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Abstract 

The application of rare earth elements (REEs) for industrial and agricultural uses 

has been increased in the last decades. The more commonly used ones are the light 

REEs such as lanthanum (La), cerium (Ce), praseodymium (Pr) and neodymium (Nd). 

The ecological studies on REEs mainly focus on crops. It was claimed that the crop 

yields and qualities were improved after being exposed to REEs. However, the 

phytotoxicity data of REEs are scarce and their influence on forestry plants have 

received less attention. The ecosystem and the forestry industry would benefit if the 

positive effects were exhibited by trees. Moreover, edaphic factors may affect the 

amount of REEs being absorbed when the plants are exposed to REEs in soil. There 

is a paucity of information on REE bioavailability in soil. The present study aimed 

to investigate the effects of REEs on plant growth and their bioavailability in soil. 

Results obtained could contribute to a safer application of REEs to plants. 

The first experiment examined the phytotoxicity of La, Ce, Pr and Nd. REEs 

reduced the seed germination rate and root elongation of Brassica chinensis and 

Lolium perenne within the tested concentration range. Their toxicity to plants was 

lower when compared with heavy metals. The median effective concentrations 

(EC50s) of REEs ranged from 9.52 to 20.1 mg/L. The EC50s of La and Ce were 

significantly lower than those of Pr and Nd. The sensitivity of B. chinensis to REEs 

was similar to that of L. perenne. B. chinensis may be proposed to be used in the 

future phytotoxicity bioassay as a standard. 

The effects of REEs on the seedlings of Acacia auriculiformis and Eucalyptus 

citriodora were investigated. Significant growth stimulation in height, standing leaf 
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number and biomass production were observed in seedlings grown in soil added with 

low concentration REEs (1-5 mg/kg). The effects diminished when the REEs 

application rate was 25 mg/kg and were not significantly different to the control. 

The difference in the performance of seedlings may be attributed to an increase in 

absorption at high application rates. The uptake of P was influenced by the presence 

of REEs, but the uptake of N and mineral elements were similar to the control. The 

tree seedlings preferred La to the other three REEs, which may be due to their 

differences in ionic radii. N-fixing species A. auriculiformis was expected to grow 

better than non N-fixing species E. citriodora. However, the difference narrowed in 

the presence of REEs. 

Soil pH significantly affected the fractionation of La in soil, while the effect of 

organic matter content was not significant. There was more La in the exchangeable 

and carbonated bound fraction (B1 fraction) when the soil was acidic rather than 

alkaline. The tissue La content had a significant positive relationship with the 

concentration in B1 fraction. However, the relationships were weak with 

concentrations in Fe-Mn oxide bound fraction (B2 fraction) and organic and sulphide 

bound fraction (B3 fraction). The results revealed that REEs in B1 fraction would be 

the more bioavailable form and REEs were more available under acidic condition. 

Overall, the present study provided new information on the toxicity of REEs and 

their effects on plants and the effects of soil properties on the bioavailability of REEs. 

REEs should not pose great hazard to plant and they will promote plant growth when 

they are applied at appropriate concentration and soil conditions. 
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摘要 

稀土元素在工農業的應用日益廣泛，當中以輕元素如鑭(La)�鈽(Ce)�鐯(Pr) 

及欽(Nd)最爲普遍。過往的硏究主要集中在稀土元素對農作物的生態影響，部份 

硏究指出施用稀土元素能增加作物產量及品質，但有關它們對植物的毒性研究卻 

相當有限，有關林業用品種的硏究更少。倘稀土元素能促進樹木生長，對林業以 

至生態保育將有莫大稗益。另外，由於植物大多透過土壤吸收稀土元素，土壤特 

性將影響稀土元素的植物吸收及利用，惟相關資料亦欠完整。本硏究旨在探討稀 

土元素對植物的毒性、對林木品種生長的影響及其生物可利用率。並爲稀土元素 

安全地應用提供科學跟據。 

首個實驗透過種子萌芽測試評估鑭、鈽、鐯及欽四種稀土元素的植物毒性。 

在測試的濃度範圍內，各元素的溶液均抑制了小白菜㈣/^〃 chinensis)及多年 

生黑麥草種子的發芽率及胚根生長。與重金屬相比’稀土元素對 

植物的毒性較低。其半數效應濃度介乎9.52至20.1 mg/L，當中鑭及鈽的半數效 

應濃度顯著低於鐯及钕。雖然小白菜用於植物毒性測試未受普及，實驗結果顯示 

小白菜和多年生黑麥草對稀土元素的敏感度相若，因而小白菜也可以作爲模式植 

物用於毒理性硏究。 

第二個項目硏究稀土元素對耳果相思(Acacia auriculiformis)及檸檬桉 

{Eucalyptus 樹苗生長之影響°於土壤加入低濃度（1-5 mg/kg)的稀土元 

素能顯著地促進樹苗生長，在樹高、葉片數目及生物量上都顯著增加。但當投放 

量增加至25 mg/kg時，促進生長的影響則不及投放低濃度之組別，各項生長指 

標與沒添加稀土元素的對照組沒有明顯差異。這或與稀土元素攝取量隨著添加濃 
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度上升而增加有關。硏究結果還顯示，稀土元素對磷的吸收有影響，但對氮和礦 

