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ABSTRACT 

 

Time-resolved kinetics study on the cytochrome bd quinol oxidase from 

Escherichia coli was carried out by stopped-flow techniques. The natural substrate, 

ubiquinol, was used to turnover the enzyme in the fast catalysis successfully for the first 

time. The results excluded the fully oxidized form of the enzyme from the rapid catalytic 

cycle of cytochrome bd oxidase. A re-investigation by both Flow-Flash and EPR on the 

previously reported mutant at Glu445 in subunit I, uncovered the dithionite-resistant 

ferric heme b595. Electrometrics data further suggested a series of protonatable groups 

forming a proton channel located in the membrane to facilitate the proton translocation 

from cytoplasm to the heme b595 / heme d binuclear center. With help of the increasing 

database of available cytochrome bd oxidase sequences, site-directed mutagenesis studies 

were carried out on the highly conserved residues of the enzyme. Mutations on two 

highly conserved acidic residues in subunit I – Glu99 and Glu107 were characterized in 

detail. The glutamine substitution at Glu107 was managed to obtain the FTIR redox 

difference spectra regarding its relatively intact binuclear center. Glu107 was shown to be 

protonated at pH 7.6 and that it was perturbed by the reduction of the heme b595 / heme d 

binuclear center at the active site. Mutations on Serine140, another structurally important 

non-acidic residue were also studied by FTIR. Mutant enzyme in which Serine140 was 

replaced with threonine was shown to perturb protonation of several acidic residues 

including Glu107 and/or Glu99. Due to their close proximity to the active site, Glu99, 
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Glu107 and Ser140 were suggested to be part of the proton channel. Two highly 

conserved residues in the Q-loop of subunit I – Glu257 and Asp239 were also examined 

for their possible involvement in substrate binding. The FTIR difference spectra indicated 

a reorganization of binding environment caused by Glu257 mutant, while besides 

contributing to substrate binding, Asp239 was also believed to play a critical role in 

maintaining the redox potential of heme b595 in a right level that rapid catalysis can be 

achieved. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview: 

Energy generation is always the key issue in the life cycle of all the living 

organisms which need to maintain homeostasis, growth and reproduction. Among three 

major ways to obtain energy – aerobic respiration, anaerobic fermentation and 

photosynthesis, the aerobic respiration is found to be the most common and efficient way 

for heterotrophic organisms to generate energy for their food source. In general, aerobic 

respiration is achieved through a series of reaction called Respiratory Chain (Figure 1.1), 

also known as Electron Transfer Chain (ETC). This is a comprehensive process which 

consists of four or five complexes that pass the electrons from organic substance to the 

terminal acceptor, usually oxygen, during which energy is released and used for ATP 

synthesis or other energy-consuming process. Cytochrome oxidase, also known as 

terminal oxidase or complex IV, which is a group of heme proteins that can accept and 

pass electrons by changing their heme iron valences, is the crucial component in this 

process. Up to date, all the cytochorme oxidases can be classified into two major groups 

– the heme-copper oxidase superfamily and the tri-heme oxidase family. In Escherichia 

coli, the target organism of our study, there are two types of cytochrome oxidases 

involved in aerobic respiration – cytochrome bo3 quinol oxidase from the heme-copper 

family and cytochrome bd quinol oxidase from the tri-heme family (Anraku and Gennis 

1987). 
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1.2 Cytochrome bd quinol oxidase: 

The cytochrome bd quinol oxdiase is expressed during both aerobic and anaerobic 

growth and achieves the highest expression level under the microaerophilic growth 

condition (Rice and Hempfling 1978; Cotter, Chepuri et al. 1990; Fu, Iuchi et al. 1991). 

The enzyme is a membrane-integrated heterodimer (Figure 1.2), with the two subunits 

being encoded by cydA (subunit I; 57 kD) and cydB (subunit II; 43 kD) (Miller, 

Hermodson et al. 1988). There is no sequence homology between either CydA or CydB 

and the subunits of the heme-copper oxidase superfamily (e.g., cytochrome c oxidases) 

(Calhoun, Thomas et al. 1994; Garcia-Horsman, Barquera et al. 1994). Both the heme-

copper oxidases and the cytochrome bd oxidases are respiratory oxidases and catalyze the 

4-electron reduction of O2 to 2 H2O. In both types of oxidases, the redox chemistry is 

coupled to the generation of a proton electrochemical gradient across the membrane 

(proton motive force). In both groups of oxidases, the sources of electrons and protons 

that are brought together with O2 to generate water at the active site are on opposite sides 

of the membrane. Electrons come from the oxidation of electron donors at sites located at 

the periplasmic side and protons taken from the cytoplasm. This generates a 

transmembrane voltage coupled to enzyme turnover.  

Despite of the physiological similarity to heme-copper oxidase described above, 

cytochrome bd is the only well-studied member of the tri-heme oxidase family 

(Jünemann 1997; Mogi, Tsubaki et al. 1998). Although increasing number of cytochrome 

bd oxidase has been found in prokaryotes and archaea, there is still lack of copy from 

eukaryotes (Osborne, 1999). There are three major structural and functional uniqueness 

of this enzyme that distinguish it from the heme-copper superfamily other than no 
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sequence homology. First, there is no copper in cytochrome bd, which is the main reason 

it’s separated from the heme-copper oxidase family. Instead of a copper in the active site, 

another d-type heme is involved in the catalytic reaction. Second, cytochrome bd does 

not function as a transmembrane proton pump (Puustinen, Finel et al. 1991), which is one 

of the characteristics of the heme-copper oxidases. The fact that the enzyme does not 

pump proton may contribute to its exceptionally high affinity for oxygen and high 

catalytic efficiency (Puustinen, Finel et al. 1991; Jünemann, Butterworth et al. 1995). 

Third, in contrast to heme-copper oxidases’ high sensitivity to cyanide, cytochrome bd is 

insensitive to cyanide inhibition. Its Ki value is as high as 8 mM for respiratory particles 

containing cytochrome bd (Pudek and Bragg 1974), compared to micromolar or even 

submicromolar range in its heme-copper opponent (Jones, Weiner et al. 1984; Kita, 

Konishi et al. 1984). All these unique features of cytochrome bd oxidase have made it an 

interesting target for enzymological study for decades (Zhang 2002). 

Currently, there are over 1000 sequences of the cytochrome bd genes available 

from genomic data and from environmental sequencing projects. Cytochrome bd is much 

more prevalent in the genomic sequences than in the environmental sequences, which 

may indicate a biased presence in pathogenic bacteria which have been a major focus of 

genomic projects. Indeed, a number of publications have indicated a role of cytochrome 

bd in virulence and in the ability of pathogenic bacteria to survive as intracellular 

parasites (Loisel-Meyer, Jimenez de Bargues et al. 2005; Yamamoto, Poyart et al. 2005; 

Shi, Sohaskey et al. 2005; Way, Sallustio et al. 1999; Endley, McMurray et al. 2001). 

A phylogenetic analysis of the sequences of both CydA and CydB indicates that 

the bd-type oxidases group in four phylogenetically coherent families (Figure 1.3) 
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(Hemp and Gennis, manuscript in preparation). It has been shown that subunit II has 

evolved significantly faster than subunit I, leading to more sequence diversity in subunit 

II (Hao and Golding 2006). Many prokaryotes have representatives of more than one of 

these families, suggesting that they may play distinct roles in the physiology of the 

organisms. The E. coli genome encodes two bd-type oxidases (cydAB and cyxAB). 

CyxAB (previously called appBC), together with appA, consititutes the acid phosphatase 

regulon (Dassa, Fsihi et al. 1991), and the enzyme appears to be optimally expressed 

under anaerobic or near anaerobic conditions (Brondsted and Atlung 1996). The enzyme 

has not been extensively studied, but it has been isolated and characterized (Sturr, 

Krulwich et al. 1996). The CydAB oxidase has been more extensively studied, and is 

optimally expressed under microaerophilic conditions. CydAB is the predominant 

oxidase in E. coli grown to stationary phase or grown under conditions of limiting O2 

(Govantes, Orjalo et al. 2000; Govantes, Albrecht et al. 2000; Tseng, Albrecht et al. 1996; 

Iuchi and Lin 1991). CydAB is part of a closely related subgroup of bd-type oxidases that 

contains an insertion in the C-terminus of the Q-loop, a large periplasmic “loop” 

connecting transmembrane helices VI and VII (out of 9 predicted transmembrane helices) 

(see Figure 1.4 and Figure 1.5)(Osborne and Gennis 1999; Kusumoto, Sakiyama et al. 

2000; Sakamoto, Koga et al. 1999). The Q-loop has been implicated by many 

experimental techniques as being involved in ubiquinol binding and oxidation 

(Matsumoto, Murai et al. 2006; Mogi, Akimoto et al. 2006; Dueweke and Gennis 1990; 

Dueweke and Gennis 1991). 

All of the well-studied bd-type oxidases so far contain three heme prosthetic 

groups (Figure 1.2). Heme b558 is a low-spin protoheme IX (Figure 1.6) and located 
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within CydA, ligated to I-H186 and I-M393 (Figure 1.4), predicted to be near the 

periplasmic surface (Fang, Lin et al. 1989; Kaysser, Ghaim et al. 1995). Reduced heme 

b558 has absorption peaks at 560, 530, and 430 nm (Figure 1.7). The role of heme b558 

appears to be to facilitate electron transfer from the reduced quinol substrate. The binding 

of quinone-analogues such as antimycin (Jünemann and Wrigglesworth 1994) or aurachin 

D (Mogi, Akimoto et al. 2006; Meunier, Madgwick et al. 1995) cause a red-shift of the 

absorption spectrum of heme b558. Heme b595 is a high-spin protoheme IX (Figure 1.6), 

with absorption peaks at 595 and 560 nm and a recently characterized peak at around 440 

nm in the reduced state (Figure 1.7). Heme d is a high-spin chlorin (Figure 1.6) with an 

α-absorption band at 628 nm and an uncharacterized Soret peak (Figure 1.7). Ferrous 

heme d binds stably to O2 (heme d Fe2+-O2) and, upon the addition of two more electrons, 

forms a heme d Fe4+=O2- oxoferryl species (plus –OH) (Lorence and Gennis 1989). When 

isolated, the enzyme is a mixture with hemes b in oxidized form, and heme d in ferrous-

oxy and oxoferryl forms (Kahlow, Loehr et al. 1993) at a ratio around 70 to 30. The 

protein ligand of heme d is not known. Heme b595 does not stably bind to exogenous 

ligands (Borisov, Arutyunyan et al. 1999), such as CO, and its role in the catalytic 

mechanism is not known. It could be present simply as an electron donor, or it could play 

a role in capturing and activating O2. Heme b595 is ligated to I-H19 in CydA (Figure 1.4) 

(Sun, Kahlow et al. 1996), also located at the periplasmic surface (Zhang, Barquera et al. 

2004). Heme d and heme b595 are adjacent and since heme b595 is located to the 

periplasmic surface, it follows that the heme d / heme b595 active site must be located near 

the periplasmic side of the membrane (Zhang, Barquera et al. 2004). 
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Both heme-copper and tri-heme oxidases utilize protons from the bacterial 

cytoplasm. In the case of the heme-copper oxidases, distinct proton-conducting channels 

have been structurally and functionally identified (Branden, Gennis et al 2006; Brändén, 

Tomson et al. 2002; Gennis 1998; Konstantinov, Siletsky et al 1997; Ostermeier, 

Harrenga et al. 1997; Tsukihara, Aoyama et al. 1996). The D and K channels are used 

from proton input, and both lead from the bacterial cytoplasm to the vicinity of the 

enzyme active site. Highly conserved residues contribute to these channels. In the case of 

cytochrome bd oxidase, Electron transfer from heme b558 to the heme d / heme b595 active 

site generates a transmembrane voltage (positive outside) (Belevich, Borisov et al. 2005). 

This cannot be a direct result of the electron transfer itself because heme b558 and the 

heme d / heme b595 active site are both located near the periplasmic surface. Hence, the 

voltage must be generated by the coupled movement of protons across the membrane 

from the cytoplasm to the active site on the opposite side of the membrane. This is the 

basis for predicting a proton-conducting channel to facilitate this proton translocation. 

Unfortunately, there is no X-ray structure of a bd-type oxidase. However, with the large 

number of sequences now available, one can search for highly conserved residues that 

might be candidates for such a role. Several years ago, on the basis of sequence 

alignments, two glutamic acid residues were picked out as prime candidates as being 

components of a proton-conducting channel, E107 and E99 (E. coli) (Osborne and 

Gennis 1999). These are both predicted to be in transmembrane regions and are 

conserved. In this thesis, the effects of mutations in these, as well as other acidic residues, 

are reported. 
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The isolated cytochrome bd appears to have a single binding site for quinols. 

Unlike the heme-copper oxidases that utilize ubiquinol as a substrate, such as cytochrome 

bo3 from E. coli, there is no evidence of a high affinity binding site for a quinone which 

does not readily exchange with the quinone pool in the membrane. Hence, the fully 

reduced form of cytochrome bd contains three electrons, corresponding to the ferrous 

forms of each of the three hemes.  

After decades of intensive study on cytochrome bd oxidase, a lot of basic facts 

have been revealed, while more others remain mysterious. There are still some obvious 

questions need answers: What is the 3D structure of this enzyme? How does heme d 

reside in the membrane? What is the role of heme b595? How do the proton from 

cytoplasm translocate to the reactive site couple with the electrons from the donors? How 

is the substrate quinol bound to the enzyme? Is fully oxidized heme d an essential state in 

the fast turnover? Some of these questions are addressed in this dissertation. Various 

experimental approaches, such as site-directed mutagenesis, EPR, FTIR and Flow-Flash, 

etc. are employed to explore the nature of cytochrome bd oxidase, and they are proven to 

be highly productive. 

 

1.3 Scope of dissertation: 

This dissertation focuses on the cytochrome bd-I quinol oxidase from the E. coli 

respiratory chain. By means of mutagenesis study of the highly conserved residues, as 

well as various spectroscopic studies of the wild type enzyme, more knowledge on the 

structure-function relationship of this evolutionarily unique enzyme is obtained. 
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The first chapter provides background information and serves as an introduction. 

Chapter 2 presents the novel rapid catalysis model based on the kinetics study of the wild 

type enzyme, where the fully oxidized, ferric state, is excluded in the latest version. The 

next three chapters form a series study on the putative proton channel comprised of three 

chapters: Chapter 3 complements a previous identified important residue, I-E445, near 

the Q-loop in the highly conserved “GRPQW” region, which is necessary in maintaining 

proper function of heme b595. Mutation on this site specifically prevents the reduction of 

heme b595 without affecting the other two hemes. EPR spectra and electrometric data 

raise the discussion on the putative but “must-have” proton channel, which facilitates the 

proton uptake from cytoplasm to the enzyme reaction center. In Chapter 4, two highly 

conserved acidic residues, I-E99 and I-E107 have been identified in the spatial proximity 

of the bi-nuclear center. The comparative FTIR study of I-E107 mutants and wild type 

enzyme reveals the importance of E107’s protonation status during the proton 

translocation. To further explore, Chapter 5 presents the FTIR and Flow-Flash work on 

another highly conserved residue, I-S140, which sits right below I-E99 and I-E107. 

Mutation on this residue specifically impairs the protonation of I-E107 / I-E99, as well as 

perturbs the fast kinetics through peroxy state. Chapter 6 and Chapter 7 focus on two 

highly conserved acidic residues, I-D239 and I-E257, which are involved in the quinol 

binding. Chapter 8 summaries all the findings and serves as the conclusion. 
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1.4 Figures and tables: 

 
 

 
 
Figure 1.1 The mitochondrial respiratory chain.  

Structures are of mitochondrial enzymes or bacterial analogs. ATP synthase was named 
as Complex V in this figure. (from B. E. Schultz and S. I. Chan, 2001) 
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Figure 1.2 A model of cytochrome bd quinol oxidase structure. 

The periplasm and cytoplasm are referred as “out” and “in” respectively. All the 
prosthetic groups are shown, with heme b558 located in subunit I, and heme b595-heme d 
binuclear center at the interface between subunit I and II. The electron pathway is marked 
with blue, and proton pathway marked with magenta. Note the proton gradient across 
membrane is generated through scalar reactions with no proton pumping involved. 
(modified from dissertation of J. Zhang, 2002)
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Figure 1.3 Evolutionary tree of cytochrome bd quinol oxidase. 

Over 1000 cytochrome bd oxidase sequences from both genomic data and environmental 
sequencing projects were used to generate this tree. Four phylogenetically coherent 
families are marked with colors: family that has intact Q-loop including E. coli is in grey; 
family that have truncated Q-loop is in blue; family of bd-like oxidases is in yellowish 
green; family of archaea is in red.
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Figure 1.4 Membrane topology model of subunit I of cytochrome bd oxidase from E. 

coli. 

The highly conserved residues are marked with colors: the heme ligands (H19, H186 and 
M393) are in black; the acidic residues are in red; the others are in blue. TMHMM 2.1 
and TOPO2 programs were used to generate the model. 
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Figure 1.5 Membrane topology model of subunit II of cytochrome bd oxidase from E. 

coli. 

Since subunit II is more evolutionarily diverse (James Hemp, unpublished data), the 
highly conserved residues within E. coli subfamily are marked in colors. TMHMM 2.1 
and TOPO2 programs were used to generate the model. 
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Figure 1.6 The structures of heme b and heme d. 

Heme d, a chlorin, is derived from heme b by the addition of two hydroxyl groups to a 
double bond in the porphyrin macrocycle. The axial ligands of the ferric ions are not 
shown. (modified from dissertation of J. P. Osborne, 1999) 
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Figure1.7 UV-Vis spectrum of dithionite-reduced cytochrome bd oxidase. 

The numbers indicate the positions of the absorption peaks of each heme. All hemes 
contribute to the absorption at 428 nm. (modified from dissertation of J. Zhang, 2002) 



 

16 

CHAPTER 2: EXCLUSION OF THE FULLY OXIDIZED FORM OF 

CYTOCHROME BD QUINOL OXIDASE FROM CATALYTIC 

CYCLE 

 

2.1 Introduction: 

Cytochrome bd contains three heme prosthetic groups: heme b558, heme b595 and 

heme d.  Heme b558 is a low spin heme near the quinol binding site and is involved in the 

oxidation of ubiquinol.  Heme b595 and heme d constitute a binuclear center, and 

spectroscopic studies indicate they are within 10Å from each other (Arutyunyan, Borisov 

et al 2008). Both heme b595 and heme d are high spin hemes.   Heme d is where O2 binds 

and is reduced to water, and heme b595 appears to function primarily to transfer electrons 

to heme d.   

The question being addressed in this chapter concerns the steady state mechanism 

by which the isolated enzyme converts oxygen to water using ubiquinol-1 as the substrate.  

Five different states of heme d have been characterized in cytochrome bd. These are 1) 

oxidized, Fe3+; reduced, Fe2+; ferrous-oxy complex, Fe2+-O2; 4) oxoferryl, Fe4+=O2-; and 

5) peroxy, Fe3+-OOH.  The peroxy complex has been observed spectroscopically 

(Belevich, Borisov et al. 2007), but only transiently upon the addition of O2 to the fully 

reduced enzyme, and its structure is a reasonable speculation, but requires further 

confirmation. Each of the other four forms of heme d can be generated as stable or 

metastable forms that can be examined and characterized.  These forms suggest a 

sequence of events at heme d as O2 is converted to water (Figure 2.1).   
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It has been a long-time controversial topic that the all-ferric form of the enzyme is 

not part of the catalytic cycle. Two mechanisms have been proposed which are closely 

related. The initial proposal also suggested that the ferrous-oxy complex of heme d was 

also not part of the catalytic cycle, but this has been argued as being unreasonable in view 

of the rapid internal electron transfer that has been observed in the enzyme. The analysis 

of the steady state kinetics, however, must take into account the redox status of the other 

two heme prosthetic groups, heme b558 and heme b595, which can be present either as the 

Fe2+ or Fe3+ states, and also the fact that ubiquinol is a 2-electron donor.  In this chapter, a 

slightly modified form of the proposed catalytic cycle from Matsumoto et al is shown in 

Figure 2.2.  The modification is simply to explicitly add the ferric-hydroperoxy form of 

heme d, which had not been observed at the time of the initial proposed catalytic cycle.  

