k−4

(1− q4k)2 ,

ISp(2n)(q) = q−1ISO(2n+1)(q) .

(31)

Dans ces expressions, P0 est un polynôme défini [34] par l’équation (2.61) dans le chapitre 2.
Pour les groupes exceptionnels, le résultat est

IG2 = 10 ,
IF4 = 45 ,
IE6 = 44 ,
IE7 = 174 ,
IE6 = 301 .

(32)

Dans le chapitre 3, nous laissons les théories de jauge de côté pour un moment, et nous nous
tournons vers l’étude du système elliptique complexifié de Calogero-Moser. Nous commençons
par introduire quelques concepts de base sur les systèmes intégrables, du point de vue classique
comme du point de vue quantique, et nous présentons les systèmes de Calogero-Moser, dont
la définition implique une algèbre de Lie simple. L’explication de la raison pour laquelle ces
systèmes sont utiles pour comprendre la structure des vides des théories N = 1∗ est repoussée au
chapitre 5. Un outil fort pratique qui est mis à profit pour appréhender les systèmes intégrables
est la prise en compte de limites pour certains paramètres, après lesquelles le système reste
intégrable, mais est plus simple. À partir du système elliptique, nous pouvons ainsi atteindre
des systèmes de Calogero-Moser associés à des algèbres plus petites, ou encore des système
de Toda. Nous introduisons pour classifier les limites des algèbres de Lie affines, ainsi que
des sous-algèbres pseudo-Levi [35], qui permettent de généraliser les limites d’Inozemtsev [36].
Les systèmes elliptiques sont définis, comme leur nom l’indique, sur des courbes elliptiques, et
possèdent d’agréables propriétés modulaires dont il sera fait un usage abondant dans le chapitre
suivant.

Le chapitre 4 est, de fait, dédié à l’étude détaillée des extrema isolés dans plusieurs cas
particuliers, du système elliptique Calogero-Moser. Cette analyse combine des explorations
numériques utilisant Mathematica [37] alliées à la théorie des formes modulaires, et permet
d’obtenir de nombreux résultats exacts. Nous déterminons la valeur du potentiel aux extrema,
qui est une fonction du paramètre modulaire du tore τ , pour plusieurs algèbres de Lie de petit
rang. Pour so(5), nous obtenons des formes modulaires à valeurs vectorielles pour le sous-groupe
de congruence Γ0(4). Pour so(7) et so(8), les extrema se séparent en deux sous-ensembles : le
premier contient les extrema qui forment des formes modulaires vectorielles pour d’autres sous-
groupes de congruence (Γ0(4), Γ(2) et Γ(3)), alors que le second contient des extrema qui sont
sujets à des monodromies autour de points particuliers à l’intérieur du domaine fondamental. Il
s’agit là d’un phénomène assez surprenant ; par exemple, dans le cas de so(8), le point critique τM
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vaut approximativement τM ≈ 2.41i, et nous pouvons affirmer avec un haut degré de certitude
qu’il vérifie l’équation

1
1728j(τM ) = 7626496

3375 . (33)

Après cette excursion pendant deux chapitres dans le royaume des systèmes intégrables
elliptiques, nous rejoignons notre sujet principal, les théories de jauge N = 1∗. Grâce à la
supersymétrie, il est possible de calculer le superpotentiel effectif W à basse énergie, de façon
exacte. Pour une déformation massive de la théorie pure N = 2, cela a été fait dès 1994
[19], et pour les théories N = 1∗ avec groupe de jauge SU(N), le superpotentiel exact a été
proposé par Dorey [38], en utilisant les techniques de Seiberg et Witten [19, 29]. L’idée cruciale
est de compactifier sur un cyclindre, comme nous l’expliquons dans les premières sections du
chapitre 5. Pour les autres algèbres de Lie, le superpotentiel est alors exactement le potentiel
du système elliptique complexifié de Calogero-Moser [39]. Par conséquent, nous devrions être
capables de comparer l’analyse semi-classique déduite de notre analyse des vides sur R4 aux
résultats numériques et exacts obtenus au cours du chapitre 4 : c’est l’objet de la section 5.3,
dans laquelle un accord partiel est atteint. Cependant, nous trouvons que certains extrema du
système intégrable n’ont pas de contrepartie dans la théorie de jauge semi-classique, ce qui est le
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signe que certaines subtilités n’ont pas été prises en compte. La résolution de cette énigme occupe
les deux derniers chapitres, qui présentent une analyse plus profonde de la théorie quantique des
champs étudiée.

Dans les deux derniers chapitres, nous utilisons donc toutes les techniques développées
jusqu’à présent pour dévoiler la structure des vides de la théorie N = 1∗ sur R3 × S1. Nous
commençons avec les algèbres de type A dans le chapitre 6, car ce cas est le plus simple – le
phénomène des lignes de Wilson discrètes n’apparaît pas ici. Néanmoins, nous obtenons des
branches de masse nulle, qui sont également visibles du côté des systèmes intégrables. Sans
le cas de l’algèbre su(3), nous offrons une description analytique de ces branches. En termes
des lignes de Wilson complexifiées, cette description fait usage de la technique d’Eichler-Zagier
[40] pour inverser la fonction de Weierstrass elliptique. Dans ce cas particulier, après ajuste-
ment fin du couplage autour des points elliptiques d’ordre trois, nous identifions les singularités
d’Argyres-Douglas [41].

Dans le chapitre 7, nous montrons qu’après compactification sur un cercle, l’analyse semi-
classique des vides massifs et de masse nulle dépend de la classification des orbites nilpotentes,
ainsi que de la classe de conjugaison du groupe des composantes de leurs centraliseurs. Les
algèbres pseudo-Levi que nous avons utilisées pour définir les limites généralisées d’Inozemtsev
permettent de classifier ces objets, et définissent un raffinement de la théorie des orbites nilpo-
tentes présentée au chapitre 2, que nous expliquons en section 7.4, basée sur le travail de Sommers
[35]. La topologie non triviale permet d’allumer des lignes de Wilson qui augmentent le nombre
de vides massifs. Nous démontrons de façon semi-classique que des vides de masse nulle peuvent
être transformés en vides massifs par ces lignes de Wilson dans des groupes de jauge discrets
résiduels. Nous illustrons cette analyse dans les théories de jauge avec l’algèbre so(5) qui nous
a servi de guide jusqu’à présent, ainsi qu’avec l’algèbre exceptionnelle G2.



Chapter 1

Presentation

In this thesis, our main concern will be quantum field theories in four spacetime dimensions. The
fundamental interactions in Nature, as we understand them in the framework of the Standard
Model of Particle Physics, are described by Yang-Mills gauge theories. According to this model,
the fundamental fields can be divided into two categories, the gauge bosons with spin 1 that
mediate the forces, and the matter fields that have spin 1

2 for the fermions (quarks, electrons and
neutrinos) or spin zero in the case of the Higgs boson. This means that the fundamental degrees
of freedom are accurately described by a Lagrangian which contains gauge bosons associated
with a gauge group, and matter fields that transform into certain given representations of this
group. This description is correct at very short distance, or equivalently very high energy.

The gauge group of the standard model is SU(3)×SU(2)×U(1), where the first factor SU(3)
is the strong sector and the remaining SU(2) × U(1) is the electroweak sector. The physics in
these two sectors is very different at low energies, although the high-energy formulation is similar.
In the electroweak sector, the non-abelian gauge dynamics is broken at low energies due to the
Higgs mechanism, which gives a mass to the W and Z bosons, and the residual gauge theory is
abelian, with a massless photon. On the other hand, the situation in QCD is more complicated
because of the absence of an equivalent Brout-Englert-Higgs mechanism. Probably the strongest
manifestation of the difficulty is that the fundamental degrees of freedom that are used to write
down the Lagrangian (quarks and gluons) do not coincide with the asymptotic degrees of freedom
that we can observe at our energy levels (mesons and baryons). The underlying reason for this
discrepancy is color confinement, the fact that asymptotic physical states must be colorless, if we
stick with the analogy between the three colors of the SU(3) model and the usual fundamental
colors. This immediately sparks several questions:

• Wouldn’t it be possible to rewrite the Lagrangian in such a way that the fundamental
degrees of freedom are the asymptotic states we observe?

• What is the mechanism that imposes color confinement?

• Is color confinement a fundamental law of nature? In other words, does it survive if we
change the gauge group and the matter content? If confinement is fundamental, why
doesn’t it occur in the electroweak sector as well, which is described by a non-abelian
gauge group SU(2)× U(1)?

The answer to these questions boils down to understanding the various possible phases of Yang-
Mills gauge theories, as a function of the gauge group and the matter content. In section 1.1,

33
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we review various concepts of gauge quantum field theories that are related to these questions.
The word "phase" has to be understood from a statistical physicist point of view: the physics
is supposed to be known at very small length scale where it is described by the microscopic
Lagrangian, and the goal is to deduce from this the physics at large length scale, or low energy,
where such phenomena as confinement occur. In some cases, it may be possible to write down
an effective Lagrangian at low energies involving weakly coupled fields that may be different
from the fields in the microscopic description.

The notion behind the first question above is the concept of duality, that will be a guiding
principle in the exploration we are about to embark on. Modularity is an extension of this
concept which intertwines in intricate ways dualities between theories and and symmetries of a
given theory. Typically, it requires going beyond perturbation theory and involves characteristi-
cally non-perturbative objects such as monopoles and instantons, that also play a crucial role in
our current understanding of confinement. As for the third set of questions, the richness of the
answer lies in the fact that not only does the phase depend on the theory (its symmetries and
matter content), but even a single theory can have different vacua which are in different phases.
The vacuum in a classical theory is the state in the Hilbert space of minimal energy; because
of a symmetry, it can have some degeneracy. There can also be local minima in the energy
landscape, that can be interpreted as false-vacua, and that will eventually decay by tunnelling
into a deeper minimum.

Although physicists have acquired during the last decades a satisfactory qualitative under-
standing of part of the answers – including resorting to lattice gauge theories –, it remains hard
to obtain exact analytical results without the help of supersymmetry. Some salient successes
of supersymmetric Yang-Mills theories are described in section 1.2. One important aspect of
supersymmetry, which is related to the discussion in the previous paragraph, is that vacua are
typically degenerate with zero energy, and therefore distinct phases can be observed in two true
vacua of the same theory. As a consequence, understanding the (low-energy) physics of a given
supersymmetric QFT can be decomposed in two stages:

1. Find all vacua of the theory;

2. In each vacuum, characterize the phase.

It appears that thanks to progress made in the last few decades, the second step is now a fairly
easy one with the help of supersymmetry, as we will describe in this presentation chapter. The
first step may be a tougher nut to crack, depending on which theory one chooses to study. This
thesis is devoted to this step in the case of the N = 1∗ theory with arbitrary gauge group. The
last section of this introduction is an overview of this analysis.

1.1 Yang-Mills Gauge Theories in Four Dimensions

1.1.1 Classical Electric-Magnetic Duality

We begin with a quick description of electric-magnetic duality, which is a good starting point as
it is the pretext for introducing non-perturbative objects as magnetic monopoles, and it is the
inspiration of the Montonen-Olive duality which can be seen as its non-abelian version. Let us
then take the classical theory of electromagnetism, which is the pure U(1) theory. Its Lagrangian
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contains only the kinetic term for the gauge field A = Aµdxµ, which involves the field strength
Fµν = ∂µAν − ∂νAµ:

Lpure QED = − 1
4e2FµνF

µν . (1.1)

We use here the somewhat unconventional normalization that is more convenient for general-
izations later on. We now reproduce Maxwell’s equations in the vacuum, which follow from this
Lagrangian, and write them in the familiar non-relativistic fashion:

~∇ · ~E = 0 (1.2)
~∇× ~B − ∂t ~E = ~0 (1.3)

~∇ · ~B = 0 (1.4)
~∇× ~E + ∂t ~B = ~0 . (1.5)

The first two lines (1.2) and (1.3) are the equations of motion for the gauge field, while (1.4)
and (1.5) are constraint equations that are rooted in the microscopic description chosen here,
and based on a globally defined gauge field. A striking feature of these equations is that they
are invariant under the duality transformation

~E → ~B (1.6)
− ~B → ~E . (1.7)

Had we written the equations in the form dF̃ = dF = 0, the symmetry would have been even
more evident, and reads:

F ↔ F̃ . (1.8)
This symmetry is immediately spoiled if one adds electric sources (by which we mean and elec-
tric charge density and an electric current), and can be restored only upon addition of magnetic
matter (Dirac magnetic monopoles and magnetic currents), with the postulate that the sym-
metry exchanges these two kinds of sources. Of course, in a magnetic monopole configuration,
~∇ · ~B 6= 0 and it is impossible to even define the field Aµ. However, suppose that we include
only magnetic sources and no electric sources. Then the two equations (1.2) and (1.3) can be
solved in terms of a new vector that we can call ADµ and that completes the duality description:

Aµ
~B = ~∇ × ~A

~E = −∂t ~A − ~∇A0

ADµ
~E = −~∇ × ~AD

~B = −∂t ~AD − ~∇AD0 (1.9)

Up to now, we have discussed only classical physics. Although magnetic monopoles have
not yet been observed in nature, the equations make perfect sense. But in the quantum theory,
the fundamental degree of freedom of quantum electrodynamics is the vector boson Aµ. If there
are both electric and magnetic monopoles in the theory, then a global gauge field can not be
found,1 and topological constraints emerge. In the simple playground of U(1) theory, the electric
charge2 e and the magnetic charge ẽ are related by the Dirac quantization condition

eẽ = 2π , (1.10)
1Note however that with matter in the theory, one can construct smooth gauge configurations that have

magnetic charges, as for instance the ’t Hooft-Polyakov monopole mentioned in the next section.
2We denote the abelian coupling constant e. In the following we will be mostly interested in non-abelian gauge

theory, and the coupling will be denoted gYM . There is no fundamental difference between e and gYM but just a
matter of convention.
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where we have set ~ = 1. In other words, for any pair of an electric object and a magnetic
object, the product of the electric charge and the magnetic charge is an integer times 2π. This
implies the quantization of (say) electric charges, provided at least one magnetic monopole exists.
If instead of pure electric and magnetic objects we consider dyons with charges (ne, nm) and
(n′e, n′m), then the Dirac quantization condition is that nen′m − nmn′e be an integer multiple of
2π.

Another crucial consequence of this equation is that if the electric coupling constant e is
large, then its magnetic dual will be small. The electric-magnetic duality belongs to the family
of strong-weak dualities. Nevertheless, it should be stressed that the electric-magnetic duality
is an equivalence between free U(1) theories (or more generally free U(1)r theories). This has to
be contrasted with S-dualities (generalizing the Montonen-Olive discussed below) which identify
interacting theories with a priori distinct couplings.

1.1.2 Non-perturbative Physics

The primitive language of quantum field theory is perturbation theory around a vacuum con-
figuration, on which excitations are seen as interacting particles that can be computed using
Feynman diagrams. A given correlation function can be decomposed as an infinite sum of such
diagrams. This usually leads to a divergent series, but if the coupling constant gYM , which is
the perturbation parameter, is small, one can obtain a good approximation by truncating the
summation after a few orders. The result is presented as a series expansion in increasing non-
negative powers of gYM . However, not all relevant quantities can be expressed as such series,
and they indicate that going beyond perturbation theory is required to capture them. Magnetic
monopoles belong to this category of objects, as we review now.

The construction of magnetic monopoles can be illustrated in a simple way in the Georgi-
Glashow model with gauge group SU(2), and a Higgs field in the adjoint representation, whose
Lagrangian is

LGG = − 1
4g2
YM

F aµνF
a,µν + 1

2Dµφ
aDµφa − λ(φaφa − v2)2 . (1.11)

See the appendix for the conventions used. The terms that contribute to the energy of a config-
uration are F aµνF a,µν , Dµφ

aDµφa and λ(φaφa − v2)2. Therefore a minimal energy configuration
is obtained with 〈Aaµ〉 = 0 and 〈φa〉 constant such that

〈φaφa〉 = v2 . (1.12)

In this case the gauge symmetry is broken SU(2)→ U(1). This is called the Higgs vacuum. In
this vacuum the abelian residual field can be used to define a magnetic charge, which is zero
when 〈Aaµ〉 = 0.

There are other stable configurations, that are local minima of the energy landscape. This
can be understood from equation (1.12) which has to be satisfied on the sphere S2

∞ at spatial
infinity, and which is the equation of another sphere S2

Higgs. We conclude that any finite-energy
configuration is associated to a map S2

∞ → S2
Higgs. For the Higgs vacuum considered above, this

map sends S2
∞ to a point 〈φa〉. However other maps are possible, and it would cost an infinite

amount of energy to evolve from one map to another: each class of topologically equivalent
maps offers a candidate for a stable vacuum. These are classified by the second homotopy
group π2

(
S2
Higgs

)
= Z, and the corresponding integer is the magnetic charge. Such solutions
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can be found explicitly [7, 8] and are known as ’t Hooft-Polyakov monopoles. They are smooth
everywhere, and do not require the introduction of point-like magnetic charges as in the previous
section. In the case of a more general gauge symmetry breaking G → H, the classifying group
is π2 (G/H). For a thorough discussion the reader can consult [42, 43].

The magnetic monopoles are non-perturbative objects. This can be seen from their (classical)
mass, which is given by

mmonopole = 4π|nm|
v

gYM
(1.13)

where nm is the magnetic charge. This mass diverges when the coupling constant gYM becomes
small, which prevents any form of series expansion using non-negative powers of gYM . Note
however that it is possible to use perturbation theory around the pseudo-vacuum corresponding
to this topologically stable solution, for instance to find corrections to the mass formula (1.13).

Another aspect of non-perturbative Yang-Mills theories is the θ-term

Lθ = θYM
32π2F

a
µνF̃

a,µν = θYM
8π2 Tr (F ∧ F ) (1.14)

that can be added to the Lagrangian. Although it violates the CP -symmetry (CP standing for
Charge Parity), the renormalizability of the theory is preserved, and this term is invisible in
perturbation theory. It has however a strong effect on the mass of a magnetic monopole: in the
presence of (1.14), the mass formula (1.13) receives an additive correction proportional to θ2

YM .

1.1.3 Phases of Yang-Mills Theories

The Lagrangian of a pure gauge theory is given by

LYM = − 1
4g2
YM

F aµνF
a,µν = − 1

2g2
YM

Tr
(
F 2
)
. (1.15)

Let us consider a theory quite similar to the standard model, but simpler than that:

• We take a gauge group G, which may be abelian or not, but we assume that it is simple
(and connected). We put the corresponding gauge boson in the theory. The corresponding
Lie algebra is denoted g. When g = su(N), we say that N is the number of colors of the
theory.

• Then we add a certain number of standard matter fields ψk, that we call generically
quarks. By this we mean spin 1

2 fields that transform in the fundamental representation
of the gauge group. We put Nf of them in our theory, so the index k runs from 1 to Nf

if Nf 6= 0.

• We might also want to add (complex) scalar fields φj in some representation R of the
gauge group. We put Ns such scalars, so we let the index j = 1, . . . , Ns.

The Lagrangian, obtained by combining the various parts (A.1), (A.9) and (A.10) has the form

L = − 1
4g2
YM

F aµνF
a,µν +∇µφ̄j∇µφj − V (φ) +

[
iψ̄k /∇ψk −

∑
k

mkψ̄kψk

]
. (1.16)

We have assumed that there are no interactions between the quarks and the scalar fields. The
Standard Model of particle physics is far more intricate that this simple model, as the gauge
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group is not simple, the fermions transform in various representations, there are many interac-
tions between the different types of fermions and the Higgs field (the Yukawa couplings), etc.
However, this simple model reproduces most of the interesting physical effects of the Standard
Model, and will play the role of a toy model for the rest of this thesis.3 Now that the microscopic
scene is set, we can ask the main question: what does the physics look like at large distances?
The answer to this question is quite rich, and it depends in an intricate way on the (few) pa-
rameters of the theory : the number of colors N , the number of fermions Nf , and the scalar
potential V (φ). We will now give a brief glimpse of the different possible answers. We recall
that the running of the coupling constant is known in general at one loop,

β1-loop =
[ dgYM
d log(µ/Λ)

]
1-loop

= − g
3
YM

(4π)2

[11
3 T (adjoint)− 2

3T (fermions)− 1
3T (scalars)

]
. (1.17)

This is equation (A.11) in the appendix where the various notations are defined.
It is well known that Yang-Mills gauge theories are more involved than abelian ones: the

non-abelianity of the group translates into the additional term [A,A] in the definition of the field
strength F (see equation (A.3)), which yields complicated A3 and A4 interactions. Let us then
first assume that the gauge group is G = U(1). The low-energy physics then depends on the
matter content. If there is no matter at all, the theory is free because there is no self-interaction
in the gauge field. Let us then consider two of the simplest non trivial cases in turn.

(C) Suppose we put only one massive Dirac fermion of mass m, that we can call the electron.
This is precisely the theory of Quantum ElectroDynamics (QED). The β-function at one
loop is obtained from (1.17) by setting T (fermions) = 2 for the two Weyl fermions that
make up one Dirac fermion. The result is β1-loop = e3

12π2 > 0, where e is the electric
coupling constant. As a consequence, when the energy scale µ decreases, the coupling
constant decreases as well,

e2 ∼ − 1
log(µ/Λ) . (1.18)

When µ becomes of the order of the mass m of the electron, the latter decouples and the
running of the coupling constant stops at some infrared value (e2)0.

(H) Now let’s consider putting only a massive complex scalar field φ with a potential V (φ)
which is a polynomial in |φ|2, so that gauge invariance is preserved, with positive leading
coefficient, so that energy is bounded from below. It is clear that the point φ = 0 is an
extremum of the potential, but it may be a local maximum or a local minimum depending
on the coefficients of the polynomial V (φ). The interesting situation is when there is a
minimum at a nonzero point |φ0|2 6= 0. Then the U(1) gauge symmetry that acts by
φ → eiθφ is spontaneously broken once such a φ0 is chosen. This is the Brout-Englert-
Higgs mechanism: the gauge field becomes massive and the complex Higgs field is reduced
to a massive real scalar. Of course a gauge symmetry is not really a symmetry, it is rather

3This is not completely true. The N = 1∗ theories that we will study, to be introduced later on, involve a
gauge field and three complex massive scalars as described here. The fermions, which are related to the bosons
by supersymmetry, will then also have mass terms with the same mass. Moreover, because the theory inherits
interactions from its N = 4 parent, there are interactions of two different types in the Lagrangian, namely terms
of the type φ4 that are described here by the potential V (φ), but also interactions terms of the type φ̄ψ2 that are
absent from the present description.
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a redundancy in the description, which is why the would-be Goldstone boson associated
to the spontaneous breaking of the U(1) symmetry is not present there.

Static test electrons in the first case (C) experience a Coulomb potential as a function of the
distance r between them,

VCoulomb ∼
(e2)0
r

. (1.19)

This is why this is called the Coulomb phase. The long range potential with the characteristic
dependence r−1 can be traced back to the presence of massless gauge fields. On the other hand,
the phase (H) where the Higgs mechanism occurs is not surprisingly called the Higgs phase. In
this phase, at large distances the potential felt by test charges is

VHiggs ∼
exp(−mphotonr)

r
, (1.20)

where mphoton is the mass given to the gauge boson by the Higgs mechanism. We should also
mention the existence of a third phase corresponding to a matter content which reduces to
massless electrons. In this case, nothing can stop the running of the coupling constant (1.18) in
the IR, and the potential (1.19) becomes

VFree-Electric ∼
1

r log(Λr) . (1.21)

Now let us turn to non-abelian gauge theories. The β-function (A.11) can receive a strong
negative contribution from the gauge boson, which is dominant if the number of matter fields is
low enough. This means that the coupling constant grows in the IR, and the theory enters the
confining phase. The spectrum is very different from what one could naively expect from the
Lagrangian. So in addition to the phases already present in abelian gauge theories, we have to
add the confining phase, which is characterized by a potential between test charges

VConfining ∼ r . (1.22)

This can be pictured by a string between the two probe quarks, where the string consists of the
electric flux-tube.

1.1.4 Line Operators

A convenient criterion that can be used to know whether a given theory is confining uses Wilson
loops. To any closed path C in spacetime we can associate the operator4

W (C ) = tr
[
P exp

(
i

∮
C
A

)]
(1.23)

where P exp denotes the path ordered exponential. This path ordered exponential is not gauge
invariant in itself (see equation (A.7)), but the operator W (C ) is thanks to the trace. Moreover,
it is a very useful operator to compute the vacuum expectation value of, because it can diagnose
the forces between probe quarks. In general, the behaviour of 〈W (C )〉 when the contour C

becomes large is either exp(−κA ) or exp(−κP), where A and P are the area enclosed by and
4Note that there is no coupling constant in this Wilson line: this is a consequence of our choice of normalization

for the gauge field.
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the perimeter of C . Accordingly, we say that the Wilson line obeys the area or perimeter law.
As a general rule of thumb, an area law signals confinement.

However, we hasten to add that this criterion should not be taken too seriously. Even in
one of the simplest models which exhibits both the Higgs mechanism and confinement, namely
the abelian lattice Higgs model where the Higgs5 has U(1)-charge 1, there is no clear distinction
between the two phases. In this model [9] there is a total screening phase where the Wilson
line always scale with perimeter law even in the would-be confining regime. This phenomenon,
dubbed complementarity, is generic in any theory, where there are scalars in the fundamental
representation of the gauge group. Such a theory can be called a screening theory, because
the colored scalars can be used to screen any given color charge, with the effect of diminishing
its strength. This manifests itself in the behaviour of the Wilson line, which always obeys a
perimeter law in such a theory, even if there is confinement in the sense that asymptotic states
are always color singlets. A way out would be to consider probe charges that can not be screened
in the Wilson loop: it is possible to define such a loop for any representation R of the gauge
group. Considering whether these generalized Wilson loops follow an area or a perimeter law
is then a good order parameter for determining the phase of the theory. We will come back to
this issue later on, when dealing with supersymmetric theories in section 1.2.3.

1.1.5 The Global Structure of the Gauge Group

Until now, we have not taken too much care about the group G, and we have focused on its
Lie algebra g. The possible choices of gauge groups with a given Lie algebra g are given by
subgroups of the center Z(G̃), where G̃ is the unique simply connected group with Lie algebra
g. The possible groups are then G̃/H where H is a subgroup of Z(G̃). It seems that physical
quantities depend only on the algebraic structure and not on topological aspects of the gauge
group itself. This is true indeed for a large class of observable that includes all correlators of
local operators when the theory is formulated on R4. However, as has been studied in detail
recently by Aharony, Seiberg and Tachikawa [10], these global properties have an impact on at
least three aspects of four-dimensional gauge theories that will be of importance in this work:

• The phase structure of the theory on R4

• The dynamics of local operators when the theory is compactified on R3 × S1.

• The Witten index of the compactified theory.

The appropriate tool that can be used to probe and characterize the physical aspects related to
the global structure of the gauge group are correlators of lines, which generalizes the quantity
〈W (C )〉 that probes confinement. But what are the line operators in a given theory ?

Beyond the Wilson line defined above, it is natural to introduce the ’t Hooft line [11] where
the gauge field Aµ is replaced by its dual ADµ . We could as well say that the ’t Hooft line is
a magnetic Wilson line, and it is natural to expect that all properties of the Wilson line with
respect to the gauge group G translate into the same properties of the ’t Hooft line with respect
to the Langlands dual G∨. For instance, Wilson lines are labeled by the weight lattice P while
’t Hooft lines are labeled by the co-weight lattice P∨ – the symbol ∨ on top of a lattice name is

5This statement about the charge is equivalent to saying that the Higgs transforms in the fundamental repre-
sentation of U(1).
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used to denote the dual of this lattice. Our notations and further information about Lie algebra
related lattices can be found in section B.2 in the appendix and in particular in equation (B.20).
More generally, there are dyonic lines that are labeled by pairs in

P × P∨

Weyl Group , (1.24)

as explained in [12]. In fact, lines come into full families generated by the lattice Q×Q∨, where
Q is the root lattice, which can therefore be labeled by pairs in Z(G̃)2. The possible charges
carried by these lines are constrained by the generalization of the Dirac quantization condition
(1.10) whose expression is given in section 6.3 of [10]. To sum up, we see that determining
the gauge sector of the theory, including line operators6, is a three step program: first, choose
a gauge algebra g, then choose a subgroup H of the center of the covering group, and finally
choose a full spectrum of lines satisfying the Dirac quantization condition, the different possible
choices being labeled by an index i. The resulting theory is denoted (G̃/H)i.

From the fact that ’t Hooft lines are the magnetic duals of Wilson lines, we also deduce
that an area law for the ’t Hooft line signals that the theory is in the Higgs phase, which is the
magnetic dual of the confining phase.

As an example, we describe the phase structure of pure su(N) gauge theories along the lines
of section 1.1.4. In this case we have G̃ = SU(N) and Z(G̃) = ZN . The subgroups of ZN
are the groups Zd for d a divisor of N . The Dirac quantization condition states that any two
classes of lines labeled by (n,m) and (n′,m′) ∈ ZN × ZN must satisfy nm′ −mn′ = 0 modulo
N . Then it is not hard to see that for a given gauge group SU(N)/Zd there are precisely d

possible choices of set of lines. As a consequence, the number of physically distinct su(N) gauge
theories is the sum of divisors of N . One would now like to infer the large distance physics in
each of these vacua using the lines. This is a delicate issue, and we will bypass it by adding
a new symmetry in the theory. Namely, we add a very massive fermionic field in the adjoint
representation of the gauge group – this can not change the low-energy structure of the theory
– and then decrease the mass until it reaches zero. It can not be excluded that there be a phase
transition when this mass is decreased, and this is part of the reasons why it is so difficult to
analyze non-supersymmetric theories. However, when the mass of the fermion field vanished, the
theory becomes supersymmetric – the fermion is the gaugino, and a wealth of new techniques
become available to probe the vacuum structure, as we explain in the next section.

1.2 Supersymmetric Gauge Theories and Modularity

As we have seen, it’s an important task to determine the vacuum structure of four-dimensional
gauge theories. It would be helpful to have an organizing principle to put some structure in the
set of vacua, be it discrete or continuous. In the theory we will finally be interested in, such a
principle indeed exists. Its inspiration can be traced to the electric-magnetic duality of classical
electromagnetism that we mentioned in section 1.1.1.

6We don’t consider higher-dimensional operators here, such as surface operators. For a discussion of the surface
defects group in six-dimensional theories, see for instance [44].
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1.2.1 The maximally supersymmetric theory

The first occurrence of S-duality in physics can be traced to the works about non-supersymmetric
Yang-Mills theories in the 70’s. In [13], Montonen and Olive proposed a symmetry exchanging
strong and weak coupling, electric and magnetic fields, and the gauge group G with its Langlands
dual G∨. The argument is based on the Georgi-Glashow Lagrangian (A.12) with gauge group
SO(3). In a ground state, this gauge group is broken to a U(1), and the particle content is made
of a massless photon, a massive Higgs scalar field and two massive charged gauge bosons. Besides
this perturbative spectrum, there are also the magnetic monopoles. This symmetry is entirely
non-perturbative, and is therefore difficult, if not impossible, to test using classical methods. A
possible semiclassical approach, taken by Montonen and Olive, is to use the Bogomol’nyi-Prasad-
Sommerfield (BPS) limit (which can be thought of as the limit λ→ 0 in the Lagrangian), in which
the BPS bound on the mass of a dyon can be saturated. The introduction of supersymmetry
provides the necessary non-perturbative control on the quantum field theory that allows very
non-trivial tests of the duality.

In fact, the simplest version of the symmetry proposed by Montonen and Olive is true
only when (a lot of) supersymmetry is present. The starting point was the work of Witten
and Olive [14], where it was shown that when monopoles or other solitons are included in
supersymmetric theories, central charges related to the topological numbers of the solitons are
generated. In the four-dimensional framework, the electric and magnetic charges will appear as
central charges, and the mass m of any state satisfies the BPS lower bound coming from the
electric and magnetic charges. In the N = 2 supersymmetric version of the Georgi-Glashow
model studied by Montonen and Olive, a remarkable feature is that the bound is saturated at
the classical level for all particles, including the monopoles and the dyons. Then because the
number of states in supermultiplets can not jump as Planck’s constant is turned on, Witten and
Olive conclude that the bound must remain saturated in the full quantum theory, thus resulting
in (at least part of) the quantum spectrum. Osborn [15] then pushed on this work to N = 4
Yang-Mills theory. Imposing a spontaneous symmetry breaking, he generates the massive N = 2
supermultiplet7 that saturates a BPS bound, and shows that a magnetic monopole corresponds
to the same multiplet with the same mass. In the N = 4 then, this matching of multiplet
content is a strong indication that the duality between the usual electric formulation and the
dual magnetic one holds.

More precisely, the conjecture which is strongly believed to be true [45, 46] is that the N = 4
super Yang-Mills theory with a simple gauge Lie algebra g and complexified coupling constant
τ is isomorphic to a similar theory with gauge algebra g∨ and coupling

τ∨ = − 1
ντ

, (1.25)

and the self-duality group of the original theory is8 Γ0(ν) where ν is the ratio of the squared-
lengths of long and short roots in g. This time, the duality provides an equivalence of full
quantum theories, and an intuitive observation indicates that this can hold only in theories where

7It is made of five scalars, four spin 1
2 and one spin 1, for a total of sixteen states.

8There is a small subtlety here because of the fact that modular groups in general can be seen to act either
on the gauge coupling τ or on electric and magnetic objects as in (1.6). In the first case, S2 is trivial while in the
second case it changes the sign of electric and magnetic charges. If this effect is to be included, the duality group
is really (Γ0(ν) o Z4)/Z2, see [46].



1.2. SUPERSYMMETRIC GAUGE THEORIES AND MODULARITY 43

the coupling constant gYM does not run since otherwise the relation 1.25 doesn’t make sense. A
geometric interpretation of the duality can be found [47], in which the four-dimensional N = 4
theories are realized as low-energy limits of type II string theories, and where the Montonen-Olive
duality is seen as T -duality on a 2-torus.

Of course, as explained in section 1.1.4, the gauge algebra is not enough to specify com-
pletely the theory, and one should also provide an appropriate set of lines. Then even when
g∨ = g, various theories are not invariant under S-duality (nor are they invariant under the T
transformation). As an example, we show how the su(4) theories transform in figure 1.1 taken
from [10].

Figure 1.1: This diagram represents how the seven theories with gauge algebra su(4) are ex-
changed by modular symmetries. In red we exhibit the action of S-duality, in green, T -duality.
When no arrow is present, the theory is invariant. The notation used to define the theories is
as in [10], and G̃ = SU(4). This figure should be compared with figure 4.1 in chapter 4.

1.2.2 From S-duality to modular invariance

Starting with lattice gauge models with discrete abelian gauge groups [16, 17], the effect of the
θYM angle was incorporated in the story. According to the Witten effect [18], the inclusion of
such an angle in the Lagrangian gives dyons an electric charge that can be different from an
integer multiple of the elementary charge. When θYM is varied continuously from 0 to 2π, the
spectrum of dyons is reshuffled but remains invariant. In the context of supersymmetric gauge
theories, it is natural to assemble the angle θYM and the gauge coupling gYM is the complex
combination

τ = 4πi
g2
YM

+ θYM
2π , (1.26)

that can be interpreted as the scalar component of a superfield, so that the super Yang-Mills
Lagrangian (A.14) can be seen as a superpotential term. There is one such coupling constant
for each simple factor in the gauge group. When the gauge group itself is simple, the electric-
magnetic duality and the shift θYM → θYM +2π generate a SL(2,Z) modular group of dualities.
If there are k simple factors, the modular group becomes Sp(2k,Z), as first seen in abelian lattice
theories [48].

However, the matching in multiplet structure found by Osborn ceases to exist in N = 2
theories, which rules out a simple realization of the simple electric-magnetic duality in those
theories, and by the same token, in all theories with less supersymmetry. Nevertheless, a different
version of these ideas can be brought to life in N = 2 theories, as first demonstrated by Seiberg
and Witten.
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Let us focus on the case of gauge group SU(2), which is broken to U(1) on a generic point
of the Coulomb branch, so that the expected modular group is SL(2,Z). In the pure SU(2)
theory [19] with monopoles, the scalar parts of the vector multiplet and its dual (aD, a) can be
acted on by this modular group. The action of the generator

S =
(

0 1
−1 0

)
(1.27)

can be identified with the electric-magnetic duality, and exchanges two equivalent descriptions
of the same theory. On the other hand, the generator

T =
(

1 1
0 1

)
(1.28)

is the symmetry θYM → θYM + 2π that we have described previously. At the classical level, we
have τcl = aD

a and therefore the modular group acts in the usual way on τcl. This remains true
at the quantum level in the N = 4 theory, but in a generic N = 2 theory the running of τ at
one loop spoils modularity.9

In theories with even less supersymmetry, duality is more remote. The N = 1 quantum
chromodynamics, with the appropriate number of quarks, is related by Seiberg duality [20, 21]
to a different theory which flows to the same IR physics. The original version relates a SU(N)
theory with 3

2N < Nf < 3N quarks in the fundamental representation (and the same number of
anti-quarks) to the SU(Nf −N) theory with Nf quarks and an additional gauge singlet in the
bifundamental representation of the flavor group. This is another version of an electric-magnetic,
strong-weak duality: the electric particles (quarks and gluons) are mapped to their magnetic
duals (quarks of the dual magnetic gauge group and non-abelian ’t Hooft-Polyakov monopoles).
However, it relates very different theories, with different gauge groups and matter contents, and
the duality holds only in the low-energy limit. We will come back to these ideas in the sequel.

The recent work of Gaiotto has shed new light on N = 2 dualities [22]. As an example,
consider the SU(2) theory with four massive quarks. The four quarks can be repacked into two
trifundamental fields of SU(2)3, and the form of the superpotential indicates that they should be
connected by one leg corresponding to the gauge group, giving finally a four-punctured sphere as
ultraviolet curve C. Then the Seiberg-Witten curve is given by the equation λ2−ϕ(z) = 0 where
the asymptotic properties of ϕ(z) are determined by the superpotential. The Spin(8)nSL(2,Z)
modular invariance now has a geometrical interpretation as the different ways a sphere with four
punctures can degenerate into two spheres with three punctures each (there are 1

2
(4
2
)

= 3 ways
to do that, that correspond to the vector and the two spinor representations of SO(8)).

Another example which is more relevant for the present work is the N = 2∗ theory, still with
gauge group SU(2). The adjoint hypermultiplet can be seen as part of a trifundamental where
now two indices have to be contracted. This construction also spits a singlet, but it decouples
and can be ignored. Geometrically, the three-punctured sphere becomes a one-punctured torus
in the process. Again, the Seiberg-Witten curve is given by λ2 − ϕ(z) = 0, where now ϕ(z)
is easily determined, since it only has one singularity controlled by the mass m of the adjoint
hyper. We obtain readily [23]

ϕ(z) = (m2℘(z; τ) + u)dz2 , (1.29)
9The theory with four massive hypermultiplets, which is conformal invariant if there are no bare masses, also

possesses a manifest modular invariance [49], under the guise of an extended Spin(8) n SL(2,Z).
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where u = trφ2 as usual. This provides a geometrical interpretation of the modular group
SL(2,Z) as the mapping class group of the ultraviolet torus.

The N = 4 theory is a particular case of this situation, and one can understand the diagram
of figure 1.1 from this point of view. Indeed, there is a nice interpretation of the discrete data
needed to define properly the so-called class S four-dimensional theories, namely the spectrum
of line operators, in terms of six-dimensional geometry [24] as a maximal isotropic sublattice of
H1(C,Z(G̃)), where C is the ultraviolet curve. For N = 4 theories, we just argued that C is a
torus, and H1(C,Z(G̃)) is isomorphic to Z(G̃)2. This explains why the same duality diagram
will appear later in our analysis of the extrema of the Calogero-Moser potential and the vacua
of the N = 1∗ theories – compare with figures 4.1 and 5.1.

1.2.3 The vacuum structure

The space of vacua is a basic tool in the analysis of supersymmetric gauge theories based on
holomorphy. The classification of massless and massive vacua, and the analysis of their symmetry
and duality properties are fundamental features of a theory. Let us recall that using arguments
essentially based on holomorphy, one can prove three important non-renormalization theorems :

• In N = 1 theories, the superpotential is not renormalized in perturbation theory. However
it can be affected by instantonic effects.

• In N = 2 theories, the β-function at one loop (A.25) is exact.10

• The N = 4 theories are finite.

We have to distinguish between the classical moduli space and the quantum one. Generically,
a degeneracy between vacua in a classical theory that is not due to a symmetry (it is an accidental
degeneracy) is lifted by quantum effects. However, with supersymmetry the generic situation is
that the degeneracy of classical vacuum states is not lifted in perturbation theory, although non-
perturbative effects can generate an additional superpotential and destroy classical vacua. The
effective superpotential on the moduli space contains all the information about the low energy
limit, with its particle content and its phase structure. Note also that in general a moduli space
(at least classically) is parametrized by the gauge invariant monomials in the fields [52].

The classical moduli space is singular at points where there are additional massless fields
in comparison with a generic point. A natural question is the fate of these singularities in
the quantum moduli space [25], and the answer is that pretty much anything can happen: a
singularity may disappear, or undergo no qualitative modification, or remain but change in
nature. We will see an example in the N = 2 pure SU(2) theory. Before that, we examine the
maximally supersymmetric theory.

N = 4

In N = 1 language, the N = 4 super Yang-Mills theory has six real scalars φi, i = 1, . . . , 6 in
the adjoint representation as bosonic matter content, in addition to the vector multiplet. The

10The analog result for N = 1 theories is the Novikov-Shifman-Vainshtein-Zakharov formula [50, 51], which
involves the anomalous dimensions of the matter fields.
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superpotential gives a term

1
8g2
YM

∑
i,j

[φi, φj ]2 (1.30)

which vanishes if the φi mutually commute. They can be thought of as taking value in a Cartan
subalgebra of the gauge algebra, they generically break the gauge group to the abelian U(1)r,
where r is the rank, and hence we call this the Coulomb phase. When all the expectation values
are zero, we are in the superconformal phase. Intermediate phases with non-abelian residual
gauge symmetry can be found.

Thus we have found the classical moduli space of vacua. It can be conveniently written

MN=4 = R6r

Weyl group (1.31)

and it is singular at points of R6r fixed by the Weyl group. These singularity signal that new
degrees of freedom become massless, which is necessary to build the non-abelian gauge bosons
that appear there. One can show that this classical moduli space is not quantum corrected [26],
so that (1.31) remains true in the full quantum theory.

N = 2

Now that we have described the situation for the very constrained N = 4 theory, we move
on to N = 2 where the physics is far richer. As an example of the mechanism evoked above,
in the N = 2 pure SU(2) theory the classical moduli space is C with a singularity at the
origin where the non-abelian gauge symmetry is restored. This moduli space is not lifted in
the quantum theory (this can be seen as a consequence of holomorphy), and in fact is a (rigid)
special Kähler manifold because of the very structure of N = 2 supersymmetry.11 However the
unique singularity of the classical moduli space splits into two singularities corresponding to
finite values of the parameter of the Coulomb branch.

The quantum moduli space of vacua for pure SU(N) theories with N = 2 is obtained as a
family of hyper-elliptic curves with N − 1 parameters [56, 57, 58]. When Nf ≤ 2N fundamental
quarks are added to these pure theories, the quantum moduli space in the Coulomb phase has
been found in [59, 60], and this analysis has been extended to the other classical gauge groups
[61, 62]. As for the Higgs branch, it can not receive quantum corrections and is its metric is
determined by the classical equations of motion alone [63]. In all cases, the solution is found as
the moduli space of families of hyper-elliptic curves, with meromorphic one-forms whose periods
generate the spectrum of low-energy excitations. At a generic point on the Coulomb branch, the
gauge group is broken to U(1)r, and the abelian effective theory in invariant under a low-energy
modular group, which is the generalization of the electric-magnetic duality discussed in section
1.1.1. Along singular submanifolds of the moduli space, more complicated phenomena occur,
and circling around these singularities produces monodromies in this modular group. To be
more precise, the scalar components a of the photon and aD of its dual can be assembled in a

11In the N = 2 superspace formalism, the Lagrangian density is an analytic function of the superfield called the
prepotential, from which we can deduce the low energy Kähler potential and complexified gauge couplings. The
classical prepotential can be read directly from the tree-level Lagrangian of the theory, but it receives corrections
at one loop [53] and from instantons [54, 55].
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vector (aD, a) which is a section of a Sp(2r,Z) bundle over the quantum moduli space when the
masses of the quarks vanish. When they don’t, this structure is supplemented by constant shifts
that are taken into account with a low-energy modular group equal to Sp(2r,Z) n ZNf .

N = 1

The gauge theories with the minimal amount of supersymmetry, N = 1, are less constrained, and
present very rich physical properties. The constraints are essentially limited to the holomorphy
principle, with no possible Lorentz-invariant central charge in the supersymmetry algebra being
able to play its role in a BPS-like bound. Note however that it is possible to define generalized
central charges, which are not proper central charges because they don’t commute with the full
super-Poincaré algebra (they are not Lorentz-invariant), but which allow for BPS objects, as we
will see.

The basic example is the massive deformation of the N = 2 theory considered in the previous
paragraph. Classically, and in perturbation theory as well, the superpotential reduces to the
mass term, and there is only one vacuum with a vanishing expectation value for the chiral
multiplet. Taking into account non-perturbative effects, the Affleck-Dine-Seiberg superpotential
is generated [27], inducing a repulsive effect in the strongly coupled region and splitting the
single classical vacuum into two quantum vacua.

In the pure super Yang-Mills theory, the classical R-symmetry group U(1) is broken to a dis-
crete subgroup by instantons. This will be reviewed in section 2.2.3, as this plays a fundamental
role in our calculations later on. The number of vacua is equal to the dual Coxeter number
h∨ of the gauge algebra, in each vacuum the discrete U(1) R-symmetry is further broken to
Z2 by gaugino condensation 〈λλ〉, and they all contribute (−1)F = +1 to the Witten index,
giving a total of h∨ for the Witten index. It is not possible to find a semi-classical configuration
corresponding to these vacua, since the gaugino condensate would have a fractional instanton
number. One strategy to obtain these results is to solve a theory with massive matter which is
simpler to deal with, and then send the mass of the matter to large values, thereby reducing to
the pure N = 1 theory [64]. The normalization of 〈λλ〉 was a long-standing problem, with con-
tradicting computations, until the technology of multi-instanton calculus was firmly established
[65].

The existence of isolated vacua implies the possibility of having domain walls between regions
of spacetime in different vacuum configurations. In N = 1 super Yang-Mills theories in 4
dimensions, the exact energy density of a domain wall can be computed in the strong coupling
regime [28]. The reason why this computation is possible is because the wall is half-BPS, with
a tensorial central charge [66] defined by the anticommutator {Qα, Qβ} = −4ΣαβZ, where
Σαβ is the wall area tensor. In this case, assuming a few hypothesis, the wall tension Twall is
proportional to the modulus of the difference between the values of the superpotential in the
two vacua the wall interpolates between,

Twall = |Z| (1.32)

where
Z = 2∆W . (1.33)

We now add matter to the pure N = 1 considered up to now in this section. The one-loop
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β-function (A.23), which reads

[ dgYM
d logµ

]
1 loop

= − g
3
YM

(4π)2
[
3h∨ − T (chiral mult.)

]
, (1.34)

plays again a crucial role in determining the low-energy and high-energy physics. Asymptotic
freedom is preserved as long as there is not too much matter, namely T (chiral mult.) ≤ 3h∨.
Beyond this bound, it is not really interesting to say more about the low-energy limit of the
theory, as it is weakly coupled, and we will assume that the bound is satisfied, β ≤ 0. With
matter now included, there may be a continuous classical moduli space of vacua, which as we
mentioned before can receive only non-perturbative corrections in the quantum theory. Whether
this correction is generated or not depends on the matter content. If there is not too much matter
then the Affleck-Dine-Seiberg [27] superpotential is generated by instanton effects. The precise
statement is that T (chiral mult.) < h∨; for super-QCD with Nf quarks and antiquarks and
gauge group SU(N), this condition is just Nf < N . In this case the superpotential behaves as

WADS ∼
(

1
det(Q̄Q)

)(N−Nf )−1

(1.35)

where Q denotes the scalar component of the quarks chiral multiplets, and Q̄Q is the meson
constructing by contracting the color indices. The important feature is that WADS is large at
small values of det(Q̄Q) and if no other superpotential is added at tree level, there is a runaway
vacuum – that is, no vacuum at all. As already alluded to at the beginning of this section, a
classical superpotential (for instance, a mass term in the example discussed there) can open the
possibility of a stable vacuum.

In super-QCD theories where the one-loop β-function vanishes, the solution exhibit a version
of modular invariance, the duality acting as a subgroup of SL(2,Z) on the couplings and on the
masses by outer automorphisms of the flavor symmetry. For gauge algebras of type B and C,
this subgroup is the congruence subgroup Γ0(2) generated by T 2 : τ 7→ τ + 2 and S : τ 7→ −1/τ .

Between these two regimes, the physics is also very complex, both from the point of view
of dualities and physical phases. We already mentioned Seiberg duality, which relates a strong
coupled theory to a weak coupled one with a different matter content. Depending on the matter
content, one can for instance observe confinement with or withour chiral symmetry breaking, a
free magnetic phase (dual to the free electric phase evoked in section 1.1.3, etc.

Finally, let us come back to a general issue of Yang-Mills theories, the existence of the total
screening phase (see section 1.1.4). This can occur only if there are matter fields in faithful
representations of the center of the gauge group.12 When no such matter fields are present, for
instance if the matter fields belong to the adjoint representation, then distinct branches of vacua
can exist, with radically different low-energy behavior (Higgs, confinement, oblique confinement).
As an example, the U(N) theory with one adjoint chiral multiplet and polynomial superpotential
has been analyzed in detail in [67], where the phase structure is indicated by an order parameter
constructed out of powers W rHs of the Wilson and ’t Hooft lines.

12A faithful representation is one where different elements of the group are represented by different operators
on the representation space. Obviously the adjoint representation is not faithful, unless the center of the gauge
group is trivial. On the other hand the defining (fundamental) representation of SU(N) is faithful.
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1.2.4 Argyres-Douglas points

Let us come back to the N = 2 theory with SU(2) gauge group and one fundamental quark
examined by Seiberg and Witten [49]. In their notation, the curve is

y2 = x2(x− u) + 1
4mΛ3

1x−
1
64Λ6

1 , (1.36)

where m is the mass of the quark, u = trφ2 is the gauge invariant parameter constructed from
the scalar component of the vector multiplet and Λ1 is the renormalization scale parameter.
There are three singular points, corresponding to a monopole point and two dyon points. If we
adjust the mass and u so that the monopole and the dyon points coincide, by putting m = 3

4Λ1
and u = 3

4Λ2
1, the curve becomes

y2 =
(
x− 1

4Λ2
1

)3
. (1.37)

In this case, all the roots coincide, and mutually non-local particles become massless [68]. Sim-
ilar points can be found for two or three quarks as well. This situation is closely related to one
observed earlier in the SU(3) theory by Argyres and Douglas [41], and is dubbed an Argyres-
Douglas point. Around these points, one can show that the dual photon aD receives no loga-
rithmic corrections, which indicates that the theory is conformal.

1.2.5 Compactification on a cylinder

After having described the moduli space of vacua of N = 2 theories on R4, Seiberg and Wit-
ten [29] pursued their exploration on a topologically non-trivial spacetime R3 × S1. One very
interesting effect of this compactification is that the Seiberg-Witten curve acquires a physical
significance. Indeed, as we will see in more detail in chapter 5, two additional scalars appear
upon compactification (the Wilson line along the compact direction and the dual of the photon
in the non-compact directions) that can be combined into a complex scalar that we call Z,
as depicted on figure 1.2. The low-energy action is then a sigma model in which the target
space is the Seiberg-Witten curve, and the moduli space is this curve, along with its moduli.
A non-perturbatively generated superpotential on the Coulomb branch can then be seen as an
additional potential (in the classical mechanics sense of this term) in the sigma model, and this
is the essence of the intimate link between supersymmetric gauge theories and mechanical (and
even integrable, as we will see) systems.

In this setup, the area of the curve is proportional to R−1, if R is the radius of the compact
circle S1. One of the advantages of compactification is that its analysis should provide infor-
mation about three-dimensional as well as four-dimensional physics, which appear as limits,
respectively, of small and large R. In a way, the theory on the cylinder encapsulates all this
information, and much more. When R → ∞, the size of the curve goes to zero, and the new
degree of freedom Z on the moduli space is lost. On the other hand when R → 0, the elliptic
curve decompactifies, and the moduli space of a three-dimensional theory is recovered.

We have seen that compactification on a cylinder is a tremendously powerful probe for gauge
dynamics, for several motives:

• It gives a physical reality to the Seiberg-Witten curve;
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Figure 1.2: Compactification of the theory on the cylinder and appearance of two additional
real scalars fields that combine in the complex field Z.

• It connects supersymmetric gauge dynamics and integrable systems;

• It connects four-dimensional physics to three-dimensional physics.