物質的吸收則沒有顯著影響。在四種稀土元素中，樹苗優先吸收鑭，這或與元素 

的離子半徑有關。另一方面，添加稀土元素縮窄了非固氮植物(檸檬桉)與固氮植 

物(耳果相思)之間生長的差異。 

第三項實驗利用連續提取方法進一步硏究土壤特性在稀土元素攝取過程所 

扮演的角色。土壤的酸驗度對鑭在土壤中的賦存形態有顯著性影響，但有機質含 

量對其並無顯著影響。相比於鹼性土壤，酸性土壤中有較多可交換態及碳酸S結 

合態的鑭。鑭在植物組織中的含量與土壤中可交換態及碳酸盤結合態的鑭含量呈 

顯著性的正線性關係，但與鐵锰氧化物結合態及有機結合態的含量無顯著相關 

性。結果顯示，可交換態及碳酸疆結合態較易被植物吸收利用，而在酸性土壤中， 

稀土元素的生物可利用的形態較多，生物可利用率也較高。 

總的來說，本論文硏究了稀土元素的毒性、對植物生長的影響及土壤特性 

對稀土元素的生物可利用率的影響。稀土元素對植物不構成嚴重的威脅’在合適 

的應用分量及土壤特性下，稀土元素更可促進植物生長。 
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Chapter 1 Introduction 

1.1 Definition of rare earth elements 

Rare earth elements (REEs) are members of Group IIIA elements in the 

periodical table (Figure 1.1). The definition of elements being included as REEs 

has different versions. The term lanthanide is used for the 14 elements with atomic 

number 58-71 in the periodic table. Lanthanons (Ln) is applied to the 16 elements 

in the group lanthanum (La) to lutetium (Lu) plus yttrium (Y). Lanthanum is the 

element before cerium (Ce) having atomic number of 57 and occupancy of the Af 

electron shell, thus La is usually included as a member of REEs. Yttrium is also a 

member of Group IIIA and has similar chemical properties to those of REEs. The 

lightest element in Group IIIA scandium (Sc), shows a sufficiently distinct 

chemistry, owing to the relatively small radius of its 3+ ion, to warrant separate 

description. In current ecological usages, REEs refer to La, Y and 14 lanthanides. 

The symbol, atomic number and atomic weight of REEs are shown in Table 1.1. 

REEs are classified into two sub-groups, light rare earth elements (LREEs) 

and heavy rare earth elements (HREEs) (Table 1.1) (Topp, 1965). The 

classification is defined by the atomic number and atomic mass of the elements. 

The elements from La to Eu, with lower atomic numbers and masses, are referred as 

LREE or called cerium group, while those from Gd to Lu plus Y (higher atomic 

numbers and masses) are referred as HREE or yttrium group. Occasionally, one 

more group named middle rare earth elements (MREEs) are used to represent the 

elements from Sm to Ho. 
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Table 1.1 Atomic numbers, atomic weights and descriptive classification of REEs 
(Topp, 1965). 

Element Symbol Atomic Atomic Descriptive classification 
number weight 

Lanthanum La 57 138.91 
Cerium Ce 58 140.12 Light rare 
Praseodymium Pr 59 140.91 Light ^ earth 
Neodymium Nd 60 144.24 ^ ra二 elements 

J ( earth 
Promethium Pm 61 145.00 elements 
Samarium Sm 62 150.35 — 
Europium Eu 63 151.96 夕 

Gadolinium Gd 64 157.25 � ^ Middle 
] ( rare earth 

Terbium Tb 65 158.92 elements 
Dysprosium Dy 66 162.50 � 

Holmium Ho 67 164.93 Heavy 
Erbium Er 68 167.26 > ra二e 

( earth 
Thulium Tm 69 168.93 elements I Heavy 
Ytterbium Yb 70 173.04 ^ rare earth 
Lutetium Lu 71 174.97 � elements 
Yttrium 工 ^ 88.91 � 

The name, rare earth element, leads to several common misconceptions to the 

elements. The first most widespread misconception is that they are rare. REEs are 

not particularly rare comparing with other elements. All REEs are more abundant 

than Ag, Pt and Au (Topp, 1965; Evan, 1990). Ce is more abundant than Zn, while 

La, Ce and Nd are more abundant than Pb (Table 1.2). The elements were considered 

to be rare because pure forms of the element are difficult to be discovered. Due to 

similarity in their properties, they exist in ores together. 
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Table 1.2 Comparison of abundance of REEs and other elements in igneous rocks 
(Topp, 1965). 

Element Atomic Abundance Element Atomic Abundance 
number (g/tonne) number (g/tonne) 

T a 51 19 ^ 4 6 
Ce 58 44 Co 27 40 
Pr 59 5.6 Ni 28 100 
Nd 60 24 Cu 29 100 
Pm 61 - Zn 30 40 
Sm 62 6.5 As 33 5 
Eu 63 1 Mo 42 15 
Gd 64 6.3 Ag 47 0.1 
Tb 65 1 Cd 48 0.5 
Dy 66 4.3 Pt 78 0.005 
Ho 67 1.2 Au 79 0.005 
Er 68 2.4 Hg 80 0.5 
Tm 69 0.3 Pb 82 16 
Yb 70 2.6 
Lu 71 0.7 

1 ^ 3\ 

The second misconception is that REEs are regarded as earth elements. Earth 

elements are substances which possess properties of alkalis, do not float and do not 

change on heating, are almost insoluble in water and evolve gas bubbles during 

reaction with water (Evan, 1990; Barrett and Dhesi, 2001). Yttria (yttrium rich 

mineral) was discovered in certain rare Swedish ores in 1794. Scientists tried to 

melt yttria and observe any change occurring in them when heated but failed. 

The above misconceptions were due to the limitation of separation technology 

when REEs were discovered. Scientists cannot separate each element from the 

mixture using old technology. As the extraction and distillation technology 
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developed, pure REEs can be extracted and so their real properties have been 

concluded. 