 The model shown in Figure 2.2 would be reasonable if one assumes that the rate 

of reduction of the all-ferric form of the enzyme is slow.  If it were rapid, the enzyme 

would readily form the 2-electron reduced species, which would rapidly react with O2 

and provide a possible alternate catalytic cycle with different species present as catalytic 

intermediates than those in Figure 2.2. However, a pulsed radiolysis study examined the 

rate of electron transfer from heme b558 to the heme b595 / heme d binuclear center 

(Kobayashi, Tagawa et al. 1999). The generation of a strong 1-electron reductant in this 

experiment resulted in the rapid reduction of reduced heme b558 and rapid equilibration 

within 10 µs between heme b558 and b595, followed by electron transfer to heme d with a 

rate constant of about 5 × 102 s-1.  The rates were the same for heme d in either the ferric 

(Fe3+) or oxoferryl (Fe4+=O2-) forms. In contrast, the 1-electron transfer to heme d in the 

ferrous-oxy form (Fe2+O2) was about 100-fold slower. Taken at face value, these data 
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raise questions about the catalytic competence of the ferrous-oxy complex as an 

intermediate, and suggest that the all-ferric form should be reconsidered as a possible 

intermediate during steady state analysis.  One important different between the steady 

state and pulse radiolysis experiments is that the former utilizes a 2-electron substrate 

whereas the latter utilizes a 1-electron reductant. This was pointed out by Matsumoto et 

al, in reference to the slow electron transfer to the ferrous oxy complex.  

 In the current chapter, stopped-flow methods were used to monitor the rate of 

reaction of ubiquinol-1 / ascorbate reduced TMPD with the all-ferric form of cytochrome 

bd and with the as-isolated form of the enzyme, which contains a mixture of 80% ferrous-

oxy and 20% oxoferryl forms of heme d, with the ferric forms of heme b558 and heme b595.  

The results show very slow reduction by ubiquinol-1 of the all-ferric enzyme, and very 

rapid reduction of the as-isolated form of the enzyme. It is concluded that, as postulated, 

the all-ferric form of the enzyme is not part of the catalytic cycle, and that the ferrous-oxy 

form of the enzyme is part of the cycle, as shown in Figure 2.2. 

 

2.2 Materials and methods: 

2.2.1 Strains and plasmids: 

E. coli strain CLY (cyo::kan, recA), which lacks cytochrome bo3 quinol oxidase 

(Yep 2005) was used as the host strain for expressing the wild type cytochrome bd on a 

plasmid. To obtain wild type cytochrome bd, plasmid pTY1 (Yang 2007) was introduced 

to the strain. This plasmind is a derivative of pET17b and contains the whole operon of 

wild type bd as well as ampicillin resistance gene for selection.  
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2.2.2 Cell growth and protein sample preparation: 

Large scale cell growth of strains that grow aerobically (i.e. expressing wild type 

or some complementary mutants) was carried out in 24 2-liter flasks shaking at 220 rpm 

37 °C using two Innova 4330 incubator shakers (New Brunswick Scientific). Strain 

expressing wild type was grown in LB containing 100 µg/mL Amp, 50 µg/mL Kan, and 

0.5mM IPTG was added 4 hours after the inoculation. Wild type cytochrome bd oxidase 

was purified from the membrane of CLY/pTY1 using the same method as described 

previously (Miller and Gennis 1986), with the modification that the hydroxyapatite 

column was omitted. Fractions were collected from the Fast-Flow Sepharose DEAE 

column with an A412/A280 ratio greater than 0.5. The pooled fractions were concentrated 

using an Amicon concentrator with a 50 kDa molecular weight cut-off filter and then 

dialyzed three times against 50 mM sodium phosphate buffer, pH 7.8, containing 5 mM 

EDTA, 0.05% N-lauroylsarcosine. Both wild type and mutant cytochrome bd samples 

were then examined, using the same dialysis buffer for appropriate dilution unless 

specified otherwise. 

 

2.2.3 Ubiquinol-1 and TMPD oxidase activity assay: 

Cytochrome bd wild type was assayed both in isolated membranes, in which there 

is no other quinol oxidase, and with the purified enzyme. For membranes, samples were 

homogenized in 25 mM Tris HCl, 1 mM EDTA disodium salt, pH 7.5. Purified protein 

samples were dialyzed against 50 mM NaPi buffer, pH 7.8, containing 5 mM EDTA 

disodium salt and 0.05 % N-lauroyl sarcosine. Various dilutions of either the 

homogenized membrane samples or pure protein samples were added to 1.8 mL of the 
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respective buffer containing either 2 mM dithiothreitol or 4 mM ascorbate that had been 

equilibrated to 37 °C in a Clark-type oxygen electrode (Yellow Springs Instrument CO.). 

A baseline was taken and the reaction was initiated by addition of ubiquinol-1 (kindly 

provided by Hoffman-LaRoche) or TMPD to a final concentration of 245 µM and 1 mM, 

respectively. Activities were determined assuming a value of 237 µM O2 for air-saturated 

buffer at 37 °C. 

 

2.2.4 Stopped-Flow spectroscopic and kinetic measurements: 

All the work was performed at 20 °C using an Applied Photophysics model SX 

with a photodiode array detector as well as single-wavelength detection.  The flow 

system was flushed thoroughly with Argon-saturated buffer (50 mM sodium phosphate, 5 

mM EDTA and 0.05% N-lauroylsarcosine, pH 7.8) before the experiments. The whole 

system was kept anaerobic by flowing Argon during the experiments. The mixing ratio of 

the two solutions being mixed was all 1:1.  All concentrations reported are the initial 

concentrations before mixing.  

Since each species of heme d in the catalytic cycle of cytochrome bd have been 

characterized optically, the formation and the decay of the heme d species can be 

monitored spectrophotometrically. The reduction by ubiquinol of the "as isolated" 

enzyme was carried out by generated the "as isolated" enzyme in situ. This was done by 

typically starting with one solution containing 5 µM enzymes with an excess 

concentration of 200 µM ubiquinone and 6 mM DTT in Argon-saturated buffer (50 mM 

sodium phosphate, 5 mM EDTA disodium salt and 0.05% N-lauroyl sarcosine, pH 7.8). 

This solution was rapidly mixed with an equal volume of a solution containing 
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approximately 5 µM O2 in the same buffer.  The conditions were adjusted so that the O2 

rapidly oxidized the enzyme which was then, in turn, reduced by the excess ubiquinol-1 

that was present.  The oxidation reaction was too fast to resolve but most of the reduction 

was monitored to obtain rate constants. Spectroscopic analysis of the product of the 

reaction of O2 with the reduced enzyme showed that it contained approximately 80% 

oxoferryl and 20% ferrous-oxy complex. 

To investigate the reduction of the ferric cytochrome bd, 5 µM enzymes was 

incubated with 16 µM tetrachlorobenzoquinone, a lipophilic strong and effective oxidant 

(Borisov, Smirnova et al. 1994) for 20 minutes in Argon-saturated buffer (50 mM sodium 

phosphate, 5 mM EDTA and 0.05 % N-lauroyl sarcosine, pH 7.8).  This generated the 

fully oxidized (all ferric) form of the enzyme.  This form of the enzyme was rapidly 

mixed with an equal volume of 200 µM ubiquinone-1 and 6 mM DTT in the same buffer, 

or with an equal volume of 1 mM TMPD and 20 mM ascorbate in the same buffer. For 

all experiments reported, at least three runs were performed for each time scale, and 1600 

spectra were collected from 300 nm to 1200 nm. 

 

2.2.5 Data analysis: 

The data were first analyzed with the use of Pro-Kineticist software package 

“ProK for PC” (Applied Photophysics) and selected data were imported into Origin 7 

(Microcal) for further analysis and preparation of the figures. 
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2.3 Results: 

2.3.1 Oxidation/Re-reduction of fully reduced / oxidized wild type with ubiquinol-1: 

Figure 2.3 compares the kinetics of reduction of heme d in the oxoferryl and all-

ferric forms of cytochrome bd. From the spectra/time surface collected, the kinetics at a 

wavelength pair 628 nm and 719 nm (∆A628-719) was extracted to monitor the reduction of 

heme d. The kinetics of the reduction of the all-ferric form of the enzyme by UQH2-1 is 

extremely slow and non-homogeneous, reaching only about 25% of the expected 

maximum in 2 s, the maximal observation period in the experiment shown. This is in 

contrast to the extremely rapid reduction of heme d in the all-ferric enzyme (k~ 3,400 s-1), 

reported in the pulsed radiolysis experiments of Kobayashi et al.  Reduction of hemes 

b558 and b595 in the same experiment was even slower that reduction of heme d, with 

either (DTT + ubiquinol) or (ascorbate + TMPD) as electron donors (data not included) 

and took about about 60 s for completion, whereas heme d reduction was complete in 20 

to 30 s. Hence, it is likely that it is electron entry into the enzyme (reduction of b558), 

rather than intramolecular electron transfer, that limits the rate of reduction of ferric heme 

d in the all-ferric enzyme.   

In order to examine the reactivity of the oxoferryl state of cytochrome bd, this 

form of the enzyme was generated in situ in the stopped flow mixing chamber by 

oxidation of the fully reduced cytochrome bd with stoichiometric amount of O2.  

 

b558
2+

b595
2+

d
2+ + O2 ↔ b558

2+
b595

2+
d

2+−O2     (1) 

 

2H+ + b558
2+

b595
2+

d
2+−O2 → b558

3+
b595

3+
d

4+=O2- + H2O   (2) 
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Formation of the oxycomplex (reaction 1) and subsequent oxidation of the 

reduced cytochrome bd by bound oxygen (reaction 2) are complete within the mixing 

time, in agreement with the known rate constants. At 2.5 µM oxygen (final concentration 

after mixing),  the expected rate for the reaction with O2 is about 2 × 109 M-1cm-1 × 2.5 

µM O2  = 5  × 103  s-1, τ ∼200 µs (Hill, Hill et al. 1994),  and the oxidation yields largely 

the oxoferryl state of the enzyme (at least 80%).  This was most clearly seen in the 

spectra from the experiments in which reduced TMPD was used as the reductant (data not 

shown), since the subsequent reduction of the enzyme in this case is much slower than 

with UQH2-1.  

The oxoferryl form of the enzyme is reduced quite rapidly by UQH2-1, and the 

reaction is completed in about 10 ms (Figure 2.3A).   During this time, up to 12 time-

resolved spectra could be collected. The major part of the transiently oxidized 

cytochrome bd is actually reduced within the dead time of the mixing apparatus and only 

the tail end of this rapid reduction could be monitored with the current instrumentation. 

Global analysis of the spectra/time surface for the resolved part of the reduction process 

gave a rate constant of   ~200 - 300 s-1, which is close to enzyme turnover rate  (~1000 

electrons s-1) when multiplied by 4 electrons required to convert enzyme from the 

oxoferryl to the all ferrous state. 

 

2.3.2 Rapid phase of the ubiquinol-1 reduction: 

The difference spectrum of the rapid phase of the reduction, as resolved by global 

analysis, is shown in Figure 2.4. The spectrum shows clearly simultaneous disappearance 

of the oxoferryl state (trough around 670 nm - 680 nm) and appearance of reduced heme 
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d (peak at ~630 nm), as well as reduced heme b558 and heme b595 (the peaks at 595 nm, 

560 nm and 530 nm in the visible, and an asymmetric Soret band with a maximum at 431 

nm and a shoulder around 438 nm).  These data imply that the reaction monitored 

involves reduction of the enzyme by two equivalents of UQH2-1, since four electrons are 

required to generate the fully reduced form of the enzyme (b558
2+b595

2+d2+) from the 

oxoferryl state (b558
3+

b595
3+

d
4+=O2-).  The first equivalent of UQH2-1 produces a partially 

reduced form of the enzyme (b558
3+

b595
3+

d
2+), so these results imply that the rate of 

reduction by the second equivalent of UQH2-1 of the partially reduced enzyme 

(b558
3+

b595
3+

d
2+) is about as fast as the reaction of the oxoferryl species 

(b558
3+

b595
3+

d
4+=O2-) with the first equivalent of UQH2-1.  

 

2.3.3 Oxidation/Re-reduction of fully reduced / oxidized wild type with TMPD: 

The reduction kinetics of the enzyme with a single electron donor TMPD reduced 

by excess ascorbate was also examined (Figure 2.3B). Reduction of the all-ferric enzyme 

in this case is also very slow.  As in the case of ubiquinol, the reaction of reduced TMPD 

with the oxoferryl form is more rapid than with the all-ferric form of the enzyme, 

although it is still much slower than observed with UQH2-1.  The reduction of the all-

ferric cytochrome bd by reduced TMPD occurs on a time scale of 0.1-0.5 s, not in 

milliseconds. It cannot be excluded that the reaction of cytochrome bd with reduced 

TMPD is rate-limited by the oxidation of TMPD, since TMPD is a much poorer electron 

donor than UQH2-1. 
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2.4 Discussion and conclusions: 

The data clearly show that the reduction of heme d in the oxidized (all-ferric) 

form of cytochrome bd by its natural 2-electron substrate, ubiquinol, is much too slow to 

be part of the catalytic cycle. In contast, the reaction of the oxoferryl form of cytochrome 

bd with ubiquinol is rapid and results in formation of the fully reduced enzyme. 

Presumably, the reaction proceeds in 2 sequential two-electron steps which are not time-

resolved under the conditions of our experiments at a UQH2-1 concentration of 100 µM 

(the final concentration after mixing). 

 

UQH2-1 + (b558
3+

b595
3+

d
4+=O2-) ↔ UQ-1 + H2O + (b558

2+
b595

2+
d

2+)  (3) 

  

UQH2-1 + (b558
3+

b595
3+

d
2+) ↔ UQ-1 + (b558

2+
b595

2+
d

2+)   (4) 

 

The rate of reaction 4 must be at least as fast as reaction 3 under the conditions of these 

experiments, since the appearance of reduced heme d and the reduced hemes b occur in 

the same time window.  However, in the presence of excess of O2, the very rapid rate of 

binding of O2 with the 1-electron reduced enzyme (microseconds) is expected to result in 

formation of the 1-electron ferrous-oxy complex. 

 

(b558
3+

b595
3+

d
2+) + O2 ↔ (b558

3+
b595

3+
d

2+−O2)     (5) 

 

Hence, when the concentration of O2 is high, reaction 5 would prevail, followed by 

reaction 6. 
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(b558
3+

b595
3+

d
2+−O2) + UQH2-1 ↔ (b558

2+b595
2+

d
2+−O2)   (6) 

 

The product of reaction 6 has sufficient electrons to split the O-O bond (reaction 2), 

provided protons are available.   

Under microaerophilic growth conditions, in which cytochrome bd is normally 

expressed in E. coli (Govantes, Orjalo et al. 2000), the reactions of the one-electron 

reduced enzyme (b558
3+

b595
3+

d
2+) with O2 (reaction 5) and with UQH2-1 (reaction 4)  

might occur in the reverse order, which, however,  makes no difference to the final 

outcome of the reaction cycle. It is interesting that the heme d ferrous-oxy complex 

(b558
3+b595

3+d2+-O2) is very stable, being the major form of the enzyme as it is isolated 

(Lorence, Koland et al. 1986).  The dissociation of oxygen in the form of superoxide  

(O2
-), which would be deleterious to the cell, is negligible. On the other hand, 2-electron 

reduction of the all-ferric cytochrome bd by UQH2 and its subsequent oxidation by 

oxygen could give rise to an unstable peroxide adduct of the ferric enzyme that could 

dissociate releasing hydrogen peroxide, or produce hydroxyl radicals in case of homolytic 

scission of the O-O bond. Hence, the intermediate states of cytochrome bd with an odd 

number of electrons relative to the all-ferric form appear to be preferred in the catalytic 

cycle of the enzyme. These catalytic intermediate forms contain +3, +1 and -1 electrons 

relative to the all-ferric enzyme: a) +3 electrons = all-ferrous (b558
2+b595

2+d2+); b) +1 

electron = oxycomplex (b558
3+

b595
3+

d
2+-O2); c)  -1 = oxoferryl (b558

3+
b595

3+
d

4+=O2-). 

 The expectation from the previous work of Jünemann et al. and of Matsumoto et 

al., based on steady state kinetics, that the all-ferric form of cytochrome bd is not part of 
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the catalytic cycle of the enzyme is directly verified by pre-steady state kinetics.  It 

remains to be seen why the one-electron reductant formed during the pulsed radiolysis 

experiments by Kobayashi et al. reacts with the all-ferric enzyme rapidly.  The 

explanation might be simply that the N-methylnicotinamide radical and solvated electron 

generated under the conditions of pulse radiolysis are much stronger reductants than the 

one-electron donor used in the current work, TMPD (Em = 260 mV) as well as than the 

ubiquinol / ubisemiquinone couple that serves as an initial reductant for cytochrome bd 

during the reaction of the enzyme with ubiquinol.  One might also note that the all-ferric 

forms of cytochrome bd were obtained by different methods in this work, compare to 

previous publication (Kobayashi, Tagawa et al. 1999), but it is highly unlikely that a 

variance in the preparations can account for the ~ 1000-fold difference in reactivity of 

heme d.   

 The observation that UQH2-1 is a poor reductant for the all-ferric form of the 

enzyme, but a good reductant for the oxoferryl (b558
3+

b595
3+

d
4+ - O2-) and one-electron 

reduced enzyme (b558
3+

b595
3+

d
2+) suggests that the redox state of heme d plays a role in 

determining the rate of reduction of heme b558 (and, perhaps, of  heme b595 as well).  

Further work is needed to clarify the mechanism of this effect.  Recent work has shown 

that the redox state of heme b558 and heme b595 regulate the accessibility of heme d by O2 

(Belevich, Borisov et al. 2007), thus, reciprocal regulation of the reactivity of the two 

hemes b by the redox and/or ligand-binding state of heme d may be a reasonable 

speculation.  Evidently, the interactions between the three hemes play a critical role in 

determining the sequence of reactions in the catalytic cycle. 
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2.5 Figures and tables: 

 

 
 
 
Figure 2.1 Simplified catalytic cycle of cytochrome bd oxidase. 

Only the ferric ion on heme d is shown. All the intermediates have been identified 
optically. (modified from dissertation of J. Zhang, 2002)
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Figure 2.2 Modified catalytic cycle of cytochrome bd oxidase.  

The new scheme is based on the work of Jünemann et al. and Matsumoto et al. All-ferric 
form (O) of the enzyme has been excluded from the rapid turnover (solid arrows) using 
ubiquinol as the substrate.
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Figure 2.3 Kinetics of reduction of heme d in the oxoferryl and the all-ferric forms 

of cytochrome bd.  

Panel A. Reduction by UQH2-1: heme d in the oxoferryl form is reduced within about 10 
ms, compatible with the turnover of the enzyme. No significant reduction of heme d in 
the all-ferric enzyme is observed in the same time range.  
Panel B. Reduction by TMPD: the reduction of the all-ferric form is significantly slower 
than the reduction of heme d in the oxoferryl form of the enzyme. Heme d in the 
oxoferryl form is reduced by TMPD much more slowly than with UQH2-1.
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Figure 2.4 Global analysis of the spectra/time surface of very early stage reaction.  

Difference spectrum of the rapidly reduced component of cytochrome bd in the reaction 
of the oxoferryl form reduced by UQH2-1 has been found by global analysis of the 
spectra/time surface. The spectrum is that of major product of the reaction formed in the 
first 50 ms minus the initial spectrum, which is primarily the oxoferryl form of the 
enzyme.  



 

32 

CHAPTER 3: TIME-RESOLVED ELECTROMETRIC AND OPTICAL STUDIES 

SUGGEST A MECHANISM OF ELECTRON-PROTON 

COUPLING IN THE DI-HEME ACTIVE SITE 

  

3.1 Introduction: 

As the only well known member of the tri-heme terminal oxidases so far, 

cytochrome bd has been intensively studied in order to understand how the same function 

of heme-copper oxidases is fulfilled by such a distinctive structure design. Due to the 

difficulty of solving the three dimensional information, site-directed mutagenesis became 

the most powerful tool to explore the structural and functional relationships of this 

enzyme. With the help of increasing sequences available from the bioinformatics research, 

a number of highly conserved residues have been identified and well studied. For our 

interest in the scope of this thesis, a series of highly conserved acidic amino acids have 

been mapped out in subunit I (Figure 1.4).  

