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Abstract of thesis entitled: 

Finitism and the Cantorian Theory of Numbers 

Submitted by LIE Nga-Sze 

for the degree of Master of Philosophy 

at The Chinese University of Hong Kong in June 2008 

This thesis examines finitism and the Cantorian theory of numbers. It gives an 

overview of relevant mathematical philosophies, in particular the finitistic controversy, 

and then presents Cantor's transfinite theory and the three principles behind his 

transfinite theory, namely the domain principle, the enumeral principle, and the 

abstraction principle. In presenting the principles various objections specific to the 

principles are raised. The major arguments against Cantor's theory—arguments 

relating to the endorsement of free mathematics, the use of non-constructive proof, the 

need to justify his weak reductionism, the existence of non-Cantorian sets, intension 

in an extensional theory, and tension of increasable infinity with absolute infinity, are 

made after this. 

本論文論述有限主義和康托數論。第一部份簡介相關數學哲學學派和分類，包括 

有限主義論爭。第二部份介紹康托的超限數論及其背後的三個原則：定義域原 

則、序次原則和抽象原則；介紹這三個原則的同時亦指出各原則的缺失。最後一 

部份提出反對康托數論的六個理由：自由數學的不穩、非構造性證明的可質疑 

性、弱還原主義的問題、非康托集的存在、外延理論中內涵的使用、可增無限與 

絕對無限的理論衝突。 
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Chapter 1 

Introduction and Preliminary 

Discussions 

1.1 Introduction 

In 1925, Hilbert says before a congress of the Westphalian Math-

ematical Society that 

Disputes about the foundations of analysis] have 

not terminated because the meaning of the infinite, as 

that concept is used in mathematics, has never been 

completely clarifiied. [38, p.134 

Despite this the situation has not been much improved since. 

The concept of the infinite is what we will be concerned with in 

this paper. 

The problems we are interested in are simple to state, though 

perhaps not as simple to make clear: what are infinite numbers, 

and should or should not they be allowed? And, on a higher 

level, what do comparisons of infinities mean, and should or 

should these be allowed? Why, and why not? The philosophical 

school prohibiting both is known as finitism. Thus in this paper 

finitism will be one of our foci. 

Historically speaking, finitism had not really been a philo-

sophical school until Cantor published his epoch-making papers, 

1 
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for before that there was no finitism because there was nothing 

as clear and as definite as Cantor's theory to oppose to. For a 

historical account of related developments, the reader is referred 

to Section 3.0.1 of this thesis and to Tiles [67:. 

1.1.1 Overview of the Thesis 

Position 

My position is that Cantor's justification for transfinite numbers 

via his theory of numbers does not stand because of the follow-

ing problems detailed in the thesis, namely the endorsement of 

free mathematics, the use of non-constructive proof, the need 

to justify his weak reductionism, the existence of non-Cantorian 

sets, intension in an extensional theory, and, finally, tension of 

increasable infinity with absolute infinity. 

Contribution 

My thesis addresses the issue of infinity in a way that is seldom 

done. It combines philosophical reflection and technical survey 

of the relevant concepts. It organises and re-explores the now 

relatively dormant side of finitists in the debate of finitism vs. 

Cantor's transfinite theory. 

It presents an original system of analysis for analysing math-

ematical philosophies and casts a clear light on the similarities 

and differences of the major schools of the philosophy of math-

ematics which are seldom precisely articulated in any way in 

discussions in the field. (Chapter 2) 

It brings to clear view the philosophically suspect assump-

tions of his theory in a precise and concise fashion drastically 

improving on the existing formulations (the three principles in 

Chapter 3). 

It critically examines these assumptions and presents refor-

mulated arguments against them (the six problems in Chap-



CHAPTER 1. INTRODUCTION AND PRELIMINARY DISCUSSIONSl 1 

ter 4). Of these six objections, free mathematics has not been 

explicitly raised against Cantors theory of transfinite numbers; 

the section about non-constructive proof gives a rigorous philo-

sophical discussion of the technical problem, re-organising the 

myriad of controversy involved; weak reductionism is a problem 

that texts in the literature do not pay due attention to; the 

ontological problem caused by non-Cantorian sets to Cantor's 

transfinite theory has not been looked into at all; Wittgenstein's 

objection about the use of intension in an extensional theory is 

relatively well-known, but the subsidiary section about the in-

finite as a rule in relation to cardinal and ordinal theories is 

original; tension with absolute infinity has not been presented 

as an issue against Cantor's transfinite theory. 

Reformulated arguments are at once critical and original, for 

others have surely used similar ones before, but not in this con-

text. The thesis gives a well-articulated account of the whole 

issue which has not been brought together before and which 

enables the reader to decide his stance in the matter. 

1.1.2 Background 

In Section 1,2, we will first try to discuss and clarify philosophi-

cally some of the key concepts involved in mathematics and the 

philosophy of mathematics. 

And then in Chapter 2，we will present a brief overview of 

various schools of mathematical philosophies before diving into 

the corresponding attitudes towards infinities and transfinite 

numbers. Firstly, in Section 2.1, we will briefly introduce the 

main schools of mathematical philosophy, namely nominalism, 

conceptualism, intuitionism, realism, empiricism, logicism, neo-

logicism, formalism, and practicism. After that we will give an 

examination and explication of mathematical philosophies in the 

context of metaphysics (Section 2.3), semantics (Section 2.4)， 
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epistemology (Section 2.5), foundations of mathematics (Sec-

tion 2.6), and finally finitistic considerations (Sections 2.7 and 

2.8). 

1.1.3 About Chapter 3: Details of the Theory 

In Chapter 3, we will give some historical and theoretical notes 

on Cantor's theory (Sections 3.0.1 and 3.0.2). After that we 

will articulate Cantor's three principles behind his transfinite 

theory, the domain principle, the enumeral principle, and the 

abstraction principle. 

The Domain Principle 

Section 3.1 deals with the domain principle. The domain princi-

ple says that for any variable to be meaningful in a mathemat-

ical context, there has to be a domain for it to range over. Its 

consequence is that any potential infinity presupposes a corre-

sponding actual infinity. In mathematics, if an equation with a 

variable x does not have a domain, the x in the equation would 

be meaningless. Frequently the variable x is said by classical 

finitists to denote a potentially infinite quantity. In the context 

of Cantor's theory, for a variable quantity that is "potentially 

infinite", actual infinity is its domain. The consequence of the 

domain principle that any potential infinity presupposes a cor-

responding actual infinity put advocates of potential infinity in 

a dilemma, for because of this they cannot coherently endorse 

potential infinity, while at the same time shunning actual infin-

ity. 

Section 3.1.2 deals with the problems associated with the 

domain principle. The problems with the domain principle is, 

firstly, the paradoxical nature of an infinite totality, for it is 

reasonable to doubt if any given "whole" could be genuinely 

infinite. 
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The second problem is the primacy of actual infinity. Can-

tor's argument via the domain principle presupposes that it is 

not possible for potential infinity to be meaningful without pre-

supposing actual infinity as its domain. Endorsing the primacy 

or independence of potential infinity at least have the merit of 

being a weaker claim and thus easier to justify. 

The Enumeral Principle 

Section 3.2 deals with the enumeral principle. The enumeral 

principle contends that being a natural number is being the 

enumeral of a well-ordered set. An enumeral e of a well-ordered 

set (E, <) stands in such a relation to it if and only if the set of 

predecessors of e is isomorphic to (E, <). Loosely speaking, the 

enumeral principle says that numbers are the counting numbers 

of ordered objects. We know the magnitude of sets because we 

have ordered their members and we can tell from the structure 

how big it is. We know how big a set is in much the same way 

as the way we know how big a hotel is through checking the 

room number of the last room if its room numbers are given 

consecutively. Cantor thinks that to be a natural number is to 

be an ordinal number, and in turn an ordinal number is the 

enumeral of a well-ordered set. Therefore, he argues, a finite 

number is not inherently different from an infinite number be-

cause each one is respectively the enumeral of a well-ordered set 

which has the same sort of structure and capable of undergoing 

the same set-theoretical operations regardless of whether it is a 

finite well-ordered set or an infinite well-ordered set. 

Section 3.2.5 deals with the problems associated with the enu-

meral principle. The first problem with the enumeral principle 

is that an ordinal number is in its original sense a counting num-

ber. But it is not at all possible that transfinite numbers could 

be counted. Thus the enumeral principle accounting for the nat-

ural numbers via the ordinal numbers does not stand very well 
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conceptually. 

The second problem is that the well-ordering principle which 

is presupposed in the enumeralist account is independent in a 

well-received axiomatic system. If even such an "obvious" prin-

ciple cannot be proved axiomatically in a canonical system, what 

ground does it have other than its obviousness? If the well-

ordering principle were provable in the system, then the enu-

ineral principle could be a well-grounded, well-fitted account of 

the natural numbers. But if it were not, then the enumeral prin-

ciple cannot very well claim precedence over other accounts. If 

the enumeral principle cannot claim precedence over other ac-

counts, then the equal status that it gives to the finite numbers 

and the infinite imiiibers cannot be established convincingly by 

means of it. 

The Abstraction Principle 

Section 3.3 deals with the abstraction principle. The abstraction 

principle says that a number is a cardinal number. A cardinal 

number is a "pure", definite set composed of abstract units to 

which all sets with the same cardinality (number of elements) 

will be equivalent (one-one correspondent). Cantor's argument 

via the abstraction principle goes like this: if numbers are con-

strued as cardinal numbers, then since the comparison and ma-

nipulations of cardinal nmubers is done by means one-one cor-

respondence which is as meaningful and determinate between 

infinite cardinal numbers as between finite cardinal numbers, 

infinite numbers have the same status as finite numbers. 

Section 3.3.5 deals with the problems associated with the ab-

straction principle. The first problem with the abstractionist 

account is that these abstract "ones", these abstract units, are 

rather problematic. How can we distinguish among the abstract 

ones and use them to count if they are really abstract and pre-

sumable indistinguishable, without presupposing some numeric 
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concept? Notice that no technique bypassing some sort of nu-

meric concept has been employed in Cantor's account, and by 

the extensionality principle, anything that is indistinguishable 

with something is identical with that thing. 

The second problem with the abstractionist account is that 

in Cantor's formulation the cardinal number M of a set M is 

actually a set in one-one correspondence with M and that it is 

ontologically more cumbersome than the Frege-Russell logicist 

formulation. 

1.1.4 About Chapter 4: Defects of the Theory 

After a brief discussion of problems associated with each princi-

ple, we will give more detailed arguments against Cantor's the-

ory in Chapter 4. These include the endorsement of free mathe-

matics, the use of non-constructive proof, the need to justify his 

weak reductionism, the existence of non-Cantorian sets, inten-

sion in an extensional theory, and, finally, tension of increasable 

infinity with absolute infinity. 

Section 4.1 discusses Cantor's endorsement of free mathemat-

ics and the use of non-constructive proof. This part's focus is 

on Cantor's generosity with existence and proof. 

Structure and Procedure: Free Mathematics 

Section 4.1.1 deals with Cantor's endorsement of free mathemat-

ics. Free mathematics is the doctrine that endorses a maximum 

ontology, allowing existence whenever no inconsistencies result. 

Cantor's theory seems to be based on a preference for free math-

ematics. Advocates of free mathematics argue that mathemat-

ical objects are free creations of the mind, which is the only 

constraint, apart from the law of contradiction, to what can be 

said to exist. Whether this generosity with ontology is appro-

priate is a difficult question. The advantage of this position is 
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that there is more creative space for the mathematician to work 

with, while the disadvantage of it is that mathematics under 

this doctrine has less security, and it gives rise to more diffi-

cult foundational questions. The lack of existence proofs and 

the violation of the simplicity principle also pose problems for 

Cantor. 

Structure and Procedure: Non-constructive Proof 

Section 4.1.2 deals with the use of non-constructive proof in 

Cantor's theory. A constructive proof is a proof in which the 

existence of a mathematical object or function etc. is not simply 

proved by establishing that its non-existence is contradictory, 

but instead proved by showing that algorithmic construction of 

that object from some accepted primitives is possible in princi-

ple. An algorithm is a specification of a stepwise computation 

which a human being or a machine can, in principle, perform in 

a finite period of time. Cantor's proofs are non-constructive. Of 

course, to be fair, he is not in the minority. Most mathemati-

cians prove non-constructively. 

The problem of non-constructive proof has its source in the 

conflict between the realist tendencies of the classical mathe-

matician on the one side and the requirement of an executable 

algorithm on the part of the intuitionist on the other. This 

in turn comes from the difference in their aims and ontologi-

cal views. Classical mathematicians go by the law of the ex-

cluded middle, and intuitionist constructivists say that the ac-

ceptance of the law of the excluded middle is too metaphysical. 

The classical mathematician points out that using the Brouw-

erian counter-example as a criteria for non-constructability en-

tails that whether something is constructive changes with human 

knowledge, because the Brouwerian counter-example depends on 

the present stage of mathematical knowledge, and the intuition-

ist constructivist replies that a mathematical assertion is gener-
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ally about the construction or the constructedness of a certain 

mathematical object so that this change of state is not counter-

intuitive at all. The classical mathematician laments the con-

fusions and sloppiness caused by the renouncement of logical 

laws in order to account for human epistemic states, and the 

intuitionist constructivist replies that even formalists use con-

tentual reasoning instead of exact and mechanical derivations, 

when they are doing metamathematics. The classical mathe-

matician questions the intuitionist constructivist，s sole reliance 

on intuition which sometimes seems only intuitive to themselves, 

and the intuitionist constructivist replies that formal logic itself 

needs ground and it is ultimately our intuition that decides the 

day. The argument goes on into more minor alleys but the gist 

is outlined above. 

Section 4.2 discusses the need to justify Cantor's weak re-

ductionism, the existence of non-Cantorian sets, and the use 

of intension in an extensional theory. It questions the concep-

tual role, the structure, and the specification of sets in Cantor's 

transfinite theory. 

Number and Numerosity: Weak Reductionism 

Section 4.2.1 deals with the fact that Cantor holds a kind of weak 

reductionism. It is weak in that he does not simply reduce num-

bers to sets, but it is reductionistic in that numbers and their 

existence are explained and justified in terms of sets. As we have 

seen, the ordinal account relies on the well-ordered set, and the 

cardinal account cannot do without the doubly abstracted set of 

units. The problems with this weak reductionism are, firstly, the 

problem of whether the reduction is philosophically appropriate 

in terms of ontology, and whether it is pragmatically useful in 

terms of its relationship with the commonly accepted terrain 

of mathematics, and, secondly, the problem of the existence of 

sets. Regarding the reduction there is the problem of definition 
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and construal of numbers, while regarding the existence of sets 

we have to be concerned with the questions as to whether it is 

justifiable to postulate sets and why, or why not. 

Number and Numerosity: Non-Cantorian Sets 

Section 4.2.2 deals with the problem posed by the existence of 

non-Cantorian sets in some systems. A "non-Cantorian set" as 

we use it here refers to a set that is not equivalent to the set of 

its unit subsets. Now it is a fact that systems such as Quine's 

NF [58] admit non-Cantorian sets. This constitutes a problem 

for Cantor's transfinite theory because it depends on the ab-

straction principle by which it is defined that a cardinal number 

M is a "pure", definite set composed of abstract units to which 

all sets with the same cardinality (number of elements) will be 

equivalent (one-one correspondent). Any theory that admits 

non-Cantorian sets endorses a fundamentally different ontology 

from Cantorian set theory and renders powerless the abstraction 

principle which accounts for numbers by means of cardinal num-

bers and which accounts for the comparison and manipulations 

of cardinal numbers by means of one-one correspondence, as the 

non-equivalence of a set and the set of its unit subsets consti-

tutes an insurmountable theoretical difficulty for the abstraction 

principle. 

Number and Numerosity: Intension in an Extensional theory 

Section 4.2.3 deals with the use of intension in Cantor's the-

ory which is inevitably extensional. By definition, the extension 

of an infinite concept cannot be completely listed and, more 

specifically, the objects in an infinite class cannot be completely 

listed. Therefore one has to have recourse to intensional defini-

tions, that is, specifying the property which allows and ensures 

the membership of an element. However, this brings in the prob-



CHAPTER 1. INTRODUCTION AND PRELIMINARY DISCUSSIONSl 1 

lem of the equivalence of intensional definitions and extensional 

definitions, for one needs this equivalence in that set theory is 

basically a theory of extensionality, as in general axiomatic set 

theories explicitly contain an axiom of extensionality. Wittgen-

stein explained his objections clearly. 

Conceivability and Comparability: Tension with Absolute Infinity 

Section 4.3 presents the last aspect of arguments against Cantor. 

Its focus is on conceivability and comparability of infinities. 

Section 4.3.1 deals with the tension of increasable infinity 

with absolute infinity. This tension has to do with the dubious 

role of absolute infinity and its clash with the domain principle. 

Cantor argues that natural and real number operations make ex-

istence of transfinite numbers inevitable because of the domain 

principle, and he states on the other hand that the transfinite 

numbers themselves form a universe (but not a domain) of math-

ematical forms which constitute absolute infinity. But then why 

do the transfinite numbers not form a domain likewise, via the 

domain principle? Cantor does not have a way of satisfacto-

rily resolving this tension between the numerability of transfi-

nite numbers and the iinnumberability of absolute infinity, other 

than invoking God as the only one who can understand abso-

lute infinity, and mentioning the undesirable consequence that 

this uniqueness would be destroyed if absolute infinity were a 

domain and could be mathematically determined in the same 

way as transfinite numbers. 

After this synopsis of our arguments it seems also necessary 

to give before the main parts of this thesis some preliminary 

discussions and clarifications of the key concepts involved. 
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1.2 Preliminary Discussions 

We state some of the important concepts that we are going to 

touch on in this thesis. We will give some preliminary discus-

sions and clarifications of those concepts, which are: number, 

mathematical existence and abstract reality, finite vs. infinite, 

actually infinite vs. potentially infinite, and denumerability. 

1.2.1 number 

What's in a number? This is the problem that underlies any 

view about the foundations of mathematics and mathematical 

philosophy. Is it some entity in an abstract and eternal realm? 

Or is it merely a linguistic convenience and adequately reducible 

to other, arguably more fundamental, entities? We will look at 

the issues that are related to this problem and, in particular, 

Cantor's view in Chapter 3. 

1.2.2 mathematical existence and abstract reality 

What is mathematical existence? Numbers are said to exist as 

abstract entities, but what does that mean? Is there really a 

difference between such an existence and no existence at all? 

This would be one of the recurring themes of this paper, as the 

ancient opposition between realists and nominalists translates 

itself into that between abstractist and non-abstractist camps 

(see Section 2.3)，and as constructivists contend that mathe-

matical existence should coincide with constructibility (see Sec-

tion 4.1.2). 

1.2.3 finite/infinite 

An infinite set has been characterised as one which can have 

one-one correspondence with a proper subset of it {Dedekind 
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infinite), or a non-empty set for which there does not exist a 

natural number n such that between the elements of S and the 

elements of the set iV” = {a: | {x E N) A (1 < x < n)} there 

exists a one-one correspondence. 

1.2.4 actually/potentially infinite 

Actual infinity refers to a completely given, existent (abstractly 

or not) infinite collection. Potential infinity refers to something 

like an unending operation. 

With the development of set-theoretical conceptions, it is 

sometimes speculated that those who assert that the actually 

infinite exists mean to say that one can really keep on counting 

physically forever, while those who assert that only the poten-

tially infinite exists mean to say that only one-one correspon-

dence among infinite sets can be talked of, because it is not a 

physical procedure as infinity cannot be realized physically. If 

that is the case, then despite what is popularly believed, it turns 

out that what physically is possible does have a bearing on what 

mathematical operations are allowed, perhaps? 

However, infinite collections themselves are already problem-

atic in the eyes of some finitists, especially strict finitists, see 

Section 2.7.1. 

1.2.5 denumer ability 

If a set has Hq elements, that is, if it is one-one correspondent 

with the set of natural numbers, then we call it denumerahle. 

Alternatively, if a set is of order type cj, that is, if it is of the 

same order type as the set of natural numbers, then we say it is 

denumerahle. 
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1.3 Concluding Remarks 

We have given a preview of the main points of this thesis and 

preliminary discussions of some of the relevant concepts. We 

will now proceed to discuss mathematical philosophies and their 

stance in relation to the problem of infinity. It will serve as a 

background to our discussion of Cantor's theory. 