Heuristically, if any N = 2 theory gives rise to a complex integrable system, compactification on
the cylinder turns the integrable system into an honest hyperkähler space [30]. For these reasons,
and in particular the bridge to integrable systems, we will focus on this kind of compactification.
It should be noted however that other topologies are equally interesting to understand better
the physics of supersymmetric gauge theories. A striking example is compactification of N = 2
theories on a four-sphere [31] or four-ellipsoids [32] where the partition function can be computed
exactly using the supersymmetric localization principle. The Alday-Gaiotto-Tachikawa relation
[33] connects the partition function of certain such theories to two-dimensional Liouville or Toda
conformal field theories with coupling controlled by the geometry of the ellipsoid.

1.3 Vacua of the N = 1∗ Theory: a Summary

Let us summarize the last few sections before presenting a detailed plan of the rest of this thesis.
As we have explained, one of the great successes of physics in the twentieth century has been to
discover that the forces of Nature are accurately described by four-dimensional gauge quantum
field theories. Since solving them is hard, we may revert to studying supersymmetric gauge
theories, in which the power of holomorphy lends a helping hand. The infrared dynamics of
such theories is a rich and fruitful subject, as the Seiberg-Witten solution for the low-energy
effective action on the Coulomb branch of N = 2 gauge theories in four dimensions demonstrates
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[19, 49]. The techniques used were soon recognised to lie close to those studied in integrable
systems [69, 70]. For pure N = 1 supersymmetric gauge theory in four dimensions, which is
massive in the infrared, we understand the supersymmetric index [71, 72, 73, 74, 75], as well as
the transformation properties of the vacua under the broken non-anomalous R-symmetry. It is
natural to extend the study of the vacua to other N = 1 supersymmetric gauge theories.

It is the bridge between integrable models and supersymmetric gauge theories that we will
further explore in this thesis to explore the vacua of a particular N = 1 gauge theory. We
will attempt to reinforce both sides separately, and present results in a manner such that the
contributions to these two domains may be read independently, as illustrated by figure 1.3 where
we depicted the main inter-relations of the chapters.

From now on we will focus on the deformation of N = 4 supersymmetric Yang-Mills obtain
by adding by hand masses in the Lagrangian for the three adjoint chiral multiplets, called
N = 1∗, and introduced in detail in section 2.2. This is an interesting playground due to
duality symmetries inherited from the celebrated duality properties of N = 4 supersymmetric
Yang-Mills theory reviewed in the introduction. In a way, this theory is also arguably a very
natural N = 1 supersymmetric model along with pure Yang-Mills and super-QCD, and has
the additional property of having a vanishing one-loop β-function. This is of course intimately
related with the fact that it is a mere deformation of N = 4, but in this respect it makes a link
with other theories like N = 1 with gauge group SU(N) and 2N fundamental quarks, to which
part of the ideas presented here should apply as well.

In chapter 2, we compute the number of massive vacua of N = 1∗ supersymmetric Yang-Mills
theory on R4 for any gauge group G. We use semi-classical techniques and efficiently reproduce
the known counting for A,B and C type gauge groups, present the generating function for both
O(2n) and SO(2n), and compute the supersymmetric index for gauge groups of exceptional
type. A crucial role is played by the classification of nilpotent orbits, as well as global properties
of their centralizers. We give illustrative examples of new features of our analysis for the D-type
algebras.

In chapter 3, we leave gauge theories aside for a while and switch to the study of complexified
elliptic Calogero-Moser systems. We first introduce the necessary background on integrable
systems, both quantum and classical, and present Calogero-Moser systems, whose definition
involves a simple Lie algebra. The explanation of the reason why such systems are useful in
order to understand the structure of vacua of the N = 1∗ gauge theory is postponed until
chapter 5, where we will uncover a beautiful bridge between the two subject matters. The
further detailed comparison of the global features of the theory on R2,1×S1 will add ornaments
to this bridge in chapter 7. A useful tool that can be used to get a grasp on integrable systems is
to take limits in some parameters, after which the system is still integrable, but simpler. From
the elliptic system, we can reach in this way simpler Calogero-Moser systems as well as Toda
systems. We will introduce affine Lie algebras and pseudo-Levi subalgebras [35] that are key
in defining generalized Inozemtsev limits of (twisted) elliptic integrable systems. The elliptic
Calogero-Moser potential, being defined on an elliptic curve, transforms in a modular-covariant
way that we make explicit and use abundantly in the following chapter.

Chapter 4 is henceforth dedicated to a detailed analysis of isolated extrema in particular cases
of the elliptic Calogero-Moser integrable system. This analysis combines numerical explorations
using Mathematica [37] and the theory of modular forms, and provides compelling evidence for
many exact results. We determine the value of the potential at such extrema, as a function
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Figure 1.3: Interdependence of chapters in this thesis.

of the modular parameter of the torus on which the integrable system lives. We calculate the
extrema for low rank B,C,D root systems using a mix of analytical and numerical tools. For
so(5) we find convincing evidence that the extrema constitute a vector valued modular form
for the Γ0(4) congruence subgroup of the modular group. For so(7) and so(8), the extrema
split into two sets. One set contains extrema that make up vector valued modular forms for
congruence subgroups (namely Γ0(4), Γ(2) and Γ(3)), and a second set contains extrema that
exhibit monodromies around points in the interior of the fundamental domain. The former set
can be described analytically, while for the latter, we provide an analytic value for the point of
monodromy for so(8), as well as extensive numerical predictions for the Fourier coefficients of
the extrema.

After this two-chapter long incursion in the realm of elliptic integrable systems, we catch up
with the main topic, the N = 1∗ gauge theory. With the help of N = 1 supersymmetry, it is
sometimes possible to calculate the effective superpotential W at low energies exactly. For an
adjoint mass deformation from N = 2 to N = 1 this was done in the original work [19] in certain
cases. For N = 1∗ and gauge group G = SU(N), the exact superpotential was proposed in [38]
following the techniques of [19, 29]. The key idea is to compactify the theory on a cylinder,
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as we will explain in the first sections of chapter 5. The superpotential is the potential of the
complexified elliptic Calogero-Moser integrable system associated to the root lattice of type
AN−1. In [39] the exact superpotential for N = 1∗ with more general gauge algebra was argued
to be the potential of the twisted elliptic Calogero-Moser system13 with root lattice associated
to the Lie algebra of the gauge group G. As a consequence, we should be able to compare the
semiclassical analysis that follows from the vacuum structure on R4 to the exact and numerical
results obtained from the integrable system in chapter 4. This is the object of section 5.3,
in which partial agreement is reached. We map out the transformation properties under the
infrared electric-magnetic duality group as well as under triality for N = 1∗ with gauge algebra
so(8). However we find that some of the extrema of the elliptic Calogero-Moser system have no
counterpart in the semiclassical gauge theory analysis. Solving this conundrum will require a
deeper analysis of the quantum field theory, presented in the two subsequent chapters.

In the last two chapters, we use all the techniques developed so far to unveil the vacuum
structure of the N = 1∗ theory on R3 × S1 for various gauge groups. We begin with gauge
algebras of type A in chapter 6, because this case is simpler – the phenomenon of discrete
Wilson lines doesn’t appear here. Nevertheless it displays massless branches of vacua. We
provide an analytic description of the branches of massless vacua in the case of the su(3). The
description of the branch in terms of the complexified Wilson lines on the circle invokes the
Eichler-Zagier technique for inverting the elliptic Weierstrass function. In this particular case,
after fine-tuning the coupling to elliptic points of order three, we identify the Argyres-Douglas
singularities of the su(3), N = 1∗ theory.

In chapter 7, we show that upon compactification on a circle, the semi-classical analysis of
the massless and massive vacua depends on the classification of nilpotent orbits, as well as on
the conjugacy classes of the component group of their centralizer. The pseudo-Levi algebras
that we used in defining the generalized Inozemtsev limits of the Calogero-Moser system play a
classifying role in this refined nilpotent orbit theory, as we review in section 7.4. The non-trivial
topology allows for turning on Wilson lines that can increase the number of massive vacua. We
demonstrate that semi-classically massless vacua can be lifted by these Wilson lines in unbroken
discrete gauge groups. We illustrate our analysis in the N = 1∗ theories with gauge algebras
so(5) and for the exceptional gauge algebra G2. We map out modular duality diagrams of the
massive and massless vacua, and give analytical equations for the so(5) massless branch.

13We note that further generalizations to N = 1∗ theories with twisted boundary conditions on R3 × S1 are
possible [76], although we leave the exploration of these twisted theories for future work.
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Chapter 2

Massive Vacua of N = 1∗ Theory on
R4

2.1 Introduction

In this chapter, we introduce the N = 1∗ theory with arbitrary gauge group on the four-
dimensional spacetime R4 with trivial topology.

We wish to compute the number of quantum vacua of the N = 1∗ theory semi-classically.
The infrared dynamics of the gauge theory will be governed by the infrared dynamics of the
gauge group left unbroken by the vacuum expectation values of the chiral multiplets. A novel
feature compared to pure N = 1 supersymmetric Yang-Mills theory is that there are both
massive and massless phases in the infrared. This renders the calculation of the number of
vacua through compactification of space-time even more subtle since in N = 1∗ theory with
generic gauge group G, Wilson lines on circles can for instance lift Coulomb to massive vacua,
as we will see in chapter 7. In this chapter, we work directly in R4, albeit semi-classically. By
carefully classifying vacuum expectation values of the three adjoint chiral multiplets, as well as
the corresponding unbroken gauge groups and their global properties, we obtain a prediction for
the number of massive vacua of N = 1∗ on R4.

For A-type gauge groups, the number of massive vacua was counted in [77, 38], while for
B,C and D type gauge groups, there were some remarks in [78], while almost complete results
were presented in [79]. In this chapter, we will perform the semi-classical calculation of the
supersymmetric index using a different and more efficient technique. It will allow us to complete
the count in the case of the D-type gauge groups, and permit us to recuperate beautiful math-
ematical classification results which enable us to the predict the supersymmetric index for all
exceptional gauge groups as well. These results complete the count of massive vacua of N = 1∗

gauge theories in four dimensions. The main mathematical tool we use are nilpotent orbits.1

We start in section 2.2 with an introduction to the N = 1∗ theory on the topologically
trivial spacetime R4. Then in section 2.4, we explain the three-step program for computing the
supersymmetric index, and the role played by nilpotent orbits of the gauge algebra, and their
centralizers. In section 2.5 we recompute the supersymmetric index for A,B and C type gauge
groups, and present the calculation for gauge groups of type D. The exceptional gauge algebras

1Nilpotent orbits also play a role in classifying surface operators in supersymmetric gauge theories [80] and
co-dimension two defects in (2, 0) theories [81].

55
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E,F and G are treated in section 2.6.

2.2 The N = 1∗ Theory on R4

The N = 1∗ theories first appeared under this name in [82]. They are obtained from four-
dimensional N = 4 Yang-Mills theory by adding finite masses to the three chiral multiplets,
reducing the supersymmetry toN = 1. There is a similar construction where less supersymmetry
is broken: using anN = 2 theory language, one gives a mass to the hypermultiplet in the adjoint,
thereby obtaining the so-called N = 2∗ theory. Many features of N = 1∗ theories were studied
before they acquired their name. In [83] the classical vacua of the theory are formally found,
and they are used to write down a partition function on hyper-Kähler manifolds and perform a
test of S-duality.

In this section, we first introduce the celebrated parent N = 4 super Yang-Mills theory
in 1 + 3 dimensions, and then perform the mass deformation. Various aspects of the theory
obtained thereof are analyzed in the following subsections.

2.2.1 The N = 4 Gauge Theory

Let us remind the reader of a few important features of N = 4 super Yang-Mills theory first.
This four-dimensional theory can be obtained by dimensional reduction from the minimal super
Yang-Mills theory in 10 dimensions; upon dimensional reduction, six components of the 10-
dimensional gauge field become scalar fields φi, i = 1, . . . , 6, that can be combined into the
three complex scalars. Taking into account the 10-dimensional gauginos, the field content of the
four-dimensional theory thus obtained can be summarized in terms of N = 1 supermultiplets as

• One vector multiplet, containing the gauge field and the gauginos

• Three chiral multiplets containing the three complex scalars Φ1, Φ2 and Φ3 in the adjoint
representation of the gauge group.

The Lagrangian is entirely fixed by supersymmetry (see appendix A), and we stress that the
way the chiral multiplets interact, i.e. the superpotential, is given by (A.26) that we reproduce
here for convenience:

WN=4 = 2
√

2
g2
YM

Tr (Φ1[Φ2,Φ3]) . (2.1)

The theory is invariant under electric-magnetic duality. In the conformal phase this translates
into modular invariance of the complexified coupling constant, as we saw in chapter 1.

2.2.2 The Mass Deformation

We now add bare massesmi to the chiral multiplets Φi. This of course doesn’t change the kinetic
terms and boils down to adding a contribution Tr(m1Φ2

1 +m2Φ2
2 +m3Φ2

3) to the superpotential.
We obtain

WN=1∗ = 2
√

2
g2
YM

Tr
(
Φ1[Φ2,Φ3] +m1Φ2

1 +m2Φ2
2 +m3Φ2

3

)
. (2.2)

In order to remove annoying factors in the final expression, we rescale in the appropriate way
the superfields. This rescaling of the fields is only possible if the three masses m1, m2 and m3
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are nonzero. Let us define an "average" bare mass m = (m1m2m3)1/3 and rescale the fields as
[84]

Φ̂i = 1(
Ng2

YM

)1/3
√
mi

m
Φi . (2.3)

We also introduce the rescaled mass

m̃ = m(
Ng2

YM

)1/3 (2.4)

The superpotential is now

WN=1∗ = 2
√

2NTr
(
Φ̂1[Φ̂2, Φ̂3] + m̃

(
Φ̂2

1 + Φ̂2
2 + Φ̂2

3

))
. (2.5)

We have introduced an integer N in these expressions. A priori it can be chosen at will, although
it is very natural to relate it to the rank of the gauge group, and in particular if the gauge group
is of type Ar, we will take N = r+ 1. The normalization (2.5) is adapted to taking the large N
limit. Finally we again renormalize the chiral multiplets according to

Φ̃i = − 1
2m̃ Φ̂i , (2.6)

so that the superpotential (A.26) supplemented with the massive contribution reduces to

WN=1∗ = −16
√

2Nm̃3 Tr
(

Φ̃1[Φ̃2, Φ̃3]− 1
2(Φ̃2

1 + Φ̃2
2 + Φ̃2

3)
)
. (2.7)

Note that this expression is invariant under cyclic permutation of the three superfields Φ̃i.

2.2.3 Field Theoretic Properties of N = 1∗

The importance of an understanding of the N = 1∗ theories lies in the fact that they have a very
rich phase structure and exhibit confinement, a feature that the conformal N = 4 theory don’t
possess. Actually, the N = 1∗ theories realizes all the possible massive phases of the ’t Hooft
classification [85]. We want to give here an overview of these profound field theoretic features,
starting with the analysis of pure N = 1 theories, which is both important in itself and will be
crucial in our analysis throughout.

Pure N = 1 gauge theory

Let us first consider the pure N = 1 theory, whose Lagrangian is given by (A.14), as a classical
field theory with a simple gauge group G. The fact that it is supersymmetric is reflected into
the fact that there is a conserved spin 3

2 current. Moreover, the conserved energy-momentum
tensor has a vanishing trace, which means that the theory is classically superconformal invariant.
Finally, we have the R-symmetry U(1)R which rotates2 the gluinos λ that appear in the expanded
Lagrangian (A.18), and leaves the gauge field invariant. There is an associated R-current with
spin 1

2 , which is conserved. These currents can all be packed into the so-called hypercurrent.
Now we turn to the quantum theory. The U(1)R symmetry is broken by an anomaly3 to a

discrete subgroup Z2h∨ ⊂ U(1)R, where h∨ is the dual Coxeter number of the Lie algebra of G,
2More precisely, we will take λ to have R-charge +1 while λ̄ has R-charge −1.
3This is the mixed triangle anomaly between one U(1)R current and two gluons.



58 CHAPTER 2. VACUA ON R4

see (B.6). To be more precise, in a theory with Weyl fermions ψ coupled to a gauge field, the
classically conserved current ψ̄σ̄µψ has an anomaly which can be computed at one loop,

∂µ
(
ψ̄σ̄µψ

)
= T (Representation)

16π2 F aµνF̃
a,µν . (2.8)

Here the fermions ψ are the gauginos λ in the adjoint representation, and the half Dynkin index
T is just the dual Coxeter number h∨, see (B.9). This means that an axial rotation of the
gauginos λ → eiαλ is equivalent to a shift of the θ-angle θYM → θYM + 2αh∨ because of the
coupling (A.13) in the Lagrangian. We find that such a rotation is no longer a symmetry, unless
α is an integer multiple of π/h∨, which leaves us with the announced discrete subgroup. This
subgroup transforms the gluinos in the natural way

λ→ exp
(
πi

k

h∨

)
λ , (2.9)

where k = 0, . . . , 2h∨ − 1. The gluino condensate 〈Trλλ〉 play the role of an order parameter,
and in a given vacuum, the Z2h∨ anomaly-free symmetry is further broken to Z2, with

〈Trλλ〉 ∝ exp
[2πi
h∨

(
k + θYM

2π

)]
. (2.10)

This means that there are h∨ physically distinct vacua in the theory. They are permuted by
θYM → θYM + 2π. It is believed that these are the only supersymmetric vacua

2.3 The Vacuum Structure

2.3.1 Classical Vacua

Let us find the vacuum structure of the classical theory with the superpotential (2.7). As we
already mentioned, this was already described by Vafa and Witten [83]. In order for the kinetic
energy term to be minimal, we impose that the fields Φ̃i are constant4 as functions of the
spacetime position x ∈ R4. We compute the partial derivatives using the identity

∂

∂X
Tr(XY ) = Y T , (2.11)

where Y T is the transpose of Y :

∂WN=1∗

∂Φ̃1
= [Φ̃2, Φ̃3]T − Φ̃T

1 , (2.12)

and circular permutations of the indices 1, 2, 3. Therefore the equations for a critical point of
WN=1∗ are [

Φ̃2, Φ̃3
]

= Φ̃1[
Φ̃3, Φ̃1

]
= Φ̃2 (2.13)[

Φ̃1, Φ̃2
]

= Φ̃3 .

4This benign assumption will be re-evaluated in section 7.4 when we compactify the theory.
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These are the F -term equations. Of course, if a gauge transformation is performed on a given
configuration satisfying (2.13), then the resulting configuration is physically indistinguishable
from the first, and still solves (2.13). We must therefore divide the space of solutions by the
gauge group in order to find the physical vacua. However there is a further constraint that must
be satisfied for a configuration to be a supersymmetric vacuum, namely the vanishing of the
D-terms. It is a general fact that ([86], section 27.4) if there are no Fayet-Iliopoulos terms and
if there is a solution to the F -terms equations then there exists a solution of both the F - and D-
terms equations, which is related to the initial solution by a complexified gauge transformation.
Therefore the classical vacua of our theory are the solutions of (2.13) divided by the complexified
gauge group GC.

One easy although crucial point about the three equations (2.13) is that they are just the
equations satisfied by the su(2) generators. As noticed in [83], this means that the classical vacua
of the theory are in one to one correspondence with complex conjugacy classes of homomorphisms
of su(2) to the complexified Lie algebra g of G. We will come back to this problem in great
detail in section 2.4.

2.3.2 The Witten Index

A basic property of four-dimensional gauge theories that are massive in the infrared is their
number of quantum vacua. This number can for instance be determined for pure N = 1 su-
persymmetric Yang-Mills theory in four dimensions. Arguments from chiral symmetry breaking
correctly predict the count of massive vacua. The tally is confirmed by calculating the super-
symmetric index [71, 75]. The supersymmetric index, also known as the Witten index, is defined
by

IW = Tr(−1)F =
∑
ψ

〈ψ|(−1)F |ψ〉 . (2.14)

where F is the fermion number operator, and the sum runs over the physical states of the theory.
Let us pause a moment to focus on the definition of operator F . From a Fock space perspective,
this number is well defined in a state built from the vacuum acted on by creation operators, and
since these states form a basis of the total Hilbert space, this defines F as an operator. Since any
supercharge Q changes the fermion number by one unit, either decreasing it by transforming a
fermion into a boson or increasing it by the opposite process, we can write (−1)FQ = −Q(−1)F ,
or {

(−1)F , Q
}

= 0 . (2.15)

As we see, (−1)F behaves nicely, by which we mean that it has good algebraic properties. If we
write no such formula for F itself, there is a good reason for that: it may be the case that there
be no conserved fermionic current associated to this charge. Let us for instance focus on pure
N = 1 super-Yang-Mills theory, with U(1)R symmetry broken to Z2h∨ and further dynamically
broken to Z2 by gaugino condensation. The fermion number is not well defined in such a theory,
but thanks to the remaining Z2 symmetry, (−1)F is.

In a supersymmetric theory with discrete spectrum, the numbers of bosonic and fermionic
states at a given energy E > 0 are equal, and therefore, if one defines nB and nF to be the
number of supersymmetric states of zero energy that are bosonic or fermionic respectively, we
can write

IW = Tr(−1)F = nB − nF , (2.16)
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and the trace can be thought of as being taken only on the states with vanishing energy. However,
it is useful to keep in mind that the trace actually spans the whole of the Hilbert space, since it
can include a deformation parameter β, to be interpreted as an inverse temperature, and become

IW = Tr(−1)F e−βE . (2.17)

The advantage of this formulation is that this can be computed as a path integral with periodic
time and appropriate boundary conditions.

The computation of the index has been performed in [75], and the solution of the famous
discrepancy between the originally computed Witten index (which was equal to one plus the
rank of the gauge group) and the number of supersymmetric vacua (the dual Coxeter number
h∨, which is the correct Witten index) was already pointed out in the appendix of [72].

Note that even for pureN = 1 supersymmetric Yang-Mills theory, some subtleties remain. In
[75], the supersymmetric index was computed by compactification on T 3 × S1, and an analysis
of commuting triples in the gauge group. On the other hand, it was argued in [10] that the
number of quantum vacua after compactification on S1 depends on the global choice of gauge
group and the spectrum of line operators. The analysis of the Witten index has been revisited
[87] in light of this new perspective.

2.3.3 Quantum Vacua

Now we would like to turn to the quantum vacua of our N = 1∗ theory on R4. Take for instance
the easiest solution of our equations (2.13), namely

Φ̃1 = Φ̃2 = Φ̃3 = 0 . (2.18)

The gauge group G is then unbroken, and since the three fields Φ̃i are massive, they decouple
at low energies. Therefore we recover the pure N = 1 theory, which we have studied in section
2.2.3. It has a rich vacuum structure: if G = SU(N) for instance, then there are N massive
vacua. On the other hand, if we consider a solution that completely breaks the gauge symmetry,
all the potentially strong quantum effects disappear and there is only one quantum vacuum. We
will call this situation the Higgs phase. There is of course a whole family of intermediate cases.
We can summarize the strategy for determining the vacuum structure as a three steps program:

1. First one solves the equations of motion for constant scalar field configurations which are
equivalent to the statement that the three complex scalars satisfy a su(2) algebra. The
enumeration of inequivalent embeddings of su(2) in the gauge algebra then provides the
set of classical solutions.

2. Then one determines the unbroken gauge group for each classical vacuum

3. Finally one counts the number of vacua that the corresponding pure N = 1 quantum
theory gives rise to in the infrared.

2.3.4 Modularity of the Theory

The parent N = 4 is believed to possess the full modular invariance, where the modular group
acts on the complexified coupling constant τ . It is a very natural and interesting question to
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examine to which extent the S-duality symmetry of the parent N = 4 theory is preserved in
the deformed N = 1∗ theory. One of the main feature of this thesis is that this symmetry is
realized in the global vacuum structure of the N = 1∗ theory, as we will see. This symmetry is
spontaneously broken in a given vacuum.5

To each quantity O is assigned a weight w(O) = (w, w̄) such that under the usual modular
transformation,

O → (cτ + d)w(cτ̄ + d)w̄O . (2.19)

This weight is additive, and knowing it for each operator allows to deduce the modular trans-
formation of any correlation function. One of the first calculations that anyone interested in
modular forms performs,

=
(
aτ + b

cτ + d

)
= =(τ)
|cτ + d|2

, (2.20)

shows that

w

(
1

g2
YM

)
= (−1,−1) . (2.21)

It is then argued in [88] that the supercharge Q transforms with weight (+1
4 ,−

1
4), while Q̄

transforms with opposite weight.
This is part of the answer to the profound question of the action of modular transformation

on the supersymmetry algebra. The answer can not be found in the Lagrangian, which is
perturbative by essence. The idea is to go on the Coulomb branch where one of the three
adjoint scalars Φ is non-vanishing, where the algebra acquires a central extension made of an
electric and a magnetic charge,

Z =
√

2
=(τ)(ne + τnm) · Φ . (2.22)

In this expression ne and nm are the electric and magnetic charges, they belong respectively
to the weight lattice and the coweight lattice of the gauge algebra, while Φ lives in the Cartan
subalgebra. The action of SL(2,Z) on the charges is

Φ→ Φ and
(
ne
nm

)
→
(
a −b
−c d

)(
ne
nm

)
. (2.23)

This implies that the central charge (2.22) transforms as

Z → (cτ + d)−1/2(cτ̄ + d)+1/2Z , (2.24)

and has weight (−1
2 ,

1
2).

Let us examine in more detail the modular properties of the various ingredients. The main
character of our story so far is the superpotentialW, which appears in the Lagrangian in the form
(A.20). From the point of view of modular transformations, the Grassmann integration

∫
d2θ

5Note however that, in a given vacuum, a new modular symmetry can be found [84] in the chiral sector of the
theory, which acts on a different coupling τ̃ . This new modular symmetry allows to pin down preferred chiral
operators in the mass deformed theory, despite the mixing that this deformation causes, allowing to compare the
results to the supergravity calculation in the dual theory.
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can be seen as two supercharges Q2, and transforms with weight (1
2 ,−

1
2). From the invariance

of the Lagrangian, we deduce that W transforms with weight

w(W) =
(
−1

2 ,
1
2

)
. (2.25)

This can also be seen [89] from the transformation properties of the central charge (2.24) and
the fact that this central charge is equal to the difference of superpotentials values (1.33).
Recalling the way the gauge coupling constant gYM transforms (2.21) and using [88] the fact
that TrΦ2

i transforms with weight (1, 1) we deduce that w(m) = w(mi) = w(W). Finally, after
renormalization (2.4), this gives [84]

w(m̃) =
(
−5

6 ,
1
6

)
. (2.26)

As a consequence, we have

w

(W
m̃3

)
= (2, 0) , (2.27)

a fact that we will use extensively later on.

2.4 The Semi-Classical Configurations and the Classification Prob-
lem

In this section, we discuss how the classification of vacuum expectation values for the adjoint
scalars in the chiral multiplets of N = 1∗ reduces to the problem of the classification of nilpotent
orbits of the complexified Lie algebra g of the gauge group. The idea of using nilpotent orbits
in the context of classifying vacua in N = 1∗ theory was mentioned in [90]. See also [91] for an
application of nilpotent orbit theory to a supersymmetric index calculation.

2.4.1 Semi-classical Configurations and sl(2) algebras

Our starting point is the N = 1∗ super Yang-Mills theory with compact gauge group G on
R4. As we explained in section 2.3, the vacua are classified by solving the F-term equations
for constant fields, and dividing the solution space by the complexified gauge group GC. The
equations dictate that the (rescaled) adjoint scalar fields Φ̃i (where i ∈ {1, 2, 3}) form an sl(2)
algebra, see equation (2.13). Thus, the scalars provide us with a map from an sl(2) algebra
into the complexified Lie algebra g of the gauge group. To find the supersymmetric vacua, we
are to classify all sl(2) triples inside the Lie algebra g, up to gauge equivalence. Configurations
are gauge equivalent if they are mapped to each other by the adjoint action of the complexified
gauge group GC on the Lie algebra g. Thus, our first step is to review what is known about the
classification of inequivalent sl(2) triples embedded in the adjoint representation.

2.4.2 The Gauge Group, Triples and Nilpotent Orbits

From now on, we will denote the complexified gauge group as GC ≡ G. We need to make a
distinction between various groups that have the same Lie algebra. One canonical group asso-
ciated to the Lie algebra g is the adjoint group Gad = Aut(g)o, namely the identity component
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of the group of automorphisms of the Lie algebra g. The adjoint group Gad is alternatively
characterized by the fact that it is the group with algebra g and trivial center.

We can now lay the groundwork for the first classification problem. Note that amongst our
complex adjoint fields Φ̃i, we can identify a linear combination Φ̃+ which is nilpotent by the
equations of motion. Indeed, we can consider the complex combinations Φ̃± = ±Φ̃1 + iΦ̃2 and
Φ̃0 = 2iΦ̃3. Then the non-vanishing commutation relations amongst these fields are[

Φ̃0, Φ̃+
]

= 2Φ̃+[
Φ̃0, Φ̃−

]
= −2Φ̃−[

Φ̃+, Φ̃−
]

= Φ̃0.

(2.28)

Of course, these remain standard commutation relations of the algebra sl(2). We can describe
them by stating that (Φ̃0, Φ̃+, Φ̃−) form an sl(2) triple. The vacuum expectation value Φ̃+ is
now a nilpotent element of the Lie algebra g of the gauge group. Reciprocally, given a nilpotent
element in a complex semisimple Lie algebra g, the Jacobson-Morozov theorem states that we
can always extend it to an sl(2) triple. The relation between nilpotent elements and sl(2) triples
is a bijection in the following sense : there is a one-to-one correspondence between G-conjugacy
classes of sl(2) triples in g and non-zero nilpotent G-orbits in g. This follows for instance from
Theorem 3.2.10 in [92] when G = Gad, and it remains true for connected gauge groups of
any isogeny type (i.e. with non-zero center) because the adjoint action of the center is trivial.
Moreover, if G and G′ are two connected groups with the same Lie algebra, then G-conjugacy
classes and G′-conjugacy classes of sl(2) triples in this Lie algebra coincide, as do their nilpotent
orbits. For instance, the SO(2n) and PSO(2n) classes of triples and orbits are the same. The
assumption that the groups are connected is essential, as we will see in detail in the case of
O(2n) and SO(2n).

The bottom line is that it will be sufficient for us to study the nilpotent orbits of g in order
to enumerate gauge inequivalent vacuum configurations for the triplet of adjoint scalars in the
chiral multiplets. These nilpotent orbits are finite in number and they have been classified, as
we review in the next section.

2.4.3 Nilpotent Orbit Theory

In this section we review the theory of nilpotent orbits that allow us to complete the first step
of our classification. Our presentation is mainly based on [92, 93, 94, 95].

Definitions and notations

For any element Z ∈ g, we denote by OZ its Gad-orbit. A standard triple is a set {H,X, Y } of
elements of g that satisfied the relations

[H,X] = 2X
[H,Y ] = −2Y (2.29)
[X,Y ] = H .

The elements X and Y are nilpotent, while H is semisimple. We will denote trip the algebra
generated by the triple inside g. For any standard triple, its Gad-conjugacy class contains an
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element {H,X, Y } such that H lies in the fundamental dominant Weyl chamber. One can then
prove that for any simple root α, we have α(H) ∈ {0, 1, 2}. Therefore we can build from H a
weighted Dynkin diagram, where the node α is weighted by α(H). We insist that this is our
definition of a weighted Dynkin diagram : not all diagrams with weights belonging to {0, 1, 2}
are such diagrams, only those that can be constructed from a standard triple as just described
are. Given a standard triple (2.29), we also define

gλ = {Z ∈ g | [H,Z] = λZ} . (2.30)

One can then prove that
g =

⊕
λ∈Z

gλ . (2.31)

Let us then define the following subalgebras:

q =
⊕
λ∈N

gλ , u =
⊕
λ∈N∗

gλ , l = g0 . (2.32)

We say that q is the Jacobson-Morozov parabolic subalgebra associated to the standard triple,
and q = l⊕u is its Levi decomposition. The subalgebra l is called the Levi subalgebra associated
to the standard triple.

Finally, let J ⊂ ∆s be a set of simple roots of g. To this set we can associate a standard
Levi subalgebra in the following way:

lJ = h⊕
∑
α∈〈J〉

gα , (2.33)

where 〈J〉 is the subroot system generated by J .

Fundamental theorem for nilpotent orbits

We now state the fundamental theorem6 of nilpotent orbit theory. Let g be a semisimple Lie
algebra. We use the notations and definitions previously introduced. Then the five following
finite sets are in one-to-one correspondence:

(1) The set of Gad-conjugacy classes of standard triples in g.

(2) The set of nonzero nilpotent Gad-orbits in g.

(3) The set of Gad-orbits of semisimple elements that appear in some standard triple in g.7

(4) The set of weighted Dynkin diagrams of g.

(5) The set of Gad-conjugacy classes of pairs (l, pl) where l is a Levi subalgebra of g and pl is
a distinguished parabolic subalgebra of [l, l].

6We have collected various difficult theorems here, that have their independent life under various names. The
fact that there is a surjective map (1) → (2) is called the Jacobson-Morozov theorem. The fact that it is also
injective is due to Kostant. The injectivity of (1) → (3) is known as Mal’cev’s theorem (and its surjectivity is
trivial). The bijection (2) → (4) is also a theorem of Kostant. Finally the set (5) was constructed by Bala and
Carter, and the bijection (2)→ (5) is known as Bala-Carter theorem. The fact that all these sets are finite follows
from the obvious finiteness of set (4).

7These are sometimes called distinguished semisimple orbits, not to be confused with the distinguished nilpotent
orbits that we will use extensively in the following.
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For a full proof of this theorem, the reader is referred to [92, 93]. In this paragraph we
modestly provide a few ideas that are part of the proof and that we will use soon, along with
the definitions needed to understand the statement of the theorem. So we want to write down
an exhaustive list of the nilpotent orbits of g in terms only of its Dynkin diagram. Let n ∈ g

be a nilpotent element. One can prove that any two minimal Levi subalgebras containing n are
conjugate. Therefore we have a well defined map

n→ [l] (2.34)

that sends a nilpotent element to a conjugacy class of Levi subalgebras. The "hardest" nilpotent
elements are those for which this class is {g}: when this is the case, we say that n is distinguished
nilpotent in g. Obviously, with the notation of the map (2.34), n is always distinguished in
l, and one can further prove that it is distinguished in the semisimple Lie algebra [l, l]. We
conclude from this discussion that we can restrict our attention to distinguished nilpotent orbits.
Note that distinguished nilpotent orbits are those for which the nilpotent element does not
commute with a non-central semi-simple element. Using the notations from (2.32) and the
fundamental theorem, we then state the following crucial lemma, which gives a characterization
of distinguished nilpotent orbits:

OX is distinguished ⇔ dim l = dim
(

u

[u, u]

)
. (2.35)

As we have seen, it is of tremendous importance to know the distinguished nilpotent orbits
of a given semisimple Lie algebra. This can be deduced from the list of distinguished nilpotent
orbits of simple Lie algebras. The so-called principal orbit, which can be characterized equiv-
alently by the fact that it is the orbit with higher dimension or by the fact that its weighted
Dynkin diagram has all its indices equal to 2, is always distinguished. For the classical algebras,
there is also a characterization in terms of partitions which is given in table 2.2. In algebras
of type A, it is the only one. However, in the other simple Lie algebras, there are more dis-
tinguished nilpotent orbits, as shown in table 2.3. Constructing these tables is easy using the
characterization 2.35, and an example of how this is done is presented later on in the case of G2.
For the exceptional algebras, we also indicate the Bala-Carter name of the distinguished orbit.
This name has the generic form Algebra(xi) where Algebra is the type of the algebra in which
the orbit is distinguished, i is the number of zeros in the weighted Dynkin diagram, and x is a
unless there are several orbits with the same number of zeros, in which case the letter b is also
used.

In order to illustrate this notation, and to make more concrete the various concepts used
here, let us consider the algebra D4 = so(8). According to table 2.1, the nilpotent orbits are in
bijection with partitions of 8 where even numbers appear an even number of times, and where
the very even partitions 2 + 2 + 2 + 2 and 4 + 4 where only even numbers appear, are counted
twice. This gives the list of 12 orbits presented in table 2.5. Among these orbits, two possess no
repeated entry, namely 7 + 1 and 5 + 3, and these are the two distinguished orbits according to
the characterization of table 2.3. The partition 7 + 1 is the principal orbit and will be denoted
D4, while 5 + 3 has a weighted diagram with one zero, as shown in table 2.5, and we call it
D4(a1).

Finally, we note that when an algebra is a sum of several simple algebras, the number of
distinguished nilpotent orbits is just the product of the number of distinguished nilpotent orbits
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in each simple algebra. As an example, there are two distinguished nilpotent orbits in D4 +A1,
that we call D4 +A1 and D4(a1) +A1. All these notations will be used in section 2.6.

Lie Algebra Labelling of Nilpotent Orbits
sl(n) Partitions of n

so(2n+ 1) Partitions of 2n+ 1 in which even parts occur with even multiplicity
sp(2n) Partitions of 2n in which odd parts occur with even multiplicity
so(2n) Partitions of 2n in which even parts occur with even multiplicity

with very even partitions corresponding to two orbits

Table 2.1: The nilpotent orbits in the Lie algebra g in the left column are in one-to-one corre-
spondence with the set of partitions described in the right column. The orbits are assumed to
be generated by a connected group with algebra g.

Algebra Principal nilpotent orbit
An−1 Partition n = n

Bn Partition 2n+ 1 = (2n+ 1)
Cn Partition 2n = (2n)
Dn Partition 2n = (2n− 1) + (1)

Table 2.2: This table gives the partition that corresponds to the principal orbit for each type of
classical algebras. The parenthesis indicate that the integer inside should be understood as one
chunk in the partition.

Algebra Distinguished nilpotent orbits
An−1 Principal

Bn, Cn, Dn Partitions with no repeated part
E6 E6 principal

E6(a1) : 2 2 0 2 2

2

E6(a3) : 2 0 2 0 2

0

E7 E7 principal

E7(a1) : 2 2 2 0 2 2

2

E7(a2) : 2 0 2 0 2 2

2

E7(a3) : 2 2 0 2 0 2

0

E7(a4) : 2 0 0 2 0 2

0
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E7(a5) : 2 0 0 2 0 0

0

E8 E8 principal

E8(a1) : 2 2 2 2 0 2 2

2

E8(a2) : 2 2 0 2 0 2 2

2

E8(a3) : 2 2 2 0 2 0 2

0

E8(a4) : 2 0 2 0 2 0 2

0

E8(b4) : 2 2 0 0 2 0 2

0

E8(a5) : 0 2 0 0 2 0 2

0

E8(b5) : 2 2 0 0 2 0 0

0

E8(a6) : 0 2 0 0 2 0 0

0

E8(b6) : 2 0 0 0 2 0 0

0

E8(a7) : 0 0 0 2 0 0 0

0

F4 2 2 2 2
2 2 0 2
0 2 0 2
0 2 0 0

G2 2 0
2 2

Table 2.3: For each type of simple Lie algebra, we give the list of distinguished nilpotent orbits,
as presented in [93] for instance. The orbits are presented in terms of partitions for the classical
algebras since there is a simple characterization. We recall that the principal orbit corresponds
to a weighted diagram with all indices equal to 2.

A detailed example of how this theory can be used in practice to obtain the list of distin-
guished nilpotent orbits and then the list of nilpotent orbits will be presented in section (7.4.2) in
the case of G2. We postpone this discussion until this point, because we will then have discussed
a generalization of the Bala-Carter theory, and we want to present this example only once. For
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the other exceptional groups, we will not make the computation in detail, but it can be done
along the same lines. The resulting list of nilpotent orbits will be used in section 2.6.

2.4.4 Number of Partitions

Before closing this review of nilpotent orbits theory, we present now a computation of the
generating functions that give the number of such orbits in all classical algebras as a function of
their rank. This can be seen as a warm-up before tackling the problem of finding the generating
functions for the index in section 2.5.3.

Generating functions

Let cn be the number of partitions of type C of 2n, namely partitions where odd numbers occur
an even number of times. There are precisely cn nilpotent orbits in sp2n. Then we have:

+∞∑
n=0

cnq
n = 1

θ4(q2) . (2.36)

Our conventions for θ-functions are given in appendix C. Now let bn be the number of partitions
of type BD of n, namely partitions where odd numbers occur an even number of times (for
instance b4 = 3 and b5 = 4). There are precisely b2n+1 nilpotent orbits in so2n+1. Then we have

+∞∑
n=0

bnq
n = 2(−q)1/8

θ2(−q) . (2.37)

Now let us call b′n the number of partitions of n of type BD, counting twice the very even
partitions, namely those partitions that contain no odd integer. There are precisely b′2n nilpotent
orbits in so2n. Then

+∞∑
n=0

b′nq
n = 2(−q)1/8

θ2(−q) + q1/6

η(q4) . (2.38)

In the statements above, the orbits are to be understood as adjoint orbits, i.e. orbits under
the action of the adjoint group corresponding to the Lie algebra. For so2n one might want to
consider O(2n)-orbits: there are precisely b2n such nilpotent orbits (there is only one O(2n)-orbit
attached to a very even partition, and it is the reunion of the two PSO(2n)-orbits attached to
this partition).

Proof of the formulas

Recall that the usual way to write the generating function of the number of partitions of n is
to start from (1 + q + q2 + ...)(1 + q2 + q4 + ...)(1 + q3 + q6 + ...)... and simplify the expression.
Here we want to add the condition that the odd integers occur an even number of times. There
is a one-to-one correspondence between partitions of type C of 2n in N and partitions of n in
N ∪ {1̄, 3̄, 5̄, 7̄, ...}, using the rules 2k ↔ k and (2k − 1) + (2k − 1) ↔ 2k − 1. For instance the
C-partition 26 = 1 + 1 + 2 + 3 + 3 + 3 + 3 + 4 + 6 corresponds to 13 = 1̄ + 1 + 2 + 3 + 3̄ + 3̄.
Using this correspondence, the trick is now to take the square of the terms corresponding to odd
factors, since there are now two "types" of odd factors:

+∞∑
n=0

cnq
n = (1 + q + q2 + ...)2(1 + q2 + q4 + ...)(1 + q3 + q6 + ...)2...
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=
+∞∏
m=1

(1− q2m)−1(1− q2m−1)−2

= θ−1
4 (q2) .

For the BD-partitions we use a similar method. There is a bijection between BD-partitions of
n in N and partitions of n in (2N− 1)∪ (4N), given by 2k− 1↔ 2k− 1 and 2k+ 2k ↔ 4k. From
this we deduce

+∞∑
n=0

bnq
n =

+∞∏
m=1

(1− q2m−1)−1(1− q4m)−1

=
+∞∏
m=1

[
(1− q2m−1)−1(1 + q2m)−1

]
(1− q2m)−1

=
+∞∏
m=1

(1 + (−1)mqm)−1(1− (−q)m)−1(1 + (−q)m)−1

=
+∞∏
m=1

(1 + (−q)m)−2(1− (−q)m)−1

= 2(−q)1/8

θ2(−q)
Finally, taking into account the very even partitions is easy, since there is an obvious bijection
between very even partitions of 4n and partitions of n. The generating function of these very
even partitions is therefore q1/6(η(q4))−1.

Numerical values

Since we will often need to enumerate partitions of integers with the aforementioned constraints
in the following sections and chapters, we provide here the numbers of such partitions as a
function of n:

n bn b′n cn

0 1 2 1
1 1 1 2
2 1 1 4
3 2 2 8
4 3 4 14
5 4 4 24
6 5 5 40
7 7 7 64
8 10 12 100
9 13 13 154
10 16 16 232
11 21 21 344
12 28 31 504

(2.39)

2.4.5 The Centralizer and the Index

The second step in our program is to determine the unbroken gauge group in a given semi-
classical configuration for the adjoint scalar fields. Thus, for each nilpotent orbit with its asso-
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ciated sl(2) triple, we need to determine the centralizer of the triple, i.e. the unbroken gauge
group. This determination has been performed as well [92, 93, 94, 95]. The results are lined
with intricacies that we will discuss in due course. Before we do so, we introduce some notation
for the relevant mathematical objects.

We denote by CG(n) the centralizer in G of a nilpotent element n ∈ g. We call trip the image
in g of a sl(2) triple associated to the G-orbit of the nilpotent element n. We can then define
CG(trip), the centralizer of trip in the group G. We are primarily interested in the structure
of CG(trip), the unbroken gauge group in a given semi-classical configuration for the adjoint
scalar fields. It will be important to us that in general this group is not connected, and that
therefore its component group Comp(trip) = CG(trip)/CG(trip)o is non-trivial. It is crucial for
the computation of the supersymmetric index to understand both the structure of the part of the
centralizer connected to the identity and the action of the component group on the connected
components.

The third step will be to apply our knowledge of the infrared dynamics of pure N = 1
supersymmetric gauge theories to the theory with gauge group CG(trip). If the unbroken gauge
group CG(trip) is non-abelian, the number of massive vacua on R4 will be given by the product
of the dual Coxeter numbers of the simple factors.8 The set of vacua possibly still needs to be
divided out by the action of the component group Comp(trip).

2.5 The Counting for the Classical Groups

In this section, we apply the three-step program set out in section 2.4 to the case of all classical
gauge groups of types A,B,C and D.

2.5.1 The Nilpotent Orbits

In a first step, we describe the nilpotent orbits of the classical Lie algebras An−1 = sl(n),
Bn = so(2n+ 1), Cn = sp(2n) and Dn = so(2n).

The nilpotent orbits can be represented in a variety of ways. For the classical algebras, the
nilpotent orbits in connected groups are in one-to-one correspondence with sets of partitions
given explicitly in table 2.1. Since partitions will play an important role, we introduce a few
useful notations. For any partition of an integer N = d1 + d2 + ...+ dN , we define nd = |{k|dk =
d}|, namely the number of times the integer d > 0 appears in the partition, as well as the sets

Do = {d|d odd and nd > 0} (2.40)

De = {d|d even and nd > 0} . (2.41)

The sets Do (respectively De) are the sets of odd (respectively even) integers that appear in the
partition of N .

As can be seen in table 2.1, there is a subtlety for so(2n). We say that a given partition
of an integer is very even if it has only even parts, each occurring with even multiplicity. A
very even partition corresponds to precisely two inequivalent orbits of so(2n). These orbits are
interchanged under the outer Z2 automorphism that acts by exchanging the two extremal nodes

8The number of vacua for pure N = 1 super Yang-Mills theory on R4 is independent of the center of the gauge
group.



2.5. THE COUNTING FOR THE CLASSICAL GROUPS 71

Figure 2.1: The action of the Z2 outer automorphism of the Dn algebra (for n > 4) on the
Dynkin diagram.

on the fork of the D-type Dynkin diagram, as illustrated in figure 2.1. This subtlety disappears
if instead of SO(2n) orbits, one considers O(2n) orbits : in this case, every partition of 2n with
even parts occurring with even multiplicity correspond to a single orbit.9 It will be useful to
include the gauge group O(n) into our discussion in the following, since it serves as a stepping
stone to obtain results for SO(n) gauge groups.

2.5.2 The Centralizers

For each partition, the centralizer CG(trip) of the corresponding triple is explicitly known [92,
93, 94, 95] – the result is sometimes called the Springer-Steinberg [96]. We will make particular
choices for the center of the gauge group, which influence the centralizers, but the final result
will be independent of this choice. Since the massive vacua of the A-type N = 1∗ theory are
well-understood [77, 38], we concentrate on type B,C and D gauge algebras. To describe the
centralizers of the triple for the gauge groups (S)O(n) and Sp(2n) we introduce more notation.
Firstly, if H is a matrix group, we use the notation Hp

∆ to denote the diagonal copy of the group
H inside the direct product group Hp. Secondly, we denote by

S

(
m∏
d=1

Hd

)
(2.42)

the subgroup of the product of matrix groups
m∏
d=1

Hd (2.43)

consisting of m-tuples of matrices whose determinants have product one.

The Centralizer in O(n) and SO(n)

The basic result for the centralizer of a triple associated to a nilpotent orbit (labelled by a
partition satisfying

∑
d nd d = n) in O(n) can then be written as

CO(n)(trip) =
∏
d∈De

[Sp(nd)]d∆ ×
∏
d∈Do

[O(nd)]d∆ , (2.44)

which is isomorphic to the group

CO(n)(trip) ∼=
∏
d∈De

Sp(nd)×
∏
d∈Do

O(nd). (2.45)

9We note that the classification of orbits in [79] for D-type gauge groups therefore corresponds to the choice
of gauge group G = O(2n).
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The second expression (2.45) is simpler, but the first one realises the group CO(n)(trip) as an
explicit subgroup of O(n) in the fundamental representation. From the first expression then,
it is straightforward to derive the centralizer in SO(n). Indeed we merely have to enforce the
constraint that the determinant be 1, which gives:

CSO(n)(trip) = S

 ∏
d∈De

[Sp(nd)]d∆ ×
∏
d∈Do

[O(nd)]d∆

 . (2.46)

We note that in a generic situation, the centralizer group is not connected, even if we start out
with a connected gauge group. For further clarity, we construct an explicit matrix representation
of the centralizer subgroup. For each dimension d such that nd > 0, take a matrixMnd in Sp(nd)
if the dimension d is even and in O(nd) if d is odd. Then build the matrix M = Diag(Md

nd
) (i.e.

where the matrix Mnd is present d times along the diagonal). The centralizer is then the group
of such matrices M with determinant 1. It then is manifest that

CSO(n)(trip) ∼=
∏
d∈De

Sp(nd)× S

 ∏
d∈Do

O(nd)

 . (2.47)

Let us show more explicitly that the centralizer is not necessarily connected. For any matrix M
constructed as above,

detM =
∏

d∈De∪Do
(detMnd)

d =
∏
d∈Do

detMnd (2.48)

If the set of odd dimensions appearing in the partitions is not empty, Do 6= ∅, the constraint on
the determinant removes half of the connected components, leaving 2|Do|−1 connected compo-
nents. When Do = ∅, the constraint is automatically enforced. Hence we have

CompSO(n)(trip) = Zmax(0,|Do|−1)
2 . (2.49)

The centralizer in Sp(2n)

Similarly, the centralizer of a triple inside Sp(2n) is given explicitly by

CSp(2n)(trip) =
∏
d∈Do

[Sp(nd)]d∆ ×
∏
d∈De

[O(nd)]d∆ (2.50)

and is isomorphic to
CSp(2n)(trip) ∼=

∏
d∈Do

Sp(nd)×
∏
d∈De

O(nd). (2.51)

The component group is equal to:

CompSp(2n)(trip) = Z|De|2 . (2.52)

2.5.3 The Supersymmetric Index for the Classical Groups

We have determined the set of inequivalent semi-classical configurations for the adjoint scalar
fields Φ̃i, as well as the subgroup of the gauge group that is left unbroken by the vacuum expec-
tation values. To compute the semi-classical number of massive vacua, we compute the Witten
indices of the pure N = 1 theories that arise upon fixing a given semi-classical configuration for
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the fields Φ̃i, and add them up for all possible inequivalent semi-classical configurations. The
global properties of the unbroken gauge group come into play at this stage – we have already
stressed that generically, the unbroken gauge group will not be connected (even if we started
out with a connected gauge group). We start with a demonstration of how to take into account
this complication in the elementary case of the groups O(4) and SO(4). With this example in
mind, we can generalize this third step and compute the supersymmetric index for all N = 1∗

theories with classical gauge groups.

O(4) and SO(4)

We firstly recall that we have the equivalence of groups SO(4) = (SU(2) × SU(2))/Z2 where
the element we divide out by is the diagonal center (−1,−1) in the product of the SU(2)
groups. Secondly, the O(4) group contains two components, and in particular, it contains a
parity operation that exchanges the two su(2) algebras that make up the so(4) algebra. This
can be viewed as a special case of the Z2 outer automorphism operation on the so(2n) Dynkin
diagram of figure 2.1.

The extra gauge symmetry present in the O(4) theory has direct consequences for the count-
ing of inequivalent vacua. For a pure N = 1 supersymmetric gauge theory with gauge group
SU(2), the number of ground states is two, and they are labelled by a gaugino bilinear 〈λλ〉 = ±1.
When the gauge group is SU(2) × SU(2), we therefore have 2 × 2 = 4 ground states. In pure
N = 1 with gauge group SO(4), the number of ground states remains 4, because the action
of the diagonal center Z2 is trivial on each fermion bilinear. The theory with gauge group
O(4), on the other hand has the extra element in the gauge group that exchanges the two
SU(2) gauge group factors. We must restrict to those vacua that are invariant under this el-
ement of the gauge group as well, and these are schematically represented as (+,+), (−,−)
and 1√

2 ((+,+) + (−,−)). Thus, the Witten index is three for the O(4) theory. The component
group matters.