In previous work, a highly conserved region – (440) GWXXXEXGRQPW (451) 

- (E. coli numbering; bold letters indicate strictly conserved residues) in subunit I was 

discovered, which is predicted to be in a region near the C-terminus of the Q-loop on the 

periplasmic side of the membrane. As already mentioned in Chapter 1, the Q-loop is a 

highly hydrophilic group locted int eh periplasmic side of the membrane, and was 

believed to be involved in substrate quinol binding and oxidation (Kranz and Gennis 

1984; Dueweke and Gennis 1990; Dueweke and Gennis 1991). The importance of the 

highly conserved region was examined by site-directed mutagenesis, and one of the 

mutants of acidic residues, E445A, was characterized in detail (Figure 3.1). The results 
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showed that one of the heme prosthetic groups, heme b595 was greatly perturbed, and was 

essentially missing from most preparations of the mutant enzyme, while other two hemes, 

b558 and d appear undisturbed (Zhang and Gennis 2001). This was particularly surprising 

given the indications that heme b595 and heme d are in close proximity (Hill, Alben et al. 

1993; Hill, Hill et al. 1994). The use of di-heme as binuclear center opposed to heme-

copper used in other terminal oxidases has long been the interest of the cytochrome bd 

research, and attempts trying to specifically perturb heme b595 have inevitably resulted in 

loss of both hemes.  

In this chapter, a re-visit of this surprising mutant has been carried out using UV-

vis, electron paramagnetic resonance (EPR), and spectrophotometric methods, as well as 

time-resolved electron transfer and charge separation approaches. In the current work, the 

high-spin heme b595 is found to be retained by the enzyme in contrast to the original 

proposal, but it is not reducible even by excess of dithionite. Furthermore, in our new 

hypothesis, E445 is believed to be one of the two redox-linked ionizable groups required 

for charge compensation of the di-heme oxygen-reducing site (b595, d) upon its full 

reduction by two electrons. 

 

3.2 Materials and methods: 

3.2.1 Strains and plasmids: 

E. coli strain CLY (cyo::kan, recA), which lacks cytochrome bo3 quinol oxidase 

(Yep 2005) was used as the host strain for expressing the wild type cytochrome bd on a 

plasmid.. To obtain wild type cytochrome bd, plasmid pTY1 (Yang 2007) was introduced 
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to the strain. This plasmind is a derivative of pET17b and contains the whole operon of 

wild type bd as well as ampicillin resistance gene for selection.  

Mutants of cytochrome bd were expressed using E. coli strain GO105 

(cydAB::kan, cyo, recA), which lacks both cytochrome bo3 and cytochrome bd quinol 

oxidases (Kaysser, Ghaim et al. 1995) was used as the host strain. To obtain mutant 

cytochrome bd, plasmid pTK1 (Zuberi 1993) was introduced to the strain. This plasmid is 

a derivative of pBR322 and contains the whole operon of wild type bd as well as 

ampicillin resistance gene for selection. 

 

3.2.2 Site-directed mutagenesis using Quik-Change method: 

The Stratagene Quik-Change mutagenesis kit was used to construct mutants. 

Plasmid pTK1 was used as template. The oligonucleotide primers were synthesized by 

Operon (Alamdeda, CA) with melting temperature around 80 °C based on the Stratagene 

formula, and were diluted in pure water to 100 ng/µL for Quik-Change reaction. 

Thermocyclings were conducted on PTC-100 Programmable Thermal Controller (MJ 

Research Inc.). The protocol was as follows: 95 ˚C for 2 min, 1 cycle; 18 cycles of 95 °C 

for 1 min, 54 °C for 1 min, and 68 °C for 8 min; then 68 °C for 7 min, 1 cycle. The 

samples were digested with 1 µL DpnI for 3 ~ 4 hours. All mutants were confirmed by 

DNA sequencing. 

 

3.2.3 Complementation test for the mutant cytochrome bd: 

The complementation test was carried out as follows: Plasmid DNA from 

confirmed mutants was used to transform GO105 using TSS method (Chung, Niemela et 
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al. 1989). Cells were grown anaerobically for selection of ampicillin and kanamycin 

resistance. The strains exhibiting both amplicillin and kanamycin resistance were 

restreaked to obtain single colonies, and were grown on M63 (Cohen and Rickenberg 

1956) minimal plates supplemented with 0.3 % lactate and 0.3 % succinate. Also added 

were 100 µg/mL ampicillin and 50 µg/mL kanamycin to maintain the plasmid and the 

strain. Complementation was defined by aerobic growth within 48 ~ 72 hours of 

incubation at 37 °C. 

 

3.2.4 Cell growth and protein sample preparation: 

Large scale cell growth of strains that grow aerobically (i.e. expressing wild type) 

was carried out in 24 2-liter flasks shaking at 220 rpm 37 °C using two Innova 4330 

incubator shakers (New Brunswick Scientific). Strain expressing wild type was grown in 

LB containing 100 µg/mL Amp, 50 µg/mL Kan, and 0.5mM IPTG was added 4 hours 

after the inoculation. Strain expressing E445A mutant, which could not grow aerobically, 

was grown at the Fermentation Facility at the University of Illinois, at 37 °C, pH 7, in a 

20-liter fermenter using LB containing 100 µg/mL Amp, 50 µg/mL Kan, and 0.3 % 

glucose. Both wild type and E445A mutant cytochrome bd oxidases were purified from 

the membrane of either CLY/pTY1 or GO105/pE445A as described previously (Miller 

and Gennis 1986), with the modification that the hydroxyapatite column was omitted. 

Fractions were collected from the Fast-Flow Sepharose DEAE column with an A412/A280 

ratio greater than 0.5. The pooled fractions were concentrated using an Amicon 

concentrator with a 50 kDa molecular weight cut-off filter and then dialyzed three times 

against 50 mM sodium phosphate buffer, pH 7.8, containing 5 mM EDTA, 0.05% N-
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lauroylsarcosine. Both wild type and mutant cytochrome bd samples were then examined, 

using the same dialysis buffer for appropriate dilution unless specified otherwise. 

 

3.2.5 Ubiquinol-1 and TMPD oxidase activity assay: 

Cytochrome bd wild type and mutants were assayed both in isolated membranes, 

in which there is no other quinol oxidase, and with the purified enzyme. For membranes, 

samples were homogenized in 25 mM Tris HCl, 1 mM EDTA disodium salt, pH 7.5. 

Purified protein samples were dialyzed against 50 mM NaPi buffer, pH 7.8, containing 5 

mM EDTA disodium salt and 0.05 % N-lauroyl sarcosine. Various dilutions of either the 

homogenized membrane samples or pure protein samples were added to 1.8 mL of the 

respective buffer containing either 2 mM dithiothreitol or 4 mM ascorbate that had been 

equilibrated to 37 °C in a Clark-type oxygen electrode (Yellow Springs Instrument CO.). 

A baseline was taken and the reaction was initiated by addition of ubiquinol-1 (kindly 

provided by Hoffman-LaRoche) or TMPD to a final concentration of 245 µM and 1 mM, 

respectively. Activities were determined assuming a value of 237 µM O2 for air-saturated 

buffer at 37 °C. 

 

3.2.6 Heme analysis: 

The heme b contents of both wild type and E445A mutant cytochrome bd were 

measured by the pyridine hemochromogen assay, using an extinction coefficient for the 

wavelength pair 556.5−540 nm = 23.98 mM-1 cm-1 (Berry and Trumpower 1987). The 

heme d content was determined from the reduced minus “as isolated” difference spectrum 

with the ∆ε628−607 nm = 10.8 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The 
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concentration of the wild type cytochrome bd was determined from the reduced minus as 

isolated difference spectra, using ∆ε560−580 nm = 21.4 mM-1 cm-1 (Tsubaki, Hori et al. 

1995). Since the “as isolated” enzyme contains varying amounts of ferrous heme d-oxy 

complex and oxoferryl heme d species, the heme d content was also determined by the 

absolute spectrum of the fully reduced enzyme, using the extinction coefficient ∆ε628-670 

nm = 25 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The concentration of the E445A 

mutant protein was determined by the BCA assay using wild type cytochrome bd as 

standard. All the measurements were repeated at least three times. 

 

3.2.7 UV-Vis spectroscopic measurements: 

All the absorbance spectra in the UV-Vis region were obtained with a DW2000 

spectrophotometer (Aminco) using a 1 cm pathlength cuvette. The series of absorbance 

spectra for mid-point potential measurements were taken using UV-2101PC scanning 

spectrophotometer (Shimadzu). 

 

3.2.8 EPR spectroscopic measurements: 

X-band (9.521 GHz) EPR spectra were acquired on a Bruker ESP 300 equipped 

with an Oxford liquid helium cryostat and ITC4 temperature controller. Spectra were 

recorded with samples of both air-oxidized and fully dithionite-reduced wild type (100 

µM) and E445A mutant cytochrome bd (100 µM) of the enzyme at 9 K. The modulation 

frequency is 100 KHz. The microwave power is 1 mW. 
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3.2.9 Time-resolved spectrophotometric measurements: 

Time-resolved spectrophotometric measurements were performed using a home-

built CCD-based instrument. The setup allows acquiring absorption change surfaces with 

a time resolution of 1 µs between the spectra. Details of the methodology can be found in 

previous work by Morgan et al. (1993). To obtain the CO complex of the ferrous enzyme, 

the as-isolated enzyme was (i) deoxygenated by argon equilibration, (ii) reduced under 

anaerobic conditions with 2.5 mM sodium ascorbate and 5 µM TMPD, and (iii) 

equilibrated with 1% CO. The ferrous-CO enzyme was transferred to the stopped flow 

module in a gastight Hamilton syringe preflushed with argon and then mixed with 

oxygen. CO photolysis was initiated by a laser flash (Brilliant B; Quantel, Les Ulis, 

France; frequency-doubled YAG, 532 nm; pulse energy, 120 mJ). 

 

3.2.10 Electrometric Time-resolved measurements of membrane potential 

generation:  

The direct, time-resolved electrical measurement is based on a method originally 

developed by Drachev and co-workers (Drachev, Jasaitis et al. 1974; Drachev, Kaulen et 

al. 1979). In the present system, Ag/AgCl2 electrodes record the voltage between the two 

compartments of a cell separated by a measuring membrane consisting of a lipid-

impregnated, stretched Teflon mesh vesicles, into which the enzyme has been 

reconstituted, are forced to associate with this measuring membrane (Verkhovsky, 

Morgan et al. 1997). The voltage across the measuring membrane follows the ∆Ψ across 

the vesicle membranes proportionally, allowing the kinetics of charge translocation to be 
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recorded. The method is described in more detail in works by Verkhovskey et al. in 1997 

and 1999. 

 

3.2.11 Software for experiments and data analysis: 

Instrumental software for experimental setups was written by Dr. I. Belevich 

(Helsinki, Finland). MATLAB (The Mathworks, South Natick, MA) was used for data 

analysis and presentation. 

 

3.2.12 Sequence analysis and topology model generation: 

The homologous sequences of subunit I of cytochrome bd were kindly provided 

by Dr. James Hemp in Grennis lab, Urbana, University of Illinois. The sequence 

alignment was performed by BioEdit Sequence Alignment Editor Ver.7.0.9.0 (Hall 

1999).. The topology model of subunit I was generated by membrane topology prediction 

tool TMHMM 2.0 program (http://www.cbs.dtu.dk/services/TMHMM/). The graph was 

created by TOPO2 program based on the TMHMM result 

(http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). 

 

3.3 Results: 

3.3.1 Complementation test, heme analysis and optical spectra: 

Complementation test was carried out by introducing the plasmid expressing the 

E445A mutant cytochrome bd into the E. coli strain without terminal oxidase. The ability 

to rescue the aerobic growth of the strain on minimal plate serves as a sign that how 

much the mutant enzyme retains its catalytic activity. E445A failed to support aerobic 
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growth as previously described by Zhang et al. (Table 3.1) This mutant also appears to 

be missing heme b595 as judged from UV-Vis spectra, which is consistent with previous 

observation (Zhang, Hellwig et al. 2001). The heme content of the E445A mutant was 

determined using the pyridine hemochromagen method. The conventional procedure of 

using the dithionite-reduced minus air-oxidized difference absorption spectrum appears 

to be error-prone because the mutant enzyme in the air-oxidized form has a much lower 

amount of the ferrous oxy species. Hence, the use of the ∆ε628–607 value of 10.8 mM-1 cm-

1, which correctly quantifies the content of heme d in the WT enzyme (Borisov, 

Arutyunyan et al. 1999), results in an incorrect value of heme d in the E445A mutant 

enzyme (Zhang, Hellwig et al. 2001). The use of this traditional method results in 

overestimation of heme d in the mutant enzyme. For this reason the content of heme d for 

the WT and mutant enzyme was determined from the ferrous heme d absorption spectra 

by using the wavelength pair 630 nm minus 670 nm (∆ε628–670 of 25 mM-1·cm-1) instead 

of the frequently used pair 630 nm minus 607 nm (Borisov, Arutyunyan et al. 1999). The 

ratio of hemes b / heme d, which used to be close to 1 in the previous study (Zhang, 

Hellwig et al. 2001), returns to around 2 in E445A mutant by using this new calculation. 

Thus, the hemes b content of the E445A mutant is not different from that of the wild type 

enzyme. 

 

3.3.2 Ubiquinol-1 and TMPD oxidase activity of E445A mutant: 

Consistent with the previous work (Zhang, Hellwig et al. 2001), the ubiquinol-1 

oxidase activity was almost totally lost in E445A mutant enzyme (less than 1% of that of 

the wild type) (Table 3.1). The same was found also for the TMPD oxidase activity. 
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3.3.3 Flash photolysis of the CO adduct of the reduced E445A mutant: 

Transient absorption changes in cytochrome bd were measured in the spectral 

region where the absorbance spectra of all the three hemes are well defined. The wild 

type, fully reduced, unliganded cytochrome bd shows peaks at 629 nm (α-band) of heme 

d
2+, 595 nm (α-band) of heme b595

2+, 561 nm (α-band) of heme b558
2+ and (β-band) of 

heme b595
2+, and 531 nm (β-band) of heme b558

2+.  

Figure 3.2A compares the absorption changes following CO photolysis from 

heme d2+ in the dithionite-reduced wild type (solid line) and E445A mutant (dotted line) 

enzymes. For the wild type cytochrome bd, CO-recombination difference spectrum in the 

presence of 1% CO has a maximum at 642 nm, a minimum at 622 nm, and a bump 

around 540 nm that is consistent with CO rebinding to heme d2+, similar to an earlier 

report (Jünemann, Wrigglesworth et al. 1997). In contrast, in the E445A mutant enzyme, 

the total kinetic spectrum of the CO recombining phase (dotted line) reveals not only CO 

rebinding to heme d2+, but also some internal electron redistribution between hemes d and 

b595. The latter is well illustrated by the difference between the two CO-recombination 

spectra shown in Figure 3.2A. This difference spectrum (Figure 3.2B) has maxima at 

595 and 562 nm, and a minimum at 630 nm, and is almost identical to the reported 

spectrum of the reduced minus oxidized spectrum of heme b595 (Koland, Miller et al. 

1984; Lorence, Koland et al. 1986), with the addition of a trough at 630 nm indicating the 

oxidation of heme d. Although the amount of reduced heme b595 is small (about 20% of 

the maximum possible), the spectroscopic identification of reduced heme b595 is clear.  

This was an unexpected result since the E445A mutant enzyme was previously 

reported to be missing heme b595 (Zhang, Hellwig et al. 2001). This conclusion is 



 

42 

contradicted with the data in the current work, which shows that the E445A mutant does 

contain heme b595, but in a strict ferric form, rather than losing it, even in the presence of 

dithionite. Photolysis of heme d2+-CO in the dithionite-reduced E445A enzyme is 

followed by electron redistribution from heme d2+ to heme b595
3+, which suggests that 

E445A mutant enzyme is in a unique two-electron reduced state, b558
2+b595

3+d2+, even in 

the presence of strong reductant, such as dithionite.  

 

3.3.4 EPR spectroscopy of dithionite reduced wild type and E445A mutant: 

EPR spectra of the dithionite-reduced mutant enzyme supports the conclusion that 

heme b595 remains high spin ferric even in the presence of excess reductant. After 

addition of dithionite, there is still a signal in the low field region at g = 6 from a high 

spin ferric heme assigned unambiguously to the high spin ferric heme b595 but no any 

signal in the high field region (around g = 3) from a low spin ferric heme (Figure 3.3). 

The signal at g = 6 is very fast relaxing and does not show any saturation behavior on 

increase of microwave power up to 100 mW at 13 K and only at 4 K at such power it is 

slightly saturated. Control EPR experiments with the wild type enzyme show that, under 

the same conditions, the EPR spectrum of dithionite-reduced wild type cytochrome bd 

reveals no any heme signals.  

 

3.3.5 Charge translocation during the reaction of O2 with reduced enzymes: 

Electrometric measurements of ∆Ψ generation associated with the reaction of 

both the wild type and the mutant enzymes with O2 were made under the same 

experimental conditions. Typical recordings are shown in Figure 3.4. The kinetics of 
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the electrometric response of the fully reduced wild type enzyme (trace 1) can be 

reasonably modeled by three sequential reactions. The first reaction is an electrically 

silent lag phase with a time constant (k1) dependent on the concentration of O2 

(Jasaitis, Borisov et al. 2000). Under the present experimental conditions k1 = 7.4 × 

104 s-1 (τ1 ~ 14 µs). This reaction reflects oxygen binding to the enzyme (R→A 

transition), where state A denotes the formation of the heme d2+-O2 adduct. The 

second phase with k2 of 1.1 × 104 s-1 (τ2 ~ 90 µs) is electrogenic and very similar to 

the value reported previously (Jasaitis, Borisov et al. 2000) corresponding to the 

transition of the ferrous-oxy intermediate (heme d2+-O2) to the oxoferryl state (heme 

d
4+=O2-) (A→F transition). There is an additional third kinetic phase with k3 of 

1.65×103 s-1 (τ3 ~ 600 µs) corresponding to the conversion of the oxoferryl state F to 

the oxidized enzyme (heme d3+--OH) and/or to the A state (heme d2+-O2).  

The amplitude of the F→O transition (~1.6 mV) is about half of that for the 

A→F transition (~3.2 mV). This is likely due to the loss of the bound quinone from a 

portion of the enzyme population during the vesicle reconstitution procedure. Enzyme 

lacking bound quinone will not have the reducing equivalents needed to proceed 

beyond the F state.  

As shown in Figure 3.4 (trace 2 and inset), the initial non-electrogenic binding 

of O2 to the E445A enzyme is followed by a minor electrogenic phase (~0.36 mV) 

with the k value of 7.6×102 s-1 (τ ~ 1.3 ms). After this small electrogenic phase, a 

large electrogenic event with the rate constant of about 80 s-1 (τ ~ 12.5 ms) and 

amplitude of ~1.7 mV is observed. Both phases probably reflect the conversion of A 

to F in different subpopulations of the enzyme. The conclusion that the final product 
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of this reaction is the F state was confirmed by the absolute absorption spectrum after 

completion of the reaction (2 sec), showing a peak at 680 nm, diagnostic of the heme 

d oxoferryl species (Kahlow, Zuberi et al. 1991). The huge delay of ∆Ψ generation in 

E445A mutant is a clear sign that the proton translocation from the cytoplasm to the 

reactive center is perturbed. 

 

3.3.6 Electron backflow in one-electron reduced wild type and E445A mutant 

enzymes: 

The wild type and E445A oxidases each readily forms the CO adduct of the 

one-electron reduced enzyme (heme d2+-CO). Previous results (Jasaitis, Borisov et al. 

2000) with the wild type enzyme show that photodissociation of CO results in 

electron redistribution from heme d to heme b558 and heme b595, referred to as 

“backflow” electron transfer. The backflow electron transfer reactions were compared 

for the wild type and E445A mutant enzymes. Remarkably, the results are very 

similar. 