1.2 Discovery of REEs 

REEs were first discovered in 1794 by J. Gadolin (Greenwood and Eamshaw, 

1997; Barrett and Dhesi, 2001). Gadolin isolated yttria which was thought to be an 

oxide of a single new element. In fact it is a mineral containing predominantly Y and 

other heavy rare earths. About ten years later, another group of elements named ceria 

was isolated. Between 1839 and 1843, these two 'elements' were shown by the 

Swedish surgeon C.G. Mosander to be mixtures of oxides of Sc, Y, La and the fourteen 

lanthanides (Greenwood and Eamshaw, 1997). Mosander found that the components 

of the mixtures can be separated by a series of fractional precipitations. The two new 

oxides found in yttria were named erbia and terbia, and those found in ceria were 

named lanthana and didymia. The subsequent hundred years were spent in isolating 

new rare earth from their mixtures. The classical methods separated REEs based on 

differences in the basicity and solubility of salts. However, the differences were too 

small to be distinguished easily; these classic methods required tedious repetition of 

processing (Miranda Jr. et al.，2002). Some of the elements required thousands of 

times to be isolated. Tm required 15000 fractional crystallizations to be purified out. 

As the separation technology advanced, many compounds previously considered pure 

actually contained a mixture of more than one REEs. Didymia was shown to be a 

mixture of the oxides of Sm, Pr, Nd and Eu. Erbia and terbia were mixtures of the 
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oxides of Yb, Ho, Tm, Dy and Lu. The discoveries of individual REE are shown in 

Table 1.3. 

1.3 Physical and chemical properties of REEs 

REEs appear as typical metals. They are metallic lustre and silvery in 

appearance (except Eu and Yb which are pale yellow). They are rather soft but 

become harder across the series, in the order of increasing hardness are Ce, Nd, Pr and 

Sm. Ce is as hard as Sn, while Sm has approximately the hardness of Fe. 

The number of isotopes which was occurring naturally alters between few and 

several for odd and even atomic number respectively (Table 1.4). It has the same 

pattern as the natural abundance of the elements that elements with even atomic 

number were more abundant. 

The REEs are highly electropositive. The predominant ionic form is the 

trivalent cation Ln^^. The prevalence of the +3 oxidation state is a result of the 

stabilizing effects exerted on various orbitals by increasing ionic charge. The 

stabilizing effect on the orbitals is in the order of 4f> 5d> 6s. When an ionic charge 

of +3 is reached, the 65 and 5d orbitals are emptied. The electrons remaining in the 4 / 

orbitals are themselves so far less extent so that allowing loss of a further electron. 

Most of the ions at divalent and tetravalent states are not stable enough to exist for a 

long time; only Ce4+ and Eu^^ are stable enough to exist in aqueous solution. Ce4+ has 

emptied 4/orbital while Eu^^ has fully filled the 4/orbital that both are stable states. 
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Table 1.3 Discovery of the REEs (Greenwood and Eamshaw, 1997; Barrett and Dhesi, 
2001). 

Element Year of Discoverer Origin of name 
identification 

From ceria 

Lanthanum 1839 C.G. Mosander Lanthanein: to lie 
hidden 

Cerium 1803 C.G. Mosander Ceres: the asteroid 

Praseodymium 1885 C.A. von Welsbach Prasios: green; 
dymium: twin 

Neodymium 1885 C.A. von Welsbach Neo: new; 
Dymium=twin 

Promethium 1947 M.G.Coryell Prometheus: the 
Greek god who stole 
fire from heaven for 
men's use 

Samarium 1879 L. de Boisbaudran Samarskite: the 
mineral 

Europium 1889 E.A. Demarcay Europe 

From yttria 

Gadolinium 1880 J.C.G. de Marignac Finnish chemist, J. 
Gadolin 

Terbium 1843 C.G. Mosander After the town Ytterby 
in Sweden 

Dysprosium 1886 L. de Boisbaudran Dysprositos: hard to 
get at 

Holmium 1879 P.T. Cleve Holmia, Latin of 
Stockholm 

Erbium 1843 C.G. Mosander After the town Ytterby 
in Sweden 

Thulium 1878 P.T. Cleve After Thule, the 
Roman name for the 
northern-most region 
of the inhabitable 
world 

Ytterbium 1878 J.C.G. de Marignac After the town Ytterby 
in Sweden 

Lutetium 1907 C.A. von Welsbach Lutetia, Latin for Paris 

Yttrium 1794 C.G. Mosander After the town Ytterby 
in Sweden 
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The ionic radii of ions decline as the atomic number of the elements increase. 

Such phenomenon is called lanthanide contraction. It occurs because electrons are 

progressively added to the inner orbital, the directional characteristics of the 4/orbitals 

cause the 4 / electrons incompletely shield themselves and other 4 / electrons from the 

nuclear charge. Number of proton increases with the atomic number. Each unit 

increase in nuclear charge produces a net increase in attraction for the whole 

extranuclear electron charge cloud. The entire ionic structure therefore contracts. 

The melting points as well as the densities of REEs generally increase with the 

atomic number. Marked anomalies are shown by Eu and Yb for melting point because 

they can exist as bipositive metals. 

The magnetic moments of REEs arise from the presence of 4f electron with 

unpaired spins. Gd^^ has more unpaired 4 / electrons than other REE ion, but the 

magnetic moment is not the highest. It is because the 4/electrons are sufficiently well 

screened that both their spins and their orbital motions about their nuclei contribute to 

the magnetic moment. The REEs contains two magnetic maxima. Tb〕.，Dy3+, Ho^^ 

and Er3+ are among the strongest paramagnetic ions. Such property allows REEs to be 

a great material to make magnet. 