The Consequences of the Component Group

In fact, the example of O(4) is central for the following reason. We know that for a pure
N = 1 theory with connected simple Lie group as a gauge group, the Witten index is given
by the dual Coxeter number of the underlying Lie algebra. (See appendix B for the relevant
table.) If the gauge group is not connected, but has a gauge algebra with a connected Dynkin
diagram, then the Witten index remains unchanged. (The extra elements of the gauge group
leave the fermion bilinear invariant.) Thus, the only non-trivial case that we need to keep in
mind when studying the centralizers (2.47) and (2.50) is precisely the case of O(4). All other
cases correspond to either trivial groups, a Coulomb vacuum (if an SO(2) factor is present),
or the product of simple factors for whom the component group will not influence the Witten
index. Thus, we must keep an eye out only for the difference between the disconnected Dynkin
diagram of so(4) = su(2) ⊕ su(2) which can be subject or not to an exchange identification,
depending on the component group of the centralizer.
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The Contribution of Each Centralizer

We apply the results derived for the simple groups to the centralizers (2.47) and (2.50). The
general strategy is first to compute the number of vacua in pure N = 1 with gauge group equal
to the connected component of the centralizer, and then modify this counting if necessary by
taking into account the action of the component groups (2.49) and (2.52).

As a crucial warm-up exercise, we consider the case of the gauge group S(O(4)m) for m ≥ 1.
We wish to compute the number of vacua for a pure N = 1 theory with this gauge group. The
gauge group has 2m−1 connected components, all isomorphic (as manifolds) to SO(4)m. We can
write

S (O(4)m) = SO(4)m o Zm−1
2 =

(
SU(2)× SU(2)

Z2

)m
o Zm−1

2 . (2.53)

The Witten index for gauge group SO(4)m is 4m. Now we have to take into account the Zm−1
2

factor. This group acts by exchanging an even number of SU(2) factors in the product above.
Then the gauge invariant vacua, described in terms of SU(2) factor vacua, are enumerated as
follows :

• 2 configurations in which all summands consist of factors equal to (+−) or (−+) (namely,
(+−)m and (−+)(+−)m−1, symmetrized appropriately)

• 3m − 1 configurations containing at least one (++) or one (−−) (namely, all words with
m letters chosen from the alphabet {(++), (+−), (−−)}, except the word (+−)m).

In total, this gives 3m + 1 gauge invariant vacua for gauge group S(O(4)m).
We have now gathered all elementary ingredients to proceed with the computation of the

contribution to the Witten index of each given nilpotent orbit with associated centralizer. Let’s
start with the centralizer (2.50) for gauge group Sp(2n). The identity component is isomorphic
to ∏

d∈Do
Sp(nd)×

∏
d∈De

SO(nd) (2.54)

and the component group (2.52) ignores the Sp(nd) factors and acts on all the SO(nd) factors.
In particular, the SU(2) components inside the SO(4) factors are exchanged independently, and
the corresponding index is always 3. Taking into account all the factors, we conclude that the
Witten index is ∏

d∈Do

(
nd
2 + 1

) ∏
d∈De

I(nd) (2.55)

where the function I counts the number of massive vacua for a pure N = 1 theory with gauge
group O(n).

Next, we turn to the centralizer (2.47) for the SO(n) nilpotent orbits. The identity compo-
nent is ∏

d∈De
Sp(nd)

∏
d∈Do

SO(nd) (2.56)

and the component group (2.49) acts on the O factors in the centralizer (2.47) as follows : we
can change the sign of the determinant of an even number of matrices in the O(nd) factors. If
there are no O(4) factors, the index follows immediately. The opposite extreme, in which all
factors of type O(nd) are O(4) factors (and there is at least one such O(4) factor), we have
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Type Unbroken Gauge Group Case Index

B,D S
( ∏

d∈De

[Sp(nd)]d∆ ×
∏

d∈Do

[O(nd)]d∆
) No O(4) factor

or
at least one O(n) factor
with n ≥ 1 and n 6= 4.

∏
d∈De

(nd
2 + 1

) ∏
d∈Do

I(nd)

D S
( ∏
d∈De

[Sp(nd)]d∆ ×
∏

d∈Do
[O(4)]d∆

)
Only O(4) factors.

(
3|Do| + 1

) ∏
d∈De

(nd
2 + 1

)
C

∏
d∈Do

[Sp(nd)]d∆ ×
∏

d∈De
[O(nd)]d∆ No restriction

∏
d∈Do

(nd
2 + 1

) ∏
d∈De

I(nd)

Table 2.4: The supersymmetric index contributions for unbroken subgroups in the connected
gauge groups SO(2n + 1), Sp(2n) and SO(2n). The function I counts the number of massive
vacua for a pure N = 1 theory with gauge group O(n), and is given explicitly by I(1) = 1,
I(3) = 2, I(4) = 3 and I(n) = n− 2 for n 6= 1, 3, 4.

treated in our warm-up exercise, and we just take the contribution of the Sp(nd) factors into
account to obtain in that case (

3|Do| + 1
) ∏
d∈De

(
nd
2 + 1

)
. (2.57)

Note that in this case,
N =

∑
d∈De

nd d+ 4
∑
d∈Do

d (2.58)

is even by construction. Thus, this particular case arises only for algebras of type D i.e. SO(2n)
gauge groups.

Finally, if there exists at least one nd ∈ Do such that nd 6= 4, then we can change the sign of
the determinant of any number (odd or even) of matrices in the O(4) factors. Hence the index
is again given by the naive formula

∏
d∈De

(
nd
2 + 1

) ∏
d∈Do

I(nd) . (2.59)

The supersymmetric indices for the centralizers for all classical groups are summarised in table
2.4.

2.5.4 The Generating Functions

In this subsection, we write down the generating function for the supersymmetric indices that
we have computed in subsection 2.5.3. For An−1-type Lie algebras, no subtleties arise and the
supersymmetric index is the sum of the divisors of n [77, 38]. A generating function is therefore
ISU(n) =

∑∞
n=1 σ1(n)qn, where σk−1(n) is defined in C.15.

Next, we write down the SO(n) generating function. Firstly, we refer to a detailed discussion
of the generating function for partitions satisfying the constraint that even parts occur with
even multiplicity in [34], and we have derived that it codes the Witten index contribution for
the centralizer in O(n). We therefore state that the generating function of [34] captures the
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number of vacua in the N = 1∗ theory with O(n) gauge group. The supersymmetric index of
the O(n) theory is then the coefficient of qn in the series expansion of

IO(n)(q) =
∞∏
k=1

P0(q2k−1)
(1− q2k−1)2(1− q4k)2 (2.60)

where we introduce the polynomial

P0(x) = 1− x− x2 + 3x3 − x4 − x5 + x6 . (2.61)

To write down the generating function for gauge group SO(n), we will need to take into
account the doubling of the very even partitions and the fact that the centralizers in SO(n)
satisfy the constraint that their overall determinant is equal to one. The very even partitions
are made out of elementary blocks of the form 2k + 2k + ... + 2k with 2m terms, and they
contribute a factor Sp(2m) in the residual symmetry, giving rise to m+ 1 quantum vacua. The
corresponding contribution in the partition of n is 4mk, so the number of vacua corresponding
to the very even partitions is the coefficient of qn in the generating function

∞∏
k=1

∞∑
m=0

(m+ 1)q4km =
∞∏
k=1

1
(1− q4k)2 . (2.62)

A partition is either very even, or not. Moreover, the very even partitions are already counted
once in the generating function (2.60) – it is the origin of the second factor in the denominator
[34]. Thus, to count them with the required double multiplicity, we add the generating function
(2.62) to the generating function (2.60), obtaining

∞∏
k=1

1
(1− q4k)2

(
1 +

∞∏
k=1

P0(q2k−1)
(1− q2k−1)2

)
. (2.63)

However, we still have to take special care of the partitions that fall under the restrictions of
the second line in table 2.4. In the expression (2.63), all such partitions received an index
3|Do|

∏
d∈De

(nd
2 + 1

)
(corresponding to imposing all O(4) gauge invariances), and we must add

those vacua that are gauge invariant under the smaller unbroken gauge group arising from the
unit determinant requirement. To add this contribution, we first write the generating function
of the number of partitions that give rise to an unbroken S (O(4)m) gauge group factor, possibly
supplemented with Sp(2n) gauge group factors. These are partitions of N = 2n into odd
integers, each of which appear exactly four times. Equivalently, they are partitions of N/4 into
distinct odd integers. The coefficient of xn in

− 1 +
∞∏
k=1

(1 + x2k−1) (2.64)

is the number of partitions of n into distinct odd integers, so that setting x = q4 gives us the
generating function for this partition problem. Including the supplementary sp(2n) factors boils
down to multiplying by the generating function (2.62), and we thus get the extra gauge invariant
massive vacua counting function:

∞∏
k=1

1
(1− q4k)2

(
−1 +

∞∏
k=1

(1 + q8k−4)
)
. (2.65)
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Finally, the generating function for SO(n) follows from adding the O(n) generating function,
supplemented with the second copy of the very even partitions coded in (2.63) as well as the
extra gauge invariant vacua of equation (2.65). We obtain that the number of massive vacua in
the SO(n) theory is the coefficient of qn in

ISO(n)(q) =
∞∏
k=1

P0(q2k−1)
(1− q4k)2(1− q2k−1)2 +

∞∏
k=1

1 + q8k−4

(1− q4k)2 . (2.66)

The generating function for SO(2n+ 1) gauge group is obtained by taking the odd part

ISO(2n+1)(q) = IO(2n+1)(q) = 1
2

∞∏
k=1

P0(q2k−1)
(1− q2k−1)2(1− q4k)2 −

1
2

∞∏
k=1

P0(−q2k−1)
(1 + q2k−1)2(1− q4k)2 .

(2.67)
This result was obtained in [34]. In the case of B-type gauge group, the counting function is
identical for O(2n+ 1) and SO(2n+ 1). For the D-type gauge groups, we find

IO(2n)(q) = 1
2

∞∏
k=1

P0(q2k−1)
(1− q2k−1)2(1− q4k)2 + 1

2

∞∏
k=1

P0(−q2k−1)
(1 + q2k−1)2(1− q4k)2 , (2.68)

and

ISO(2n)(q) = 1
2

∞∏
k=1

P0(q2k−1)
(1− q4k)2(1− q2k−1)2 + 1

2

∞∏
k=1

P0(−q2k−1)
(1− q4k)2(1 + q2k−1)2 +

∞∏
k=1

1 + q8k−4

(1− q4k)2 .

(2.69)
The last term in equation (2.66) contributes to the SO(2n) generating function only. In the
next section, we will discuss a few detailed examples that illustrate the special features of the
Dn supersymmetric index.

Finally, for reference we also give the generating function for Sp(2n):

ISp(2n)(q) =
∞∏
k=1

P0(q2k)
(1− q2k)2(1− q4k−2)2 = q−1ISO(2n+1)(q) . (2.70)

The last equality is highly non-trivial and was proven in [34]. It is a consequence of the S-duality
between B and C-type N = 1∗ gauge theories. The q−1 factor is here to take into account the
shift in powers of q when going from SO(2n + 1) to Sp(2n). The identity of the left and right
hand side was already noted by Ramanujan [97].

2.5.5 Illustrative Examples

Before moving on to the exceptional groups, we illustrate some of the salient features of the
analysis by two telling cases in which the special features of (S)O(4) (sub)groups come into
play. We will consider in turn gauge algebras so(4) and so(8). We first give the first few terms
of the expansion of the generating functions given in the previous section, to facilitate numerical
checks:

IO(n)(q) = 1 + q + 3q3 + 6q4 + 6q5 + 7q6 + 15q7 + 26q8 + 31q9 + 36q10 + . . . (2.71)
ISO(n)(q) = 2 + q + 3q3 + 9q4 + 6q5 + 7q6 + 15q7 + 33q8 + 31q9 + 36q10 + . . . (2.72)
ISp(2n)(q) = 1 + 3q2 + 6q4 + 15q6 + 31q8 + 59q10 + 115q12 + 208q14 + . . . (2.73)
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Figure 2.2: The diagram of dualities for SU(2). Each circle represents a massive vacuum. In
red, we show the action of S-duality on the massive vacua, in green T -duality (when non-trivial).

The gauge algebra so(4)

In a first example, we discuss the N = 1∗ theories with so(4) gauge algebra. The so(4) algebra
is the direct sum of two su(2) algebras. Thus, the theory with SO(4) gauge group has the same
vacuum structure as the theory with product gauge group SU(2) × SU(2), and therefore has
3 × 3 massive vacua. Let us check this elementary statement using our semi-classical method,
based on the classification of nilpotent orbits:

Orbit Residual symmetry Number of vacua
{2, 2}1 Sp(2) 2
{2, 2}2 Sp(2) 2
{3, 1} S(O(1)×O(1)) 1
{1, 1, 1, 1} SO(4) 2× 2

(2.74)

Yet another way to establish this result is by using the low energy effective superpotential on
R3×S1 (under the condition that no extra vacua arise upon compactification, which is satisfied
in this case). This analysis has been done in [38]. One can map out how the massive vacua
behave under the infrared duality group [77], and one finds the tensor product of two duality
diagrams of SU(2) – the latter is depicted in figure 2.2. The result is drawn in figure 2.3.

When we consider the N = 1∗ theory with O(4) gauge group, on the other hand, we have
the table of nilpotent orbits and centralizers

Orbit Residual symmetry Number of vacua
{2, 2} Sp(2) 2
{3, 1} O(1)×O(1) 1
{1, 1, 1, 1} O(4) 2× 2− 1

(2.75)

for a total of 6 vacua, in agreement with (2.71). The diagram of dualities is now the direct sum
of two SU(2) duality diagrams (i.e. twice figure 2.2). We see the crucial role played by the Z2
identification of the two su(2) summands in the Lie algebra when the gauge group is O(4), as
well as the fact that very even partitions correspond to a single orbit for O(2n) groups.

The gauge algebra so(8)

Another interesting case that we wish to put forward is the case of the Lie algebra so(8). We
note first of all that the group of outer automorphisms is the triality group S3 that acts on the
so(8) Dynkin diagram (in figure 2.4) by permuting the three external nodes. In the following
table, we list the partitions that correspond to the SO(8) nilpotent orbits. We also provide the
Dynkin labels of the orbit (see [93] for the necessary background). The latter labelling is useful
here, since it provides a direct handle on the behaviour of the orbits under the triality group.
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Figure 2.3: The diagram of dualities for SO(4). In red, we show the action of S-duality on the
massive vacua, in green T -duality (when non-trivial).

Orbit Dynkin diagram Residual symmetry Massive vacua Triality Rep
{4, 4}1 (0, 2, 0, 2) Sp(2) 2 31

{4, 4}2 (0, 2, 2, 0) Sp(2) 2 31

{5, 3} (2, 0, 2, 2) S(O(1)2) 1
{7, 1} (2, 2, 2, 2) S(O(1)2) 1

{2, 2, 2, 2}1 (0, 0, 0, 2) Sp(4) 3 32

{2, 2, 2, 2}2 (0, 0, 2, 0) Sp(4) 3 32

{3, 2, 2, 1} (1, 0, 1, 1) Sp(2)× S(O(1)2) 2
{3, 3, 1, 1} (0, 2, 0, 0) S(O(2)2) 0
{5, 1, 1, 1} (2, 2, 0, 0) S(O(3)×O(1)) 2 31

{2, 2, 1, 1, 1, 1} (0, 1, 0, 0) Sp(2)× SO(4) 8
{3, 1, 1, 1, 1, 1} (2, 0, 0, 0) S(O(5)×O(1)) 3 32

{1, 1, 1, 1, 1, 1, 1, 1} (0, 0, 0, 0) SO(8) 6

Table 2.5: Summary of the so(8) analysis.
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a1 a2

a3

a4
Figure 2.4: This weighted Dynkin diagram for so(8) is denoted (a1, a2, a3, a4) in the text.

The three orbits labelled 31 in the last column form a triplet under triality, as do the three orbits
labelled 32. There are a total of 33 massive vacua for the N = 1∗ theory on R4 with gauge
group SO(8). When we mod out by a Z2 outer automorphism, which is equivalent to studying
the gauge group O(8), we find 26 massive vacua. To find this final tally, we need to realize that
the (0, 1, 0, 0) orbit contributes 2× (2× 2− 1) = 6 vacua when the gauge group is O(8).

2.6 The Counting for the Exceptional Groups

In this section, we count the number of massive vacua for mass-deformedN = 4 super Yang-Mills
theory with exceptional gauge group. For determining the centralizer subgroups, we assume that
our gauge group is the adjoint group G = Gad. The supersymmetric indices for other choices of
centers are identical.

2.6.1 The Orbits and the Centralizers

The first two steps in our program consist of listing the nilpotent orbits, in bijection with the
sl(2) triples, and the centralizers, the subgroup of the gauge group left unbroken by the adjoint
scalar field vacuum expectation values. While there is a handy list of nilpotent orbits (see e.g.
[93]) of exceptional Lie algebras available, we need to delve slightly deeper into the mathematics
to understand the centralizers of the associated triples.

Let n be a nilpotent element of a Lie algebra g and trip the span of an sl(2) triple corre-
sponding to n. The centralizer of the triple is reductive (i.e. semi-simple plus abelian factors)
and is a factor in the centralizer of the nilpotent element CG(n) = CG(trip) n U where U is
the unipotent radical of CG(n). From chapter 13 of [93] we can read off both the type and
the component group of CG(trip) (called C there), which is almost all we need to compute the
contribution to the Witten index for a given orbit. However, we still have to know precisely
how the component group of CG(trip) acts on its connected components. These are final gauge
equivalence identifications that we will need to perform on the vacua of effective pure N = 1
supersymmetric Yang-Mills theories. These actions can be deduced from the detailed reference
[95].

In the following subsection, we explicitly compute the supersymmetric index by going through
the lists of nilpotent orbits, following the order of the lists provided in [93],10 and for each of
these orbits, we compute the contribution to the index as follows.

10The numbering used in [95] is one lower than our numbering.



2.6. THE COUNTING FOR THE EXCEPTIONAL GROUPS 81

(a) If the unbroken gauge group CG(trip) contains an abelian factor, we have a massless,
Coulomb vacuum, and the contribution is zero.

(b) If the unbroken gauge group CG(trip) is simple (respectively trivial), the contribution is
the dual Coxeter number of the corresponding Lie algebra (respectively one). (The action
of a possible component group on the gaugino bilinear is trivial.)

(c) If the unbroken gauge group CG(trip) contains several simple factors, and the component
group is trivial, then the contribution is the product of the dual Coxeter numbers of the
simple factors.

(d) If the unbroken gauge group CG(trip) contains several simple factors, and the component
group is non-trivial, then we consider the tensor product of the quantum vacua of each
simple factor, and count those vacua which are also gauge invariant with respect to the
action of the component group.

2.6.2 The Supersymmetric Index for the Exceptional Groups

We proceed on a case-by-case basis.

The algebra G2

The number of orbits is 5. For each of these orbits, we read off the Lie algebra of the unbro-
ken gauge group in [93] (see our table 2.6) and observe that they are all simple. Hence the
supersymmetric index is:

IG2 = 4 + 2 + 2 + 1 + 1 = 10. (2.76)

Number Unbroken Gauge Algebra Component group Number of Massive Vacua
1 G2 1 4
2 A1 1 2
3 A1 1 2
4 1 S3 1
5 1 1 1

Table 2.6: The number of the orbit in the table in [93], the unbroken gauge algebra, the non-
identity component of the unbroken gauge group and the number of massive vacua the orbit
gives rise to.

The algebra F4

There are 16 orbits for the algebra F4, enumerated in table 2.7. All centralizers are either simple
or trivial (case (b) above), except for the orbits number 4 and 8. Note that for orbits number
3 and 5 (as a few examples amongst many), the component group acts non-trivially on the
gauge algebra. The outer automorphism action leaves the fermion bilinear of pure N = 1 super
Yang-Mills theory invariant.
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Number Gauge Algebra Component group Action Massive Vacua
1 F4 1 9
2 C3 1 4
3 A3 S2 4
4 A1 +A1 1 2× 2
5 A2 S2 3
6 G2 1 4
7 A1 1 2
8 A1 +A1 S2 2× 2− 1
9 A1 1 2
10 A1 S2 2
11 1 S4 1
12 A1 1 2
13 A1 1 2
14 1 S2 1
15 1 S2 1
16 1 1 1

Table 2.7: The number of the orbit in the [93] table, the unbroken gauge algebra, the non-
identity component of the gauge group, as well as its action on the gauge algebra, in a selection
of cases. The last column indicates the contribution to the supersymmetric index.

Orbit number 4 has trivial component group, and therefore falls into case (c) where we
count all tensor product vacua. More interestingly, in the case of orbit 8, the Lie algebra of
the unbroken gauge group is A1 ⊕ A1, and the disconnected component of the centralizer acts
to exchange the two su(2) algebras. This is a familiar phenomenon, and we realize that the
number of gauge invariant vacua is 3. The total number of massive vacua is therefore:

IF4 = 9 + 4 + 4 + (2× 2) + 3 + 4 + 2 + (3) + 2 + 2 + 1 + 2 + 2 + 1 + 1 + 1 = 45. (2.77)

We have put the contribution of orbit number 4 and orbit number 8 between parentheses in
equation (2.77) to clearly exhibit the different number of vacua which they contribute to the
total supersymmetric index, despite the fact that the algebra of the centralizer is identical for
both orbits.

The algebra E6

For the E6 algebra, there are 21 orbits, listed in table 2.8.

Number Gauge Algebra Component group Action Massive Vacua
1 E6 1 12
2 A5 1 6



2.6. THE COUNTING FOR THE EXCEPTIONAL GROUPS 83

Number Gauge Algebra Component group Action Massive Vacua
3 B3 + T1 1 0
4 A2 +A1 1 2× 3
5 A2 +A2 S2 3× 3− 3
6 A2 + T1 1 0
7 G2 1 4
8 A1 + T1 1 0
9 B2 + T1 1 0
10 A1 1 2
11 A1 + T1 1 0
12 T2 S3 0
13 A1 + T1 1 0
14 A2 1 3
15 T1 1 0
16 A1 1 2
17 T1 1 0
18 1 S2 1
19 T1 1 0
20 1 1 1
21 1 1 1

Table 2.8: The number of the orbit, the unbroken gauge algebra, the non-identity component
of the gauge group, as well as its action on the gauge algebra (when relevant), and the resulting
number of massive vacua.

All orbits have either a simple centralizer, or a trivial component group (and therefore fall into
classes (b) or (c)), except orbit number 5. The component group of orbit number 5 exchanges the
two su(3) algebras in the unbroken gauge group. We therefore need to count the SU(3)×SU(3)
pure N = 1 super Yang-Mills vacua which are invariant under this interchange. The 3 × 3
representation of the Z2 exchange splits into 6 invariants and 3 non-trivial representations. We
therefore find the index

IE6 = 12 + 6 + 0 + 2× 3 + (3× 3− 3) + 0 + 4 + 0 + 0 + 2
+0 + 0 + 0 + 3 + 0 + 2 + 0 + 1 + 0 + 1 + 1

= 44. (2.78)

The algebra E7

There are 45 orbits, among which only orbits number 16 and 19 need special care.
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Number Gauge Algebra Component group Action Massive Vacua
1 E7 1 18
2 D6 1 10
3 B4 +A1 1 14
4 F4 1 9
5 C3 +A1 1 8
6 A5 S2 6
7 C3 1 4
8 A3 + T1 S2 0
9 3A1 1 8
10 B3 +A1 1 10
11 G2 +A1 1 8
12 G2 1 4
13 B3 1 5
14 2A1 1 4
15 3A1 1 8

16 3A1 S3 4
17 2A1 1 4
18 C3 1 4
19 2A1 S2 3
20 A1 + T1 S2 0
21 A2 + T1 S2 0
22 A1 1 2
23 G2 1 4
24 B2 1 3
25 T2 S2 0
26 A1 + T1 S2 0
27 A1 1 2
28 2A1 1 4
29 A1 1 2
30 A1 1 2
31 A1 1 2
32 A1 S2 2
33 2A1 1 4
34 1 S3 1
35 A1 1 2
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Number Gauge Algebra Component group Action Massive Vacua
36 A1 1 2
37 A1 1 2
38 1 S2 1
39 A1 1 2
40 T1 S2 0
41 A1 1 2
42 1 S2 1
43 1 1 1
44 1 1 1
45 1 1 1

Table 2.9: The number of the orbit in the [93] table, the unbroken gauge algebra, the non-identity
component of the gauge group, as well as the action on the gauge algebra, when relevant. The
final column is the tally of massive vacua.

On the A1⊕A1⊕A1 gauge algebra left unbroken by the triple associated to orbit number 16, the
S3 component group acts as permutations of the summands. We therefore compute the number
of the 23 tensor product vacua which are invariant under S3. The number is equal to 4, which is
then the contribution to the supersymmetric index associated to orbit number 16. In the case
of orbit number 19, the unbroken Z2 factor acts by exchanging the two gauge groups of type
A1, and the number of vacua is 3. The final tally is

IE7 = 18 + 10 + 2× 7 + 9 + 2× 4 + 6 + 4 + 0 + 23 + 2× 5 + 2× 4 + 4 + 5 + 22 + 23

+(4) + 22 + 4 + (3) + 0 + 0 + 2 + 4 + 3 + 0 + 0 + 2 + 22 + 2 + 2
+2 + 2 + 22 + 1 + 2 + 2 + 2 + 1 + 2 + 0 + 2 + 1 + 1 + 1 + 1

= 174. (2.79)

The algebra E8

The algebra E8 exhibits 70 nilpotent orbits, catalogued in table 2.10.

Number Gauge Algebra Component group Action Massive Vacua
1 E8 1 30
2 E7 1 18
3 B6 1 11
4 F4 +A1 1 18
5 E6 S2 12
6 C4 1 5
7 A5 S2 6
8 B3 +A1 1 10
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Number Gauge Algebra Component group Action Massive Vacua
9 B5 1 9
10 G2 +A1 1 8

11 2G2 S2 10
12 G2 +A1 1 8
13 B3 +A1 1 10
14 D4 S3 6
15 F4 1 9
16 B2 1 3
17 B2 +A1 1 6

18 3A1 S3 4
19 B2 + T1 S2 0
20 A4 S2 5
21 2A1 1 4
22 C3 1 4
23 A2 S2 3
24 A2 + T1 S2 0
25 B2 1 3
26 A3 S2 4
27 A1 + T1 S2 0
28 2A1 1 4
29 G2 +A1 1 8
30 2A1 1 4
31 A1 1 2
32 A2 S2 3
33 G2 S2 4
34 B3 1 5
35 A1 1 2
36 2A1 1 4
37 A1 1 2
38 2A1 S2 3
39 A1 S2 2
40 A1 S3 2
41 2A1 1 4
42 1 S5 1
43 2A1 1 4
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Number Gauge Algebra Component group Action Massive Vacua
44 2A1 S2 3
45 A1 1 2
46 A1 S2 2
47 A2 S2 3
48 T1 S2 0
49 B2 1 3
50 G2 1 4
51 T1 S2 0
52 A1 1 2
53 T1 S2 0
54 A1 S2 2
55 1 S3 1
56 T1 S2 0
57 A1 1 2
58 A1 1 2
59 1 S3 1
60 A1 1 2
61 1 S3 1
62 A1 1 2
63 1 S2 1
64 1 S2 1
65 A1 1 2
66 1 S2 1
67 1 S2 1
68 1 1 1
69 1 1 1
70 1 1 1

Table 2.10: The orbit in the table of [93] , the type of centralizer, the component group, as well
as its action on the gauge algebra, when relevant. The number of massive vacua results.

There are 70 orbits, among which orbits number 11, 18, 38 and 44 deserve special care. In orbit
11, the algebra of the unbroken gauge group is G2 ⊕G2, and the two summands are exchanged
by the S2 component group. Of the 4×4 vacua of pure N = 1 with gauge group G2×G2, 10 are
invariant under the component group. In orbit 18, the three su(2) algebras are exchanged by
the S3 group as in orbit 16 of E7, leading to 4 vacua. In the case of orbits 38 and 44, two su(2)
algebras are exchanged by the S2 component group, so both contribute 3 vacua. The census



88 CHAPTER 2. VACUA ON R4

yields

IE8 = 301 . (2.80)

We have thus computed all Witten indices of N = 1∗ supersymmetric Yang-Mills theory on R4.



Chapter 3

Elliptic Integrable Systems and
Modularity

3.1 Introduction

In this chapter, we leave aside supersymmetric gauge theories and begin an exploration of a
certain class of integrable systems. The reason why this particular class is of interest to us will
become clear in chapter 5, and no mention of gauge theories will appear in the present chapter
and the next one, which can be read independently. As we will explain shortly, the Calogero-
Moser systems to be considered here are fundamental examples of integrable models, on the
one hand because they appear in a natural way in classical mechanics and are easily defined,
and on the other hand possess deep modular and Lie theoretic properties that we will review in
due course. In addition, studying these models is very rewarding because other systems can be
reached from them by various limiting processes.

In the first section, we define the Calogero-Moser systems and lay bare some of its elementary
properties. We then show explicitly how the associated potential transforms under the modular
group action. Finally we will present in section 3.4 an analysis that extends the limits performed
by Inozemtsev [36] and further investigated by Khastgir, Sasaki and Takasaki [98]. The limits
that can be taken are classified by data from the affine Lie algebra associated with the potential.
We will see in the last chapter of this thesis that this structure also plays a fundamental role on
the gauge theory side.

3.2 The Calogero-Moser system

3.2.1 General Definitions

It is interesting to identify and study dynamical systems that are integrable. It is common to
discover in a given theory of physical interest that a subsector has an integrable structure. In this
case, one can hope for exact solutions, and we will see that this is the case for the Calogero-Moser
systems that we want to study: in the most elementary case (rational potential), the Newtonian
equations of motion can be solved exactly usign purely algebraic operations. Before diving into
the details of Caloger–Moser systems, we remind the reader of various useful definitions.

In classical mechanics, any function F (p, q) on phase space evolves according to Ḟ = {H,F}P

89
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whereH is the Hamiltonian. We say that a dynamical system on a phase space of dimension 2n is
Liouville integrable if one knows n independent conserved quantities Fi which Poisson-commute
(and then the Hamiltonian is a function of the Fi).

The notion of Lax pairs is fundamental (for a pedagogical introduction see [99]). It consists
in presenting the equations of motion in the form

L̇(z) = [L(z),M(z)] , (3.1)

where the matrices L(z) and M(z) depend on the dynamical variables and on the spectral
parameter z. Using the well-known formula

d
dt detL = (detL)tr

(
L−1L̇

)
, (3.2)

we find that the equation det(L(z) − k) = 0, for k ∈ C a constant, is time-independent.1 This
means that the eigenvalues of L(z) are time-independent, and so are the symmetric functions
built from them, and the curve Γ it defines,

Γ = {(k, z) ∈ C2| det(L(z)− k) = 0} . (3.3)

This curve is called the spectral curve, it can be seen as a Riemann surface, and its moduli
contain the conserved quantities.

An equivalent but more abstract way of presenting a classical integrable system, which
emphasizes the essential data in the presentation above, is the following. One has to exhibit
a 2n-dimensional manifold with a symplectic form ω and an Rn-valued function (F1, . . . , Fn)
whose components Poisson-commute, defined on this manifold. The preimage of a given point
in Rn is the level manifold, and is isomorphic to a n-dimensional torus. One can then define
action-angle variables (Ij , ϕj)j=1,...,n that correspond to a given basis (Aj)j=1,...,n of cycles of the
torus via

Ij = 1
2π

∮
Aj

d−1ω . (3.4)

We come back to this formalism in section 3.2.5.

3.2.2 Why Calogero-Moser Systems ?

Let us first consider the very practical problem of the dynamics of a given number of classical non-
relativistic particles in our 3-dimensional space with a given interaction potential (for instance,
a Coulomb or gravitational potential). In general if the number of particles is not very small
(n ≤ 2), it is impossible to obtain an exact solution of this problem. There is a situation in
which we know such a solution for any number n of particles, namely when the particles interact
pairwise with a quadratic potential. But the reason why this situation is tractable is that it
reduces to n− 1 independent particles, each moving in a harmonic potential, and therefore it is
really a one-particle problem.

The situation is different in one-dimensional spaces. We will present systems on n-particles
evolving in one-dimensional spaces with non-trivial pairwise interactions that are integrable.
They can be generalized and embedded into a family of systems indexed by simple Lie algebras,
and their integrability results from the presence of higher hidden symmetries [100, 101, 102].

1Note that the equation (3.1) can be solved by L(z, t) = U(t)L(z, 0)U−1(t) and M(z, t) = −U̇(t)U−1(t).
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The coordinates of the particles that we consider are denoted (Z1, . . . , Zn). We take the
usual non-relativistic2 kinetic term

1
2 Ż

2 = 1
2

N∑
i=1

P 2
i , (3.5)

where the Pi are the canonical momenta associated to the positions Zi, and a potential

V (Z) = g
∑
i<j

f (Zi − Zj) (3.6)

where f is an even function. In this thesis, this function f will mostly be the Weierstrass function
℘ associated to two half-periods ω1 and ω2, in which case we call the physical system the Elliptic
Calogero-Moser system. The definition and useful properties of the Weierstrass function and
other elliptic functions can be found in section C.2. Two other choices are frequent, and we
summarize the terminology3 as follows, and in figure 3.1 :

f(z) =


1
z2 Rational Calogero-Moser System

1
sin2 z

Trigonometric Calogero-Moser System
℘(z;ω1, ω2) Elliptic Calogero-Moser System

(3.7)

The rational system accurately models particles on a line with a strong repulsive interaction.
It is possible to add a confining harmonic potential on top, so that the particles don’t go to
infinity, and one can show that this doesn’t spoil the integrability properties stated below. The
trigonometric system can be thought of as the rational system on a circle, keeping in mind the
relation ∑

k∈Z

1
(z + kπ)2 = 1

sin2 z
. (3.8)

The elliptic potential is harder to interpret with a real z, but if we allow z to take complex
values, it obviously lives on a torus.

The form of the interactions in (3.6) seems to be the most natural one from the physical
point of view, but it sheds light on its symmetries to write it in an apparently more contrived
form. The root system of the Lie algebra AN−1 can be described as follows: we take N vectors
ε1, . . . , εN ∈ h∗, where h is the Cartan subalgebra, that satisfy

N∑
i=1

εi = 0 (3.9)

in a Euclidean space, with the scalar products

(εi, εj) = δij −
1
N
. (3.10)

Then the set of positive roots of AN−1 is

∆+
AN−1

= {εi − εj |1 ≤ i < j ≤ N} . (3.11)

2There exists a relativistic version of the Calogero-Moser system, which is often called the Ruijsenaars-Schneider
system.

3The Trigonometric Calogero-Moser System is also known as the Sutherland System.
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Figure 3.1: The dashed line is the graph of z 7→ 1/z2, the gray line is the graph of z 7→ 1/ sin2 z

and the dotted line is the graph of z 7→ ℘
(
z; π2 , i

π
4
)
, corresponding to τ = i

2 .

Now we can also embed the Zi in h∗ via

Z ≡
N∑
i=1

Ziεi . (3.12)

Then if α = εi− εj ∈ ∆+
AN−1

, one can compute (α,Z) = α(Z) = Zi−Zj . Hence we rewrite (3.6)
as

VAN−1(Z) = g
∑

α∈∆+
AN−1

f (α(Z)) . (3.13)

We have added a subscript on V to indicate the root system that is used. A generalization is
now possible to any root system. We denote by r the dimension of the root space, which is also
the rank of the associated Lie algebra. The vector Z lives in the space dual to the root lattice.
The coupling constant g in front of the potential played a spectator role until now, since it is just
a multiplicative constant, but it becomes important when all the positive roots in the chosen
root system are not equivalent (we say that two roots are equivalent if they are connected by
the action of the Weyl group). In this case there are as many coupling constants as there are
equivalence classes. For the simply-laced root systems there is only one such class, and for the
non simply-laced root systems associated to a simple Lie algebra (namely Br, Cr, F4 and G2)
there are two classes, the long and the short roots. In this last case we will therefore have two
coupling constants gl and gs. The most general potential is therefore

Vg(Z) = V∆g(Z) =
∑
α∈∆+

g

gν(α)f (α(Z)) , (3.14)

where the index ν(α) is defined by

ν(α) = |αlong|
2

|α|2
= 2
|α|2

(3.15)
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and the coupling constant gν(α) then depends only on the length of the root α. With our con-
ventions (B.12), this means that there are three possible coupling constants g1, g2 and g4, and at
most two are involved in any integrable system based on a root system.4 We use interchangeably
the notations α · Z and α(Z) throughout thesis.

The Weierstrass function becomes a 1
sin2 function when the period ω2 → i∞, as shown by

the limit (C.27) in the appendix. Moreover, if one sends the two periods to infinity, ω1 → ∞
and ω2 → i∞, then we have ℘(z) ∼ z−2. Therefore the rational and trigonometric potentials
are limits of the elliptic potential.

Now we know how to generalize (3.6) properly, but we haven’t seen yet why this potential
and its generalization (3.14) are so interesting. The answer is that these systems are integrable
for all Lie algebra root systems.

Let us focus on the simplest form based on the AN−1 Lie algebra with potential (3.6).
Calogero and Moser proposed [103, 102, 104] an ansatz which depends on three unknown func-
tions. Requiring that the Lax equation (3.1) be equivalent to Hamilton’s equations yields func-
tional differential equations for the unknown functions. These can be solved exactly in some
cases, and the solution determines the function f , basically resulting in (3.7). For the Elliptic
Calogero-Moser system, the explicit solution obtained from the ansatz is

Lij(z) = Piδij −
√

2g(1− δij)Φ(Zi − Zj ; z) , (3.16)

Mij(z) =
√

2g
∑
k 6=i

℘(Zi − Zk)δij +
√

2g(1− δij)Φ′(Zi − Zj ; z) , (3.17)

where Φ is the Lamé function given by

Φ(x; z) = σ(z − x)
σ(x)σ(z)e

xζ(z) (3.18)

and the Weierstrass functions σ and ζ are related to ℘ by ℘ = −ζ ′ and ζ = σ′/σ. We then
have very explicit formulas for a Lax pair, but this is not enough to assert that the system is
integrable: we need to check that the time-independent quantities Ik ∝ trLk, for k = 2, . . . , N
are functionally independent and satisfy {Ik, Il} = 0. This is a difficult task which we are not
going to present here, but the interested reader can find the proof in [104].

It should be noted that for other Lie algebras the explicit construction of the Lax matrices
is known but there are additional subtleties.5 One of them is that L(z) doesn’t belong to the
Lie algebra g for generic value of z. In general the parameters gν for ν = 1, 2, 4 are free; however
for the case Cr, the construction of the Lax pair given in [105] requires6 that

gCr4 = 2gCr2 . (3.19)

3.2.3 Classical and Quantum Integrability

Until now, when speaking about integrability, we always meant classical integrability. The
notion of integrability extends to the quantum case in a very natural way. As an illustration, let
us solve the basic quantum problem: one particle in a potential V (Z) = g℘(Z). This corresponds

4This last statement does not hold for the so-called BCr system, which is not a usual root system but is a
crystallographic root system, that can be used to study all classical algebras.

5As far as I know, there is no explicit construction for G2 algebras.
6See equation (6.16c) there.
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to the Elliptic Calogero-Moser system with the simplest root system A1. We look for a solution
of the time-independent Schrödinger equation

− 1
2ψ
′′(Z) + g℘(Z)ψ(Z) = Eψ(Z) . (3.20)

It is convenient to write g = 1
2 l(l + 1). Then one can show that for en arbitrary integer l and

arbitrary energy E there are two solutions

ψε = eεkZ
σ(Z − εb1) . . . σ(Z − εbl)

σ(Z)l (3.21)

for ε = ±1. The constants k and bj are fixed by equation (3.20). Then one should require that
a physical solution be regular at Z = 0, which leaves us with one linear combination of the two
solutions above, and at Z = 2ω1, which gives a quantification condition.

The quantum integrability is very similar to the classical discussion of section 3.2.1. Using the
canonical quantization procedure we can construct operators Îk from the classical quantities Ik.
These operators are well defined, since they are sums of products of commuting operators, but
the commutator [Îk, Îl] is not well defined and we need to introduce a regularization procedure,
for instance normal order. This means that {Ik, Il} = 0 does not imply [Îk, Îl] = 0, and a
separate proof is needed. This proof is presented in [106].

Not only are the energy levels of the Calogero-Moser systems quantified, they also have
integrality properties. For instance the energy levels E of the rational system with an additional
confining potential 1

2ω
2Z2 satisfy ([107])

∆E
ω
∈ Z , (3.22)

and this integer can be determined in terms of the degrees of fundamental invariants of the
root system. The analogous quantization for the trigonometric Calogero-Moser system states
that the energy levels are proportional to a quantity that depends on a dominant weight λ. For
simply laced root systems, we have for instance

E ∝ (λ+ ρ)2 , (3.23)

where ρ is the Weyl vector. For non simply-laced root systems, we have to replace in this
formula ρ by a deformed version of the Weyl vector [108]. In addition we can also deduce that
the frequencies of small oscillations around equilibrium points have integrality properties.

3.2.4 Twisted and Untwisted Elliptic Calogero-Moser Models

Let us first recall that the untwisted Elliptic Calogero-Moser system is just (3.14) with the third
option in (3.7):

V∆,un(Z) =
∑
α∈∆+

gν(α)℘(α(Z);ω1, ω2) . (3.24)

The subscript un stands for "untwisted".
The twisted elliptic Calogero-Moser model is defined in terms of twisted Weierstrass functions

(C.29) which are summed over shifts by fractions of periods (thus in effect modifying that period).
We have a twisted elliptic Calogero-Moser model for all non-simply laced root systems and the
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value of n is then given by the ratio of the length squared of the long versus the short roots. We
will be interested in the twisted elliptic Calogero-Moser model with potential:

V∆,tw(Z) =
∑
α∈∆+

gν(α)℘ν(α)(α(Z);ω1, ω2) (3.25)

When ∆ is a Lie algebra root system (as opposed to other crystallographic or non-crystallographic
root systems), there are at most two possible lengths for the roots and we can rewrite this po-
tential as

V∆,tw(Z) = gl
∑

αl∈∆+
l

℘(αl(Z);ω1, ω2) + gs
∑

αs∈∆+
s

℘n(αs(Z);ω1, ω2) , (3.26)

where αl denote the long and αs the short roots in the root system ∆ = ∆l ∪∆s, and gl and gs
are two coupling constants.

Universal Lax pairs have been constructed for this twisted model [109].

3.2.5 Complexified Models

It is crucial for the later application to supersymmetric gauge theories that we allow for complex
values for the components of the vector Z. We will see in section 5.2.2 that Z will encapsulate
two real scalars of the compactified gauge theory.

Although it might seem that complexifying the variable Z does not make a big difference
with the real case, it is worth pointing that the analysis is harder in this case. For instance, it
is difficult to find analytically the extrema of the complexified Calogero-Moser potential even
in the simplest cases of algebras of type A, and we will see that otherwise absent non-isolated
extrema show up in the complexification process.

From a more formal point of view, we can reuse the abstract formalism alluded to at the
end of section 3.2.1, see for instance [110]. The manifold we begin with is now a complex
manifold of dimension 2n, ω is a non-degenerate closed (2, 0)-form and the function (F1, . . . , Fn)
is now Cn-valued. As analogues of (3.4), we now have 2n complex action variables (aj)j=1,...,n
corresponding to cycles Aj and (aD,j)j=1,...,n corresponding to cycles Bj . Because there can not
be more than n independent Poisson-commuting functions, there should be a relation between
the aj and the aD,j . As the notation suggests, such a relation exists through a prepotential F :

aD,j = ∂F

∂aj
. (3.27)

We see that aj and aD,j are the special Kähler coordinates required by N = 2 supersymmetry,
and this justifies our interest on complexified integrable systems.

3.2.6 The Symmetries of the Potential

Let us discuss in detail the symmetries of the twisted elliptic Calogero model that act on the
set of variables Z. We first observe that the Weyl group action leaves invariant the scalar
product α(Z) = (α,Z) and that the root system is Weyl invariant. See also appendix B for the
definitions of the different lattices discussed hereafter. This implies that the Weyl group action
on Z leaves the potential invariant. Secondly, we note that the outer automorphisms of the Lie
algebra, which correspond to symmetries of the Dynkin diagram, also leave the set of roots and
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the scalar product invariant. Therefore, outer automorphisms as well form a symmetry of the
model.

Moreover, the periodicities of the model in the two directions of the torus are as follows. By
the definition of the dual weight, or co-weight lattice, we have that α(λ∨) ∈ Z for all roots α.
This implies that shifts of Z by 2ω2 P

∨, namely shifts by periods times co-weights, leave the
potential invariant.

To discuss the periodicity in the ω1 direction, we concentrate for simplicity on the algebras
A,B,C and D, and normalize their long roots to have length squared two. We then have that
for a long root αl and a weight λ, the equation (αl, λ) ∈ Z holds while for a short root αs of
the B or C algebras we have (αs, λ) ∈ 1

2Z, for all weights λ. As a consequence, the periodicity
in the (twisted) ω1 direction is the lattice 2ω1 P where P is the weight lattice. The group of
all symmetries is a semi-direct product of the lattice shifts, the Weyl group as well as the outer
automorphism group.

3.3 Elliptic Integrable Systems and Modularity

In this section, we study properties of (twisted) elliptic Calogero-Moser systems. We analyze the
complexified model, defined on a torus with modular parameter τ . In particular, we examine
the extrema of the complexified potential, and exhibit their curious characteristics.

3.3.1 Langlands Duality

Beyond the many features of these integrable systems already discussed in the literature, the
first supplementary property that will be pertinent to our study of isolated extrema, is their
behaviour under an inversion of the modular parameter τ . We therefore briefly digress in this
subsection to discuss a few of the details of the duality. Models associated to simply laced Lie
algebras map to themselves under the modular S-transformation S : τ → −1/τ . This is easily
confirmed using the transformation rule (C.23) of the Weierstrass ℘ function under modular
transformations. We do have a non-trivial Langlands or short-long root duality between the
twisted elliptic Calogero-Moser model of B-type and the twisted model of C-type. For the non-
simply laced cases, we will always work with the twisted model (3.26), and we will drop the
corresponding subscript on the potential from now on. In order to exhibit the duality, we make
the potential for the Br = so(2r + 1) theory more explicit:

VB(xi;ω1, ω2) = bl

∑
i<j

℘(xi − xj ;ω1, ω2) + ℘(xi + xj ;ω1, ω2)


+bs

[
r∑
i=1

℘(xi;ω1, ω2) + ℘(xi + ω1;ω1, ω2)
]
,

and for the Cr = sp(2r) theory as well:

VC(yi;ω′1, ω′2) = cs

∑
i<j

℘(yi − yj ;ω′1, ω′2) + ℘(yi + yj ;ω′1, ω′2)

+ ℘(yi − yj + ω′1;ω′1, ω′2) + ℘(yi + yj + ω′1;ω′1, ω′2)
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+cl
r∑
i=1

℘(2yi;ω′1, ω′2) . (3.28)

We have chosen the parametrization of the vector Z as well as the root systems given by (B.12)
and (B.13) in appendix B, with zi relabelled xi and yi for clarity. We have assigned half-periods
ωi to the B-system and ω′i to the C-system. We have also made explicit the twisted Weierstrass
functions ℘2 with twisting index 2, which is the ratio of lengths squared of the long and short
roots. Finally, we have chosen natural names for the coupling constants gl and gs in (3.26).To
demonstrate the duality between these models, we use the elliptic function identities (C.31),
valid for Im(ω2/ω1) > 0, to manipulate the Br potential such that it becomes of the form of
the Cr potential:

VB = bl

∑
i<j

℘(xi − xj ; 2ω2,−ω1) + ℘(xi − xj + 2ω2; 2ω2,−ω1) + ℘(xi + xj ; 2ω2,−ω1)+

℘(xi + xj + 2ω2; 2ω2,−ω1)

+ bs

r∑
i=1

℘(xi;ω2,−ω1/2)

−π
2r(r − 1)

24ω2
2

bl

[
2E2

(
−ω1
ω2

)
− E2

(
− ω1

2ω2

)]
+ π2r

6ω2
1
bs

[
2E2

(
2ω2
ω1

)
− E2

(
ω2
ω1

)]

= bl

∑
i<j

℘(xi − xj ; 2ω2,−ω1) + ℘(xi − xj + 2ω2; 2ω2,−ω1) + ℘(xi + xj ; 2ω2,−ω1)+

℘(xi + xj + 2ω2; 2ω2,−ω1)

+ bs

r∑
i=1

℘(xi;ω2,−ω1/2)

+ π2

12ω2
1

(2rbs + r(r − 1)bl)
[
2E2

(
2ω2
ω1

)
− E2

(
ω2
ω1

)]
. (3.29)

In the last equality, we used the modular transformation rule (C.38) for a combination of second
Eisenstein series. We observe that the end result (3.29) can be identified with the Cr potential
(3.28), provided we match parameters as follows:

ω′1 = 2ω2 ω′2 = −ω1 yi = xi

cs = bl cl = 4bs , (3.30)

and we allow for a τ -dependent shift of the potential that invokes the second Eisenstein series E2,
defined in appendix C. These identifications imply a duality (which we will denote S2) between
the modular parameters of the B and C-type integrable systems:

τB ≡ − 1
2τC . (3.31)

In the following, we will be interested in B and C models in which the ratio of the long to short
root coupling constants is equal to two, i.e. we put bl = b = 2bs and cl = c = 2cs. Various
particular choices of parameters and observables that we make in this section are motivated by
the gauge theory applications that we will discuss in section 5.7 It is important that this relation

7It is also of interest to study the integrable systems more generally.
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be compatible with the duality map (3.30). We rewrite the identity of the potentials for this
specific ratio of parameters:

∑
i<j

℘(xi − xj ;ω1, ω2) + ℘(xi + xj ;ω1, ω2) + 1
2

(∑
i

℘(xi;ω1, ω2) + ℘(xi + ω1;ω1, ω2)
)

=

∑
i<j

℘(xi − xj ; 2ω2,−ω1) + ℘(xi − xj + 2ω2; 2ω2,−ω1) + ℘(xi + xj ; 2ω2,−ω1) +

℘(xi + xj + 2ω2; 2ω2,−ω1) + 2
∑
i

℘(2xi; 2ω2,−ω1) + π2r2

12ω2
1

[
2E2

(
2ω2
ω1

)
− E2

(
ω2
ω1

)]
,

and the integrable system duality can be summarised as:

VB(xi, τ) = 1
2τ2VC

(
xi
2τ ,−

1
2τ

)
+ π2r2

3 [2E2(2τ)− E2(τ)] , (3.32)

when we use the rescaling (C.21). The duality may be viewed as a standard Langlands duality.
We went through its detailed derivation since the τ -dependent shift in the duality transformation
(3.32) is important for later purposes. This shift is a general feature of the duality, and appears
similarly in equation (7.32) where the G2 twisted Calogero-Moser Hamiltonian is used, and
where the duality

S3 : τ 7→ − 1
3τ (3.33)

is involved.

3.3.2 Langlands Duality at Rank Two

There is a further special case of low rank which is of particular interest to us in the following.
The B and C type Lie algebras of rank two are identical: so(5) ≡ sp(4). If we apply the duality
of B and C type potentials to this special case, we derive that the following transformations
leave the potential invariant:

ω′1 = 2ω2 ω′2 = −ω1 c′ = 2b
x′2 − x′1 = 2x1 x′1 + x′2 = 2x2 . (3.34)

If we parameterise the potential in terms of the modular parameter τ = ω2/ω1, the duality
transformation for so(5) reads:

Vso(5)(x1, x2, τ) = 1
2τ2Vso(5)

(
x1 + x2

2τ ,
x1 − x2

2τ ,− 1
2τ

)
+ 4π2

3 [2E2(2τ)− E2(τ)] . (3.35)

In summary, we derived a Langlands duality between B and C type (twisted) elliptic Calogero-
Moser models. The resulting identities captured in equations (3.32) and (3.35) and the shifts
appearing in these duality transformations will be useful. We return to the more general dis-
cussion of the integrable systems, and in particular their extrema.

3.4 Semi-Classical Limits of Elliptic Integrable Systems

In this section, we firstly propose new limits of elliptic integrable systems that generalize the
Inozemtsev limits performed in [36, 111]. We are motivated by the fact that these limits describe
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semi-classical physics of supersymmetric gauge theories in four dimensions, and we will make
use of them in chapters 6 and 7. The existence of these limiting behaviors may also be of interest
in the theory of integrable systems [36, 111, 98]. Each limit is associated to a choice of subset
of the set of simple roots of (the dual of) the affine root system that enters the definition of the
twisted elliptic integrable system.

3.4.1 Calogero-Moser systems and Toda systems

Let g be a simple complex Lie algebra. Under certain scaling behaviors of τ andm→∞, D’Hoker
and Phong show in [111] that the elliptic Calogero-Moser system becomes a new integrable
system which can be of Toda or trigonometric Calogero-Moser type. The trigonometric Calogero-
Moser potential having been defined in (3.14) and (3.7), we give now the expression of the Toda
potential associated to any finite-dimensional or affine Lie algebra. Let ∆s be the set of simple
roots of this algebra. Then we define

V Toda
∆ (Z∗) = 1

2
∑
α∈∆s

g∗ν(α) exp (−α(Z∗)) , (3.36)

where Z∗ is again an element of the Cartan algebra and g∗ν are coupling constants. We stress
that the main difference between Toda systems and the other integrable systems that we have
mentioned until now is that in the latter, a sum over all the positive roots is involved, while the
Toda Hamiltonian is a sum over simple roots only.