Recombination of CO after photolysis of the mixed-valence enzyme includes 

not only CO rebinding (see Figure 3.2, solid line) but also the return of redistributed 

electrons to heme d from hemes b558 and b595 (Jasaitis, Borisov et al. 2000). Therefore, 

the spectrum of the CO-rebinding phase of the CO mixed-valence enzyme contains 

the spectral changes induced by the binding of CO to heme d (i.e., the CO binding 

spectrum) as well as the changes caused by the subsequent electron redistribution. 

The CO-binding spectrum can be determined by recording the spectral changes 

induced by photolysis of CO from the fully-reduced wild type enzyme, in which case 
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there is no electron redistribution. The spectral component due to electron transfer 

(Figure 3.5) was obtained by subtracting the CO-binding spectrum from the overall 

CO recombination spectra of the one-electron reduced wild type (solid line) and 

mutant (dotted line) enzymes. This spectrum shows the reduction of heme d and 

corresponding oxidation of hemes b558 and b595 as CO rebinds to heme d. 

Using the appropriate extinction coefficients for hemes d and b558 (see 

Materials and Methods), it is possible to quantify the extent to which hemes d and b558 

are reduced and oxidized, respectively, concomitant with CO rebinding. 

Approximately 25% of the heme d undergoes a redox change (initial oxidation 

followed by re-reduction as CO recombines) upon photolysis (Jasaitis, Borisov et al. 

2000). If the amount of heme d that becomes reduced as CO rebinds is taken as 100%, 

the data show that only ~20% this reducing equivalent can be accounted for by the 

oxidation of heme b558 in the wild type and ~18% in the mutant enzymes. The 

remaining source of electrons must be heme b595, since the bound quinone will have 

Em value that is much lower than heme b595 (Koland, Miller et al. 1984). Hence, in 

both enzymes, the photolysis of CO from heme d2+ in the one-electron reduced 

enzyme results in partial reduction of heme b558 and heme b595 with most (~80%) of 

the internally redistributed electron residing on heme b595. Since, under the solution 

conditions employed, both in the wild type and in the E445A mutant enzymes, of the 

two hemes b, heme b595 is the major contributor to electron redistribution between 

heme d resolved in optical measurements.  
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3.4 Discussion and conclusions: 

One clear conclusion from this chapter is that the E445A mutant of E. coli 

cytochrome bd contains heme b595. Although the enzyme contains heme b595, the 

heme remains in the ferric form even in the presence of dithionite as it can be seen by 

EPR spectroscopy. This observation explains the activity lose of this mutant (Zhang, 

Hellwig et al. 2001). Remarkably, heme b595 can be reduced transiently by photolysis 

of the CO adduct of heme d2+, either in the one- or two-electron reduced forms of the 

enzyme (Figures 3.2 and 3.4). Previous studies claiming that the E445A mutant 

enzyme had only one heme b per heme d were apparently incorrect due to a difference 

in the appropriate extinction coefficients needed to quantify heme d for the wild type 

and mutant strains (see Materials and Methods). It is also clear that the E445A 

mutation has a very dramatic effect selectively on this heme component of the 

enzyme. 

When heme b595 is locked into the ferric form, the enzyme is incapable of 

rapid catalysis. The reaction of O2 with the two-electron reduced E445A mutant is 

about 100-fold slower to form the oxoferryl species. Formation of oxoferryl species 

requires 4-electrons to split the O-O bond along with at least one proton. Since heme 

b595 remains in the ferric form in the ascorbate/TMPD-reduced enzyme, there are not 

enough electrons present to rapidly catalyze the reaction (which would normally 

utilize 1 electron each from heme b595 and heme b558 as well as 2 electrons from heme 

d). It is possible that sufficient electrons are present in the enzyme in the form of 

ubiquinol; in that case the very slow reaction suggests that rapid catalysis specifically 
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requires the ferrous form of heme b595 and/or that the reaction requires the proton 

delivered to E445 that would accompany reduction of heme b595.  

The backflow optical experiments show clearly that, upon the photolysis, the 

electron from heme d is redistributed predominantly to heme b595. If the amount of 

transiently oxidized heme d in the photolyzed one-electron reduced enzyme is taken 

as 100%, ~80% of this reducing equivalent ends up on heme b595 and only about 20% 

- on heme b558. Hence, in control electrometric experiments with two-electron reduced 

E445A enzyme one would expect that CO photolysis from the mutant in the absence 

of O2 resulting in electron backflow from heme d to heme b595 will be linked to 

proportional electrogenic movement of protons with the amplitude of ∆Ψ generated 

as much as 80% of that in the one-electron reduced enzyme (i.e., without reductant). 

However, ∆Ψ generation after CO photolysis from the one-electron reduced E445A 

enzyme (~0.6-0.7 mV) decreases proportionally with reduction of heme b558 and in 

two-electron reduced state of the mutant the amplitude of ∆Ψ generation is close to 

zero although the electron backflow to heme b595 is still present (Figure 3.2B). These 

data suggest that generation of ∆Ψ caused by CO dissociation from heme d in the 

one-electron reduced enzyme is due to electron redistribution between heme d and 

heme b558 and protonation events associated with it, whereas redox equilibration 

between heme d and heme b595 (while the major event in optics) is not linked to 

electrogenic proton movement and it also proves that these two hemes positioned in 

the membrane at the same depth.  

When the E445A mutant is treated with dithionite, heme d and heme b558 are 

reduced, but heme b595 remains oxidized. The fact that part of heme b595 is transiently 
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reduced upon photolysis of the heme d2+-CO adduct suggests that the mutation does 

not specifically block the reduction of heme b595 but, rather, prevents the complete 

simultaneous reduction of both heme d and heme b595. 

Shown in Figure 3.6 is the proposed scheme of electron and proton transfer 

pathways in cytochrome bd that can explain the two apparently conflicting 

observations of behavior of the E445A mutant: resistance of heme b595 towards 

reduction by dithionite and transient reduction of a fraction of heme b595 upon 

photolysis of CO from heme d in the mixed-valence enzyme. 

It is proposed that there are two protonatable groups, denoted XN
- and XP

-. The 

protonation states of both of these groups are influenced by the redox state of hemes d 

and b595 (Figure 3.6). It is postulated that the pKa of XN
- is higher than the pKa of XP

- 

and that the XN
- group is in protonic equilibrium with the bulk aqueous phase on the 

negative side of the membrane via a proposed proton-conducting channel. Proton 

transfer between the negative side of the membrane and the XN
- site through this 

channel, normal to the plane of the membrane, is proposed to result in generation of 

∆Ψ. 

Upon reduction of both the wild type and the mutant enzyme, the first electron 

transferring from heme b558 to the binuclear site is accompanied by the protonation of 

the XN
- site (XN

- + H+→ XNH). For reduction of the binuclear site by the first electron, 

the Em value of heme b595 in the mutant is similar to that in the wild type, because in 

both cases the first electron is compensated by simultaneous uptake of the first proton 

by the XN
- group. The second electron from heme b558 entering the binuclear site 

completes reduction of the di-heme site, resulting in reduction of ~80% heme b595 and 
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~20% heme d in the wild type enzyme that is linked to uptake of the second proton by 

another shared proton-accepting group, XP
-. The E445A mutation is proposed to 

specifically block the protonation of the XP
- site. Consequentially, in the mutant 

enzyme, the complete reduction of the binuclear site becomes impossible as the 

second electron cannot be compensated by uptake of the second proton.  

In principle, the proton delivered to XP
- could come through the same channel 

as does the proton taken up by XN
-. In this case, the proton delivery would be 

electrogenic and, presumably the proton would be used by the chemistry of forming 

water at the active site. The precise role of E445 is up to its location relative to the 

membrane. If E445 is embedded in the membrane, it’s reasonable to assume that 

E445 itself is the XP
- site. On the other hand, if E445 is located on the surface, it may 

be required for the proton transfer to XP
-. In the latter case, the identity of the XP

- site 

also needs to be established.  

The Em values of hemes d and b595 are pH-dependent (Lorence, Miller et al. 

1984), consistent with the proposed model. Presumably, the protons taken up by one 

or both of these two groups are subsequently used to combine with O2 in the catalytic 

reaction to form H2O.  

The addition of CO to the dithionite-reduced E445A mutant increases Em of 

heme d so that one electron equilibrated between hemes d and b595 (80% : 20%) 

entirely moved on heme d (>99%). Photolysis to remove CO, results in the backflow 

of about 20% of the reducing equivalent transiently from heme d to heme b595. When 

backflow between hemes d and b595 occurs, the redistributed electron is already 
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compensated by the proton which was taken up by the XN
- site earlier. Hence this 

electron transfer is not associated with proton uptake and is nonelectrogenic. 

The results obtained upon photolysis of heme d2+-CO in the one-electron 

reduced enzyme are also explained by this model. Within the wild type enzyme, 

photolysis results in the redistribution of the electron that was initially on heme d to 

all three heme components. Of the 25% of heme d that is transiently oxidized, only 

approximately 20% of the reducing equivalent ends up on heme b558. However, 

electron transfer from heme d to heme b558 is coupled to deprotonation of the group 

near heme d (XNH→ XN
- + H+), which makes this step electrogenic. 

Transient reduction of heme b558 following the photolysis of heme d2+-CO in 

the one-electron reduced enzyme is also accompanied by H+ uptake from periplasmic 

side. The extent of protonation of a proposed protonatable group (Xb
-) near heme b558 

(Figure 3.6) is equal to that of deprotonation of XN
- group near heme d. The 

protonation of the Xb
- site may also contribute to some extent to the backflow ∆Ψ 

generation provided that the site is located at some depth in the membrane. 

The re-visit of E445A mutant in this chapter raises the argument of the presence of 

proton channel from the cytoplasma to the reactive center of cytochrome bd oxidase. 

Both XP
- and XN

- could be part of this pathway. With the help of sequence alignment, 

several strictly conserved residues are identified around the region in the membrane, 

which lead to further investigation in the following two chapters. 
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3.5 Figures and tables: 

 

 
 
Figure 3.1 Membrane topology model of subunit I of cytochrome bd oxidase from E. 

coli with E445 marked out. 
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Table 3.1 Summary of the properties of the cytochrome bd E445 mutants 
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Figure 3.2 Absorption changes during CO recombination after flash photolysis of 

dithionite-reduced cytochrome bd.  

(A) Spectrum of CO photolysis of the E445A mutant enzyme (dotted line) was adjusted 
to match the amplitude of photolysis of the WT enzyme (solid line). The spectrum is a 
difference between spectra before and after the flash. The spectrum before the flash is 
constant, but the spectrum after the flash was obtained by extrapolation of the CO 
recombination kinetics at each wavelength to zero time.  
(B) Difference between CO recombination spectra of E445A mutant and WT.  
Conditions: cytochrome bd, 25 µM (WT) and 12 µM (E445A mutant); 0.1% Tween 20; 
100 mM Hepes-KOH, pH 7.5; sodium dithionite, 0.1 mM (WT) and 3 mM (E445A 
mutant); 1% CO; 1-cm light path; room temperature.



 

54 

 
 
Figure 3.3 EPR spectra of air-oxidized (dotted line) and dithionite-reduced (solid 

line) cytochrome bd from E445A mutant enzyme.  

EPR conditions: microwave power, 2 mW; microwave frequency, 9.429 GHz; 
modulation amplitude, 12 G; temperature, 12° K. Sample conditions: 26.6 µM enzyme; 
20 mM Mops-KOH and 40 mM sodium phosphate, pH 7.6; 0.05% sarcosyl. Data 
indicated by the solid line were obtained in the presence of 5 mM sodium dithionite. 
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Figure 3.4 Generation of a membrane potential during the reaction of the reduced 

cytochrome bd with O2.  

Trace 1, WT enzyme. Trace 2, E445A mutant enzyme. Conditions: 100 mM Mops-KOH 
(pH 7.0), 10 µM TMPD, 50 mM glucose, 0.5 mg/ml catalase, 1.5 mg/ml glucose oxidase, 
and 1% CO. Reaction was started by a laser flash after 400 ms from the beginning of the 
injection of 100 µl of oxygen-saturated buffer ([O2] = 1.2 mM). The fit of the presented 
experimental curves gives the following parameters for the phases: Trace 1, R → A, τ ≈ 
13.5 µs with zero amplitude; A → F, τ ≈ 90.9 µs, amplitude of –3.2 mV; F → O, τ ≈ 606 
µs, amplitude of –1.6 mV. Trace 2: R → A, τ ≈ 13.5 µs with zero amplitude; A → F1, τ ≈ 
1.3 ms, amplitude of –0.36 mV; A → F2, τ ≈ 12.5 ms, amplitude of –1.7 mV. (Inset) 
Generation of ∆Ψ during the reaction of the reduced E445A mutant cytochrome bd with 
O2 on the longer time scale. 
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Figure 3.5 Spectra of electron backflow relaxation after CO photolysis from the one-

electron-reduced WT (solid line) and E445A mutant (dotted line) enzymes. 

The spectra were obtained by subtraction of the spectrum of CO rebinding to heme d 
(solid line of Fig. 1) from the total spectra of the CO recombining phase, the latter is a 
sum of the two processes (CO rebinding to heme d and intraprotein electron 
redistribution). The amplitudes of CO recombination phases of mixed valence enzymes 
were adjusted to match the amplitude of CO photolysis of fully reduced WT enzyme. 
Conditions are as in Fig. 3.2, except that no dithionite was added. 
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Figure 3.6 Possible scheme of electron and proton transfer pathways in cytochrome 

bd oxidase.  

The mutation in the E445 residue prevents the complete two-electron reduction of the di-
heme site by dithionite. The proton access to site Xp is pictured as being from the 
periplasmic side of the membrane (P-side). If this is the case, it is unlikely that this proton 
is used in the reaction catalyzed at the enzyme active site, but is re-released upon 
reoxidation of the hemes. N-side, negative side of the membrane. 
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CHAPTER 4: MUTAGENESIS AND FTIR SPECTROSCOPIC EVIDENCE FOR 

THE INVOLVEMENT OF TWO ACIDIC RESIDUES IN PROTON 

TRANSLOCATION 

 

4.1 Introduction: 

Cytochrome bd is a quinol oxidase from Escherichia coli which is optimally 

expressed under microaerophilic growth conditions. The enzyme catalyzes the 2-electron 

oxidation of either ubiquinol or menaquinol in the membrane and scavenges O2 at low 

concentrations, reducing it to water. Previous work has shown that although cytochrome 

bd does not pump protons, turnover is coupled to the generation of a proton motive force. 

The generation of a proton electrochemical gradient result from the release of protons 

from the oxidation of quinol to the periplasm and the uptake of protons used to form H2O 

from the cytoplasm. Since the active site has been shown to be located near the 

periplasmic side of the membrane, a proton channel must facilitate the delivery of protons 

from the cytoplasm to the site of water formation. Two conserved glutamic acid residues, 

E107 and E99, are located in transmembrane helix III in subunit I (Figure 4.1), and have 

been proposed to form part of this putative proton channel (see Chapter 3).  

In this chapter, the results are reported for mutations in several conserved acidic 

residues: E99, E107 in CydA and D29 in CydB (Figure 4.2). The locations in the 

predicted topology of each subunit are shown in Figure 1. In the current work, it is shown 

that mutations in either of these residues results in the loss of quinol oxidase activity and 

can result in loss of the two hemes at the active site, heme d and heme b595. One mutant, 

E107Q while being totally inactive, retains the hemes. FTIR redox difference 
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spectroscopy has identified absorption bands from the COOH group of E107. The data 

show that E107 is protonated at pH 7.6 and that it is perturbed by the reduction of the 

heme d / heme b595 binuclear center at the active site. 

 

4.2 Materials and methods: 

4.2.1 Strains and plasmids: 

E. coli strain CLY (cyo::kan, recA), which lacks cytochrome bo3 quinol oxidase 

(Yep 2005) was used as the host strain for expressing the wild type cytochrome bd on a 

plasmid.. To obtain wild type cytochrome bd, plasmid pTY1 (Yang 2007) was introduced 

to the strain. This plasmind is a derivative of pET17b and contains the whole operon of 

wild type bd as well as ampicillin resistance gene for selection.  

Mutants of cytochrome bd were expressed using E. coli strain GO105 

(cydAB::kan, cyo, recA), which lacks both cytochrome bo3 and cytochrome bd quinol 

oxidases (Kaysser, Ghaim et al. 1995) was used as the host strain. To obtain mutant 

cytochrome bd, plasmid pTK1 (Zuberi 1993) was introduced to the strain. This plasmid is 

a derivative of pBR322 and contains the whole operon of wild type bd as well as 

ampicillin resistance gene for selection. 

 

4.2.2 Site-directed mutagenesis using Quik-Change method: 

The Stratagene Quick-Change mutagenesis kit was used to construct mutants. 

Plasmid pTK1 was used as template. The oligonucleotide primers were synthesized by 

Roy J. Carver Biotechnology Center (Urbana, IL) with melting temperature around 80 ˚C 

based on the Stratagene formula, and were diluted in pure water to 100 ng/µL for Quick-
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Change reaction. Thermocyclings were conducted on PTC-100 Programmable Thermal 

Controller (MJ Research Inc.). The protocol was as follows: 95 °C for 2 min, 1 cycle; 18 

cycles of 95 °C for 1 min, 54 °C for 1 min, and 68 °C for 8 min; then 68 ˚C for 7 min, 1 

cycle. The samples were digested with 1 µL DpnI for 3 ~ 4 hours. All mutants were 

confirmed by DNA sequencing. 

 

4.2.3 Complementation test for the mutant cytochrome bd: 

The complementation test was carried out as follows: Plasmid DNA from 

confirmed mutants was used to transform GO105 using TSS method (Chung, Niemela et 

al. 1989). Cells were grown anaerobically for selection of ampicillin and kanamycin 

resistance. The strains exhibiting both amplicillin and kanamycin resistance were 

restreaked to obtain single colonies, and were grown on M63 (Cohen and Rickenberg 

1956) minimal plates supplemented with 0.3 % lactate and 0.3 % succinate. Also added 

were 100 µg/mL ampicillin and 50 µg/mL kanamycin to maintain the plasmid and the 

strain. Complementation was defined by aerobic growth within 48 ~ 72 hours of 

incubation at 37 °C. 

 

4.2.4 Cell growth and protein sample preparation: 

Large scale cell growth of strains that grow aerobically (i.e. expressing wild type 

or E107D mutant) was carried out in 24 2-liter flasks shaking at 220 rpm 37 °C using two 

Innova 4330 incubator shakers (New Brunswick Scientific). Strain expressing wild type 

was grown in LB containing 100 µg/mL Amp, 50 µg/mL Kan, and 0.5mM IPTG was 

added 4 hours after the inoculation. Strains expressing those inactive mutants, which 
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could not grow aerobically, was grown at the Fermentation Facility at the University of 

Illinois, at 37 °C, pH 7, in a 20-liter fermenter using LB containing 100 µg/mL Amp, 50 

µg/mL Kan, and 0.3 % glucose. Both wild type and mutant cytochrome bd oxidases were 

purified from the membrane of either CLY/pTY1 or GO105/pTK1 as described 

previously (Miller and Gennis 1986), with the modification that the hydroxyapatite 

column was omitted. Fractions were collected from the Fast-Flow Sepharose DEAE 

column with an A412/A280 ratio greater than 0.5. The pooled fractions were concentrated 

using an Amicon concentrator with a 50 kDa molecular weight cut-off filter and then 

dialyzed three times against 50 mM sodium phosphate buffer, pH 7.8, containing 5 mM 

EDTA, 0.05% N-lauroylsarcosine. Both wild type and mutant cytochrome bd samples 

were then examined, using the same dialysis buffer for appropriate dilution unless 

specified otherwise. 

 

4.2.5 Ubiquinol-1 and TMPD oxidase activity assay: 

Cytochrome bd wild type and mutants were assayed both in isolated membranes, 

in which there is no other quinol oxidase, and with the purified enzyme. For membranes, 

samples were homogenized in 25 mM Tris HCl, 1 mM EDTA disodium salt, pH 7.5. 

Purified protein samples were dialyzed against 50 mM NaPi buffer, pH 7.8, containing 5 

mM EDTA disodium salt and 0.05 % N-lauroyl sarcosine. Various dilutions of either the 

homogenized membrane samples or pure protein samples were added to 1.8 mL of the 

respective buffer containing either 2 mM dithiothreitol or 4 mM ascorbate that had been 

equilibrated to 37 °C in a Clark-type oxygen electrode (Yellow Springs Instrument CO.). 