REEs form insoluble carbonates, fluorides, hydroxides, oxalates and phosphates 

(Todorovsky et al.’ 1997). They form soluble chlorides, nitrates and perchlorates. 
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Solubility generally decreases down the series while opposite trend is observed for salts 

of strong-acid anions, such as sulphate. 

Many REE ions give out beautiful colours. Electronic transitions in the 4/ 

orbitals give rise to characteristic absorption spectra. Nd^^, Sm^^, Dy3+, Ho^^, Er^^ 

and Tm3+ absorb light in the visible region and are coloured (Table 1.4). 

1.4 Abundance of REEs on earth 

REEs are always found as associated groups in minerals and rocks, in no case is 

one of the REEs found in complete isolation (Aide and Pavich, 2002; Parsons et al, 

2005). There are more than 200 minerals in the world containing REEs. These ores 

may be classified in one of three groups according to their total REE content: 

(1) Minerals with major and usually essential contents of the REEs. This group 

includes more than 70 minerals which are composed of all REE species and 

some lanthanide-rich equivalents of low-REE minerals. 

(2) Minerals with minor but not essential contents of the REEs. Around 200 

minerals fall in this class. 

(3) Minerals with very low concentrations of REEs. Common rock-forming 

minerals are members of this category. Relative REE abundance may be 

inferred from distribution coefficient values. 

The main factor affecting distribution of REEs in minerals is the structure of the 

minerals (Humphris, 1984; Greenwood and Earnshaw, 1997; Ramesh et al., 2000). 
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Minerals with high coordination number (10-12) prefer to select light REEs; those with 

low coordination number (as low as 6) are yttrium-selective; and those with 

intermediate number (7-9) have complex composition, with both light and heavy REEs 

present. Ionic radius of the element also affects the distribution. Only elements with 

suitable ionic radius can bind to the minerals. Minerals usually modify their structure 

to accommodate the REEs. Xenotime is tetragonal composed of yttrium phosphate. 

This structural modification is required to accommodate the heavier but smaller atoms 

of the yttrium group. Table 1.5 lists the major mineral-containing REEs. Among the 

minerals listed, bastnasite, monazite and xenotime are the most commonly known 

minerals. 

1.4.1 Bastnasite 

Bastnasite is a kind of carbonates with fluoride mineral, which is greasy, 

wax-yellow to reddish-brown. There are several varieties of bastnasite: bastnasite-(Ce) 

(with formula of (Ce, La)C03F), bastnasite-(La) (with formula of (La, Ce)C03F) and 

bastnasite-(Y) (with formula of (Y, Ce)C03F). The former two highly prefer to select 

light REE (Figure 1.2), while the latter one is an exception. Bastnasite-(Y) selects 

yttrium which is classified as a heavy REE, rather than other light REEs. 

Bastnasite is made up of stacks of carbonate ion layers and cerium fluoride layers. 

The carbonate layers are complex with angled carbonate triangular groups. The CeF 

layers form flat hexagonal sheets with each cerium bonded to three fluorines. 
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Table 1.5 Major minerals containing REEs (Clark, 1984). 

Mineral Formula Crystal 

system 

Aeschynite (Ce，Ca,Fe,Th)(Ti,Nb)2(0,0H)6 orthorhombic 

(metamict) 

Agardite (Y,Ca)Cu6(As04)3(0H)6.3H20 hexagonal 

Agrellite NaCa2Si40ioF triclinic 

Allanite (Ce,Ca,Y)2(Al,Fe2+,Fe3+)3(Si04)30H monoclinic 

Ancylite SrCe(C03)20H.H20 orthorhombic 

Apatite Ca5(P04)3F hexagonal 

Ashcrpftine KNa,CaY2Si6012(0H) 10.4H2O tetragonal 

Bastnasite (Ce,La)(C03)F hexagonal 

Belovite (Sr,Ce,Na,Ca)5((P04)30H hexagonal 

Braitschite (Ca,Na2)7(Ce,La)2B22043.7H20 hexagonal 

Brannerite (U,Ca,Ce)(Ti,Fe)206 Monoclinic 

(metamict) 

Britholite (Ce,Ca)5(Si04,P04)3(0H,F) hexagonal 

Brockite (Ca，Th,Ce)P04.H20 hexagonal 
Burbankite (Na,Ca,Sr,Ba,Ce)6(C03)5 hexagonal 

Calkinsite (Ce，La)2(C03)3.4H20 orthorhombic 
Cappelenite BaYsBeSigOis hexagonal 
Carbocemaite (Ca,Ce,Na,Sr)C03 orthorhombic 

Caysichite (Y.Ca)4Si40io(C03)3.4H20 orthorhombic 
Cerianite (Ce4+,Th)02 cubic 
Cerite (Ce,Ca)9(Mg,Fe2+)Si7(0,0H,F)28 trigonal 

Cerotungstite CeW206(0H)3 monoclinic 
Chevkinite (Ca,Ce,Th)4(Fe2+,Mg)2(Ti,Fe3+)3Si4022 monoclinic 
Chukhrovite Ca3(Y,Ce)Al2(S04)Fi3.10H20 cubic 
Churchite YPO4.2H2O monoclinic 

Cordylite (Ce,La)2Ba(C03)3F2 hexagonal 
Davidite (La,Ce)(Y,U,Fe^^)(Ti,Fe^^)2o(0,OH)38 trigonal 

(metamict) 