The precise statement of [111] is now as follows, where we define, as usual, q = e2πiτ and
τ = ω2

ω1
.

• In the limit τ → i∞ with g∗ν = gνq
δ and Z∗ = Z − 2ω2δρ

∨ kept constant (where ρ∨ is the
dual Weyl vector (B.8)), the untwisted Calogero-Moser system (3.24) tends towards the
following system, according to the value of δ:

– the affine Toda systems associated with untwisted affine Lie algebra g(1), when δ =
1/h;

– the ordinary Toda system associated with Lie algebra g when 0 < δ < 1/h;

– the trigonometric Calogero-Moser system associated with Lie algebra g when δ = 0.

• In the limit τ → i∞ with g∗ν = gνq
δ and Z∗ = Z − 2ω2δρ kept constant (where ρ is the

Weyl vector (B.7)), the twisted Calogero-Moser system (3.25) tends towards the following
system, according to the value of δ:

– the affine Toda systems associated with dual affine Lie algebra
(
g(1)

)∨
when δ = 1/h∨;

– the ordinary Toda system associated with dual Lie algebra g∨ when 0 < δ < 1/h∨;

– the trigonometric Calogero-Moser system associated with dual Lie algebra g∨ when
δ = 0.

In the following paragraphs, we will see that more general limits can be taken.
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3.4.2 The Dual Affine Algebra and Non-Perturbative Contributions

This subsection is concerned with generalizing this analysis to include combinations of trigono-
metric and Toda integrable systems. These limits code possible symmetry breaking patterns
of the gauge theory, as will be made explicit in chapters 6 and 7. The limit we take can be
described as a limit towards large imaginary modular parameter τ , or as the semi-classical limit
from the perspective of the N = 1∗ gauge theory where this parameter is identified with the
complex coupling constant (A.17). The procedure gives an analytical handle on the extrema of
the superpotential in the semi-classical regime.

The large imaginary τ expansion of the (twisted) elliptic integrable potential is known to be
governed by affine algebras [112, 113, 39, 76]. Thus, it will be useful to introduce some affine
algebra notation.8 The (untwisted) affine algebra ĝ = g(1) is built from the loop algebra of g,
the central extension k̂ and the derivation d. We build a Cartan subalgebra of ĝ from a Cartan
subalgebra of g by adding the generators k̂ and d. Elements of the dual of the Cartan are
denoted (λ, k, n) with the Lorentzian scalar product

(λ, k, n) · (λ′, k′, n′) = λ · λ′ + kn′ + k′n . (3.37)

A root is a weight of the adjoint representation, so it must have k = 0. If we define the imaginary
root δ to be equal to

δ = (0, 0, 1) , (3.38)

the set of affine roots is

∆̂ = {α+mδ|m ∈ Z and α ∈ ∆} ∪ {mδ|m ∈ Z and m 6= 0} , (3.39)

and the set of positive affine roots is

∆̂+ = ∆+ ∪ {α+mδ|m ∈ N∗ and α ∈ ∆} ∪ {mδ|m ∈ N∗} . (3.40)

A set of positive simple roots is given by adjoining the affine root α0 = δ − ϑ, where ϑ is the
highest root (B.4) of g, to a simple root system of g. The theory of twisted affine algebras, their
classification, their (simple, positive) roots is also pertinent here, and can be looked up in [114].

Armed with this knowledge, let’s analyze how the potential behaves in the large imaginary
τ limit, and how the low-energy effective superpotential codes non-perturbative corrections to
gauge theory on R2,1×S1. The low-energy effective superpotential for the N = 1∗ gauge theory
with gauge algebra g is given by

Vtw(Z) =
∑
α∈∆+

gν(α)℘ν(α)(α · Z; τ) (3.41)

where the index ν(α) is defined by (3.15) and the short and long root coupling constants are
expressed in terms of a single constant g by

gν = g

ν
. (3.42)

We have dropped the index ∆, and we have switched to the τ -notation for the Weierstrass
function defined by (C.21) in the appendix on elliptic functions, which will be more practical for

8See e.g. [114] for the theory of affine Kac-Moody algebras.
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taking the limit and is closer to the gauge theory analysis. We normalize the long roots to have
length squared two. To perform the semi-classical large imaginary τ expansion, we can exploit
the result

℘(2ω1x;ω1, ω2) = − π2

12ω2
1
E2(q) + π2

4ω2
1

csc2 (πx)− 2π2

ω2
1

∞∑
n=1

nqn

1− qn cos 2πnx , (3.43)

where q = e2πiτ as usual. This expansion is valid whenever the series is convergent, which
requires |q| < 1 or equivalently that τ ∈ H, and also |=(x)| < =(τ). The space H is the upper-
half plane of complex numbers with positive imaginary part. For x ∈ H or x ∈ R \Z we can use
the further expansion:

− 4
∞∑
k=1

ke2πikx = csc2 πx , (3.44)

to find

℘(2ω1x;ω1, ω2) = − π2

12ω2
1
E2(q)− π2

ω2
1

∞∑
n=1

n

[
e2πinx +

∞∑
m=1

qnm
(
e−2πinx + e2πinx

)]
. (3.45)

For the twisted Weierstrass function ℘ν defined for ν ∈ N∗ by (C.29) we have the counterpart

℘ν(2ω1x;ω1, ω2) = − νπ2

12ω2
1
E2(q) + ν2π2

4ω2
1

csc2 (πνx)− 2ν2π2

ω2
1

∞∑
n=1

nqnν

1− qnν cos 2πnνx (3.46)

= − νπ2

12ω2
1
E2(q)− ν2π2

ω2
1

∞∑
n=1

n

[
e2πinνx +

∞∑
m=1

qnmν
(
e−2πinνx + e2πinνx

)]
.

Again, this expansion is valid for x ∈ C \ Z such that 0 ≤ =(x) < =(τ). It should be clear that
the part of the argument of the Weierstrass function proportional to τ plays a crucial role in the
Taylor series in the large τ limit. This is illustrated by the fact that for any 0 < a < 1 and any
b ∈ R,

lim
τ→i∞

℘(aτ + b; τ) = −π
2

3 . (3.47)

This can be deduced from the limit (C.27). It is therefore useful to separate the argument into
a part proportional to τ and a part that will not grow with τ , by setting

Z = X + τY , (3.48)

where X and Y are complex variables. At this stage, this decomposition is arbitrary. We have
doubled the number of degrees of freedom, and we will use this redundancy in subsection 3.4.3
to impose the value of Y . Plugging this parametrization into the (twisted) Weierstrass function
yields

℘ν(2ω1α · Z;ω1, ω2) = − νπ2

12ω2
1
E2(q)− ν2π2

ω2
1

∞∑
n=1

n

[
qnνα·Y e2inπνα·X (3.49)

+
∞∑
m=1

qnmν
(
q−nνα·Y e−2inπνα·X + qnνα·Y e2inπνα·X

)]
.

Using these expansion formulas for the potential, we arrive at a sum of exponential terms, each
associated to a positive affine root. From now on, we set 2ω1 = 1 and 2ω2 = τ to avoid cluttered
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expressions. The potential now reads

Vtw(Ẑ) = −4π2g

 |∆+|
12 E2(q) +

∞∑
n=1

n

 ∑
α̂∈∆̂+

ν(α̂)qnν(α̂)α̂·Ŷ e2πinν(α̂)α̂·X

 . (3.50)

We have used the notations X̂ = (X, 0, 0) = X, Ŷ = (Y, 1, 0) and Ẑ = X̂ + τ Ŷ so that for any
affine root α̂ = α +mδ ∈ ∆̂, we have the equalities α̂ · Ŷ = α · Y +m and α̂ · Ẑ = α · Z +mτ .
We also define ν on affine roots with non-zero real part by ν(α̂) = ν(α+mδ) = ν(α), so that

α̂∨ = 2
|α̂|2

α̂ = 2
|α|2

α̂ = ν(α̂)α̂ . (3.51)

We have arbitrarily declared ν(mδ) = 0.9 The form of the exponents in equation (3.50) suggests
switching from the affine root system to its dual

Vtw(Ẑ) = −4π2g

 |∆+|
12 E2(q) +

∞∑
n=1

n

 ∑
α̂∨∈(∆̂+)∨

1
ν(α̂∨)q

nα̂∨·Ŷ e2πinα̂∨·X


 . (3.52)

In the sum, we again disregard the terms associated to purely imaginary roots. This expression
can be written in a more compact way, to which we will give a semiclassical interpretation as a
sum over three-dimensional monopole-instanton contributions [39] in section 5.2.3:

Vtw(Ẑ) = −4π2g

 |∆+|
12 E2(q) +

∞∑
n=1

n

 ∑
α̂∨∈(∆̂+)∨

1
ν(α̂∨)e

2πinα̂∨·Ẑ


 . (3.53)

We have two forms for the final expression. One expression (namely (3.50)) is in terms of the
root system we started out with, the other (namely (3.52)) in terms of co-roots. Both forms are
equally canonical, due to the fact that both the electric Wilson line variable and the dual photon
variable are present in the potential and are interchanged under Langlands duality. This is a
manifestation of the S-duality of the parent N = 4 theory. In a given semi-classical expansion
(i.e. τ → i∞), we may more easily read expression (3.52), which has an interpretation as a sum
over magnetic monopole instantons in this limit.

3.4.3 Semi-Classical Limits

Concretely, we take semi-classical limits as follows. We consider a particular isolated extremum
whose positions Z depend only on τ (up to discrete equivalences that depend on the gauge
group). We assume that at weak coupling, the limit

Y ≡ lim
τ→i∞

1
τ
Z(τ) (3.54)

exists and we define X(τ) = Z(τ)− τY . Note that for any τ ∈ H we have Z(τ) = X(τ) + τY as
before, and the parametrization Y is a vector that is independent of τ and which characterizes
the extremum (or several extrema) under consideration. It is a non-trivial task to enumerate
the set of vectors Y that give rise to isolated extrema. We will also deal with continuous

9We note that low-energy effective superpotential is ambiguous up to a purely q-dependent term.
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branches of extrema, for which the definition (3.54) has no intrinsic meaning. In this case we
can nevertheless choose an arbitrary set of coordinates of the branch, and take the limit while
keeping these coordinates fixed. Depending on the choice of parametrization, this may lead to
a continuous set of values for the vector Y . From now on, when studying a given extremum, we
trade the variable Z(τ) for the variable X(τ) which is finite in the limit we want to perform,
and use the expansion (3.52).

Before doing so, let’s choose a basis of simple roots (α1, . . . , αr) in the root system ∆. Then
(α0, α1, . . . , αr) are the simple roots of the affine root system ∆̂. The dual root system has a set
of simple roots ((α0)∨, α∨1 , . . . , α∨r ). To be more explicit about the semi-classical limit, we must
distinguish between variables that sit on the boundary of the fundamental alcove, and those
that reside inside. We therefore choose a vector Y in the fundamental affine Weyl chamber (or
fundamental alcove), which implies that (αi)∨ · Ŷ ≥ 0 for i = 0, 1, ..., r. We decompose the
positive roots in terms of simple roots of the dual of the affine algebra, and the vector Y in the
weight space in terms of affine fundamental weights π̂i:

α̂∨ =
r∑
i=0

niα
∨
i Ŷ =

r∑
i=0

Yiπ̂i (3.55)

where the ni are non-negative integers,

π̂i = (πi; a∨i ; 0) π̂0 = (0; 1; 0) , (3.56)

and a∨i denote the co-marks of the Lie algebra. The fundamental weights satisfy the orthonor-
mality conditions (π̂i, α∨j ) = δij , so that Yi = α∨i · Ŷ ≥ 0 and

α̂∨ · Ŷ =
r∑
i=0

niYi . (3.57)

Note that the definition of Ŷ = (Y, 1, 0) gives a linear relation between the r+ 1 coordinates Yi,

1 = Y0 +
r∑
i=1

Yia
∨
i =

r∑
i=0

Yia
∨
i . (3.58)

Similarly we define Xi = α∨i · X, and have the constraint
∑r
i=0Xia

∨
i = 0. The distinction we

now make is between those variables Yi that lie on the boundary of the fundamental alcove,
and those that lie inside. This will fix the leading behavior of the extrema that we focus on.
For Yi = 0, we note that there is an infinite set of non-perturbative contributions that needs to
be taken into account in the semi-classical limit, and in particular, we need to resum them to
the trigonometric term (as in equation (3.44)). The set of roots α∨ for which this phenomenon
occurs will again form a root system. Thus, to leading order in the modular parameter q = e2πiτ ,
we will have a trigonometric integrable system corresponding to a choice of subset of simple roots
inside the affine simple root system. In a second step, by assumption, we have the remaining
coordinates Yj that do not vanish to leading order in τ . As a consequence (of formula (3.52)),
these directions Yj lead to subleading exponential terms.

More in detail, let’s group positive roots by their inner products with Ŷ and form the sets:

(∆̂+
t (Y ))∨ =

{
α̂∨ ∈ (∆̂+)∨|α̂∨ · Ŷ = 2ω1t

}
, (3.59)
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and also the spectrum S of such inner products

S(Y ) =
{
t ∈ R|(∆̂+

t (Y ))∨ 6= ∅
}
. (3.60)

The spectrum of inner products without zero will be denoted S(Y )∗ = S(Y )− {0}. The set of
roots with zero inner product is finite while the full spectrum S(Y ) is generically infinite, due
to the infinite nature of the affine root system. The superpotential

Vtw(Ẑ) = −4π2g

C(τ) +
∞∑
n=1

n

 ∑
t∈S(Y )

qnt
∑

α̂∨∈(∆̂+
t )∨

1
ν(α̂∨)e

2πinα̂∨·X


 , (3.61)

will split into two sets of terms. Note that the exponents of q are non-negative, so that the
expression remains finite when we take the limit q → 0. As mentioned previously, the first split
happens between terms with zero inner product and non-zero inner product:

Vtw(Ẑ) = −4π2g

C(τ)− 1
4

∑
α̂∨∈(∆̂+

0 (Y ))∨

1
ν(α̂∨) csc2 (πα̂∨ ·X) (3.62)

+
∑

t∈S(Y )∗

∞∑
n=1

nqnt

 ∑
α̂∨∈(∆̂+

t (Y ))∨

1
ν(α̂∨)e

2πinα̂∨·X


 . (3.63)

We obtain a sum of a trigonometric and an exponential system

Vtw(Ẑ) = −4π2g

C(τ)− 1
4V

Y
trig(X) +

∑
t∈S(Y )∗

∞∑
n=1

nqntV (n,t,Y )
exp (X)

 , (3.64)

where

V Y
trig(X) =

∑
α̂∨∈(∆̂+

0 (Y ))∨
1

ν(α̂∨) csc2 (πα̂∨ ·X) (3.65)

V (n,t,Y )
exp (X) =

∑
α̂∨∈(∆̂+

t (Y ))∨
1

ν(α̂∨)e
2πinα̂∨·X . (3.66)

The behavior of the subdominant system is intricate. A first stab at the subdominant system
consists in realizing that the remaining variables (indexed by the set J̄0 = {0, 1, . . . , r}\J0 where
J0 is the set of coordinates with zero inner product) will all have a leading exponential term.
These exponentials, combined with the constraint equation (3.58), may give rise to exponential
interactions, stabilized by an exponential interaction of opposite sign. The affine Toda potential
is an example of this type of subdominant potential. Roughly speaking, this reasoning goes
through, but the devil is in the details. The first complicating factor is the influence of the
dominant terms on the subdominant terms when searching for an equilibrium position. In
particular, corrections to equilibrium positions for leading coordinates may strongly influence
subdominant contributions. Particular equilibrium configurations for the leading trigonometric
system can also give rise to subtle and persistent cancellations in the coefficients of subdominant
exponential terms. There may also be a staircase of subdominant terms, each with its own
limiting behavior. Even a continuous set of limiting behaviors can occur. Moreover, the solutions
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to the trigonometric system are only known as zeroes of orthogonal polynomials, making this
process hard to carry through analytically in full generality.

Therefore, we develop only a partial picture of the integrable systems that result in the limit.
Still, we provide a generalization of the limit discussed in [111] in the following subsection, and
useful heuristics based on the examples in sections 7.2, 6 and 7.4.

3.4.4 The Trigonometric, Affine Toda and Intermediate Limits

Here we will treat the special case in which no cancellation of (sub)leading exponentials occurs,
and in which the subleading exponential integrable system stabilizes all the remaining coor-
dinates and leads to an isolated extremum. We can then analytically solve for the remaining
variables. Due to the constraint equation we have that the set J0 ( {0, 1, ..., r} is a true subset of
the set of simple roots (we identify a simple root αi with its index i). We obtain a trigonometric
integrable system for the root system corresponding to the simple roots in J0. This system
gives solutions for |J0| of the r + 1 variables Xi. Let t1 be the smallest non-zero element of the
spectrum S(Y ). At the next level in the q-expansion, we find contributions corresponding to
the set (∆̂+

t1(Y ))∨, which is equal to a set of positive roots.
The final Toda integrable system is a sum over |J̄0| vectors where J̄0 is the complement of the

set of affine simple roots that enter the trigonometric system, by assumption. We then obtain

V
(n=1,t1,Y )
Toda (X) = C

∑
i∈J̄0

1
ν̃(α∨i )e

2πiα∨i ·X . (3.67)

In the last equality we have indicated the fact that for each individual index i, there may
be a renormalization of the constant ν̃ in front of the exponential term, due to various roots
contributing to the same exponential behavior. The constraint equation then gives

1 =
∑
i∈J̄0

Yia
∨
i = t1

∑
i∈J̄0

a∨i (3.68)

from which we extract t1 and finally

Ŷ =

∑
i∈J̄0

ω̂i∑
i∈J̄0

a∨i
. (3.69)

After projection on the finite part, we find:

Y =

∑
i∈J̄0

ωi∑
i∈J̄0

a∨i
. (3.70)

where we define ω0 = 0. Here the dependence on t1 has disappeared. We can simply use YJ̄0
as

an ansatz, for every non-empty set J̄0 ⊂ {0, 1, ..., r}, where we have defined

YJ =

∑
i∈J

ωi∑
i∈J

a∨i
. (3.71)

On the condition that the subleading exponentials have non-vanishing coefficients, this gives the
semi-classical (linear order in τ) values for the Y coordinates of the integrable system. Namely,
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a first set sits at an extremum of the trigonometric integrable system, and a second set at the
extrema of the affine Toda system. Known applications of this ansatz are the following. A
first extreme case is J̄0 = ∅ and Y = 0. Then ∆+

0 (Y ) = ∆+ and we recover the trigonometric
potential only. The other extreme case is J̄0 = {0, 1, ..., r} and Y = ρ/h∨ (where ρ is the Weyl
vector and h∨ the dual Coxeter number of the gauge algebra). We then obtain the affine Toda
potential for the algebra (g(1))∨, as described in [111]. There are many intermediate cases that
follow the above pattern, or an even more intricate one.10 Examples are provided in sections
6, 7.2 and 7.4. It would be desirable to have a full classification of semi-classical limits. The
N = 1∗ gauge theory provides intuition in the case of the (twisted) elliptic Calogero-Moser
system with particular coupling constants – the question in the integrable system context is
even more general.

10In the gauge theory, these cases correspond respectively to a fully Higgsed vacuum, confining pure N = 1
dynamics, and partial Higgsing.



Chapter 4

Isolated Extrema of the Twisted
Elliptic Calogero-Moser System

This chapter is dedicated to an extensive study of the extrema of the complexified and twisted
elliptic Calogero-Moser potential for various low-rank Lie algebras. The many studies of classical
integrable models at equilibrium present in the literature have uncovered remarkable properties,
like the integrality of the minimum of the potential and of the frequencies of small oscillations
around the minimum for the rational and trigonometric Calogero-Moser systems, as reviewed
in section 3.2.3. We will analyze the potential of the elliptic integrable system evaluated at
generalised equilibrium positions. We show that they give rise to interesting vector valued
modular forms as well as more general non-analytic modular vectors. Modularity provides
a more conceptual way of understanding the integrality properties of the integrable system.
Indeed, this rationale then continues to hold for the integrable systems that can be obtained
from the elliptic Calogero-Moser systems by limiting procedures presented in section 3.4. Thus,
studying elliptic integrable systems, depending on a modular parameter, is found to have an
additional pay-off. We will use a combination of analytical work, principally based on modular
properties of the potential, and extensive numerics.

It is known that A-type integrable systems often have simpler properties than do the in-
tegrable systems associated with other root systems. As a relevant example, let us quote the
fact that the real trigonometric Calogero-Moser system with potential of A-type has equally
spaced equilibrium positions along the real axis, while the B,C,D-type potentials have minima
associated to zeroes of Jacobi polynomials [108], which satisfy known relations [115], but are not
known explicitly in general. The elliptic Calogero-Moser systems that we examine show a sim-
ilar dichotomy. Extrema of the (complex) elliptic A-model are equally spaced. This fact leads
to relatively easily constructable values for the potential at extrema, for any rank [77, 38, 84].
For the B,C,D-type models that we study in this chapter, much less is known, and we need to
combine numerical searches with analytic approaches to determine the extremal values of the
potential, for low rank cases.

To be more precise, we will be interested in extrema of the complexified potential, satisfying

∂ZiV (Zj) = 0 ∀i . (4.1)

This will correspond, in section 5, to a supersymmetric vacuum in the N = 1∗ gauge theory,
where the effective superpotential W is identified with the potential V of the integrable system.
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We moreover demand that at the extremum (4.1) the function

r∑
i=1

∣∣∣∣∣∂V (Zj)
∂Zi

∣∣∣∣∣
2

(4.2)

not possess any flat directions. We say that such an extremum is isolated. In the gauge theory
language, this condition implies that the vacuum is massive.

Recall that the group of symmetries acting on the variables Z were a lattice group of trans-
lations, the Weyl group as well as the outer automorphisms of the Lie algebra. Using these
symmetries, we will introduce a notion of equivalence on the variables Z. We will consider the
vector Z to be identified by the periodicities of the model. The periodicity in the ω1 direction
is given by the weight lattice P , while in the ω2 direction it is the co-weight lattice P∨. Fur-
thermore, we will consider extrema that are related by the action of the Weyl group of the Lie
algebra to be equivalent. By contrast, outer automorphisms are taken to be global symmetries
of the problem. When the global symmetry group is broken by a given extremum, the global
symmetries will generate a set of degenerate extrema.

4.1 The Case AN−1 = su(N)

The extrema of the elliptic Calogero-Moser model of type Ar have been studied in great detail,
mostly in the context of supersymmetric gauge theory dynamics (see e.g. [77, 38, 84]). Firstly, we
remark that in this case, the equivalence relations that follow from the periodicity of the potential
as well as the Weyl symmetry group of the Lie algebra are straightforwardly implemented. We
use the parametrization of simple roots given in (B.12). We parametrize the coordinates of our
integrable system via equation (3.12). As we have already seen, the Calogero-Moser potential
then reads

VAN−1(Z;ω1, ω2) = g2
∑

1≤i<j≤N
℘ (Zi − Zj ;ω1, ω2) . (4.3)

The Weyl group SN acts by permuting the components Zi. We can shift one of the components
Zi to zero by convention. The equivalence under shifts by fundamental weights is identical to the
toroidal periodicity relations for the individual coordinates Zi. The inequivalent extrema of the
potential (satisfying the additional condition (4.2) of non-flatness) are then argued to correspond
one-to-one to sublattices of order N of the torus with modular parameter τ [77, 38, 116].

These extrema are classified by pairs of integers (p, k) satisfying that p is a divisor of N and
k ∈ {0, 1, . . . , p− 1}. For a given pair (p, k), the associated extremum is given explicitly by

{Zi|i = 1 . . . , N} =
{ 2ω1

(N/p)

(
r + s

k

p

)
+ 2ω2

p
s

∣∣∣∣r = 0, . . . ,
(
N

p
− 1

)
and s = 0, . . . , p− 1

}
.

(4.4)
The number of extrema is therefore equal to the sum of the divisors of N . The Z2 outer
automorphism of su(N) for N ≥ 3 acts trivially on the minima, since it acts by permutation,
combined with a sign flip for all Zi, which leaves a sublattice ankered at the origin invariant.
The value of the potential at one of these extrema is

VAN−1(τ) = −g2N
2π

2

6

(
E2(τ)− N

p2E2

(
N

p2 τ + k

p

))
. (4.5)
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Under the SL(2,Z) action on the torus modular parameter τ , the sublattices of order N of the
torus are permuted into each other (in a way that depends intricately on the integer N). The
permutation of the sublattices also entails the permutation of the values (4.5) at these extrema
under SL(2,Z). For instance, if we take N = 4, there are 1 + 2 + 4 = 7 extrema, and the duality
diagram is represented in figure 4.1. The list of extremal values of the elliptic Calogero-Moser
model therefore form a vector valued modular form (see e.g. [117, 118, 119]) of weight two under
the group SL(2,Z). The associated representation of the modular group is a representation in
terms of permutations specified by the SL(2,Z) action on sublattices of order N . One can
identify a subgroup of the modular group under which a given component of the vector-valued
modular form is invariant, and then use minimal data to fix it [89].

1,0 2,02,14,0

4,1

4,3

4,2

Figure 4.1: The diagram of the action of dualities on the A3 = su(4) extrema. Each extremum
is labeled by a pair of integers (p, k) as defined in the text. In red we exhibit the action of
S-duality, in green, T -duality.

In summary, the extrema of the Calogero-Moser model of type AN−1 = su(N) are under
analytic control. The positioning of the extrema can be expressed linearly in terms of the
periods of the model, and the vector valued modular form of extremal values for the potential
has an automorphy factor that can be characterised by sublattice permutation properties. The
extremal values are generalised Eisenstein series of weight two under congruence subgroups of
the modular group.

4.2 The B,C,D Models

For other algebras, we are at the moment only able to study low rank cases. From the analysis,
it is clear that crucial simplifying properties of the Ar case are absent. Nevertheless, generic
features of the Ar case persist in a subclass of extrema, in that we find vector-valued modular
forms as extremal values for the potential. We also find a class of extremal values that exhibit
new features.

To describe in detail which extrema are considered to be equivalent, we must discuss the
equivalence relations that we mod out by for the B,C and D root systems individually.

Dr = so(2r)

For the Dr case, we can parameterise the roots as αi = ei − ei+1 (for i ∈ {1, 2, . . . , r − 1})
and αr = er−1 + er. We put X = Xje

j and imply that the relation ei(ej) = δi
j holds. The

equivalence of the vector X under shifts proportional to the weight lattice implies that each
variable Xj lives on a torus with modular parameter τ . It moreover identifies the vector X
with the vector X shifted by a half-period in each variable simultaneously. The Weyl group is
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W (so(2r)) = Sr n Zr−1
2 , and acts by permutation of the components Xj , as well as the sign

change of an even number of them. The outer automorphism group (for r 6= 4) is equal to Z2
and acts as Xr → −Xr. For r = 4, the global symmetry group is S3 triality.

Br = so(2r + 1)

For Br, the roots are αi = ei − ei+1 (for i ∈ {1, 2, . . . , r − 1}) and αr = er. We recall that
the periodicity is the weight lattice in the ω1 direction (due to the twist), and the co-weight
lattice in the ω2 direction. Thus, we can shift components of the vector X = Xje

j by periods,
or all components simultaneously by a half period in the ω1 direction. In the ω2 direction, we
allow shifts of the individual components by periods. The Weyl group acts by combinations of
permutations and any sign flip of the coordinates.

Cr = sp(2r)

The roots are αi = (ei − ei+1)/
√

2 (for i ∈ {1, 2, . . . , r − 1}) and αr =
√

2er.1 We can shift
components Xj of X =

√
2Xje

j by half-periods in the ω1 direction, while in the ω2 direction, we
can allow shifts by any period, as well as a half-period shift of all Xj simultaneously. The Weyl
group allows any permutation and sign flip of the coordinates. The equivalence relations and
symmetries in the B,C and D cases, beyond permutation symmetries and toroidal periodicity,
are summarized in the table 4.1.

Br Individual Xi → −Xi

Collective Xi → Xi + ω1
Cr Individual Xi → −Xi and Xi → Xi + ω1

Collective Xi → Xi + ω2
Dr Even number of sign flips Xi → −Xi

Collective Xi → Xi + ω1 and Xi → Xi + ω2
Global symmetries : Z2 generically and S3 for D4.

Table 4.1: Symmetries of the potentials based on various root systems.

Armed with this detailed knowledge about the equivalence of configurations, we programmed
a numerical search for isolated extrema. In the following subsections, we list the results we found
by root system. For simply laced root systems we studied the elliptic Caloger-Moser model, while
results for non-simply laced root systems correspond to the twisted elliptic Calogero-Moser model
with a coefficient for the short root term which is equal to one half the coefficient in front of the
long root terms (as described below equation (3.31)).

4.3 The Case C2 = sp(4) = so(5) and Vector Valued Modular
Forms

Since the root system C2 is the first example of our series, we provide a detailed discussion. We
discuss the positions of the isolated extrema, the series expansions relevant to the potential at

1By our conventions, we normalise the long roots such that they have length squared two.
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Figure 4.2: Extrema for the superpotential at coupling τ = i for the Lie algebra so(5) are drawn
in dark. Configurations obtained by translation by ω1 are drawn in light gray.

these extrema, the action of the duality group, as well as the identification of the relevant vector
valued modular forms.

4.3.1 The Positions of the Extrema

For the Lie algebra so(5) = sp(4) we found 7 isolated extrema of the potential. We provide their
positioning at τ = i in figure 4.2. We have drawn in bold the positions of the extrema as well
as their opposites, in a fundamental cell of the torus.2

These numerical results were found using a Mathematica program, which was written around
the built-in function FindMinimum. Careful programming augments the precision of the algo-
rithm to at least two hundred digits. The most costly part of the algorithm is the random search
for extrema. Indeed, the intricate landscape drawn by the potential can hide extrema. We gave

2We have indicated reflections over other half-periods in grey, to illustrate that the minima are close to forming
sublattice structures.
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a drawing of the position of the numbered extrema on the torus with modular parameter τ = i.
The positions of the extrema for other values of the modular parameter can be reached by inter-
polation. We have analytic control over a few extra properties of the extrema. E.g. if we follow
extremum 1 to τ = i∞, we find that the equilibrium positions are given by 1

2π arccos(±1/
√

3)
where ±1/

√
3 are the zeroes of the Jacobi polynomial P (0,0)

2 . The first extremum, which we
label 1, lies on the real axis and is the equilibrium position of the real integrable system. The
extremum 2 lies on the imaginary axis, while extrema 3 and 4 are then approximately obtained
by applying the transformation τ → τ + 1. The extrema 5 and 6 are S2 Langlands duals of
extrema 3 and 4. It is easy to deduce from the potential that the positions of the extrema
generically behave non-linearly as a function of τ .

4.3.2 Series Expansions of the Extrema

By numerically evaluating the extrema of the potential for a range of values of the modular
parameter τ , we are able to write the extrema as an expansion in terms of a power of the
modular parameter q = e2πiτ . The extremal values can be written in terms of the series:

A0(q) = 1
24 + q + q2 + 4q3 + q4 + 6q5 + 4q6 + 8q7 + q8 + 13q9 + 6q10 + 12q11

+4q12 + 14q13 + 8q14 + . . . (4.6)
A1(q) = 1 + 48q + 828q2 + 8064q3 + 109890q4 + 1451520q5 + 11198088q6 + 141212160q7

+1666682811q8 + 9413050176q9 + 145022264892q10 + 1838450006784q11

+11103941590326q12 + 138638111404032q13 + . . .

A2(q) = 2 + 48q + 576q2 + 9792q3 + 99576q4 + 743904q5 + 13146624q6 + 115737984q7

+1015727364q8 + 14338442448q9 + 102050482176q10 + 935515738944q11

+12532363069968q12 + 122390111091744q13 + . . .

A3(q) = 13
216 + 7q + 541q2 + 24508q3 + 939669q4 + 19944842q5 + 764752180q6

+21016537080q7 + 905672825157q8 + 38827071780859q9 + 827503353279726q10 + . . .

A4(q) = 1 + 148q + 7446q2 + 154344q3 + 5100349q4 + 352720380q5 + 10627587582q6

+166124184888q7 + 5419843397586q8 + 294399334337124q9 + . . .

A5(q) = − 1
216 + 29q + 431q2 + 80468q3 − 231081q4 + 94846414q5 + 1301490428q6

+90560563752q7 − 529100109849q8 + 93349951292249q9 + . . . . (4.7)

The integer coefficients have been determined up to an accuracy of at least 10−6. For the
first order terms, the accuracy can be up to 10−200. In terms of these series, the potential in
extremum number 1, on the real axis is

V1 = 144π2A3

(
q

27

)
. (4.8)

The potential in the other extrema are:

V2 = −12π2
(8

3A0(q) + (2q)1/3A1(q/9) + (2q)2/3A2(q/9)
)

V3 = −12π2
(8

3A0(q) + (2q)1/3e2πi/3A1(q/9) + (2q)2/3e4πi/3A2(q/9)
)
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V4 = −12π2
(8

3A0(q) + (2q)1/3e4πi/3A1(q/9) + (2q)2/3e2πi/3A2(q/9)
)
, (4.9)

and

V5,6 = 72π2
(
A5

(
q

27

)
± i
√
q

27A4

(
− q

27

))
V7 = 48

3 π
2A0(q) . (4.10)

The growth properties of these series, as well as the fact that we are dealing with a physical
system living on a torus suggests turning these numerical data into an analytic understanding,
based on the theory of modular forms. In the following, we show that this is possible for the
rank 2 root system B2.

4.3.3 Modular Forms of the Hecke Group and the Γ0(4) Subgroup

We need to introduce a few groups related to the modular group. Let τ̃ be a variable in the
upper half-plane H, and let λ ≥ 0. We define the group G(λ) of transformations of H as the
group generated by

Tλ : τ̃ → τ̃ + λ (4.11)

S : τ̃ → −1
τ̃
. (4.12)

The abstract Hecke group G(λ) is of course independent of the different ways it can act on
H, but its matrix representations are not. Let us illustrate this by changing our variable τ̃ to
τ = κτ̃ . Then Tλ and S act on τ as follows:

Tλ : τ → τ + κλ (4.13)

S : τ → −κ
2

τ
. (4.14)

If 0 ≤ λ < 2 the Hecke group G(λ) is also denoted Hq with λ = 2 cos πq . If q ∈ N then the Hecke
group Hq is isomorphic to the free product of the cyclic groups Z2 and Zq. For more information
on Hecke groups and associated modular forms see e.g. the lectures [120].

Let us consider the group G(
√

2) = H4 with λ = 1
κ =
√

2. Then

T√2 = T : τ → τ + 1 (4.15)

S = S2 : τ → − 1
2τ . (4.16)

We already noted the duality transform for the B,C-type twisted Calogero-Moser system
under the map S2, see equation (3.31). For the so(5) Lie algebra, which is identical to the sp(4)
Lie algebra, this transformation maps the integrable system to itself (up to a τ dependent shift
of the potential and an overall factor – see equation (3.35)). The map T also maps the integrable
system to itself. Together, these transformations generate the action of G(

√
2) on the modular

parameter τ . Let us define the element U ∈ G(
√

2) by

U = S2T
−2S2 : τ → τ

4τ + 1 . (4.17)
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Figure 4.3: The diagram of dualities on the extrema of the integrable system for so(5). In red,
we draw the action of Langlands S2-duality, and in green, T -duality, when the action on a given
extremum is non-trivial.

The subgroup of G(
√

2) generated by T and U is isomorphic to the congruence subgroup Γ0(4)
of the modular group SL(2,Z) via the identifications

T :
(

1 1
0 1

)

U :
(

1 0
4 1

)
. (4.18)

The group Γ0(N) is defined in (C.1).
The extremal values of the potential may therefore form a vector valued modular form with

respect to the Hecke group G(
√

2), and as a consequence also with respect to the congruence
subgroup Γ0(4), since we expect extrema to be at most permuted and/or rescaled under the
group. Here, we assume analyticity in the interior of the fundamental domain. We will mostly
exploit the group Γ0(4) in the following, since the literature on the subject of modular forms
with respect to congruence subgroups is abundant. For starters, we determine the action of the
operations T and S2 on the vector Vi of extremal values of the twisted Calogero-Moser potential:

T :



1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 0 0 0 1


,

S2 :



0 1 0 0 0 0 −2
1 0 0 0 0 0 −2
0 0 0 0 1 0 −2
0 0 0 0 0 1 −2
0 0 1 0 0 0 −2
0 0 0 1 0 0 −2
0 0 0 0 0 0 −1


. (4.19)

See figure 4.3 for a summary of the action of the duality group. To this information, we add
the last column in the matrix S2, which originates in the shift of the potential under Langlands
duality. From these data, we easily calculate the action of the generator U = S2T

−2S2 on the
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vector valued modular form:

U :



0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 1 0
1 0 0 0 0 0 0
0 0 0 0 0 0 1


. (4.20)

We thus find the action of Γ0(4) on the vector valued modular form, and we observe the following
pattern: there is one entry (the seventh) which is an ordinary modular form of weight 2 under
Γ0(4), and there are two sets of three components (namely {2, 3, 4} and {1, 5, 6}) that mix
under Γ0(4). Thus, our vector valued modular form of dimension seven splits into a singlet and
a sextuplet. Concentrating on the ordinary modular form of weight 2, we have that it is a linear
combination of Eisenstein series E2,N defined by:

E2,N (τ) = E2(τ)−NE2(Nτ) . (4.21)

Indeed, the dimension of the spaceM2(Γ0(4)) of modular forms of Γ0(4) is two, and it is spanned
by E2,2 and E2,4. We thus only need two Fourier coefficients to fix the entire modular form, and
we find that:

A0(q) = − 1
24E2,2(τ) = 1

48(θ4
3 + θ4

4)(τ) (4.22)

V7 = π2

3 (θ4
3 + θ4

4)(τ) . (4.23)

We then have a slew of consistency checks on all the other integers that we determined numeri-
cally (see (4.6)). These thirteen checks work out. We do therefore claim that the result (4.23)
is exact. This is a simple example illustrating our methodology.

Next, we consider the triplet consisting of the components {2, 3, 4}. We find three eigen-
vectors of T , with eigenvalues corresponding to the cubic roots of unity. The eigenvector with
eigenvalue 1 is also mapped to itself under the U transformation, and forms again a modular
form of weight 2 under Γ0(4). It is indeed proportional to E2,2:

V2 + V3 + V4 = −2π2(θ4
3 + θ4

4)(τ) . (4.24)

The other two eigenvectors, we raise to the power three, such that they become invariant
under the T -transformation. These forms belong to the spaceM6(Γ0(4)) of weight six modular
forms. The dimension of this vector space is 4 (see theorem 3.5.1 in [121] with g = ε2 = ε3 = 0
and ε∞ = 3), and it consists of three Eisenstein series, and one cusp form. A basis for these
vector spaces is given by:

E1
6 = − 1

252E6(τ) (4.25)

E2
6 = − 1

252E6(2τ) (4.26)

E4
6 = − 1

252E6(4τ) (4.27)
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S6 = η(q2)12 , (4.28)

where E6 is the Eisenstein series of weight six, and η is the η-function, also recorded in appendix
C. We need four coefficients to fix the eigenvectors in terms of this basis and we find (using the
notation ω3 = exp(2πi/3)) :

(V2 + ω3V3 + ω2
3V4)3 = −23328π6(E1

6 − E2
6 − 2S6) (4.29)

(V2 + ω2
3V3 + ω3V4)3 = −23328π6(E1

6 − E2
6 + 2S6) . (4.30)

The consistency checks using the numerics work out.
For the second triplet, we diagonalise U first, and proceed very analogously as above, except

that we have to take a higher power for the second combination to find a modular form of weight
12 with respect to Γ0(4). We find the relations:

V1 + V5 + V6 = 4π2
(
θ4

3 + θ4
4

)
(V1 + ω3V5 + ω2

3V6)3 + (V1 + ω2
3V5 + ω3V6)3 = 5832π6(E1

6(q)− 64E2
6)

((V1 + ω3V5 + ω2
3V6)3 − (V1 + ω2

3V5 + ω3V6)3)2 = 136048896π12η(q)24 . (4.31)

Note that the sum of all potentials is necessarily a modular form with weight 2 of Γ0(4). Indeed,
this sum is equal to 112π2A0(q) (as follows from the identity A5(q/27) +A3(q/27) = 4

3A0(q)).

4.3.4 A Remark on a Manifold of Extrema

There are also branches of extrema, namely, non-isolated extrema. These too are expected to
behave well under a modular subgroup. Although this was not the focus of our investigation,
we did find numerical evidence for a manifold of extrema at which the potential takes the Γ0(4)
covariant value −2π2

3 E2,2. We will come back to this observation in section 7.2 and provide an
analytical proof of these statements in section 7.5.

Summary

In summary, we have full analytic control over the value of the potential for all isolated extrema
of the so(5) twisted Calogero-Moser integrable system. We have found a vector valued modular
form of weight two of Γ0(4), and we were able to explicitly express its seven components in terms
of ordinary modular forms of Γ0(4). The vector valued septuplet splits into a singlet modular
form and a sextuplet vector valued modular form. The plot will thicken at higher rank.

4.4 The Case D4 = so(8) and the Point of Monodromy

At this stage, we choose to present our results on the rank four D4 = so(8) model first, since they
are simpler than those on the non-trivial rank three cases to be presented in subsection 4.5. The
so(8) model is simply laced and we therefore expect the ordinary modular group SL(2,Z) to play
the leading role. The integrable system exhibits a global symmetry group S3 that permutes the
three satellite simple roots of the Dynkin diagram of so(8). We will refer to the S3 permutation
group as triality. We turn to the enumeration and classification of the extrema of the potential.
We found 34 extrema. These are listed and labelled in section 4.4.5. If we mod out by the global
symmetry group, we are left with 20 extrema. The latter fall into multiplets of the duality group
of size 1, 3, 4 and 12. We discuss these multiplets in the following paragraphs.
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4.4.1 The Singlet

There is a singlet under S and T duality as well as triality. It has zero potential: V1 = 0.

4.4.2 The Triplet

There is also a triplet under the duality group, labelled {2, 3, 4}, and the dualities act as:

T =

1 0 0
0 0 1
0 1 0

 S =

0 1 0
1 0 0
0 0 1

 .

The relations S2 = 1 and (ST )3 = 1 are satisfied. We note that in these extrema, the positions
belong to the lattice generated by ω1/2 and ω2/2. For this multiplet,T-duality acts geometrically.

We would like to deduce again from the S and T matrices and from the known first coeffi-
cients of the series expansions (see section 4.4.5) the exact expressions of the potentials in these
extrema. The functions are expected to transform well under some congruence subgroup of the
modular group. Note that the sum of the three functions must be a full-fledged modular form –
indeed, the sum V2(q) + V3(q) + V4(q) vanishes. A brute force strategy leading to the identifica-
tion of the appropriate congruence subgroup is the following. We decompose the generators of
congruence subgroups 3 in terms of a product of S and T operations. We evaluate the product
using the representation at hand (here 3× 3 matrices) and check whether it is trivial for every
generator.

It turns out that the subgroup Γ(2) acts trivially on the extremal potentials. Hence all the
potentials V2, V3 and V4 belong to M2(Γ(2)). This space has dimension 2, and it is the set of
linear combinations of the three Eisenstein functions associated to the three vectors of order 2
in (Z2)2 which have the property that the sum of the three coefficients vanishes. (See appendix
C for details and conventions). Matching a few coefficients, we find that

V2 = 12
(

2G2,2

[
0
1

]
−G2,2

[
1
1

]
−G2,2

[
1
0

])

V3 = 12
(
−G2,2

[
0
1

]
−G2,2

[
1
1

]
+ 2G2,2

[
1
0

])

V4 = 12
(
−G2,2

[
0
1

]
+ 2G2,2

[
1
1

]
−G2,2

[
1
0

])
.

This can also be written in terms of the Weierstrass ℘ function :

V2(τ) = 3
(

2℘
(1

2; τ
)
− ℘

(
τ + 1

2 ; τ
)
− ℘

(
τ

2 ; τ
))

V3(τ) = 3
(
−℘

(1
2; τ

)
− ℘

(
τ + 1

2 ; τ
)

+ 2℘
(
τ

2 ; τ
))

V4(τ) = 3
(
−℘

(1
2; τ

)
+ 2℘

(
τ + 1

2 ; τ
)
− ℘

(
τ

2 ; τ
))

.

These two ways of writing the potentials make the action of dualities manifest. For instance,
the transformation properties (C.23) show that under S-duality, ℘(1

2 , τ) becomes ℘(1
2 ,
−1
τ ) =

3There exist algorithms to find the generators. These are for instance implemented in Sage.
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τ2℘( τ2 , τ) while ℘( τ+1
2 , τ) becomes τ2℘( τ+1

2 , τ), so that V2 and V3 are S-dual, et cetera. The
result can also be written using perhaps more familiar modular forms

V2(q) = −6π2E2,2(q)

V3(q) = 3
2π

2
(
2E2,2(q)− 3θ4

2(q)
)

V4(q) = 3
2π

2
(
2E2,2(q) + 3θ4

2(q)
)
.

The action of T -duality is again clear from these expressions. For S-duality it is slightly more
intricate. Given that E2,2(q) = −θ4

2(q2)− θ4
3(q2), it relies on the identities

2θ4
3(2τ) + 2θ4

2(2τ) + 3θ4
2(τ) = −θ4

2(τ/2) + 2θ4
3(τ/2)

θ4
3(τ/2) + θ4

4(τ/2)− 6θ4
4(τ) = −4θ4

3(2τ)− 4θ4
2(2τ) + 6θ4

2(τ) ,

for S-duality between extrema 2 and 3, and self-S-duality for extremum 4, respectively.

4.4.3 The Quadruplet

We move on to discuss the extremal values of the potential in the quadruplet. We can arrive at
the following closed form for the potential in extremum 6:

V6(q) = −24π2(− 1
24E2,3(q) + (η(q)3 + 9η(q9)3)η(q3)2/η(q) + 3(η(q3)3/η(q))2) .

Note that this can alternatively be written as

V6(q) = −24π2(g0(q) + q1/3g1(q) + 3q2/3g2(q)) ,

where the gi are functions that can be expanded into series with only integer powers of q (and
the three summands in this expression correspond to the same summands in the expression
above). Thus we know how the operation τ → τ + 1 acts on the extremum, and it generates two
other extrema, whose potential we also know exactly. These are extrema 7 and 8:

V7(q) = −24π2(g0(q) + e2iπ/3q1/3g1(q) + 3e−2iπ/3q2/3g2(q))
V8(q) = −24π2(g0(q) + e−2iπ/3q1/3g1(q) + 3e2iπ/3q2/3g2(q)) .

The potential for the extremum 5 is:

V5(q) = −3π2E2,3(q) .

In the basis {5, 6, 7, 8} the matrices for S- and T -dualities are :

T =


1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

 S =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 .

We can also apply the same method as above. The generators of Γ(3) are all trivial in this basis.
Thus the potentials are weight 2 modular forms of this congruence subgroup. The latter form
a 3-dimensional space, generated by the zero-sum linear combinations of the 4 Eisenstein series
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associated to the order 3 vectors in (Z3)2 (there are 8 such vectors, but the Eisenstein series are
invariant under v → −v, leaving only 4 distinct functions, see appendix). We find

V5 = 27
2

(
3G2,3

[
0
1

]
−G2,3

[
1
0

]
−G2,3

[
1
1

]
−G2,3

[
1
2

])

V6 = 27
2

(
−G2,3

[
0
1

]
+ 3G2,3

[
1
0

]
−G2,3

[
1
1

]
−G2,3

[
1
2

])

V7 = 27
2

(
−G2,3

[
0
1

]
−G2,3

[
1
0

]
+ 3G2,3

[
1
1

]
−G2,3

[
1
2

])

V8 = 27
2

(
−G2,3

[
0
1

]
−G2,3

[
1
0

]
−G2,3

[
1
1

]
+ 3G2,3

[
1
2

])
,

or alternatively,

V5(τ) = 3
2

(
3℘
(1

3; τ
)
− ℘

(
τ

3 ; τ
)
− ℘

(
τ + 1

3 ; τ
)
− ℘

(
τ + 2

3 ; τ
))

V6(τ) = 3
2

(
−℘

(1
3; τ

)
+ 3℘

(
τ

3 ; τ
)
− ℘

(
τ + 1

3 ; τ
)
− ℘

(
τ + 2

3 ; τ
))

V7(τ) = 3
2

(
−℘

(1
3; τ

)
− ℘

(
τ

3 ; τ
)

+ 3℘
(
τ + 1

3 ; τ
)
− ℘

(
τ + 2

3 ; τ
))

V8(τ) = 3
2

(
−℘

(1
3; τ

)
− ℘

(
τ

3 ; τ
)
− ℘

(
τ + 1

3 ; τ
)

+ 3℘
(
τ + 2

3 ; τ
))

.

The dualities act on the vectors characterising the modular forms as follows

T :
[
0
1

]
→
[
0
1

]
[
1
0

]
→
[
1
1

]
→
[
1
2

]
→
[
1
0

]
,

S :
[
0
1

]
↔
[
1
0

]
[
1
1

]
↔
[
1
2

]
.

This reproduces the action of the dualities on the associated extrema. Thus, while the pattern
of the positions of the extrema is non-linear, the arguments of the values of the potential at
certain extrema do provide a linear realisation of the duality group.

Finally, we note that triality generates three copies of the triplet as well as of the quadruplet.
Indeed, each of these extrema is left invariant by a Z2 subgroup of S3 (as described in section
4.4.5).

Up to now, we have discussed the singlet, triplet and quadruplet whose duality diagrams are
summarised in figure 4.5.

4.4.4 The Duodecuplet and a Point of Monodromy

In the multiplet of size twelve, also depicted in figure 4.5, a new feature appears. We find that
the extrema exhibit a monodromy around a point in the interior of the fundamental domain of
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the parameter τ . Thus, to be able to describe the multiplet structure in this case we must first
discuss the monodromy.

The point of monodromy

We find a single point in the interior of the fundamental domain around which there is mon-
odromy amongst extrema. It is possible to determine this point numerically4 and its value is
close to τM ∼ 2.41558i. In particular, the extrema 13 and 16 are exchanged when we follow
a loop in the τ -plane that closely circles the value τM . Moreover, using the geometry of the
positions of the extrema 13 and 16, one can show that τM is a solution of the system of equations{

℘(z; τ)2 + ℘(z − ω3; τ)2 + ℘(2z − ω3; τ)2 = π4

3 E4(τ)
2℘′(z; τ) + 2℘′(z − ω3; τ) + ℘′(2z − ω3; τ) = 0 ,

(4.32)

where ω3 = ω1 + ω2, which gives the numerical result

τM = 2.415576987549484510777262081474158860468152563579077460...i .

Using the large accuracy of the value of the point of monodromy τM , we find the corresponding
rational Klein invariant (with the normalisation (C.35)):

j(τM ) = 488095744
125 = 1728× 7626496

3375 .

This can be considered as an exact statement – the uncertainty is as low as 10−200. Elliptic
curves with rational Klein invariant have interesting arithmetic properties (see e.g. [121]).

The extended duality group

We can add the monodromy group to the set of generators S and T that act on our vector of
extrema. The resulting diagram of dualities then becomes the one in figure 4.5. The generators
satisfy the relations:

• S2 = M2 = 1 and T 6 = 1, while (TM)8 = 1

• SM = MS

• (MST )3 = 1.

Once we are underneath the point of monodromy in the canonical fundamental domain, the
matrix MT plays the role usually taken by the matrix T in SL(2,Z). In particular, relations
like (ST )3 = 1 implied by the geometry of the fundamental domain of the modular group take
on the form (SMT )3 = 1, et cetera. Triality leaves each extremum invariant.

4The most immediate manifestation of the monodromy phenomenon can be seen as a symmetry breaking in the
equilibrium positions for extrema 13 and 16 when moving on the imaginary axis across the point of monodromy
τM (which is purely imaginary). Below this critical value, as can be seen in the diagrams drawn at τ = i (in
section 4.4.5), the two extrema are exchanged by the Z2 action Xi ↔ −X̄i, while above the critical value, they
are both invariant with respect to this action. This makes it possible to determine 2.41557 ≤ ImτM ≤ 2.41558.
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Figure 4.4: We illustrate the monodromy that exchanged extrema 13 and 16 in the case of
algebra so(8). The point of monodromy is figured by a star, and the circular arrow defines a
path in the τ -plane. We start with extremum 16, and after a full circle, the configuration is that
of extremum 13.
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Figure 4.5: The diagram of the action of dualities on the D4 = so(8) extrema. In red we exhibit
the action of S-duality, in green, T -duality, and in dotted blue, the monodromy.