A baseline was taken and the reaction was initiated by addition of ubiquinol-1 (kindly 
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provided by Hoffman-LaRoche) or TMPD to a final concentration of 245 µM and 1 mM, 

respectively. Activities were determined assuming a value of 237 µM O2 for air-saturated 

buffer at 37 °C. 

 

4.2.6 Heme analysis: 

The heme b contents of both wild type and mutant purified cytochrome bd were 

measured by the pyridine hemochromogen assay, using an extinction coefficient for the 

wavelength pair 556.5−540 nm = 23.98 mM-1 cm-1 (Berry and Trumpower 1987). The 

heme d content was determined from the reduced minus “as isolated” difference spectrum 

with the ∆ε628−607 nm = 10.8 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The 

concentration of the wild type cytochrome bd was determined from the reduced minus as 

isolated difference spectrm, using ∆ε560−580 nm = 21.4 mM-1 cm-1 (Tsubaki, Hori et al. 

1995). Since the “as isolated” enzyme contains varying amounts of ferrous heme d-oxy 

complex and oxoferryl heme d species, the heme d content was also determined by the 

absolute spectrum of the fully reduced enzyme, using the extinction coefficient ∆ε628-670 

nm = 25 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The concentration of the mutant 

protein was determined by the BCA assay using wild type cytochrome bd as standard. 

 

4.2.7 UV-Vis spectroscopic measurements: 

All the absorbance spectra in the UV-Vis region were obtained with a DW2000 

spectrophotometer (Aminco) using a 1 cm pathlength cuvette. The series of absorbance 

spectra for mid-point potential measurements were taken using UV-2101PC scanning 

spectrophotometer (Shimadzu). 
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4.2.8 Electrochemistry and FTIR difference spectroscopy:  

FTIR difference spectra recorded at 5 °C as a function of applied potential with 

BioRad (now Varian, Inc.) FTS-6000 FTIR. Each FTIR difference spectrum consisted of 

256 intereferograms at 4 cm-1 resolution and approximately 20 spectra were averaged to 

give better signal to noise. Triangular apodization is used for Fourier transformation. 

Equilibration at the applied potential is achieved in less than 10 min. FTIR spectra 

monitored until no change detected. Experimental conditions for bd quinol oxidase and 

electrochemical cell set-up is described in detail previously (Mansfield and Wiggins 1990; 

Mantele 1996). A mixture of 13 different mediators added to 40 µM final concentration 

1,1'-dicarboxylferrocene, dimethylparaphenylendiamine (DMPPD), ferricyanide, 

quinhydrone, tetramethylparaphenylendiamine (TMPPD), tetrachlorobenzoquinone, 2,6-

dichlorophenol indophenol, ruthenium hexamine chloride, 1,2-naphthoquinone, 

menadione, 2-hydroxy-1,4-naphthoquinone, benzyl viologen, methyl viologen. 

 

4.2.9 Sequence analysis and topology model generation: 

The homologous sequences of subunit I and subunit II of cytochrome bd were 

kindly provided by Dr. James Hemp in Grennis lab, Urbana, University of Illinois. The 

sequence alignment was performed by BioEdit Sequence Alignment Editor Ver.7.0.9.0 

(Hall 1999). The topology models of subunit I and subunit II were generated by 

membrane topology prediction tool TMHMM 2.0 program 

(http://www.cbs.dtu.dk/services/TMHMM/). The graph was created by TOPO2 program 

based on the TMHMM result (http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). 
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4.3 Results: 

4.3.1 Complementation test, heme analysis and UV-Vis spectra: 

To test how much the mutation affect the catalytic activity of the enzyme, 

complementation test were performed. As shown in Table 4.1, except E107D, all the 

other mutants cytochrome bd were unable to rescue the aerobic growth of E. coli strain 

GO105, which lacks both of the terminal oxidases – an indication that the mutants 

cytochrome bd lost their terminal oxidase activity. The heme analysis showed that all I-

E99 and II-D29 mutants completely lost the heme b595 / heme d binuclear center, while I-

E107Q mutant retains about half of heme d that expected compared to the wild type. 

Surprisingly, the only mutant that passed the complementation test, E107D, also lost the 

heme b595 / heme d active site, indicating the mutation destabilizes the binding of heme d 

and heme b595 to a point where even isolation of the membranes results in loss of heme 

content. The UV-Vis spectra confirm the heme analysis optically. 

 

4.3.2 Ubiquinol-1 and TMPD oxidase activity assay: 

Consistent with the loss of binuclear center, none of the mutants showed 

ubiquinol oxidase activity (Table 4.1). It has been shown that TMPD donates electrons to 

a site distinct from ubiquinol and appears to be oxidized directly at the heme d / heme 

b595 active site. In our case, except E107Q who demonstrates a low activity with TMPD, 

all the other mutants lack the TMPD oxidase activity, suggesting a severe damage to their 

active site. 
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4.3.3 FTIR spectra of wild type and E107Q mutant: 

The main goal of this work was to determine whether E107 and/or E99 carboxyl 

groups contribute to the FTIR redox difference spectrum previously reported (Zhang, 

Oettmeier et al. 2002; Yamazaki, Kandori et al. 1999). Only the E107Q mutant could be 

isolated with the heme content intact and approximating that of the wild type oxidase. 

Figure 4.3 shows the oxidized-minus-reduced FTIR difference spectra (708 mV to -292 

mV vs. SHE).of wild type and the E107Q mutant of anaerobically grown cytochrome bd 

oxidase. The spectra include the contributions of all hemes, the bound quinone, the 

backbone and all residues reorganising or changing protonation state concomitant with 

the redox reaction. The positive signals correspond to the oxidized form and the negative 

signals to the reduced state. The spectra of wild type oxidase have been previously 

described in (Zhang, Oettmeier et al. 2002) and include the contributions of several 

protonated acidic residues (i.e., COOH). It is noted that anaerobically grown E. coli 

contains primarily menaquinone as a component of its respiratory chain, whereas 

aerobically grown cells utilize ubiquinone. Cytochrome bd can utilize either menaquinol 

or ubiquinol as a substrate. The E107Q mutant enzyme, isolated from anaerobically 

grown cells, exhibits clear perturbations in the spectral region that is typical for 

protonated acidic residues, 1730 to 1750 cm-1
 (Venyaminov and Kalnin 1990). Other 

components may also contribute to the FTIR spectrum in this region, including lipids 

(Hielscher, Wenz et al. 2006) and, possibly heme d, whose FTIR spectrum is unknown.  

As shown in Figure 4.3, the FTIR redox difference spectrum of the mutant 

oxidase differs from that of the wild type oxidase. The absence of the negative band at 

1753 cm-1
 and the perturbations around 1738 cm-1

 and 1700 cm-1
 are highlighted in 
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double difference spectra in Figure 4.4. On the basis of these shifts, E107 can be 

assigned to the signal in the wild type spectrum with a negative trough near 1753 cm-1
 

and positive band at 1738 cm-1. This sigmoid shaped band is most readily interpreted as 

being due to the reorganization of the environment around a protonated form of E107. 

The basic conclusion is that E107 must be protonated at the pH of the experiment (pH 7.6) 

and it is perturbed upon changing the redox state of one or more of the heme components 

of the enzyme. The frequencies observed for the residue indicate that E107 is in a 

hydrophobic environment and that there is stronger hydrogen bonding upon reduction 

(shift from 1751 cm-1
 to 1738 cm-1). 

Additional spectroscopic shifts around 1700 cm-1
 and 1685 cm-1

 are observed in 

the spectra and these spectroscopic changes may include contributions from the heme 

propionates and the backbone. In the lower spectral range, only minor variations can be 

seen in the spectrum of the E107Q mutant oxidase, and these may be attributed to the 

small loss of heme d that is observed over the time required to complete the spectroscopic 

measurements. 

 

4.3.4 Redox-induced perturbation of E107Q mutant using FTIR: 

The redox-induced perturbation of the E107 environment was further examined 

over more narrow ranges of solution potential. Figure 4.5 shows the double difference 

spectrum in the 1750 cm-1
 region of the spectrum over the ranges -292 mV to +118 mV 

(vs. SHE), within which is the midpoint potential of cytochrome b558, and +128V to +708 

mV (vs. SHE) which will capture changes accompanying the oxidation/reduction of heme 

d and heme b595. The midpoint potentials of heme d and heme b595 are sufficiently close 



 

67 

(256 mV and 223 mV vs SHE) so as to preclude resolving spectroscopic changes that can 

be attributed to either heme alone. The spectral alterations over the entire voltage range (-

292 mV to +708 mV vs SHE) is also shown in Figure 4.5, which includes changes 

coupled to the reduction/oxidation of all three hemes plus the quinones. The results 

clearly show that the perturbation of the spectrum of E107 is associated with the redox 

changes of heme d / heme b595. There are other changes in the 1750 cm-1
 region of the 

spectrum of the wild type enzyme, suggesting the perturbation of other protonated acidic 

residues besides E107 coupled to the reduction/oxidation of the metal centers. E99 is a 

good candidate, but the loss of heme d / heme b595 from both the E99A and E99Q mutants 

rules out meaningful FTIR difference spectroscopy. 

 

4.4 Discussion and conclusions: 

Previously reported FTIR difference spectroscopy (Zhang, Oettmeier et al. 2002; 

Yamazaki, Kandori et al. 1999) has shown that more than one acidic residue is perturbed 

when the metal centers are reduced in cytochrome bd from E. coli. In addition, our new 

model of electron and proton transfer pathways inside the cytochrome bd put the 

argument of a proton translocation channel on the table. Two acidic amino acid residues 

are totally (>99%) conserved in all the sequences of the bd-type oxidases - E99 and E107. 

Their special locations on the transmembrane helices as well as close proximity to the 

hemes’ ligands, make them good candidates for the role. 

Both the E99A and E99Q mutant oxidases lose the heme d / heme b595 active site, 

and, therefore, were not useful for FTIR spectroscopy. It is reasonable to conclude that 

E99 is important for binding the di-heme center at the enzyme active site, as is E107. The 
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E107D and E107Q mutants both have labile heme d and heme b595. In the case of E107Q, 

the heme content is about half the expected amount upon isolation, but after 12 hours at 4 

°C at pH 7.6, the heme d content is significantly lower (about half). At higher pH, the 

lability of the hemes is increased, which is the case for the wild type oxidase as well. The 

E107D mutant oxidase is functional in vivo, but the activity is lost upon preparing 

membranes, and the isolated enzyme lacks heme d and heme b595. Clearly, E107 is 

important for both function and for the structural integrity of the active site. Evidently, 

having an acidic residue at this location is not sufficient for stability since aspartate does 

not substitute for glutamate at this position. This is reflected in the sequence alignments 

which show only glutamates at equivalent positions to E99 and E107 (Osborne and 

Gennis 1999). 

The E107Q mutant was sufficiently stable for FTIR difference spectroscopy. The 

results (Figure 4.3) show a substantial difference between the spectra of the wild type 

and the E107Q mutant. The double difference spectra (inset, Figure 4.3) clearly show 

that E107 absorbs at 1738 cm-1
 in the oxidized form of the enzyme, but at 1752 cm-1

 when 

the enzyme is fully reduced. The spectroscopic shift is coupled to the redox change of the 

heme d / heme b595 center (Figure 4.5). The position of the absorption demonstrates that 

E107 is in a hydrophobic environment and that it is protonated in both the reduced and 

oxidized forms of the enzyme. Furthermore, the shift to higher wave number indicates 

that the hydrogen bonding of E107 is strengthened when the enzyme is reduced. Clearly, 

the population of the enzyme lacking the heme d / heme b595 active-site hemes does not 

respond to any redox changes in these metal centers, so these data are not based on the 

fraction of the enzyme in which these hemes are lacking. 
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The data in this work indicate a cluster of acidic residues from both CydA and 

CydB that are important for the stable assembly of the heme d / heme b595 center. 

These include E99, E107 and D29 (CydB). Even conservative substitutions of glutamate 

for aspartate or vice versa are not tolerated. The ease of destabilizing the binding of heme 

d / heme b595 has been previously noted and speculated to possibly indicate that these 

hemes are present at the interface between CydA and CydB, susceptible to perturbations 

to that interface(Oden and Gennis 1991)). The current work is consistent with this 

possibility but does not rule out other possibilities. 

The major motivation of this work was to investigate the possibility that 

E99 and E107 participate in conveying protons to the heme b595 / heme d active site. This 

remains possible, and the likely proximity of both E99 and E107 to heme d is consistent 

with this role. However, the structural importance of both E107 and E99 make it difficult 

at this point to make any conclusions about a certain role of these residues in proton 

translocation within a possible proton channel. 
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4.5 Figures and tables: 

 

 
 
Figure 4.1 Membrane topology model of subunit I of cytochrome bd oxidase from E. 

coli with E99 and E107 marked out. 
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Figure 4.2 Membrane topology model of subunit II of cytochrome bd oxidase from E. 

coli with D29 marked out.
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Table 4.1 Summary of the properties of the cytochrome bd E99, E107 and II-D29 
mutants 
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Figure 4.3 Oxidized-minus-reduced FTIR difference spectra of wild type and E107Q. 

Both wild type and E107Q mutant were grown anaerobically. The redox potential 
changed in steps from 708 mV to -292 mV vs. SHE. 
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Figure 4.4 Wild type-minus-E107Q double difference spectrum. 

The negative band at 1753 cm-1 and positive band at 1738 cm-1 are assigned to E107. 
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Figure 4.5 Oxidized-minus-reduced FTIR difference spectra of wild type 

cytochrome bd for selected potential steps.  

The steps include the contributions from heme b558 (+118 to -292 mV), the active site 
(+708 to +128 mV vs. SHE) and a full potential step (+708 to -292 mV vs. SHE), which 
includes contributions from all cofactors plus the quinone. 
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CHAPTER 5: MUTAGENESIS AND FTIR EVIDENCE INDICATE A POSSIBLE 

ROLE OF A NON-ACIDIC RESIDUE IN PROTON UPTAKE 

 

5.1 Introduction: 

As a plausible proton channel has been outlined in the previous two chapters, 

more structural details are on demand for this translocation pathway. Other than strictly 

conserved acidic residues that have been discussed, two more non-acidic amino acids, 

S140 and N148, enter our view due to their high conservation in over 1000 cytochrome 

bd homologous sequences, as well as their close proximity to E99 and E107 (Figure 5.1). 

In this chapter, we examined the importance of these highly conserved residues 

by site-directed mutagenesis. Seven mutants were made: S140A, S140L, S140T, S140H, 

S140C, N148A, and N148D. All the Serine 140 mutants are suffering from server 

impairment of aerobic growth, while all the Asparagine 148 mutants retain wild type 

activity. In vitro enzymatic assays showed that, two Serine mutants, S140L and S140T 

partially retain the ability to oxidize TMPD, an artificial electron donor, and are unable to 

catalyze the quinol oxidation reaction at all. This could be a sign that the mutations may 

perturb both the initial electron transfer from quinol to heme b558 and the downstream 

electron transfer or water formation in an electrogenic way. Further experiments 

conducted using Fourier transform infrared spectroscopy (FTIR), which provides more 

detailed characterization of S140T mutant enzyme is reported in this chapter. 
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5.2 Materials and methods: 

5.2.1 Strains and plasmids: 

E. coli strain CLY (cyo::kan, recA), which lacks cytochrome bo3 quinol oxidase 

(Yep 2005) was used as the host strain for expressing the wild type cytochrome bd on a 

plasmid.. To obtain wild type cytochrome bd, plasmid pTY1 (Yang 2007) was introduced 

to the strain. This plasmind is a derivative of pET17b and contains the whole operon of 

wild type bd as well as ampicillin resistance gene for selection.  

Mutants of cytochrome bd were expressed using E. coli strain GO105 

(cydAB::kan, cyo, recA), which lacks both cytochrome bo3 and cytochrome bd quinol 

oxidases (Kaysser, Ghaim et al. 1995) was used as the host strain. To obtain mutant 

cytochrome bd, plasmid pTK1 (Zuberi 1993) was introduced to the strain. This plasmid is 

a derivative of pBR322 and contains the whole operon of wild type bd as well as 

ampicillin resistance gene for selection. 

 

5.2.2 Site-directed mutagenesis using Quik-Change method: 

The Stratagene Quik-Change mutagenesis kit was used to construct mutants. 

Plasmid pTK1 was used as template. The oligonucleotide primers were synthesized by 

Roy J. Carver Biotechnology Center (Urbana, IL) with melting temperature around 80 °C 

based on the Stratagene formula, and were diluted in pure water to 100 ng/µL for Quik-

Change reaction. Thermocyclings were conducted on PTC-100 Programmable Thermal 

Controller (MJ Research Inc.). The protocol was as follows: 95 °C for 2 min, 1 cycle; 18 

cycles of 95 °C for 1 min, 54 °C for 1 min, and 68 °C for 8 min; then 68 °C for 7 min, 1 
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cycle. The samples were digested with 1 µL DpnI for 3 ~ 4 hours. All mutants were 

confirmed by DNA sequencing. 

 

5.2.3 Complementation test for the mutant cytochrome bd: 

The complementation test was carried out as follows: Plasmid DNA from 

confirmed mutants was used to transform GO105 using TSS method (Chung, Niemela et 

al. 1989). Cells were grown anaerobically for selection of ampicillin and kanamycin 

resistance. The strains exhibiting both amplicillin and kanamycin resistance were 

restreaked to obtain single colonies, and were grown on M63 (Cohen and Rickenberg 

1956) minimal plates supplemented with 0.3 % lactate and 0.3 % succinate. Also added 

were 100 µg/mL ampicillin and 50 µg/mL kanamycin to maintain the plasmid and the 

strain. Complementation was defined by aerobic growth within 48 ~ 72 hours of 

incubation at 37 °C. 

 

5.2.4 Cell growth and protein sample preparation: 

Large scale cell growth of strains that grow aerobically (i.e. expressing wild type) 

was carried out in 24 2-liter flasks shaking at 220 rpm 37 °C using two Innova 4330 

incubator shakers (New Brunswick Scientific). Strain expressing wild type was grown in 

LB containing 100 µg/mL Amp, 50 µg/mL Kan, and 0.5mM IPTG was added 4 hours 

after the inoculation. Strains expressing those inactive mutants, which could not grow 

aerobically, were grown microaerobically in the lab at the University of Illinois, at 37 °C, 

pH 7, in a 12 2-liter air-tight flasks using LB containing 100 µg/mL Amp, 50 µg/mL Kan, 

and 0.3 % glucose. Both wild type and mutant cytochrome bd oxidases were purified 
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from the membrane of either CLY/pTY1 or GO105/pTK1 as described previously (Miller 

and Gennis 1986), with the modification that the hydroxyapatite column was omitted. 

Fractions were collected from the Fast-Flow Sepharose DEAE column with an A412/A280 

ratio greater than 0.5. The pooled fractions were concentrated using an Amicon 

concentrator with a 50 kDa molecular weight cut-off filter and then dialyzed three times 

against 50 mM sodium phosphate buffer, pH 7.8, containing 5 mM EDTA, 0.05% N-

lauroylsarcosine. Both wild type and mutant cytochrome bd samples were then examined, 

using the same dialysis buffer for appropriate dilution unless specified otherwise. 

 

5.2.5 Ubiquinol-1 and TMPD oxidase activity assay: 

Cytochrome bd wild type and mutants were assayed both in isolated membranes, 

in which there is no other quinol oxidase, and with the purified enzyme. For membranes, 

samples were homogenized in 25 mM Tris HCl, 1 mM EDTA disodium salt, pH 7.5. 

Purified protein samples were dialyzed against 50 mM NaPi buffer, pH 7.8, containing 5 

mM EDTA disodium salt and 0.05 % N-lauroyl sarcosine. Various dilutions of either the 

homogenized membrane samples or pure protein samples were added to 1.8 mL of the 

respective buffer containing either 2 mM dithiothreitol or 4 mM ascorbate that had been 

equilibrated to 37 °C in a Clark-type oxygen electrode (Yellow Springs Instrument CO.). 