Chapter 2 

Mapping Mathematical 

Philosophies 

The various existing schools of mathematical philosophies form 

a truly chaotic scene at first glance. Moreover, there has not 

been a very thorough and fundamental treatment of the subject 

in an elementary approach. In view of this, we will attempt 

a taxonomical study, or, in other words, a conceptual analy-

sis of the confusing terrain of philosophies of mathematics in 

this chapter. After a preview of various schools of mathemat-

ical philosophies, we will give an examination and explication 

of mathematical philosophies in the context of metaphysics, se-

mantics, epistemology, foundations of mathematics, and finitis-

tic considerations, in order to make clear the background for our 

focus, Cantor's transfinite theory and its problems. 

This is an original system of analysis. It casts a clear light on 

the similarities and differences of the major schools of the phi-

losophy of mathematics which are seldom precisely articulated 

in any way in discussions in the field. 

2.1 Preview 

First of all, we will give a brief preview of the mathematical 

philosophies that will be analysed. 

15 
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2.1.1 Nominalism 

Nominalism in general is the doctrine that abstract concepts, 

general terms, universals and the like have no independent ex-

istence but in names. Nominalism has traditionally been the 

opposing camp of realism, which asserts that abstract concepts, 

general terms, universals and the like have corresponding Pla-

tonic Forms in an abstract realm. Mathematical nominalism 

holds that numbers are not independent entities, and what ap-

parently talks about numbers really talks about other rather 

concrete things, such as mental images, numerals, or some sort 

of physical objects rather than some sort of abstract objects. 

Thus mathematical nominalism is an opposing camp of mathe-

matical realism in the same way nominalism is that of realism. 

2.1.2 Concept ualism 

Conceptualism in general holds that universals exist, but only 

exist in the mind when they are instantiated in individual ob-

jects, and that it has no substance, nor external reality. Histor-

ically it is an intermediate view between the extremes of over-

liberal realism and over-reductionist nominalism. Kantian con-

ceptualism holds that universals have no external reality because 

they are exclusively produced by our a priori mental framework. 

Mathematical conceptualism asserts that numbers are abstract 

entities created by this a priori mental framework for its under-

standing of the world. Therefore mathematical conceptualism 

also, in a certain sense, stands in the middle ground between the 

reductionist tendencies of mathematical nominalism and the al-

lowing spirit of mathematical realism. 
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2.1.3 Intuitionism 

Kronecker [41] was probably the first person befitting the name 

enough to be called an intuitionist, for he was a precursor to 

Brouwer in asserting that natural numbers and their operations 

are intuitively founded, and that real numbers cannot have such 

a foundation. Brouwer's intuitionism [7, 8, 9] maintains that the 

truth of a mathematical statement is equivalent to the mathe-

matician's being able to intuit the statement. It also maintains 

that numbers are creatures of the mind and truths about them 

are known through pure intuition. This school of mathemati-

cal philosophy could be regarded as a branch of conceptualism 

except that it has explicit methodological commitments that 

conceptualism is not known to endorse, e.g. that all definitions 

and proofs should be constructive, which means that a definition 

of a mathematical entity should give a rule which enables one 

to construct it from mathematical elements already known to 

exist. 

Heyting summarises Brouwer's position thus 

The idea that for the description of some kinds 

of objects another logic may be more adequate than 

the customary one has sometimes been discussed. But 

it was Brouwer who first discovered an object which 

actually requires a different form of logic, namely the 

mental mathematical construction [6]. The reason is 

that in mathematics from the very beginning we deal 

with the infinite, whereas ordinary logic is made for 

reasoning about finite collections. [37, p.l 

It has been suggested that Brouwer's position is merely a 

methodological maxim in Ambrose [1, p.610]. Anyway, method-

ological maxim or ontological creed, a distinguishing characteris-

tic of intuitionism lies in its so-called rejection of the (universal 
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applicability of the) law of the excluded middle, for example 

Heyting says that 

Intuitionists] consider an integer to be well defined 

only if a method for calculating it is given. Now this 

line of thought leads to the rejection of the principle 

of excluded middle [...] [37, p.2: 

(Well-trained logicians emphasize their never committing to 

the stance that any sentence can be substituted into the formula 

p V -ip which is tautological in classical prepositional logic. For 

more about intuitionism and the law of the excluded middle, see 

Section 4.1.2.) 

2.1.4 Realism 

Realism in general could be described as the view that state-

ments describe a mind-independent reality. Metaphysical or 

Platonistic realism grants universals and such like Platonic ex-

istence. Its allowance of an immense abstract realm is directly 

opposed to the nominalistic tendency towards accounting for 

the use of universals and names by means of concrete indi-

viduals. Mathematical realism refers to the school of thought 

that takes numbers to be mind-independent entities (the broad 

sense of "mathematical realism"), and frequently, furthermore, 

the school of thought that not just takes numbers to be mind-

independent entities, but also takes them to be Platonic entities 

the truths about which are known through a priori rational in-

sight (the narrow sense of "mathematical realism"). 

Mathematical realism in the narrow sense (in order to avoid 

ambiguity, we will call this Platonistic realism) and mathemat-

ical conceptualism, although both are, so to speak, rational-

ist in episteinological comniitinents, are nevertheless different in 

that their rationalist knowledge comes from different realms一 
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the former from the mind-independent, and the latter from the 

mind-dependent. 

2.1.5 Empiricism 

Empiricism in general is the view that the role of experience, es-

pecially sensory perception, is indispensable in the formation of 

ideas and the verification of truth. It is a branch of mathematical 

realism in the broad sense of the term because it grants mathe-

matical entities such as numbers (and sets?) the same status of 

being as theoretical entities such as quarks and black holes. 

Mathematical empiricism holds that, contrary to popular be-

lief, mathematical "truths" are theoretical hypotheses about the 

natural world, that they are part of the holistic web of knowl-

edge. Contemporary proponents of mathematical empiricism, 

notably Quine and Putnam [56, 57] (Putnam favours the use of 

the term "pure realism"), hold that mathematics owes its justifi-

cation in its indispensability in scientific enquiry. (See Colyvan's 

account [19] for an extended discussion of this school.) 

Although mathematical realism in the narrow sense (Platon-

istic realism) is rationalist in epistemological principles, math-

ematical empiricism is undoubtedly empiricist in epistemologi-

cal principles, since the two schools really have nothing to do 

with each other, as mathematical empiricism is only a branch 

of mathematical realism in the broad sense. Much confusion is 

apt to arise if the distinction between mathematical realism in 

the broad sense and in the narrow sense is not made clear. 

2.1.6 Logicism 

Logicism, exemplified in the monumental work of Whitehead 

and Russell [72], is the view that mathematics can be reduced to 

logic, and that mathematical truths are analytic logical truths. 

Logicism claims that mathematics can be reduced to logic, by 
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which is signified the prepositional calculus, plus the qiiantifica-

tional calculus, plus set-theoretic operations and some axioms 

which assert the existence of, e.g. representative sets (axiom of 

choice). Whether that should be called logic will be a point of 

contention we do not intend to go into yet. 

Historically, the logicist enterprise first started to be seen as a 

viable approach to the foundations of mathematics in the work 

of Prege [27], in which he tried to create a less ambitious ver-

sion of Leibniz's lingua characterica (cf. the historical accounts 

of this in van Heijenoort [70, p.2] and May berry [47, p.214]), a 

precise symbolic language of logic for expressing content (a "con-

cept script", or an "ideography" in Russell's wording in [60]), 

not just a calculus ratiocinator, a formal system only for compu-

tations. The Begriffsschrift was deliberately made distinct from 

the language of arithmetic by using different symbols. It is in 

such a type of symbolic system that Prege intended to provide a 

foundation for arithmetic. Frege went on to formulate the basic 

laws of arithmetic in [28, 29]. But, as we all know, his system, 

which employs the unrestricted comprehension principle (com-

monly referred to as Frege 's fifth axiom) resulting in a so-called 

naive set theory, was inconsistent because it is susceptible to 

Russell's paradox. 

Whitehead and Russell [72] tried to avoid this by means of the 

theory of types, necessitating the addition of a further axiom, 

that of reducibility, adding yet another burden on the problem-

atic nature of the axioms of the system. This is no doubt a 

great drawback of their system, for if the axioms of the system 

itself are problematic, how can it serve to be the foundation for 

mathematics? More on this in Section 2.6.2. 
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2.1.7 Neo-logicism 

Neo-logicism is commonly characterised as the view which as-

serts that mathematics is applied set theory. It purports to 

replace logicism, which has severe difficulty in maintaining that 

what it assumes is logic. (Some argue that it should be third-

order non-modal object theory instead of applied set theory, be-

cause it most closely answers to the goals of the original logicist 

programme. See Linsky and Zalta [43] for a presentation of this 

argument.) Neo-logicists try to draw a larger terrain for logic 

or loosen the criteria for what it is to be "reducible to logic." 

Neo-logicists such as Wright [75] and Hale [33] try to replace 

Frege's fifth axiom with other principles, for example Hume 's 

principle which asserts that the number of Fs is equal to the 

number of Cs if there is a one-one correspondence between the 

Fs and the Gs. 

2.1.8 Formalism 

Probably in order to accommodate competing axioms systems 

such as those in geometry, and to evade attacks from critics 

expressing uneasiness regarding the suspect character of mathe-

matics and its lack of universally accepted foundations, Hilbert's 

formalism maintains that mathematics can be regarded as but a 

meaningless game with marks, and that formal consistency is all 

that needed for its playability. He tried to prove the consistency 

of arithmetic within a fiiiitary formal system (see Section 2.7), 

but we would use "formalism" loosely to refer to the use and en-

dorsement of formalisation for providing a foundation for math-

ematics and securing it against paradoxes and inconsistencies. 

In fact, formalists can "hedge their bets", for "the formal de-

velopment of ZFC，，i—and other systems really—"makes sense 

^ Zermelo-Pi-aenkel set theory with axiom of choice; see Tiles [67, pp.121-134] for a brief 

account of the system. 
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from a strictly finitistic point of view: the axioms of ZFC do not 

say anything, but are merely certain finite sequences of symbols. 

The assertion ZFC 卜 means that there is a certain kind of fi-

nite sequence of finite sequences of symbols—namely, a formal 

proof of Even though ZFC contains infinitely many axioms, 

notions like ZFC 卜（I) will make sense, since one can recognize 

when a particular sentence is an axiom of ZFC". [42, p.7] So 

that formalists can do mathematics as uninhibitedly as a math-

ematical realist, "but if challenged about the validity of handling 

infinite objects, he can reply that all he is really doing is juggling 

finite sequences of symbols". [42, p.7] We will call this premed-

itated reply to projected challenge finitary formalism and treat 

it in Section 2.7, while using formalism in the sense of maintain-

ing that mathematics can be regarded as merely a meaningless 

game with marks, with the ontological implications of mathe-

matics being merely a meaningless game with marks which can 

only be finite in number not asserted. 

In fact, the professed ontological commitment of formalists 

is null while they do the same mathematics as mathematical 

realists, but that is because formalists treat mathematics as void 

of meaning. But this void of meaning is set down in marks, if 

not physical then realisable if required, so that the metatheory 

that talks about these marks is in effect finitistic. 

Formalism was, together with intuitionism and logicism, one 

of the three main schools of philosophy of mathematics in the 

twentieth century. However, since Godel shown in his second 

incompleteness theorem [32] that the consistency of a system 

of arithmetic cannot be proved within itself, formalism has lost 

much of it charm, for if one has to rely on another system to 

prove its consistency, then one might as well give up insisting 

on its purely formal character, as surely one cannot accept the 

meta-system merely on formal ground. This is because, as the 

meta-system is of a higher level, surely again its consistency can-
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not be proved within itself, so that there is the danger of infinite 

regress unless one accepts the system on some other ground or 

one does not bother about consistency at all. But consistency 

is very important in a system, for in inconsistent systems any 

well-formed formula could be proved, rendering proof creditless 

and the system creditless. Therefore one has to accept the meta-

system on some other ground. 

2.1.9 Practicism 

Practicism, the word we coined for an easy reference of the 

school of thought that regards mathematics as a group of truths 

about counting procedures, is a view that emerges after the so-

called demise of formalism. One can eat, however: one seems to 

be able to regard mathematics as a group of truths about count-

ing procedures only until transcendental numbers, as transcen-

dental numbers can never be said to be actually used in count-

ing or measurement because even if one can keep counting and 

never stop, allowing for a potential infinity of natural numbers, 

it seems that one cannot measure the infinitesimal as there are 

inevitably marginal errors. 

Now we are going to start our analysis. 

2.2 Central Problem of Philosophy of Math-
ematics 

The central problem of philosophy of mathematics is the nature 

of a n u m b e r . 2 But the nature of a number can be probed from 

various depths and from various angles. The nature of a number 

per se is the metaphysical problem of number in the philosophy 

of mathematics; the meaning and reference of the numerals and 

20f course there are philosophical problems surrounding geometry and other branches 

of mathematics, but this is at least traditionally the central one. Anyway this is the one 

that concerns us here. 
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the meaning of mathematical statements is the semantical prob-

lem of number in the philosophy of mathematics; the possibility 

of knowledge about numbers and of the truth of mathemati-

cal statements is the epistemological problem of number in the 

philosophy of mathematics; the need or futility of a systematic 

theory of numbers is the foundational problem of mathematics; 

a consideration of all the above-mentioned sides of the problem 

of imiriber results in a view concerning the fiiiitistic problem of 

mathematics. 

Therefore the following is an analysis of views regarding the 

nature of numbers and mathematical statements in terms of 

metaphysics, semantics, epistemology, foundations of mathe-

matics, and finitistic considerations in that order, and they are 

philosophically speaking the most interesting and relevant issues 

for our purpose. 

2.3 Metaphysics 

The ontological problem in the philosophy of mathematics is 

whether numbers as such exist (in various senses of the word), 

and, if they do, in what form. 

2.3.1 Abstractism 

The abstractist view of numbers takes numbers to be genuine 

abstract entities, not to be identified with any spatio-temporal 

objects or to be taken as shorthand for counting procedures or 

similar operations. (We made up the term abstractism because 

neither the term "Platonism" nor the term "realism" seems to 

be adequate for our purpose here, for both imply some definite 
views about the sort of existence the mathematical objects lead.) 
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2.3.2 Abstractist Schools 

Kantian conceptualism asserts that numbers are abstract entites 

created by the mind, and owes their existence to postulation. 

They are mind-dependent, but still objective. Therefore its view 

of numbers should be abstractist. 

Similarly, for Brouwer's intuitionism, numbers are creatures 

of the mind—to exist is to be constructed by the mathematician, 

according to Brouwer's student Heyting [37, p.2]. Mathematical 

objects are constructed, but do exist nevertheless. 

Those philosophers who hold Platonistic realism uncondi-

tionally take numbers to be mind-independent abstract objects, 

Forms. It might be said to be the most abstractist of all. 

Logicism, a kind of softened Platonistic realism, takes num- .. 

bers to be logical constructs, which are also mind-independent 

abstract objects. 

Neo-logicism adheres to the same ontological commitments 
as logicism. 

Mathematical empiricism regards numbers as some sort of be-

ing which is akin to the theoretical entities postulated in science, 

such as quarks, so that numbers are regarded as real provided 

that the mathematical empiricist also embraces scientific real-

ism, which is frequently the case for otherwise it is pointless to 

account for mathematics in this way as its status would not be 

made less questionable. 

2.3.3 Non-abstractism 

The non-abstractist view of numbers does not take numbers to 

be abstract entities, and rather identifies numbers with mental 

images, ideas, or even physical objects. 
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2.3.4 Non-abstractist Schools 

Nominalism denies that numbers are abstract entities, and, in-

stead, identifies them with mental images, psychological ideas, 

physical objects, the corresponding numerals, etc., and contends 

that numbers exist but in names, i.e. it is merely a way of talking 

about other objects. 

Formalism has no ontological commitment regarding num-

bers, as mathematical systems are only formalized systems with-

out attestation of content in the formalist's view. 

Practicism, the view that mathematics is a body of truths 

regarding counting methods, does not endorse the existence of 

numbers as abstract entities. This touches on the problem of 

what to be a rule is and what to be a number is, more discussion 

of which will appear in Section 4.2.3. 

2.4 Semantics 

The semantical problem in the philosophy of mathematics is 

whether mathematical statements are literally construed, and 

how are they to be interpreted. The problem of construal con-

cerns our understanding of mathematical objects, as well as the 

problem of interpretation our understanding of them in relation 

to the world. 

2.4.1 Literalism 

The literalistic view of mathematics sees mathematical state-

ments as literally construed, i.e. mathematical statements actu-

ally talk about some sort of objects, whatever they might be. 
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2.4.2 Literalistic schools 

Nominalism, Kantian conceptualism, intuitionism, realism, logi-

cism, neo-logicism, and empiricism all hold the literalistic view. 

Nominalism takes numbers as various concrete objects, so 

that even though numbers are not construed as abstract entities, 

they are construed as entities nevertheless. 

Conceptualism and intuitionism take them as mentally con-

structed abstract entities; therefore they also belong to the lit-

eralistic camp. 

Realism regards them as Platonic objects. Thus it is quint-

essentially literalistic. 

Logicism regards them as logical constructs, with an abstract 

existence. Therefore, numbers are literally construed in this 

case. However, as regards interpretation, it brings out the prob-

lem that logical truths are supposed to be true in all models (at 

least the ones with at least one object) in model-theoretic seman-

tics, whereas classical number theory (we are not even talking 

about mathematical analysis) needs a model with Kq objects. 

Neo-logicism also regards numbers as logical constructs which 

exist as abstract entities. 

Empiricists think numbers are much like other theoretical 

entities in science. Hence they are construed literally and inter-

preted as scientific terms are. 

2.4.3 Non-literalism 

The non-literalistic view of mathematics does not regard math-

ematical statements as literally construed. 

2.4.4 Non-literalistic schools 

Formalism, in its most defensive moments, holds that math-

ematics has no meaning and is but a game with marks, and 
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that the axiom systems such as ZF^, NF^, and NBG^ are sim-

ply different games with marks. Indeed this variety troubles the 

formalist least, and is one of the prominent advantages of this 

view. 

Practicism, likewise, does not regard mathematics as literally 

construed because it merely talks about counting procedures in 

a roundabout way. Again the niceties regarding this will be 

treated in Section 4.2.3. 

2.5 Epistemology 

The epistemological problem in the philosophy of mathematics 

is whether we have mathematical knowledge, and if we do, by 

what means. 

2.5.1 Scepticism 

Mathematical scepticism does not see mathematical systems as 

providing knowledge. Obviously, if one accepts the tripartite 

definition of knowledge, there can be but two cases in which 

mathematics fails to be knowledge, the first in which it is mean-

ingless; and the second in which it is meaningful, but unjustified, 

or false. The problem of meaning is in part taken care of in Sec-

tion 2.4, and we will proceed on the basis of it. 

2.5.2 Scepticist Schools 

Nominalism, by identifying numbers with various concrete ob-

jects, forfeits mathematics of a true interpretation, as no con-

crete objects are numerous enough for infinite numbers, and thus 

no theorems assuming their existence can be true. 

^Zermelo-Pi-aenkel set theory with or without axiom of choice depending on context, 

cf. note on ZFC in Section 2.1.8. 

4Quine’s "New Foundations", see his [58]. 

5Von Neumann-Bernays-Gddel set theory, see Godel [31]. 
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Formalism, denying that mathematics has meaning, does not 

hold that it expresses knowledge. It is, at most, to be viewed 

as a guide for manipulating empirical statements, and its formal 

consistency is its highest attainable merit. As mentioned before, 

this accounts best for the competing system of axiomatisations 

in use. A modern version of formalism is the advocation of math-

ematics as a study of axiomatic systems and their consequences, 

providing us with a type of met a-level "knowledge." 

2.5.3 Non-scepticism 

The non-scepticist view of numbers asserts that mathematics is 

indeed a body of knowledge, that it consists of meaningful, true, 

and justified beliefs. 

2.5.4 Non-scepticist Schools 

Conceptualism holds that mathematics contains a priori syn-

thetic truths about abstract entities created by the mind. 

Intuitionism holds that mathematical laws hold true of things 

as the mind intuits them, i.e. they are truths known by pure 

intuition, and that there are no unknowable (in other words, not 

constructively provable) truths in mathematics. In other words, 

intuitionism maintains that we know mathematical truths and 

that all mathematical truths are knowable, that mathematical 

truths and mathematical knowledge are co-extensional. 

Realists think that what we know in mathematics is discov-

ered through a priori rational insight which sees into the realm 

of abstract beings, and therefore axioms and theorems are true 

statements about abstract entities. 

Logicists maintain that mathematical laws are disguised log-

ical truths known through rational insight. 

Neo-logicism holds that mathematics is reducible to an ex-

tended logic or set theory and that we know its truth through 
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rational insight. 

Empiricism argues that mathematics is a section of scientific 

knowledge. 