Donnayite Sr3NaCaY(C03)6.3H20 triclinic 

Dysanalyte (Ca,Ce,Na)(Ti,Nb,Ta)03 cubic 

Eudialyte (Ca,Na,Ce)5(Zr,Fe)2Si6(O,OH,Cl)20 trigonal 

Euxenite (Y,Ca,Ce,U,Th)(Nb,Ta,Ti)206 orthorhombic 

(metamict) 

Ewaldite Ba(Ca,Y,Na,K)(C03)2 hexagonal 

Fergusonite (Y,Er)(Nb,Ta)04 tetragonal 

(metamict) 

Fersmite (Ca,Ce’Na)(Nb,Ti,Fe,Al)2(0,0H,F)6 orthorhombic 

Florencite CeAl3(P04)2(0H)6 trigonal 

Fluocerite (Ce,La)F3 hexagonal 

Formanite (Y,Er)(Ta,Nb)04 tetragonal 

(metamict) 

Gadolinite (T,Ce)2Fe^^Be2Si2010 monoclinic 

Gagarinite NaCaY(F，Cl)6 trigonal 

Hellandite (Ca,Y)6(Al,Fe3+)Si4B4O20(OH)4 monoclinic 

Hibonite (Ca,Ce)(Al,Ti,Mg)i20i9 hexagonal 
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Table 1.5 Major minerals containing REEs (continued). 

Huanghoite CeBa(C03)2F hexagonal 
limoriite Y5(Si04)3(OH)3 triclinic 
I l i m a u s s i t e B a 2 N a 4 C e F e N b 2 S i 8 0 2 8 . 5 H 2 0 m o n o c l i n i c 

Ilmajokite (Na,Ce,Ba)2TiSi3O5(OH)i0.nH2O monoclinic 
Iraqite (K,La,Ce,Th)(Ca,Na,La)2Si8020 hexagonal 
Joaquinite Ba2NaCe2Fe2+(Ti,Nb)2Si8026(0H,F) .H2O monoclinic 
Kainosite Ca2(Y,REE)2(Si40i2)C03. H2O orthorhombic 
Kamasurtite (Ce,La,Th)(Ti,Nb)(Al,Fe^^)(Si,P)207 hexagonal 

Keilhauite (Ca,Y,Ce)(Ti,ALFe3+)Si05 monoclinic 

Knopite (Ca,Ce)Ti03 cubic 

Lanthanite (La,Ce)2(C03)3.8 H2O orthorhombic 

Laplandite Na4CeTiPSi7022.5H20 orthorhombic 
Loparite (Ce,Na,Ca)(Ti,Nb)03 orthorhombic 

Loveringite (Ca,Ce)(Ti,Fe^^,Cr,Mg)2i038 trigonal 
(metamict) 

Mckelveyite Na2Ba4(Y,Ca,Sr,U)3(C03)9.5H20 triclinic 

Melanocerite Ce4CaBSi20i2(0H) hexagonal 

(metamict) 

Monazite (Ce,La)P04 monoclinic 

Mosandrite (Na,Ca,Ce)3(Ti(Si04)2F monoclinic 

(metamict) 

Nordite Na3Ce(Sr,Ca)(Mn,Mg，Fe,Zn)2Si60i8 orthorhombic 

Okangoanite (Na,Ca)3(Y,Ce,Nd,La)i2Sii2B2027Fi4 hexagonal 

Parisite (Ce,La)2Ca(C03)3F2 hexagonal 

Perrierite (Ca，Ce,Th)4(Mg,Fe2+)2(Ti，Fe3+)3Si4022 monoclinic 
Phosinaite H2Na3(Ca,Ce)(Si04)P04 orthorhombic 

Polycrase (Y,Ca,Ce,U,Th)(Ti,Nb,Ta)206 orthorhombic 

(metamict) 

Polymignite (Ce,Fe,Y,Th)(Nb,Ti,Ta)04 orthorhombic 

(metamict) 

Priorite (Y,Ca,FeTh)(Ti,Nb)2(0,0H)6 orthorhombic 

(metamict) 

Pyrochlore (Na,Ca,Ce)2Nb206(0H,F) cubic 

Retzian Mn2Y(As04)(0H)4 orthorhombic 

Rhabdophane (Ce,La)P04.H20 hexagonal 

Rontgenite (Ce3,La)3Ca2(C03)5F3 hexagonal 

Sahamalite (Mg，Fe)(Ce,La)2(C03)4 monoclinic 

Samarskite (Y，Ce,U,Fe)(Nb,Ta，Ti)2(0,0H)6 orthorhombic 

(metamict) 

Saryarkite Ca(Y,Th)Al5(Si04)2(P04,S04)2(0H)7.6H20 hexagonal 

Sazhinite Na3CeSi60i5.6H20 orthorhombic 

Scheteligite (Ca’Fe,Mn’Bi,Y)2(Ti’Ta,Nb,W)2(0,0H)7 orthorhombic 

Semenovite (Ca,Ce,La,Na)io-i2(Fe^^,Mn)(Si,Be)2o(0,OH,F)48 orthorhombic 

Spencite (Y,Ca,La,Fe)5(Si,B,Al)3(0,0H,F)i3 hexagonal 

(metamict) 
Steenstrupine (Ce,cLa,Na,Mn)6(SiP)60i80H trigonal 
Stillwellite (Ce,La,Ca)BSi05 trigonal 
Synchysite (Ce,La)Ca(C03)2F hexagonal 
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Table 1.5 Major minerals containing REEs (continued). 
Tengerite CaY3(C03)4(0H)3.3H20 monoclinic 
Thalenite YsSisOioCOH) monoclinic 
Thortveitite (Sc,Y)2Si207 monoclinic 
Tombarthite Y4(Si,H4)40i2-x(OH)4+2x monoclinic 
Tomebohmite (Ce,La)3Si2080H hexagonal 
Tranquillityite Fe8(Zr，Y)2Ti3Si3024 monoclinic 
Tritomite (Ce,La, Y,Th)5(Si,B)3(0,0H,F), 3 hexagonal 