A baseline was taken and the reaction was initiated by addition of ubiquinol-1 (kindly 

provided by Hoffman-LaRoche) or TMPD to a final concentration of 245 µM and 1 mM, 

respectively. Activities were determined assuming a value of 237 µM O2 for air-saturated 

buffer at 37 °C. 
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5.2.6 Heme analysis: 

The heme b contents of both wild type and mutant purified cytochrome bd were 

measured by the pyridine hemochromogen assay, using an extinction coefficient for the 

wavelength pair 556.5−540 nm = 23.98 mM-1 cm-1 (Berry and Trumpower 1987). The 

heme d content was determined from the reduced minus “as isolated” difference spectrum 

with the ∆ε628−607 nm = 10.8 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The 

concentration of the wild type cytochrome bd was determined from the reduced minus as 

isolated difference spectrm, using ∆ε560−580 nm = 21.4 mM-1 cm-1 (Tsubaki, Hori et al. 

1995). Since the “as isolated” enzyme contains varying amounts of ferrous heme d-oxy 

complex and oxoferryl heme d species, the heme d content was also determined by the 

absolute spectrum of the fully reduced enzyme, using the extinction coefficient ∆ε628-670 

nm = 25 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The concentration of the mutant 

protein was determined by the BCA assay using wild type cytochrome bd as standard. 

 

5.2.7 UV-Vis spectroscopic measurements: 

All the absorbance spectra in the UV-Vis region were obtained with a DW2000 

spectrophotometer (Aminco) using a 1 cm pathlength cuvette. The series of absorbance 

spectra for mid-point potential measurements were taken using UV-2101PC scanning 

spectrophotometer (Shimadzu). 

 

5.2.8 Electrochemistry and FTIR difference spectroscopy: 

The FTIR difference of wild type and E107Q mutant bd oxidases spectra were 

obtained using the techniques previously described in chapter 4. In the case of S140 and 
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N148 mutants, a 3-bounce attenuated total reflectance (ATR) attachment with a 3 mm 

diamond prism (SensIR now Smiths Detection) was used with a BioRad (now Varian Inc.) 

FTS-575C FTIR spectrophotometer equipped with liquid nitrogen cooled MCT detector. 

A thin film containing the enzyme was adhered to the surface of the diamond prism. First 

step is the detergent removal from the purified enzyme and pellet the enzyme. 10 ml of 

250 mM enzyme solution was diluted 300-fold with water. The solution was concentrated 

using an Amicon 50 K membrane concentrator to a final volume of 500 ml. This dilution 

and concentration was repeated. The final suspension of enzyme was pelleted using a 

counter-top centrifuge. The pellet was re-suspended in 10 ml of water and could be stored 

at -80 °C. To prepare the protein film, 6 ml of this sample was pipetted onto the ATR 

diamond prism and air-dried for a few minutes. This caused the protein to stick firmly to 

the crystal surface. The protein film was re-hydrated by first humidifying the air around 

the film until a stable FTIR spectrum is recorded. Then 1 ml solution of the perfusion 

buffer (30 mM HEPES, 20 mM KCl, 5 mM MgCl2, pH 8.5, in H2O) is put on the film in 

order to re-wet the sample. The protein concentration is estimated to be approximately 

500 mM. The sample was sealed with an acrylic lid, designed to allow the space above 

the film to be perfused with buffer of any composition. In this way, the redox status of 

the enzyme was altered, as previously described, to obtain the fully reduced and fully 

oxidized states. Upon changing the buffer composition, the state of the enzyme in the 

film was monitored by visible spectroscopy using a home-built apparatus with an Ocean 

Optics USB2000 spectrometer. The absorption spectrum in the visible was obtained by 

reflectance off the surface of the sample on the diamond ATR crystal. Thus, one can 

record the visible spectrum simultaneously with the infrared spectrum as the buffer 



 

82 

composition is changed. In general, the sample was equilibrated with a buffer by flowing 

the solution over the sample for about 1 h. A peristaltic pump (Cole-Parmer, Masterflex 

C/L) and a valve controller (Hamilton) are used for the flow and exchange of buffers. All 

experiments were performed at 22 °C with a flow speed of 0.33 ml/min. 

The oxidized enzyme was obtained by flowing the perfusion buffer (30 mM 

HEPES, 20 mM KCl, 5 mM MgCl2, pH 8.5) including 1 mM ferricyanide over the 

sample. To reduce the enzyme, an aliquot of a freshly prepared solution of dithionite (3 

mM final concentration) was added to the perfusion buffer. Each FTIR spectrum 

consisted of 512 interferograms which were averaged. This ‘‘single-beam’’ (detector 

response) spectrum (512 averaged interferograms) was recorded in one state and, after 

changing buffers, recorded in the second state. Triangle apodization was used for the 

Fourier transformation. The oxidized and reduced single-beam spectra were ratioed to 

obtain the absorbance difference spectrum (-log10 (oxidized/reduced)). This oxidation 

reduction cycle was repeated to improve the signal to noise ratio (S/N) for each sample 

and the spectra from at least 2 samples were averaged. All experiments performed with 4 

cm-1 spectral resolution. 

 

5.2.9 Sequence analysis and topology model generation: 

The homologous sequences of subunit I of cytochrome bd were kindly provided 

by Dr. James Hemp in Grennis lab, Urbana, University of Illinois. The sequence 

alignment was performed by BioEdit Sequence Alignment Editor Ver.7.0.9.0 (Hall 1999). 

The topology model of subunit I was generated by membrane topology prediction tool 

TMHMM 2.0 program (http://www.cbs.dtu.dk/services/TMHMM/). The graph was 
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created by TOPO2 program based on the TMHMM result 

(http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). 

 

5.3 Results: 

5.3.1 Complementation test, heme analysis and optical spectra: 

The complementation test carried out on minimal plate containing antibiotics 

exhibited a bi-polar pattern for S140 and N148 mutants. All the S140 mutations result in 

failure of aerobic growth, while N148 mutants show normal terminal oxidase behavior as 

wild type enzyme (Table 5.1). Unlike N148 mutants that have normal hemes content and 

wild type spectra, mutations at S140 show impaired heme b595 / heme d active center. 

 

5.3.2 Ubiquinol-1 / TMPD oxdiase activity of S140 and N148 mutants: 

Consistent with the results from complementation test, heme analysis and optical 

spectra, none of the S140 mutants shows any ubiquinol-1 oxidase activity, while some of 

them, S140L and S140T, retain around 40-50% TMPD activity, indicating a perturbed but 

relatively functional binuclear active site. All the mutations at N148 behave like wild type 

in the activity assay (Table 5.1). 

 

5.3.3 FTIR spectra of wild type and S140T mutant: 

Although most of the S140 mutants could be isolated with the heme content intact 

and approximating that of the wild type oxidase, S140T gives the best yield of protein in 

the customized fermentation system, which provided enough enzyme for the FTIR 

experiment. Figure 5.2 shows the oxidized-minus-reduced FTIR difference spectra of 
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wild type, the S140T and N148D mutant cytochrome bd oxidases. The spectra include 

the contributions of all hemes, the bound quinone, the backbone and all residues 

reorganising or changing protonation state concomitant with the redox reaction. The 

positive signals correspond to the oxidized form and the negative signals to the reduced 

state. The spectra of wild type oxidase have been previously described in (Zhang, 

Oettmeier et al. 2002) and include the contributions of several protonated acidic residues 

(i.e., COOH). It is noted that anaerobically grown E. coli contains primarily menaquinone 

as a component of its respiratory chain, whereas aerobically grown cells utilize 

ubiquinone. Cytochrome bd can utilize either menaquinol or ubiquinol as a substrate. The 

S140T mutant enzyme, isolated from microaerobically grown cells, exhibits clear 

perturbations in the spectral region that is typical for protonated acidic residues, 1730 to 

1750 cm-1 (Venyaminov and Kalnin 1990). 

As shown in Figure 5.2, the FTIR redox difference spectra of the N148D mutant 

oxidase show no difference from that of the wild type oxidase. In the case of S140T 

mutant oxidase, besides the impairment of the positive band at 1759 cm-1 and the 

negative band at 1751 cm-1, the absence of the positive band at 1736 cm-1 is also 

highlighted in double difference spectra in Figure 5.3. Compared with the double 

difference FTIR spectra of E107Q mutant given in the last chapter (Figure 4.4), there is a 

2 cm-1 red-shift of the entire sigmoid shaped band in the S140T mutant spectra. This is 

most readily interpreted as being due to the reorganization of the environment around a 

protonation state change of E107. Different from the E107Q, the positive band at 1759 

cm-1 indicates the mutation at S140T perturbs some unknown protonated acidic residue 

other than E107, which could be E99 due to its critical location in the membrane. The 
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basic conclusion is that S140 may be involved in the protonation of E107 / E99 at the pH 

of the experiment (pH 8.5).  

 

5.4 Discussion and conclusions: 

Like the well established model for the two proton transfer pathways, D-channel 

and K-channel in heme-copper oxidase, many non-acidic amino acids contribute to the 

proton translocation process both structurally and catalytically, other than those well-

known highly conserved acidic residue. The story should be somehow consistent in the 

cytochrome bd oxidase. Previously (chapter 3 and 4), several critical acidic residues, 

E445, E99, E107 and D29 have been reported to be critical to the proton translocation. In 

the current work, two more strictly conserved non-acidic residues, S140 and N148 

entered our view due to their unique location in the membrane. 

Sitting right next to E99 and E107 in the transmembrane helix IV of subunit I 

(Figure 5.1), S140 and N148 are highly conserved (> 92%) in over 1000 sequences and 

more strictly conserved in the E. coli subfamily (100%) (James Hemp, unpublished data). 

While N148 mutants show wild type-like properties in all the aspects, the mutations at 

S140 lost all the ubiquinol-1 oxidase activity but retain the TMPD oxidase activity 

partially. The relatively intact heme b595 / heme d active center in S140 mutants as well as 

its close proximity to E107 make them a good subject for further investigation by FTIR. 

The S140T mutant was well expressed in our customized microaerobic incubation 

system and also sufficiently stable for FTIR difference spectroscopy. The results (Figure 

5.2) show a substantial difference between the spectra of the wild type and the S140T 

mutant. The double difference spectra (Figure 5.3) clearly show that perturbation of an 
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acidic residue at 1736 cm-1 in the oxidized form of the enzyme, and at 1751 cm-1 when 

the enzyme is fully reduced. This sigmoid shaped band is exactly the same as we 

observed in E107Q mutant (Yang, Zhang et al. 2007) despite of a 2 cm-1 red-shift of the 

entire signal. The position of the absorption demonstrates that this protonated acidic 

amino acid is in a hydrophobic environment, which is also consistent with the previous 

result on E107 (Yang, Zhang et al. 2007). It’s reasonable to believe that the mutation at 

S140 perturbs the protonation state of E107. Furthermore, the positive band at 1759 cm-1 

also indicates that there could be some acidic residues other than E107 have also been 

perturbed by S140T mutant. Based on the topology of subunit I of cytochrome bd oxidase, 

E99 could be one of the most possible candidates.  

As the last chapter in this trilogy of proton channel investigation, two highly 

conserved non-acidic residues located in the membrane have been studied by FTIR 

spectroscopy. One of them, S140 may participate in facilitating protons transportation 

inside the membrane besides stabilizing the heme b595 / heme d binuclear active center. 

Further investigations with different approaches (i.e. electrometric measurement) might 

be helpful to reveal more details about this unique site of cytochrome bd oxidase in 

proton uptake from cytoplasm. 
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5.5 Figures and tables: 

 

 
 
Figure 5.1 Membrane topology model of subunit I of cytochrome bd oxidase from E. 

coli with S140 and N148 marked out.
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Table 5.1 Summary of the properties of the cytochrome bd S140 and N148 mutants 
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Figure 5.2 Oxidized-minus-reduced FTIR difference spectra of wild type, S140T and 

N148D. 

Both wild type and S140T mutant were grown anaerobically, while N148D was from 
aerobic culture. (Inset) An enlarged look into the region above 1700 cm-1. 
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Figure 5.3 Wild type-minus-S140T double difference spectrum. 

The negative band at 1751 cm-1 and positive band at 1736 cm-1 are assigned to perturbed 
E107, while 1759 cm-1 may come from E99. 
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CHAPTER 6: PROBING A POTENTIAL QUINOL BINDING SITE BY FTIR 

SPECTROSCOPIC STUDY 

 

6.1 Introduction: 

Unlike the majority of the cytochrome oxidases that oxidized cytochrome c, the 

terminal oxidases in E. coli, cytochrome bo3 and cytochrome bd oxidase, accept electrons 

directly from the quinol pool in the membrane. Under different growth conditions, 

different quinine types are found in the membrane of E. coli. Ubiquinone-8 is 

predominately found under aerobic growing conditions, while demethylmenaquinone-8 

and menaquinone-8 are observed at reduced oxygen levels (Hollander 1976; Bentley and 

Meganathan 1987). With the help of crystal structure, combined with site-directed 

mutagenesis work, several residues in cytochrome bo3 have been identified to be 

involved in ubiquinone binding. Among them, the acidic residues serve important roles, 

especially D75, whose protonation has been shown to be directly involved in quinol 

binding (Hellwig, Barquera et al. 2001). 

Compared to the quinone binding work in cytochrome bo3, relatively little 

progress has been made in cytochrome bd, largely due to the lack of a crystal structure. 

As mentioned in previous chapters, limited proteolysis demonstrated that the Q-loop 

between helix VI and VII is somehow critical in quinol binding and oxidation (Lorence, 

Carter et al. 1988). Following the successful path of cytochrome bo3, several highly 

conserved acidic amino acids have been found in or near the Q-loop from over 1000 

sequences, including E257 (Figure 6.1) and D239.  
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FTIR difference spectroscopy of the wild type cytochrome bd has previously 

implicated at least one acidic residue as being involved in quinone binding and more than 

one acidic residue was shown to be perturbed upon reducing the hemes (Zhang, 

Oettmeier et al. 2002; Yamazaki, Kandori et al. 1999). This approach is extended in the 

current work reported in this chapter. FTIR difference spectroscopy of the E257A mutant 

oxidase shows that E257 in the wild type oxidase is not involved in the 

protonated/deprotonated change due to the oxidation/reduction of the metal centers. By 

contrast, E257A mutant appears to be located at or near the quinone binding site, as 

previously proposed (Mogi, Akimoto et al. 2006). 

 

6.2 Materials and methods: 

6.2.1 Strains and plasmids: 

E. coli strain GO105 (cydAB::kan, cyo, recA), which lacks both cytochrome bo3 

and cytochrome bd quinol oxidases (Kaysser, Ghaim et al. 1995) was used as the host 

strain for expressing both the wild type and mutant cytochrome bd on a plasmid. To 

obtain wild type cytochrome bd, plasmid pTK1 (Zuberi 1993) was introduced to the 

strain. This plasmid is a derivative of pBR322 and contains the whole operon of wild type 

bd as well as ampicillin resistance gene for selection. Mutants of cytochrome bd were 

also expressed using this same plasmid system. 

 

6.2.2 Site-directed mutagenesis using Quik-Change method: 

The Stratagene Quik-Change mutagenesis kit was used to construct mutants. 

Plasmid pTK1 was used as template. The oligonucleotide primers were synthesized by 
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Roy J. Carver Biotechnology Center (Urbana, IL) with melting temperature around 80 °C 

based on the Stratagene formula, and were diluted in pure water to 100 ng/µL for Quik-

Change reaction. Thermocyclings were conducted on PTC-100 Programmable Thermal 

Controller (MJ Research Inc.). The protocol was as follows: 95 °C for 1 min, 1 cycle; 18 

cycles of 95 °C for 1 min, 54 °C for 1 min, and 68 °C for 8 min; then 68 °C for 7 min, 1 

cycle. The samples were digested with 1 µL DpnI for 3 ~ 4 hours. All mutants were 

confirmed by DNA sequencing. 

 

6.2.3 Complementation test for the mutant cytochrome bd: 

The complementation test was carried out as follows: Plasmid DNA from 

confirmed mutants was used to transform GO105 using TSS method (Chung, Niemela et 

al. 1989). Cells were grown anaerobically for selection of ampicillin and kanamycin 

resistance. The strains exhibiting both amplicillin and kanamycin resistance were 

restreaked to obtain single colonies, and were grown on M63 (Cohen and Rickenberg 

1956) minimal plates supplemented with 0.3 % lactate and 0.3 % succinate. Also added 

were 100 µg/mL ampicillin and 50 µg/mL kanamycin to maintain the plasmid and the 

strain. Complementation was defined by aerobic growth within 48 ~ 72 hours of 

incubation at 37 °C. 

 

6.2.4 Cell growth and protein sample preparation: 

Large scale cell growth of strains that grow aerobically (i.e. expressing wild type 

or E107D mutant) was carried out in 24 2-liter flasks shaking at 220 rpm 37 °C using two 

Innova 4330 incubator shakers (New Brunswick Scientific). Strains expressing wild type 
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and those inactive mutants, which could not grow aerobically, were grown at the 

Fermentation Facility at the University of Illinois, or the OSU Fermentation Facility at 37 

°C, pH 7, in a 20-liter fermenter using LB containing 100 µg/mL Amp, 50 µg/mL Kan, 

and 0.3 % glucose. Both wild type and mutant cytochrome bd oxidases were purified 

from the membrane of GO105/pTK1 as described previously (Miller and Gennis 1986), 

with the modification that the hydroxyapatite column was omitted. Fractions were 

collected from the Fast-Flow Sepharose DEAE column with an A412/A280 ratio greater 

than 0.5. The pooled fractions were concentrated using an Amicon concentrator with a 50 

kDa molecular weight cut-off filter and then dialyzed three times against 50 mM sodium 

phosphate buffer, pH 7.8, containing 5 mM EDTA, 0.05% N-lauroylsarcosine. Both wild 

type and mutant cytochrome bd samples were then examined, using the same dialysis 

buffer for appropriate dilution unless specified otherwise. 

 

6.2.5 Ubiquinol-1 and TMPD oxidase activity assay: 

Cytochrome bd wild type and mutants were assayed both in isolated membranes, 

in which there is no other quinol oxidase, and with the purified enzyme. For membranes, 

samples were homogenized in 25 mM Tris HCl, 1 mM EDTA disodium salt, pH 7.5. 

Purified protein samples were dialyzed against 50 mM NaPi buffer, pH 7.8, containing 5 

mM EDTA disodium salt and 0.05 % N-lauroyl sarcosine. Various dilutions of either the 

homogenized membrane samples or pure protein samples were added to 1.8 mL of the 

respective buffer containing either 2 mM dithiothreitol or 4 mM ascorbate that had been 

equilibrated to 37 °C in a Clark-type oxygen electrode (Yellow Springs Instrument CO.). 

A baseline was taken and the reaction was initiated by addition of ubiquinol-1 (kindly 
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provided by Hoffman-LaRoche) or TMPD to a final concentration of 245 µM and 1 mM, 

respectively. Activities were determined assuming a value of 237 µM O2 for air-saturated 

buffer at 37 °C. 

 

6.2.6 Heme analysis: 

The heme b contents of both wild type and mutant purified cytochrome bd were 

measured by the pyridine hemochromogen assay, using an extinction coefficient for the 

wavelength pair 556.5−540 nm = 23.98 mM-1 cm-1 (Berry and Trumpower 1987). The 

heme d content was determined from the reduced minus “as isolated” difference spectrum 

with the ∆ε628−607 nm = 10.8 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The 

concentration of the wild type cytochrome bd was determined from the reduced minus as 

isolated difference spectra, using ∆ε560−580 nm = 21.4 mM-1 cm-1 (Tsubaki, Hori et al. 

1995). Since the “as isolated” enzyme contains varying amounts of ferrous heme d-oxy 

complex and oxoferryl heme d species, the heme d content was also determined by the 

absolute spectrum of the fully reduced enzyme, using the extinction coefficient ∆ε628-670 

nm = 25 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). 

 

6.2.7 UV-Vis spectroscopic measurements: 

All the absorbance spectra in the UV-Vis region were obtained with a DW2000 

spectrophotometer (Aminco) using a 1 cm pathlength cuvette. The series of absorbance 

spectra for mid-point potential measurements were taken using UV-2101PC scanning 

spectrophotometer (Shimadzu). 
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6.2.8 Electrochemistry and FTIR difference spectroscopy:  

FTIR difference spectra recorded at 5 °C as a function of applied potential with 

BioRad (now Varian, Inc.) FTS-6000 FTIR. Each FTIR difference spectrum consisted of 

256 intereferograms at 4 cm-1 resolution and approximately 20 spectra were averaged to 

give better signal to noise. Triangular apodization is used for Fourier transformation. 