4.4.5 The List of Extrema for so(8)

In this section, we give terms in the Fourier expansion of the extremal values of the potential in
the duodecuplet. We note that a consistency and exhaustivity check on all multiplets is provided
by the fact that the sum of all extrema in a given multiplet of SL(2,Z) has to be a weight 2
modular form. The check works out: the sum equals zero in each multiplet separately, as it
must. An analytic understanding of the duodecuplet extrema remains desirable.

The strategy we used to find extrema boils down to finding all the minima (which are also
zeros) of the (auxiliary, gauge theory) potential (4.2) with non vanishing mass (5.22) using a
simple gradient algorithm with random initial conditions. Then we identify those configurations
that are related by one of the symmetries we quotient by. This procedure is executed at a given
value of τ . Once the complete list of extrema is known, we can follow a given extremum along
any curve in the upper half plane, by adiabatically varying τ . The T -dual extrema and the
monodromies are obtained in this way, while the action of S-duality is known exactly. We thus
unfold the whole web of dualities.

In order to determine the potential at the extrema, we first make use of our knowledge of
T -duality, which dictates the Fourier expansion variable q1/n, where n is the smallest positive
integer such that Tn acts trivially on the extremum under consideration. Then we evaluate
the extremal potential at many different values of τ and find recursively the rational Fourier
coefficients.
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The diagrams of the extrema

In the diagrams that follow, the black dots represent the values of the components Xi, i =
1, 2, 3, 4 at the extrema. The dark grey dots are images under the symmetries discussed in
section 4.2.

In some of the diagrams, there are five black dots instead of four, reflecting the fact that
they represent three extrema related by the global S3 symmetry. For every such extremum, one
subgroup Z2 ⊂ S3 acts trivially. One of the three extrema is obtained by choosing one of the
circled black dots and the three ordinary black dots, a second one is obtained by choosing the
other circled black dot and the three black dots, while the third is determined by the four small
black dots. (The pale grey dots show the possible translations of this extremum by half-periods.)

We note in passing that some exact information on the positioning of the extrema is avail-
able. For instance, for extremum number 9, some exact information on the positions is the
following. At τ → i∞, the system reduces to the Sutherland system (with trigonometric po-
tential). According to [108], the positions at equilibrium are related to the roots of a Jacobi
polynomial. Explicitly in the case of D4, the polynomial is P (1,1)

2 (y) = 15
4 (y−1)2 + 15

2 (y−1)+3,
from which we deduce the positions X1 = 0, X2,3 = 1

2π arccos(±1/
√

5) and X4 = 1
2 . For τ → 0,

the positions converge on X1 = 0, X2 = 1/6, X2 = 1/3 and X4 = 1
2 . This numerical convergence

is slow.
S-duality guarantees that the situation is similar for the extremum on the imaginary axis,

with the two limits exchanged. Moreover, T-duality then acts in the τ → i∞ limit as X0 → X0,
X1 → X1 + 1/6, X2 → X2 + 1/3, X3 → X3 + 1/2. (These transformations are exact within the
precision of the numerics.) This generates the 6-cycle. Et cetera.
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Extrema at τ = i for so(8)

0.5 1.

0.5

1.

Extremum 1

0.5 1.

0.5

1.

Extremum 2

0.5 1.

0.5

1.

Extremum 3

0.5 1.

0.5

1.

Extremum 4

0.5 1.

0.5

1.

Extremum 5

0.5 1.

0.5

1.

Extremum 6

0.5 1.

0.5

1.

Extremum 7

0.5 1.

0.5

1.

Extremum 8
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Extrema at τ = i

0.5 1.

0.5

1.

Extremum 9

0.5 1.

0.5

1.

Extremum 10

0.5 1.

0.5

1.

Extremum 11

0.5 1.

0.5

1.

Extremum 12

0.5 1.

0.5

1.

Extremum 13

0.5 1.

0.5

1.

Extremum 14

0.5 1.

0.5

1.

Extremum 15

0.5 1.

0.5

1.

Extremum 16

0.5 1.

0.5

1.

Extremum 17

0.5 1.

0.5

1.

Extremum 18

0.5 1.

0.5

1.

Extremum 19

0.5 1.

0.5

1.

Extremum 20

The series for the so(8) extremal potentials

We have been able to determine the q-expansions of the potentials in each extremum with great
accuracy, in terms of functions with integer coefficients. For extrema 1 to 8, we gave the exact
expression in section 4.4. To list the series for the remaining extrema, we introduce 11 functions,
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for which we only reproduce the first few coefficients – more can be obtained – :

f1(q) = 1
1800 − 467q + 45379q2 − 23993958092q3 − 44044347374301q4

−711960536580667762q5 + ...

f2(q) = 1− 15172q + 51582918q2 − 397077052296q3 + 5101142359347277q4

+94300056917523369780q5 + ...

f3(q) = 1
600 + q + 369q2 + 68644q3 + 11490041q4 + 1579638246q5 + ...

f4(q) = 1 + 3096q + 1818378264q2 + 2446348866170976q3

+4535490919062930456600q4 + ...

f5(q) = 1− 142284q − 2825331513294q2 − 110241726267588876840q3 + ...

f6(q) = 2 + 780960q + 18367562372664q2 + 762875530342634406144q3 + ...

f7(q) = 1− 4478868q − 121113750523626q2 − 5314750232983801186536q3

f8(q) = 1
3(14 + 79929712q + 2425403175787968q2

+111756708524847535116096q3 + ...)
f9(q) = 1

3(−37− 489421748q − 16364614670173794q2

−787663906596039662206584q3 + ...)
f10(q) = 1− 12264q − 7273512936q2 − 9785395464683424q3

−18141963676251721826280q4 + ...

f11(q) = 1 + 110596q + 110757888006q2 + 180011523750912008q3

+367762906594569664954381q4 + ...

The potentials then read

V9 = 14400π2f3
(
q
53

)
V10+k = −4π2

5∑
j=0

(16q)j/6 exp
(
2πikj6

)
f4+j

(
q
33

)
V16 = −3π2(f10(q)− 72√qf11(q))
V17 = −3π2(f10(q) + 72√qf11(q))
V19 = −24π2(75f1(q/153) + i

√
5q/3f2(q/153))

V20 = −24π2(75f1(q/153)− i
√

5q/3f2(q/153)) ,

where k = 0, ..., 5. The last series V18 can then be deduced from the fact that the sum of all
potentials in the duodecuplet vanishes. Note that the coefficients grow rapidly, preventing the
functions above to be modular forms. The monodromy is responsible for this phenomenon, as
can be confirmed by the estimation of the convergence radius given by the successive ratios of
the coefficients (see figure 4.6).

4.5 The Dual Cases B3 = so(7) and C3 = sp(6)

4.5.1 Exact Multiplets

For the twisted elliptic integrable models associated to the dual Lie algebra root systems so(7)
and sp(6), we present our results succinctly. We have found 17 isolated extrema for each, and
they are Langlands dual. We have therefore 34 extrema in total. We identified two quadruplets
of the full duality group for which we found analytic expressions for the potential at the extrema.
The list of the corresponding extrema is given in section 4.5.3. We find the following duality
properties and analytic values for the extrema of the potential. The extrema labelled {1, 2} have
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Figure 4.6: The dots show the successive ratios of the coefficients of f11, and a line has been
drawn, for comparison, at the value 1/qM = e−2πiτM .

extremal values for the so(7) potential equal to V1(τ) and V2(τ). From the diagram of dualities
(figure 4.7), we read off that these extremal values are modular forms of Γ0(4) with weight 2.
Moreover, Langlands duality then implies that V1∨(2τ) and V2∨(2τ) are also of that ilk. The
spaceM2(Γ0(4)) of these weight 2 forms has the two generators

−E2,2(τ) = θ4
2(2τ) + θ4

3(2τ) = 1/2(θ4
3(τ) + θ4

4(τ))
−E2,4(τ) = 3θ4

3(2τ) = 3/4(θ2
3(τ) + θ2

4(τ))2 .

In terms of the generators, the extrema are:

V1(τ) = π2 (−E2,2(τ)− 2E2,4(τ))
V2(τ) = π2 (−7E2,2(τ) + 2E2,4(τ))

V1∨(2τ) = π2 (+E2,2(τ) + 0E2,4(τ))
V2∨(2τ) = π2 (−2E2,2(τ) + 1E2,4(τ)) .

For the other quadruplet under the full duality group, we have a similar story, with the happy
ending:

V3(2τ) = π2/6 (−15E2,2(τ) + 7E2,4(τ))
V4(2τ) = π2/6 (+9E2,2(τ)− 1E2,4(τ))
V3∨(τ) = 8π2/3 (−3E2,2(τ) + 1E2,4(τ))
V4∨(τ) = 8π2/3 (0E2,2(τ)− 1E2,4(τ)) .

The action of Langlands S2 duality as well as T-duality can be found explicitly using these exact
expressions, for instance by exploiting properties of θ functions. As an example, we note that
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the action of T -duality is summarised in the equalities:

E2,2

(
τ + 1

2

)
= −2E2,2(τ) + E2,4(τ)

E2,4

(
τ + 1

2

)
= −3E2,2(τ) + 2E2,4(τ) .

Moreover, on the extrema, the Langlands duality S2 acts as

1
2τ2V1

(
− 1

2τ

)
= V1∨(τ) + 3π2E2,2(τ) ,

and similar relations hold for the other S2-dual couples, as predicted by the duality formula
(3.32).

4.5.2 The Duodecuplet, the Quattuordecuplet and the Points of Monodromy

We further identified a duodecuplet and a quattuordecuplet under the duality group (for a total
of (4 + 4 + 12 + 14)/2 = 17 extrema for B3 = so(7)). Sufficient data to reproduce them is
provided in section 4.5.3. These multiplets exhibit points of monodromy, and the full duality
diagram is captured in figure 4.7. It should be understood that we only represent points of
monodromy that are inequivalent (where two monodromies are taken to be equivalent when
they are equal up to conjugation by other elements of the duality group). For instance S2MτS2
is the monodromy around −1/(2τ).

We draw attention to a few features of the diagram. There are 5 extrema that form a
quintuplet under T-duality (around τ = i∞), labelled 5, 6, 7, 8, 9. When we also turn around
the point of monodromy, the quintuplet enhances to a septuplet. This is reminiscent of a feature
of the duality diagram for the duodecuplet of so(8).

Finally, we performed an exhaustivity check on the extrema by summing the extremal values
of the potential. We found5 ∑

i∈41

Vi(τ) = −8π2E2,2(τ)

∑
i∈42

Vi(τ) = 2π2E2,2(τ)

∑
i∈12

Vi(τ) = −20π2E2,2(τ)
∑
i∈14

Vi(τ) = 19π2E2,2(τ) ,

showing again that the sum of potentials over every multiplet is a modular form of Γ0(4).

4.5.3 The List of Extrema for so(7) and sp(6)

Finally, in the case of the algebras B3 = so(7) and C3 = sp(6), we only present diagrams of the
extremal positions for the so(7) root system, since the corresponding extrema for sp(6) can be

5We evaluated the sum of the extrema numerically at two different values of τ to identify the linear combination
of E2,2 and E2,4 that equals the sum. We can then perform arbitrary many numerical checks at other values of
τ , and these work out.
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found by Langlands duality. We use the same conventions as for the so(5) figures. Additional
data, like the data we presented for so(8) in the previous section, can be found.

Extrema at τ = i for so(7)

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 1

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 2

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 3

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 4

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 5

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 6

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 7

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 8

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 9

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 10

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 11

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 12
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Extrema at τ = i for so(7)

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 13

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 14

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 15

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 16

1

4

1

2

3

4 1

1

4

1

2

3

4

1

Extremum 17

This concludes our systematic case-by-case discussion of the low rank B,C,D isolated ex-
trema of (twisted) elliptic Calogero-Moser models. We finish the section with a few further
remarks on general features of the problem of identifying isolated extrema.

4.6 Partial Results for Other Lie Algebras

In this subsection, we discuss very partial results for some higher rank Lie algebras. We think
of the elliptic integrable model as a perturbation of the Sutherland model, with trigonometric
potential. The Sutherland model has a ground state with all particles sprinkled on the real
circle. We can perturb this traditional ground state by turning on the elliptic deformation by
powers of the small parameter q, and follow the ground state under perturbation. In this way, we
can reconstruct the extremum of the complexified elliptic potential associated to the Sutherland
extremum on the real line. To take the limit from the elliptic integrable system towards the
Sutherland model, it is sufficient to use the expansion formula:

℘(x;ω1, ω2) = − π2

12ω2
1
E2(q) + π2

4ω2
1

csc2
(
πx

2ω1

)
− 2π2

ω2
1

∞∑
n=1

nqn

1− qn cos nπx
ω1

, (4.33)

valid when the imaginary part of the modular parameter τ is sufficiently large. The first term in
the formula (4.33) is constant from the perspective of the integrable system dynamics, while the
second term gives rise to the leading Sutherland potential. The minimum at the equilibrium of
the Sutherland potential on the real line can be computed analytically [108] – it is related to the
norm of the Weyl vector of the Lie algebra. The positions of the equilibria are given in terms
of zeroes of the Jacobi polynomials. We can perform perturbation theory around these extrema
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(numerically), and we find the following series in q for the potential at perturbed Sutherland
extrema, for various gauge algebras:

Vso(5)
π2 = 26

3 + 112q
3 + 8656q2

81 + 392128q3

2187 + 5011568q4

19683 + 319117472q5

1594323

+12236034880q6

43046721 + 112088197760q7

387420489 + . . .

Vso(6)
π2 = 8 + 64q + 192q2 + 256q3 + 192q4 + 384q5 + 768q6 + 512q7 + 192q8 + . . .

Vso(7)
π2 = 25 + 408q

5 + 153816q2

625 + 23730528q3

78125 + 6103562136q4

9765625 + 663346128528q5

1220703125

+129316813943136q6

152587890625 + 10819167546478272q7

19073486328125 + . . .

Vso(8)
π2 = 24 + 576q

5 + 212544q2

625 + 39538944q3

78125 + 6618263616q4

9765625 + 909871629696q5

1220703125

+171403608639744q6

152587890625 + 8112643818471936q7

19073486328125 + 1087819119225488448q8

2384185791015625 + . . .

Vso(9)
π2 = 164

3 + 992q
7 + 5133728q2

12005 + 2305844608q3

4117715 + 168902799438112q4

176547030625

+11307570247017024q5

12111126300875 + 640315787843154194816q6

370903242964296875 + 1106383118191321793331968q7

890538686357276796875

+69929754265259380435436903968q8

38181846177568242666015625 + 17683503230173163609024329488224q9

13096373238905907234443359375 + ...

Vso(10)
π2 = 160

3 + 1280q
7 + 1303808q2

2401 + 616518656q3

823543 + 365560247552q4

282475249

+101140172889600q5

96889010407 + 9869502718168064q6

4747561509943

+18401127697466238976q7

11398895185373143 + 6582207315175560008960q8

3909821048582988049 + ...

Vso(11)
π2 = 305

3 + 1960q
9 + 30141880q2

45927 + 29034410080q3

33480783 + 4243088924219480q4

2790589782267

+7560807432828504560q5

6103019853817929 + 4158609757083162994374880q6

1526041805387611692663

+96348742286518866720674240q7

52975451244169948759587 + 304885265038041162579660724924120q8

92724468600756742242419154123 + ...

Vso(12)
π2 = 100 + 800q

3 + 4055200q2

5103 + 1335804800q3

1240029 + 63808646477600q4

34451725707

+42945633858692800q5

25115308040403 + 6332155765834649948800q6

2093335809859549647 + ...

We see that at least for some extrema, it is fairly straightforward to generate interesting data
on the value of the potential at these extrema at higher rank. We note a first pattern, valid at
the order to which we have worked, in both the rank of the gauge group, and the power of the
modular parameter q. Table 4.2 gives the conjectured smallest integer N such that for gauge
algebra g, the potential Vg(Nq)/π2 has a Fourier expansion with only integer coefficients in the
following sense: the expansion can be written as n0(r+n1q+n2q

2 + ...) where the ni are integers,
and the first term r is rational.
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As an example of this pattern, let us quote the formula:

1
66679200π2Vso(12)

(
633 × q

)
= 1

666792 + q + 745143q2 + 252572301828q3 + 108583732036588599q4

+25066769592690393853446q5 + 11087973934403204342320752348q6

+1966652180387341854168182867614728q7 + ...

As a final remark, we note that our numerical searches in this and previous subsections are far
from exhausting the capabilities of present day computers.

k 5 6 7 8 9 10 11 12 13 14
N 33 1 53 53 7352 73 3672 3673 3171113 3271113

Table 4.2: The integer N for gauge algebra so(k) rendering the Fourier expansion integral

4.7 Conclusions

We studied the isolated extrema of complexified elliptic Calogero-Moser models, and encoun-
tered a plethora of beautiful phenomena. The values of the integrable interparticle potential at
the extrema are true vector-valued modular forms in some cases, allowing for an analytic de-
termination of the extrema in terms of modular forms of congruence subgroups of the modular
group. This gives rise to webs of extrema that form representations under the duality group of
the model. The latter can either be a modular or a Hecke group. A more intricate phenomenon
is the appearance of monodromies amongst a second class of extrema as we loop around a point
in the fundamental domain of the modular group. The duality group is then enlarged to include
the monodromy generator. We determined the action of these generators on extrema. Moreover,
we provided a wealth of Fourier coefficients of the extremal potential. These analyses can be
viewed as a considerable widening of the observation of the integrality of observables in equilibria
of integrable systems.

With this data about the Calogero-Moser systems, we now return to our original gauge
theory problem. In the next chapter, we will see how the two questions are related, and what
subtleties have to be taken into account in order for a precise agreement to be found.
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Figure 4.7: The diagram of dualities for so(7) and sp(6) extrema. In red, we show the action
of Langlands S2-duality on the extrema, in green, T -duality, and in dotted blue, monodromies,
with the corresponding approximate values of the points of monodromy τ . As discussed in
the text, monodromies relating sp(6) extrema exist but are not represented here as they are
equivalent to those already depicted.
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Figure 4.8: The positions of the monodromies (red dots) inside the fundamental domain of Γ0(4)
(shaded).



Chapter 5

The N = 1∗ Gauge Theories on
R3 × S1

In this chapter, we reinterpret the results we obtained in chapter 4 in terms of the physics of
massive vacua of N = 1∗ theories. The first section is devoted to general facts about the intimate
relation between integrable systems and supersymmetric gauge theories. We will depict this
bridge in detail for the theory we are concerned with. In section 5.2.3, we review the properties
of the infrared physics of theN = 1∗ theory and in particular the way the effective superpotential
on the Coulomb branch is determined.

We then show how the data we gathered on elliptic integrable systems in section 3.3 provides
semiclassical inputs for the gauge theory and elucidates it further. Many semiclassical results
will be confirmed in this comparison, but part of the observations made on the integrable system
side will have to wait until the next chapters to be fully explained – most strikingly, the mismatch
between the number of extrema of the Calogero-Moser potential and the number of vacua found
semi-classically will be explained there. The electric-magnetic duality properties in the infrared
under the modular group are then discussed, with various subtleties depending on the gauge
algebra. For so(5), the Hecke group will play a role, and especially its congruence subgroup
Γ0(4) that we used to classify extrema in section 4.3.3, and which is a subgroup of the modular
group Γ0(2) introduced back in section 1.2. On the other hand, for so(8), we make explicit the
action of the global triality symmetry on the massive vacua.

5.1 Supersymmetric gauge theories and integrable systems

In this section, we give an overview of the relations between supersymmetric gauge theories
on R4 and integrable system, relations that underlie a large part of the work presented in this
thesis. Perhaps the most noticeable point is the identification between the spectral curve of the
integrable system, defined in equation (3.3), and the Seiberg-Witten curve of the gauge theory
(at least for N = 2 theories). In this section, we begin with a rapid survey of the Seiberg-Witten
technology for N = 2 gauge theories, and then review various results about the correspondence
between these theories and integrable systems. Finally, we present how this story survives the
partial breaking of supersymmetry from N = 2 to N = 1.

135
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5.1.1 Seiberg-Witten curves for N = 2 theories

In the seminal paper [19], Seiberg and Witten consider the pure N = 2 theory with gauge group
SU(2), whose Lagrangian is given by (A.24). In a generic supersymmetric vacuum, the gauge
field is broken to U(1) and the low-energy physics is described by the vacuum expectation values
of the scalar part of the vector multiplet and its dual, (a, aD). The moduli space of vacua is the
complex plane parametrized by u which is related to a by u ∼ 1

2a
2 in the semiclassical limit.

This suggests that a might not be single-valued as a function of u. Indeed, when one moves
along a closed curve in the moduli space, the functions (a, aD)(u) undergo monodromies, and
the breakthrough of Seiberg and Witten was to realize these functions as periods of a differential
one-form on a complex elliptic curve whose structure is given by u. Although our aim here is
not to establish these facts, we give the equation of the curve to illustrate a few points: it is
defined as the subspace of points (z, x) ∈ Ĉ2, where Ĉ is the Riemann sphere (C.5), that satisfy1

Σpure SU(2) : Λ2
(
z + 1

z

)
= x2 − u . (5.1)

This curve depends on the external parameter u, and we often want to study the whole family of
such curves when u varies in the moduli space. Here z ∈ Ĉ parametrizes the so-called ultraviolet
curve [122, 22] that we mentioned already in section 1.2.2.

The original papers of Seiberg and Witten deal with the SU(2) theories, and this seminal
work has been generalized to various gauge groups and matter content [57, 56, 123, 124, 59, 60,
61, 62]. For instance, the curve for the pure SU(N) theory which generalizes (5.1) is

Σpure SU(N) : ΛN
(
z + 1

z

)
= xN + u2x

N−2 + · · ·+ uN . (5.2)

This curve is a N -sheeted cover of the ultraviolet Riemann sphere Ĉ. It is a Riemann surface of
genus N − 1, as can be seen from the Riemann-Hurwitz formula:

2g − 2 = N(2 · 0− 2) + (2N − 2) · (2− 1) + 2 · (N − 1) . (5.3)

Note that for other gauge groups, the genus of the Seiberg-Witten curve may differ from the rank
of the group; for instance if G = SO(2N) then it is a 2N -sheeted cover of Ĉ. One particularly
interesting matter content is the one which is obtained from N = 4 by a mass deformation, and
that we can call the N = 2∗ theory, namely the case of one adjoint hypermultiplet. In this case
the Seiberg-Witten curve was soon recognized to be known from another context. In the next
subsection we explain how all this can be put in that different perspective.

5.1.2 Integrable Systems and N = 2 theories

In 1995, Martinec and Warner proved in [70] that the Seiberg-Witten curve for the pure N = 2
super Yang-Mills theory with simple gauge group G is a spectral curve of the periodic Toda
lattice for the dual gauge group G∨. A more general earlier discussion of the link between the
Seiberg-Witten solution and integrable systems can be found in [69].

1Here Λ is defined by the one-loop running of the coupling constant gYM , equation (A.23), and the fact that
the angle θYM doesn’t run. Calling b = 3T (adjoint) − T (chiral mult.), the running of τ is solved by 2πiτ(µ) =
b log(Λ/µ). In other words, Λ = µ exp 2πiτ is an intrinsic scale of the theory, called the (holomorphic) dynamical
scale.
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Almost simultaneously, Donagi and Witten [77] identified the SU(N) theory with a massive
adjoint matter hypermultiplet, which is known as N = 2∗ theory, with the SU(N) Hitchin
system, which is an integrable model arising from two-dimensional SU(N) gauge theory. It
appeared then that the spectral curve of this Hitchin integrable system is identical to the spectral
curve of an Elliptic Caloger-Moser system, proving the following correspondence:

SU(N), N = 2
gauge theory with one
adjoint hypermultiplet

SU(N) Hitchin
integrable system

SU(N) Elliptic
Caloger-Moser system

The general slogan is that the Coulomb branch of vacua of an N = 2 theory has a geometric
structure called special geometry. We have seen in section 3.2.5 that special Kähler manifolds
appear naturally in complexified integrable systems. Using certain properties of BPS dyons in
the gauge theory and the structure of the Coulomb branch, it is in general possible to construct
action-angle variables of an integrable systems [125]. To identify an integrable system dual to a
given supersymmetric field theory, a necessary condition is that the numbers of moduli on both
sides have to match,namely the number of scalar fields that might acquire a vacuum expectation
value has to be equal to the dimension of the moduli space of the spectral curve of the integrable
system. Moreover, the matching between the special Kähler structures can be checked in the
weak-coupling limit, and in many case from exact computations using the techniques recently
developed in [126].

5.1.3 The Calogero-Moser poteneial and N = 2∗

We will now focus on the particular example of Donagi and Witten and see how the Calogero-
Moser systems are connected to the N = 1∗ theories.

The solution of Donagi and Witten

Let us describe the solution [77] of the N = 2∗ theory with adjoint matter for gauge group
SU(N). Note that this theory was already solved in ([49]), section 16.2, for gauge group SU(2).
In order for this presentation to be more concrete, we give a detailed description of this solution.
We introduce a curve in the (t, x, y) space defined by its equations

ΣN=2∗,SU(N) :

y2 = (x− e1(τ))(x− e2(τ))(x− e3(τ)) (E)
PN (t, x, y) +A2PN−2(t, x, y) + · · ·+ANP0(t, x, y) = 0 .

(5.4)

with parameter τ given by the complexified coupling constant. Here the Ai are constants
that should be identified with the order parameters on the Coulomb branch, and the Pi are
polynomials in t, x and y that can be computed explicitly. This is a curve of genus N . In order
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to ensure modular covariance of the solution, we impose the following modular weights : t→ 1,
x→ 2, y → 3, Ak → k. Alternatively we can parametrize the solution by λ and write (5.4) as

ΣN=2∗,SU(N) :

y2 = x(x− 1)(x− λ)
PN (t, x, y) +A′2PN−2(t, x, y) + · · ·+A′NP0(t, x, y) = 0 .

(5.5)

The dictionary between the τ parametrization and the λ parametrization is2

λ = e3(τ)− e2(τ)
e1(τ)− e2(τ) = 16q1/2 +O(q) . (5.6)

Because of this last equation, the weak-coupling limit corresponds to λ→ 0. The results of [49]
for N = 2 can be recovered in this more general setup, and moreover we can flow from N = 2∗

to pure N = 2 by sending the mass of the adjoint hypermultiplet to infinity, or equivalently
through the renormalization group λ → 0 with a suitable rescaling of the other parameters.
These are important consistency checks, and are good indications that the curve (5.4) is correct.
But the true novelty here resides in the way it is obtained, and it is the objective of the next
paragraph to give an idea of how this is achieved.

The Hitchin and Calogero-Moser Systems

A crucial point in this analysis is that ultraviolet finite N = 2 theories should have a spectral
parameter living on an torus whose modulus is the complexified gauge coupling τ , and the pure
N = 2 theory arises from the degeneration of this torus to a punctured sphere. Therefore the
integrable system should also degenerate to the system associated to the pure N = 2 theory,
which is the affine Toda system. It was noticed [127, 128] that the elliptic Calogero-Moser has
this property. As we discussed in section 3.4.1, this system reduces to the affine Toda system in
the limit ω2 →∞.

D’Hoker and Phong showed [129] that the Calogero-Moser integrable system captures the
physics of the low energy dynamics of N = 2 SYM with gauge algebra SU(N) and one massive
adjoint hypermultiplet. The Seiberg-Witten differential arises naturally from the construction,
using the spectral parameter z. Decoupling the full hypermultiplet by letting the mass go to
infinity while keeping the vacuum expectation value of the gauge scalar fixed reproduces the
gauge theory without hypermultiplet [57, 56].

The appearance of Calogero-Moser systems can be understood from a more general con-
struction by Hitchin [130]. Donagi and Witten [77] showed on general grounds that there should
be a connection between the low energy effective action of any four-dimensional N = 2 super-
symmetric gauge theory and such an integrable system. For an introduction to Hitchin systems
and their relation with Calogero-Moser systems, one can consult [99, 131, 132, 133] on which
this paragraph is based. The main idea behind the relation between N = 2 field theories and
Hitchin systems is that the latter arise as the moduli space of the field theory compactified on
a circle.

The Hitchin construction provides an integrable system for any given spectral curve, of
arbitrary genus, with or without marked points. It involves a gauge group G. Most classical
integrable systems can be obtained from this construction, and this is the case of the elliptic

2We send linearly e1 7→ 1, e2 7→ 0 and e3 7→ λ in order to have λ→ 0 in the semiclassical regime q → 0.



5.1. SUPERSYMMETRIC GAUGE THEORIES AND INTEGRABLE SYSTEMS 139

Calogero-Moser systems. Let C be a Riemann surface, with marked points zk, and let uk be an
element of the Lie algebra g associated to each marked point. Let the letter A denote a generic
(0, 1) connection and let φ denote a generic (1, 0)-form on the curve C. The phase space of the
Hitchin system is the space of solutions (A, φ) of

∇̄Aφ = 2πi
∑
k

ukδzk (5.7)

divided by the generalized gauge group, where the generalized gauge group is the set of maps
h : C → G such that h(zk) lies in the stabilizer of uk; they act on A and φ as A→ h−1Ah+h−1∂̄h

and φ → h−1φh. Let us now introduce the polynomials Pm, for m = 1, . . . , r, that generate
the ring of invariant polynomials on g (their degrees are the exponents of g). Then for each m,
we can decompose the meromorphic (m, 0)-form Pm(φ) in a basis of holomorphic differentials
of type (m, 0); the coefficients thereby obtained are in involution and define a Hamiltonian
integrable system.

Let us consider a particularly useful example, where C is a torus with parameter τ with the
point z = 0 marked and associated to u ∈ g. The equation (5.7) determines the behavior of φ
around the origin, and the fact that it is defined on the torus allows to use the theory of elliptic
functions to solve for φ in terms of Lamé functions (3.18). The Hamiltonien of the system can
be read off from P2(φ) = trφ2. In this case one obtains the spin Calogero-Moser system, where
the spin variables are related to u. The spin Calogero-Moser system is a generalization of the
systems that we have studied under this name until now, and the latter can be obtained by
Hamiltonian reduction from the former.

The one-punctured torus used in the last paragraph should be reminiscent of the one-
punctured torus that served as ultraviolet curve for the N = 2∗ theory in chapter 1. This
is no coincidence, as we explain now – let us rephrase the story in physical gauge theoretic lan-
guage. The importance of the compactification is seen more clearly in a six-dimensional setup,
described by the following diagram [132]:

Six-dimensional
N = (2, 0) SCFT
with algebra g

Four-dimensional
N = 2 theory T [g, C]

Five-dimensional
super Yang-Mills
with gYM =

√
R

Three-dimensional
theory T [R]

Here, the horizontal arrows represent compactification on a circle S1 of radius R, while vertical
arrows denote compactification on the ultraviolet curve C. The left-hand side is the usual
construction of four-dimensional class S theories. The resulting three-dimensional theory T [R]
can be thought of as a sigma model (with N = 4 in three-dimensional terms) with target space
M. Taking the point of view of the five-dimensional theory, the BPS equations combined with
translation invariance in R3 give the Hitchin equations (5.7) on C. The moduli space of solutions
of these equations can be seen as the target spaceM of the sigma model T [R].

Generalization to any gauge algebra

The initial work for su(N) has been extended to any gauge algebra (except G2) in [134], the
precise correspondence being with the ordinary elliptic Calogero-Moser system when the algebra
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is simply laced and with the twisted Calogero-Moser (3.26) system when it is not. In this
configuration, the spectral curves constructed from the integrable systems generate the Seiberg-
Witten curves for the SYM theory with one massive hypermultiplet. This has been checked by
explicitly constructing the Lax pairs with spectral parameters in [105, 109] for all simple Lie
algebras.

N = 2∗ gauge theory
with gauge algebra g

Twisted Elliptic
Caloger-Moser system

associated to g

Pure N = 2
gauge theory with
gauge algebra g

Toda system asso-
ciated to

(
g(1)

)∨
(5.8)

The associated elliptic Calogero-Moser system permits generalisations to any root system,
and allows for twists, which were used to provide Seiberg-Witten curves and differentials for
N = 2∗ theory with general gauge group G [111]. The generalisation was non-trivial since
the elegant technique of lifting to M-theory [135] is difficult to implement in the presence of
orientifold planes (see e.g. [136, 137]), while the relevant generalised Hitchin integrable system
has a gauge group which is related to the gauge group of the Yang-Mills theory in an intricate
manner [131]. For a review of part of the history, see the lectures [138].

5.1.4 Breaking N = 2 to N = 1

Now that we have described how integrable systems come into play for describing N = 2
theories, we want to break part of the supersymmetry and reach the N = 1 realm. We are
primarily interested in the massive deformations path to enter it. The basic phenomenon, which
is illustrated in [19] for pure SU(2) theory, is that the N = 2 theory has a continuous manifold
of quantum vacua which degenerates to a finite number of massive vacua when one adds a N = 1
preserving mass perturbation in the superpotential. The privileged points in the original moduli
space are those where massless charged particles appear, and we know from the general features
of the solution presented in section 5.1.1 that these correspond to singularities of the Seiberg-
Witten curve. If we consider a general gauge group G, a generic point on the Coulomb branch
corresponds to a low-energy theory where the residual gauge group at low energy is U(1)r. In
order to obtain a massive vacuum, we need to give a mass to the r photons through the Higgs
mechanism, or to remove them from the low-energy spectrum through confinement.

In the case of the N = 2∗ theory with gauge group SU(N), we have seen that the curve
(5.4) has genus N , and needs to develop N − 1 nodes to correspond to a massive vacuum of
the deformed N = 1∗ theory. The resulting curve has genus one, and the Riemann-Hurwitz
formula then shows that it is an unramified N -cover of the elliptic curve E . Donagi and Witten
then argue [77] that this provides a good classification of the vacua : there is a one-to-one
correspondence between massive vacua of the SU(N), N = 1∗ theory and the N -fold unramified
covers of a torus. Seeing the torus E as C quotiented by a lattice Γ, an N -fold unramified cover is
a sublattice Γ′ of index N in Γ. It is not hard to see that these lattices correspond to subgroups
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(p, k) = (1, 0)

(p, k) = (2, 0) (p, k) = (2, 1)

(p, k) = (4, 0) (p, k) = (4, 1) (p, k) = (4, 2) (p, k) = (4, 3)

Figure 5.1: Symbolic representations of the 7 subgroups of (ZN )2 of index N for N = 4.

of (ZN )2 of index N . These subgroups are easily found, and correspond in an obvious manner
to the extrema found while examining the Calogero-Moser potential in section 4.1. In figure
5.1, we have represented graphically these subgroups in the case N = 4, and used the (p, k)
parametrization of equation (4.4). We can summarize this discussion by:

Massive vacua
of N = 1∗ with

gauge group SU(N)

N -fold unramified
covers of a torus

Subgroups of
(ZN )2 of index N

In N = 2 gauge theories, a milestone of the correspondence with integrable systems is the
computation of the prepotential. This is no longer available in N = 1 theories, and one would
like to find another object that could be computed exactly on both sides. This object will be
the superpotential, and the general idea is that it has a very concrete interpretation on the
integrable side as the classical potential. We make this idea more precise in the next section.
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5.2 The non-perturbative superpotential

Let us stress three important points that we have made in the previous paragraphs:

• We have seen in section 5.1.4 that the quantum vacua found by Donagi and Witten for the
SU(N), N = 1∗ theory on R4 coincide with the extrema of the Calogero-Moser associated
with the gauge algebra.

• The physics of N = 2∗ theories is described in a certain sense by Calogero-Moser systems,
as indicated in (5.8). The Seiberg-Witten curve and the spectral curve coincide.

• The vacua of a N = 1 theory which is a massive deformation of a N = 2 theory can be
obtained from the singularities of the Seiberg-Witten curve of the latter theory.

Recalling the general fact of supersymmetric gauge theories that vacua are extrema of the
superpotential W, these observations are hints that W is in fact proportional to the Elliptic
Calogero-Moser quadratic Hamiltonian. In this section we give more arguments in favor of this
conclusion. Note that if this is true, then the isolated extrema of the Elliptic Calogero-Moser
system found in chapter 4 will get an immediate interpretation as massive vacua of the associated
gauge theory.

In section 5.1, we have reviewed the fertile relation between N = 2 supersymmetric gauge
theories and integrable systems. This holds in particular for N = 2∗ theories, which are mass
deformations ofN = 4 theories, and represent but an intermediary step towardsN = 1∗ theories.

In [39], following the reasonings in [19, 29, 134, 38, 105, 111], an exact effective superpotential
for N = 1∗ was proposed for any gauge group, generalizing the result (5.21). The bottom line
is that the exact superpotential is equal to the potential (3.26) of the twisted elliptic Calogero-
Moser model, that we repeat here:

W(Z) ∝ V∆,tw(Z) = gl
∑

αl∈∆+
l

℘(αl(Z);ω1, ω2) + gs
∑

αs∈∆+
s

℘n(αs(Z);ω1, ω2) , (5.9)

The arguments were based on holomorphy, uniqueness of the deformation from N = 2∗, the
form of non-perturbative contributions, and integrability. We have added to these reasonings
the test of S-duality in subsection 3.3.1.

The effective potential on R4 can then be recuperated from the radius independent potential
on R2,1×S1. However, in this procedure it is clear that one should be mindful about the global
distinctions between the gauge theory on R4 and the theory on R3 × S1. An example of such
subtlety is provided by the supersymmetric index of pure N = 1 theories which indeed depends
on those global properties. In that case, the choice of the center of the gauge group and the
spectrum of line operators is crucial in computing the vacuum structure after compactification
on S1 [10, 139].

5.2.1 A Strategy : Compactification

A very useful tool that we will use extensively from now on is compactification of the theory
from the topologically trivial spacetime R4 = R1,3 to the cylinder R3 × S1 = R1,2 × S1 where
one spatial direction is compact, the circle S1 being of radius R. In this situation, the complex
variable Z used in the Calogero-Moser potential (3.25) acquires a very natural field theoretic
interpretation, as we explain below.
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In [29] the pure N = 2 theory of [19] is studied with one spacelike dimension compactified.
The theory is formulated on R3×S1, with S1 being a circle of radius R. There are two important
limits :

• For R→∞, the results of the analysis on R4 should be recovered.

• In the R → 0 limit, one should obtain the dimensionally reduced theory (this theory is
obtained by quantifying the classical theory where all the fields are independent of the
compact dimension).

We then see that studying the theory on R3 × S1 can shed new light on gauge theories in three
or four flat spacetime dimensions.

There is another reason why one would want to compactify the theory on the cylinder, as
explained in [140, 65] : it allows to connect the confining phase continuously to a weakly coupled
Coulomb phase. Indeed on the cylinder we will see that the now possible non-trivial Wilson
loop can break the gauge group G to the abelian U(1)r. This should be contrasted with the
so-called Weak-Coupling Instanton approach where suitable matter fields are added so that the
gauge group is completely broken, and the theory is in a weakly coupled Higgs phase.

In section 2.2, we have determined the vacuum structure of the N = 1∗ theory on R4. The
gauge group is broken to a subgroup: this subgroup can be trivial, in which case the theory
is said to be in the Higgs phase, it can have abelian factors, in which case we say that the
theory is in the Coulomb phase, or it can have only non-abelian factors, in which case we have
confinement. We now turn to the theory on the cylinder.

5.2.2 The gauge field on the cylinder

We first focus on the effects of compactification on the gauge field Aµ, which we is required to
be periodic:

Aµ(x0 + 2πR, xj) = Aµ(x0, xj) . (5.10)

In the compactified theory, smooth and finite energy configurations of periodic gauge field have
been classified in [141] by Gross, Pisarski and Yaffe. As a result, they found three sets of
invariants, which we review now. Of course, a fundamental ingredient of the compactified
theory is the Wilson line (A.6) on the nontrivial circle,

W (C) = P exp
(
i

∮
C
A

)
= e2πia . (5.11)

Under a gauge transformation parametrized by a function U(x) defined on our compact space-
time, it transforms as

W (C)→ U(x)W (C)U−1(x) (5.12)

where x is any point on the path of integration. This means that the eigenvalues and the
eigenspaces of W (C), seen as a matrix in the adjoint representation of the gauge group, are
gauge invariant. We define a as an element of the Lie algebra,

a = 1
2π

∮
S1
A . (5.13)

This is a scalar with respect to the three-dimensional Lorentz group, and may be viewed as
a new scalar degree of freedom. Up to a global gauge transformation, we can assume that a
belongs to the Cartan subalgebra h.
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Let us now examine a subtlety related to the global choice of the gauge group (see [29] for
a similar discussion in the case of gauge groups SU(2) and SO(3)). We assume that the gauge
group is connected. If there are no fields in the theory which are charged under its center, or
if there is no nontrivial center at all, we may choose the gauge group such that we allow for
gauge transformations that twist around the circle by an element of the center. This reasoning
corresponds to a choice of gauge group Gad = G̃/Z(G̃) where G̃ is the universal cover, and Z(G̃)
its center. Indeed, let U : R3 × S1 → G̃ be a gauge transformation as in section A.2.1, and let
Uad : R3 × S1 → Gad be the map defined by Uad(x) = Z(G̃)U(x). There are several U that are
associated to the same Uad if Z(G̃) is not trivial. This means that more gauge transformations
are allowed in we take the gauge group to be Gad, and we call the set of gauge transformations U
(respectively Uad) the small gauge group (respectively the big gauge group), despite the injection
Gad → G. Note that the dual theory to the one with gauge group G̃/Z(G) has gauge group G̃,
for a simply laced group. The two scalars are interchanged under S-duality. Thus, the duality
symmetries mix various global choices of gauge groups and also acts on the twist direction of
the twisted elliptic potential.

We will take the assumption that the gauge group is Gad for granted in this chapter, and
come back to the issue in chapter 7. This lends a periodicity to the Wilson line under shifts
taking values in the co-weight lattice P∨, defined in the appendix section B.2 dedicated to the
various lattices associated to a gauge group. The classical moduli space for the infinitesimal
Wilson line a is then [65]

Ma = Rr

P∨ oWeyl group . (5.14)

Generically, the gauge group is broken by a to its maximum abelian subalgebra U(1)r, and all
the eigenvalues are distinct.

Associated to each eigenspace is a magnetic charge, obtained by integrating on a large
sphere S2 the projection of the magnetic field (which is the three-dimensional Hodge dual of
the field strength) on the eigenspace. Let us for simplicity assume that these spaces are all
one-dimensional. Then all these magnetic charges can be assembled in a r-dimensional vector,
which can be brought to the Cartan subalgebra using part of the global gauge symmetry. More
precisely, let us define the magnetic field by

Bi = 1
2εijkF

jk , (5.15)

where i, j and k denote the noncompact coordinates. Then we define the magnetic charge to be

α∨magnetic = − 1
2π

∫
S2
BjdSj . (5.16)

The notation reflects the fact that because of the Dirac quantization rule [142, 143], the magnetic
charge belongs to the dual root lattice Q∨ of the Lie algebra.

Finally we have the four-dimensional instanton charge

m = 1
8π2

∫
TrF 2 . (5.17)

With this notation, the θ-term in the Lagrangian, equation (A.13), is just Lθ = mθYM . There
is of course a strong connection with the Pontryagin index p ∈ Z, but not equality, as explained
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in detail in appendix B of [141], because of the twisting introduced by the magnetic charges.
The relation between these quantities is

m = p− α∨magnetic · a . (5.18)

We summarize this discussion by saying that to a given gauge configuration we can associate
a unique triplet (m, a, α∨magnetic) ∈ R ×Ma × P∨, which is gauge invariant and also invariant
under local and continuous deformations of the gauge field.3 Now we would like to characterize
the remaining degrees of freedom. A generic value of a breaks the gauge group to U(1)r, and
we will assume that we stand at such a point from now on. This condition can also be written
α · a /∈ Z for all roots α. If this is the case, the three-dimensional remaining photon can be
dualized to a scalar σ, introduced in the action as a Lagrange multiplier for the Bianchi identity
before integrating out the gauge field. This field is a Lorentz scalar and can be seen as an
element of the Cartan subalgebra (or its dual); more precisely, it belongs to the moduli space

Mσ = Rr

P oWeyl group , (5.19)

where P is the weight lattice. This periodicity condition follows from the fact that σ is introduced
as a Lagrange multiplier for a term which is quantized in integer units, namely the magnetic
flux. After this change of variable, it appears that σ has a standard kinetic term with zero mass,
and it can be combined with the Wilson line a into one single complex scalar field

Z = σ + τa . (5.20)

This adjoint-valued scalar field parametrizes the Coulomb branch of the compactified theory.
This branch is not compact, since there are special points where a non-abelian symmetry would
be restored. Let us study the geometrical properties of this Coulomb branch. Note that we
can write 2ω1Z = 2ω1σ + 2ω2a, which is the version we use in the following discussion to make
contact with section 3.2.6.

• As shown in equations (5.14) and (5.19), the periodicities of the variable Z is the weight
lattice in the ω1 direction and the co-weight lattice in the ω2 direction.

• We also have discrete identifications, controlled by the Weyl group of the gauge algebra.
This is the remnant of gauge invariance.

This classification of supersymmetric vacua agrees with the classification we did in section 3.2.6
in the elliptic integrable systems.

5.2.3 The Non-perturbative Superpotential for N = 1 theories

In this section, we determine the superpotential of the N = 1∗ theory. Let us choose a particular
point Z on the Coulomb branch, and halt for a moment to see where we are. We started from
a vacuum of the theory on R4 where the adjoint supermultiplets Φ̃i took a vacuum expectation
value that corresponds to an extremal point of the superpotential (2.7). When going to low
energies, these three massive fields can be integrated out. In fact, all the fields except Z acquire

3Note that the triplet can distinguish between configurations with the same field strength which are not gauge
equivalent.
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a mass via the Higgs mechanism. Therefore at low energies, we have an effective N = 1 theory
on R3 × S1 with one adjoint valued massless field Z. The most general Lagrangian for such a
theory is given in (A.21), and all we have to specify is the Kähler potential K(Z, Z̄) and the
superpotential W(Z). Let us focus on the superpotential, because it is the superpotential that
controls the vacuum structure – the Kähler potential can receive quantum corrections that are
not constrained by holomorphy, and as a consequence are hard to compute.

In the classical theory, we just have W(Z) = 0. In the next three paragraphs, we present
various arguments that lead to the non-perturbative value of W(Z). First we show how the
superpotential can be computed for gauge group SU(2), then we show how this result can be
generalized to any gauge group. Finally we link this result to the semi-classical analysis.

The superpotential from Analyticity

The first argument we present may be the most intuitive one for a supersymmetric gauge theorist,
since it is strongly based on holomorphy of the superpotential. We present it for gauge group
G = SU(2), following the original derivation of [38]. In this case, since the gauge group has rank
one, the variable Z can be thought as a complex number, Z ∈ C. The periodicity properties
derived in section 5.2.2 show that the function W(Z) is defined on an elliptic curve and has
exactly one double pole at Z = 0. The theory of elliptic functions then implies that W(Z) is
a rational function in ℘(Z), where ℘ is the Weierstrass function with appropriate periodicity
conditions. The pole structure then implies that this rational function is simply a polynomial
of degree one. The constant term in this polynomial depends only on the parameter τ of the
elliptic curve. We have then proved

W(Z) ∝ ℘(Z; τ) + C(τ) . (5.21)

Although it may be subtle to say whether C(τ) vanishes or not, this term is inoffensive if we aim
to find the vacuum structure of the theory, which is governed by derivatives of W with respect
to Z.

The Superpotential from Instantons

There are three finite action configurations that can contribute to the superpotential:

• The four-dimensional instantons, with four-dimensional instantonic charge m which is not
necessarily an integer because of the compactification, see equation (5.18), and with classi-
cal action 2πimτ for m > 0 and −2iπmτ̄ for m < 0. They give holomorphic contributions
exp 2πimτ = qm.

• The three-dimensional instantons, with magnetic charge α∨. They contribute exp (2πinα∨ · Z)
for α a positive root.

• The Lee-Yi instantons [112], which contribute [exp (2πiα∨ · Z) qm]n for α any root (positive
or negative) and m a positive integer.

These three kinds of contribution are in bijection with the positive affine roots, which are
decomposed into three sets in equation (3.40). The positive roots ∆+ correspond to the three-
dimensional instantons, the set {α + mδ|m ∈ N∗ and α ∈ ∆} to the Lee-Yi instantons and
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the purely imaginary roots {mδ|m ∈ N∗} to the four-dimensional instantons. In each case, the
contribution to the action is just exp

(
2πinα̂∨ · Ẑ

)
, with the notations of section 3.4.2.

It is important to stress that for an instanton to contribute to the superpotential, it must
have exactly two fermionic zero-modes in the quantum theory – the classical argument in favor
of this fact is reviewed in the lectures [144]. The number of zero-modes can be found using the
Callias index theorem [145, 142, 143], but in general one should take into account that modes
unprotected by supersymmetry may be lifted [146, 147], leaving exactly two zero-modes that are
protected. This is why all the configurations listed above do contribute to the superpotential.
Note that in the pure N = 1 theory, this lifting does not occur because there is no matter to
trigger it, and only simple roots bring a contribution, resulting in Toda potentials.

Hence we understand the result (5.9), and the expansion (3.53) obtained in the chapter
dedicated to the integrable system from a semiclassical point of view. In the classical theory, we
just have W(Z) = 0. However the gauge theory compactified on a circle gets non-perturbative
superpotential contributions from magnetic monopole configurations whose charges take values
in the dual root lattice Q∨. It is possible to understand these configurations in an illuminating
way using brane systems and orientifolds in string theory [113].

The scalar duals of the photons have as a result a smallest possible periodicity equal to the
weight lattice P . We choose to classify extrema of the superpotential with respect to these
identifications. We should mention that other choices would be physically relevant. Since in
deriving the effective superpotential we compactified the theory on R3×S1, the resulting effective
theory is influenced by the choice of the spectrum of line operators that probe the phases of our
four-dimensional theory [148, 77, 10]. These determine the set of allowed monopole operators
in three dimensions, and this set may be larger than the collection allowed by the minimal
periodicity relation chosen above. Depending on the choice of the spectrum of line operators,
this can lead to an increase of the number of inequivalent solutions, and therefore to an increase
in the Witten index. This was analyzed carefully in [10, 139], and we will see the mechanism at
work in detail for the gauge algebra so(5) in section 7.2.3.

Note that the purely four-dimensional instanton terms associated to the imaginary roots
contribute a τ dependent, but position independent term in the superpotential. We wish to
further strengthen the arguments for the superpotential by comparing the results for the exact
quantum vacua for the theory on R3 × S1 with semi-classical results.

5.2.4 Electric-Magnetic Duality

Our N = 1∗ theory is a deformation of N = 4 theory, and it inherits some of its properties.
In particular, the electric-magnetic duality group of N = 4 gauge theories in four dimensions
[149, 13, 14] plays a crucial role. The duality symmetry was determined to be the group SL(2,Z)
for simply laced gauge groups and Γ0(4) for the B and C type gauge groups [45, 46, 12].
Moreover, the S2 generator of the Hecke group exchanges the B and C type systems. An
infrared counterpart to these duality groups are present in our integrable systems, which allow
for a (generalized) duality group action on the infrared modular parameter τ [84], inherited
after mass deformation from the N = 4 duality. Note in particular that the requirement of
the B type and C type exchange is implemented in our integrable system by the Langlands
duality we discussed in subsection 3.3.1. This duality provides a further consistency check on
the relative weight of the short and long root contributions, fixed in [39] through consistency
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with the superpotential of the pure N = 1 super Yang-Mills theory.

5.3 The Massive Vacua of N = 1∗ gauge theories

In this section, we compare the analysis of integrable system extrema to the semi-classical
analysis of massive vacua of N = 1∗ gauge theory on R4. To wrap up a loose end first, let us
note that the minimal mass Mi of a given vacuum i can be computed using the equation

M2
k = min

[
Spec(MT

kMk)
]
, (5.22)

whereMk is the matrix of second derivatives of the potential in vacuum k:

(Mk)ij = ∂2Wk(Z)
∂Zi∂Zj

.

This clarifies the logic behind our definition of isolated extrema of the integrable system, see
equation (4.2).

We have computed the masses of the vacua. For a given algebra, they are all within few orders
of magnitude, and much above the accuracy of our numerical approximations, thus guaranteeing
that our vacua are indeed massive. Moreover, for a given massive vacuum, the values of the
masses are all approximately within a factor of 100 from each other. Interesting patterns in the
(ratios) of masses (of various vacua) exist – it should be fruitful to study them systematically.

5.3.1 Comparison with Vacua on R4

A semi-classical analysis of the massive vacua of N = 1∗ on R4 proceeds in several steps, that
were explained in chapter 2.

For gauge algebra su(n) the number of classical vacua was thus argued to be equal to the
sum of the divisors of n [77], and this number coincides precisely with the number obtained from
the exact superpotential [77, 38] for the theory on R3 × S1 (where one classifies vacua in the
manner described above).