Practicism asserts that mathematics is a body of truths about 

counting methods. 

All of the above schools are non-scepticist. 

2.6 Foundations of Mathematics 

The foundational problem in mathematics'̂  is whether there is 

a foundation for mathematics, and what, if there is any, it is. A 

useful distinction in related discussions is that between intuition 

and ingenuity made by Turing. 

Turing articulated about this distinction between intuition 

and ingenuity in [68, Section 11]. The following is an expansion 

of this idea. Intuitive judgments are the results of frequently 

implicit trains of reasoning. Intuitive judgment of, e.g., whether 

positive integers are uniquely factorisable into primes usually 

needs some other means by which we verify the judgment. In-

genuity, on the other hand, aids the mathematician in finding 

the suitable arrangements of statements, etc. when he wants to 

verify his intuitive judgment. The use of ingenuity consists in 

making a well-arranged collection of statements in which the 

validity of the intuitive steps is beyond reasonable doubt. 

In a formalized system, the role of intuition is confined to the 

stated formal rules abiding by which the inferences made will 

always be agreed to be intuitively valid. (However, as consis-

tent systems complicated enough to express arithmetic are not 

complete, it might be necessary to introduce new axioms from 

®The key terms "foundation", "foundations", "foundational" in its various combina-

tions with the word "mathematics" differ slightly in meaning but the author strived to be 

clear about what is being meant in the context when such combinations are used. Never-

theless due to variations and confusions in the field it, is impossible to give a fruitful and 

precise definition of those combinations. 
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time to time, and this is an exercise that necessarily employ the 

faculty of intuition, so that it cannot be simply dispensed with 

once the formal rules have been laid.) In a formalized system, 

the role of ingenuity, on the other hand, consists in deciding, 

among a variety of legitimate steps, which ones are more effi-

cient for proving the would-be theorem. 

A liberal allowance of a vast number of stated axioms and 

rules can be view as a characteristic of advocates of intuition, 

by means of which those axioms and rules are accepted and 

justified. This promotes efficiency of proof. 

In contrast, a puritan urge to derive all the desired theorems 

in a system with the smallest number of axioms, however diffi-

cult and cumbersome proofs would be, can be seen as a trait of 

stereotypical supporters of ingenuity. And this promotes econ-

omy of the system. 

In reality, however, this is but a dramatic presentation of this 

pair of concepts, and the reader must not be misled into thinking 

that we are trying to say that these could only be the opposing 

sides taken by participants in a controversy. In the contrary, 

these two frequently appear as rivalling tendencies in one and 

the same person. 

When one reflects on the respective foundational views of 

intuitionists and formalists one will see that they agree in the 

role of ingenuity, but the former affirms the role of intuition 

while the latter thinks that its role is, or should be completely 

replaced by formal rules. 

2.6.1 Foundationalism 

Mathematical foundationalism is the view that there is some-

thing that serves as a foundation for mathematics. However, 

foundationalist schools differ widely in their views regarding the 

nature of the foundations of mathematics. 
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2.6.2 Foundationalist Schools 

Nominalism contends that mental images, numerals and such 

like are what mathematics is talking about, and they are to be 

the things that numbers are to be interpreted as. These can be 

said to serve as the foundation of mathematics. 

Conceptualism and intuitionism assert that the foundation 

of mathematics lies in intuition, by which means mathematical 

truths are known and justified. 

Realism sets the foundation of mathematics in the Platonic 

realm in which mathematical entities dwell, and axioms are true 

because they describe the things in it. 

Logicism reduces mathematics to logic, by which is signi-

fied the prepositional calculus, the quantificational calculus, set-

theoretic operations, and some axioms of existence. As hinted 

before (Section 2.1.6), despite its attractive appearance, propo-

nents of logicism have severe difficulty convincing others that 

the system they use is unquestionable, that it can be properly 

called a system of logic, and that mathematical truths can be 

called logical truths. 

Neo-logicism places the foundation of mathematics on set the-

ory or third-order logic. The former seems well-attested by the 

practice of mathematicians, though they do not try to derive 

most of their work in set theory. 

Empiricism lays the foundation of mathematics in its share 

in the tremendous power of science to which it is claimed to be 

indispensable. Hartry Field, however, constructed an axiomati-

sation of Newtonian mechanics without the use of numbers. (To 

examine this feat see his book, [24].) 

Practicism holds that mathematics embodies what we know 

about counting procedures, and its foundation lies in its being a 

correct description of these procedures, providing a foundation 

for non-transcendental numbers. 
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2.6.3 Non-foundationalism 

Mathematical non-foundationalism is the view that no external 

foundation needs to be laid for mathematics, that mathematics 

should be done "as is". 

2.6.4 Non-foundationalist schools 

Formalism seems to be the only school that demands no exter-

nal foundation for mathematics. It affirms the merely formal 

character and the self-sufficiency of mathematics, and sought 

to prove its consistency within itself, which enterprise has later 

been shown unaccomplishable by Godel's second incompleteness 

theorem. [32] But of course with its having proved that it is im-

possible to establish a proof of the consistency of a mathematical 

system within itself, formalism seems obliged to look for some-

thing external to a system. 

We now proceed to the finitistic problem of mathematics, the 

position regarding which is often the result of a consideration of 

all the above-mentioned sides of the problem of number. 

2.7 Finitistic Considerations 

The finitistic problem of mathematics is whether potential in-

finity and actual infinity should be allowed. In Chapters 3 and 

4 we will discuss Cantor's theory of transfinite numbers and the 

principles behind and specific objections to his theory, but here 

and in the next section we merely give a brief presentation of 

the positions of major philosophical schools on infinity and the 

diagonal proof respectively in order to provide some context to 

our later discussions. 

As one can guess from the name, finitism refers to the doc-

trine that reference to infinite collections is to be eschewed be-
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cause their meaning is uncertain and their formation problem-

atic. 

Finitary Formalism 

In Hubert's finitism (his finitary foundation for formalised arith-

metic), for example, this escliewal of infinite collections comes 

with the epistemically motivated desire to replace all abstract 

concepts with concrete, visualisable notation/ When abstract 

concepts are abandoned and replaced with concrete, visualisable 

notation, no implicit inconsistency could arise, as it is simply a 

game with marks, and inconsistent rules in a game are relatively 

easy to spot. One might find Hilbert's finitism similar to con-

crete nominalism, the particular brand of nominalism equating 

talk of numbers with talk of numerals (cf. Section 2.1.1). But the 

similarity is only on the surface, for finitary formalism admits 

ontological interpretations. Hilbert's idea was that a metamath-

einatics with its subject matter, the mathematics confined to 

the realm of the visualizable would be secure against paradoxes, 

while conventional theory about proofs would be at best pre-

carious. Hilbert thinks that conventional theory about proofs 

would be at best precarious because it does not confine the 

proper objects of the theory to concrete symbols alone, so that it 

would be harder to spot any paradoxes in the theory. Skolem's 

primitive recursive arithmetic [61] and Yessenin-Volpin's ultra-

iiituitioiiisin [77] are two examples of twentieth-century finitistic 

schools besides Hilbert's finitism. 

The most liberal formulation of these finitisms would be that 

only natural numbers or items encodable as natural numbers 

are said to be well-defined. (More strict formulations do not 

even allow that.) Advocating whichever variety of the formula-

tions, these finitists do not conceive numbers as constituting an 

^The discussion in this section highlights distinctions which are frequently confused in 

the literature, especially introductory texts. 
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infinite totality but as, for example, individually realisable phys-

ical signs, or tally marks (i.e., "1", “11”，"111" etc.). Hilbert 

says that in finitary formalism natural rminbers are construed 

as strings of tally marks. He wrote that 

The subject matter of mathematics is, in accor-

dance with this theory, the concrete symbols them-

selves whose structure is immediately clear and recog-

nizable. [38, p. 142: 

Hilbert envisages this as the foundations for a complete arith-

metic. When this is supplemented with ideal statements (see be-

low) he would be able to formulate all of arithmetic and avoid 

very complicated logical laws. If there were no ideal state-

ments, complicated logical laws would have resulted from the 

requirement that existential statements have to be analysable 

into finitary disjunctions and universal statements into finitary 

conjunctions, as this requirement renders unbounded existen-

tial statements and unbounded universal statements inadmis-

sible. Ideal statements are statements making assertions of a 

wide scope such that their content is not reducible to finitary 

conjunctions. With the help of ideal statements one can reintro-

duce unbounded statements, for example the denials of general 

statements such as 

-n\/x{x + 1 = 1 + 0：) 

(it is not the case that for all x, a: + 1 equals 1 4- x), and un-

bounded existential statements such as (with "Pr2me(x)" mean-

ing “X is a prime number") 

3x{Prime{x)八 a;〉p) 

(there exists some x such that x is prime and x is larger than 

p) which is derived from 

3x{Prime{x) Ax > p Ax < p\) 
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(there exists some x such that x is prime and x is larger than p 

and X is smaller than p!). 

“~>V:r(‘T + l = 1+x)" is ideal because the search for a counter-

example to the universal statement "Va:(a; + 1 = 1 + x)" that 

gets negated is not bounded. That is to say, a counter-example 

to \fx{x + 1 = 1 + x), a counter-example a such that 

，(a + 1 = l + a), 

if there is one, can occur anywhere in the vast ocean of numbers. 

By a different "mechanism", “3x[Prime(:L) Ax > p)" is also 

ideal because the search for a specimen confirming the claim, 

some b such that 

Prime(h) A 6 > p, 

is again not bounded. Both types of ideal statement serve the 

function of preserving classical logic as the logic of arithmeti-

cal thinking. Ideal statements such as + 1 = 1 + x)" 

maintain the law of the excluded middle for unnegated universal 

statements because otherwise the negations of those unnegated 

universal statements, which are unbounded statements, could 

not be made in a finitary formalistic framework; ideal statements 

such as“3z(Prime(X) Ax > p)" preserve the classically valid in-

ference scheme of simplification in a quantificational context— 

the scheme of deducing from 八 ipx)”. 

Finitism and the Philosophy of Mind 

One of the most intriguing problems in philosophy has to do with 

the limits of the mind.8 Related problems have been and con-

tinue to be probed by means of different approaches. In recent 

®The following passages until Section 2.7.1 are of interest for it has implications that are 

to a certain extent significant in relation to the finitistic problem. The following passages 

put forward concepts that are crucial to an inspection to the limits of rational knowledge 

and this inspection is in a sense prior to a proper treatment of Section 2.5 and the problem 

of conceptualist stance in Section 2.7.2. Thus it is tangentially related to our main focus, 

finitism and Cantorian's theory of numbers. However those implications would have to bo 

left for another essay. 
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years, in particular, there is the debate about the significance 

of Godel's theorems in philosophy of mind between, on the one 

side, J. R. Lucas [44，45] and R. Penrose [53, 54, 52] trying to 

establish definitive consequences of those theorems and, on the 

other, E. R. Nagel and J. R. Newman [50, 51] being sceptical of 

those consequences. 

Finitistic thoughts in philosophy of mathematics are highly 

relevant to philosophical investigations into the limits of the 

mind. This is because rational thinking and rational choice 

involve computation. And unless it is mostly made up of to-

tally non-formalisable and non-articulatable "insight", it falls 

under the governance of metamathematical theorems to the ex-

tent that it can be formulated as computation, distributed or 

otherwise. This is due to the fact that if a subject is precise 

enough, then it would be readily subsumable under discussions 

in mathematical logic and computational theories, and to the 

fact that if something is subsumable under discussions in math-

ematical logic and computational theories, then all the theorems 

about the type of systems that it belongs to would be applicable 

to it. For example, game theory is a branch of mathematics, and 

therefore many metamathematical results are applicable to it. 

The modern development of metamathematics has much to 

do with tackling the epistemological problems of mathematics 

and thus surveying our power to know the truths of mathematics 

genuinely. 

Finite Constructibility 

We could start our discussion with finite constructibility. It is 

common to require that a proof in logic to consist of a finite 

number of steps, but it is not common to require that an object 

be constructible in a finite number of steps. By so requiring, 

finitism or constructivism (in one of the uses of these words) 

gives a stricter-than-normal criterion for mathematical objects 
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and operations to be accepted as meaningful. 

However, this restriction arguably represents a more realis-

tic estimation of the power of the mind, because finitely con-

structible objects are something that the mind can surely grasp, 

while objects that are not finitely constructible seem not so se-

cure in this respect. Representing a more realistic estimation of 

the power of the mind might not intrinsically be an advantage of 

this school of thought, as whether it is an advantage depends on 

ontology and a whole bunch of other philosophical issues, but it 

is an important point because we want mathematical knowledge 

to be absolutely secure. 

From coristructibility arise considerations of effective meth-

ods, because when one prescribes the construction of a set, it 

might involve giving an effective method for deciding, given any 

object, whether it is an element of the set. 

Effective Method 

Intuitively, an effective method (for solving a problem) is a me-

chanical method that requires no insight and is precisely spec-

ified. This method is logically bound to yield the right answer 

to the problem in a finite number of steps, if followed correctly. 

An example of an effective method is the Euclidean algorithm 

for determining the greatest common divisor of two integers. 

The various formulations of effective method in mathemati-

cal logic give a paradigm for procedural determinability. One 

of these formulations is Church's thesis of identifying recur-

siveness^ and the intuitive notion of effectiveness. One might 

have hoped that these precise formulations also capture all of 

rational thought. Sadly, it has already been proved that there 

9 a recursive lunction can be said to be a definition by means of mathematical induction. 

Roughly speaking it consists of a set of equations such that one of them gives the value 

of the function for the argument 0, and other equations give the value of the function for 

the argument fc + 1 in terms of its value for the argument k. 



CHAPTER 2. MAPPING MATHEMATICAL PHILOSOPHIES 39 

is no effective method for deciding, in general, given any well-

formed formula in a first-order predicate logic (except in first-

order monadic predicate logic), whether it is a theorem of it. 

(Moreover, it has also been proved that it is not possible to 

prove formally every truth in elementary number theory using 

one axiomatisation.) 

The proof that there is no effective method for deciding, given 

any well-formed formula in a first-order theory, whether it is a 

theorem of it shows that the idea of effective method does not 

capture all of the workings of the mind, as humans can look for 

a proof of the formula and find out if it is a theorem. Therefore, 

it shows at the same time that the way the mind thinks provides 

rational knowledge beyond the reach of an effective method. 

What about machine computation, can it capture and theo-

retise once and for all the rational knowledge that the mind is 

able to work out? 

Turing Machines 

The Turing test sets the goal for computational simulation. If 

a programme simulating human conversation is able to "fool" 

people into believing that its responses come from a real, con-

scious being, it means that not only does a Turing machine (or 

equivalent theoretical elucidations/reductions such as A-calculus 

or recursive functions) achieve flawless computation, but it also 

thinks like a conscious being, for all that other minds can judge 

based on its "behaviour". However, a deterministic Turing ma-

chine would not be able to pass the Turing test because it cannot 

satisfactorily simulate human behaviour. 

For effective computability, a computation have to halt in less 

than (jj steps. On the other hand, if one does not limit oneself 

to effective computability, one could explore the possibility of 

allowing the sequence of steps to have the order type of e.g. 

cj + n, which would constitute a first grade of hypercomputation. 



CHAPTER 2. MAPPING MATHEMATICAL PHILOSOPHIES 40 

However, it is important to recognize that removing an ar-

bitrary finite ceiling on the number of steps of computations— 

treating computations as potentially infinite—in the informal 

idea of computation is quite different from allowing transfinite 

orderings of steps—allowing actual infinities of computational 

operations—in formal definitions of computation. Treating com-

putations as potentially infinite in the informal idea of computa-

tion is tantamount to turning a blind eye to the problematic car-

rying out of a potentially infinite number of steps, for it averts, 

successfully or not, this problem by not specifying a particular 

curtailing point, without actually advocating anything about 

potential infinity. Its just a subdued theoretical point that says 

that the computation goes on indefinitely. In contrast, allowing 

actual infinities of computational operations in formal defini-

tions of computation places this problem—a big problem for 

finitists—in the open. 

Anyway, though non-deterministic or accelerating Turing ma-

chinesio are not subject to the same constraints as deterministic 

Turing machines, complexity theorists themselves find the non-

deterministic or accelerating machines too fantastic. 

This means that, as recursive functions and axiomatisations 

of number theory have proved "disappointing", now, due to 

the "mathematical objection", deterministic Turing machines 

cannot simulate satisfactorily the power of the mind, so that 

if machine-state functionalism is construed as the view that 

"thought is computation of a deterministic Turing machine" it 

does not stand. Furthermore, as the mind supervenes on the 

brain and the brain is subject to physical constraints which ac-

celerating Turing machines seem to defy, it is as yet unclear 

whether any type of physically constructible Turing machines 

would pass the Turing test. Non-deterministic ones might be 

a candidate, as one could let it do a fair dice roll, and this 

lOThe reader is referred to [20] for a succinct exposition. 
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genuinely random seed (assuming that the universe is not de-

terministic) would enable it to appear to be able to answer the 

above-mentioned question, with occasional mistakes. To err is 

human, and this cleverly programmed non-deterministic Turing 

machine might be able to err like a human using a random seed 

along the way. But more research is surely needed on this point 

before these issues are cleared up. 

Much of the workings of the mind and rational thought is 

"reducible" to models of computation, though of course it would 

be another problem whether one should take the reductions in 

the way scientific realists take them. (That one should do so is 

the stance of some of the functionalists.) Now for the processes 

that are "reducible" to models of computation,u there are many 

concepts and research in mathematical logic and computational 

theories that could be applied in discussing the issues involved; 

and for those that are not, the reason that they are not has much 

to do with the insight gained from such these subjects too. 

To go back to the finitistic problem, these considerations il-

lustrate the work and controversy about the limits of rational 

knowledge that we do not have the space to go into. But we 

would go on to consider the part of it that concerns Cantor's 

transfinite theory in Chapter 4. 

2.7.1 Finitism 

Finitisin does not allow actual infinity. But there are relevant 

gradations of opinions that maintain this disallowance. A long-

standing distinction of two varieties can be found in this camp. 

11 Whether and why, or why not, that are all that the mind has is again subject to 

controversy but is sadly out of the scope of this paper. 
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Classical Finitism 

Classical finitists are against actual infinity. Actual infinity 

refers to a completely given, existent (abstractly or not) infinite 

collection. It has its first advocate in Aristotle. He only ad-

mits the existence of potential infinity. Potential infinity refers 

to something like an unending operation. For this position he 

argues that actual infinity would be an actualization of some-

thing which is never-ending in nature, and that an actualization 

of something which is never-ending in nature is a contradiction. 

Therefore, he concluded that talk of infinite sets is not coherent, 

and many philosophers and mathematicians have adopted this 

position since. 

Strict Finitism 

Strict finitism denies the use of any infinistic notions or methods 

as legitimate. Wright [76] gives an explication of such a position. 

It is arguably the most secure school in terms of ontology but 

it would be, at least in this stage (for in future mathematicians 

might be able to find very powerful tools in a strict finitist math-

ematics) ,very restrictive in the formulation and development of 

mathematical structures. 

2.7.2 Finitist Schools 

Noininalisiii is strict finitist, if it is indeed true that the universe 

has only a finite number of objects. 12 That it would then belong 

to this category is due to the nominalistic reduction of number 

to various sort of concrete objects. 

i2The sort of nominalism that identifying numbers with mental images (see Sec-

tion 2.1.1) might make it seem that this sort of nominalism should be like conceptualism 

in its stance regarding the finitistic problem, but mental images can be arguably more 

limited ill number than what a. priori insight can know, but this is a fine point that we do 

not need to take a strong position about. 



CHAPTER 2. MAPPING MATHEMATICAL PHILOSOPHIES 43 

Conceptualism is classical finitist, since it allows potential 

infinity but not more, due to the limitation of the power of the 

mind. That the limitation is exactly at that point, not more, 

and not less, is because potential infinity is what traditionally 

has been allowed of the mind in being able to conceptualise. 

This is a contentious point, and something along the lines of the 

considerations at the beginning of this section (see the footnote 

on p.36) could resolve this problem but we do not have the space 

to go into it in this paper. 

Intuitionism is in most cases strict finitist or classical fini-

tist depending on which point on the spectrum of intuitionistic 

schools we are talking about, some allow the totality of natu-

ral numbers, and some do not. Those allowing the totality of 

natural numbers would be classical finitist, and those that do 

not would be strict finitist. What a brand of intuitionism allows 

would be determined by what it envisages as constructible by 

the mind, and "intuitionist" constructivists can be non-finitists. 

More about this in Section 4.1.2. 