(metamict) 
Tundrite Na3(Ce,La)4(Ti,Nd)2(Si04)2(C03)034(0H) .2H2O triclinic 
Tveitite Caj.xYxFi+x monoclinic 
Vitusite Na3(Ce,La,Nd)(P04)2 orthorhombic 
Xenotime YPO4 tetragonal 
Yttrocerite (Ca,Ce)F2 cubic 
Yttrocrasite (Y,Th,Ca,U)(Ti,Fe^^)2(0,0H)6 orthorhombic 

(metamict) 
Yttrofluorite (Ca,Y)F2 cubic 
Yttrotantalite (Y,U,Fe)(Ta,Nb)04 monoclinic 

(metamict) 
Yttrotungstite YW2P6(OH)3 monoclinic 
Zhonghuacerite Ba2Ce(C03)3F trigonal 
Zircon (Zr,Y)(Si,P)04 tetragonal 

1.4.2 Monazite 

Monazite is a kind of phosphate minerals with formula of (Ce, La)P04. It is 

yellow to reddish-brown colour. The mineral composed of orthophosphates of La, Ce, 

Pr, Nd, Sm and Eu. Monazite has strongly selectivity on light REE on its composition 

(Figure 1.2). The monazite structure will accept REE ions with ionic radii among 

those of La and Eu (Clark, 1984). However, heavy REE can also be found in 

monazite that Th and U were observed in monazite from a bay in Brazil (Wasserman et 

a/., 2001) 
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Figure 1.2 Rare earth contents of principal minerals, as percentage of total rare earth 
oxides (Doyle et a/., 2000). 
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Monazite is a very widespread form in phosphatic pegmatites. It is a standard 

trace constituent in many ordinary igneous, metamorphic and vein filling rocks. 

Monazite is radioactive. The radiation may produce destructive effects on its crystal 

lattice structure completely but leaving the outward appearance of the crystal 

unchanged. 

1.4.3 Xenotime 

Xenotime is also a phosphate mineral composed of yttrium whose formula is 

YPO4 (Figure 1.2). The crystal of mineral is tetragonal and typically translucent to 

rarely transparent in shades of brown to yellowish brown, but sometimes greenish 

brown, muted red and yellow. 

Xenotime is a widespread REE mineral occurring in acid and alkaline igneous 

rocks, metamorphic rocks and pegmatites. It is a major source of Y, though U or other 

REEs (such as erbium and thorium) may replace some Y. Xenotime is often slightly 

radioactive since the mineral contains radioactive elements. 

1.5 Reserves and resources 

1.5.1 World reserves 

Ores containing REEs are distributed worldwide such as in Asia, South Africa 

and Australia (Haxen et al., 2005). The ores in these regions provide most of the 

world's La and lanthanides. The major ore types in different countries (except China) 

were identified in the assessment by the US Bureau of Mines and US Geological 
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Survey (Table 1.6). In 1949, a vast deposit of bastnasite has been discovered in the 

Sierra Nevada Mountains in the US (Greenwood and Earbshaw, 1997). The total 

reserves of rare earth ore deposits in the world are over 43.5 million tonnes in 1989 

(Wang and Dou, 1996) and 100 million tonnes in 1993 (Chengdu Beyond Chemical Co. 

Ltd., 2001). 

Table 1.6 The major ore type in different countries (Neary and Highley, 1984). 
Countries Major ore type 
Australia Heavy mineral placers (monazite) 
Brazil Beach placers, carbonatite and alkaline rocks 
Canada Uranium ores 
Egypt Fluviatile placers (monazite) 
Finland, Norway, Sweden Carbonatite, alkaline rocks 
India Beach placers (monazite) 
Korea Placers (monazite) 
Madagascar Beach placers (monazite) 
Malawi Carbonatite 
Malaysia Alluvial tin placers (monazite and xenotime) 
Sri Lanka Beach placers (monazite) 
South Africa Monazite vein 
US Bastnasite-bearing carbonatite 
Former U.S.S.R. By-product of apatite processing 

The data did not include the reserves of REE deposits in China and in southern 
Australia. 

Besides China, the Russian Federation has possessed the largest reserves of REEs 

(Table 1.7). The US Geological Survey estimated the country's reserves as 19 million 

tonnes, represented around 19% of the world's total reserves. The major mineral 

types were loparite and apatite. 
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Table 1.7 World reserves of rare earth oxides (Wang and Duo, 1996; Chengdu 
Beyond Chemical Co. Ltd., 2001). 

Countries Reserves 
1989 (%) 1993 (%) 

China ^ 
Russian Federation 1.00 19.0 
US 12.3 13.0 
Australia 1.50 5.20 
India 4.00 1.10 
Canada 0.36 0.94 
South Africa - 0.39 
Brazil 0.04 0.28 
Malaysia 0.07 0.03 
Srilanka - 0.01 
Others 0.39 21.0 
Total 45.0 million tonnes 100 million tonnes 

The US is estimated to have 13% of the world's total reserves in 1993. The 

largest deposit of REE is found in Mountain Pass, California, in which the major 

mineral resource is bastnasite. For monazite, the largest deposits are found in Florida 

and in the Atlantic continental shelf sediments. 