Equilibration at the applied potential is achieved in less than 10 min. FTIR spectra 

monitored until no change detected. Experimental conditions for bd quinol oxidase and 

electrochemical cell set-up is described in detail previously (Mansfield and Wiggins 1990; 

Mantele 1996). A mixture of 13 different mediators added to 40 µM final concentration 

1,1'-dicarboxylferrocene, dimethylparaphenylendiamine (DMPPD), ferricyanide, 

quinhydrone, tetramethylparaphenylendiamine (TMPPD), tetrachlorobenzoquinone, 2,6-

dichlorophenol indophenol, ruthenium hexamine chloride, 1,2-naphthoquinone, 

menadione, 2-hydroxy-1,4-naphthoquinone, benzyl viologen, methyl viologen. 

 

6.2.9 Sequence analysis and topology model generation: 

The homologous sequences of subunit I of cytochrome bd were kindly provided 

by Dr. James Hemp in Grennis lab, Urbana, University of Illinois. The sequence 

alignment was performed by BioEdit Sequence Alignment Editor Ver.7.0.9.0 (Hall 1999). 

The topology model of subunit I was generated by membrane topology prediction tool 

TMHMM 2.0 program (http://www.cbs.dtu.dk/services/TMHMM/). The graph was 

created by TOPO2 program based on the TMHMM result 

(http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). 
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6.3 Results: 

6.3.1 Complementation test, ubiquinol-1/TMPD activity assay, heme analysis and 

UV-Vis spectra: 

Like most of other mutants at critical sites, the E257A mutant cytochrome bd 

oxidase does not support the aerobic growth on minimal plate. It also lacks ubiquinol 

oxidase activity but retains significant TMPD oxidase activity (Table 6.1). 

Spectroscopically, E257A mutant is similar to the wild type enzyme, indicating no 

perturbation of the heme content.  

 

6.3.2 FTIR spectra of wild type and E257A mutant: 

Data from the Mogi group (Mogi, Akimoto et al. 2006) indicate that E257 is at or 

near the ubiquinol binding site, as one might predict based on its location in the Q-loop. 

For this purpose, the E257A mutant was examined by FTIR spectroscopy. The redox 

difference spectrum, shown in Figure 6.2 is very similar to that of the anaerobically 

grown wild type oxidase in the 1730 cm-1 – 1750 cm-1 region (Zhang, Oettmeier et al. 

2002). Hence, it is concluded that E257 is not contributing to the redox-coupled 

spectroscopic changes. Either E257 is not protonated (i.e., not absorbing in the 1750 cm-1 

region of the spectrum) or, if it is protonated, its environment is not altered by the redox 

changes. 

Previously reported site-directed mutagenesis of E257 has implicated this residue 

as being at or near the quinol binding site (Mogi, Akimoto et al. 2006). The FTIR redox 

difference spectrum (Figure 6.2) shows that the E257A mutant oxidase retains the bound 

quinone, which is primarily menaquinone. This is demonstrated by the presence of the 
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absorption band at 1633 cm-1, which is assigned to the C=O stretch of a bound quinone 

(Zhang, Oettmeier et al. 2002). Another band indicating bound quinone is at 1611 cm-1 is 

present in the E257A mutant spectrum, which is due to C=C mode (Zhang, Oettmeier et 

al. 2002). The 1635 cm-1 and 1611 cm-1 bands are shifted in the E257A mutant spectrum 

to 1633 cm-1 and 1614 cm-1, respectively. Both these shifts may result from a perturbation 

of the bound quinone. With the wild type cytochrome bd, the 1635 cm-1 band is absent 

when the enzyme is bound to the inhibitor aurachin D (Zhang, Oettmeier et al. 2002). 

Presumably, the inhibitor either displaces or alters the binding of the quinone to the 

protein. The same observation has been made with aurachin C 1-10, which is the N-

hydroxy derivative of aurachin D and is somewhat less potent inhibitors of cytochrome 

bd (Miyoshi, Takegami et al. 1999; Meunier, Madgwick et al. 1995). Figure 6.2 shows 

the redox difference spectra of the wild type and the E257A mutant oxidase, in the 

presence and absence of aurachin C 1-10. The 1633 cm-1 band is clearly observed in the 

redox FTIR difference spectrum of the E257A mutant oxidase. This indicates that under 

the conditions of this experiment, the quinine (mainly menaquinone) remains bound to 

the enzyme in the presence of aurachin C 1-10. Under conditions the equivalent band in 

the wild type oxidase is diminished in magnitude, suggesting partial displacement of the 

bound quinone. It is concluded that the either binding of aurachin C 1-10 to the E257A 

mutant oxidase is altered or the effect of the inhibitor binding on the bound quinone is 

altered by the E257A mutation. 
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6.4 Discussion and conclusions: 

Mutations in E257 (E257A and E257Q) have been examined by Japanese group 

(Mogi, Akimoto et al. 2006) and it was concluded that this residue is involved in the 

binding of the substrate ubiquinol. These mutations each result in about a 3 to 4-fold 

increase in the Km of ubiquinol-1. E257A had a Vmax that was about 30% of the wild type 

value, whereas E257Q had a slightly higher Vmax.  

In the current work, the E257A mutant was further examined. Under the 

conditions of our assay, the E257A mutant is inactive with ubiquinol-1 as the substrate, 

and the heme content is normal. The FTIR redox difference spectrum (Figure 6.2) is 

similar to that of the wild type enzyme isolated from anaerobically grown cells. In 

particular, in the region around 1750 cm-1, the similarity indicates that E257 is not 

contributing to the spectroscopic perturbations due to the oxidation/reduction of the metal 

centers. Hence, E257 can be ruled out as the acidic residue whose protonation state is 

altered depending on whether ubiquinone or menaquinone is bound to the protein. 

In addition, the FTIR redox difference spectrum of the E257A mutant shows that 

quinone remains bound to the protein. Hence, the loss of function is not due to the 

elimination of the bound quinone (primarily menaquinone). The data from Mogi et al 

show that E257 is not essential for the interaction of the enzyme with ubiquinol-1, 

although mutants do increase the Km by several folds. In the experiments reported here, 

the presence of endogenous quinone, mostly menaquinone-8, is reported. The E257A 

mutant may alter the way in which the quinone binds to the protein and reduce the rate of 

catalysis. Under our assay conditions (100 µM ubiquinol-1) we have virtually no oxidase 

activity. Using the values reported for the Vmax and Km by Mogi et al (2006) we would 
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expect about 5% of the oxidase activity compared to the wild type. The reason for the 

discrepancy, which may be insignificant, will require further investigation. 

Figure 6.2 also shows the FTIR redox difference spectrum of the E257A mutant 

in the presence of aurachin C 1-10. The 1633 cm-1 band is not eliminated by aurachin C 

1-10, indicating that either aurachin C 1-10 is not binding under the conditions of the 

experiment or the binding is perturbed in such a way that the bound quinone is not 

displaced. With the wild type oxidase, aurachin C 1-10 under the same conditions results 

in a spectrum in which the 1633 cm-1 band is not present (Figure 6.2). Mogi et al have 

shown that the binding of aurachin D to the E257A mutant is not abolished but is 

perturbed and the data in Figure 6.2 are consistent with this result. Hence, E257 may 

retain its candidacy as part of the quinol binding motif in cytochrome bd oxidase. 
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6.5 Figures and tables: 

 

 
 
Figure 6.1 Membrane topology model of subunit I of cytochrome bd oxidase from E. 

coli with E257 marked out.
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Table 6.1 Summary of the properties of the cytochrome bd E257 mutants 
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Figure 6.2 Oxidized-mius-reduced FTIR difference spectra of the wild type and 

E257A mutant of cytochrome bd (+708 mV to -292 mV vs. SHE) with and without 

the inhibitor aurachin C 1-10.  

The 1635 cm-1
 band in the spectrum of the wild type oxidase is from the bound quinone. 

This is shifted to 1633 cm-1 in the mutant, showing that the quinone remains bound to the 
E257A mutant oxidase, though there is a perturbation of this C=O mode.. In the presence 
of aurachin C 1-10, the band is significantly reduced in intensity, in the wild type oxidase, 
but is not altered in the E257A mutant. Hence, aurachin 1-10 does not displace the bound 
quinone. The strong negative features at about 1583 and 1410 cm-1

 are often observed 
with mutants of cytochrome bd.  
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CHAPTER 7: SITE-DIRECTED MUTATION OF AN HIGHLY CONSERVED 

ACIDIC RESIDUE PERTURBS QUINONE BINDING AND HEME 

B595 PROPERTIES 

 

7.1 Introduction: 

The FTIR study reported in the last chapter confirmed the importance of E257 in 

the quinone binding in cytochrome bd oxidase. Although it may not participate the quinol 

/ enzyme interaction directly as the binding site, E257 is critical to maintain the binding 

pocket functional. Hence, the search for the quinol binding site in cytochrome bd oxidase 

is still open to other candidates. As mentioned previously, the hydrophilic Q-loop 

between helix VI and VII is involved in quinol binding and oxidation (Lorence, Carter et 

al. 1988). Other than E257, which is located right in the Q-loop, D239, another strictly 

conserved acidic residue, is also close to this region (Figure 7.1). Sitting at the interface 

of membrane and periplasm, this amino acid from the N-terminus of Q-loop could be an 

even better binding site for the quinol from the “quinol pool” in the membrane. 

In this chapter, two mutations have been made at D239 site, D239A and D239N. 

While losing their ubiquinol oxidase activity as expected, both of them exhibited 

unusually high TMPD oxidase activity. Redox titration demonstrated that one of the 

mutant, D239N, perturbed the midpoint redox potential (Em) of all the heme groups in a 

manner of making the Em of heme b595 the highest among three. Instead of FTIR, 

Stopped-Flow was introduced in this study to help us get a better vision in terms of the 

role of heme b595 in rapid enzyme turnover as well as quinol binding. Based on the data, a 
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plausible new intermediate has been introduced in the modified catalysis model of 

cytochrome bd oxidase (Yang, Borisov et al. 2008).  

 

7.2 Materials and methods: 

7.2.1 Strains and plasmids: 

E. coli strain GO105 (cydAB::kan, cyo, recA), which lacks both cytochrome bo3 

and cytochrome bd quinol oxidases (Kaysser, Ghaim et al. 1995) was used as the host 

strain for expressing both the wild type and mutant cytochrome bd on a plasmid. To 

obtain wild type cytochrome bd, plasmid pTK1 (Zuberi 1993) was introduced to the 

strain. This plasmid is a derivative of pBR322 and contains the whole operon of wild type 

bd as well as ampicillin resistance gene for selection. Mutants of cytochrome bd were 

also expressed using this same plasmid system. 

 

7.2.2 Site-directed mutagenesis using Quik-Change method: 

The Stratagene Quik-Change mutagenesis kit was used to construct mutants. 

Plasmid pTK1 was used as template. The oligonucleotide primers were synthesized by 

Roy J. Carver Biotechnology Center (Urbana, IL) with melting temperature around 80 °C 

based on the Stratagene formula, and were diluted in pure water to 100 ng/µL for Quik-

Change reaction. Thermocyclings were conducted on PTC-100 Programmable Thermal 

Controller (MJ Research Inc.). The protocol was as follows: 95 °C for 1 min, 1 cycle; 18 

cycles of 95 °C for 1 min, 54 °C for 1 min, and 68 °C for 8 min; then 68 °C for 7 min, 1 

cycle. The samples were digested with 1 µL DpnI for 3 ~ 4 hours. All mutants were 

confirmed by DNA sequencing. 
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7.2.3 Complementation test for the mutant cytochrome bd: 

The complementation test was carried out as follows: Plasmid DNA from 

confirmed mutants was used to transform GO105 using TSS method (Chung, Niemela et 

al. 1989). Cells were grown anaerobically for selection of ampicillin and kanamycin 

resistance. The strains exhibiting both amplicillin and kanamycin resistance were 

restreaked to obtain single colonies, and were grown on M63 (Cohen and Rickenberg 

1956) minimal plates supplemented with 0.3 % lactate and 0.3 % succinate. Also added 

were 100 µg/mL ampicillin and 50 µg/mL kanamycin to maintain the plasmid and the 

strain. Complementation was defined by aerobic growth within 48 ~ 72 hours of 

incubation at 37 °C. 

 

7.2.4 Cell growth and protein sample preparation: 

Large scale cell growth of strains that grow aerobically (i.e. expressing wild type 

or E107D mutant) was carried out in 24 2-liter flasks shaking at 220 rpm 37 °C using two 

Innova 4330 incubator shakers (New Brunswick Scientific). Strains expressing wild type 

and those inactive mutants, which could not grow aerobically, were grown at the 

Fermentation Facility at the University of Illinois, or the OSU Fermentation Facility at 37 

°C, pH 7, in a 20-liter fermenter using LB containing 100 µg/mL Amp, 50 µg/mL Kan, 

and 0.3 % glucose. Both wild type and mutant cytochrome bd oxidases were purified 

from the membrane of GO105/pTK1 as described previously (Miller and Gennis 1986), 

with the modification that the hydroxyapatite column was omitted. Fractions were 

collected from the Fast-Flow Sepharose DEAE column with an A412/A280 ratio greater 

than 0.5. The pooled fractions were concentrated using an Amicon concentrator with a 50 
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kDa molecular weight cut-off filter and then dialyzed three times against 50 mM sodium 

phosphate buffer, pH 7.8, containing 5 mM EDTA, 0.05% N-lauroylsarcosine. Both wild 

type and mutant cytochrome bd samples were then examined, using the same dialysis 

buffer for appropriate dilution unless specified otherwise. 

 

7.2.5 Ubiquinol-1 and TMPD oxidase activity assay: 

Cytochrome bd wild type and mutants were assayed both in isolated membranes, 

in which there is no other quinol oxidase, and with the purified enzyme. For membranes, 

samples were homogenized in 25 mM Tris HCl, 1 mM EDTA disodium salt, pH 7.5. 

Purified protein samples were dialyzed against 50 mM NaPi buffer, pH 7.8, containing 5 

mM EDTA disodium salt and 0.05 % N-lauroyl sarcosine. Various dilutions of either the 

homogenized membrane samples or pure protein samples were added to 1.8 mL of the 

respective buffer containing either 2 mM dithiothreitol or 4 mM ascorbate that had been 

equilibrated to 37 °C in a Clark-type oxygen electrode (Yellow Springs Instrument CO.). 

A baseline was taken and the reaction was initiated by addition of ubiquinol-1 (kindly 

provided by Hoffman-LaRoche) or TMPD to a final concentration of 245 µM and 1 mM, 

respectively. Activities were determined assuming a value of 237 µM O2 for air-saturated 

buffer at 37 °C. 

 

7.2.6 Heme analysis: 

The heme b contents of both wild type and mutant purified cytochrome bd were 

measured by the pyridine hemochromogen assay, using an extinction coefficient for the 

wavelength pair 556.5 − 540 nm = 23.98 mM-1 cm-1 (Berry and Trumpower 1987). The 
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heme d content was determined from the reduced minus “as isolated” difference spectrum 

with the ∆ε628−607 nm = 10.8 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). The 

concentration of the wild type cytochrome bd was determined from the reduced minus as 

isolated difference spectra, using ∆ε560−580 nm = 21.4 mM-1 cm-1 (Tsubaki, Hori et al. 

1995). Since the “as isolated” enzyme contains varying amounts of ferrous heme d-oxy 

complex and oxoferryl heme d species, the heme d content was also determined by the 

absolute spectrum of the fully reduced enzyme, using the extinction coefficient ∆ε628-670 

nm = 25 mM-1 cm-1 (Borisov, Arutyunyan et al. 1999). 

 

7.2.7 UV-Vis spectroscopic measurements: 

All the absorbance spectra in the UV-Vis region were obtained with a DW2000 

spectrophotometer (Aminco) using a 1 cm pathlength cuvette. The series of absorbance 

spectra for mid-point potential measurements were taken using UV-2101PC scanning 

spectrophotometer (Shimadzu). 

 

7.2.8 Redox titration of wild type cytochrome bd and D239 mutants: 

Both wild type and D239 mutant cytochrome bd samples were prepared as 

described in above. The redox titration was carried out using the ultra-thin layer 

spectroelectrochemical cell for UV-Vis spectroscopy as previously described (Mansfield 

and Wiggins 1990; Mantele 1996) and kindly provided by Dr. Werner Mantele 

(University of Frankfurt, Germany). The gold-grid working electrode was chemically 

modified by 2 mM cysteamine solution as reported before (Hellwig, Behr et al. 1998) to a 

total concentration of 40 µM each. At this concentration and with the pathlength below 



 

109 

10 µm, no spectral contribution from the mediators in the visble region could be detected 

in the control experiment with samples lacking the protein. As a supporting electrolyte, 

100 mM KCl was added. Approximately 10 ~ 15 µL of protein samples were added to fill 

the spectroelectrochemical cell. Absorbance changes were monitored at multiple 

wavelengths using a UVPC-2101 spectrophotometer (Shimadzu). The equilibration time 

took was less than 10 min under the conditions as described above. Redox titrations were 

performed by stepwise setting the potential and recording the spectrum after sufficient 

equilibration. All measurements were obtained at 5 °C and were repeated at least twice. 

The absorbance change at 628 nm was used for generating the heme d titration curve, 

both 440 nm and 595 nm were used for generating the heme b595 titration curve, and both 

428 nm and 560 nm were used for generating the heme b558 tiration curve. The midpoint 

potentials (Em) were obtained by interactive fitting to a Nernst equation using the 

program offered by Origin (Microcal). 

 

7.2.9 Stopped-Flow spectroscopic and kinetic measurements:   

All the work was performed at 20 ˚C using an Applied Photophysics model SX 

with a photodiode array detector as well as single-wavelength detection. The flow system 

was flushed thoroughly with Argon-saturated buffer (50 mM sodium phosphate, 5 mM 

EDTA and 0.05% N-lauroylsarcosine, pH 7.8) before the experiments. The whole system 

was kept anaerobic by flowing Argon during the experiments. The mixing ratio of the 

two solutions being mixed was all 1:1. For all experiments reported, at least three runs 

were performed for each time scale ranging from 2 s to 1 min, and 1600 spectra were 
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collected from 300 nm to 1200 nm. All concentrations reported are the initial 

concentrations before mixing.  

Since each species of heme d in the catalytic cycle of cytochrome bd have been 

characterized optically, the formation and the decay of the heme d species can be 

monitored spectrophotometrically. The reduction by ubiquinol of the "as isolated" 

enzyme was carried out by generated the "as isolated" enzyme in situ. This was done by 

typically starting with one solution containing 5 µM enzymes with an excess 

concentration of 200 µM ubiquinone and 6 mM DTT in Argon-saturated buffer (50 mM 

sodium phosphate, 5 mM EDTA disodium salt and 0.05% N-lauroyl sarcosine, pH 7.8). 

This solution was rapidly mixed with an equal volume of a solution containing 

approximately 5 µM O2 in the same buffer.  The conditions were adjusted so that the O2 

rapidly oxidized the enzyme which was then, in turn, reduced by the excess ubiquinol-1 

that was present.  The oxidation reaction was too fast to resolve but most of the reduction 

was monitored to obtain rate constants. Spectroscopic analysis of the product of the 

reaction of O2 with the reduced enzyme showed that it contained approximately 80% 

oxoferryl and 20% ferrous-oxy complex. 

To investigate the inhibition of D239N mutant cytochrome bd by aurachin C 1-10, 

5 µM enzymes was incubated with 1 µM aurachin C 1-10 for 10 minutes in Argon-

saturated buffer (50 mM sodium phosphate, 5 mM EDTA and 0.05 % N-lauroyl 

sarcosine, pH 7.8) before mixing with oxygen-limited buffer. 
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7.2.10 Data analysis: 

The data were first analyzed with the use of Pro-Kineticist software package 

“ProK for PC” (Applied Photophysics) and selected data were imported into Origin 7 

(Microcal) for further analysis and preparation of the figures. 