Theoretically speaking, empiricism is also strict finitist, if it 

is as science says that the universe has only a finite number of 

objects. 13 In spite of this, non-finitist mathematics might very 

well be used as a matter of convenience in calcultaions, if such 

mathematics is at this stage indispensable, given the pragmatic 

tendency of empiricists. 

Practicism, conceiving of mathematics as a group of counting 

procedures, seems to be strict finitist. We should not be able 

to count an infinite number, for that is what "infinite" means, 

right? 

13Detailed argument for the categorization of mathematical empiricism in this section 

and the next would take up too much space and thus is out of the scope of this paper. As 

this is not a major claim of this thesis we do not insist on it. 
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2.7.3 Non-finitism 

Nori-finitism refers to the stance that actual infinity should be 

allowed. 

2.7.4 Non-finitist Schools 

Realism is definitely non-finitist, as it postulates a whole Pla-

tonic world of an actually infinite number of objects. This is 

what makes realism appealing to classical mathematicians, for 

it does not set a restriction on what they are doing. 

Logicism is non-finitist, as the logicist programme makes no 

pretence of a finitary proof theory. This is because the logicist 

programme only maintains a reduction of mathematics to basic 

logical and set-theoretical concepts. It is the same case with 

neo-logicism. 

Formalism as stating that mathematics is and only is a formal 

system, would be non-finitist, as one has in most cases the axiom 

of infinity, except that finitary proof theory is finitist de facto, 

so that formalist metamathematics is finitist. However, the no-

ontology position of formalists makes its mathematics utterly 

free and non-finitist in terms of what one may do in it while 

withholding attachment of any ontological significance. 

2.8 Finitistic Reconsiderations 

However, one may well ask, do we really know the difference 

between finitism and non-finitisin as fonimlated above and the 

difference between each of its opponents? Indeed, the problem 

of finitism is part of a web of entangled problems. Tait [66], 

for example, distinguishes between the conceptual problem of 

finitism and the historical problem of finitism. The conceptual 

problem of fiiiitisrn is the problem of "making sense of the idea 

of a 'finitist，function or 'finitist' proof of a finitist arithmetic 
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proposition such as \/xy[x + y = y + a;], which seems to refer to 

the infinite totality of numbers", that is, a finitist "redefinition" 

(as opposed to the customary unbounded sense) of such sen-

tences. On the other hand, the historical problem of finitism is 

the problem of what Hilbert (and Bernays) meant by "finitism". 

There is a way to be clearer about this web of entangled 

problems. And that is to think about the issue in terms of what 

those contenders make of precisely formulated operations used 

in mathematics and of the justifications offered. Therefore we 

now refine the concept of finitism to C-finitism.i4 

2.8.1 C-finitism 

C-finitism refers to the camp against Cantor's method of proof. 

He shows that there is one-one correspondence between fractions 

and natural numbers by giving the former a well-ordering. And 

he shows by the diagonal argument that it is impossible to put 

the real numbers into one-one correspondence with the natural 

numbers. (For a brief illustration of his proof, see Chapter 3.) 

2.8.2 C-finitist Schools 

Nominalism does not admit Cantor's method of proof, as a re-

sult of iioiniiialistic identification of numbers with objects such 

as mental images, numerals or other physical object which are 

generally believed to be finitely numerous. (See note on p.42.) It 

cannot even allow count ably infinite sets, let alone uncountably 

infinite ones, so that the set of natural numbers, and, as a matter 

of course, the set of real numbers would not be legitimate. 

Conceptualism allows only potential infinity, but not Can-

tor's liberal use of actual infinities, because they do not seem 

to be knowable through a priori insight nor constructible by 

our mental framework. Therefore, the set of natural numbers is 

14Note that this is still different from what we will consider in Chapters 3 and 4. 
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problematic in conceptualist view, for conceptualism does not 

seem to tolerate a complete, given totality of natural numbers. 

The conceptualist position of C-finitisin is, as mentioned in Sec-

tion 2.7.2, in some sense an unstable position, but we are obliged 

to leave it as it is. 

Intuitionism maintains that constructive methods have to be 

used in proofs, whereas the construction of any of Cantor's tran-

scendental numbers by means of the diagonal procedure requires 

an infinite duration of time. So the diagonal procedure is not 

legitimate in an intuitionist's view, and thus intuitionism is C-

finitist. 

Empiricism would seem to belong to the C-finitist side, be-

cause of the finiteness of the universe as we know it at this stage 

of science. 

Practicism understands mathematics in terms of counting 

procedures, and considering the fact that we cannot count be-

yond the countable (in the technical sense or otherwise), it seems 

to advocate C-finitisin, because Cantor's proof is way above 

what it could allow. 

2.8.3 Non-C-finitism 

Non-C-finitism, the opposing camp of C-finitism, allows Can-

tor's diagonal method of proof. 

2.8.4 Non-C-finitist Schools 

Realism has been liberal from a historical point of view, and 

it seems to favour anything that most mathematicians allow, 

and as Cantor's sets do not contain inconsistencies (his formu-

lation does not entail Russell's paradox as he did not explicitly 

allow unrestricted formation of just about any sets the way later 

theorists assume; he also knew of Burali-Forti paradox, cf. Sec-

tion 4.3.1)’ realists should allow one to work on them. Thus 
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realists endorse Cantor's diagonal procedure and therefore real-

ism belongs to the non-C-finitist camp. 

Logicism allows mathematical operations that can be phrased 

in terms of logical vocabulary and the ontological commitments 

thereof, so it should be comfortable with Cantor's work on trans-

finite numbers. But this is as the logicists intended it and not 

what they actually hold, for in the strict sense logic does not 

contain enough ontological commitments to allow mathematics. 

This is because it is not the case that axiomatic set theory is 

true in every possible world, if we adopt the stipulative use of 

the term "logic" in the fashion Tarski argued for. 

On the other hand, neo-logicists can say that they are truly 

non-C-finitist. As they have made clear, they have all the req-

uisite logical vocabulary and the ontological commitments to 

formulate mathematics, and this is something which logicists 

cannot not vouch for. 

Formalism is also non-C-finitist because formalist mathemat-

ics only requires consistency. But again it should be noted that 

fiiiitary proof theory is fiiiitist de facto, so that formalist meta-

mathematics is finitist, just that the no-ontology position of for-

malists makes its mathematics utterly free and non-finitist while 

withholding any ontological commitment to what it says liter-

ally. 

2.9 Concluding Remarks 

We have given a brief treatment of the finitistic problem in order 

to show it in the context of other branches of philosophy of 

mathematics. We will proceed to give an extended discussion in 

the coming chapters. 



Chapter 3 

Principles of Transfinite Theory 

Before we can discuss finitism, we have to have an in-depth 

understanding of Cantor's theory and justification of transfinite 

numbers. Cantor's transfinite theory is, of course, non-finitist, 

and it is the instance of non-finitism which fueled the rise of 

modern finitism because it made precise discussions possible. 

Cantor's theory of transfinite numbers is mainly based on 

three principles, namely the domain principle, the enumeral 

principle, and the abstraction principle. We will explain each 

of them in Sections 3.1, 3.2 and 3.3. 

This summary and reformulation of Cantor's transfinite the-

ory in terms of the three principles draw on Hallett [34] but 

improve vastly in terms of organisation. 

The discussions following each principle develop from ideas 

many of which are merely hinted at in discussions in the field. 

However, before introducing the three principles, first we will 

need a brief account of the historical and theoretical background. 

3.0.1 Historical Notes on Infinity 

Prom the time of the Greeks, infinity was known to be a tricky 

concept, and let us have a quick view of its history. And after 

that we will present Cantor's proof. 

More than 2300 years ago, Aristotle argued that distance is 

48 
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not infinitely divisible, and he argued for that view because of 

Zeno's paradoxes, whose moral is that infinite divisibility and 

motion are not compatible. This view dominated the scene, 

through the antiquities and the middle ages, until Newton and 

Leibniz independently developed infinitesimal calculus towards 

the end of the seventeenth century. In 1734, Berkeley criticised 

those methods as "an infinite Difficulty to any Man whatso-

ever" [3，§5] because they operate on infinitely small quantities 

which are inconceivable. Gauss protested against "completed 

infinite magnitude" in a letter written in 1831 concerning non-

Euclidean geometry: 

...][B]ut I protest against the use of infinite mag-

nitude as something completed, which is never per-

missible in mathematics. Infinity is merely a fagon de 

parler[...] [30, p.216]̂  

It was when mathematicians were more or less in this frame of 

mind that Cantor published his works in the few decades before 

and after 1900. 

3.0.2 Cantor 's Proof 

Cantor proved that the set of real numbers has a larger cardinal-

ity ("power", or can be informally thought of as "size") than the 

set of natural numbers or the set of rational numbers, the latter 

two having the same cardinality. His proof is outlined below. 

First of all, one can show that there is one-one correspondence 

between fractions and natural numbers. One way to prove this 

is to give the fractions a well-ordering by arranging them in a 

two-dimensional array like this: 

iThe different versions seen in various books are careless, for example, see [40, p.146] 

and [22’ p.71]. 
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M 1 1 1 1 1 、 

I , 2， 3' 4， 5' 6， 
2 2 2 2 2 2 

I , 2, 3' 4' 5, 6, • • • 
3 3 3 3 3 fo -|>| 

丄 — — 1 1, 2， 3， 4 , 5, 6, . . . Vu.丄乂 

4 4 4 4 4 4 
1' 2' 3' 4' 5, 6 ' . . . 

< > 

One obtains a well-ordered sequence of fractions from this by 

by following an oblique arrow tracing through each element in 

the array, {全’ *， f , f’ 羞，^ 臺’誉’ f, ！，碧，誉，…}，and deleting the 

repeating elements such as | and | (because of j, ^ and j 

respectively), finally obtaining f’ f, 臺 , f ’ 羞 ， … } . 

And then after performing this operation one can establish a 

one-one correspondence between this complete and well-ordered 

sequence of fractions and the sequence of natural numbers in 

the ordinary order ({1, 2,3,4, 5,6, 7,8,9,10...}), with 

1 1 1 ^ 2 ^ 3 , 1 , 

I ' 2 ，T ，T ，5 ， 

1 2 3 4 1 
^ ^ 6, - 7, - ^ 8, Y w 9, - 10,... 

Thus the set of natural numbers and the set of rational numbers 

have the same cardinality, Hq. 

On the other hand, it is impossible to put the real numbers 

into one-one correspondence with the natural numbers, however 

you line them up. One of the ways to show this is by arranging 

the real numbers between 0 and 1 (in terms of binary decimal 

expansion) into an array, each real number occupying a row. A 

new number can always be defined by copying along the diagonal 

of the array and then interchanging zeros and ones, so that it is 

different from each one already listed.̂  

^The summary of Cantor's proof above in large parts follows the account in [67, pp.109-

110]. 
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In general, given a set M, the cardinal number ^ (M) (two 

lines above a set denotes its cardinal number) of its power set 

屯(M) is (two to the power M involves the notion of the 

covering aggregate, and it could be informally thought of as 

pairing up the elements of the set {0,1} and the elements of the 

set M so that each gets paired up with the other exactly once; 

the cardinality is the same whether it is written W or 2气 so 

customarily one sticks to 2^). This is because for each subset of 

M included as a member in its power set 屯(M) we can decide 

for each member of M whether that member of M is included in 

that subset of M, so that the number of possible combinations is 

2 to the power the number of members of M, 2^, and thus the 

number of su^ets of M or the number of members in the power 

set of M is 2气 In short, the power set of M, ^ (M) , has as its 

cardinal number ^ (M) = because this exhausts the number 

of possible subsets of M, and a power set of M is the set of all 

the possible subsets of M. Cantor argued that this applies to 

infinite sets too, and therefore given that the cardinal number 

of the set of natural numbers N is Kq, the cardinal number of 

the power set of natural numbers 料 i s 2 � 

Cantor [11, §4, pp.287-289] uses the more general concept 

of Belegungsmenge ("covering-aggregate") but it is enough for 

our purpose to consider the special case of the "coverings of 

aggregates" with elements of the aggregate 2 = {0,1}. 

Now we begin to discuss the three principles. 

3.1 The Domain Principle 

Central to the development of the theory of transfinite numbers 

is the domain principle.^ The domain principle behind the the-

3 Coined by Micheal Hallett [34]. 
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ory of transfinite numbers states that, for any variable to be 

meaningful in a mathematical context, there has to be a do-

main for it to range over. A domain in ordinary mathematical 

usage signifies the set of possible objects that can be put into 

the "independent variable" x in an equation. For example, in 

the equation 

y = 2a;, 

if we say that the domain is N the natural numbers, it means that 

only natural numbers can be put into the place of x. The "in-

dependent variable" does not literally "varies"，it merely means 

that as we put different values in place of x, the so-called "de-

pendent variable" y evaluates to correspondingly different val-

ues, i.e. when we put 1 into x, y would be 2, when we put 2 into 

X, y would be 4, when we put 3 into x, y would be 6, etc. 

The domain principle boils down to the claim that, for any 

mathematical term denoting some variable quantity to be mean-

ingful in a mathematical context, there has to be a domain for 

it to range over. Its consequence is that any potential infinity 

presupposes a corresponding actual infinity (summarising Hal-

lett's account in [34, p.7]). The domain principle justifies this 

presupposition in that it "forces" an equation with a variable 

X to have a domain of x. If the equation does not have a do-

main, the X in the equation would be meaningless, an empty 

place in the equation, and the equation itself would be mean-

ingless, too. Applying this in the context of Cantor's theory, 

the variable quantity denoted by x is said by classical finitists 

to be potential infinite in an ordinary unbounded equation such 

as “y — 22；", for otherwise we would not know what "potential" 

means; and any variable in an equation has to have a domain, 

and for a variable quantity that is "potentially infinite", actual 

infinity is its domain. That can be thought of as meaning that 

an actually infinite set serves as the domain. (However, as we 

will see in Section 3.1.2, this argument has its flaws.) 
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The consequence of the domain principle that any potential 

infinity presupposes a corresponding actual infinity put advo-

cates of potential infinity in a dilemma, for with this in view 

they cannot coherently endorse potential infinity, while at the 

same time shunning actual infinity. If this principle stands, clas-

sical finitism (Section 2.7.1) would not be a tenable position. 

All those in its camp would have to leave for the side of strict 

finitism (Section 2.7.1) or that of Cantor's. 

3.1.1 Variables and Domain 

The domain principle is justified by mathematics that involves 

variables ranging over, for example, natural numbers. Those 

variables are construed as potentially infinite by classical fini-

tists. However, if there were not a fixed actually infinite domain 

for those potentially infinite variables to be "potential in", Can-

tor argues, how can the value of potentially infinite variables be 

defined? 

Let us restate his argument in detail. As potential infin-

ity is of fundamental importance in mathematics, especially in 

mathematical analysis, few people deny its use or presupposi-

tion. Potential infinity is so common in the subject, it is "used" 

in nearly all equations. However, it means also that actual in-

finity is presupposed in all those equations. Cantor argues for 

this by means of the reasoning that when we have a variable 

quantity in some mathematical study, it has to have a fixed do-

main. Therefore, as potentially infinite variables are employed 

in mathematics, those variable quantities which are potentially 

infinite require a fixed domain which is actually infinite. There-

fore any potential infinity presupposes a corresponding actual 

infinity.4 

Certainly to this point the argument is not yet conclusive. 

‘This is the gist of Cantor's argument as given in [14，pp.410-411]. 
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There are several ways of attacking this principle and corre-

sponding ways of defense. 

3.1.2 Attack and Defense 

Infinite totality 

First of all, the idea of a completed infinity or an infinite total-

ity is really quite mind-boggling if you think about it seriously. 

Could any given "whole" be genuinely infinite? If it is infi-

nite, then it has no end, and if it has no end, how can it be 

a "whole" ？ Given the paradoxical nature of the term, do we 

really know what we are talking about when we say "an infinite 

whole"? In other words, could the mind really understand this 

term which refers to something at once infinite and whole? 

On the other hand, is the mind powerful enough to know that 

the "actually infinite" is actually infinite? That infinity could 

be a completed whole all given at once, but not, for example, 

a rule for some sort of unending generation, is somehow hard 

to grasp, for the very word "infinity" suggests unboundedness, 

unendingness, uncountability (not necessarily uncountability in 

the technical sense, for even the act of counting the natural 

numbers which form a so-called "countable set" can never be 

fully accomplished) and the like. 

Inspite of all these skeptical thoughts, the idea of an infinite 

domain has been shown to be very fruitful and coherent starting 

from the work of Cantor. He has shown that infinite sets are 

capable of mathematical determination and operations. Union 

and intersection of infinite sets, one-one correspondence between 

infinite sets etc. make perfect sense, and form as significant a 

part of set theory as finite sets. 

However, capability of mathematical operations does not dis-

solve foundational questions. (This meta-level argument does 

not presuppose foundationalism in the sense of Section 2.6.1， 
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though mathematicians in general would probably not feel at 

all troubled about foundational questions, even when these do 

not presuppose foundationalism, when there are operable math-

ematical functions to play with.) One can still wonder about its 

legitimacy; and if it is not legitimate, then those mathematical 

operations, however conceptually varied and fruitful, are prob-

lematic too, though they may be redeemable after appropriate 

modifications.5 

Meaningful Potentiality 

Secondly, why is it not possible for potential infinity to be mean-

ingful without presupposing actual infinity? This really involves 

a whole lot of ontological and metaphysical speculations sur-

rounding the problem of potentiality and infinity. Infinity seems 

by its nature something not actualisable, therefore why should 

actual infinity be conceptually more "fundamental" than poten-

tial infinity? Potential infinity seems to have the advantage of 

being ontologically simpler and thus easier to accept, at least 

for those that are not Platonistic realists, for it might be an 

irrelevant consideration for them (cf. Section 2.1.4). 

A plausible reply to the above argument goes like this. That 

potential infinity presupposes actual infinity is inevitable be-

cause of the very nature of mathematical activity. What does 

that mean? It means that this presupposition is inevitable be-

cause in mathematics variable quantities simply have to have an 

expressly fixed domain that they are based on to be meaningful 

for people dealing with it, and the same reasoning that makes 

one deny the meaningfulness of a function if one does not know 

its assigned domain requires subscription to the position that 

potential infinity presupposes actual infinity. It would be sensi-

ble to suppose that Platonistic realists do not agree to this sort 

5An original point in regard to the controversy. 
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of reasoning invoking knowledge of the assigned domain because 

a function is always meaningful if it is, and the fact that we do 

not know that it is now does not affect its nieaningfulness, for 

it is mind-independent. 

Is this counter-argument convincing? We think not. The rea-

son is that the nature of mathematics is one of the issues under 

scrutiny, and therefore cannot be cited as something accepted. 

More about this in Chapter 4. We will now explain and 

examine the other two principles first. 

3.2 The Enumeral Principle 

Cantor's enumeral principle® contends that being a natural num-

ber is being the enumeral of a well-ordered set. It would be like 

checking the ordinal numbers of the last item in an inventory in 

order to know how many items there are (provided that there 

is only one piece of each type of goods)/ As the inventory only 

lists the goods once, it gives them a particular order, the order of 

being listed in the inventory, and any item in the inventory are 

ordered by the relation of being listed before another item. The 

numbers of the items do not necessarily presuppose numbers as 

used ill mathematics in the customary way, for these are ordinal 

numbers, and conceptually they are definitely not the same as 

natural numbers. Moreover, they do not necessarily have to be 

symbolised by the arabic numerals, any symbols could do. 

For example, given an inventory of clothes, 

1. Blue shirt 

2. Green shirt 

3. Red shirt 

®This principle comes from re-organizing the presentation in Hallett [34]. 

^An original illustration. 
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4. Mauve shirt 

5. Violet shirt 

6. Sepia skirt 

7. Black skirt 

8. Yellow skirt 

9. Pink skirt 

The following relations (but not only the following relations) 

subsist between the items: 

Blue shirt < Green shirt (3.2) 

Green shirt < Red shirt (3.3) 

Red shirt < Sepia skirt (3.4) 

Blue shirt < Pink skirt (3.5) 

Green shirt < Blue shirt (3.6) 

The ordering relation is transitive, which means that, for ex-

ample, if Blue shirt < Green shirt and Green shirt < Red shirt, 

then Blue shirt < Red shirt. 

The relation is irreflexive, which means that，(Green shirt < 

Green shirt) and that the same can be said for any item in the 

inventory. 