1.5.2 REE resources in China 

Since the 1930s, ore deposits in China have been discovered. However, major 

deposits were identified after 1950s. China is suggested the world's largest reserve of 

rare earth ores at present. The reserve amounts to 36 million tonnes of rare earth ores, 

making up nearly 80% of the world's total reserves in 1989 (Table 1.7). Even though 

there have been discoveries of rare earth deposits in Australia, the US and Canada, 

China still has the largest country reserves of REEs in the world. The type, 
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distribution and date of discovery of China's major rare earth deposits are listed in 

Table 1.8. 

Table 1.8 Major rare earth deposits in China (Wang and Dou, 1996). 
Type Average rare earth ore content Date of discovery 
Mixed rare earth ores 6% 1935 
Bastnasite 2.75% 1960s 
Monazite 750 g W Early 1950s 
Xenotime 140 g/m^ Early 1950s 
Rare earth-containing 0.095% Early 1980s 
collophanite 

The largest rare earth deposits in China are deposits in Baiyunebo located 135 km 

north of Baotou (Chengdu Beyond Chemical Co. Ltd., 2001). It is also the world's 

largest rare earth deposit. The recoverable reserves amount to 32.2 million tonnes. It 

is believed that the total deposit may exceed 91 million tonnes. Baiyunebo ore mine is 

a mixed rare earth ore containing mainly light REEs. The two major minerals 

contained in Baiyunebo deposit are bastnasite and monazite. 

Bastnasite [(Ce’La)(C03)F] is dispersed in Weishan County, Shandong Province, 

and Mianning Conty, Sichuan Province. The deposit has been proved to be of high 

purity and coarse simple mineral bastnasite, and thus favours the separation of REEs 

from the associated minerals that contain lead, molybdenum and bismuth. 
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Monazite [(Ce,La,Nd,Th)(P04)] and xenotime [YPO4] are discovered in the 

Guangdong, Guangxi, Hainan and Hunan provinces. The industrial reserves of REEs 

contained in monazite amount to 435000 tonnes. Nanshanhai mine located in 

Guangdong is the main place for extracting monazite and xenotime. The mines 

contain 1084 g/m^ monazite and 200 g/m^ xenotime. High-grade REEs were obtained 

in the minerals generated from the mine. 

1.6 Production and demand of REEs 

REEs are applied in a wide aspect nowadays. Their demand is high, with an 

annual figure of 63000 tonnes in the world (Han et al, 1999). Figure 1.3 shows the 

countries and regions that consumed REEs. The largest consuming country is the US 

which accounts for 27% of the total demand (Great Western Minerals Group Ltd., 

2006). 

Figure 1.3 Distribution of the REE demand (by region) (Han et al., 1999). 
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1.6.1 Production and demand in the US 

In 1965, a large rare earth deposit was discovered in the Mountain Pass, 

California of the US. The US Bureau of Mines identified that the light-brown heavy 

mineral was bastnasite (Hedrick, 1997). Such discovery tremendously rose the 

quantity of REE produced in the US (Neary and Highley, 1984). Production of REEs 

in the US became the most important around the world in a very short time (Figure 1.4). 

The production of REE minerals was nearly 17000 tonnes in 1980 and 20000 tonnes in 

1996 (Table 1.9). Destinations of REEs exported from the US included more than 30 

countries and cities. Most of the REEs were exported to developed countries, such as 

Canada, Germany, France and Japan. 

The US is not only one of the largest producers of REEs, but also one of the 

greatest consumers (Great Western Minerals Group Ltd., 2006). The country 

consumes 18200 tonnes REEs each year. Even the production quantity of REEs in the 

US is dominant in the world, the quantity of imported REEs exceeds that of production. 

In 1996, the net import weight increased to 9352 tonnes, which was almost 70% more 

than that in 1995 (Table 1.9). The major countries that export REEs to the US are 

China, France, India and Japan. China has become the greatest export country to the 

US since 1995. More than 90% of the REEs needed by the US were imported from 

China in 1990 (Haxel et al., 2005). 
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Figure 1.4 Major producing countries of REEs since 1895 (Neary and Highley, 1984). 

Table 1.9 Import and export of REEs in the US (Han et al., 1999). 
Year 1994 1995 1996 1996/1994 
Weight Import 9 1 ^ 1 5 4 0 0 21600 2.4 
(tonnes) Export 9520 9890 12200 1.3 

Net import -363 5530 9340 -
Value Import 79 110 126 1.6 
(million US dollars) Export 46 61 72 1.6 

Net import 33 ^ 54 
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1.6.2 Production and export in China 

China started production of REE in the mid 1950s. At the beginning, monazite 

was produced in limited quantity since the extraction technology is less advanced and 

demand of REE was low. With the world's increasing demand, production 

consequently rose (Karayannopoulos, 2004). Production of REEs in China increased 

on average 40% annually since 1980s (Table 1.10) (Wang and Dou, 1996). Demand 

for individual REE also increased sharply. 

Table 1.10 REE production and export in China (Wang and Dou, 1996; Han et al., 
1999). 
Year Average 

annual 
increase 
(o/o) 

Export Amount 11600 14500 24500 27900 28500 +25.3 
(tonnes) 

Value 108 150 271 293 320 +31.1 
(million 
US 
dollars) 

Production Amount 20600 25400 36300 41100 42200 +19.6 
(tonnes) 

Most of the REE produced are exported. China cumulatively exported 106984 

tonnes in the period 1993-1997 (Han et al., 1999). The quantity increased at a rate of 

25.3% (by weight) and 31.1% (by value) (Table 1.10). The major markets for China 

REEs are the US and Japan (Haxel et al., 2005). The quantities of REE exported to 

the US were 1633 tonnes in 1994 and increased 9 times to 14512 tonnes in 1996. 
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China exported 11103 tonnes (56.5% of total imported REE in Japan) mixed REEs to 

Japan in 1997 (Han et al., 1999). The weight of REEs exported to Japan increased at 

a rate of 24.9% from 1993-1997. 