For other gauge algebras, the number of massive vacua on R4 was given for the classical
algebras by the generating functions of chapter 2. Let us focus on an algebra of type different
from A, and on which we have a good analytic control, namely so(5). According to equation
2.71, there are six massive quantum vacua for the N = 1∗ theory on R4. Let’s recall in a little
more detail how this counting arises. We allow for various five-dimensional representations of
su(2) as vacuum expectation values for the three complex scalars of N = 1∗. Even-dimensional
representations must appear in even numbers. They need to take values in the gauge Lie
algebra, and we classify them up to gauge equivalence. One then finds the following allowed
representations [79] – we indicate the dimensions of the su(2) representations, the unbroken part
of the gauge group, and then the number of massive vacua they give rise to in the infrared:

5 : 1 : 1
3 + 1 + 1 : so(2) : 0
2 + 2 + 1 : sp(2) : 2

1 + 1 + 1 + 1 + 1 : so(5) : 3 . (5.23)
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For instance, the 2 + 2 + 1 dimensional representation breaks the gauge algebra down to sp(2).
Classically, this gives rise to a pure N = 1 theory with sp(2) gauge algebra at low energies,
which gives rise to two quantum vacua. Summing all the resulting numbers of semi-classical
vacua, we find six massive vacua in total.

On the other hand, we have found seven extrema for the twisted elliptic Calogero-Moser
Hamiltonian associated to so(5). Does it mean that there is a mistake somewhere in the analysis?
As we will see in the last two chapters, there is no mistake except for the assumption that
compactification on R3 × S1 leaves the vacuum structure unchanged. This compactification
was a key element for the introduction of the integrable system. However, we remark that we
have a partial correspondence. In particular, there is one vacuum, on the real axis, that we
can identify in the exact quantum regime as the fully Higgsed vacuum (corresponding to the
5-dimensional irreducible representation of su(2) in the list (5.23)). Its S-dual we interpret as a
confining vacuum, and it is a triplet under the T-transformation, agreeing neatly with the so(5)
confining vacua (corresponding to the trivial representation of su(2) in (5.23)). We moreover
found a doublet under T-transformation, again in agreement with the two vacua corresponding
to the sp(2) classical vacuum. Thus, at this level, we find excellent agreement. We note that the
analysis of section 3.3 demonstrates that the six vacua are in a single SL(2,Z) sextuplet and
that their transformation properties are in correspondence with the transformation properties
of sublattices of the torus lattice. Their (generalized) S-duality and T-duality properties are
now entirely known.

The seventh extremum has no matching partner in the vacua on R4. We will explain its
appearance in the compactified theory in chapter 7.

5.3.2 Tensionless Domain Walls, Colliding Quantum Vacua and Masslessness

The point in the fundamental domain around which we have found a monodromy in the case of
the so(8) gauge algebra, corresponds to a point at which two massive vacua have equal super-
potential. At this point, a supersymmetric domain wall between the vacua becomes tensionless
[150, 28], according to the general discussion of section 1.2.3. The physics associated to such a
situation is hard to discuss in detail, because of the difficulty of controlling the Kähler potential
in gauge theories with N = 1 supersymmetry only. Explorations of the physics in this regime can
be found in [151, 67, 152]. We note in particular that in a mass and cubically deformed N = 1
U(N) theory in [151, 152], an extension of the ZN action associated to shifts in the θ angle of the
gauge theory to Z2N was observed due to the presence of a point of monodromy in an effective
coupling. The T -operation (shifting the θ angle of the gauge theory) in our situation is also
crucially influenced by the presence of the point of monodromy : above the point of monodromy
(at weak effective coupling), we find a ZN−2 action, while below (at strong effective coupling),
we find a ZN action (for the case N = 8 as well as for the case of N = 7). We also note that the
collision of the extrema of the superpotential indicates the existence of an effectively massless
excitation since there will be a zero mode for the matrix of second derivatives. The physics, or
at least the properties of the effective description, seem close to the discussion in e.g. [151]. It
would be interesting to elucidate this point further.
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Chapter 6

The SU(N) theory

6.1 Introduction

We saw in the last chapter that compactification has an effect on the vacuum structure of four-
dimensional supersymmetric gauge theories like the N = 1∗ theory we are interested in. We
mentioned in particular the fact that the number of vacua can change. One possible mechanism
that makes this possible is that massless vacua in the semiclassical analysis can become massive
upon compactification. We will then have to pay more attention to these massless vacua.

We will concentrate in this chapter on the N = 1∗ theory with su(N) gauge algebra on the
cylinder R3×S1. This theory has many simplifying features. In particular, the unbroken gauge
group in all semi-classical vacua of the SU(N)/ZN theory is connected, so that the component
group (in the adjoint group) is trivial. Indeed, from the mathematical point of view we have
that Bala-Carter theory coincides with Bala-Carter-Sommers theory – this refinement will be
necessary for other types of Lie algebras, as we will see in chapter 7. Thus, in this theory, we can
isolate new semi-classical limits of the integrable system, and the corresponding gauge theory
physics from other interesting features of N = 1∗ theories when compactified on S1. We will
find branches of massless vacua for low rank, characterize their equilibrium positions, analyze
their superpotential and study how these vacua behave under duality.

To understand the fate of semi-classically massless and massive vacua in su(N) N = 1∗

theory, we again take the elliptic Calogero-Moser Hamiltonian as our starting point [38]. For
starters, we analyze this effective superpotential in the semi-classical regime τ → i∞ and classify
extrema of the integrable system using the technique laid out in section 3.4. We will be able to
promote parts of our limiting knowledge to exact statements at finite coupling.

6.2 Semi-Classical Preliminaries

As argued previously, a classification of extrema is governed by pseudo-Levi subalgebras, in turn
determined by Weyl (i.e. permutation) inequivalent subsets of the affine root system (whose
Dynkin diagram is a circle with N nodes). The number of inequivalent subsets of roots (except
all of them) is the number of partitions of N . In more detail, we let ∆ = {α1, ..., αN−1} be a set
of simple roots of AN−1. For any subset Θ ⊂ ∆ we construct a partition of N . We can write Θ
uniquely as a disjoint union of sets of the form ∆ki,di = {αki , ..., αki+di−2} where di ≥ 2. If our
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choice of subset Θ is
Θ =

⋃
i

∆ki,di (6.1)

then the partition is 1 + ...+ 1 +
∑
i di = N with as many 1’s as necessary to obtain a partition

of N .
For each choice of subsystem, we know the corresponding centralizer subgroup in the com-

plexification of SU(N). We denote the latter by GL(N), the group of size N invertible ma-
trices with complex entries. The algebra of the centralizer is given in [93]. With the notation
ri = |{j|dj = i}| for the number of times a representation of dimension i occurs in the sl(2)
representation spanned by the adjoint scalars, so that∑

i

iri = N , (6.2)

the centralizer algebra is (∏
i

Ari−1

)
× u(1)k , (6.3)

where k = |{i|ri > 0}| − 1 (i.e. the number of distinct dimensions minus one). Then the global
structure of the centralizer group is [92]

S
(∏

GL(ri)i∆
)
, (6.4)

where the ∆ denotes the diagonal copy of GL(ri) inside GL(ri)i, and the S in front means
that we keep only the matrices with unit determinant. This is the centralizer group in the
complexification of SU(N). The counting of the abelian factors in this group goes as follows:
there is one abelian factor for each term in the product and the constraint of unit determinant
reduces the total number of abelian factors by one. In terms of pseudo-Levi subalgebras, a group
with no abelian factor is obtained from a set of roots Θ containing all the simple roots except
d of them (where d divides N) equally spaced on the cyclic affine Dynkin diagram. In other
words, one takes disconnected groups of d − 1 roots on the affine Dynkin diagram, where d is
a divisor. These give rise to the massive vacua of the N = 1∗ theory that were described in
[77, 38]. The corresponding semi-classical limits of the integrable system are well-understood.
We wish to advance the more general case. We will do this on a case-by-case basis, working our
way up in rank.

In the next subsections, we use the semi-classical limiting technique to gain information on
the massless vacua of the first non-trivial low rank cases. For the su(3) theory, we will complete
the picture at finite coupling, while for the su(4) algebra, we present a few features that will be
typical of higher rank.

6.3 The Gauge Algebra su(3), the Massless Branch and the Sin-
gularity

We remind the reader that the superpotential for the su(3) algebra [38] can be parametrized in
terms of the coordinates zi with i = 1, 2, 3 where we can use a shift symmetry to put z3 = 0:

WA2 = ℘(z1 − z2) + ℘(z2 − z3) + ℘(z3 − z1)
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= ℘(z1 − z2) + ℘(z2) + ℘(z1)
= ℘(Z1) + ℘(Z2) + ℘(Z1 + Z2) . (6.5)

In the last line, we have used the more intrinsic parametrization in terms of the coordinates Zi
associated to the fundamental weights.

6.3.1 Semi-classical analysis

When we apply our program of identifying vacua in the semi-classical limit to the case of su(3),
we recuperate the known results for the massive vacua, and find new results for massless vacua.

• For the choice J0 = ∅, which corresponds to the partition 1 + 1 + 1, we set the leading
behavior Y0 = Y1 = Y2 = 1

3 . One finds three confined massive vacua (with k = 0, 1, 2) at

(z1, z2, z3) =
(
k

3 + 2
3τ,

2k
3 + 1

3τ, 0
)
. (6.6)

These extremal positions are exact and the superpotential in these vacua is known [38].

• For the pick J0 = {1}, namely the partition 3 = 1 + 2, we choose Y0 = Y2 = 1
2 , and at

first order the A1 trigonometric system fixes X1 = 1
2 . We analyze the potential near this

equilibrium by expanding WA2(1
2 + δX1,

τ
2 +X2) in perturbation theory in δX1, and as a

function of X2. We find that the first coordinate is corrected as follows

δX1 = −
4i
(
e2iπX2 − e−2iπX2

)√
q

π
−

16i
(
e4iπX2 − e−4iπX2

)
q

π
+ . . . (6.7)

Plugging this correction into the superpotential leads to a superpotential which to the
relevant order no longer depends on X2, and in fact, is equal to zero. We have checked
this to order q4. These facts point towards the existence of a branch of massless vacua,
with zero superpotential along the whole branch. We will obtain full analytic control of
this branch below.

• Finally, for the choice J0 = {1, 2}, namely the partition 3, one obtains the A2 trigonometric
potential. This potential has a real extremum, the fully Higgsed vacuum

(z1, z2, z3) =
(2

3 ,
1
3 , 0

)
, (6.8)

as well as complex massless extrema which form a portion of the same branch of vacua
with zero superpotential just mentioned.

6.3.2 The Massless Branch and the Singularity

Semi-classically, we have found evidence for the existence of a massless branch of vacua with
zero superpotential. In the following, we will concentrate on describing the properties of this
branch analytically, at any finite coupling τ . Together with the known results about massive
vacua that our analysis also recovers, we thus obtain all the vacua of the N = 1∗ theory with
su(3) gauge algebra exactly.

Firstly, we introduce some notation. We will denote the elliptic curve variables as

Xi = ℘(Zi)
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Yi = ℘′(Zi) (6.9)

for i = 1, 2, 3, where Z3 = −Z1 − Z2 by convention. The points (Xi,Yi) all lie on the same
elliptic curve, parametrized by τ , and described by the equation

Y2 = 4X 3 − g2X − g3 . (6.10)

The equations for extremality of the superpotential then read

Y1 = Y2 = Y3 . (6.11)

Moreover, the addition theorem for the elliptic Weierstrass function implies

Xi = 1
4

(
Yj − Yk
Xj −Xk

)2

−Xj −Xk , (6.12)

where i, j, k take three distinct values in the set {1, 2, 3}. Thus, we see that there are two
possibilities: either the superpotential is zero

X1 + X2 + X3 = 0 , (6.13)

or we must have that

X1 = X2 = X3 . (6.14)

We split the analysis of the extrema according to these two cases. Firstly, we consider the
case in which we have the equality (6.14). This equation, together with extremality shows that
Z1 ≡ Z2 ≡ Z3 modulo a period. This implies that all Zi equal a non-trivial third of a period of
the torus, and gives rise to 4 inequivalent vacuum solutions, which are the known massive vacua
[38]. The superpotential is three times the Weierstrass function evaluated at a third period.

Let us return then to the first possibility, which is that the superpotential is zero, equation
(6.13). By eliminating the variables Yi through the curve equation and extremality, we obtain
two equations characterizing the massless branch

X1 + X2 + X3 = 0
X 2

1 + X 2
2 + X 2

3 = g2
2 . (6.15)

These equations are gauge invariant. Solving for the variables Yi will provide a further double
cover of this space. Moreover, we mod out the space by the discrete gauge symmetry S3, which
exchanges the three indices {1, 2, 3} of the variables Xi (and flips the sign of the variables Yi
if the permutation is odd, exchanging the two sheets of the cover). We can parametrize the
curve more explicitly by eliminating more variables. A description of the curve in terms of two
variables is

X 2
1 + X1X2 + X 2

2 = g2
4 . (6.16)

This equation parametrizes a complex line. Equivalently, using the reparametrization X ′1 =
X1 + X2 and X ′2 = X1 −X2, this equation reads

(X ′2)2 = 3(X ′1)2 − g2 . (6.17)
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Figure 6.1: We illustrate the singularities in of the curve X ′2 = ±
√

3(X ′1)2 − g2(τ) as a function
of τ . The branch-cut shrinks to zero size when τ = τ0.

Note that at the values τ0 of the complexified gauge coupling where the fourth Eisenstein
series g2 is zero, the complex line has a singular point at X1 = X2 = 0. This is illustrated in
figure 6.1. The singularity is a crucial feature of the massless branch. The zeros of g2 in the τ
upper half-plane are exactly the SL(2,Z) images of τ0 = e2πi/3, which is the only zero of g2 in
the fundamental domain.1 Thus, at these couplings the massless branch develops a singularity.
These are elliptic points of order three.

Finally, we note that the conditions that all Xi be equal (which is valid for the 4 vacua
associated to third periods), and that the superpotential vanish can both be satisfied at the
singular points. More precisely, for each given singular coupling in the SL(2,Z) orbit of τ0, one
of the four formerly massive vacua becomes massless and joins the massless branch. The fact
that a massive vacuum becomes massless at this coupling may indicate a higher order critical
point, and the existence of an interacting N = 1 superconformal field theory. The value of the
critical coupling points towards a natural candidate for this theory, which is the Argyres-Douglas
theory [41] broken to N = 1 [153].

In fact, the analysis of N = 2 SU(3) theory with an adjoint hypermultiplet reveals that the
Seiberg-Witten curve has eight cusps [77]. When we analyze the cusps at values of the moduli
such that they coincide with vacua that would be massive at generic coupling, we find that the
number of cusps reduces to four.2 Of these four cusps, one is associated to a pure SU(3) theory,
and the other three correspond to a SU(2) theory with a massless fundamental hypermultiplet
at a (generalized) Argyres-Douglas point [68]. Since the N = 1∗ massive vacua are invariant
under Γ0(3), we can classify the singular couplings τ into Γ0(3) cosets of SL(2,Z) according
to which massive vacuum becomes massless at the given singular coupling. We find that at

1It is easy to show that τ0 = e2πi/3 is a zero of E4 = 3
4π4 g2 using E4(τ0) = E4(τ0+1) = E4(−1/τ0) = τ4

0E4(τ0) =
τ0E4(τ0). There remains to show that there is no other zero. We use the formula ordi∞+ 1

2ordi+
1
3ordτ0 +

∑
ordτ =

k/6, valid for any modular form of weight 2k. At weight 2k = 4 the formula gives ordτ0 = 1 and there can be no
other zero.

2The operation S2 discussed in [77] acts trivially in this circumstance.
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τ = −1
τ0+2 the Higgs vacuum becomes massless, while at τ = τ0 + 2 the confined vacuum situated

on the imaginary axis becomes massless, at τ = τ0 + 1 = eπi/3, its T-dual and at τ0 = e2πi/3

the third confined vacuum. Thus, the SL(2,Z) action on these Argyres-Douglas singularities
coincides with the action of the duality group on the four massive vacua of the N = 1∗ theory.
From the action of the T-transformation, we can identify the confined vacua with the SU(2)
cusps and the Higgs vacuum with the pure SU(3) cusp [77]. Our analysis provides a concrete
picture for how the transformation properties of the massive phases are locked with the duality
properties of the cusps.

At generic coupling τ , the duality properties of the massive vacua are well-known. We find
that the massless branch, in the description in terms of elliptic curve variables, is invariant under
the action of the T-transformation, since the fourth Eisenstein series is. Moreover, under the S-
transformation, the variables Xi transform with weight two, as one expects from their definition
in terms of the elliptic Weierstrass function. Thus, the branch is self-dual under the full modular
group (or more precisely, is mapped to an equivalent, scaled branch at dual coupling).

6.3.3 The Massless Branch in the Toroidal Variables

The description of the massless branch was straightforward in terms of gauge invariant polyno-
mials of the variables Xi. Still, we can ask for the description of the massless branch of vacua
in terms of the extrema of the integrable system, parametrized by the coordinates Zi (namely,
the complexified Wilson lines), at finite coupling τ . That description too can be obtained, but
it demands further effort. We can for instance work with the following parameterization of the
massless branch

X1 =
i
√
g2

2
√

3

(
λ− 1

λ

)
X2 =

√
g2
4

[(
λ+ 1

λ

)
− i√

3

(
λ− 1

λ

)]
X3 =

√
g2
4

[
−
(
λ+ 1

λ

)
− i√

3

(
λ− 1

λ

)]
, (6.18)

for λ ∈ C∗. However, we still have to take into account both the fact that we have a double cover
(when we solve for Yi) as well as the action of the Weyl group to faithfully describe the branch
of vacua. The Weyl group has generators that exchange two distinct coordinates, Zi ↔ −Zj
(while also changing the sign of the third coordinate). This translates into identifications on our
parameter space:

• Z2 ↔ −Z3 corresponds to λ↔ − 1
λ .

• Z1 ↔ −Z2 corresponds to λ↔ e−2πi/3λ.

• Z1 ↔ −Z3 corresponds to λ↔ e2πi/3λ ,

and each transformation exchanges the two sheets of the Y cover. Hence the massless branch
is a double cover of the sphere parametrized by λ. We excise the points λ = 0 as well as
the point λ = ∞, because the superpotential blows up in these points. This indicates the
enhancement of gauge symmetry, and the breakdown of the effective superpotential description
at these Z3 fixed points. A fundamental domain for λ is given by the following region: |λ| ≤ 1
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and π/6 ≤ arg λ ≤ 5π/6 with a Z2 identification of the borders of the unit disk as well as of the
two rays on the boundary.

We now wish to distinguish between two physically distinct sets of configurations. They
are characterized by the way they behave under the charge conjugation symmetry of the gauge
theory. Conjugation acts by exchanging Z1 ↔ Z2, which is a global symmetry of the gauge
theory, inherited by the low-energy effective superpotential. When we have the equality X1 = X2
(or a permutation thereof), we can either have Z1 = −Z2 or Z1 = Z2, modulo the periodicity of
these variables. The first case corresponds to a fixed point of the local Weyl symmetry group,
and it leads to a singular term in the effective superpotential, indicating the enhancement of
the gauge group (i.e. the fact that we leave the Coulomb branch). We exclude this singular
configuration from our analysis. The second case indicates a fixed point of the charge conjugation
symmetry. This occurs when λ6 = −1. When there is no equality between any of the variables
Xi, we are at a less symmetric point on the massless branch. These two regimes will lead to a
qualitatively different solution for the variables Zi as we show in detail below.

We would like to solve equation (6.9) for the complexified Wilson lines Zi. The solution
relies on inverting the Weierstrass function. The techniques for performing this inversion were
presented in [40] by Eichler and Zagier in their analysis of the zeros of the Weierstrass ℘ func-
tion. These authors also study the solutions to the equation ℘(Z) = X (τ) where X (τ) is a (e.g.
meromorphic) modular form of weight 2. Our equation does not fit this mold – the Weierstrass
function is equal to the square root of a modular form of weight 4. Still, we can apply the bulk of
the Eichler-Zagier methods. The Eichler-Zagier technique for inverting the Weierstrass function
consists of two parts. On the one hand, since the argument Z is multi-valued due to the period-
icity of the Weierstrass function, it is useful to derive with respect to the modular parameter τ
twice, to eliminate this ambiguity. The two integration constants that one subsequently needs
can be determined by matching the semi-classical limits. On the other hand, one inverts the
equation through integration of the defining equation for the elliptic curve

℘(Z; τ) = X (τ) ⇐⇒ Z = ±
√

3
2π

∞∫
3
π2X (τ)

dt√
t3 − 3E4(τ)t− 2E6(τ)

. (6.19)

From this equation, we determine the second derivative with respect to τ , by multiple application
of the Ramanujan identities for the derivatives of the Eisenstein series. The calculation is
presented in pedagogical detail in [40] and results in the equality

±d2Z

dτ2 =
(
4π2(g3 − 4X 3 + g2X )D3D6X + 2π2(12X 2 − g2)(D6X )2 + (6g3X + g2

2/3)D6X

+ 1
72π2 (12g2X 4 + 3g2

2X 2 + 6g2g3X − g3
2 + 27g2

3)
)
/(4X 3 − g2X − g3)

3
2 , (6.20)

where the function X acts as a seed, and the modular covariant derivative is given by Dn =
q∂q − 1

nE2. The integration constants are fixed by taking the semi-classical limit of the formula
(6.19). Here, we will add a point to the analysis in [40], by exhibiting a special case of the
limiting formula, which is also physically distinct. We define the variable Xi∞ = X (τ → i∞).
If Xi∞ 6= −π2

3 , the semi-classical limit is given by [40]

Z(τ → i∞) = 1
2 ±

1
2πi log

1 +
√

2
3 −

1
π2Xi∞

1−
√

2
3 −

1
π2Xi∞

(6.21)
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while for the case Xi∞ = −π2

3 it is

Z(τ → i∞) = ±1
4 + τ

2 . (6.22)

The latter case occurs when the Xi are at a charge conjugation fixed point, i.e. a fixed point
of the global Z2 symmetry. Note that the limit formula (3.47) shows that this case is common.
Let us nevertheless first concentrate on the case in which all the variables Xi are different, and
construct the solution for the variables Zi. We then come back to the global Z2 fixed point.

6.3.4 The points λ6 6= −1

The point λ = 1, for instance, is representative for all λ not at a Z2 fixed point. In this case,
we have

X1 = 0

X2 =
√
g2
2

X3 = −
√
g2
2 ,

and the formulas (6.21) and (6.20) from [40] apply. We can for instance write the solution as a
series expansion q at large imaginary τ

±πZ1 = 1
2
(
π − i cosh−1(5)

)
+ 36i

√
6q + 6588i

√
6q2 + ... (6.23)

±πZ2 =
(
π

2 − i tanh−1
( 1√

2
− 1√

6

))
+
(
−36i

√
2− 18i

√
6
)
q (6.24)

+
(
1188i

√
2− 3294i

√
6
)
q2 + ...

±πZ3 = −π − i

2 log

1− 6

3 +
√

6 + 3
√

3

+
(
36i
√

2− 18i
√

6
)
q (6.25)

+
(
−1188i

√
2− 3294i

√
6
)
q2 + ...

The series that we obtain has a finite radius of convergence. The integration formula (6.19)
is valid at any modular parameter τ . In this explicit solution (6.23), we can choose a sign for
each Zi, consistently with the constraint Z1 + Z2 + Z3 ≡ 0. Thus, we see that we must pick
the same sign for all Zi – there are two solutions. The solutions are invariant under T -duality.
This implies that they are also S-invariant, since 1 = (ST )3 = S3 = S. The semi-classical limit
of these vacua lies in the class J0 = {1, 2}. The semi-classical limit of the massless branch that
contains these vacua can be obtained by setting Y1,2 = 0 and taking the corresponding limit on
the equations (6.15) parameterizing the branch.

6.3.5 The Z2 symmetric points

We return to the Z2 symmetric values of λ which lie at λ6 = −1. Let us further concentrate
on the case where the equality X2 = X3 holds. Note that the condition we impose is duality
invariant. The solutions will therefore transform into each other under the SL(2,Z) action of
the duality group. We solve for the coordinates Zi at these particular points. From equation
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(6.18) we read that the equality X2 = X3 translates into λ2 = −1, which implies that we can
focus on the two points λ = ±i.

At the value λ = −i, we have to solve the equations:

X1 =
√
g2
3 (6.26)

X2 = −1
2

√
g2
3 (6.27)

X3 = −1
2

√
g2
3 . (6.28)

We begin with the second equation (6.27), for which the equality (6.22) gives the asymptotic
value Z2(i∞) = ±1

4 + τ
2 . We define

Z2 = 1
4 + τ

2 −
1
2α(q) (6.29)

to be the solution of (6.27) such that α(q) has semi-classical behavior

α(q) = 8
π
q

1
2 +O

(
q3/2

)
(6.30)

and is analytic along the line iR∗+. Note that from the equation, we can compute the Fourier
expansion to arbitrary order.3 Next, we consider the first equation (6.26). The asymptotic
behavior of its solutions ±Z1 is now given by equation (6.21), and it is Z1(i∞) = 1

2 . The exact
solution involves the function α(q) just defined, Z1 = 1

2 ±α(q) as a consequence of the doubling
formula

℘

(1
2 ± α

)
= −2℘

(1
4 + τ

2 −
1
2α(q)

)
+

6℘
(

1
4 + τ

2 −
1
2α(q)

)2
− 1

2g2

4℘′
(

1
4 + τ

2 −
1
2α(q)

)2 =
√
g2
3 . (6.32)

The relative sign is determined by the requirement that Z3 = −Z1 − Z2 be a solution of (6.28).
Therefore we have found two inequivalent vacua at λ = −i:

(Z1, Z2) =
(1

2 + α,
1
4 + τ

2 −
α

2

)
(z1, z2, z3) =

(3
4 + τ

2 + α

2 ,
1
4 + τ

2 −
α

2 , 0
)

(6.33)

and

(Z1, Z2) =
(1

2 − α,
1
4 + τ

2 + α

2

)
(z1, z2, z3) =

(3
4 + τ

2 −
α

2 ,
1
4 + τ

2 + α

2 , 0
)
. (6.34)

We now turn to the value λ = i and proceed similarly. Our task is to solve

X1 = −
√
g2
3 (6.35)

3We have

πα(q) = 8q
1
2 − 1088q 3

2

3 + 198288q 5
2

5 − 39006080q 7
2

7 + 7975383560q 9
2

9

−1669600216512q 11
2

11 + 355119960987280q 13
2

13 + . . . (6.31)
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X2 = 1
2

√
g2
3 (6.36)

X3 = 1
2

√
g2
3 . (6.37)

We define 1
2 − β(τ) to be the solution of (6.36) with semi-classical behavior

β(q) = i

2π log
(
2 +
√

3
)

+O(q) (6.38)

and demand analyticity on iR∗+,4 and again we find that 2β(q) is a solution of (6.35) using the
duplication formula for the Weierstrass function. The signs are determined as previously, and
we conclude that a solution is

(Z1, Z2) = (2β, 1
2 − β) (z1, z2, z3) =

(1
2 + β,

1
2 − β, 0

)
. (6.39)

As before, we could flip the sign in front of β in this expression, but this would lead to an
equivalent vacuum. We have only one vacuum at λ = i.

While for generic λ the action of T -duality and as a consequence SL(2,Z) duality on the
vacua was trivial, here we see, e.g. from the expansion (6.30), that T -duality exchanges the
two vacua (6.33) and (6.34). As a consequence S-duality will act as well. We devote the next
paragraph to a detailed study of these dualities.

6.3.6 Dualities at the Z2 symmetric points

In the course of our analysis we have found the four solutions of the equation

℘(z)2 = g2
2 (6.40)

that we can gather in a vector

V (τ) =


1
2 + α(τ)
1
2 − α(τ)

2β(τ)
−2β(τ)

 , (6.41)

which can be interpreted as a vector-valued and multi-valued modular form [40]. The word multi-
valued here refers to the fact that these quantities are defined up to periods of the Weierstrass
function. This vector transforms under SL(2,Z) according to

V (τ) T−→ V (τ + 1) =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

V (τ) , (6.42)

4We have the further expansion

iπβ = − log
(

1 +
√

3√
2

)
+ 12
√

3(q − 87q2 + 11080q3 − 1671095q4 + 1384694994q5

5

−48732765432q6 + 62575601740112q7

7 − 1690589139219255q8 + 327268705474374265q9 + ...) .
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and

V (τ) S−→ V

(−1
τ

)
= −1

τ




0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

V (τ)−


τ

0
0
1


 , (6.43)

where we have used the analyticity along iR∗+ to fix the periodic dependence. Thus, we have a
weight −1 modular form up to periodicity. Let’s call T and S the matrices that appear in these
equations and that are associated to the two generators of SL(2,Z). The periodicity is linear
in the modular parameter τ , such that again, if we take two derivatives with respect to τ , this
ambiguity drops out, and we find a vector valued modular form of weight 3:

V ′′(τ + 1) = TV ′′(τ) , V ′′
(−1
τ

)
= (−τ)3SV ′′(τ) . (6.44)

The method of [40] gives the explicit solution

ψ(τ) = V ′′(τ)×

(g2(τ)
3

) 3
2
− g3(τ)

 3
2

(6.45)

and each component of the vector V is given as

±V ′′ = 1
( φ3

± − g3)
3
2

[
4π2(g3 − φ3

±)D3D6φ± + 18π2φ2
±(D6φ±)2 (6.46)

+3φ±(2g3 + φ3
±)D6φ+ 1

8π2 (4φ6
± + 2g3φ

3
± + 3g2

3)
]

where the seed φ± is a branch of the square root of the Eisenstein series φ± = ±
√

g2
3 , and the

4 components of V ′′ correspond to the 4 possible choices of signs (on the left, and on the right
hand side independently). We give the first few terms (the first line is obtained from φ+ and
the second line from φ−):

V ′′(τ) = ±8π
(

q
1
2 − 408q

3
2 + 123930q5/2 − 34130320q7/2

12i
√

3(q − 348q2 + 99720q3 − 26737520q4 + ...)

)
= ±

(
α′′

2β′′

)
(6.47)

and
ψ(τ) ∝ −q2 + 336q3 − 94824q4 + 25238080q5 − 6506938620q6 + ... . (6.48)

After double integration, this characterizes the q expansion of α, β, and therefore analytically
completes the series we obtained previously. We further analytically continue the functions α
and β in the double cover of the upper half plane. The triplet of solutions to the equation
becomes degenerate at the zeros of E4. Note that we can switch branch for the seed by rotating
around the zero τ0 = e2πi/3 of the weight 4 Eisenstein series. As a consequence, this operation
flips α and β, and this introduces a monodromy amongst the sheets of massless vacua in the
elliptic integrable system parameterization.

6.3.7 Summary Remarks

We recapitulate the duality diagram for both the massive and massless extrema of the su(3)
integrable system.5 We have four massive vacua, of which two are self-S-dual, and two are

5 We repeat that the global aspects of the gauge group can be taken into account by carefully treating the
subgroup of Z3 which one chooses as center, and the possible electro-magnetic line operators in the theory, which
have consequences on the periodic identifications of variables.
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mutually S-dual. They form a singlet and a triplet under T -duality. We have one massless
branch which is duality invariant in the elliptic curve variables.6 We note that the semi-classical
limit that allows for the Higgs vacuum, also sees the massless branch.

Partition J0 Unbroken Vacua
1 + 1 + 1 ∅ su(3) 3 confining vacua of pure N = 1

2 + 1 {1} or {2} u(1) the massless branch
3 {1, 2} 1 1 Higgs vacuum + the massless branch

Table 6.1: Summary of vacua for su(3)

There is a more intricate description of the massless branch in terms of the elliptic integrable
system variables, which allows to follow the duality map on the massless vacua point by point.
For the extremal positions of the massless vacua in terms of the complexified Wilson lines, we
have exhibited a point of monodromy on the boundary of the fundamental domain, and in
particular, the elliptic point of order 3 of the SL(2,Z) action on the upper half plane. This
point is a singular point for the manifold of massless vacua. It is reminiscent of the point of
monodromy in the interior of the fundamental domain for two massive vacua of the so(8) theory
[1].

6.4 The Gauge Algebra su(4)

We have obtained a complete picture of the massive and massless vacua of the su(3) theory. In
this subsection, dedicated to the gauge algebra su(4), we will only perform a partial analysis.
Recall that for su(4), the partition 1 + 1 + 1 + 1 gives rise to an affine Toda limit with four
solutions, which correspond to the four confining vacua of pure N = 1. The partition 2 + 2
corresponds to the choice J0 = {α1, α3} which gives rise to two trigonometric A1 systems with
one solution, and the two remaining variables then form an A2 affine Toda system which has
two solutions, corresponding to the two confining vacua of the unbroken su(2) gauge algebra.
Finally, we have the partition 4 which corresponds to the trigonometric A3 system. This gives
rise to a real extremum which represents the fully Higgsed vacuum. We have a total of seven
massive vacua.7 Our focus in the following are massless vacua. A natural way to generate
massless vacua is by exploring the partitions 2 + 1 + 1 and 3 + 1 which leave unbroken abelian
gauge group factors. We will consider them in turn. Let us first remind the reader that the
superpotential for the su(4) gauge algebra is

WA3(Z1, Z2, Z3) = ℘(Z1) +℘(Z2) +℘(Z3) +℘(Z1 +Z2) +℘(Z2 +Z3) +℘(Z1 +Z2 +Z3) , (6.49)

in variables Zi which are coefficients of fundamental weights.

6.4.1 The Partition 2 + 1 + 1

The partition 2 + 1 + 1 corresponds to a choice of simple root system J0 = {1}. The centralizer
algebra is su(2) ⊕ u(1) in this case. We may intuit the existence of two massless branches on

6There is a point this branch which is S-duality and T-duality invariant. It is given by (z1, z2, z3) =
(1/2, τ/2, (1 + τ)/2), and is mentioned in [84].

7There are other complex extrema of the trigonometric integrable systems.
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the basis of this centralizer algebra. We will approach them through the semi-classical limit.
In this limit, we have one leading trigonometric root that sets Y1 = 0. To find the other

shifts, we use a heuristic argument based on cancellations that happen in the superpotential at
first order in perturbation theory, where X1 = 1

2 . Such cancellations occur at level n = 1 in
(3.64) in the sum over the roots that have a non-vanishing scalar product with Ŷ . As illustrated
on the affine Dynkin diagram on figure 6.2, the contributions of α0 and α0 +α1 will cancel each
other in (3.66), as well as α2 and α1 +α2, and all other roots involving α0 and α2 are suppressed
in the semi-classical limit. Therefore in order to stabilize the system we use the next level n = 2
for these roots, which then contribute with factors of q2Y0 and q2Y2 . On the other hand α3
contributes with a factor qY3 . Stabilization at leading order requires that these powers of q be
equal, and we therefore propose the following ansatz:

Y1 = 0
2Y0 = 2Y2 = Y3

Y0 + Y1 + Y2 + Y3 = 1
=⇒


Y0 = 1

4

Y2 = 1
4

Y3 = 1
2

. (6.50)

To obtain the subleading Toda potential, we need to take into account the non-perturbative
corrections to the value X1 = 1

2 . Firstly, we expand the superpotential (6.49) around the
leading order values (6.50), assuming that the variation δX1 of X1 behaves as a power of q. The
dominant terms are

1
π2W

(1
2 + δX1,

τ

4 +X2,
τ

2 +X3

)
= −1 + π2δX2

1 + 8iπδX1q
1
4
(
e2iπX2 − e−2iπX2−2iπX3

)
.(6.51)

There is a linear term in the non-perturbative correction δX1 which determines its value at order
q

1
4 :

(δX1) 1
4

= 4i
π
q

1
4
(
e−2iπ(X2+X3) − e2iπX2

)
. (6.52)

This confirms that the value X1 = 1/2 has to be corrected, and that the superpotential should
be expanded around the point shifted by (δX1) 1

4
:

1
π2W

(1
2 + (δX1) 1

4
+ δX1,

τ

4 +X2,
τ

2 +X3

)
= −1− 4q

1
2
(
9e−2πiX3 + e2πiX3

)
. (6.53)

We conclude that X3 can be determined at this step, and we find

X3 = − i log 3
2π + 1

2Z . (6.54)

A longer calculation at higher order shows that X3 in turn receives non-perturbative corrections,
starting at order q

1
2 . Taking into account this second step in our non-perturbative staircase, we

find that the superpotential becomes independent of X2, and equal to −1∓ 24√q− 24q+ · · · =
π2E2,2(±q

1
2 ) where the upper sign is for the choice of an integer in equation (6.54) and the

lower sign for a strictly half-integer choice. Thus, we have found semi-classical evidence for two
one-dimensional complex manifolds of massless vacua characterized by these superpotentials.
Again, numerical and analytical evidence can be amassed to argue that the superpotentials are
exact.8

8One extra technique compared to those presented elsewhere is to find a special point on the branch, and then
prove that at that point the superpotential takes the claimed value. For the case at hand, for instance, we can
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Figure 6.2: Affine Dynkin diagram for algebra A3 and partition 2+1+1. The crossed simple root
corresponds to the set J0 = {1}, and the dotted lines encircle roots that cancel the contribution
of the simple roots α0 and α2.

6.4.2 The Partition 3 + 1

The partition 3 + 1 corresponds to the choice of simple roots J0 = {1, 2}. The unbroken gauge
algebra is u(1), and we expect one massless branch. Our ansatz for the linear behavior in τ is
dictated by the choice of the partition which gives Y1 = Y2 = 0 and by the symmetry of the
affine Dynkin diagram which leads to Y3 = Y0. Together with the normalization (3.58) we obtain
Y3 = 1

2 . The trigonometric A2 system arises, and we consider the standard Higgs solution of
this system. We thus have X1 = 1/3 and X2 = 1/3 to leading order. We obtain a series of
non-perturbative corrections to both leading coordinates and find that when we take those into
account, the third variable X3 parametrizes a massless branch. We calculate the superpotential
to order q2 and it is consistent with the exact value we propose, namely W = −2π2E2,2(q).

6.4.3 The Duality Diagram

We have gathered semi-classical and exact data on the su(4)N = 1∗ theory. The duality diagram
for the massive states is essentially known, with our without the refinement due to the global
choice of gauge group and line operator spectrum. The massless branches fit into the following
scheme: we have two massless branches that arise from the partition 2+1+1 and they are T-dual.
This is consistent with the confining dynamics of the summand su(2) in the unbroken gauge
group. The branch that we found for partition 3 + 1 is self-T-dual. Moreover, the branch with
superpotential π2E2,2(q

1
2 ) = −π2 (θ2(q)4 + θ3(q)4) is S-dual to the manifold with superpotential

π2(θ4(q)4 + θ3(q)4) = −2π2E2,2(q). Similarly, the branch with superpotential π2E2,2(−q
1
2 ) is

self-S-dual. This is a familiar three-node permutation representation of the SL(2,Z) duality
group. The table below gives a summary of some of the data we laid bare.

concentrate on the point

(Z1, Z2, Z3) =
(1

2 ,
τ

4 + γ

2 ,
τ

2 − γ
)
. (6.55)

One then shows that these positions are indeed extremal provided the function γ(τ) satisfies the equation

℘′(2A) + ℘′2(A) = 0 with A = τ

4 + γ

2 . (6.56)

One can then also analytically prove that this vacuum is massless and has the claimed superpotential. The result
is then valid along the whole branch.
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Partition J0 Unbroken Vacua
1 + 1 + 1 + 1 ∅ su(4) 4 confining vacua of pure N = 1

2 + 1 + 1 {1}, {2} or {3} su(2)⊕ u(1) branches π2E2,2(±q
1
2 )

3 + 1 {1, 2} or {2, 3} u(1) branch −2π2E2,2(q)
2 + 2 {1, 3} su(2) 2 massive vacua

4 {1, 2, 3} 1 1 Higgs massive vacuum

Table 6.2: Summary of vacua for su(4)

6.4.4 Summary Remarks

We again found new features in the su(4) analysis. These included a staircase structure for
determining the positions, with each step corresponding to non-perturbative corrections of a
given order. We also discovered an example in which massless manifolds fit into a non-trivial
duality diagram. These features are expected to be generic. We moreover are bound to find
higher dimensional vacuum manifolds when higher dimensional abelian centralizers are present.

It would be interesting to fully complete the analysis of the vacua of the su(4) theory, in
the spirit of the analysis we performed for su(3). In particular, one can exploit the algebraic
approach, and parametrize the extrema in terms of algebraic equations. This will allow to
determine for instance potential singularities, and possible intersections of manifolds of massless
vacua for given values of the complexified coupling τ .

6.5 A Word on the su(N) Theory

It should be clear that in the su(N) case there will be many extra solutions compared to the
known sublattices of order N of the torus that represent the massive vacua. Below, we offer
only one rudimentary observation on the massless vacua.

The number of massless directions at τ → i∞ in the integrable system equals the number
of U(1) factors for the semi-classical vacuum in the Coulomb phase. Indeed, all directions that
are stabilized by terms with leading behavior a power of q will become untethered when we take
the semi-classical limit. In our problem, these are all directions associated to the (affine) Toda
system(s). Thus, in the semi-classical limit, we obtain |J̄0|−1 flat directions. We can check that
this matches the dimension of the semi-classically unbroken abelian factors, when we go to the
Coulomb branch.

Recall that a partition (di) (which satisfied
∑
di = N) corresponds to strands (di − 1) in

the set of simple roots of AN−1. The number of coordinates we fix at leading order, using the
trigonometric integrable system potential, is equal to

∑
i(di − 1). The number of coordinates

that is unfixed then, in the semi-classical limit (taken on the low-energy effective action) is equal
to N − 1−

∑
i(di− 1) = |i| − 1 where |i| counts the number of (non-zero) terms in the partition.

The number of abelian factors in the Coulomb phase is given by the rank of the centralizer of
the nilpotent orbit. The rank is equal to

∑
j(rj − 1) + k where the rj are defined as the number

of times the summand j appears in the partition and k = |{i|ri > 0}| − 1 as in the discussion
around (6.3). If we compute this sum, using

∑
j rj = |i| and

∑
j 1 = k+ 1, we find |i| − 1, which

matches the number of massless modes in the semi-classical limit.
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Chapter 7

Topological properties of Groups and
Lines

7.1 Introduction

This chapter contains advanced nilpotent orbit theory, complexified integrable system analysis,
as well as intricate aspects of N = 1 gauge theories in four dimensions upon circle compacti-
fication. We have therefore decided to first illustrate many features of the generic analysis in
the example of N = 1∗ theory with gauge algebra so(5), where a lot of details can be worked
through by hand. We include a description of the consequences of the choice of global gauge
group and the spectrum of line operators, which neatly complements the analysis of [10, 139] in
an example that is intermediate between N = 4 and pure N = 1 supersymmetric gauge theory
in four dimensions. Section 7.2 serves to study a tree before exploring the forest. The finer
features of the so(5) example will motivate the later sections.

We also discuss the N = 1∗ theory with gauge group of exceptional type G2. A first reason
to study this case is that G2 is a gauge group of limited rank, allowing for an elaborate numerical
analysis of the duality properties of the massive vacua. A second reason is that the group G2
exhibits an orbit with an unbroken discrete gauge group. This will allow us to cleanly illustrate
the role played by the discrete group in the identification of the extrema of the integrable system
with massive gauge theory vacua on R2,1×S1. This aspect puts into focus the difference between
the gauge theory on R4 and the gauge theory compactified on a circle.

In section 7.4, we thus provide a large amount of detail of the semi-classical analysis of
the vacua of N = 1∗ theory on R2,1 × S1 with gauge group G2, including a nilpotent orbit
classification with their pertinent properties, and the low-energy quantum dynamics in the
corresponding phases. Moreover, we perform an in-depth analysis of the associated twisted
elliptic Calogero-Moser integrable system, and we make a comparison with the semi-classically
predicted vacua. We also provide the duality diagram of the massive vacua and a first estimate
of a point of monodromy. In section 7.5, we tie up a loose end, and analytically describe the
branch of massless vacua for the so(5) theory.

167
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7.2 The N = 1∗ Theory with Gauge Algebra so(5)

To illustrate finer points that crop up when analyzing N = 1∗ gauge theories with generic gauge
group upon circle compactification, we concentrate in this section on the study of N = 1∗ theory
with gauge algebra so(5), and the associated twisted elliptic integrable system with root system
B2 [39].

7.2.1 The Semi-Classical Analysis and Nilpotent Orbit Theory

The N = 4 supersymmetric Yang-Mills theory on R4 has fields in one vector and three chiral
multiplet representations of the N = 1 supersymmetry algebra. All fields transform in the
adjoint representation of the gauge algebra. After triple mass deformation to N = 1∗ gauge
theory, the F-term equations of motion (divided by the complexified gauge group) for the three
adjoint chiral scalars have solutions classified by embeddings of sl(2) commutation relations
inside the adjoint of the gauge algebra. By the Jacobson-Morozov theorem, these sl(2) triples
are in one-to-one correspondence with nilpotent orbits, which have been classified for simple
algebraic groups [93, 92, 95, 94].

Nilpotent orbits of the classical groups can be enumerated by partitions that correspond to
the dimensions of the sl(2) representations that arise upon embedding in the gauge algebra.1

The Lie algebra of the centralizer has been computed, and non-abelian centralizers give rise
to effective pure N = 1 gauge theories that have a number of quantum vacua equal to the
dual Coxeter number of the unbroken gauge group. The partition, the unbroken gauge algebra,
and the number of massive quantum vacua they give rise to on R4 for the gauge algebra so(5)
are enumerated in the first three columns in table 7.1. For instance, the 2 + 2 + 1 partition
of 5 corresponds to a configuration for the adjoint scalar expectation values that represent a
particular orbit (via the correspondence between sl(2) embeddings and nilpotent orbits), and
these vacuum expectation values leave a C1 = A1 gauge algebra unbroken. The resulting pure
N = 1 gauge theory at low energy gives rise to two massive vacua. See [77, 79, 34, 1, 2].

Orbit Partition Unbroken Massive Vacua on R4 W-class Levi
1 + 1 + 1 + 1 + 1 B2 3 ∅ 0

2 + 2 + 1 C1 2 {α1} C1
3 + 1 + 1 u(1) 0 {α2} Ã1

5 1 1 {α1, α2} B2

Table 7.1: Nilpotent orbit data for so(5).

The last two columns in table 7.1 are related to the Bala-Carter theory of nilpotent orbits
[154, 155] that associates a Weyl group equivalence class of subsets of the set of simple roots
to each Levi subalgebra of the gauge algebra. The reader is referred to section 2.4.3 for the
necessary nilpotent orbit theory, and also section 7.4.2 for an example worked out in detail.
When we compactify the gauge theory on R2,1×S1, properties of the centralizer beyond its Lie

1For the case of gauge algebra so(2N) and the adjoint gauge group SO(2N), the very even partitions (having
only even parts with even multiplicity) give rise to two distinct nilpotent orbits. For this gauge algebra, each
orbit gives rise to its own vacua. When the outer automorphism of so(2N) is joined to the adjoint gauge group,
we obtain the gauge group O(2N) in which these orbits and the corresponding vacua are identified.
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type become crucial. A refined classification of the nilpotent orbits, including the conjugacy
classes of the component group2 of the unbroken gauge group (by Bala, Carter and Sommers
[154, 155, 35]) gives rise to table 7.2.

Orbit Centr. C. C. Massive Vac. W-classes PLS
1 + 1 + 1 + 1 + 1 B2 1 3 ∅ 0

2 + 2 + 1 A1 1 2 {α0} , {α1} C1
3 + 1 + 1 u(1) 1 0 {α2} Ã1
3 + 1 + 1 u(1) (12) 1 {α0, α1} D2

5 0 1 1 {α0, α2} , {α1, α2} B2

Table 7.2: The Bala-Carter-Sommers classification of nilpotent orbits with their centralizers,
including the conjugacy classes (C.C.) of the component group of the centralizer. The first
column gives the partition labeling the orbit, the second the Lie type of the centralizer (i.e. the
unbroken gauge algebra for given adjoint vacuum expectation values), the third the conjugacy
class of the discrete part of the centralizer corresponding to the chosen pseudo-Levi subalgebra
(PLS) in the last column, the fourth the number of massive vacua and the previous to last the
Weyl conjugacy classes of subsystems of simple roots of the affine root system. In each case,
there is only one distinguished parabolic subalgebra, which is the principal one. This analysis
is valid for the adjoint group and will be further refined when we take into account the choice
of global properties of the gauge group (see table 7.3).

At this stage, we wish to take away the elementary fact that the partition 3 + 1 + 1 appears
twice in the first column of table 7.2, because there is a discrete Z2 component subgroup of
the centralizer. The Z2 component group has two conjugacy classes, namely the trivial one,
and the non-trivial one (labeled by the cyclic permutation (12)). The importance of the second
occurrence is the fact that we can turn on a Wilson line on the circle equal to this conjugacy class
while still satisfying the equations of motion (as discussed in detail in section 7.4). Because the
Z2 forms a semi-direct product with the SO(2) unbroken gauge group for the 3+1+1 partition,
turning on the Wilson line breaks the abelian gauge group, and generates a new massive vacuum
on R2,1 × S1 [1]. Finally, we note that we also have a massless branch of rank one.

7.2.2 The Elliptic Integrable System

We turn to how the physics of the N = 1∗ theory with gauge algebra so(5) is coded in the
twisted elliptic integrable system of type B2 that was proposed to be the low-energy effective
superpotential for the model [39]. In as far as this constitutes a review of the results presented
in [1], we will again be concise, while new features will be emphasized.

Figure 7.1: The Dynkin diagram of the affine algebra ŝo(5) = B
(1)
2 with our convention for the

numbering of long and short roots.

2The component group is the quotient of the group by its identity component.
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The Dynkin diagram for the affine algebra B
(1)
2 (as well as its finite counterpart, upon

deleting the zeroth node) can be read off from figure 7.1. The long simple root α1 of B2 can be
parametrized as α1 = ε1 − ε2 and the short root α2 as α2 = ε2, where the εi are orthonormal
basis vectors in a two-dimensional Euclidean vector space.3 The superpotential of the twisted
elliptic Calogero-Moser model with root system B2 is [105]

WB2,tw(Z) = ℘ (z1 + z2) + ℘ (z1 − z2) + 1
2 [℘2 (z1) + ℘2 (z2)] (7.1)

= ℘ (Z1) + ℘ (Z1 + Z2) + 1
2

[
℘2

(
Z2
2

)
+ ℘2

(
Z1 + Z2

2

)]
, (7.2)

where we combine the Wilson line a and dual photon σ of the low-energy theory in the Coulomb
phase in a complex field Z = σ + τa parametrized by

Z = Z1π1 + Z2π2 = z1ε1 + z2ε2 . (7.3)

Throughout the chapter we use capital letters to denote the components of an element of the
dual Cartan space decomposed on the basis of fundamental weights, and small letters to denote
its components in the basis εi. For so(5), the relation isZ1 = z1 − z2

Z2 = 2z2
or

z1 = Z1 + 1
2Z2

z2 = 1
2Z2

. (7.4)

The superpotentialW depends on the elliptic Weierstrass function ℘ with half-periods ω1 = 1/2
and ω2 = τ

2 (where the complexified gauge coupling is τ = ω2/ω1) and its twisted cousin ℘2
which is defined to have half the period in the ω1 direction, ℘2(z, τ) = ℘(z, τ) + ℘(z + 1

2 , τ).
The ratio of the coupling constants for short and long roots was fixed in [39] and checked using
Langlands duality in chapter 4. In this chapter, we established the existence of seven massive
vacua (up to a given equivalence relation to be discussed shortly), determined their positions
numerically, and provided analytic expressions for the value of the superpotential in each of
these massive vacua. The extremal positions at τ = i are rendered in figure 4.2. We moreover
established the duality diagram in figure 4.3 between the seven massive vacua.

In the present section, we wish to add to the analysis presented in chapter 4 in several ways.
We analyze the semi-classical limits of the effective low-energy superpotential. We propose a list
of such limits, and show that we obtain an analytic handle on each of the seven vacua, and on
the massless vacua as well. Moreover, we will carefully exhibit the differences between various
global choices of gauge group and spectra of line operators, and consequently a more refined
duality diagram.

Importantly, our list of limits is based on table 7.2. Each nilpotent orbit and conjugacy
class of the component group is associated, by Bala-Carter-Sommers theory to a choice of in-
equivalent4 subsystem of simple roots of the affine root system. To each such subsystem, we

3 Let us recall a few Lie algebra data for future reference. The root lattice is generated by ε1,2. The fundamental
weights are π1 = ε1 and π2 = (ε1 + ε2)/2. The dual simple roots are α∨1 = α1 and α∨2 = 2α2 = 2ε2. The dual
weight lattice is spanned by the εi. The Weyl group allows for permutations of the εi, and all sign changes. We
follow the conventions of [156].

4The equivalence relation is given precisely in [35], and can be technical in some cases. For the gauge theories
we are concerned with, it can be stated as follows. In algebras of type A and G, two subsystems are equivalent
if they have the same Lie algebra type and the same repartition of long and short roots. For type B, one should
moreover distinguish between A1 +A1 and D2, and between A3 and D3, using the index of the subsystem.
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associate a limit of the integrable system as follows. We demand that for simple roots αi in
the subsystem, we have that the simple root is orthogonal to the vector of extremal positions
Z, namely (α∨i , Z) = 0, to leading (linear) order in the complexified gauge coupling τ in the
large imaginary τ limit. The simple root systems in the complement must have non-zero leading
term.