One of the "modern" definition of well-ordering says that a 

set is well-ordered if any subset of it has a least element, i.e. 

the element that bears the relation < to all other elements. If 

we inspect the subset {Green shirt, Red shirt, Sepia skirt} of the 

inventory, we can see that it has a least element, and that is 

Green shirt, because Green shirt < Red shirt and Green shirt < 

Sepia skirt. We can satisfy ourselves that a least element can 

be found for any one of the subsets of the inventory. 
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An alternative and perhaps better way to think of the con-

cept well-ordering in terms of concrete lists is a dictionary. A 

dictionary has clear rules for order and it does not need to make 

use of numerals in order words. We could say that dictionary 

entries give a well-ordered set of words, provided that we do 

not count the words with the same spelling but are etymologi-

cally unrelated (like "bank" as in "river bank", and "bank" as 

in "investment bank") more than once. 

3.2.1 Cantor's Ordinal Theory of Numbers 

The enumeral principle states that being a natural number is 

being the enumeral of a well-ordered set. Now let us put in 

the fine details; Cantor thinks that to be a natural number is 

to be an ordinal number, and in turn an ordinal number is the 

eiiuirieral of a well-ordered set. Therefore, he argues, a finite 

number is not inherently different from an infinite number be-

cause each one is respectively the enumeral of a well-ordered set 

which has the same sort of structure and capable of undergoing 

the same set-theoretical operations regardless of whether it is a 

finite well-ordered set or an infinite well-ordered set. (Zennelo 

proved the well-ordering theorem which says that there exists a 

well-ordering of S for any set 5, assuming the axiom of choice.) 

In short, there are well-orderings for finite sets and infinite sets 

alike, and as a result there are enumerals of finite sets and in-

finite sets alike. Therefore, as being a natural iminber (finite 

or infinite) is "reduced to" being the enumeral of a well-ordered 

set, and if finite numbers exist, then transfinite numbers also ex-

ist because they are on an equal footing because the conceptual 

reductions of each are the same. 

The key concepts involved in Cantor's ordinal theory of num-

bers are: an ordinal number, an enumeral of a well-ordered set, 

and a well-ordered set, in reverse order of the degree of being 
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conceptually primitive. Below are explications of each. 

3.2.2 A Well-ordered Set 

A well-ordered set is a set whose every non-empty subset has 

a least element with regard to an irreflexive relation on that 

set. Intuitively, a well-ordered set is a set linearly ordered by a 

transitive relation, and subsets of it do not "go on forever" on the 

side of lesser values in the way the negative integers or an open 

interval of real numbers do. (An open interval is one in which 

the end-points are excluded.) The inventory as mentioned in 

Section 3.2 is an example of a well-ordered set, loosely speaking 

in a pedagogical way. Cantor's own definition of a well-ordered 

set differs slightly in wordings from the one in currcnt usage, 

but is equivalent, as argued in Hallett [34, p.52 . 

3.2.3 An Enumeral 

An enumeral (Anzahl) of a well-ordered set is a "picture" or 

"representational image" of a well-ordered set. It is a "canoni-

cal representative" of a well-ordered set, or of a class of isomor-

phic well-ordered sets, A "canonical representative" of a well-

ordered set or of a class of isomorphic well-ordered sets would 

be a representative inventory of the same length as the example 

in Section 3.2. And such an inventory would be the enumeral of 

the inventory in Section 3.2. 

An enumeral e of a well-ordered set (E, <) stands in such a 

relation to that set if and only if the set of predecessors of e is 

isomorphic to (E, <). (This involves the iterative nature of the 

formation of well-ordered sets. We do not need to go into this 

in detail.) 

^Paraphrasing Cantor's formulation in [15’ pp. 168-169]. 
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3.2.4 An Ordinal Number 

And, at last, an ordinal number is an enumeral of a well-ordered 

set, as explained above. 

With this ends a brief account of the enumeral principle and 

we now discuss the philosophical issues involved. 

3.2.5 Attack and Defense 

Counting Number 

The problem in the enumeral principle, however, is that an or-

dinal number is in its original sense a counting number.9 But 

it is definitely not possible that transfinite numbers could be 

counted. Thus the enumeral principle accounting for the natu-

ral numbers via the ordinal numbers does not stand very well 

conceptually. 

Of course the dialectic does not end there, it is only the begin-

ning, for even though it is not possible to count infinite "num-

bers" ，Cantor initiated the alternative concept of one-one corre-

spondence. One-one correspondence does what counting fails to 

do in an infinite context一one-one correspondence defines equiv-

alence classes of sets of the same powers (or cardinalities), to put 

it in anachronistically modern parlance. But this goes from the 

enumeral principle to the abstraction principle, which will be 

explored in Section 3.3. 

Well-ordering Principle 

However, one can stick to the enumeral principle and defend the 

well-ordering principle instead of switching to the abstraction 

principle and endorsing the feasibility of one-one correspondence 

between sets, finite and infinite. So how does one stick to the 

9This part articulates an objection to the principle that is original. 
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enumeral principle and defend the well-ordering principle?^^ 

One can say in defense of the well-ordering principle that it is 

important for mathematical operations, that as it is equivalent 

to the axiom of choice (see below) which a significant portion 

of mathematics requires, the well-ordering principle should be 

upheld. Upholding the well-ordering principle means that the 

enumeral principle keeps its basis. 

Let us explain the stakes involved. 

There is a joke from Jerry L. Bona (a professor of mathemat-

ics at the University of Illinois) that says, "The axiom of choice 

is obviously true, the well-ordering principle obviously false, and 

who can tell about Zorn's lemma?" 

The axiom of choice states that there is a set (the "choice 

set") with exactly one element from each of an infinite number 

of sets sharing no common members. For example, there is a set 

of socks with one sock from each of an infinite number of pair 

of socks without assuming that there is a criteria by means of 

which one chooses a sock in the case of each pair. The common 

complaint against the axiom of choice is that it is arbitrary and 

counter-intuitive because no criteria whatsoever is needed for 

the formation of the choice set. It gives too much power to the 

mathematician. 

The well-ordering principle states that there is a well-ordering 

function for any set. It means that there is always a way (though 

unspecified) to order a set into a well-ordered set. Again similar 

complaints are frequently voiced against this principle. 

Zorn's lemma states that if every simply ordered subset of 

a partially ordered set has an upper bound, then that partially-

ordered set has at least one maximal element. A simply ordered 

set is a set with a complete ordering and the relation is irreflexive 

and transitive. A partially ordered set is ordered with respect to 

i°The connection between the enumeral principle and the well-ordering principle has 

not, been explicitly noted in the controversy surrounding Cantor's transfinite theory. 
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a reflexive, anti-symmetric and transitive relation. (We do not 

need to go into this. One might refer to Mendelson [48，p.198' 

or Wilder [73, p.l32].) 

Despite what the joke says, the axiom of choice, the well-

ordering principle, and Zorn's lemma are actually equivalent.u 

But mathematicians in general find the axiom of choice to be 

intuitive, the well-ordering principle to be counter-intuitive, and 

Zorn's lemma to be too complex for any intuition. Now the 

axiom of choice is consistent with but independent of the system 

ZF，i2 and that means that the well-ordering principle is likewise. 

But axiomatic treatment of arithmetic is incomplete anyway, 

so what is so devastating about the independence of the well-

ordering principle for Cantor's programme? 

The problem with the fact that the well-ordering principle 

is independent is that a Cantor-intuitive principle should be 

independent in a well-received axiomatic system. If even such an 

obvious principle cannot be proved axiomatically in a canonical 

system, what ground does he have other than its obviousness? If 

the well-ordering principle were provable in the system, then the 

enumeral principle could be a well-grounded, well-fitted account 

of the natural numbers. But if it were not, then the enumeral 

principle cannot very well claim precedence over other accounts. 

If the enumeral principle cannot claim precedence over other 

accounts, then the equal status that it gives to the finite numbers 

and the infinite numbers cannot be established convincingly by 

means of it. 

Now it is established that the well-ordering principle cannot 

be proved in ZF, and that means that the enumeral principle 

. cannot very well claim precedence over other accounts and that 

the equal status that it gives to the finite numbers and the infi-

11 In fact one can refer to a book by Rubin and Rubin [59], that is entirely devoted to 

explicating the equivalents of the axiom of choice. 

i^ZF refers Zermelo-Fraenkel set theory with or without axiom of choice depending on 

context, cf. note on ZFC in Section 2.1.8. 
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nite numbers cannot very well be justified by this means. Then 

is there any other way to establish its precedence? 

But that is not all, for the axiom of choice is disproved [64 
ill NF,i3 a respected system. 

However, we will leave that part of the controversy for now, 

and will continue to inspect the enterprise in Chapter 4 after we 

have explicated the last of Cantor's three principles. 

3.3 The Abstraction Principle 

An alternative to the enumeral principle would be the abstrac-

tion principle. 14 The enumeral principle accounts for numbers 

by means of ordinal numbers, but the abstraction principle ac-

counts for numbers by means of cardinal numbers. Now, if num-

bers are construed as cardinal numbers, then since the compari-

son and manipulations of cardinal numbers is done by means 

one-one correspondence which is as meaningful and determi-

nate between infinite cardinal numbers as between finite car-

dinal numbers, infinite numbers have the same status as finite 

numbers. 

Imagine you are trying to "count" a deck of playing cards. 

The enumeralist way to count would be to arrange the cards by 

suit and then by number, and then check if there are any missing 

cards by referring to the representative deck (for the operation 

does not require that you know the suits and the numbers by 

heart). The abstractionist way, however, would be to just place 

the two decks in front of you, with back facing up, and pair off 

the deck being counted with the "good" deck, without looking 

at what is printed on the other side at all. If the two decks are 

successfully paired off, then the deck being counted has the right 

i3Quine，s "New Foundations", see his [58]. 

i^This principle comes from re-organizing the presentation in Hallett [34]. 

i^This illustration is original. 
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number of cards. 

3.3.1 Cantor's Cardinal Theory of Numbers 

Cantor sees himself in formulating the cardinal number in an 

abstractionist way as continuing the tradition of Pythagoras and 

Euclid. Euclid writes, "a number is a multitude composed of 

units" and "a unit is that by virtue of which each of the things 

that exist is called one". [35, Vol.2, p.277] The only difference is 

that he replaces Euclid's "multitude" with "set". 

We denote the cardinal number or power of M, the 

result of this two-fold act of abstraction, by M. Since 

each individual element m if we disregard its nature 

becomes a "one", the cardinal number M itself is a 

definite set composed of nothing but ones which exists 

in our mind as the intellectual image or projection of 

the given set M. [11, §1, pp.282-283]̂ ® 

The "two-fold act of abstraction" refers to the formation of 

the set M from members m and the formation of the cardinal 

number M from the set M. 

To go back to the cards metaphor, you use indiscriminate 

cards to count the cards in your hand. You pair off the cards in 

your hand with the indiscriminate cards, and you tell how many 

you have by looking at the indiscriminate cards (perhaps you 

arrange them into easily recognisable patterns, but that is not 

important). One asks, why not count the cards in your hands 

directly? Well, you use the indiscriminate cards as tokens. That 

is a device that has been used throughout history, so that even 

as a metaphor it bears a resemblance to how we do things in 

practical life. 

The abstraction principle involves these concepts: a cardinal 

number, one-one correspondence, and "ones". 

^^Modified translation with reference to Cantor [16] and Hallett [34]. 
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3.3.2 An Abstract One 

In Cantor's conception the cardinal number of a set M is a 

definite set consisting of indiscriminate, abstract "ones" "which 

exists in our mind as the intellectual image or projection of the 

given set M” 

To use our metaphor of playing cards, it would be an indis-

criminate card. 

3.3.3 One-one Correspondence 

Two sets M and N are in one-one correspondence if and only 

if there is a one-one function F with domain M and range (or 

co-domain) N. 

In our cards metaphor, this would be the pairing off used in 

the counting process of the cards. 

3.3.4 A Cardinal Number 

A cardinal number M is a "pure", definite set composed of ab-

stract units to which all sets with the same cardinality (number 

of elements) will be equivalent (one-one correspondent). In other 

words, it is a set that, so to say, represents all sets with the same 

number of elements, regardless of what those elements are. 

In our cards metaphor, this would be a quantity of indiscrim-

inate cards used in one particular count. 

3.3.5 Attack and Defense 

An Abstract One 

The first problem in the abstractionist account is that this "ab-

stract one" is rather problematic. Cantor [11, §5, p.289] charac-

terises what we call an "abstract one" thus: 

17Paraphrasing Cantor [11’ §1’ p.283]. 
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A single thing e。’ if we subsume it under the con-

cept of an aggregate Eq = (e。)，corresponds, as cardi-

nal number, to what we call “one” and denote by 1; 

we have — 

1 = (3.7) 

Let us now unite with Eq another thing ei, and name 

the union-aggregate Ei, so that 

五i 五o，ei) 二（eo,ei). (3.8) 

How can we distinguish cq from ei if it is really abstract, with-

out presupposing some numeric concept?i8 Notice that, unlike 

the Frege-Russell account which makes use of the non-identity 

of non-identical th ings ,no technique bypassing some sort of 

numeric concept has been employed in Cantor's account. 

By the extensionality principle, anything that is indistin-

guishable with something is identical with that thing. If one 

accept the extensionality principle, as many do, then he could 

not consistently allow such "abstract ones" in a theory. There-

fore the question whether one could use them to account for 

numbers satisfactorily inevitably arises, for it seems to be more 

justifiable to assume numbers as primitive, since they are at 

least distinguishable. 

On a related note, it is actually possible to formulate ordinals 

in an abstractionist way. In [71, p.347], von Neumann tries to 

"avoid the vague notion 'type' “ by defining ordinals in this 

original objection to Cantor's abstractionist account. 

i9For example, the definition of "2" in Whitehead and Russell [72] is basically as a set 

P for which there exists some x and some y such that both belong to (5 and that x is not 

identical to y, and for which if any u and v and w all belong to /?, then one of u and v 

and w is identical to one of the other two. In symbolic notation: 

: 3xBy(x € ,M ?y e 八 = y))A 
\/u'^v\/w((u 巨(3Nve|3/\we^(3、~•*{Ju^ = v\/u = w\/v二 tu))}. 
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form: "Every ordinal is the set of the ordinals that precede it" 

or symbolically 

入=[0,A). 

It is in a sense an ordinal version of the abstraction principle. 

But luckily it does not succumb to the same problem as the car-

dinal version. So maybe one should adhere to an abstractionist 

ordinal account of number. But the problem with this is that 

it also has to do with the well-ordering principle, so that the 

myriad of problems mentioned in Section 3.2.5 remain. 

Interiority 

The second problem with Cantor's cardinal theory is that it is 

"interior": 

Cantor's mathematical theory of cardinal number 

is as an interior theory with the number-classes as the 

interior representatives of power. [34, p.119 

The word "interior" signifies the fact that in Cantor's formu-

lation the cardinal number M of a set M is actually a set in 

one-one correspondence with M, Why would this "interiority" 

be a problem? — 

If M is a set with cardinal number M, then we can say that 

the cardinal number of M, i.e. M, is M, which is same as the 

cardinal number of M. Aside from the confusion in notation, 

there is the more serious problem that cardinal numbers as for-

mulated by Cantor are superfluous. That they are superfluous 

is because if the cardinal number M of a set M is actually a set 

in one-one correspondence with M, then why should one bother 

with some sort of pure abstract set formulated particularly for 

the purpose of measuring cardinality? Just pick an existing set 

will do. One never needs to use sets of infinite cardinality that 
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needs to be additionally formulated in measuring the cardinality 

of sets of physical objects anyway. 

In contrast, in the Prege-Russell formulation of the cardinal 

number M of a set M as the equivalence class of all sets in 

one-one correspondence with M, the cardinal number of a set 

is not in one-one correspondence with that set. Jourdain [16, 

p.203] argues in favour of the Prege-Russell logicist formulation 

because it is ontologically simpler as it avoids assuming the new 

and undefined entities called "numbers", and because it can be 

deduced that the class defined is not empty, so that the cardinal 

number of M exists in the sense signified in logic. In other words, 

Cantor's original account presupposes more existent objects. 

One could settle with the Frege-Russell account instead, but 

though it solves the interiority problem, it is not immune to the 

other attacks in Chapter 4. 

3.4 Concluding Remarks 

What is philosophically significant with learning about these fine 

details in these slightly different versions of the ordinal theory 

and the cardinal theory is to enable one to find out if each theory 

is really an abstractionist account or an enumeralist account. 

This is because the two accounts presuppose different concepts. 

But then comes the still more significant question whether 

at least one of the two accounts, the abstractionist account or 

the enumeralist account, stands. This is significant because it 

determines the success of Cantor's enterprise, provided that the 

domain principle does not fail. This provision is needed because 

if the domain principle fails, then potential infinity alone, which 

would probably sufficiently account for mathematical analysis, 

seems much easier to accept than Cantor's full-fledged transfi-

nite theory. 

We will look at how his accounts of numbers and thus his 
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transfinite theory fare in the next chapter. 



Chapter 4 

Problems in Transfinite Theory 

Now, against this backdrop of explicated mathematical philoso-

phies and Cantor's theory, we can proceed to give our careful 

take on finitism. Finitists protest against Cantor's transfinite 

theory. What are the objections against Cantor's theory? We 

have divided the following problematic features of his theory in 

terms of the conceptual aspect involved, namely, structure and 

procedure (Section 4.1), number and numerosity (Section 4.2), 

and conceivability and comparability (Section 4.3).̂  We will 

start with the structural and procedural problems. 

4.1 Structure and Procedure 

Cantor's theory is problematic in view of the implied structure 

and procedure of mathematics as a whole. 

There are two senses of the word "structure" which are rele-

vant here, namely structure qua entities and structure qua pat-

terns. "Structure qua entities" refers to complex entities, while 

"structure qua patterns" refers to the properties or patterns that 

similar entities exemplify. For example, model theorists gener-

ally mean the former when they say "structure". Of course 

sometimes these two senses are not strictly differentiated and 

1 There has not been any work in which the discussion of finitism and Cantor's theory 

of transfinite numbers brings together objections with such a wide spectrum and depth. 
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the same text might allow both sorts of interpretations, never-

theless we can comprehend the slight difference between these 

two sense. 

Anyway, here we are more concerned with the structure qua 

entities among the two. Regarding the structure of mathematics 

in this sense, we are going to argue, in Section 4.1.1, that Can-

tor's proof sides with free mathematics, the ideological tendency 

of allowing any objects as long as they do not cause contradic-

tion. Of course, not just the distinction between structure qua 

entities and structure qua patterns is delicate, even the distinc-

tion between structure and procedure is not so simple, for this 

view affects which procedures are found to be adequate and con-

sequently adopted. 

But that is not all. Loosely speaking, there are also two senses 

of the procedure which are relevant here. The first one is proce-

dure in a formal sense. And the second one is procedure in an 

informal sense. "Procedure in a formal sense" refers to strictly 

formulated transformation of marks on paper, while "procedure 

in an informal sense" refers to any intuitively acceptable steps 

in mathematics or other related disciplines. 

For our purposes in this chapter, we are using "procedure" 

primarily in the latter sense. Concerning the procedure of math-

ematics in this sense, there is the objection that Cantor's proof 

is non-constructive, on which we will elaborate in Section 4.1.2. 

However, just as free mathematics does not only affect the on-

tological structure of mathematics but also the procedure allow-

able, non-constructive proof does not only concern the proce-

dure of mathematics but also the entities constructible and the 

structure formed from the inter-relationships between those en-

tities. Attitude towards the constructive/non-constructive prob-

lem affects which mathematical objects can be fruitfully "inves-

tigated" because it limits the results obtainable. 

Now let us look at the objection of free mathematics. 
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4.1.1 Free Mathematics 

Free mathematics^ is the doctrine that endorses a maximum 

ontology, allowing existence whenever no inconsistencies result.3 

Cantor's theory seems to be based on a preference for free math-

ematics. He says, 

Mathematics is in its development entirely free and 

is only bound in the self-evident respect that its con-

cepts must both be consistent with each other and also 

stand ill exact relationships, ordered by definitions, to 

those concepts which have previously been introduced 

and are already at hand and established. [12, §8 

Dedekind also wrote in his preface to [21] that 

In speaking of arithmetic [...] as merely a part of 

logic I mean to imply that I consider the number-

concept entirely independent of the notions or intu-

itions of space and time, that I consider it an imme-

diate result from the laws of thought. [•••] [N]umbers 

are free creations of the human mind [...] [21, p.31 

Advocates of free mathematics argue that mathematical ob-

jects are free creations of the mind, which is the only constraint, 

apart from the law of contradiction, to what can be said to ex-

ist. Whether this generosity with ontology is appropriate is a 

difficult question. 

The advantage of this position is that there is more creative 

space for the mathematician to work with. He can investigate 

whatever he is able to come up with, given that it is not incon-

sistent. 