 

7.2.11 Sequence analysis and topology model generation: 

The homologous sequences of subunit I of cytochrome bd were kindly provided 

by Dr. James Hemp in Grennis lab, Urbana, University of Illinois. The sequence 

alignment was performed by BioEdit Sequence Alignment Editor Ver.7.0.9.0 (Hall 1999). 

The topology model of subunit I was generated by membrane topology prediction tool 

TMHMM 2.0 program (http://www.cbs.dtu.dk/services/TMHMM/). The graph was 

created by TOPO2 program based on the TMHMM result 

(http://www.sacs.ucsf.edu/TOPO-run/wtopo.pl). 

 

7.3 Results: 

7.3.1 Complementation test, heme analysis and ubiquinol-1/TMPD oxidase activity: 

D239 was replaced by both alanine and by asparagine (Table 7.1). Neither the 

D239A nor D239N mutants support the aerobic cell growth. The UV-visible spectra of 

both purified mutants are similar to the wild type, indicating no impact on the heme 

content. This is double confirmed by heme analysis. Both D239A and D239N show no 

ubiquinol oxidase activity. Considering the location of D239, which is near the Q-loop 

interface with the membrane (Figure 7.1), it suggests a plausible perturbation at the 

ubiquinol binding site. Despite losing ubiquinol oxidase activity, D239 mutants have 
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better TMPD oxidase activity, especially D239A, which is three times more active than 

wild type. This indicates an intact and fully, if not better, functional heme b595 and heme 

d bi-nuclear center.  

 

7.3.2 Electrochemical measurement of the heme mid-point potentials: 

The midpoint potentials of three hemes were determined for the D239N mutant 

and compared to those of the wild type. The results show a large decrease in the midpoint 

potential heme d from the wild type value of 240 mV (vs. NHE) to 100 mV, which also 

leads to a relative higher midpoint potential heme b595 value of 154 mV compared to that 

of heme d from the D239N mutant (Table 7.1). 

 

7.3.3 Fast kinetics of D239N mutant by Stopped-Flow: 

Figure 7.2 shows the time course of D239N mutant hemes b and heme d 

absorbance changes in 2 seconds as well as those of wild type cytochorme bd. An 

extremely slow tail of D239N hemes b oxidation was observed in the first 0.7 second 

(Figure 7.2, right panel), indicating the perturbation of quinol binding site caused by 

this mutation. The D239N mutant also showed slow re-reduction of hemes b (Figure 7.2, 

right panel) and heme d (Figure 7.2, left panel), which support our interpretation as 

well.  

A positive control has been done by adding aurachin C 1-10, a strong quinol 

binding site inhibitor, to fully reduced wild type cytochrome bd enzyme. Figure 7.3 

shows the comparison between the control and D239N mutant. A 10-minute incubation 

with aurachin C 1-10 before mixing resulted in slow re-reduction of both hemes b 



 

113 

(Figure 7.3, right panel, black) and heme d (Figure 7.3, left panel, black). No slow 

oxidation of hemes b similar to the D239N mutant (Figure 7.3, right panel, red) has 

been observed in the control. Moreover, the heme d in the control showed a slightly faster 

re-reduction rate than that of D239N mutant (Figure 7.3, left panel, red). These 

differences between D239N and control indicate that more damage on the catalytic cycle 

has been caused by the mutant other than just blocking the quinol binding site.  

Figure 7.4 shows the first spectrum after mixing fully reduced D239N with 

oxygen taken at 0.6 ms. The peak at 562 nm and 628 nm as well as the shoulder at 680 

nm indicate a mixture of reduced hemes b, reduced heme d and oxoferryl heme d. The 

development of optical changes at 650 nm during the first 10 ms of the reaction (Figure 

7.5) also indicates the formation of ferrous oxy (A) complex. Thus, the mixture right after 

mixing could consists of oxoferryl (F), ferrous oxy (A) and reduced (R) enzymes. 

 

7.4 Discussion and conclusions: 

D239 and Quinol Binding Site. Although D239 is not totally conserved in over 

1000 sequences we have examined, this aspartate is completely conserved within the 

family of bd-type oxidases with the “long Q-loop”. This large hydrophilic loop between 

transmembrane Helix VI and VII in the periplasmic side has been shown to play an 

important role in quinol binding. The highly conserved D239 is located at the N-terminus 

of the Q-loop, which makes it a potential candidate of quinol binding site. Both the 

D239A and D239N mutants lack ubiquinol oxidase activity, but exhibit high TMPD 

oxidase activity. During further investigation of D239N mutant oxidase by oxidation / re-

reduction assay, both slow oxidation and re-reduction of hemes b are observed, indicating 
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a perturbation at the quinol binding site by the mutation. However, due to the lack of 

crystal structure of cytochrome bd oxidase, whether D239 is the quinol binding site or 

just part of it requires further investigation.   

Role of Heme b595. The role of heme b595 in the catalysis is not fully understood, 

but there is evidence that it may form a bi-nuclear center together with heme d, to 

facilitate the oxygen reduction. Based on current thinking of the electron transfer 

pathway in cytochrome bd, electrons provided by quinol enter the enzyme by first 

passing heme b558, then go through heme b595, and eventually arrive at heme d to reduce 

the bound oxygen to water. As an evidence, the midpoint potentials of three hemes in 

wild type increase in the order of heme b558, heme b595 and heme d. In D239N mutant 

oxidase, the midpoint potentials of all the hemes are substantially reduced by the 

mutation. Moreover, in the mutant, heme b595 has the highest midpoint potential.  

In the early stage (0.6 ms) of the oxidation / re-reduction assay of D239N, we find 

the solution after mixing consists of small amount of reduced hemes b and reduced heme 

d as well as large portion of oxoferryl heme d (Figure 7.4, inset). According to current 

reaction scheme (Figure 7.6), oxoferryl heme d corresponds to F state enzyme, but 

reduced heme d can come from either R1 or R3 states. The quantification of the mixture 

shows more reduced hemes b than heme d in a 2 to 1 ratio (15% vs. 8%). Thus, in our 

first hypothesis, reduced heme d in the solution reflects the presence of R3 state enzyme, 

indicating some fully reduced enzyme has not yet reacted with oxygen even at 0.6ms 

after mixing. To explain the presence of R3 state enzyme, there are three possibilities: i) 

there is not enough oxygen; ii) there is enough oxygen, but the reaction is too fast, so the 

R3 state enzyme is the product of re-reduction; iii) there is enough oxygen, but the 
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reaction is too slow, some R3 state enzyme is still waiting to be oxidized. Based on the 

spectra change in the first 10ms (Figure 7.5), the increasing peak at 650nm indicates the 

formation of ferrous oxy (A) state enzyme or, A3 state specifically, which is consistent 

with the oxidation of D239N heme d in the first 10ms (Figure 7.2, right panel). Thus, 

the third assumption should be correct, and at 0.6ms, there are R3, A3 and F state 

enzymes in the mixture, even though we cannot rule out the possible presence of peroxy 

(P) state due to the limitation of our instrument. All of these above seem to be a 

reasonable scenario that can justify itself, but it’s not likely to be the truth. 

Based on Figure 7.5, the formation of ferrous oxy state indicates excess amount 

of oxygen in the system. As we know in the activity assay, D239 mutants show even 

superior TMPD oxidase activity to wild type, which indicates no effect on the oxygen 

affinity of the bi-nuclear center. In other words, the abnormal high midpoint potential of 

heme b595 does not impair the oxygen binding ability of heme d, at least, when the 

enzyme is fully reduced. The fully reduced (R3) enzyme would be converted to A3 state 

in no time whenever there is oxygen. So, in our alternative hypothesis, the reduced heme 

d observed in Figure 7.4 can only come from R1 state enzyme. 

In normal catalysis of wild type cytochrome bd oxidase (Figure 7.6), the two-

electron reduction of oxoferryl (F) species generates R1 state having reduced heme d and 

leaving both hemes b oxidized due to the highest midpoint potential of heme d. While in 

the D239N mutant, higher midpoint potential of heme b595 makes a relatively stable 

transition state, Rb possible, which has reduced heme b595 and oxidized heme d (Figure 

7.7). In this new model, one-quinol reduction of F state results in a mixture of more Rb 

and less R1 states at equilibrium below:  
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b558
+3

b595
+2

d
+3 ↔ b558

+3
b595

+3
d

+2     (1) 

 

b558
+3b595

+3d+2 → b558
+3b595

+3d+2 = O2     (2) 

 

b558
+3

b595
+3

d
+2 = O2 + QH2 → b558

+2
b595

+2
d

+2 = O2   (3) 

 

The existence of Rb state is usually covered either by fast reduction like in Figure 

7.2 (right panel) or by fast oxidation, like the plateau of aurachin C 1-10 inhibited wild 

type bd curve in Figure 7.3 (right panel, red). In our D239N mutant, on one hand, the 

impaired quinol binding ability slows down the reduction of oxoferryl enzyme; on the 

other hand, higher midpoint potential pushes the equilibrium (1) to the left and prevents 

fast decay of Rb state. The comprehensive consequence is the slow oxidation of hemes b 

in Figure 7.3 (right panel) until oxygen is out at around 0.7 second. 

The reaction curve of heme d in Figure 7.3 (left panel) and the formation of 

ferrous oxy enzyme in Figure 7.5 can also be explained by our new hypothesis. The 

significant amount of reduced heme d at 0.6 ms observed from spectrum in Figure 7.4 

indicates an impaired oxygen affinity. Under the double effect of lower oxygen binding 

ability and more difficult quinol binding (reaction (3)), R1 state enzyme accumulated in a 

short time and consequently accelerated reaction (2), which resulted in decline of reduced 

heme d (the first 10 ms in Figure 7.3, left panel) is the tail of this process). The 

consumption of previous accumulated R1 state enzyme caused by reaction (2) further 

forced the equilibrium (1) shifted to the right until the whole system achieved a new 
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equilibrium eventually (see the relatively flat part of the curve, or Phase I, in Figure 7.3, 

left panel). 

The mutations at D239 impair the quinol binding ability. D239N, one of the mutants, 

further perturbs the rapid catalysis by increasing the midpoint potential of heme b595, 

confirms its importance in the internal electron transfer pathway, and also implies a role 

of heme b595 in the oxygen affinity regulation. Details of this regulation require further 

investigation. 
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7.5 Figures and tables: 

 

 
Figure 7.1 Membrane topology model of subunit I of cytochrome bd oxidase from E. 

coli with D239 marked out. 
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Table 7.1 Summary of the properties of the cytochrome bd D239 mutants 
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Figure 7.4 Spectrum at 0.6 ms after mixing fully reduced D239N mutant enzyme 

plus excess ubiquinol with oxygen.  
Absorptions at 560, 628 and 680 indicate a mixture of reduced hemes b, reduced and 
oxoferryl hemes d at 0.6 ms after mixing.
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Figure 7.5 Spectra change in early stages of reaction. 

From the absorbance time wavelength surface of optical changes, selected spectra taken 
from 0 to 10 ms are shown, in 0.6 ms increments. The direction of signal development in 
time is indicated by arrows (Green: 560 nm, 628 nm; Red: 650 nm). 
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Figure 7.6 Reaction schemes of wild type cytochrome bd.  

The three rhombuses represent hemes b558, b595 and d, respectively. The Roman numeral 
denotes the charge of each heme. Catalytic cycle is connected by solid arrows while the 
dashed ones refer to the non-catalytic intermediates introduced in the experiment.  
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Figure 7.7 Plausible reaction schemes of D239 mutant cytochrome bd.  

The three rhombuses represent hemes b558, b595 and d, respectively. The Roman numeral 
denotes the charge of each heme. Catalytic cycle is connected by solid arrows while the 
dashed ones refer to the non-catalytic intermediates introduced in the experiment.  
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CHAPTER 8: CONCLUSIONS 

 

Cytochrome bd quinol oxidase is a unique respiratory terminal oxidase in many 

ways. Being the only well-studied representative in the tri-heme oxidase family, 

cytochrome bd oxidase is optimally expressed under microaerobic growth condition. Two 

hemes, instead of one heme and one copper ion, comprise the binuclear reaction center 

where oxygen molecule is reduced to water. Besides the difference in structure, 

cytochrome bd does not function as a proton pump, which is one of the most 

characteristic features in heme-copper oxidase superfamily. The high tolerance of 

cyanide inhibition also distinguishes cytochrome bd from other terminal oxidases. It has 

been nearly thirty years since cytochrome bd oxidase has been discovered. Although 

many properties of this enzyme have been well characterized, there are still more hiding 

behind the curtain, such as its X-ray structure, the ligand of heme d, the role of heme b595, 

the substrate binding site, and the in-membrane electron / proton transfer. In this 

dissertation, some of those questions above have been addressed based on my Ph.D. work. 

All the results are summarized in this chapter as well as their potential influence on the 

future research of cytochrome bd oxidase. 

Cytochrome bd catalyzes the two-electron oxidation of ubiquinol or menaquinol 

and the four-electron reduction of oxygen to water under different growth conditions. 

Other than the recently observed peroxy complex (Fe3+–OOH), four different states of 

heme d have been well characterized spectroscopically: fully oxidized ferric form (Fe3+), 

fully reduced ferrous form (Fe2+), one-oxygen-bound ferrous-oxy complex (Fe2+–O2), and 

the oxoferryl form (Fe4+=O2-). In previous studies, people have been questioned the 
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presence of either all-ferric form or ferrous-oxy complex in the rapid turnover of the 

enzyme. In my work, the rates of reduction of fully oxidized and oxoferryl forms of 

cytochrome bd by ubiquinol-1 and TMPD have been measured by Stopped-Flow 

techniques. My data pointed out that reduction of all-ferric form enzyme is too slow to be 

considered as one step in the catalytic cycle, whereas the observed rates of reduction of 

the oxoferryl form and ferrous-oxy complex of cytochrome bd are consistent with the 

catalytic turnover. Based on the observations, we established a new model of the catalytic 

cycle which does not include all-ferric form of the enzyme as an intermediate.  This is 

also the first successful intention of using ubiquinol as substrate of cytochrome bd 

oxidase in the fast kinetics study, which could profoundly change the future experiment 

design. 

A re-visit of a previous reported mutant, E445A, uncovered the dithionite-

resistant heme b595 caused by the mutation and revealed the critical role of heme b595 in 

the enzyme catalysis. Electrometric and time-resolved optical studies preferred a new 

hypothetic model of electron-proton coupling within the enzyme, indicating a “must-

exist” proton uptake pathway with conveying proton from cytoplasm to the heme b595 / 

heme d binuclear center. Couple of protonatable groups has been adding to the model and 

postulated to be part of the proton channel. 

Benefited from the increasing database of available cytochorme bd oxidase 

sequences, many highly conserved residues have been identified and mapped out on the 

two-dimensional topology. Due to the limit knowledge on the crystal structure, site-

directed mutagenesis has been and will still be a powerful tool for us in the foreseeable 

future studies on cytochrome bd oxidase. Two highly conserved acidic residues, E99 and 
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E107, have been intensively studied by mutagenesis due to their unique locations in the 

transmembrane helices, where are also close to the proposed active site near the 

periplasmic side of membrane. Although most of the mutations severely destabilized the 

di-heme center, we managed to obtain sharp FTIR redox difference spectra from mutant 

E107Q. The comparison study with wild type and E107Q assigned the absorption bands 

from the COOH group of E107 at 1753 and 1738 cm-1, showing that E107 is protonated 

at pH 7.6, and that that it is perturbed by the reduction of the heme b595 / heme d 

binuclear center at the active site.  Regarding the FTIR results and close proximity of 

both E99 and E107 to heme d, they are promising candidates for the protonatable groups 

mentioned in E445 study. However, their exact roles in the proton translocation require 

further investigation. 

As the last part of this proton channel trilogy, two highly conserved non-acidic 

residues, S140 and N148, have also been discovered and studied by mutagenesis. Despite 

of N148 mutants’ wild type features, mutations at S140 results in ubiquinol oxidase 

activity loss as well as perturbation on the active site. One of the two TMPD active 

mutants, S140T, was examined by FTIR spectroscopy and found to be involved in the 

proton uptake by affecting the protonation states of E107 and other unknown COOH 

group (probably E99). The structural and catalytic importance of S140 is waiting for 

more details from other approaches, like electrometric measurement and Flow-Flash. 

Probing the quinone binding site of cytochrome bd quinol oxidase is always one 

of the best interests in research on this enzyme. A combined experiment with strong 

binding site inhibitor, aurachin C 1-10, by FTIR studies, suggested that E257, a strictly 

conserved amino acid in Q-loop, could contribute to the quinol binding. It’s not likely to 
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be the direct binding site of substrate, but rather control the bound quinone release after 

oxidation reaction. 

D239, another conserved residue at the very beginning of the N-terminus of Q-

loop, may also play an important role in the quinol binding business based on the kinetics 

study of its mutants with stopped-flow techniques. More interestingly, other than quinol 

binding, D239N perturbs the midpoint potentials of heme groups and makes the heme 

b595 having the highest midpoint potential of three. Global analysis of the data gave the 

possibility of a new sub-intermediate in the catalytic cycle, whose existence calls for 

more experimental data support. 

In summary, my work has demonstrated that the fully oxidized form of 

cytochrome bd oxidase does not participate in the rapid catalysis. Several critical sites 

have been identified as part of the plausible proton translocation pathway based on a 

novel hypothesis. Two acidic residues may involve in quinone binding mechanism, 

which requires further study. Fast mixing techniques, such as stopped-flow and flow-

flash, as well as time-resolved electrometrics, were introduced in the kinetics study. FTIR 

spectroscopy together with electrochemical control has been proven to be extremely 

powerful in probing the proton channel within cytochrome bd quinol oxidase, and it will 

be of continued use in the research on other respiratory complexes. 
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LIST OF SYMBOLS AND ABBREVIATIONS 

 

Amp                 ampicillin 

AmpR / AmpS       ampicillin resistant / sensitive 

Ag / AgCl                 silver-silver chloride electrode 

AP                      alkaline phosphatase 

Asc                  ascorbate 

as iso            as isolated state, air-oxidized state 

ATP                   adenosine triphosphate 

BCA             Bicinchoninic Acid 

BQCl4                                                                                             tetrachlorobenzoquinone 

°C         temperature in Celsius 

CCD         charge coupled device 

CO                 carbon monoxide 

CN-                     cyanide 

Cytochrome bd, cyt bd               cytochrome bd quinol oxidase 

D2O                             deuterium water 

DMK                   demethylmenaquinone 

DTT             dithiothreitol 

DEAE               diethylaminoethyl 

e                     electron 

Em               midpoint potential 

E.coli                  Escherichia coli 

EDTA                           ethylenediaminetetraacetic acid 

ENDOR           electron nuclear double resonance 



 

131 

EPR              electron paramagnetic resonance 

Fe                iron 

Ferryl                     iron (IV) 

FTIR              Fourier transform infrared spectroscopy 

g-value                        gyromagnetic ratio 

GHz                   gigahertz 

H+            proton 

HPLC            high performance liquid chromatography 

HQNO               2-n-heptyl-4-hydroxquinoline-N-oxide 

i.d.                 internal diameter 

K                    temperature in Kelvin 

Kan                kanamycin 

kD                  kilodalton 

KHz                   kilohertz 

Ki               inhibition constant 

KPi                      potassium phosphate 

LB                          Luria broth 

M             molar 

Min           minute 

MQ            menaquinone 

mL                    milliliter 

mM                 millimolar 

mW                   milliwatt 

µM               micromolar 

µL                  microliter 
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nm                 nanometer 

NaCl                   sodium chloride 

NaPi                sodium phosphate 

NMR           nuclear magnetic resonance 

NPP          nitrophenylphosphate 

O.D.                     optical density 

ONPG           ortho-nitrophenyl-β-D-galactopyranoside 

ox                    oxidized 

Oxy                         oxygenated species 

PCR                         polymerase chain reaction 

PMS                  phenazine methosulfate 

PMSF        phenylmethylsulfonylfluoride 

RR, rR                resonance Raman spectroscopy 

red                     reduced 

TMPD               N, N, N’, N’-tetramethyl-p-phenylenediamine 

Tris           tris[hydroxymethyl]aminomethane 

UQ1                       ubiquinone-1 

UQ1H2               ubiquinol-1 

UV-Vis               ultraviolet-visible 

WT, wt                             wild type 
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