We denote the part in Z that is linear in τ by Y τ . We moreover introduce the redundant
coordinate Y0 which we constrain by the equation Y0 + Y1 + Y2 = 1. It is a coordinate that
is natural in treating this problem governed by affine algebra symmetry as will become more
manifest in section 3.4. The list of semi-classical limits that we will consider are then labelled
by the set J0 which contains all i for which αi is in the chosen simple root subsystem indicated
in table 7.2. We therefore distinguish five limits, which we treat one-by-one below.

• The first limit corresponds to the empty set, J0 = ∅. The arguments of the Weierstrass
functions will all contain a linear term in τ . Therefore all terms are well-approximated by
exponentials (see section 3.4, formulas (3.43) and (3.47)). The limiting procedure in this
case is described in detail in [111], which in turn is a generalization of the Inozemtsev limit
[36]. By demanding that all these exponentials have the same dependence on the instanton
counting parameter q = e2πiτ , which is necessary in order to stabilize all variables, we
determine that the linear behavior of the coordinates in τ is Y0 = Y1 = Y2 = 1/3. We
obtain a (fractional instanton) B2 affine Toda system in the limit, with 3 extrema. The
solutions (z1, z2) in the semi-classical limit are then

(
τ
2 ,

τ
6
)
,
(
τ
2 ,

1
3 + τ

6

)
and

(
τ
2 ,

2
3 + τ

6

)
.

One can check these solutions against the behavior of the numerical extrema labelled 2, 3
and 4 in figures 4.2 and 4.3, and they match in the semi-classical limit. This codes the
physics of the pure N = 1 gauge theory with gauge algebra so(5).5 Indeed, the partition
1 + 1 + 1 + 1 + 1 leaves the whole of the gauge group unbroken.

• The second case is the choice of subroot system J0 = {0}. Note that this is completely
equivalent to the choice J0 = {1}, since the corresponding marked Dynkin diagrams are
the same in both cases, so we concentrate on the first of these sets. Then we have Y0 = 0
as a consequence, and to match powers of q in subleading terms, we choose Y1 = Y2 = 1/2.
In the semi-classical limit, we then obtain a trigonometric A1 system at leading order
(associated to the long root α0). At subleading order, we find a superpotential W(z1, z2)
consisting of a sum of exponentials

WB2,tw

(3τ
4 + 1

4 + δx

2 ,
τ

4 + 1
4 −

δx

2

)
= π2(12e−2iπδx − 4e2iπδx)q

1
2 + . . . . (7.5)

The two extrema at large τ are
(

1
8 + 3τ

4 ,
3
8 + τ

4

)
and

(
−1

8 + 3τ
4 ,

5
8 + τ

4

)
.6 These match the

behavior of the massive vacua number 5 and 6 in figures 4.2 and 4.3 at large τ . These are
the two confining vacua of the unbroken pure N = 1 su(2) gauge theory. Note how this
limit is intermediate in that one coordinate is fixed at leading order in the q

1
2 expansion,

while a second is fixed at subleading order.

• Thirdly, we have the case J0 = {1, 2}, which by the same token is equivalent to J0 = {0, 2}.
We find the trigonometric potential B2 with a real extremum, which can be characterized

5We discuss the global choice of gauge group and line operators in subsection 7.2.3.
6The subleading behavior of the extrema in the large τ limit can easily be computed analytically as well. See

later for more intricate explicit examples.
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in terms of zeroes of orthogonal polynomials [108, 157]. This corresponds to the fully
Higgsed vacuum, with label 1 in figure 4.2. Importantly, there are other, complex extrema
of the trigonometric integrable system.7 In the limit τ → i∞, one example extremum is
given by (z1, z2) ∼ (1

4 + log(1+
√

2)
2π i, 1

4 −
log(1+

√
2)

2π i). This is a massless extremum, part of a
branch that we analyze in section 7.5.

• For our fourth pick, we take J0 = {0, 1} and obtain two trigonometric potentials, corre-
sponding to the root system D2. We find the one extremum

(
τ
2 ,

1
2 + τ

2

)
. This corresponds

to extremum number 7. This is a massless vacuum lifted by the presence of a Z2 Wilson
line. It is thus semi-classically massive on R2,1 × S1. The Z2 Wilson line sits inside the
non-trivial conjugacy class (12) of the component group Z2 of the unbroken gauge group.
This is an occurrence of a general phenomenon that we analyze further in section 7.4.

• Finally, we turn to the fifth possibility, J0 = {2}. The leading τ behavior of the second
coordinate is Y2 = 0. As a first stab at the semi-classics in this regime, we choose the
values Y0 = Y1 = 1/2, which is a natural ansatz given the symmetry of the Dynkin diagram
about α2. In any event, we obtain the trigonometric Ã1 system (where the tilde stands for
a short root) at leading order. The extremization of the superpotential at order 0 gives
Z2 = 1

2 . The value of Z2 gets corrected non-perturbatively, namely at order q
1
2 , order q

3
2

and higher strictly half-integer orders, by terms depending on δZ1 exponentially. For the
particular value of Y1 that we chose we find

δZ2 = 1
π

(
− e−2iπδZ1q

1
2 − e2iπδZ1q

1
2

+1
3e
−6iπδZ1q

3
2 + 5e−2iπδZ1q

3
2 + 5e2iπδZ1q

3
2 + 1

3e
6iπδZ1q

3
2 + . . .

)
. (7.6)

Injecting this value for Z2 in the superpotential W(Z1, Z2) finally gives

WB2,tw

(
τ

2 + δZ1,
1
2 + δZ2(δZ1)

)
= π2

(2
3 + 16q + 16q2 + 64q3 + 16q4 + . . .

)
= −2π2

3 E2,2(q) , (7.7)

to order q4. We observe that non-perturbatively correcting the leading coordinate Z2 leads
to a vanishing potential for Z1, in perturbation theory in q. The value of the coordinate
Z1 determines the non-perturbative correction to the leading coordinate Z2. For instance,
for the special value δZ1 = 1/2, the non-perturbative correction is zero. See equation
(7.6). Thus, we find a one-dimensional complex branch of massless vacua to which we
return in section 7.5. The value of the superpotential in these vacua can be determined
by a combination of numerics, and analytical expectations to be W = −2π2

3 E2,2(q). The
Einstein series E2,2 is the modular form of weight 2 of Γ0(2) that has a q-expansion that
starts out with −1.

We have made a list of semi-classical limits for the so(5) integrable system. In particular, we
have analytically recuperated all the numerical results of chapter 4, in the large imaginary τ
limit. We have moreover made inroads into extra vacua, which are massless. Before discussing

7Complex extrema of integrable systems are rarely discussed. The observation we make here on the trigono-
metric B2 integrable system, for instance, appears to be new.



7.2. THE N = 1∗ THEORY WITH GAUGE ALGEBRA SO(5) 173

the particular features of the so(5) analysis that we will concentrate on in the rest of the chapter,
we pause to discuss global aspects of the gauge theory at hand.

7.2.3 Global Properties of the Gauge Group and Line Operators

Up to now, we have implemented a concept of equivalence on the configuration space in which
we identify the variables proportional to ω1 by shifts in the weight lattice and the variables in
the ω2 direction by shifts in the dual weight lattice. These are natural identifications when one
is concerned with analyzing the elliptic integrable potential, as we saw in chapter 3. However,
from the gauge theory perspective, the global and local symmetries are fixed a priori, and in
this subsection we will carefully track how they influence both the counting of vacua and their
duality relations.

In other words, we give an example of how to generalize the analysis of the global choice of
gauge group and the spectrum of line operators, performed for pure N = 1 gauge theories and
N = 4 theories in [10, 139] to N = 1∗ theories. Recall that N = 4 gauge theories with so(5)
gauge algebra come in three varieties which satisfy Dirac quantization and maximality of the
operator algebra. We first distinguish between the choice of gauge group SO(5) and Spin(5).8

The Spin(5) theory is unique. The SO(5) theories come in two versions, depending on whether
they include a ’t Hooft operator which transforms in the fundamental of the dual gauge group,
or a Wilson-’t Hooft operator that transforms in the fundamental of both the electric and the
magnetic gauge group. The first can be denoted SO(5)+ theory, and the second SO(5)− theory.
The refined duality map of N = 4 theories described in [10, 139] states that the SO(5)+ theory is
S2-dual to the Spin(5) theory.9 The SO(5)− theory is self-S2-dual. The goal of this subsection
is to carefully examine the global electric and magnetic identifications of the extrema of the
low-energy effective superpotential to show that the refined classification of vacua of the N = 1∗

theory is consistent with the duality imparted by the N = 4 theory.
To make contact with our set-up, we first analyze the periodicity of the Wilson line, which

follows from the global choice of gauge group and line operators. In the case where we work with
the adjoint gauge group Spin(5)/Z2 = SO(5) and the spectrum of line operators corresponding
to the SO(5)+ theory, we allow gauge parameters that close only up to an element in the center of
the covering group. The Wilson line periodicity is then the dual weight lattice. The dual weight
lattice if spanned by the εi and therefore the two variables on the Coulomb branch will each
have periodicity 2ω2. When the gauge group is the covering group Spin(5), gauge parameters
are strictly periodic, and the periodicity of the Wilson line is the dual root lattice. In this case,
Wilson lines are equivalent under shifts by ε1 − ε2 and 2ε2. Thus, both coordinates are periodic
with periodicity 4ω2, and we can further divide by simultaneous shifts by 2ω2.

For the magnetic line operator spectrum for the Spin(5) and SO(5)+ theories, it suffices
to Langlands S2-dualize the above reasoning. We thus obtain that for SO(5)+ we can shift
by 2ω1 separately each coordinate (i.e. by the root lattice), and for Spin(5) we add on top of
this the simultaneous shift by ω1 (i.e. the weight lattice). The factor of two difference in the
lattice spacing is due to the mechanics of the Langlands S2 duality. For the SO(5)− theory,
the story is more subtle. There is a ’t Hooft-Wilson line operator in the spectrum which is in

8The nomenclature is fixed by demanding that a choice of electric gauge group implies that all possible purely
electric charges for Wilson line operators corresponding to the electric gauge group must be realized.

9We denote by S2 the Langlands duality transformation τ → − 1
2τ .
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Figure 7.2: The diagram of the action of dualities on the massive vacua for the different B2
theories. In red, we draw the action of Langlands S2-duality, and in green, T -duality (when
the action is non-trivial). On the left we represent the 10 vacua of the Spin(5) theory, and on
the right the 10 vacua of the SO(5)+ theory. The diagram of dualities for the self-dual SO(5)−
theory is identical to figure 4.3.

the fundamental of both the dual gauge group and the ordinary gauge group. We allow for
the identifications common to Spin(5) and SO(5)+, and add the identification that shifts an
individual coordinate by 2ω2 and both coordinates simultaneously by ω1. This is the diagonal
Z2 in the magnetic and electric weight lattices divided by the magnetic and electric root lattices
respectively.
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SO(5)+ vacua

Given the more limited identifications above, we obtain a longer list of extrema. The list of mas-
sive extrema for the SO(5)+ theory is (1, 2, 3, 4, 5, 6, 7, 2b, 3b, 4b) where the extrema (2b, 3b, 4b)
are obtained from (2, 3, 4) by shifting by ω1 (see figure 7.3 in the appendix). The doubling of
the number of massive vacua arising from pure N = 1 super Yang-Mills theory with SO(5)+
gauge group is as expected from [10, 139]. We thus have ten massive vacua.

SO(5)− vacua

In this case, we remain with seven massive vacua. For the vacua (2, 3, 4), this is as for the pure
N = 1 theory. By self-S2-duality, this is expected for the vacua (1, 5, 6) as well.

Spin(5) vacua

For the Spin(5) theory, we again find ten massive vacua. The doubling of vacua is S2-dual to the
duplication for SO(5)+, and extrema (1, 5, 6) obtain partner vacua (1b, 5b, 6b) (see figure 7.4).
The duality diagrams for the massive vacua are drawn in figure 7.2. The analysis in [10, 139]
shows that the pure N = 1 Spin(5) theory on R2,1 × S1 has 3 vacua, which is consistent with
the one triplet under T -duality that we find on the left in figure 7.2. To explain the doubling
of the singlet and doublet in the Spin(5) theory, we refine our analysis of the unbroken gauge
group further, and adapt it to include the differences between the adjoint group SO(5) and the
covering group Spin(5). The results are in table 7.3.

Partition Centralizers Massive vacua on R2,1 × S1

B2 SO(5) Spin(5) SO(5)+ SO(5)− Spin(5)
1 + 1 + 1 + 1 + 1 SO(5) Spin(5) 6 3 3

2 + 2 + 1 SU(2) SU(2)× Z2 2 2 4
3 + 1 + 1 Z2 o U(1) Z2 o U(1) 1 1 1

5 1 Z2 1 1 2
Total 10 7 10

Table 7.3: For each B2 partition we use the Springer-Steinberg theorem (see section 2.5.2) to
compute the centralizer inside SO(5) and Spin(5) = Sp(4). Finally, we compute the number of
massive vacua on R2,1 × S1 in the different theories.

For the Spin(5) gauge group, we find that the centralizer for the 2 + 2 + 1 partition and the 5
partition, contains an extra Z2 discrete factor. We can turn on a Wilson line in this Z2 group,
which doubles the number of massive vacua on R2,1 × S1 corresponding to these partitions.
This matches perfectly with the doubling of the T-duality doublet and singlet extrema of the
integrable system that we witness on the left of figure 7.2.

Summary of the Global Analysis

Thus, we have checked the duality inherited from N = 4, including the choice of the center of
the gauge group as well as the spectrum of line operators, in the case of the Lie gauge algebra
so(5). The N = 1∗ theory neatly illustrates both the features of the pure N = 1 theory as well
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as those of the N = 4 theory discussed in [10, 139]. The global refinement of the analysis of
all vacua can be performed for N = 1∗ theories with any gauge group, but we will refrain from
belaboring this particular point in the rest of this chapter.

7.2.4 Summary and Motivation

By now, the reader may be convinced that the N = 1∗ theory, even in the rank two case of
the so(5) gauge algebra, exhibits interesting elementary physical phenomena hiding in a maze
governed by modularity and ellipticity. We will isolate a subset of these interesting phenomena,
and clarify the mathematical structures relevant to each. We will show that they are general,
and that they can often be understood in algebraic, modular or elliptic terms. The points we
will concentrate on are the following.

• We used semi-classical limits of elliptic integrable systems to render an analytic exploration
of the vacuum structure coded in the low-energy effective superpotential possible. In the
process, we uncovered limits of integrable systems that generalize the Inozemtsev limit
[36, 111]. From the gauge theory perspective, these limits are intermediate between the
confining and the Higgs regimes. In section 3.4 we describe these limits in more detail,
and show that they are closely related to the semi-classical analysis of the N = 1∗ theory
on R2,1 × S1 with gauge algebra g.

• We saw that a branch of massless vacua appeared as semi-classical limiting solutions,
for the gauge algebra so(5). The appearance of massless vacua as limiting solutions is
again generic and also occurs for su(N) theories, as we will show in sections 3.4 and 6.
We will be able to analytically characterize the manifold of massless vacua for the su(3)
theory, including its duality properties. For the su(4) theory, an analogous picture will be
developed. Finally, the massless manifold of the so(5) gauge theory will be scrutinized in
section 7.5.

• We claimed that one vacuum of the so(5) theory arises from turning on a Z2 Wilson
line that breaks the abelian gauge group factor such as to render the vacuum massive on
R2,1 × S1. We will show that this phenomenon as well is rather generic and that we can
characterize the discrete gauge group, and the Wilson line in terms of the Lie algebra data
associated to the corresponding semi-classical limit. This will be demonstrated in sections
3.4 and 7.4.

The clarification of these points will occupy us for the rest of this chapter.
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7.2.5 Representations of the Vacua for B2 Theories
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Figure 7.3: The extremal positions of the vacua for the SO(5)+ theory.
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Figure 7.4: The extremal positions of the vacua for the Spin(5) theory.

7.3 More on Nilpotent Orbit Theory

In this section, we review how subsets of simple roots of affine root systems enter in the theory of
nilpotent orbits. Thus, we will be able to associate semi-classical limits of the elliptic integrable
system, and therefore the low-energy superpotential of N = 1∗ theory, to a detailed description
of nilpotent orbits and the component group of their centralizer. We will exploit this map in
the following sections.
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7.3.1 The Nilpotent Orbit Theory of Bala-Carter and Sommers

From section 3.4, we conclude that we can associate semi-classical extrema of the elliptic inte-
grable system to subsets of the (dual) affine simple root system. In this section, we show that
there is another way to understand the relevance of these subsets, in terms of nilpotent orbit
theory and the physics of N = 1∗ theory on R2,1 × S1.

Firstly, let us briefly review highlights of nilpotent orbit theory that we have presented in
some detail in section 2.4.3. The Bala-Carter classification of nilpotent orbits of simple algebraic
groups goes as follows. Each nilpotent orbit of a Lie algebra g of a connected, simple algebraic
adjoint group G is a distinguished nilpotent orbit of a Levi subalgebra. Levi subalgebras of g
correspond to subsets of simple roots of g up to conjugation by the Weyl group via the map
(2.33).

As we have seen in section 3.4.2, the elliptic integrable system we are interested in is more
naturally formulated using the language of affine Lie algebras, as reflected for instance in equa-
tion (3.52). Moreover, the fact that the integrable system appears in the gauge theory when
compactified on a circle gives another indication that the loop algebra might be the right lan-
guage to be used, and also begs for the introduction of affine algebras. And it appears that there
is a very natural generalization of the notion of standard Levi subalgebra (2.33) that sheds new
light on the effects of this compactification.

Sommers introduces in [35] the notion of pseudo-Levi subalgebra, as we describe now. Let
∆̂s be a basis of simple roots of the affine algebra ĝ, and let J be a proper subset of ∆̂s. We
now define the standard pseudo-Levi subalgebra lJ by

lJ = h⊕
∑
α∈〈J〉

gα , (7.8)

where again 〈J〉 is the abstract root system generated by J (which can be defined as the inter-
section between the full root system of ĝ and the lattice generated by J). Any subalgebra of ĝ
which is a G-conjugate of some lJ is called a pseudo-Levi subalgebra.

Now that we have this useful definition at hand, we quote the fundamental theorem of
Sommers [35]. There is a one-to-one correspondence between the two following sets:

(i) The set of conjugacy classes of pairs (n,C), where n is a nilpotent element and C is a
conjugacy class in the component group of the centralizer of n;

(ii) The set of conjugacy classes of pairs (l, pl) where l is a pseudo-Levi subalgebra and pl is a
distinguished parabolic subalgebra of [l, l].

This classification allows for the unified calculation of all the component groups of nilpotent
orbits of simple Lie algebras. In the A-type case, all pseudo-Levi subalgebras are equivalent to
Levi subalgebras, since the lowest root is Weyl equivalent to any other simple root.

7.3.2 The Bridge between Gauge Theory and Integrable System

Semi-classical solutions to the F -term equations of motion for N = 1∗ theory on R4 are classified
by matching them onto nilpotent orbits [2]. When we compactify the gauge theory on S1,
there are further aspects of nilpotent orbits that come into play. In particular, we will allow
for Wilson lines in the unbroken gauge group. If the latter contains topologically non-trivial
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conjugacy classes, i.e. conjugacy classes in the component group of the centralizer, then we need
to consider each of these configurations separately.

As we saw, there is a one-to-one correspondence between the pair (nilpotent orbit, conju-
gacy class of component group) and pseudo-Levi subalgebras. The trivial conjugacy classes will
correspond to a collection of non-affine simple roots. Each inequivalent choice of subset that
necessarily includes the affine root will correspond to a non-trivial conjugacy class of a compo-
nent group. These are classified by Bala-Carter-Sommers theory, which therefore is crucial in
classifying semi-classical configurations for N = 1∗ theory compactified on a circle. The example
of the N = 1∗ gauge theory with G2 gauge group discussed in section 7.4 will neatly illustrate
our reasoning.

Before we turn to this application, we demonstrate the use of the semi-classical limit in
example systems. In particular, the techniques developed in this section allow for the analysis
of the physics and duality properties of the massless vacua of su(N) theories.

7.4 Discrete Gauge Groups and Wilson Lines

In section 6 we described features of semi-classical limits and massless vacua for the N = 1∗

theory with su(N) gauge algebra. We now wish to examine more closely another feature that
we encountered in the example of so(5) put forward in section 7.2. We study the appearance
of extra massive vacua that occur on R2,1 × S1, coded in advanced nilpotent orbit theory. We
classified classical vacua of N = 1∗ theory on R4 using nilpotent orbit theory in chapter 2.
In this subsection, we wish to stress an important extra feature that comes into play after
compactifying the theory on a circle, namely the multiplication of massive vacua through the
existence of discrete gauge groups and Wilson lines.

7.4.1 Discrete Gauge Groups and Wilson Lines

We have a space-time equal to R2,1 × S1, and parametrize the circle by the coordinate θ with
period 2π, and we denote by R the radius of the circle. Suppose we fix constant vacuum expec-
tation values Φ̃j(0) for the three N = 1 adjoint chiral multiplets (j = 1, 2, 3). Moreover, we have
them satisfy su(2) commutation relations, as required for constant scalar field configurations to
obey the F-term equations of motion. Let us further suppose that the chosen su(2) algebra
has a discrete centralizer (equal by assumption to the component group of the centralizer). We
therefore have a discrete unbroken gauge group.

It should be clear that a discrete component group permits discrete Wilson lines upon com-
pactification. Suppose that a discrete centralizer of the sl(2) triple contains a non-trivial element
e2πia with a an element in the Lie algebra g of the gauge group. Then we can propose semi-
classical configurations that are new to the theory compactified on the circle, compared to the
theory on R4. These configurations are:10

Φ̃j(θ) = exp(iaθ)Φ̃j(0) exp(−iaθ) . (7.9)

The gauge field component along the circle is fixed to be the constant Aθ = 1
Ra. These con-

figurations are covariantly constant, since the gauge covariant derivative is given by DθΦ̃j =
10Note that we satisfy ordinary boundary conditions. Interesting boundary conditions twisted by outer auto-

morphisms can be imposed for gauge algebras of type A, D and E6. See e.g. [113, 76].
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∂θΦ̃j − i[a, Φ̃j ], and they are periodic by the fact that the group element e2πia belongs to the
centralizer of Φ̃j(0):

DθΦ̃j(θ) = 0
Φ̃j(θ + 2π) = Φ̃j(θ) . (7.10)

By construction these configurations satisfy the F-term equations of motion. Thus, on R2,1×S1,
the unbroken discrete gauge group gives rise to a larger set of semi-classical configurations. A
formal, non-periodic gauge transformation transforms the solutions Φ̃j(θ) with non-zero Wilson
line into the configurations Φ̃j(0) with zero Wilson line. Needless to say, these configurations
remain physically distinct on S1. Furthermore, true gauge transformations with constant pa-
rameter transform the constant gauge field a within a given conjugacy class. Thus, for each
non-trivial conjugacy class in the discrete gauge group, we find a new semi-classical configura-
tion on the circle.

For a purely discrete centralizer, the above discussion is complete. When there are both
continuous identity components and a discrete component group, the analysis requires more
care. Note for instance that the role of the component group can also be to exchange continuous
factors in the centralizer, as discussed in detail in chapter 2, or to break an abelian factor in the
centralizer as illustrated there and in section 7.2.

7.4.2 The Semi-Classical Vacua for G2

We will discuss in greater detail an example theory that illustrates the above configurations
neatly, namely N = 1∗ theory with gauge algebra G2. We start out with a description of our
semi-classical expectations. We will see that G2 is a good testing ground for the above general
discussion. We perform semi-classical limits on the low-energy effective potential, and compare
the results to our semi-classical expectations for the gauge theory. The extra configurations
described above will indeed appear as solutions. We conclude with a duality diagram for the
vacua, a point of monodromy, and other findings on the gauge theory and integrable system
that are of interest.

Firstly, let’s recall the classification of semi-classical configurations for N = 1∗ theory with
gauge group G2 on R4. The group G2 is both connected and simply-connected. For the N = 1∗

theory on R4, we classify semi-classical configurations by enumerating embeddings Φ̃j : sl2 → G2,
which are in one-to-one correspondence with nilpotent orbits of the Lie algebra G2. Again, we
apply the classification theory of Bala-Carter [154, 155] and Sommers [35]. We pause for a while
to explain how this classification is obtained.

Bala-Carter Theory for Nilpotent Orbits

Suppose we want to find the nilpotent orbits of a Lie algebra g. The Bala-Carter theorem states
that this is equivalent to finding the pairs (l, pl) where l is a Levi subalgebra of g and pl is a
distinguished parabolic subalgebra of [l, l]. In order to fully understand this statement, we recall
three useful definitions and properties:

• A parabolic subalgebra of g is a subalgebra which is conjugate to a subalgebra of the form
pJ where J is a set of simple roots, and where pJ is generated by
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(a) The Cartan subalgebra ;
(b) The root spaces corresponding to the root system 〈J〉 created by J ;
(c) The root spaces corresponding to all other positive roots.

We have that pJ and pJ ′ are conjugate if and only if J = J ′.

• We can decompose a parabolic subalgebra pJ = lJ ⊕ nJ , where the part generated by
points (a) and (b) above is the Levi subalgebra lJ , and the part generated by point (c)
is the nilradical nJ . The algebras lJ and lJ ′ are conjugate if and only if 〈J〉 and 〈J ′〉 are
Weyl-conjugate.

• A parabolic subalgebra pJ = lJ⊕nJ is distinguished if and only if dim lJ = dim nJ/[nJ , nJ ].

Let’s apply this to G2. In table 7.4 we compute, for the 4 conjugacy classes of parabolic
subalgebras, the dimensions of the corresponding Levi subalgebra and of the nilradical. This
gives the list of Levi subalgebras, which is the first step of the classification. The second step
is to find, for each Levi subalgebra, the distinguished parabolic subalgebras of [lJ , lJ ]. This is
trivial for 0, Ã1 and A1, in which one can check that there is exactly one distinguished parabolic
subalgebra, while for G2 we use again table 7.4 in which we read that there are two distinguished
parabolic subalgebras.

J dim lJ dim nJ dim nJ/[nJ , nJ ] [lJ , lJ ]
∅ 2 6 2 0
{α1} 4 5 4 Ã1
{α2} 4 5 2 A1
{α1, α2} 14 0 0 G2

Table 7.4: The 4 (conjugacy classes of) parabolic subalgebras of G2, which are in one-to-one
correspondence with subsets of the set of simple roots. We read that a given parabolic subalgebra
is distinguished if and only if the numbers in the second and fourth columns are equal.

The first classification results in five nilpotent orbits, exhibited in table 7.5. They correspond
to the four Levi subalgebras of G2 (classified up to Weyl group equivalence). One of these
Levi subalgebras, namely G2, has two distinguished parabolic subalgebras and gives birth to
two orbits. We conclude that there are 5 nilpotent orbits in the G2 Lie algebra, which are
summarized in table 7.5.

J Name and Number
∅ 0→ 1 orbit
{α1} Ã1 → 1 orbit
{α2} A1 → 1 orbit
{α1, α2} G2 → 2 orbits called G2 and G2(a1)

Table 7.5: The 4 (conjugacy classes of) parabolic subalgebras of G2, which are in one-to-one
correspondence with subsets of the set of simple roots.

Now we use the generalization of the Bala-Carter theorem by Sommers on this example.
As a result, we find that for G2 there are 7 such conjugacy classes, captured in table 7.6. The



7.4. DISCRETE GAUGE GROUPS AND WILSON LINES 183

centralizer of orbit G2(a1) (which is a discrete group) has 3 conjugacy classes, and is in fact S3,
while the other orbits have trivial component group.

W-classes of J [lJ , lJ ] Distinguished Orbit C. C. Comm.
∅ 0 1 1 1 G2

{α0} , {α2} A1 Principal A1 A1 1 Ã1
{α1} Ã1 Principal Ã1 Ã1 1 A1
{α0, α1} A1 + Ã1 Principal A1 + Ã1 G2(a1) (12) 1
{α0, α2} A2 Principal A2 G2(a1) (123) 1
{α1, α2} G2 G2 G2 1 1

G2(a1) G2(a1) 1 1

Table 7.6: The 7 classes of pairs (X,C) where O is a nilpotent orbit and C is a conjugacy class
in the component group of the centralizer of O. We tabulate the (derived algebra of the) pseudo-
Levi subalgebra, its distinguished orbits, their name, the conjugacy class and the reductive part
of the Lie algebra commutant. The discrete centralizer for the orbit G2(a1) is the group S3.

Finally, we can apply our reasoning on the multiplication of semi-classical vacua when we com-
pactify the N = 1∗ theory on R2,1×S1 with gauge group G2. For each nilpotent orbit for which
we have a single conjugacy class in the component group, we apply the same reasoning as on
R4 based on the idea that we obtain pure N = 1 super Yang-Mills theories with a number of
massive vacua equal to the dual Coxeter number of the gauge group. We find 4 + 2 + 2 + 1 = 9
massive vacua in this manner. Moreover, for the nilpotent orbit G2(a1), we have three conjugacy
classes in the discrete centralizer S3, and we therefore expect 3 vacua. We therefore find a total
of

4 + 2 + 2 + 1 + 3 = 12 (7.11)

massive vacua for G2.
Similarly, for the semi-classical limits, we have the following expectations. The trigonometric

system will be determined by the gauge group breaking pattern, and more specifically by the
root system associated to the breaking. We therefore may expect a trigonometric system of
type G2, A2, A1 + Ã1, Ã1, A1 and none at all in the above cases (read from bottom to top). The
A1 and Ã1 cases are cases of oblique confinement, and the case of trivial orbit, where the full
G2 gauge group remains unbroken, corresponds to confining vacua. The first three cases are
Higgsed vacua, possibly with non-trivial Wilson lines corresponding to the non-trivial conjugacy
classes in the component group. We distinguish three different cases, namely zero Wilson line,
a Wilson line 2-cycle and a Wilson line 3-cycle since these are the conjugacy classes of the S3
component group. Note that the two Higgs vacua associated to the G2 orbit and G2(a1) orbit
with trivial conjugacy class share the same symmetry breaking pattern. Although the vacuum
expectation values Φ̃j are different, the integrable system may not distinguish them. Taking
this last subtlety into account, we can predict that the integrable system has 11 extrema, which
are recovered from the semi-classical limit in section 7.4.3 and found numerically in subsection
7.4.4.
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7.4.3 The Elliptic Integrable System and the Semi-classical Limits

In this subsection, we explicitly calculate the semi-classical limits on the low-energy effective
superpotential and compare the results to our expectations. The effective superpotential that
we work with is

WG2,tw(Z) =
∑

α∈∆+
long

℘(α · Z) + 1
3

∑
α∈∆+

short

℘3(α · Z) . (7.12)

Figure 7.5: The Dynkin diagram of the affine algebra G(1)
2 .

The co-roots α∨1 = −3ε2 and α∨2 = ε1 +2ε2 have length squared equal to 6 and 2 respectively.
We deduce the fundamental co-weights π∨1 = 3ε1 and π∨2 = 2ε1 +ε2 and the fundamental weights
π1 = ε1 and π2 = 2ε1 + ε2. Finally, the Weyl group has 12 elements, it is precisely

{(r1r2)n(r1)ε|0 ≤ n ≤ 5 and ε = 0, 1} , (7.13)

where ri are simple Weyl reflections. One of those elements, (r1r2)2r1, exchanges ε1 and ε2,
meaning that extrema with z1 and z2 exchanged are considered equivalent. A global sign flip is
also allowed by (r1r2)3 = −1. Finally (r1r2)3r1 acts asε1 → ε1 + ε2

ε2 → −ε2 .
(7.14)

The final litany of useful facts includes that both the center of G2 and its group of outer
automorphisms are trivial. The algebra G2 is its own Langlands dual. The dual of the (non-
twisted) affine algebra G(1)

2 on the other hand is
(
G

(1)
2

)∨
= D

(3)
4 . This last algebra has two short

simple roots and one long simple root whose length squared is three times larger. The co-marks
of g(1)

2 are (1, 2, 1).
We can parametrize Z = 3(z1ε1 + z2ε2) such that

WG2,tw(z1, z2) = ℘ (3z1 − 3z2) + ℘ (3z1) + ℘ (3z2)

+1
3 [℘3 (z1 + z2) + ℘3 (2z1 − z2) + ℘3 (−z1 + 2z2)] , (7.15)

or use the alternative parameterization Z = Z1π1 + Z2π2 = (Z1 + 2Z2)ε1 + Z2ε2. The link isz1 = 1
3(Z1 + 2Z2)

z2 = 1
3Z2

Z1 = 3z1 − 6z2

Z2 = 3z2 ,
(7.16)

and the explicit form of the superpotential is then

Wg2,tw(Z1, Z2) = ℘(Z2) + ℘(Z1 + Z2) + ℘(Z1 + 2Z2)

+1
3 [℘3(Z1/3) + ℘3(Z1/3 + Z2) + ℘3(2Z1/3 + Z2)] , (7.17)
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with Zi = Xi + τYi. We still have to specify the periodicities and identifications. In the ω1
direction, we identify by shifts by the weight lattice, and in the ω2 direction by the co-weight
lattice. This implies :

(z1, z2) ∼
(
z1 + 2

3ω1, z2

)
∼
(
z1, z2 + 2

3ω1

)
(7.18)

and
(z1, z2) ∼ (z1 + 2ω2, z2) ∼ (z1, z2 + 2ω2) ∼

(
z1 −

2
3ω2, z2 + 2

3ω2

)
. (7.19)

The Weyl group action yields the further equivalences

(z1, z2) ∼ (z2, z1) ∼ (−z1,−z2) ∼ (z1, z1 − z2) . (7.20)

We note that the group G2 has trivial center.
Below, we distinguish between the trigonometric or Higgs limits, in which the leading trigono-

metric system is of rank two, the oblique limits, in which it is of rank one, and the affine Toda,
or confining limit.

The Higgsed Limits

Firstly, we describe the limit for the Higgs vacuum, the 2-cycle vacuum and the 3-cycle vac-
uum. The superpotential becomes the trigonometric system corresponding to the pseudo-Levi
subalgebra.

• The trigonometric G2 limit

In the first τ → i∞ limit, where we take the Wilson line to be a = (0, 0) and consequently
Y1 = 0 = Y2, we find the trigonometric G2 model for the choice of simple roots J0 =
{α1, α2}:

WG2,tw(X)→Wtrig,G2
. (7.21)

We find a real extremum. It can be described through zeroes of an orthogonal polynomial
[108, 157].

• The trigonometric A2 limit

In the second limit, corresponding to the 3-cycle conjugacy class and Wilson line a =
(1/3, 0) we find the trigonometric A2 system corresponding to the choice of simple root
system J0 = {α0, α2}. The co-marks give the constraint 1 = Y0 + 2Y2 + Y1. If we
impose Y0 = 0 = Y2, we find Y1 = 1. We are left with a trigonometric A2 system
corresponding to all the long roots. The extremal positions are therefore given by the
equilibria of the trigonometric A2 integrable system. There is a massive extremum at
(z1, z2) = (1/3 + τ/3, 2/9).11

11The A2 trigonometric model also allows for massless complexified extrema at zeroth order. However, these
extrema do not survive the order q perturbation.
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• Trigonometric A1 + Ã1

The third Higgs vacuum is associated to the Wilson line a = (1/2, 0), with the choice
J0 = {α0, α1}, and gives rise to the trigonometric A1 + Ã1 system (with differing coupling
constants). One finds a unique extremum up to equivalences, namely (z1, z2) = (1

6 + τ
2 ,

1
6).

Remark

We remark that it is the centralizer of the Wilson line group element that determines the non-
perturbative contributions to the superpotential in the semi-classical limit. Namely, the allowed
monopole charges corresponds precisely to positive roots of the pseudo-Levi subalgebra. We
recall that we have two configurations in which the full gauge group is broken, namely the
orbit labelled G2 and the orbit labelled G2(a1) with zero Wilson line. In the elliptic integrable
system, we only identified one real extremum. The two orbits are distinguished through their
scalar adjoint vacuum expectation values.

The Confining Limit

If we pick zero simple roots, we obtain the affine Toda potential for the algebra D(3)
4 = (G(1)

2 )∨

WG2,tw(x1 + τ

4 , x2 + τ

12) = q
1
4
(
e−6πix1 + e6πix2 + 3e6πi(x1−2x2)

)
+ . . . . (7.22)

The associated simple roots are α0, α2 and 3α1. The extrema of the affine Toda potential can
be obtained analytically (see e.g. [65]).

The Oblique Limits

Let’s turn to the limits with partial breaking of the gauge algebra through adjoint vacuum
expectation values.

• The Oblique Limit J0 = {1}

The limit J0 = {1} corresponds to the orbit Ã1 with unbroken gauge group A1. We first
determine the non-perturbative corrections to the leading coordinate Z1, and find

(Z1, Z2) =
(1

2 −
4i
3πe

2iπδ2q
1
4 + δ1,

τ

4 + δ2

)
, (7.23)

and a final stabilized potential (at δ1 = 0)

WG2,tw(δ2) = π2(1 + 4e−4iπδ2q
1
2 − 20

3 e
4iπδ2q

1
2 +O(q)) . (7.24)

We can solve for the fluctuation δ2 using this superpotential, and then find the superpo-
tential at equilibrium to order q

1
2

WG2,tw = π2(1− 8i
√

5
3
√
q + . . . ) . (7.25)
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• The Oblique Limit J0 = {2}

If we put Y1 = 3
4 , Y2 = 0, we get stabilization at level q

3
2 . The first orders in the expansion

of the coordinate Z2 are given by

Z2 = 1
2 −

4ie−2iπδX1 4
√
q

π
+ 48ie−4iπδX1q

1
2

π
+ . . . , (7.26)

to finally find stabilization for the coordinate Z1 at

Z1 = 3τ
4 −

i log 3
4π or 3τ

4 −
1
4 −

i log 3
4π . (7.27)

The resulting superpotentials in the two inequivalent vacua are

WG2,tw = π2(−1 + 312q ± 5832q
3
2 + . . . ) . (7.28)

The stabilizing potential for Z1 arises at sixth order in the non-perturbative expansion
parameter q

1
4 .

Remark

One can ask about the oblique limit J0 = {0}. We have found no choice of Yi consistent with
the condition Y0 = 0 such that the second coordinate stabilizes. We note that the choices
J0 = {0} and J0 = {2} are Weyl equivalent in the horizontal algebra, but inequivalent in the
affine algebra. They also are inequivalent as limiting choices. In this example, using the pseudo-
Levi subalgebra classification scheme as a starting point for the semi-classical limits works, if
only because another, inequivalent limit, does not stabilize.

7.4.4 Results Based on Numerics

In this subsection, we present results based on numerical analyses performed at finite coupling
τ . The main strategy is to combine a random exploration of the parameter space with the
requirement that vacua should form closed multiplets under S3 and T dualities. Our numerics
is in essence based on the FindMinimum procedure of Mathematica, applied to the logarithm of
the positive definite real potential of the gauge theory. Let us first explain how these dualities
can be implemented numerically on a vacuum that we know at large τ (by which we always
mean the semi-classical regime τ → i∞):

• T -duality is performed by taking the vacuum at large τ and changing continuously τ 7→
τ + 1 on a straight line.

• For S3-duality, we first track the vacuum to the self-dual point τsd = i/
√

3, then use the
exact Langlands S3-duality formula (see later, equation (7.32)) to S3-dualize it, and finally
bring it back to large τ .

Note that it is crucial that τ be large to T -dualize, because of potential points of monodromy
at finite gauge coupling.
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Finding the Vacua

Using our numerical procedure, it is easy to find the Higgs vacuum on the real axis; we label it
H. Taking its S3-dual as explained above, one obtains the confining vacuum dubbed C0. When
we T -dualize the confining vacua we obtain three more vacua, C1, C4, C5, for a quadruplet of
confining vacua at large τ . More subtle is the following fact. Consider these vacua brought
down to the self-dual value of the gauge coupling τsd. We call Tsd duality the operation

Tsd : τsd = i/
√

3 7→ τsd + 1 (7.29)

continuously along a straight line in the upper-half plane H. If we apply this transforma-
tion to the confining vacuum C0, we find that we need to repeat it six times before falling
on this confining vacuum once more. We thus find a sextuplet of Tsd-duality that we de-
note (C0, C1, C2, C3, C4, C5). This indicates a point of monodromy that lies above the self-dual
point.12 The point of monodromy is located around τM ∼ 1.440672920416i, and all of these
digits are significant. At the self-dual point, we can analytically check that S3-duality acts as
S3(C1) = C4, S3(C2) = C5 and S3(C3) = C3. Moreover, if we bring up the two extra vacua
(C2, C3) that complete the sextuplet to larger τ , they behave as a doublet under T -duality.
These seven vacua obtained from the Higgs are represented on the right of figure 7.6.

In addition to these, we also find two extrema which are S3-duality and T -duality singlets,
and also two S3-singlets (labelled J1, J2) which are T -dual (and Tsd-dual) to each other. This
completes the duality web summarized in figure 7.6.

Identification with the Semi-classical Limits

We have obtained a total of eleven extrema, as expected from section 7.4.3. We can be more
precise and match each T -multiplet with its corresponding limiting integrable system, using the
value of the superpotential when necessary.

The singlets correspond to the 2- and 3-cycle semi-classical vacua, while the doublet of
the duality group matches the semi-classical J0 = {1} extrema. The confining quadruplet is
easily matched to the semi-classical solutions. The semi-classical origin of (C2, C3) is the choice
J0 = {2}. The numerical evidence we obtained for this last identification is limited to the first
two coefficients in the superpotential (7.28).

Numerical values

Finally, let us provide a few concrete numbers of our simulations for easier reproducibility. The
(z1, z2) positions of the numerical extrema are approximately given in the tables below, where
the first entry is real part of z1 and the second entry is the imaginary part of z1 expressed in

12See [1] for a more gentle introduction to points of monodromy.
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units of the purely imaginary value of τ .

Vacuum Positions at i√
3 Positions at 5i

2
H {0.22754, 0., 0.03944, 0.} {0.22738, 0., 0.03954, 0.}
H2 {0.16667, 0.5, 0.16667, 0.} {0.16667, 0.5, 0.16667, 0.}
H3 {0.11111, 0.33333, 0.22222, 0.33333} {0.11111, 0.33333, 0.22222, 0.33333}
C0 {0., 0.26698, 0., 0.41565} {0., 0.26222, 0., 0.41795}
C1 {0.2727, 0.2679, 0.4226, 0.4103} {0.25257, 0.2631, 0.41731, 0.41817}
C2 {0.5594, 0.3047, 0.8509, 0.4275} {0.5, 0.33139, 0.83333, 0.42738}
C3 {0.86305, 0.33333, 1.26486, 0.46124} {0.83812, 0.33333, 1.25239, 0.42829}
C4 {0.22607, 0.36197, 0.7085, 0.45614} {0.16667, 0.40236, 0.66667, 0.4875}
C5 {0.60603, 0.39877, 0.18344, 0.47574} {0.58591, 0.40356, 0.1686, 0.4884}
J1 {0.89497, 0.60134, 0.64682, 0.45821} {0.87587, 0.58097, 0.62587, 0.41972}
J2 {0.98015, 0.20845, 0.56164, 0.73199} {0.9592, 0.24694, 0.54253, 0.75236}

(7.30)

The superpotentials in these vacua are

Vacuum Superpotential at i√
3 Superpotential at 5i

2
H 271.5202972 256.6097930
H2 26.54254786 19.73924450
H3 26.54254786 19.73924450
C0 −218.4352014 −22.81452733
C1 42.47856497− 33.32941024i −19.56246124− 2.892724428i
C2 10.60653076 + 33.32941024i −9.869136924
C3 26.54254786 −9.869143660
C4 10.60653076− 33.32941024i −17.01826338
C5 42.47856497 + 33.32941024i −19.56246124 + 2.892724428i
J1 26.54254786 + 13.36027231i 9.869700650 + 0.03957060700i
J2 26.54254786− 13.36027231i 9.869700650− 0.03957060700i

(7.31)

7.4.5 Langlands Duality and the Duality Diagram

Aside from the simply laced Lie algebras of A,D and E type, there are three more algebras
that are mapped to themselves under Langlands duality. These are B2, G2 and F4. The
twisted elliptic integrable systems with appropriate couplings are indeed Langlands self-dual [1],
namely, they permit the symmetry Sν : τ → − 1

ντ , where ν is the ratio of the length squared of
the long versus the short roots. The invariance under Sν translates into a relation involving the
superpotentials evaluated at different positions Xi, including a shift. Explicitly, the fact that
G2 is invariant under S3 : τ → − 1

3τ duality reads

WG2,tw(X1, X2; τ) = 1
3τ2WG2,tw

(
X1 +X2

3τ ,
2X1 −X2

3τ ;− 1
3τ

)
+ 2π2 [3E2(3τ)− E2(τ)] . (7.32)

As was the case for the so(5) integrable system (see section 4), the shift resulting from the Sν
duality transformation can be identified with the superpotential in one of the vacua. The latter
property allows for the realization of duality symmetries as permutations on the list of extremal
superpotential values.
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We have determined these permutations numerically (as reviewed above), and sum up the
action of S3, T and Tsd in the diagram shown in figure 7.6. This diagram demonstrates the
importance of specifying the path followed in the moduli space while performing a duality:
note for instance that in the diagram, S3Tsd has order 7 while the order of the more standard
operation S3T is 6, as a consequence of monodromies. In [1] one can find other examples of
generalized duality groups that are generated by points of monodromy.

Figure 7.6: A diagram of dualities of G2, below the point of monodromy. The blue arrows
represent the transformation Tsd : τ → τ + 1 below the point of monodromy, while the green
arrows represent the transformation T : τ → τ + 1 above the point of monodromy. To identify
vacua at different τ we use the convention that the branch cut is on the left of the monodromy
point (R− direction). The red arrows indicate the action of S3-duality (7.32) at the self-dual
point τ = i√

3 . The absence of a given arrow indicates invariance of the vacuum under the
corresponding transformation. Note that the order of S3Tsd is 7 while the order of S3T is 6.

Finally, we make a few remarks on the exact values of the superpotential in a number of
vacua. The superpotentials in the Higgs vacua with non-zero Wilson line are identical. They
are equal to

WH2 = 2π2(θ3(q2)θ3(q6) + θ2(q2)θ2(q6))2 . (7.33)

This is the theta series of the direct sum of 2 copies of a hexagonal lattice. It generates the
(1-dimensional) space of modular forms of weight 2 for the congruence subgroup Γ0(3). Many
further analytical statements can be made about the exact values of the superpotential. As an
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example, we have the closed form expression

26.54254786... =
9Γ
(

1
3

)6

8× 2
2
3π2

, (7.34)

for this particular entry in table (7.31) of values of the superpotential. It will be interesting
to classify the superpotential values into (vector valued) modular forms (potentially with non-
analyticity in the upper half plane) of Γ0(3) or the full Hecke group.

7.5 The so(5) Massless Branch

In this section, we tie up a loose end. In section 7.2 we analyzed semi-classical limits for the B2
twisted elliptic integrable system, and we found a single massless branch of complex dimension
one. We wish to characterize this branch more precisely, including at finite coupling τ . We also
exhibit its duality and global properties in the different theories associated to the gauge algebra
so(5).

7.5.1 The Local Description of the Massless Branch

We show that a massless branch exists at all couplings by a brute force analysis. We postulate
that the superpotential on the massless branch is equal to e1(q) (as we found in perturbation
theory in section 7.2). We will also consider the two equations that follow from the fact that we
are studying an extremum of the superpotential. These equations give rise to three constraint
equations in terms of two unknowns, for a single massless branch of complex dimension one.
This doubly overdetermined system will have a simple solution which is the description of the
massless branch. Before we get to the simple end result, we plough through some elliptic function
identities. Firstly, we recall the definition of the Weierstrass function evaluated at half-periods

℘(ωi; τ) = ei(q) (7.35)

and note that we have the equality

e1(q) = −2π2

3 E2,2(q) = −2π2

3 (E2(q)− 2E2(q2)) , (7.36)

as well as the identities

℘2(z; τ) = 4℘(2z; 2τ) + e1

= −e1 + 1
4

(
℘′(z; τ)

℘(z; τ)− e1

)2

℘′2(z; τ) = 8℘′(2z; 2τ) . (7.37)

We again describe the superpotential and its derivatives algebraically using the variables13

Xi = ℘(zi; τ) and Yi = ℘′(zi; τ) , (7.38)
13These variables describe faithfully the vacua of the SO(5)+ theory, by which we mean that for any

(X1,X2,Y1,Y2) ∈ C4 there is exactly one vacuum of the SO(5)+ theory that satisfies (7.38). In the Spin(5)
and SO(5)− theories there are two such vacua, namely (z1, z2) and (z1 + 2ω2, z2 + 2ω2). Moreover, both in
the Spin(5) and in the SO(5)− theory (7.38) is not a well defined functional of a given vacuum because of the
identification (z1, z2) ∼ (z1 + ω1, z2 + ω1) in Spin(5) and (z1, z2) ∼ (z1 + ω1 + 2ω2, z2 + ω1) in SO(5)−. These
subtleties will be taken care of in subsection 7.5.3.
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for i = 1, 2. The value of the superpotential, WB2,tw(Z; τ) = e1(τ), translates into the equation

2
(Y1 − Y2
X1 −X2

)2
+ 2

(Y1 + Y2
X1 −X2

)2
+
( Y1
X1 − e1

)2
+
( Y2
X2 − e1

)2
= 16(e1 + X1 + X2) . (7.39)

We also need the addition formula for the derivative of the Weierstrass function:

℘′(u+ v) =

[
1
2g3(℘′(u)− ℘′(v)) + (℘′(v)℘(u)2 + 1

4g2℘
′(u))(℘(u) + 3℘(v))

]
− [u↔ v]

(℘(u)− ℘(v))3 . (7.40)

It is convenient to write this in a more symmetric way, where all the derivatives are isolated on
the left-hand side :

℘′(u+ v) + ℘′(u− v)
℘′(u) = g2(℘(u) + 3℘(v)) + 4g3 − 4℘(v)2(3℘(u) + ℘(v))

2(℘(u)− ℘(v))3 , (7.41)

which we can use to express the derivative of the twisted Weierstrass function as

℘′2(u)
℘′(u) = 8e3

1 − 3e1
(
g2 − 4℘(u)2)− ℘(u)

(
g2 + 4℘(u)2)− 4g3

4(e1 − ℘(u))3 . (7.42)

Using these relations, the three equations describing the massless branch become

4(4X 3
1 + 4X 3

2 − g2(X1 + X2)− 2g3)
(X1 −X2)2 + 4X 3

1 − g2X1 − g3
(X1 − e1)2 (7.43)

+4X 3
2 − g2X2 − g3
(X2 − e1)2 − 16(e1 + X1 + X2) = 0

g2(X1 + 3X2) + 4g3 − 4X 2
2 (3X1 + X2)

(X1 −X2)3 (7.44)

+8e3
1 − 3e1

(
g2 − 4X 2

1
)
−X1

(
g2 + 4X 2

1
)
− 4g3

4(e1 −X1)3 = 0

g2(X2 + 3X1) + 4g3 − 4X 2
1 (3X2 + X1)

(X2 −X1)3 (7.45)

+8e3
1 − 3e1

(
g2 − 4X 2

2
)
−X2

(
g2 + 4X 2

2
)
− 4g3

4(e1 −X2)3 = 0 .

Finally, we express the Eisenstein series g2 and g3 of weight 4 and 6 in terms of the half-period
values ei using the relations g2 = 2(e2

1 + e2
2 + e2

3) and g3 = 4e1e2e3 to obtain

(2e1 −X1 −X2)2

(e1 −X1)(e1 −X2)(X1 −X2)2P3(X1,X2, e1, e2) = 0 (7.46)

(2e1 −X1 −X2)
(e1 −X1)2(X1 −X2)3P4(X1,X2, e1, e2) = 0 (7.47)

(2e1 −X1 −X2)
(e1 −X2)2(X2 −X1)3P4(X2,X1, e1, e2) = 0 , (7.48)

where P3 and P4 are homogeneous polynomials of degree 3 and 4 respectively. We see that
X1 + X2 = 2e1 is a sufficient condition to be on the massless branch of vacua. Restricting to
these solutions – except at special points in the space of couplings, these are the only solutions
–, we can parametrize the line by a single complex number λ ∈ C∗ as

X1 = e1(τ) + λ , X2 = e1(τ)− λ . (7.49)
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7.5.2 Duality and the Massless Branch

T -duality manifestly leaves the description of the massless branch in terms of the elliptic curve
variables invariant, as can be seen from equation (7.49). We analyze Langlands S2 duality next.
In the notation of equation (7.1), the duality formula for so(5) reads [1]

WB2,tw(z1, z2, τ) = 1
2τ2WB2,tw

(
z1 + z2

2τ ,
z1 − z2

2τ ,− 1
2τ

)
+ 2e1(τ) . (7.50)

Using the identity
e1

(
− 1

2τ

)
= −2τ2e1(τ) , (7.51)

it can be written in the more symmetric form

WB2,tw(z1, z2, τ)− e1(τ) = 1
2τ2

[
WB2,tw

(
z1 + z2

2τ ,
z1 − z2

2τ ,− 1
2τ

)
− e1

(
− 1

2τ

)]
. (7.52)

We define the dual elliptic curve variables

X ′1 = ℘

(
z1 + z2

2τ ;− 1
2τ

)
(7.53)

X ′2 = ℘

(
z1 − z2

2τ ;− 1
2τ

)
(7.54)

Y ′1 = ℘′
(
z1 + z2

2τ ;− 1
2τ

)
(7.55)

Y ′2 = ℘′
(
z1 − z2

2τ ;− 1
2τ

)
, (7.56)

which are related to the original elliptic curve variables (7.38) by

−e1(τ)−X1 −X2 + 1
4

(Y1 − Y2
X1 −X2

)2
= 1

16τ2

(
Y ′1

X ′1 − e1(− 1
2τ )

)2

(7.57)

−e1(τ)−X1 −X2 + 1
4

(Y1 + Y2
X1 −X2

)2
= 1

16τ2

(
Y ′2

X ′2 − e1(− 1
2τ )

)2

. (7.58)

The sum of these relations is

−2e1(τ)− 2X1 − 2X2 + Y2
1 + Y2

2
2(X1 −X2)2 = 1

16τ2

(
Y ′1

X ′1 − e1(− 1
2τ )

)2

+ 1
16τ2

(
Y ′2

X ′2 − e1(− 1
2τ )

)2

.