2The term appears in Hallett [34], 

31 have not seen anyone explicitly raise this objection against Cantor's theory of trans-

finite numbers. 
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The disadvantage of it is that mathematics under this doc-

trine has less security, and it gives rise to more difficult founda-

tional questions. This is because the entities that he "creates" 

are frequently problematic for the more meticulously or philo-

sophically minded. For example, he might make use of the axiom 

of choice when stipulating an entity. But many mathematicians 

find the axiom of choice suspect, and they might not accept this 

entity. 

However this weighing of advantage and disadvantage goes, 

mathematicians less free in spirit are likely to question the prac-

tice of free mathematics, as it threatens the purity and integrity 

of the subject. More importantly, however, constructivists, hav-

ing the advantageous claim of playing safe on their side, de-

mands righteously the philosophically requisite proof of exis-

tence of mathematical objects (at least a relative proof on the 

basis of more commonly accepted entities) before applying the 

law of the excluded middle to the statements discussing them. 

The requirement of a proof of existence as opposed to the non-

appearance of inconsistencies gives rise to a radically different 

form of mathematics, a restrained and "difficult" form of math-

ematics. 

The lack of an existence proof is philosophically irritating. 

If one considers, for example, the view of Wittgenstein (con-

structive mathematicians also take a similar view to his, cf. Sec-

tion 4.1.2), he does not hesitate to classify such statements as 

Cantor's theorems as nonsensical, and he would not busy him-

self straightaway, like others do, with the truth or falsehood of 

statements involving infinite numbers because of an overriding 

view of the law of the excluded middle. 

Let's imagine someone living an endless life and 

making successive choices of an arbitrary fraction from 

the fractions between 1 and 2, 2 and 3, etc. ad. inf. 

Does that yield us a selection from all those intervals? 
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No, since he does not finish. But can't I say nonethe-

less that all those intervals must turn up, since I can't 

cite any which he wouldn't eventually arrive at? But 

from the fact that given any interval, he will eventu-

ally arrive at it, it doesn't follow that he will eventually 

have arrived at them all. [74, §146, p.167 

Probably anyone would agree that the law of the excluded 

middle applies to all and only the meaningful statements. But 

the problem remains as to which statements are meaningful. 

Const met ivists are stricter with it, while in most cases non-

constructivists are less strict with it. While a specification as to 

what is meaningful in this context that is at once appropriate 

and fits with our intuitive understanding of what is to be mean-

ingful is yet to be found. Given this lack the prudence of those 

against free mathematics is more commendable. 

An objection along a similar vein is that Cantor's proof has 

arguably violated a natural simplicity principle, and that is "do 

not invoke what is not necessary". If the non-finitists argue that 

real numbers as Cantor explicates them are necessary for math-

ematical analysis to retain all of its parts in classical mathemat-

ics, as opposed to the reconstruction of some and demolition of 

others in constructive mathematics——if necessity in this sense is 

meant, then non-finitists have to establish the insufficiency or 

inadequacy of constructive mathematics. 

Of course, this is a problem with a wide scope and the point 

of contention goes back to the ontological and foundational com-

mitments of the participants in the controversy. It depends on 

the weight put on the soundness of foundation vs. the value of 

applications. It would however be a safe claim to make that free 

mathematics seems not to be philosophically an advantageous 

position because of its potential for creating problems for the 

conceptual coherence of the subject. It makes it difficult to give 

a coherent account for its ontology. What this implies is that 
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ontologically speaking, it is unlikely for intuitionists, realists and 

practicists, at least, to be advocates of free mathematics. 

Closely related to the problem of the maximum ontology of 

free mathematics is Cantor's use of non-constructive proofs. 

4.1.2 Non-constructive Proof 

A constructive proof is a proof in which the existence of a mathe-

matical object or function etc. is not simply proved by establish-

ing that its non-existence is contradictory, but instead proved by 

showing that algorithmic construction of that object from some 

accepted primitives is possible in principle. An algorithm is a 

specification of a stepwise computation which a human being or 

a machinc can, in principle, perform in a finite period of time. 

The problem of constructibility is long-standing. Fraenkel et 

al. writes, 

The emphasis laid on the construction of math-

ematical entities and even the identification between 

existence and constructibility in mathematics is by no 

means a novelty. [26, p.221 

This emphasis gives rise to a variety of constructive thoughts 

with various degree of strictness in their specifications. In or-

der of decreasing strength of construal of the word, construc-

tivism [2，4, 5, 23, 69] refers to the doctrine of a) accepting 

solely, b) promoting, or c) preferring, when there is a choice, 

constructive proofs in mathematics. 

Brouwerian Counter-example 

A heuristic way of finding out if a statement admits of a con-

structive proof is to see if it is impossible to construct a Brouwe-

rian counter-example {Cb) to that statement. (See Mandelkern 

46].) For example, suppose we have a binary sequence a, that 
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is, a binary sequence in the constructive sense which means that 

there is a finite routine by which each place in the sequence is 

assigned an element of {0,1}. Keeping this point in mind, con-

sider the following group of statements as an example. 

P(a) : an = 1 for some n, (4.1) 

^P(a) : an = 0 for all n, (4.2) 

P{a) V -nP(a) : Either P(a) or，P(a), (4.3) 

\/a(P(a) V : For all a, either P{a) or -P(a), (4.4) 

1 if for all primes p > n 

p + 2 is not a pr ime. , 、 
Cb ： an = I (4.5) 

0 if for some prime p >n 

p + 2 is a prime. 
V 

"P(a)" means that 1 occurs somewhere in the sequence a, i.e. 

it might look like 

000000000010000000100000 

so that 

ail = 1 and aig 二 1. 

“，P(a)，’ means that an is all 0, i.e. it may be 

00000000000000 

so that 

ai = 0, a2 = 0, as = 0,...，au = 0. 

"P(a) V -iF(a)" means that either "1" occurs somewhere in 

the sequence a, or it does not. 

"Va(P(a) V -iP(a))" means that for any binary sequence a, 

either "1" occurs somewhere in that sequence, or it does not. 

“CV’ means that a^ = 0 if there is some prime p for which 

p + 2 is prime. Now (2229 = 0 because there is some prime, 269, 

for which 269 + 2，i.e. 271 is prime. 
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Now, if 'Va(P(a) V -iP(a))" could be constructively proved 

for all a and thus also a^. as in Cjg, then an algorithm would have 

been given for deciding the twin prime conjecture. This algo-

rithm either provides a construction establishing the twin prime 

conjecture, so that for any n, there is some prime p > n such 

that p + 2 is a prime, and so that "-iP(a)" is true, or produces 

a construction that disproves the twin prime conjecture, to the 

effect that there is some n such that for all primes p > n, p + 2 

is not a prime, and establishes "P(a)". (Remember that a is ex 

hypothesi a binary sequence for which there is a finite routine by 

which each place is assigned an element of {0,1}, which means 

that a construction has to be given.) 

Unless we do have an algorithm that decides the twin prime 

conjecture, Cb would constitute a Brouwerian counter-example 

to "Va(P(a) 

While constructivism is an umbrella term that covers a vari-

ety of positive attitudes toward constructive proofs, intuitionism 

rejects a.̂  for any arbitrary n as a well-defined nuiriber specifi-

cally out of certain ontological considerations (cf. Section 2.1.3). 

Cantor's proofs are non-constructive. Of course, to be fair, 

he is not in the minority. Most mathematicians prove non-

constructively. 

The Law of the Excluded Middle vs. Constructed Existence 

To continue to use our example, classical mathematicians may 

argue that "the extent of our knowledge about the existence or 

non-existence of a last pair of twin primes is purely contingent 

and entirely irrelevant in questions of mathematical truth" [37, 

p.2], so that by the law of the excluded middle, either the twin 

''The conjecture that there are infinitely many primes p such that p + 2 is also prime. 

5lf the conjecture were resolved in some future time in which case we might have an 

algorithm that decides the twin prime conjecture, we can simply refer to another open 

problem. 
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prime conjecture stands, then Va-iP(a), or it does not, then 

Va尸(a). And therefore, by first-order predicate logic, we have 

“Va(P(a) V"iP(a))”. 

But the intuitionist constructivist promptly retorts that this 

argument is metaphysical in nature and presupposes that the 

relevant primes already exist outside of the human intellect, 

which is a point open to argument. So the classical mathemati-

cian stands at a more precarious position than the constructivist 

mathematician. 

However, the classical mathematician returns fire and points 

out the undesirable consequence that this means that Cb is a 

"counter-example" while the twin prime conjecture is open but 

ceases to be one at exactly the moment when the conjecture is 

resolved. It ceases to be a Brouwerian counter-example because 

there would be then an algorithm for deciding the twin prime 

conjecture. This change of state is weird to say the least. Even 

more weird is the consequence that ctn for any arbitrary n is not 

a well-defined iiuinber while the twin prime conjecture is open 

but starts to be one at exactly the moment when the conjecture 

is resolved.6 

The intuitionist constructivist docs not find this counter-

intuitive, for him a mathematical assertion is generally about 

the construction or the constructedness of a certain mathemat-

ical object. It "exists" in that it has been constructed. He 

clarifies that the resolution of the twin prime conjecture fur-

nishes a method for constructing a^ for any arbitrary n. an for 

any arbitrary n does not necessarily already exist in some meta-

physical realm before our construction. He emphasises that such 

metaphysical presupposition is unwarranted. 

The classical mathematician laments the confusions and slop-

®This point is from Menger [49], and the presentation here is adapted from Hey ting [37, 

p.2]. The arguments in the following debate is also constructed largely from the points 

found in Hey ting's exposition [37], reformulated and illustrated in light of my explanations 

of constructive proofs above. 
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piness caused by the renouncement of logical laws in order to 

account for human epistemic states. 

Formal Reasoning vs. Contentual Reasoning 

The intuitionist constructivist replies that even formalists use 

contentual reasoning instead of exact and mechanical deriva-

tions, when they are doing metamathematics. {Contentual rea-

soning is the opposite of formal derivations in that it does not 

strip the expressions of their meanings as in the case of for-

mal systems in which expressions are taken to be meaningless, 

merely marks to play games with.) They too "succumb" to 

those "confusions" and "sloppiness", it is just that they do so 

at a higher level. And, while the formalists want to separate the 

metamathematical reasoning from purely formal mathematics 

and "minimise" the former, intuitionist constructivists are not 

interested in this. 

In fact, formalists would gladly investigate the formal charac-

teristics or syntax of constructivist mathematics. But then there 

is the danger of treating it as merely part of mathematics, which 

the more radical constructivists would not be content with. It 

would be reasonable to suppose that the typical intuitionist con-

structivist views their enterprise an altogether different subject 

from classical mathematics. 

This is because, for intuitionist constructivists, the sort of 

formal systems that formalists play with exemplifies a very ani-

biguous type of linguistic expression. It easily gives rise to mis-

understanding and admits of more than one interpretation. This 

objection would seem rather bizarre for nearly anyone other than 

intuitionist constructivists, for formal systems are generally seen 

as the epitome of precision. But it is not as bizarre as it looks, as 

it has been proved that if a first-order theory of arithmetic has 
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its intended model, then it has a non-standard model.7 That 

means a first-order theory of arithmetic doing a good job would 

never be categorical—admitting of only one type of model. On 

the other hand, if formal systems are treated as simple mathe-

matical structures, then fomalisations are, for intuitionist con-

structivists, a powerful mathematical tool, but they can never 

represent fully any domain of mathematics. But of course this 

fact has been made manifest to mathematical philosophers of 

any camp by Godel's incompleteness proofs, which show that 

any consistent number-theoretic formal system can be extended 

consistently in more than one way. 

However, even in the case of treating formal systems as simple 

mathematical structures, for intuitionist constructivists these 

formal systems are simply constructions made after building 

mathematics independently of the formalisation. 

But this reliance on intuition seems not a little suspicious to 

the classical mathematician infused with classical logic, for clas-

sical mathematicians may not be formalist in tendency but it 

would be slightly more possible for the classical mathematician 

to accept the intuitionist-constructivist rejection of laws of clas-

sical logic if constructive mathematics were totally formalised. 

The intuitionist constructivist replies that formal logic itself 

needs ground, and if mathematics were to be formalised on the 

basis of it then, as it involves principles more intricate and less 

direct than those of mathematics itself, mathematics would be 

put on problematic foundations, for the foundation of formal 

logic, if not problematic in itself, is at least doubtful ground for 

mathematics. This is because the intuitionist constructivist is 

of the opinion that a "mathematical construction ought to be so 

immediate to the mind and its result so clear that it needs no 

foundation whatsoever", and that one needs only "a clear scien-

tific conscience" to know whether a reasoning is sound, without 

7See the proofs in Henkin [36], Skolem [62] and Skolem [63]. 
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using any logic.̂  

Put in another way, one may say that logic is part of math-

ematics, not its foundation, for so-called logical theorems (such 

theorems as: given p —> g and g —> r, one then has p r) 

are really mathematical theorems of extreme generality. And 

the process by which one derives it does not differ in kind from 

mathematical proofs in general. By suitable juxtaposition one 

shows its obviousness. Therefore logical theorems do not claim 

precedence over other mathematical theorems.—The intuition-

ist constructivist goes on to argue. 

Intuitionist Constructivists as Non-finitist but C-finitists 

The intuitionist constructivist，s emphasis on intuition and im-

mediateness to the mind might make him seem a strict or a 

classical finitist, but it would be wrong to think that he is ei-

ther. He is neither of the two. The intuitionist constructivist 

takes the natural numbers, as a given totality, for granted. His 

justification is a) that such a totality is intuitively clear enough, 

for even children understand what natural numbers are, b) that 

mathematicians know what it means when they use this no-

tion, and c) that it is too demanding to demand more than this 

state of affairs. But the fact that the intuitionist constructivist 

is not inherently a strict or even a classical finitist does not 

deter him from finding faults with non-constructive proofs (cf. 

Section 2.7), and Cantor's proofs about transfinite iiuinbers are 

non-constructive. This shows a point that is in a way obvious 

but easy to miss. The point is that it does not take a strict or 

a classical finitist to be against Cantor's proofs,^ as we can see 

intuitionist constructivists are also against those proofs. 

®This paragraph is quoting and paraphrasing the account in [37，p.6]. 

9An original point of mine. 
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Intuitionist Constructivists' Inconsistency? 

The classical mathematician might attack the intuitionist con-

structivist's unjustified difference in attitude towards the logi-

cal law of the excluded middle and the unrestricted principle 

of mathematical induction, for to most people the former is at 

least as intuitive than the latter, if not more. And yet the in-

tuitionist constructivist rejects the former while upholding the 

latter, without further justification. It seems dogmatic. 

The intuitionist constructivist replies in defense that mathe-

matics is not about the external world, but about mental con-

structions and the process thereof, so that truth value should 

not be construed as mind-independent. Mathematical state-

ments are reports of and about mental constructions, for exam-

ple, “3 + 3 = 8 — 2" should be read as the mathematician reports 

that he has effected the mental constructions "3 + 3" and "8 - 2" 

and found that the result is the same. Others agree because they 

think in much the same way. This sort of agreement is found in 

other subjects and there is no fundaniental difference between 

mathematics and other subjects in this particular point, as op-

posed to traditional accounts of the privileged epistemological 

status of mathematics. 

The intuitionist constructivist goes on to argue that the value 

of mathematics is of the same kind as arts and letters, that it is 

a valuable activity of the mind. Its principal value does not lies 

in its being a conceptual calculus for science, as mathematical 

empiricists assert (cf. Section 2.1.5). Others attack this defense 

of intuitionist constructivism by pointing out that this school, 

despite its emphasis on the value of mathematics as an activity 

worth doing for its own sake, disowns the most precious math-

ematical work.n 

The intuitionist constructivist now tries to justify directly his 

i°This paragragh is paraphrasing the account in [37, p.8]. 

" Fo r an example of this position, see Hilbert [39]. 
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"unjustified difference in attitude towards the logical law of the 

excluded middle and the unrestricted principle of mathematical 

induction". First of all, he emphasises that we have a clear 

notion of natural numbers, which could be explained as follows. 

We conceive of the notion of an entity through abstracting from 

the particular qualities of the object. Then we perceive the 

possibility of an indefinite repetition of entities.̂ ^ 

In the second place, he argues that the principle of mathe-

matical induction stands because of the following proof: suppose 

that E(x) is a predicate of natural numbers such that E(l) is 

true, and that E(n) implies for any particular natural 

number n where n' is the successor of n. Now let p be any nat-

ural number. Investigating the numbers built up successively 

from 1 to p we see that the predicate E which holds for 1 will 

be preserved at every step in constructing p. Therefore E{p) 

is true. One knows this by simple examination of the proof, in 

view of "evidence" rather than axioms and deductions.̂ ^ 

On the other hand, the logical law of the excluded middle that 

classical mathematicians hold unconditionally is unwarranted if 

we cannot not construct the number we are talking about. 

Constructivistic Commonsense 

Given this and similar explanations of his position, the intuition-

ist constructivist deplores the nonchalance of classical mathe-

maticians in employing and relating unclear concepts. He thinks 

that his own conception is more natural and more disciplined. 

He advocates the "commonsense constructions" that we have 

before the "theoretical constructions"，which he claims is analo-

gous to the conviction that I see a tree versus the conviction that 

light waves reach my eyes and lead me to construct an image of 

i^This paragragh is paraphrasing the account in [37，p.13]. 

^^This paragragh is paraphrasing the account in [37, p.14]. 
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the tree. 14 He does not agree that his conception of mathemat-

ics as a subject is unruly and capricious. On the contrary, it is 

a conception that is untainted by theoretical speculations of a 

particular age, he argues. 

Conclusion 

This labyrinth of considerations might make one wonders what 

is to be the result of all of these. The provisional conclusion 

is that mathematics is a subject claimed by theorists of differ-

ent ontologies and standards, and that the intuitionist construc-

tivist points out rightly the unsatisfactoriness of certain classical 

mathematical methods. The use of non-constructive methods 

in the case of Cantor's proofs is particularly problematic be-

cause their effect is revolutionary, and they redefine what we 

arc to think of infinity, and change the conceptual relationship 

between number theory and mathematical analysis—if not in 

itself, then as mathematicians conceive it. That these proofs is 

non-constructive allows room for the intuitionist constructivist 

argument that maybe what Cantor is doing is a confusion and 

abuse of infinite concepts. 

But is it possible to reformulate his proofs constructively? 

For if it is possible to do so, then constructivists would not be 

able to have qualms about his theorems. Sadly, however, such 

proofs have not been found. The existence of transcendental 

numbers has been constructively proved (Liouville numbers), 

but that they are uncountable has not been proved. If they are 

countable it does not show that the set of real numbers is larger 

than the set of rational numbers, for the union of two countable 

sets is still countable. 

Cantor places the basis and justification of his free mathe-

matics and non-constructive proofs on the reduction of numbers 

^^This point about "commonsense constructions" and "theoretical constructions" is from 

[37’ p. l l] . 
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to sets and the existence of sets. In the following section we will 

be looking at this reduction. 

4.2 Number and Numerosity 

The conceptual distinction between number and numerosity is 

highly relevant to our discussion. "Number" is the intuitive 

"object" of investigation in mathematics, while "numerosity" 

is a general word for quantity redefined as the quality shared 

among sets that can be put into one-one correspondence. Can-

tor's insight is to define number in terms of this newly-defined 

numerosity. This constitutes his cardinal account (Section 3.3). 

An alternative is the ordinal account (Section 3.2), but the gist 

of the two accounts is the same一set-theoretical reduction. 

4.2.1 Weak Reductionism 

As evident from the elucidation of his enumeralist and his ab-

stractionist accounts of number in Sections 3.2 and 3.3, Cantor 

holds a kind of weak reductionism.^^ It is weak in that he does 

not simply reduce numbers to sets, but it is reductionistic in 

that numbers and their existence are explained and justified in 

terms of sets. As we have seen, the ordinal account relies on the 

well-ordered set, and the cardinal account cannot do without 

the doubly abstracted set of units. 

This brings about, firstly, the problem of whether the re-

duction is philosophically appropriate and pragmatically useful, 

and, secondly, the problem of the existence of sets. Regarding 

the reduction there is the problem of definition and construal 

of numbers, while regarding the existence of sets we have to be 

concerned with the questions as to whether it is justifiable to 

postulate sets and why, or why not. 

^^Texts in the literature do not pay due attention to this. 
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Let lis first take a look at Cantor's definition and constriial 

of numbers. The enumeral and the abstraction principles as 

we explicated have tried to shift the problem of the meaning of 

numbers to the meaning of sets. Cantor claims that the car-

dinal numbers afford the most natural and rigorous foundation 

for the finite and transfinite numbers. [11, §5, p.289] It has its 

advantages, but as we shall see in Section 4.2.2, there are sets, 

i.e. non-Cantorian sets, that do not behave as the abstraction 

principle stipulates. This deals a blow to the reduction but for 

which it might have succeeded. 

And now let us look at the existence of sets. The existence of 

sets is the fundamental and most crucial standpoint in Cantor's 

reductionist account of mathematics. It is the bottommost basis 

in his accounts of numbers, so that one has to either accept it or 

reject it, and can appeal no further. However, there seem to be 

plausible options between the primitive existence of numbers or 

that of sets, as one has to take some sort of entities as primitive, 

while which ones are is a contentious issue, involving ontological 

and practical considerations. 

Atomic Theories of Numbers 

Let us think about the primitive existence of numbers. Cohen 

mentions in [17, Chapter 2, §§1-2] a plausible type of theories 

that takes numbers as atoms or individuals, as Urelemente, i.e. 

a types of theories in which numbers are not viewed as sets. 

In that case, the axiom of extensionality has to be dropped or 

limited, as objects that do not contain things at all neverthe-

less have to stay different in this type of theory (otherwise there 

would be only one "number", as all of them are identical), while 

with the unlimited axiom of extensionality anything that con-

tains nothing would all be identical—the one and only empty set 

0 in the theory. Let us explore the pros and cons of an atomic 
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theory of numbers.̂ ^ 

The positive side of an atomic theory of numbers is that it is 

arguably more intuitive, in the sense that we learn to use and 

operate on numbers first, and sets later, so that numbers seem 

to be at least epistemologically more basic, if not conceptually. 

But the negative side of an atomic theory of numbers seems 

to be that it is conceptually less simple or elementary because 

we have to have each and every number in the theory, while 

with set-theoretical reductions we add once and for all an axiom 

of infinityi7 that conjures into existence larger sets by itself. 

(By "an axiom of infinity" is not meant the axiom of infinity of 

infinite atoms of number as in Fraenkel [25].) 

Now we are going to explain what non-Cantorian sets are. 

Non-Cantorian sets prove to be the Achilles's heel in Cantor's 

theory. That they exist seriously threatens Cantor's reduction-

ism. 

4.2.2 Non-Cantorian Sets 

Non-Cantorian set theory is any set theory in which the ax-

iom of choice or the continuum hypothesis is false. Thus "non-

Cantorian sets" might mean "sets in any non-Cantorian set the-

ory" .But here we are not concerned with "non-Cantorian sets" 

in this sense. We are concerned with another, though related, 

sense of the phrase. 

A "non-Cantorian set" as we use it here simply refers to a set 

i6Ai.guments not used in the context of Cantor's theory of numbers. 

i7lt functions like the way mathematical induction does. In one representative formu-

lation it specifies that there exists a set x containing the empty set and that if a set y 
belongs to set x then the union of y and {y} also belongs to set x. Therefore this set is 

infinitely large. And so the existence of at least one infinitely large set is guaranteed. The 

axiom of infinity in symbolic notation is 

3a: (0 6 rr A Vy(y e x ^ yU {?/} 6 re). 
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that is not equivalent to the set of its unit subsets}^ 

On the other hand, a Cantorian set is a set that satisfies the 

requirement that it be equivalent to the set of its unit subsets. 

Sets of naive set theory satisfy this requirement because there 

is a one-one correspondence between the set A and the special 

power set 屯i(A)—the set of A's unit subsets—consisting of all 

and only the {a?:}，s. {a^j's are the unit subsets of and that 

one-one correspondence is one in which each member of A would 

correspond to its singleton. Using our example above, the one-

one correspondence would be 

{ a } ^ a , {P} H a n d { 7 } ^ 7 . 

But systems such as Quine's NF [58] admit non-Cantorian 

sets. 19 NF admits non-Cantorian sets because of stratification. 

Stratification refers to the hierarchisation of set-theoretical ob-

jects. In Whitehead and Russell [72] it was known as the theory 

of types. By whatever name the hierarchisation is known, it 

prevents the establishment of the equivalence which is possible 

in Cantorian sets as presented above because equivalence is not 

a relationship that can stand between sets of different "levels". 

It is simply prohibited in hierarchisised theories. 

In view of Cantor's transfinite theory, it is clear that the very 

existence of non-Cantorian sets is an affront to the transfinite 

theory via the abstraction principle by which it is defined that 

a cardinal number M is a "pure"，definite set composed of ab-

stract units to which all sets with the same cardinality (number 

of elements) will be equivalent (one-one correspondent). (See 

Section 3.3.4.) 

^^Intuitively, "unit subsets" of a set A are subsets of A that have exactly one member so 

that each member aj of the set A under consideration "gives rise to" a set {ai} with â  as 

its sole member, and the set of these unit subsets has as members all and only the {ai}'s 

formed from each and every ai of A. For example, given a set 7} with members a, 

P and 7, its unit subsets would be {q}, {/?} and {7}’ and the set of its unit subsets would 

b e { { a } , { / ? } , { 7 } } . 
19No one seems to be aware that this is a throat, to Cantor's transfinite theory, judging 

from the literature. 
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This should be an affront because any theory that admits 

rioii-Caiitorian sets endorses a fundamentally different ontology 

from Cantorian set theory and renders powerless the abstrac-

tion principle which accounts for numbers by means of cardinal 

numbers and which accounts for the comparison and manipula-

tions of cardinal numbers by means of one-one correspondence, 

as the non-equivalence of a set and the set of its unit subsets 

constitutes an insurmountable theoretical difficulty for the ab-

straction principle. This non-equivalence is fatal to his theory 

of numbers. 

This non-equivalence is fatal because sets in non-Cantorian 

set theories that have the same "number" (allow the provisional 

use of the term here) of eleiiients can be of different level in the 

hierarchy, in which case those sets cannot be equivalent, so that 

cardinality cannot function as an adequate measurement of size. 

In such theories numbers cannot be reduced to sets, and the ab-

straction principle is not applicable. If the abstraction principle 

is not applicable in these theories, then there is one more weighty 

reason to be suspect of the adequacy of set-theoretical reduction 

of numbers. 

Another important objection to Cantor's theory is against the 

inevitable use of intensions in a theory of extensionality. Unlike 

those in Sections 4.2.1 and 4.2.2, this objection has much to do 

with Cantor's domain principle (see Section 3.1). 

4.2.3 Intension in an Extensional Theory 

By definition, the extension of an infinite concept cannot be 

completely listed and, more specifically, the objects in an in-

finite class cannot be completely listed. Therefore one has to 

have recourse to intensional definitions, that is, specifying the 

property which allows and ensures the membership of an ele-

ment. However, this brings in the problem of the equivalence of 
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intensional definitions and extensional definitions, for one needs 

this equivalence in that set theory is basically a theory of exten-

sionality, as in general axiomatic set theories explicitly contain 

an axiom of extensionality. 

Wittgenstein is a prominent proponent of this stance of find-

ing fault with "infinite extensions". As a staunch finitist, he 

repeatedly made his finitist arguments. One quote sums up his 

view neatly but, of course, with qualifications: "It's a question 

of the possibility of checking." [74, §174，p.212]̂ ° It is this possi-

bility of checking that underlines his arguably cryptical position, 

and his somehow unintuitive remarks. This crypticality and un-

intuitiveness and the reasons behind will be apparent anon. 

He denies that "infinite extensions" are really extensions, for 

“[i]n truth, [...] it's impossible to talk of [the case in which all x 

happen to have a property] at all and the '(x) • • in arithmetic 

cannot be taken extensionally" [74，§174, p.212] because it had 

to be specified by means of some property. Because of this denial 

of the extensionality of any universally quantified statement in 

arithmetic, which is at least very in keeping with his acute alert-

ness towards minute differences in philosophical grammar and 

linguistic usage, he is antagonistic towards the consistency of 

the notion of an infinite set, as such a set presumably has as its 

members the extension given by such a universal statement. As 

a result of this antagonism, he deems it an abuse of language to 

compare the "sizes" of infinite sets, arid, in particular, a flawed 

enterprise to compare the set of all transcendental numbers and 

the set of all algebraic numbers.之丄 To him they seem to be dif-

ferent kinds of sets which cannot be compared with each other 

at all. 

His colour fully delivered objection to set theory is worth quot-

ing： 

20And another similar one is "Every proposition is the signpost for a verification." [74, 

§148, p. 174] ‘ 

21 Wittgenstein articulates this point in [74, §174, p.211]. 
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The theory of aggregates attempts to grasp the in-

finite at a more general level than a theory of rules. It 

says that you can't grasp the actual infinite by means 

of arithmetical symbolism at all and that therefore it 

can only be described and not represented. The de-

scription would encompass it in something like the way 

in which you carry a number of things that you can't 

hold in your hands by packing them in a box. They are 

then invisible but we still know we are carrying them 

(so to speak, indirectly). The theory of aggregates 

buys a pig in a poke. Let the infinite accommodate 

itself in this box as best it can. [74, §170, p.206]̂ ^ 

The pig-in-a-poke metaphor signals his indignance of describ-

ing a structure amorphously. He finds it misleading to say the 

least. But we cannot have more than this when we deal with 

an infinite series.̂ ^ Wittgenstein is of the opinion that this im-

possibility of representation by means of arithmetical symbolism 

makes the infinite merely a rule, and that there is no such thing 

as an infinite extension. He also gives a reductio ad adsurdum 

of the concept of an infinite totality: 

Let's imagine a man whose life goes back for an 

infinite time and who says to us: Tm just writing 

down the last digit of tt, and it's a 2，. Every day of his 

life he has written down a digit, without ever having 

begun; he has just finished. [74，§145, p.166 

The idea of "counting" the members of an infinite set seems to 

be lurking behind the set-theoretic assertion about two infinite 

sets that they have one-one correspondence.24 By establishing 

22 "Theory of aggregates" is an older term for set theory. 

23Tliis point is found in [74, §147, p. 169]. 

24This paragraph consists of original points. 
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one-one correspondence between them, the set of natural num-

bers and the set of even numbers are found to contain the same 

"number" of elements even though the latter is a proper subset 

of the former. However, regarding the treatment of something 

of such delicate calibre, care must be taken and two points has 

to be noted, 

1. if two infinite sets were said to contain the same "number" 

of elements whenever there is a one-one correspondence be-

tween them, and if the size of any set must be greater than 

that of its proper subset, then this "number" cannot be an 

adequate measure of its size; 

2. this "number" is not something which could ever be reached 

by counting. 

The second point set-theorists would not hesitate to admit. 

As to the first point, before Cantor put forth his theorem, it 

seemed doubtful whether the definition of equinumerosity be-

tween two infinite sets as a one-one correspondence between 

them would be fruitful at all, because it would not be if there 

were not sets of different infinite sizes to compare from,25 for 

what good does it do to compare infinite sets if they were all of 

the same size? But then came Cantor's theorem, and compari-

son began to have (at least a semblance of) sense. 

Despite the attraction and beauty of Cantor's paradise, how-

ever, Wittgenstein is staunchly opposed to the talk of cardinali-

ties of infinite sets, as such "sets" seem to him to be rules rather 

than extensions. For him, what the notation 2…refers to is cer-

tainly not a number, and should not be subjected to operations 

as if it is a number. It is not something we can ever count and 

reach. And he sees the continuum hypothesis as plain nonsense. 

It would be easier to understand his view if we look at what he 

says regarding the nature of a number. 

Historical point mentioned in Potter [55], p. 153. 
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Nature of a Number 

Wittgenstein emphasizes that a number should not be seen as 

something independent of a number system. It always is a part 

of a particular number system, a structure. 

If, in the nature of the case, I cannot write down a 

number independently of a number system, that must 

also be reflected in the general treatment of number. 

A number system is not something inferior一like a 

Russian abacus—that is only of interest to elementary 

schools, while the higher, general discussion can afford 

to disregard it. [74, §171, p.207； 

The sense of treating the cardinal numbers of the set of nat-

ural numbers and the set of real numbers as if they are ordinary 

finite numbers seems highly suspicious to Wittgenstein. 

Wittgenstein holds the view that mathematics is a human 

construct and what human can construct are only finite num-

bers and infinite rules, but never infinite numbers. Because of 

his finite constructivism, he deems it nonsense to say that the 

maximum of a function is the largest value among all its values 

unless there are but finitely many, discrete points on the curve 

of the function.26 

Wittgenstein attempts to show the nonsensical nature of tak-

ing "infinite numbers" as an extensional term by examples of 

ordinary usage and analysis of the concept of an extension, and 

it is pointed out that very different sorts of experience would 

be regarded as confirmation of the assertion “Suppose we travel 

out along a straight line into Euclidean space and that at 10m. 

intervals we encounter an iron sphere, ad. Inf.” and the asser-

tion that we encounter 10,000 spheres in a row. [74, p.305] He 

then dismisses any comparison of the size of the sets of natu-

ral numbers and real numbers by means of cardinal numbers 

expresses this in [74，§172, p.208]. 
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as nonsense, because firstly, such sets may not be well-founded, 

and secondly, cardinal numbers are not genuine numbers, and 

thirdly, couiitably infinite and uncouiitably infinite sets are such 

different kinds of sets that it does not make sense to compare 

them. Such, in brief, was his argument against Cantor's cardi-

nalities in [74 . 

Is the Infinite a Rule or a Number? 

Cantor offers two accounts of numbers, namely the ordinal the-

ory of numbers and the cardinal theory of numbers.27 The or-

dinal theory of numbers is conceptually based on well-ordering 

while the cardinal theory of numbers is conceptually based on 

one-one correspondence. 

In a sense, ordinal numbers represent the procedure of count-

ing: sets are put into well-ordering and "quantitatively" repre-

sented in the mind via enumerals. For this reason, ordinal num-

bers can be said to be a philosophical compromise between a 

rule and a number, a kind of "static" counting. 

On the other hand, cardinal numbers represent a roundabout 

way of counting—counting through comparison by way of find-

ing a one-one function. 

Whichever one of the ways Cantor explicates numbers, the 

infinite is not taken as a rule. It is an extension and subject 

to Wittgenstein's criticism. The infinite as a rule is intuitively 

attractive, while the infinite as a immber gives unexpected and 

elegant results in Cantor's theory. While the fruit fulness of his 

theory makes it a convincing theory, its clash with ordinary un-

derstanding of quantity and comparison of size is a very serious 

problem. 

The implication of this would be clearer if we framed it in 

terms of computability, but we may refer our readers to the 

27This section offers a new perspective on the Cantor-Wittgenstein disagreement. 
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considerations in Section 4.1.2 to know the approach and con-

sequences without explicitly refraining and repeating this part. 

Let us now come to the last section, conceivability and com-

parability, which contains the last objection, tension with abso-

lute infinity, which is also aimed against Cantor's domain prin-

ciple, but via a different line of attack. 

4.3 Conceivability and Comparability 

Mathematics frequently touches on what is conceivable, what is 

comparable, and what is conceivably comparable; these have all 

much to do with the our conception of number and numerosity 

(which we have just discussed) because comparison in mathe-

matics is nearly always done by means of number and numeros-

ity, or some concepts closely related to them. Cantor's proofs 

push and mark the lines outlining what is conceivable, what is 

comparable, and what is conceivably comparable, all third. Infi-

nite sets were not really convincingly conceivable until they were 

shown to be comparable (via set-theoretical operations) and the 

result of comparison shown to be fruitful (as infinite sets were 

of different sizes). Cantor's conceptual "inventions" established 

the conceivability of such comparisons. However, Cantor main-

tains that there is a type of collection which is not comparable 

with others. Cantor calls such a collection absolute. 

Let us look at the problem it causes to Cantor's theory. 

4.3.1 Tension with Absolute Infinity 

Let us first review the domain principle, presented in Section 3.1. 

The domain principle states that, for any variable to be mean-

ingful in a mathematical context, there has to be a domain for 

it to range over. Its consequence is that any potential infinity 

presupposes a corresponding actual infinity. The domain prin-
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ciple justifies this presupposition in that it "forces" an equation 

with a variable x to have a domain of x. 

Cantor argues that natural and real number operations make 

existence of transfinite numbers inevitable because of the do-

main principle. And at the same time he maintains that the 

transfinite numbers themselves form a universe (but not a do-

main) of mathematical forms which constitute absolute infinity. 

But then why do the transfinite numbers not form a domain 

likewise, via the domain principle? And why do the transfinite 

numbers not require a domain for it to range over so as to be 

meaningful, as in the case of potential infinity? 

Cantor does not have a way of satisfactorily resolving this 

tension between the "numerability" (or the comparability) of 

transfinite numbers and the "unnumberability" (or the incompa-

rability, the absoluteness) of absolute infinity, other than invok-

ing God as the only one who can understand absolute infinity, 

and mentioning the undesirable consequence that this unique-

ness of God would be destroyed if absolute infinity were a do-

main and could be mathematically determined in the same way 

as transfinite numbers.̂ ^ 

Justification for Type Distinction 

Cantor did not try to resolve this tension between the numer-

ability of transfinite numbers and the unnumberability of abso-

lute infinity, but maybe we could construe Cantor as implicitly 

assuming that there is a type distinction? 

We could construe Cantor as implicitly assuming that abso-

lute infinity cannot be conceived as a unity and thus nor can it 

be conceived as a set, simply because by definition there is an 

intrinsic type distinction between the increasable infinite (trans-

finite) and the absolute infinite in that the former can be a unity 

28No one questions this horrible weakness of Cantor's theory in the literature, and there 

are only brief textual references to this theistic argument of Cantor's in Hallett [34]. 
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while the latter cannot, but Cantor has not provided any justi-

fication for the difference between his treatments of transfinite 

numbers and absolute infinity. If there is a genuine type dis-

tinction, then non-theists do not need to stand aghast at the 

unconvincing invocation of God. Is there a justifiable type dis-

tinction between the increasable infinite (transfinite) and the 

absolute infinite? 

Cantor ordains in a rather ad hoc way that 

The ordinal numbers do not form a set, but an 

absolute collection. [34, p.168 

To be sure, Cantor could appeal to the Burali-Forti paradox^^ 

to justify his absolute infinity, since this paradox was already 

known to him. He could appeal to the Burali-Forti paradox 

in order to justify a type distinction between the increasable 

infinite (transfinite) and the absolute infinite because by the 

Burali-Forti paradox, if the order type of all ordinal numbers is 

an ordinal number and can be compared as ordinal numbers are 

compared, then paradox arises. Therefore if "absolute infinity" 

were also comparable with transfinite numbers, there would be 

a paradox, as it will be larger than itself. 

Indeed, in [13，p.114], Cantor tries to connect absolutely infi-

nite collections and inconsistent collections (see below) together 

as referring to the same things. But if they refer to the same 

things, it might recommend an axiomatic set theory rather than 

the postulation of absolute infinity. 

To gain insight into what Cantor calls inconsistent collections, 

let us look at his transfinite theory. Cantor [12] introduced his 

theory of transfinite numbers with something like this: 

29The Burali-Forti paradox is the paradox that if the order type of all ordinal numbers 

is an ordinal number, then it is strictly less than itself, because it is an ordinal number 

and the order type of all ordinal numbers is larger than any ordinal number, including 

itself, as it is an ordinal number. See Burali-Forti [10] for his original publication on this. 
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If n is any initial segment of numbers, then there 

is a least number S{Q) which is greater than all the 

numbers in d 

Examples of this operation of taking supremum, or least up-

per bound, are (cf. Section 1.2.5) 

5(empty segment) = 0 (4.6) 

5(0,... ,n) = n+1 (4.7) 

5 ( 0 , 1 , 2 , . . . ) =⑴ (4.8) 

Now if we were to take Q to be the initial segment of numbers 

and operate on it, then we may form 5(^7), and whenever we 

have a initial segment of numbers we seem to be able to take 

its supremum 5(0), and take it again, if we would like to. 

Now we have to concern ourselves with the totality of all num-

bers. Could we take its supremum? But here we have a problem, 

and the problem is that if we were to admit 5(all numbers) as a 

number, then we will have the absurd conclusion that it is less 

than itself: 

5'(all numbers) < 5(all numbers) 

as in the Burali-Forti paradox, because 5'(all numbers) is larger 

than any number, and as 5(all numbers) is also a number, it is 

larger than itself. 

The arguments above show that the problem of distinguish-

ing among those initial segments H of numbers to which upper 

bounds S{Q) can be assigned and those to which upper bounds 

S{fl) cannot be assigned is serious. If we cannot solve it we are 

going to end up with paradoxes. 

Cantor knew the existence of this problem and later, in an 

attempt to solve it, called the segments which have no upper 

bound inconsistent collections.加 These are now generally called 

30He did this in [13’ p.ll5]. 
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proper classes. On the other hand, segments which do have up-

per bounds are called sets or sometimes improper classes. How-

ever, picking them out by name does not by itself solve the 

problem. 