After these preparations, we will now show that if we choose a point on the dual of the massless
branch, namely a point satisfying the equation X ′1 +X ′2 = 2e1(− 1

2τ ), that this is consistent with
the original variables lying on the original massless branch. Indeed, this equality implies that
the sum of the relations becomes

2(e1(τ) + X1 + X2)− Y2
1 + Y2

2
2(X1 −X2)2 + (Y ′1)2 + (Y ′2)2

4τ2(X ′1 −X ′2)2 = 0 . (7.59)

Taking into account the elliptic curve equation, we can simplify this to

(Y ′1)2 + (Y ′2)2

4τ2(X ′1 −X ′2)2 = 3
4τ2 (X ′1 + X ′2) = 3

2τ2 e1

(
− 1

2τ

)
= −3e1(τ) , (7.60)
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and we end up with

(−2e1 + X1 + X2)
(
−2e1e2 + e1X1 + e1X2 − 2e2

2 + 2X1X2
)

(X1 −X2)2 = 0 . (7.61)

Finally, we see that this equality is implied by the original point being on the original branch
−2e1 + X1 + X2 = 0, and we have therefore obtained a non-trivial check of the statement that
the massless branch is invariant under S2-duality.

7.5.3 The Moduli Space of Vacua for the Different Gauge Theories

In this subsection we obtain the global structure of the moduli space of massless vacua for the
different theories with so(5) gauge algebra, taking into account various discrete identifications.
We also perform a consistency check on these global properties by showing how S2-duality acts
on these moduli spaces, thus completing the results in subsection 7.2.3.

We wish to characterize the branch by extracting the positions zi from the elliptic curve
variables (7.38), and this should be done up to Weyl equivalence. The Weyl group is generated
by two reflections: the reflection about α1 leads to the identification

(X1,Y1,X2,Y2) ≡ (X2,−Y2,X1,−Y1) , (7.62)

while the reflection about α2 gives the identification

(X1,Y1,X2,Y2) ≡ (X1,−Y1,X2,Y2) . (7.63)

This shows that the sign of the variables Yi is irrelevant, and we no longer need to keep track of
them. The Weyl symmetry therefore implies that we can study the manifold described by the
variables (X1,X2) subject to the identification (X1,X2) ≡ (X2,X1). The branch of massless vacua
of the SO(5)+ theory, for which there is no additional identification, is described by λ ∈ C∗/Z2,
where the Z2 action is λ↔ −λ. This is a sphere with two excised points.

In the SO(5)− theory we have the additional identification (z1, z2) ≡ (z1 +ω1 +2ω2, z2 +ω1).
On the manifold parametrized by λ it corresponds to λ ≡ λ′ = π4θ8

4(2τ)/λ. This follows from
the observation that if ℘(z1) = e1 + λ, then

℘(z1 + ω1) = −e1 − (e1 + λ) + ℘′(z1)2

4λ2 (7.64)

= e1 +
3e2

1 − 1
4g2

λ
+ 4e3

1 − g2e1 − g3
λ2 (7.65)

= e1 + λ′ , (7.66)

and similarly if ℘(z2) = e1 − λ then ℘(z2 + ω1) = e1 − λ′. Note that the function θ4(τ) doesn’t
vanish on the upper-half plane,14 so that λ 7→ λ′ is a well-defined involution everywhere in the
moduli space.

For a given λ ∈ C∗, the SO(5)− theory has two non-equivalent vacua (z1, z2) and (z1+2ω2, z2)
which correspond to this λ. These two vacua are respectively equivalent to (z1+ω1+2ω2, z2+ω1)
and (z1 + ω1, z2 + ω1), which are associated to the same λ′. Therefore the branch of massless
vacua is a double cover of C∗/Z2.

14The zeros of θ4(z, τ) are given by z = n+ (m+ 1/2)τ with n,m ∈ Z
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As for the Spin(5) theory, we also need to take a double cover of the quotiented sphere
C∗/Z2. For a generic λ ∈ C∗, the two vacua λ and λ′ in the SO(5)+ theory are inequivalent.
They are mapped by S2 to inequivalent vacua that share the same dual λD, or equivalently the
same λ′D. We see that S2-duality cancels the cover and the quotient to recover the manifold for
SO(5)+ which is just C∗.
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Conclusions and Outlook

Summary of the results

At the end of this journey let us recap briefly the results we have obtained. On R4, we have
computed exactly the number of massive vacua for the N = 1∗ gauge theory for any gauge group.
This result in encapsulated into the generating functions for the Witten index disseminated in
chapter 2, namely

ISU(n) =
∞∑
n=1

σ1(n)qn

IO(n)(q) =
∞∏
k=1

P0(q2k−1)
(1− q2k−1)2(1− q4k)2

ISO(n)(q) =
∞∏
k=1

P0(q2k−1)
(1− q4k)2(1− q2k−1)2 +

∞∏
k=1

1 + q8k−4

(1− q4k)2 ,

ISp(2n)(q) = q−1ISO(2n+1)(q) .

(7.67)

In these expressions, P0 is a polynomial defined [34] by equation (2.61). This confirms various
calculation already present in the literature and brings up a precision concerning the difference
between gauge groups O(n) and SO(n). For the exceptional gauge groups, the result is

IG2 = 10 ,
IF4 = 45 ,
IE6 = 44 ,
IE7 = 174 ,
IE8 = 301 .

(7.68)

The main technique was to use the bijection between the classical vacuum expectation values
for the three massive adjoint chiral multiplets and the nilpotent orbits in the gauge algebra.
The centralizer of a given nilpotent orbit is a precious piece of data that allows to reduce the
computation of the number of massive vacua to the supersymmetric index in pure N = 1 super
Yang-Mills theories. Aspects of the global structure of Lie groups are crucial in obtaining the
correct result, since the centralizer may have a component group that acts non-trivially on the
summands of the residual gauge algebra.

The importance of the global structure of the gauge group is magnified when the theory
is compactified on R3 × S1, where it can affect the correlation functions of local operators. It
is therefore a exciting task to unveil the vacuum structure on this compact space. Although
it appears that the number of vacua for gauge algebras of type A remains the same upon
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compactification, it turns our that this very number is modified for other types of gauge algebras.
At least three mechanisms can be hold responsible for that, all involving line operators:

1. The global structure of the gauge group has to be explicitly chosen, and in fact a more
precise definition of the theory in terms of the possible line operators [10] is needed.

2. A massive vacuum on R4 can be split into several massive vacua on the compact space,
because Wilson lines can be turned on in the component group.

3. A massless configuration on R4 can flow to a massive vacuum after compactification, be-
cause Wilson lines that commute with the expectation values of the three adjoint multiplets
can break an abelian residual gauge group to a non-abelian one.

These mechanisms are illustrated in one of the more elementary algebras available that is not of
type A, namely B2. In this case, the index on R4 is six, but after compactification the number of
vacua becomes seven (because of a massless vacuum has acquired a mass) or ten (three massive
vacua have split) depending on the line content, as explained in table 7.3.

To go further in the understanding of the vacuum structure, we use abundantly the cor-
respondence with integrable systems, that provides an exact superpotential [38, 39] that can
be analyzed numerically. Modularity lends a helping hand in classifying the vacua, giving the
opportunity to perform extensive consistency checks, and tightly constraining the value of the
potential at extrema. This allowed us to present detailed maps of the landscape of extrema of the
twisted complexified elliptic Calogero-Moser potential – and taking into account the subtleties
of gauge theories on the cylinder, these maps can be translated into an accurate cartography of
the vacua of the N = 1∗ theory. The relevant modular group acts on the vacua and extrema,
and this action is represented as a graph on the map.

The set of extrema of the Calogero-Moser Hamiltonian for Lie algebras of type A has been
known for a long time, and we focused on other types of algebras. We discovered that in this
case, extrema have many surprises in store, such as points of monodromies in the interior of the
fundamental domain.

On our road to fully realize the correspondence between integrable systems and the semiclas-
sical limit of gauge theory on the cylinder, with all the aforementioned subtleties, we relied on
structures from the field of affine Lie algebras. The pseudo-Levi subalgebras that are involved
in the refinement of the Bala-Carter classification of nilpotent orbits play a corresponding role
in defining semiclassical limits of the elliptic integrable system. A staircase structure can be
identified in these limits, with more and more degrees of freedom being fixed at various powers
of the nome q. On the gauge theory side, this can be seen as instanton effects responsible for
fixing vacuum expectation values of fields. Note that the fact that we can rely on this semiclas-
sical analysis on the gauge theory side gives an algorithm to find the number of extrema of the
twisted elliptic Calogero-Moser potential for any gauge algebra, supplemented with much data
about the duality transformations.

This semiclassical approach was also the starting point of an exploration of branches of
massless vacua of the N = 1∗ theory. Even in such elementary frameworks as the su(3) gauge
theory, such branches appear, and we were able to give analytical equations for it and to identify
the Argyres-Douglas point, where mutually non-local massless degrees of freedom coexist. With
such control on the gauge invariant variables that parametrize this Coulomb branch, it was
possible to go back to the Wilson line and dual photon – or equivalently the integrable system
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complex variable. The key technical ingredient here was the Eichler-Zagier formulas which solve
the inversion problem for a class of elliptic functions. We then complete the task of determining
potential massless branches for the other rank two simple gauge algebras – B2 and G2. In the
case of B2, we find the equation on which the action of the S2 : τ 7→ −1/(2τ) is explicit, and
show how the branch depends on the line content of the theory. For G2, there are no massless
vacua.

Future Directions

In this thesis we only scratched the surface of the field of physics at a crossroad between different
domains, which presage several avenues for future research. One of these domains is the world
of integrable systems, and a pivotal ingredient is modularity. These gracefully blend in elliptic
integrable systems, where the integrality properties of the models at extrema takes the form of
integers in the Fourier expansion of functions with modular properties. These functions are not
limited to modular or automorphic forms in their most basic incarnation, but realize modularity
in polymorphous ways. One of the ways, to which we resorted at several occasions, was vector-
valued modular forms for congruence subgroups of SL(2,Z). We remind however that the full
duality group appeared in the guise of the Hecke group, and the associated modular objects are
necessarily more constrained. It would be interesting to study what these constraints add to
our understanding of the extrema, and specifically there should be relations with the geometric
Langlands program.

The first property that one arguably craves to know is the number of these extrema. As we
indicate in the last section, the semiclassical analysis of the gauge theory provides an algorithm
to find it, but a general formula would be more satisfying. The positions of the extrema may be
associated to a generalization of zeroes of orthogonal polynomials [115]. As we pointed out in
chapter 3, the Calogero-Moser systems are of central significance in the compass of integrable
systems, and answering these questions would rain down upon the whole family of systems
that can be reached by limits. It is conceivable that considering instead the Ruijsenaars model
with spin or taking different coupling constants than what we have chosen to reproduce the
superpotential of gauge theories prove to be rewarding. Increasing the rank would be especially
exciting, as it could then be possible to connect to holographic dual backgrounds.

Perhaps more intriguingly, we have seen the appearance of points of monodromy. In the case
of so(8), there is a critical complex coupling τM ≈ 2.41i that satisfies

1
1728j(τM ) = 7626496

3375 . (7.69)

This number begs for an explanation, and beyond that, one could ask about the topology
change in the fundamental domain as a Riemann surface that this point entails. On the gauge
theory side, a geometric interpretation could be found by embedding the field theory into string
theory. This is certainly one of the most enthralling questions raised by our exploration of
elliptic Calogero-Moser potentials. The phenomenon is quite generic, based on our detecting it
in algebras of type B, C, D and G2.

Massless vacua on the gauge theory side have been less studied, and one can wonder for
instance about the dimension of the branches beyond rank two. More Argyres-Douglas points
are suspected to appear, although characterizing them by the Seiberg-Witten curve singularities
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may be a hard row to hoe because the equations increase in order. Again, the integrable
complexified Hamiltonian could be the right weapon to attack the question.

In this thesis, we focused on N = 1∗ theories in relation with the elliptic Calogero-Moser
systems in part because modularity inherited from the conformal N = 4 gives a wealth of
constraints. It would be fascinating to understand how a similar story can be written starting
with other ultraviolet-complete supersymmetric gauge theories. One example alluded to in the
bulk of the thesis is the N = 2 theory with gauge algebra su(N) and Nf = 2N flavors of quarks.
The associated integrable system indubitably possesses modular properties matching those of
the Seiberg-Witten curve. Recollecting the blossoming of beautiful phenomena encountered
along the first part of the road, the future is appealing.



Appendix A

Supersymmetric gauge theories

This appendix takes a (non-exhaustive) inventory of supersymmetric gauge theories that are
used or mentioned in the bulk of the thesis. The aim is to fix notations and conventions, and
to write down the various Lagrangians in a unified way. We follow the excellent textbooks
[23, 158, 159].

A.1 Supersymmetry in various dimensions

There are several ways to classify supersymmetric gauge theories. One way is to first specify
the spacetime dimension D, and then specify the number of supersymmetries, that is always
called N . More precisely, supercharge generators are spinorial objects, and N is the number of
minimal spinors that are used. It has to be distinguished from the number of real supercharges,
which is equal to N multiplied by a factor that depends on the dimension, and which is equal to
the number of real components of the minimal spinor in dimension D. This number is obtained
by taking the number of real components of a Dirac spinor, which is 2[D/2]+1, and dividing it by
2 if the Majorana spinors exist, which is the case if D ≡ 2, 3, 4mod 8, or if Weyl spinors exist,
which is when D is even. When D ≡ 2mod 8 there exist Majorana-Weyl spinors, and 2[D/2]+1

has to be divided by 4. This is summarized in the table below for the cases we will be interested
in.

D Number of real components of the minimal spinor Maximal N
2 4Dirac/(2Majorana × 2Weyl) = 1 16
3 4Dirac/2Majorana = 2 8
4 8Dirac/2Majorana = 4 4
6 16Dirac/2Weyl = 8 2
10 64Dirac/(2Majorana × 2Weyl) = 16 1

Number of real supercharges D = 2 D = 3 D = 4 D = 6 D = 10
1 N = 1
2 N = 2 N = 1
4 N = 4 N = 2 N = 1
8 N = 8 N = 4 N = 2 N = 1
16 N = 16 N = 8 N = 4 N = 2 N = 1

201



202 APPENDIX A. SUPERSYMMETRIC GAUGE THEORIES

A.2 Supersymmetric gauge theories in four dimensions

A.2.1 The non supersymmetric gauge theories

Pure Yang-Mills theory

The kinetic term for the gauge field is

LYM = − 1
4g2
YM

F aµνF
a,µν = − 1

2g2
YM

Tr
(
F 2
)
. (A.1)

The coupling constant is gYM . One can also define the coupling αYM defined by 4παYM = g2
YM .

We then have the relation

d
(

4π
g2
YM

)
= −8πdgYM

g3
YM

= −dαYM
α2
YM

, (A.2)

which is useful to relate the β-functions written in terms of one coupling or the other. We have
the usual expression

F aµν = ∂µA
a
ν − ∂νAaµ + fabcAbµA

c
ν , (A.3)

or equivalently F = dA−iA2. The covariant derivative is∇µ = ∂µ−iAµ. A gauge transformation
is parametrized by a function U defined on spacetime and valued in the gauge group G. In the
following lines we use x, y to denote points in spacetime, and when no such point is indicated
it is understood that all fields are evaluated at x. Under such a gauge transformation we then
have

Aµ → A′µ = U [Aµ + i∂µ]U−1 = UAµU
−1 − i(∂µU)U−1 . (A.4)

One can then check that
Fµν → F ′µν = UFµνU

−1 . (A.5)

The Wilson line is
W (y, x) = P exp

(
i

∫ y

x
A

)
, (A.6)

and under the gauge transformation given above,

W (y, x)→ U(y)W (y, x)U−1(x) . (A.7)

Matter sector

We can add matter to the pure gauge theory described by (A.1). For instance one can add a
Lorentz scalar field φ transforming in a given representation R of the gauge group. In this case,
the gauge transformation is

φ(x)→ φ′(x) = U(x) · φ(x) (A.8)

where the dot denotes the action of the gauge group in the representation R. The Lagrangian
corresponding to this matter field is

LScalar = ∇µφ̄∇µφ− V (φ) (A.9)

where V (φ) is the potential energy term, and ∇µ is the covariant derivative. The gauge trans-
formation is the same for a spin 1

2 field ψ, and the Lagrangian is

LSpin 1
2

= iψ̄ /∇ψ −mψ̄ψ (A.10)

where we have only included a (bare) mass term.
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Renormalization of the coupling

The one-loop renormalization of the gauge coupling is

β1-loop =
[ dgYM
d log(µ/Λ)

]
1-loop

= − g
3
YM

(4π)2

[11
3 T (adjoint)− 2

3T (fermions)− 1
3T (scalars)

]
. (A.11)

where we have used the half Dynkin indices defined in (B.9), the representations labeled "fermions"
are those in which the left-handed Weyl fermions transform (all the fermions of the theory be-
ing written in terms of left-handed Weyl fermions), and the ones labeled "scalars" correspond
to complex scalars. In this formula µ denotes the energy scale of the theory. Note that this
formula is valid for the abelian theory G = U(1): in this case, one should put T (adjoint) = 0.

It should be emphasized that equation (A.11) is true for our normalization of the fields given
by (A.1). If instead we use canonically normalized fields, the exact β-function is given by the
Novikov-Shifman-Vainshtein-Zakharov formula [50].

The Georgi-Glashow model

One particular useful model is given by the Georgi-Glashow Lagrangian for gauge group G =
SU(2):

LGG = − 1
4g2
YM

F aµνF
a,µν + 1

2Dµφ
aDµφa − λ(φaφa − v2)2 (A.12)

In this Lagrangian, φa is a real scalar in the adjoint representation of the SU(2) gauge group,
as the Latin index a indicates, and v is a constant which is used to define the potential. We
also use the covariant derivative Dµφ = ∂µφ − i[A, φ]. This Lagrangian can also be used with
an arbitrary gauge group, with maybe a more general potential for the scalar field. It should be
noted, however, that the construction of monopoles in these generalized models adds no essential
features to the more basic SU(2) monopole constructed from (A.12).

The theta angle

A term can be added to the Lagrangian (A.1), with a new parameter θYM :

Lθ = θYM
32π2F

a
µνF̃

a,µν = θYM
8π2 Tr (F ∧ F ) . (A.13)

Here F̃ is the Hodge dual of the 2-form F . In components, F̃µν = 1
2εµνρσF

ρσ. This term is purely
topological, and does not affect the classical equations of motion. It has only non-perturbative
effects and the physics of monopoles and instantons strongly depends on the value of θ.

A.2.2 The N = 1 gauge theory

Pure N = 1 gauge theory

The Lagrangian of a pure N = 1 super-Yang-Mills theory in four space-time dimensions, written
in the superspace formalism, is

Lpure N=1 =
(

τ

16πi

∫
d2θW aαW a

α + h.c.

)
= =Tr

(
τ

4π

∫
d2θW 2

)
. (A.14)
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In this expression, Wα is the field strength tensor superfield constructed out of the vector su-
perfield V (x, θ, θ̄) which is an element of the Lie algebra of the gauge group. Let (T a)a=1,...,r be
Hermitian generators of the Lie algebra in a given representation, satisfying

[T a, T b] = ifabcT c . (A.15)

We can then write V (x, θ, θ̄) = V a(x, θ, θ̄)T a, and the field strength defined by

Wα = 1
8D̄

2
[
e−V

(
Dαe

V
)]

(A.16)

can again be decomposed on the generator basis Wα = W a
αT

a. Here Dα and D̄α̇ are the
superderivatives, α = 1, 2 and α̇ = 1, 2 are a spinor indices, and D2 = DαDα = εαβDβDα.
We also recall that the Grassmann variables θ have dimension (length)1/2, and that the rule of
integration

∫
θdθ = 1 imposes that dθ have dimension (length)−1/2.

The coupling constant is

τ = 4πi
g2
YM

+ θYM
2π , (A.17)

where gYM is the usual Yang-Mills coupling constant and θ is the θ-angle. Using this decompo-
sition into real and imaginary part, we can expand

Lpure N=1 = − 1
4g2
YM

F aµνF
a,µν + i

g2
YM

λaαDαβ̇λ̄
aβ̇ + θYM

32π2F
a
µνF̃

a,µν . (A.18)

In the expression above, the part corresponding to the D-component of the vector multiplet1 has
been integrated out, and it will contribute to the scalar potential under the name of D-terms.

The matter sector in N = 1 gauge theory

We want to add a complex scalar field Φ which transforms in a representation R of the gauge
group (and we are mostly concerned with the cases where R is the fundamental or the adjoint
representation). This complex scalar is associated by supersymmetry to a Weyl fermion in the
same representation of the gauge group, and together they form a chiral multiplet. A gauge
invariant kinetic term is then Φ̄eV Φ, where V has to be expressed2 in the representation R. We
then write

Lkineticmatter N=1 =
∑

flavors

∫
d2θ d2θ̄ Φ̄eV Φ . (A.19)

This expression should of course be a scalar, which is it if the representation R is the fundamental
representation. If Φ transforms in the adjoint representation, then it is understood that a trace
Tr Φ̄eV Φe−V should be taken. The fact that the Lagrangian should have dimension (length)−4

shows that our chiral field Φ has dimension (length)−1.

1Recall that the off-shell massless vector multiplet is composed of the gauge field, the gauginos and an auxiliary
real scalar D, which accounts for 3 + 1 bosonic degrees of freedom and 2 + 2 fermionic degrees of freedom, making
supersymmetry manifest. The on-shell content reduces to the gauge boson (3 − 1 = 2 degrees of freedom) and
the gauginos ((2 + 2)/2 = 2 degrees of freedom).

2In practice, one chooses generators T a in R satisfying (A.15), and just writes V = V aT a, where the superfields
V a don’t depend on the chosen representation.
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Now that we have accounted for the kinetic terms, we add interactions. This is realized
through a holomorphic function W(Φ) called the superpotential. Then the corresponding La-
grangian is just

Linteractionsmatter N=1 =
(∫

d2θW(Φ) + h.c.

)
. (A.20)

Note that this has the same structure as (A.14), which is why the kinetic terms of the vector
multiplet are sometimes included into the superpotential. We will refrain to do so in this thesis.

Effective action for N = 1 matter

We follow closely section 49.7 from [158]. The most general Lagrangian in four dimensions
compatible with supersymmetry and containing no more that two spacetime derivatives is

LWZ =
∫

d2θ d2θ̄K(Φi, Φ̄j) +
(∫

d2θW(Φi) + h.c.

)
, (A.21)

where the Φi are a set of chiral superfields, the superpotentialW is again a holomorphic function
of the Φi and the Kähler potential K is a real function which generalizes the kinetic term (A.19).
The subscript WZ stands for Wess-Zumino, and LWZ is the Wess-Zumino Lagrangian. This
kind of Lagrangian often appears as effective theories, and that is why the model need not be
renormalizable, the kinetic term need not be the canonical one and the superpotential need not
be polynomial. Note that the kinetic term for the lowest components of the superfields is

∂2K
∂φi∂φ̄j

∂µφ
i∂µφ̄j . (A.22)

The mass term for the fermions involve second derivatives of the superpotential.

Renormalization of the coupling

The one-loop renormalization of the gauge coupling is obtained from the expression for non
supersymmetric theories (A.11) by imposing that the fermions transform in the same represen-
tations than the bosons, so that T (fermions) = T (adjoint) + T (scalars). The result is[ dgYM

d logµ

]
1 loop

= − g
3
YM

(4π)2 [3T (adjoint)− T (chiral mult.)] . (A.23)

A.2.3 The N = 2 gauge theory

Now we move on to N = 2 theories. We will consider only theories where the two super-
symmetries are equivalent, in the sense that the SU(2)R group which rotates them, called the
R-symmetry group, has to be a symmetry of the Lagrangian. Although the supermultiplets are
now bigger than in N = 1 theories, we keep the language of these N = 1 theories to write the
Lagrangian. The additional supersymmetry then imposes constraints on the Lagrangian. Let us
start with the pure super Yang-Mills theory. The N = 2 vector multiplet consists of one N = 1
vector multiplet, with Lagrangian given by (A.14), and one N = 1 chiral multiplet in the adjoint
representation of the gauge group, with Lagrangian (A.19), where there is only one flavor and
V is in the adjoint representation. The matter representation is a necessary condition, but to
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enforce the extended supersymmetry and the R-symmetry we also need to tune the coupling
constant. The resulting Lagrangian is

Lpure N=2 =
(

τ

16πi

∫
d2θW aαW a

α + h.c.

)
+ τ

4πi

∫
d2θ d2θ̄ Φ̄eV Φ . (A.24)

Renormalization of the coupling

The renormalization of the coupling constant is again a simplification of (A.23), where one chiral
multiplet has to transform in the adjoint representation, giving[ dgYM

d logµ

]
1 loop

= − g
3
YM

(4π)2 [2T (adjoint)− T (chiral mult.)] . (A.25)

Effective action for N = 2 gauge fields

We want to see what constraints extended supersymmetry imposes on (A.21) for the gauge
sector of the N = 2 theory. The superpotential and the Kähler potential have the forms given
by (A.24) for each simple factor in the gauge group. There are two equivalent ways to reach the
result. One is to impose SU(2)R symmetry on the fermions (gauginos from the vector multiplet
and fermions from the chiral multiplet, in the minimal supersymmetry language), and deduce
that a relation exists between the gauge couplings τ ij and the Kähler potential. Another method
is to work in extended superspace, and derive the effective Lagrangian in the form (A.21) from
the prepotential, which is simply the Lagrangian density in the N = 2 superfield formalism.

A.2.4 The N = 4 gauge theory

Written in N = 1 language, the Lagrangian is obtained by adding the gauge sector (A.14) and
the matter sector (A.19) and (A.20). The extended supersymmetry implies that the matter
sector is made of three complex chiral multiplets in the adjoint representation of the gauge
group, which determines the kinetic term (A.19), interacting according to the superpotential

WN=4 = 2
√

2
g2
YM

Tr (Φ1[Φ2,Φ3]) . (A.26)



Appendix B

Lie Algebra

B.1 Basic definitions

Let g be a simple Lie algebra. Its Cartan subalgebra is denoted h, and we have dim h = r,
where r is the rank of g. The roots are elements of the dual of the Cartan algebra h∗ and are
generically denoted by the letter α. The sets of all roots, all positive roots and simple roots are
denoted ∆, ∆+ and ∆s respectively. There are precisely r simple roots, called α1, . . . , αr. If g
is not simply laced, ∆s stands for the set of short roots and ∆l for the set of long roots.

The Killing form κ : g× g→ C is defined by

κ(x, y) = 1
2h∨ tr (adx ady) , (B.1)

where h∨ is the dual Coxeter number (B.6). The restriction of the Killing form to h× h allows
to define a scalar product on the dual space h∗. For two roots α, β ∈ h∗, we denote (α, β) their
scalar product. The Cartan matrix is defined by

Aij = 2(αi, αj)
|αj |2

= (αi, α∨j ) , (B.2)

where
α∨ = 2 α

|αj |2
(B.3)

is the coroot associated to the root α. The highest root ϑ defines the marks ai and the comarks
a∨i via the relation

ϑ =
r∑
i=1

aiαi =
r∑
i=1

a∨i α
∨
i . (B.4)

The Coxeter number is
h = 1 +

r∑
i=1

ai . (B.5)

and the dual Coxeter number is
h∨ = 1 +

r∑
i=1

a∨i . (B.6)

We also define the Weyl vector
ρ = 1

2
∑
α∈∆+

α , (B.7)

207
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and the dual Weyl vector, sometimes called the level vector

ρ∨ = 1
2
∑
α∈∆+

α∨ . (B.8)

Let λ be a dominant weight; it is the highest weight of a representation that we can label by λ
as well. We define the half Dynkin index of this representation to be

T (Representation) = dim (Representation)
2 dim g

(λ, λ+ 2ρ) . (B.9)

The quantity 1
2(λ, λ + 2ρ) is the quadratic Casimir1. When evaluated in the adjoint represen-

tation, the quadratic Casimir is h∨, and the half Dynkin index is T (adjoint) = h∨. In the
fundamental representation of SU(N), we have T (fundamental) = 1

2 . We use the following
normalization of the generators of the Lie algebra:

TrT aT b = T (Representation)δab . (B.10)

The fundamental weights basis (πi)i=1,...,r is defined to be the dual to the simple coroot
basis. This means that (πi, α∨j ) = δij . Let Z ∈ h∗ be a weight. When we decompose Z in the
fundamental weights basis, its components are the Dynkin labels Zi (note the capital letter) of
Z.

We now reproduce here the root systems of the finite-dimensional simple complex Lie alge-
bras. For algebras of type B, C, D and F we use an orthonormal basis (ε1, . . . , εr) of h∗, and
for algebras of type A, E and G we use vectors (ε1, . . . , εr+1) such that

r∑
i=1

εi = 0 (εi, εj) = δij −
1

r + 1 . (B.11)

Then the roots and simple roots are given by

Type Roots Simple roots
Ar εi − εj αi = εi − εi+1
Br ±εi ± εj ,±εi αi = εi − εi+1, αr = εr
Cr ±εi ± εj ,±2εi αi = εi − εi+1, αr = 2εr
Dr ±εi ± εj αi = εi − εi+1, αr = εr−1 + εr
G2 εi − εj ,±εi α1 = −ε2, α2 = ε2 − ε3

(B.12)

In this table, i 6= j vary between 1 and r or r+ 1 depending on the case, and in the last column
i < r except for the case of Ar. When the weight Z is expressed in the family (εi), its components
are denoted zi. In the cases where this family is a basis, there is no ambiguity in the definition
of the zi. In the other cases (for type A, E and G), we have an additional degree of freedom
that we use to set zr+1 = 0. This can be summed up as

Z =
r∑
i=1

Ziπi =
r∑
i=1

ziεi . (B.13)

1Sometimes a different normalization is used. For instance in [160], there is an additional factor of 2. Our
convention is consistent with [159, 158, 23].
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B.2 Lattices

We briefly review Lie algebra concepts that are useful to us in discussing the symmetries of both
the integrable systems and gauge theories we discuss in the bulk of the text. We mostly follow
[156] for our conventions. We will discuss in this section concepts that depend not only on the
Lie algebra g, but also on the global structure of the group G.

Let us then consider a (compact simple) Lie group G with maximal torus T . They have
corresponding tangent algebras g and t. We can then identify T as a linear group, and its space
of characters χ(T ) is in bijection with a lattice in the space t∗(R) dual to the tangent algebra t,
and defined over the real numbers R. To the Lie algebra g, we can associate its set of roots ∆.
Again, these roots are elements of the Euclidean space t∗(R). The space t(R) comes equipped
with a non-degenerate scalar product, which we will denote again by (·, ·). This scalar product
allows us to identify a function λ on the space t(R) with an element uλ ∈ t(R) through the
relation:

λ(x) = (uλ, x) , (B.14)

valid for all elements x of t(R). We will occasionally abuse notation and write λ(x) = (λ, x), and
also (uλ, uλ′) = (λ, λ′), which defines a dual scalar product on t∗(R). The bijection between the
space generated by the roots and its dual allows us to define the dual roots (i.e. the co-roots)
through the relation:

α∨ = 2uα
(α, α) . (B.15)

The root lattice Q is the lattice generated by the roots. Any set of simple roots αi spans the
space t∗(R). The weight lattice P also sits inside t∗(R) and is defined to be generated by a basis
πj such that:

2(αi, πj)
(αi, αi)

= δij , (B.16)

for all i and j that run from 1 to the rank of the group G. We moreover define the dual root
lattice Q∨ to be the lattice generated by the dual roots, and the dual weight lattice P∨ to be
the weight lattice corresponding to the dual root lattice. The dual of the lattice generated by
the characters of a given group G will be denoted t(Z). We have the following properties. The
center C(G) of the group G is given by:

C(G) ≡ P∨/t(Z) ≡ χ(T )/Q . (B.17)

Moreover, when G is simply connected it is equal to its universal cover G̃. We then have that the
space of characters is bijective to the whole of the weight lattice χ(T ) = P , and that t(Z) = Q∨,
such that C(G) is maximal and C(G̃) = P/Q = P∨/Q∨. The group with minimal center
C(G) = 1 is the universal cover G̃ divided by its center C(G̃). In this case we have that the set
of weights is the set of roots χ(T ) = Q and that t(Z) = P∨.

Our definitions imply that the fundamental weights π∨j that generate the dual weight lattice
P∨ satisfy:

(π∨j , uαi) = δij , (B.18)

and therefore that:

α(Z) = (uα, Z) = (α,Z) (B.19)
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is integer for Z in the dual weight lattice, i.e. for Z a co-weight.
We summarize inclusions and dualities in the diagram below. The arrows indicate that the

lattices are dual, i.e. that the contractions give integers.

t∗(R) ⊃ P ⊃ χ(T ) ⊃ Q

l l l
Q∨ = P ∗ ⊂ t(Z) ⊂ P∨ = Q∗ ⊂ t(R)

(B.20)

B.3 Lie algebra data

We end this review on Lie group and Lie algebra theory with table B.1 which exhibits useful
data on the Weyl group, the outer automorphisms, the dual Coxeter number and the center of
the universal covering group corresponding to the classical Lie algebras.

Algebra Weyl group OA Dual Coxeter number Center Univ. Cover
Ar, r > 1 Sr+1 Z2 r + 1 Zr+1

A1 Z2 1 2 Z2
Br Sr n Zr2 1 2r − 1 Z2
Cr Sr n Zr2 1 r + 1 Z2

Dr, odd r Sr n Zr−1
2 Z2 2r − 2 Z4

Dr, even r > 4 Sr n Zr−1
2 Z2 2r − 2 Z2 × Z2

D4 S4 n Z3
2 S3 6 Z2 × Z2

Table B.1: Lie Algebra Data. OA stands for Outer Automorphisms

We provide a table of dual Coxeter numbers for the simple complex exceptional Lie algebras.

E6 E7 E8 F4 G2
12 18 30 9 4

For the various definitions about affine Lie algebras, see section 3.4.2.



Appendix C

Modular Forms and Elliptic
Functions

This appendix presents various definitions and theorems concerning modular forms and elliptic
functions that we use in bulk of the text. Throughout all the thesis, we denote the upper half-
plane of complex numbers with strictly positive imaginary part by H, and τ is a generic element
of H.

C.1 Modular and Automorphic forms

C.1.1 Definitions

Let N be a positive integer. The principal congruence subgroup of level N is the subgroup

Γ(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣∣
(
a b

c d

)
≡
(

1 0
0 1

)
modN

}
.

Note that Γ(1) = SL2(Z). More generally, a subgroup Γ ∈ SL2(Z) is called a congruence
subgroup if it contains Γ(N) for some N ∈ N∗. A particularly important class of congruence
subgroups is the class of Γ0(N) groups, defined by

Γ0(N) =
{(

a b

c d

)
∈ SL2(Z)

∣∣∣∣∣ c ≡ 0 modN
}
. (C.1)

This group can be described in an abstract way as follows. It is generated by the three elements
C, T and STNS, where the relations satisfied by C, S and T are

C2 = 1 S2 = C (ST )3 = C . (C.2)

In the case N = 1, one can check that S belongs to the group, because S = C(STS)T (STS).
We now introduce a useful notation. For any matrix

γ =
(
a b

c d

)
∈ SL2(Z) (C.3)

and any function f : H → C we define the function f [γ]k : H → C by the expression

(f [γ]k)(τ) = 1
(cτ + d)k f

(
aτ + b

cτ + d

)
. (C.4)
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Let Γ be a congruence subgroup, and let k ∈ Z. A function f : H → C is a modular form of
weight k with respect to Γ if

1. f is holomorphic on H and the function f [γ]k is holomorphic at ∞ for all γ ∈ SL2(Z),

2. f is weight-k invariant under Γ, meaning that f [γ]k = f for all γ ∈ Γ.

If in addition the constant term in the q-expansion of f [γ]k vanishes for all γ ∈ SL2(Z), then we
say that f is a cusp form of weight k with respect to Γ. We denote by Mk(Γ) the set of such
modular forms, and Sk(Γ) the set of cusp forms.

We also define the slightly more general concept of automorphic form as follows. Let

Ĉ = C ∪ {∞} (C.5)

be the Riemann sphere. A function f : H → Ĉ is an automorphic form of weight k with respect to
Γ is it satisfies the same conditions 1 and 2 of the definition above, with the word “holomorphic”
replaced by the word “meromorphic”. We denote by Ak(Γ) the set of such automorphic forms.

Let Γ be a congruence subgroup. The quotient space Γ\H is a complex curve called the
modular curve associated to Γ. In general it is not compact, because of the cusps, which
constitute the Γ-equivalence class of Q∪{∞}. We can compactify the modular curve by adjoining
the cusps:

X (Γ) = Γ\ (H ∪Q ∪ {∞}) (C.6)

is the compact modular curve of Γ. We note that X (Γ(1)) ≡ X (1) is the usual fundamental
domain of the modular group. This domain has one elliptic point of order 2, namely SL2(Z) · i,
one elliptic point of order 3, namely SL2(Z) · e2πi/3, and one cusp SL2(Z) · ∞. Now let us
consider the natural projection f : X (Γ)→ X (1). Let ε2 be the number of points in X (Γ) that
are sent by f on the elliptic point of order 2, and define similarly ε3 and ε∞. Then the genus of
X (Γ) is

g = 1 + d

12 −
ε2
4 −

ε3
3 −

ε∞
2 , (C.7)

where d is the degree of f . Moreover, let k ∈ Z be an even integer. If k ≤ 0, then dimMk(Γ) =
δk,0. If k ≥ 2, then

dimMk(Γ) = (k − 1)(g − 1) +
[
k

4

]
ε2 +

[
k

3

]
ε3 + k

2ε∞ . (C.8)

Now we give the dimension of the space of cusp forms. For k ≤ 2 we have dimSk(Γ) = gδk,2
and for k ≥ 4, dimSk(Γ) = dimMk(Γ)− ε∞.

Full Modular Group

Let k be an even integer. For the full modular group SL2(Z), we have ε2 = ε3 = ε∞ = d = 1.
This gives g = 0 and:

• If k < 0 or k = 2 thenMk (SL2(Z)) = Sk (SL2(Z)) = {0}.

• M0 (SL2(Z)) = C and S0 (SL2(Z)) = {0}.

• For k ≥ 4, we haveMk (SL2(Z)) = Sk (SL2(Z))⊕ CEk and

dimSk (SL2(Z)) =


[
k
12

]
− 1 if k ≡ 2 mod 12[

k
12

]
otherwise.

(C.9)
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The congruence subgroup Γ0(4)

One can prove that ε2 = ε3 = 0 and that ε∞ = 3. Moreover, d = 6. Then we find that g = 0,
and therefore for k ≥ 2 even,

dimMk(Γ0(4)) = 1 + k

2 . (C.10)

and if k ≥ 4,

dimSk(Γ0(4)) = k − 4
2 . (C.11)

C.1.2 Eisenstein Series

Let k ≥ 4 be an integer. We define the classical Eisenstein series of weight k to be the function
defined by the following absolutely convergent series:1

Ek(τ) = 1
2ζ(k)

∑
(c,d)∈Z2−{(0,0)}

1
(cτ + d)k = 1

2
∑
c∧d=1

1
(cτ + d)k . (C.12)

The function Ek is a modular form of weight k for SL2(Z), and has a q-expansion that starts
with 1:

Ek(τ) = 1− 2k
Bk

∞∑
n=1

σk−1(n)qn , (C.13)

where Bk is the k-th Bernoulli number2 and σk−1(n) is the sum

σk−1(n) =
∑

m>0,m|n
mk−1 . (C.15)

For k = 2, the sum (C.12) is not absolutely convergent. Its terms can be arranged so that
equation (C.13) remains true; however conditional convergence spoils modularity. A detailed
calculation shows that, using the notations (C.3) and (C.4)

(E2[γ]2)(τ) = E2(τ)− 6i
π

(
c

cτ + d

)
. (C.16)

Since these classical Eisenstein series are used extensively throughout, we give here the first
few terms in their q-expansion:

E2(q) = 1− 24q − 72q2 − 96q3 − 168q4 − . . . (C.17)
E4(q) = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + . . . (C.18)
E6(q) = 1− 504q − 16632q2 − 122976q3 − 532728q4 − . . . (C.19)

1In this expression ζ(k) =
∞∑
d=1

d−k is the usual Riemann zeta function.
2This number can be defined by either one of the two following formulas for even k ≥ 2 :

2ζ(k) = − (2πi)k

k! Bk
t

et − 1 =
∞∑
k=0

Bk
tk

k! (C.14)
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C.2 Elliptic functions

C.2.1 The Weierstrass function

Our conventions for the elliptic Weierstrass function are:

℘(x;ω1, ω2) = 1
x2 +

∑
(m,n) 6=(0,0)

[ 1
(x+ 2mω1 + 2nω2)2 −

1
(2mω1 + 2nω2)2

]

℘(z; τ) = 1
z2 +

∑
(m,n)6=(0,0)

[ 1
(z +m+ nτ)2 −

1
(m+ nτ)2

]
(C.20)

which entails the equality
℘(z; τ) = 4ω2

1 ℘(2ω1z;ω1, ω2) . (C.21)

with
τ = ω2

ω1
. (C.22)

We impose the convention that =(ω2/ω1) = =(τ) > 0. The Weierstrass function is a Jacobi
form of level 2 and index 0 :

℘

(
z

cτ + d
; aτ + b

cτ + d

)
= (cτ + d)2℘(z; τ) . (C.23)

It has the following expansion for large imaginary part of τ :

℘(x;ω1, ω2) = − π2

12ω2
1
E2(q) + π2

4ω2
1

csc2
(
πx

2ω1

)
− 2π2

ω2
1

∞∑
n=1

nqn

1− qn cos nπx
ω1

. (C.24)

This expression is valid when the series es absolutely convergent, which requires |=x| < =τ . In
this expression, csc stands for the cosecant, which is just

cscx = 1
sin x . (C.25)

We will almost always take ω1 = 1
2 and ω2 = τ

2 , in which case the expansion simplifies to

℘(x; τ) = −π
2

3 E2(q) + π2

sin2 (πx)
− 8π2

∞∑
n=1

nqn

1− qn cos 2nπx . (C.26)

From this we deduce the limit

lim
τ→i∞

℘(x; τ) = −π
2

3 + π2

sin2 (πx)
. (C.27)

Note also that we can take the opposite limit ω1 →∞. A useful result is

∑
n∈Z

1
(x+ 2nω)2 −

∑
n∈Z−{0}

1
(2nω)2 =

(
π

2ω

)2
(

1
3 + 1

sinh2( π
2ωx)

)
. (C.28)
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C.2.2 The twisted Weierstrass functions

The twisted Weierstrass function is defined, for any integer n ≥ 1, by

℘n(x;ω1, ω2) =
∑
k∈Zn

℘

(
x+ k

n
2ω1;ω1, ω2

)
. (C.29)

For n = 1 one recovers the usual Weierstrass function ℘. The periodic properties are

℘n (x;ω1, ω2) = ℘n

(
x+ 2ω1

n
;ω1, ω2

)
= ℘n (x+ 2ω2;ω1, ω2) . (C.30)

For the n = 2 twisted Weierstrass function, we can derive the equality:

℘2 (x;ω1, ω2) = ℘(x;ω1, ω2) + ℘(x+ ω1;ω1, ω2) = ℘(x; ω1
2 , ω2) + π2

6ω2
1

[
2E2(2ω2

ω1
)− E2(ω2

ω1
)
]

(C.31)
as well as the dual

℘(x;ω1, ω2) + ℘(x+ ω2;ω1, ω2) = ℘(x;ω1,
ω2
2 )− π2

6ω2
1

[
E2(ω2

ω1
)− 1

2E2( ω2
2ω1

)
]
. (C.32)

These can be proven using the definition of the Weierstrass function ℘, as well as the definition
of the second Eisenstein series E2.

C.3 Theta and Eta Functions

We first fix our conventions for the theta-functions with characteristics:

θ

[
α

β

]
(τ) =

∑
n∈Z

exp
[
iπ(n+ α)2τ + 2πiβ(n+ α)

]
. (C.33)

Particular examples of these theta-functions include:

θ2(q) = θ

[
1
2
0

]
(q) = 2q1/8 + 2q9/8 + 2q25/8 + 2q49/8 + ...

θ3(q) = θ

[
0
0

]
(q) = 1 + 2q1/2 + 2q2 + 2q9/2 + 2q8 + ...

θ4(q) = θ

[
0
1
2

]
(q) = 1− 2q1/2 + 2q2 − 2q9/2 + 2q8 + ...

We also make use of the Dedekind eta-function:

η(q) = q1/24
∞∏
n=1

(1− qn) , (C.34)

and the Klein invariant

j(q) = 1728 E3
4(q)

E3
4(q)− E2

6(q)
= 1
q

+ 744 + 196884q + ... (C.35)

The function j is invariant under the modular group, while η satisfies

η(τ + 1) = eiπ/12η(τ) η

(
−1
τ

)
=
√
−iτη(τ) . (C.36)
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C.4 Modular Forms and Sublattices

In this subsection we recall how to find a basis of the space of modular forms of weight k for the
congruence subgroup Γ(N) ([121]). First we note that the cusps of Γ(N) can be identified with
the pairs ±v ∈ (Z/NZ)2 of order N . This makes it possible to count the number of such cusps :

ε∞(Γ(N)) =


3 N = 2
N2

2
∏
p|N

(
1− 1

p2

)
N ≥ 3 .

For any congruence subgroup Γ the space of modular formsMk(Γ) of weight k decomposes into
the subspace of cusp forms and the Eisenstein space: Mk(Γ) = Sk(Γ) ⊕ Ek(Γ). For N = 2 we
have

dimS2(Γ(2)) = 0

and for N ≥ 3,

dimS2(Γ(N)) = 1 + N2(N − 6)
24

∏
p|N

(
1− 1

p2

)
.

In particular, dimS2(Γ(3)) = 0 and dimS2(Γ(6)) = 1.
We will also use the fact that dimS2k(Γ0(4)) = k − 2 for every integer k ≥ 2, while

dimS2(Γ0(4)) = 0.

We want an explicit basis of the Eisenstein space. For any vector v =
[
c

d

]
∈ (Z/NZ)2 of

order N , and for k ≥ 3, we define the (non-normalized) Eisenstein series

Gk,N [v] (τ) = Gk,N

[
c

d

]
(τ) =

∑′

v′≡v(N)

1
(c′τ + d′)k ,

and for weight two

G2,N [v] (τ) = G2,N

[
c

d

]
(τ) = 1

N2

[
℘

(
cτ + d

N
, τ

)
+G2(τ)

]
,

where the primed sum runs over those non-vanishing vectors v′ =
[
c′

d′

]
that equal v modulo N .

One can show that the Fourier expansion of these functions in terms of q = e2iπτ is:

Gk,N

[
c

d

]
(q) = δ(c)ζdN (k) + (−2πi)k

N2(k − 1)!

∞∑
n=1

σk−1,N

[
c

d

]
(n)qn/N

where
σk−1,N

[
c

d

]
(n) =

∑
m|n and n

m
≡c(N)

sgn(m)mk−1 exp
(

2πidm
N

)
and

ζdN (k) =
∑′

d′≡d (N)

1
(d′)k .

This Fourier expansion is valid for all k ≥ 2, including k = 2 which is the case we are mostly
interested in.
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For k ≥ 3, any set {Gk,N [v]} with one v corresponding to each cusp of Γ(N) represents a basis
of the space Ek(Γ(N)) of Eisenstein series of weight k on Γ(N) (and in particular dim Ek(Γ(N)) =
ε∞). For the case k = 2 these statements have to be modified, because of the lack of modularity
of the (ordinary) weight 2 Eisenstein series. It turns out that dim E2(Γ(N)) = ε∞ − 1, and that
E2(Γ(N)) is the set of linear combinations of the {Gk,N [v]} (where v ∈ (Z/NZ)2 is of order N)
whose coefficients sum to 0.3

The Eisenstein series Gk,N [v] have good transformation properties under SL(2,Z) for k ≥ 3
and N ∈ {2, 3} provided the vector v is transformed accordingly:4

1
(cτ + d)kGk,N [v]

(
aτ + b

cτ + d

)
= Gk,N

[(
a b

c d

)
v

]
(τ) .

For k = 2, we have to take into account a non-holomorphic term, except for linear combinations
where the sum of the coefficients vanishes, as is the case for the potentials considered in the
bulk of the thesis.

Finally, we also define

E2,N (τ) = E2(τ)−NE2(Nτ) . (C.37)

These are weight 2 modular forms of Γ0(N). We use extensively the fact that M2(Γ0(4)) has
dimension 2 and is generated by

−E2,2(q) = 1 + 24q + 24q2 + 96q3 + 24q4 + 144q5 + ...

−E2,4(q) = 3 + 24q + 72q2 + 96q3 + 72q4 + 144q5 + ...

We note the transformation property of the form E2,2 under S2 : τ → −1/(2τ):

E2,2(−1/(2τ)) = E2(−1/(2τ))− 2E2(−1/τ) = −2τ2E2,2(τ) . (C.38)

3Theorem 4.6.1 in [121]
4For generic N the relation between the normalized Eisenstein series, which enjoy these good transformation

properties, and the series Gk,N [v] is not simply a proportionality relation (see formula (4.5) in [121]), but it is a
simple rescaling for N = 2 and N = 3.
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Sujet : Vides et Modularité dans les théories de jauge
supersymétriques N = 1∗

Résumé : Nous explorons la structure des vides dans une déformation massive de la théorie
de Yang-Mills maximalement supersymétrique en quatre dimensions. Sur un espace-temps
topologiquement trivial, la théorie des orbites nilpotentes dans les algèbres de Lie rend
possible le calcul exact de l’indice de Witten. Nous en donnons les fonctions génératrices
pour les algèbres classiques, et recourons à un calcul explicite pour les exceptionnelles.
Après compactification sur un cercle, un lien entre les théories de jauge supersymétriques et
les systèmes intégrables est exploitable pour réduire la chasse aux vides à une extrémisation
du hamiltonien de Calogero-Moser elliptique twisté. Une analyse soigneuse des propriétés
globales du groupe de jauge et des opérateurs de ligne est nécessaire pour obtenir un accord
parfait. En combinant exploration numérique sur ordinateur et contrôle analytique grâce
à la théorie des formes modulaires, nous exhibons la structure des vides massifs pour des
algèbres de rang petit, et mettons en évidence de nouvelles propriétés modulaires. Nous
montrons que des branches de vides de masse nulle existent, et nous en donnons la structure
exacte pour les algèbres de rang deux.

Mots clés : Théories de jauge supersymétriques, Systèmes intégrables, Modularité

Subject : Modularity and Vacua in N = 1∗ Supersymmetric Gauge
Theory

Résumé : We investigate the vacuum structure of a massive deformation of the maxi-
mally supersymmetric Yang-Mills gauge theory in four dimensions. When the topology
of spacetime is trivial, the Witten index can be computed exactly for any gauge group
using the theory of nilpotent orbits in Lie algebras. We provide generating functions for
classical algebras and an explicit calculation for the exceptional ones. Upon compactifica-
tion on a circle, one can use a bridge between supersymmetric gauge theories and complex
integrable systems to reduce the analysis of vacua to the search of extrema of the twisted
elliptic Calogero-Moser Hamiltonian. A careful inspection of global properties of the gauge
group and line operators are needed to reach total agreement. Using a combination of nu-
merical exploration on a computer and analytical control through the theory of modular
forms, we determine the structure of massive vacua for low-rank gauge algebras and ex-
hibit new modular properties. We also show that massless branches of vacua can exist,
and provide an analytic description for rank two gauge algebras.
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