Condition on Taking Supremum 

A way to solve it that is mentioned in Tait [65, p.90] would 

be to make the definition of the numbers precise by setting up 

some precise condition $ on initial segments, and to admit its 

supremum 5(0) only when it satisfies the condition <E>, so that 

it would no longer be possible to obtain inconsistent collections. 

One can define the new operation thus, 

If O is any initial segment of numbers satisfying the 

condition (I), then there is a least number S{Q) which 

is greater than all the numbers in Q. 

Let us call this a <I)-number. It does not lead to contradiction 

in admitting 5(all numbers) because we can stipulate that 

the totality of all numbers, i.e. 5(all ^-numbers), does not 

satisfy the condition As it does not satisfy the condition 

5(all <[>-numbers) would not be a number and we could no 

longer derive the absurd conclusion that 

5(all $-numbers) < 5(all ^-numbers) 

as before. 

But we can add 5(all $-iminbers) as another number, pro-

vided that we do not keep using the condition (I) and that we 

switch a new condition, say 屯，and have it as a ^-number. And 

then, when we want to take the supremum of all ^-numbers, we 

may add yet another number satisfying another condition, and 

continue this process indefinitely. Formulated in this inanrier, 

the theory of transfinite numbers would never be complete. 
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One either makes use of conditions like (I) or not, and if one 

makes use of them, the theory would be open-ended, while if 

one does not make use of therri, one is left with absolute infinity 

as Cantor was.̂ ^ Both seem to be very unsatisfactory, and this 

pair of alternative constitutes an important objection to Can-

tor's transfinite theory, for this is entailed by his comparable 

infinities. 

The reason that this is entailed by his comparable infinities 

is that if infinity were from the outset not allowed of those op-

erations Cantor formulated, there would not be the problem of 

open-endedness because of the conceptual characteristic of ordi-

nals, and there would not be the problem of absolute infinity in 

a bid to put an end to the unending series of infinite ordinals. 

The problem of open-endedness causes unstability to the the-

ory while its alternative, the problem of absolute infinity, causes 

inconsistency—not due to inconsistent collection per se, but due 

to the inconsisteny of standard. This inconsisteny of standard 

poses a very serious threat to the theory. 

4.4 Conclusion 

We have brought to clear view the philosophically suspect as-

sumptions of his theory (the three principles in Chapter 3) and 

critically examined these assumptions and presented reformu-

lated arguments against them (the six problems in Chapter 4). 

We have given a well-articulated account of the whole issue 

which has not been brought together before and which enables 

the reader to decide his stance in the matter. 

In this chapter, after having given all the relevant back-

grounds and explanations in the previous ones, we discussed var-

ious problems of Cantor's transfinite theory, and those are: the 

311 have not seen this dilemma noted or used as an objection against Cantor in the 

literature. 
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endorsement of free mathematics, the use of non-constructive 

proof, the need to justify his weak reductionism, the existence 

of non-Cantorian sets, intension in an extensional theory, and, 

finally, tension of increasable infinity with absolute infinity. 

First of all we discussed Cantor's endorsement of free math-

ematics which is the doctrine that endorses a maximum ontol-

ogy, allowing existence whenever no inconsistencies result. We 

argued that free mathematics gives rise to more difficult foun-

dational questions. The lack of existence proofs and violating 

the simplicity principle were also defects in his theory. 

After that we discussed the use of non-constructive proof in 

Cantor's theory. A constructive proof is a proof in which the 

existence of a mathematical object or function etc. is not simply 

proved by establishing that its non-existence is contradictory, 

but instead proved by showing that algorithmic construction of 

that object from some accepted primitives is possible in prin-

ciple. We went into the myriad of arguments between classical 

mathematicians and intuitionist constructivists, and presented 

the philosophical considerations against non-constructive proofs. 

And then we discussed Cantor's weak reductionism. It is 

weak in that he does not simply reduce numbers to sets, but 

it is reductionistic in that numbers and their existence are ex-

plained and justified in terms of sets. We showed that his weak 

reductionism is unwarranted. 

We went on to discuss the problem posed by non-Cantorian 

sets for Cantor's transfinite theory. Non-Cantorian sets were a 

problem for Cantor's transfinite theory because any theory that 

admits non-Cantorian sets endorses a fundamentally different 

ontology from Cantorian set theory and renders powerless the 

abstraction principle which accounts for numbers by means of 

cardinal numbers and which accounts for the comparison and 

manipulations of cardinal numbers by means of one-one corre-

spondence. 
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The next problem that we discussed was use of intension in 

Cantor's theory which is inevitably extensional. By definition, 

the extension of an infinite concept cannot be completely listed 

and, more specifically, the objects in an infinite class cannot 

be completely listed. Therefore one has to use intensional def-

initions. The use of intensional definitions means that it is no 

longer truly an extensional theory, causing inconsistency. 

Lastly we discussed the tension of increasable infinity with 

absolute infinity. This tension has to do with the dubious role 

of absolute infinity and its clash with the domain principle. Can-

tor does not have a way of satisfactorily resolving this tension 

between the numerability of transfinite numbers and the unnum-

berability of absolute infinity, and of explaining his difference in 

treatments of transfinite numbers and absolute infinity. 

Considering the above arguments, beautiful as Cantor's par-

adise is, we may probably have to renounce it, if we are to act 

sensibly. 

There are numerous problems with Cantor's theory, even 

though the controversy is not overwhelmingly against Cantor, 

as both sides of the argument have their points to offer. Co-

hen and Hersh [18] think that the development of set theory 

and that of geometry are analogous, and they hint that as non-

Euclidean geometry found interpretation in the works of physics 

of Minkowsky and Einstein, non-Cantorian set theory might one 

day find its use outside mathematics and facilitate wider recep-

tion. (Of course Cantor is not as towering a figure as Euclid is, 

but his theory is nevertheless very commonly accepted.) Indeed 

quantum mechanics promises support for finitary mathematics. 

But the problem of application will have to be covered by an-

other paper, for we had only the space to cover the problem on 

the theoretical level. 



Bibliography 

1] Alice Ambrose. A controversy in the logic of mathematics. 

The Philosophical Review, 42(6):594-611, 1933. 

2] Michael J. Beeson. Foundations of Constructive Mathemat-

ics. Springer, Heidelberg, 1985. 

3] George Berkeley. THE ANALYST; OR, A DISCOURSE 

Addressed to an Infidel MATHEMATICIAN. 1734. URL 

http://www.maths.ted.ie/pub/HistMath/People/ 

Berkeley/Analyst/Analyst .html. Retrieved on 11 June 

2008. 

4] Errett A. Bishop. Foundations of Constructive Analysis. 

McGraw-Hill, New York, 1967. 

5] Errett A. Bishop and Douglas Bridges. Constructive Anal-

ysis. Springer, Heidelberg, 1985. 

6] Luitzen E. J. Brouwer. De onbetrouwbaarheid der logische 

principes. In Wiskunde, waarheid, werkelijkheid. Noordhoff, 

Groningen, 1919. Originally published in 1908. 

7] Luitzen E. J. Brouwer. Zur Begriindung der intuitionistis-

chen Mathematik, I. Mathematische Annalen, 93:244-257, 

1925. 

8] Luitzen E. J. Brouwer. Zur Begriindung der intuitionistis-

chen Mathematik, II. Mathematische Annalen, 95:453-472, 

1926. 

103 

http://www.maths.ted.ie/pub/HistMath/People/


BIBLIOGRAPHY 104 

9] Luitzen E. J. Brouwer. Zur Begriindung der intuitionis-

tischen Mathematik, III. Mathematische Annalen, 96:451-

488, 1926. 

10] Cesare Burali-Forti. A question on transfinite numbers. In 

Jean van Heijenoort, editor, From Frege to Gddel—a Source 

Book in Mathematical Logic, 1879-1931, pages 105—111. 

Harvard University Press, Cambridge, Mass., 1967. Origi-

nally published in 1897. 

11] Georg Cantor. Beitrage zur Begriindung der transfiniten 

Mengenlehre, 1. In Gesammelte Abhandlungen mathematis-

chen und philosophischen Inhalts, pages 282-288. Springer-

Verlag, Berlin, 1932. Originally published in 1895. 

12] Georg Cantor. Foundations of a general theory of manifolds: 

a mathematico-philosophical investigation into the theory 

of the infinite. In William B. Ewald, editor, From Kant to 

Hilbert: A Source Book in the Foundations of Mathematics, 

pages 878-920. Oxford University Press, Oxford, 1996. 

13] Georg Cantor. Letter to Dedekind. In Jean van Heijenoort, 

editor, From Frege to Gddel—a Source Book in Mathemat-

ical Logic, 1879-1931, pages 113-117. Harvard University 

Press, Cambridge, Mass., 1967. 

14] Georg Cantor. Mitteilungen zur Lehre vom Transfiniten 

I, II. In Gesammelte Abhandlungen mathematischen und 

philosophischen Inhalts, pages 378-439. Springer-Verlag, 

Berlin, 1932. Originally published in 1887. 

15] Georg Cantor. Uber uiiendliche, lineare Punktmannig-

faltigkeiten, 5. In Gesammelte Abhandlungen mathematis-

chen und philosophischen Inhalts, pages 165-209. Springer-

Verlag, Berlin, 1932. Originally published in 1883. 



BIBLIOGRAPHY 105 

16] Georg Cantor. Contributions to the Founding of the Theory 

of Transfinite Numbers. Dover, New York, 1955. Version 

first published in 1915. 

17] Paul J. Cohen. Set Theory and the Continuum Hypothesis. 

W. A. Benjamin, Reading, Mass., 1966. 

18] Paul J. Cohen and Reuben Hersh. Non-Cantorian set the-

ory. In Mathematics in the Modern World. W. H. Freeman, 

San Francisco, 1968. 

19] Mark Colyvan. Indispensability arguments in the phi-

losophy of mathematics. In Edward N. Zalta, editor, 

The Stanford Encyclopedia of Philosophy. Fall 2004. URL 

http://plato.Stanford.edu/archives/fall2004/ 

entries/mathphil-indis/. 

20] B. Jack Copeland. Super Turing-machines. Complexity, 4 

(1):30-32，1998. 

21] Richard Dedekind. The nature and meaning of numbers. In 

Essays on the Theory of Numbers. Dover, New York, 1963. 

Originally published in 1888. 

22] Howard DeLong. A Profile of Mathematical Logic. Dover, 

New York, 2004. First published by Addison-Wesley in 

1970. 

23] Michael Dummett. Elements of Intuitionism. Oxford Uni-

versity Press, Oxford, 2000. 

24] Hartry H. Field. Science without Numbers. Black well, Ox-

ford, 1980. 

25] Abraham A. Praenkel. Abstract Set Theory. North-Holland, 

Amsterdam, 1953. 

http://plato.Stanford.edu/archives/fall2004/


BIBLIOGRAPHY 106 

26] Abraham A. Praenkel, Yehoshua Bar-Hillel, and Azriel 

Levy. Foundations of Set Theory. North-Holland, Ams-

terdam, second edition, 1973. 

27] Gottlob Prege. Begriffsschrift, eine der arithmetischen 

nachgebildete Formelsprache des reinen Denkens. Louis 

Nebert, Halle, 1879. 

28] Gottlob Prege. Grundgesetze der Arithmetik, begriffss-

chriftlich ahgeleitet, vol.1. 01ms, Hildesheim, 1893. 

29] Gottlob Prege. Grundgesetze der Arithmetik, begriffss-

chriftlich ahgeleitet, vol2. 01ms, Hildesheim, 1903. 

30] Carl F. Gauss. Werke, Band 8. Koniglichen 

Gesellschaft der Wissenschaften, Gottingen, 1900. URL 

http://resolver.sub.uni-goettingen.de/ 

purl?PPN236010751. 

31] Kurt Godel. The consistency of the axiom of choice and of 

the generalized continuum-hypothesis with the axioms of set 

theory. Princeton University Press, Princeton, 1940. 

'32] Kurt Godel. Uber formal unentscheidbare Satze der Prin-

cipia Mathematica und verwandter Systeme I. Monatshefte 

filr Mathematik und Physik, 38:173-198, 1930. 

33] Bob Hale. Reals by abstraction. Philosophia Mathematica, 

8:100-123，2000. 

34] Michael Hallett. Cantorian Set Theory and Limitation of 

Size. Oxford University Press, Oxford, 1984. 

35] Thomas L. Heath. The Thirteen Books of Euclid's Ele-

ments. Cambridge University Press, Cambridge, second 

edition, 1925. 

http://resolver.sub.uni-goettingen.de/


BIBLIOGRAPHY 107 

36] Leon Henkin. Completeness in the theory of types. Journal 

of Symbolic Logic, 15:81-91, 1950. 

37] Arend Heyting. Intuitionism，an Introduction. North-

Holland, Amsterdam, second edition, 1966. 

38] David Hilbert. On the infinite. In Philosophy of 

Mathematics—Selected Readings, pages 134-151. Prentice-

Hall, Eiiglewood cliffs, New Jersey, 1964. Originally pub-

lished in 1925. 

39] David Hilbert. Neubegriindung der Mathematik, Erste Mit-

theilung. In Abhandlung aus dem mathematischen Seminar 

der Hamburgischen Universitdt, volume 1，pages 157-177. 

1922. 

40] William E. Kennick. Metaphysics; Readings and Reap-

praisals. Prentice Hall, Eiiglewood Cliffs, N.J., 1966. 

41] Leopold Kronecker. On the concept of number. In 

William B. Ewald, editor, From Kant to Hilbert: A Source 

Book in the Foundations of Mathematics, pages 947-955. 

Oxford University Press, Oxford, 1996. 

42] Kenneth Kunen. Set Theory—An Introduction to Indepen-

dence Proofs. North-Holland, Amsterdam, 1980. 

43] Bernard Linsky and Edward N. Zalta. What is neologicism? 

The Bulletin of Symbolic Logic, 12(1):60—99，2006. 

44] John R. Lucas. Minds, machines and Godel. Philosophy, 

36:112-137, 1961. 

45] John R. Lucas. Minds, machines and Godel: a retrospect. 

In Machines and Thought: The legacy of Alan Turing, vol 

1, pages 103-124. Oxford University Press, Oxford, 1996. 



BIBLIOGRAPHY 108 

46] Mark Mandelkern. Brouwerian counterexamples. Mathe-

matics Magazine, 62(l):3-27, 1989. 

47] John P. Mayberry. A new Begriffsschrift (I). The British 

Journal for the Philosophy of Science, 31(3):213-254, 1980. 

48] Elliot Mendelson. Introduction to Mathematical Logic. D. 

Van Nostrand, New York, 1964. 

49] Karl Menger. Der Intuitionismus. Blatter fiir Deutsche 

Philosophy, 4:311-325, 1930. 

50] Ernest R. Nagel and James R. Newman. Goedel's proof. 

In The World of Mathematics: A Small Library of the Lit-

erature of MathemaUcs from, A，h-mos6 the Scribe to Albert 

Einstein, Presented with Commentaries and Notes. Simon 

and Schuster, New York, 1956. 

51] Ernest R. Nagel and James R. Newman. Gddel Proof. New 

York University Press, New York, 1957. revised edition, 

2001. 

52] Roger Penrose. Beyond the doubting of a shadow. Psyche, 

2:89-129, 1996. 

53] Roger Penrose. The Emperor's New Mind. Oxford Univer-

sity Press, Oxford, 1989. 

54] Roger Penrose. Shadows of the Mind. Oxford University 

Press, Oxford, 1994. 

55] Michael Potter. Set Theory and its Philosophy. Oxford 

University Press, Oxford, 2004. 

56] Hilary W. Putnam. Philosophy of logic. In Mathemat-

ics, Matter and Method: Philosophical Papers Vol.1, pages 

323-357. Cambridge University Press, Cambridge, second 

edition, 1979. 



BIBLIOGRAPHY 116 

57] Hilary W. Putnam. What is mathematical truth. In Math-

ematics Matter and Method: Philosophical Papers Vol.1, 

pages 60-78. Cambridge University Press, Cambridge, sec-

ond edition, 1979. 

58] Willard V. 0. Quine. New foundations for mathematical 

logic. In From a Logical Point of View, pages 80—101. Har-

vard University Press, Cambridge, Mass., 1980. Originally 

published in 1937. 

59] Herman Rubin and Jean E. Rubin. Equivalents of the Ax-

iom of Choice, 11. North-Holland, Amsterdam, 1985. First 

edition published in 1963. 

60] Bertrand Russell. Letter to Frege. In Jean van Heijenoort, 

editor, From Frege to Gddel—a Source Book in Mathemat-

ical Logic, 1879-1931, pages 124-125. Harvard University 

Press, Cambridge, Mass., 1967. 

61] Thoralf Skolem. The foundations of elementary arithmetic 

established by means of the recursive mode of thought, 

without the use of apparent variables ranging over infi-

nite domains. In Jean van Heijenoort, editor, From Frege 

to Gddel—a Source Book in Mathematical Logic, 1879-

1931, pages 303-333. Harvard University Press, Cambridge, 

Mass., 1967. Originally published in 1923. 

62] Thoralf Skolem. Uber die Nicht-charakterisierbarkeit der 

Zahlenreihe mittels endlich oder abzahlbar unendlich vieler 

Aussagen mit ausschliesslich Zahlenvariablen. Fundamenta 

Mathematicae, 23:151—161, 1934. 

63] Thoralf Skolem. Uber die Unmoglichkeit einer vollstandigen 

Charakterisierung der Zahlenreihe mittels eines endlichen 

Axiomensystems [d.h. wenn die BegrifFe 'Menge' oder 'Aus-



BIBLIOGRAPHY 110 

sagenfunktion' prazisiert werden]. Norsk Matematisk Foren-

ings Skrifter, 2(10):73-82, 1933. 

.64] Ernst P. Specker. The axiom of choice in Quine's new foun-

dations for mathematical logic. Proceedings of the National 

Academy of Sciences of the USA, 39:972-975, 1953. 

65] William W. Tait. Godel's unpublished papers on founda-

tions of mathematics. Philosophia Mathematica, 9:87-126, 

2001. 

66] William W. Tait. Remarks on finitism. In Wilfried Sieg, 

Richard Sommer, and Carolyn Talcott, editors, Reflections 

on the Foundations of Mathematics: Essays in honor of 

Solomon Feferman, pages 407-16. Association for Symbolic 

Logic, Urbana, 2002. 

67] Mary Tiles. The Philosophy of Set Theory—An Historical 

Introduction to Cantor's Paradise. Dover, New York, 2004. 

Originally published in 1989. 

'68] Alan Turing. Systems of logic based on ordinals. In Pro-

ceedings of the London Mathematical Society, volume 45 of 

2, pages 161-228, 1939. 

69] Dirk van Dalen, editor. Brouwer，s Cambridge Lectures 

on Intuitionism, Cambridge University Press, Cambridge, 

1981. 

70] Jean van Heijenoort, editor. From Frege to Gddel—a Source 

Book in Mathematical Logic, 1879-1931. Harvard Univer-

sity Press, Cambridge, Mass., 1967. 

71] John von Neumann. On the introduction of transfinite 

numbers. In Jean van Heijenoort, editor, From Frege 



BIBLIOGRAPHY 111 

to Godel—a Source Book in Mathematical Logic, 1879-

1931, pages 346-354. Harvard University Press, Cambridge, 

Mass., 1967. Originally published in 1923. 

'72] Alfred N. Whitehead and Bertrand Russell. Principia 

Mathematica. Cambridge University Press, New York, sec-

ond edition, 1925-1927. 

'73] Raymond L. Wilder. Introduction to the Foundations of 

Mathematics. John Wiley and Sons, New York, 1952. 

'74] Ludwig Wittgenstein. Philosophical Remarks. Basil Black-

well, Oxford, 1975. edited by Rush Rhees, translated by 

Raymond Hargreaves and Roger White. 

75] Crispin Wright. Frege's conception of numbers as objects. 

In Scots Philosophical Monographs, volume 2. Aberdeen 

University Press, Aberdeen, 1983. 

76] Crispin Wright. Wittgenstein on the Foundations of Math-

ematics. Duckworth, London, 1980. 

77] Alexander S. Yessenin-Volpin. The ultra-intuitionist criti-

cism and the antitraditional program for the foundations of 

mathematics. In A. Kino, J. Myhill, and E. Vesley, editors, 

Intuitionism and Proof Theory, pages 3-45. North-Holland, 

Amsterdam, 1980. 



• . ‘ • 

_ ‘ • 

. ‘ 

• • 

. ‘ . 



• • . “ • • . _ 、 

• . .. ••_‘：：.-‘：. 

C U H K L i b r a r i e s 

IIIMlii 
004546632 

_ • . 一 . 、.-.,..-‘.」：•〜4 