1.6.3 Production in other countries 

India, which produced the largest amount of REEs until 1940, has reduced the 

production of REEs in the recent years. India produces 1814 tonnes each year. 

France has the world's largest manufacturer of purified REEs. The REE products are 

exported to Japan, the US and Europe. Companies in Norway produce 1179 tonnes 

REEs as by-product of apatite extraction. 

1.7 Separation of REEs 

REEs are found in natural ores as mixture of different elements. REEs must be 

extracted from the minerals and other elements so that they can be utilized 

commercially. Methods of separation vary considerably as the details depend on the 

ore being used and the extent to which the metals are to be separated from one another. 

Separation methods can be classified into two categories: classical methods and modem 

methods. 

1.7.1 Classical methods 

Classical methods consist of fractional precipitation and fractional crystallization. 

Fractional precipitation involves the addition of a precipiant to a mixture in an amount 

insufficient for complete precipitation. For fractional crystallization, individual REE 
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is separated based on the difference in solubilities of the salts in different aqueous 

solution (Evan, 1990). The process of evaporation and recrystallization was continued 

until the target REE is separated. This method is still used since it can separate REEs 

in large quantity that satisfies economical production (Healy and Kremers, 1961). 

1.7.2 Modern methods 

Classical methods have the advantage that a large quantity of REEs can be 

separated in a short time. However, if the requirement is to completely separate 

adjacent REEs, the process needs to repeat numerous times to achieve a desirable purity. 

Modem methods which are able to separate REEs in high purities (99.99%) are 

developed to achieve the requirement (Hedrick, 1997). Modem methods include 

ion-exchange separation and solvent extraction. 

1.7.2.1 Ion exchange separation 

To produce high-purity REEs, ion-exchange technique is applied. It is a 

technique based on the sorption ability of REE on a suitable ion-exchange medium 

followed by differential displacement of the individual ions with an eluting solution, 

such as EDTA with ferric and cupric ions (Powell, 1961). 

1.7.2.2 Solvent extraction 

REEs are separated from each other based on the variation in solubility in the 

extractants. An organic phase, such as di-2-ethylhexyl phosphoric acid and 

tributylphosphate is in contact with an acidic solution containing REEs (Doyle, 2000; 
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Miranda, Jr. et al., 2002). REEs are then preferentially separated into the organic 

phase. The organic phase is required to consist of two miscible phases since the 

extractant is highly viscous (Fray, 2000). REEs with different atomic masses are 

dissolved in various stages and collected. 

1.8 Applications 

1.8.1 Alloys 

REEs are used in metal industries to make different kinds of alloys, mainly iron 

and steel (Pedreira et al,, 2001). The application quantity of REEs in making alloys 

has been increasing since 1986 (Figure 1.5). They are in the form of pure REEs or 

mischmetal, which is an alloy mixture of La, Ce and other REEs (Lundin and Wilson, 

2000). Barrett and Dhesi (2001) suggested mischmetal comprising 50% Ce, 25% La, 

15% Nd and 10% other REEs and Fe. The old method that added michmetal to steel 

and iron was by pressing it into molten iron, while modem advanced methods are 

injection and converting ladle (Wang and Dou, 1996). 

When the steel or iron is rolled or forged at high temperature, melting of 

inclusions of iron sulphide compound will occur, and as a result cracks develop. 

Addition of REEs can control the content and shape of sulphide inclusion in cast irons 

and steels. REEs combine with sulphide inclusions to form particles with a more 

rounded morphology which is more stable because they do not deform significantly 

even at high temperature (Lundin and Wilson, 2000). Mechanical properties, like 

ductility, corrosion, oxidation resistance and creep resistance, of cast iron and steel are 
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improved after modification of inclusion morphology. The effect is important to 

applications in heavy industries including pipes for oil and gas transmission. REEs 

modified cast Fe can also be applied in automobile industry to produce lighter vehicles, 

and cast pipes for water. 
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Figure 1.5 Consumption of REEs in metallurgy from 1986 to 1990 (Zhang et al., 2006). 

Non-ferrous alloys that frequently added with REEs are Al and Mg alloy. REEs 

are added as minor additions to the alloys by directly adding REE compounds to 

aluminium and magnesium electrowinning cell. Although the quantity is less that 1%, 

the effects are significant. Addition of REEs is effective in enhancing the mechanical 

properties of high-strength Al alloys. The mechanism for improving the mechanical 

properties is still not clear. Lundin and Wilson (2000) proposed that morphology of 

intermetallics was shifted from platelike toward spherical in shape, which reduced their 
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impact as crack initiators. When Ce was added to Al-Si alloy, size and the fraction of 

primary silicon (Si) decreased markedly with the increasing Ce content, while the 

roundness of primary Si increased (Zhang et al., 2006). Non-ferrous alloys added 

with REEs are used in helicopter gearboxes, aircraft landing wheels and satellites. 

La-Ni alloys are developed to make low-temperature fuel cells for storage of hydrogen 

(Fray, 2000). Al-Mg-Si alloys added with REE were used for cables, and that for 

Fe-Cr-Al alloys are for electric heating wire. 

1.8.2 Permanent magnets 

Nd and Sm have been the most commonly applied materials to produce 

permanent magnet, in which Y, La, Ce, Pr or mischmetal can also be used. Dy and Tb 

are used in the last few years in new NdFeB alloys for magnets with higher coercivity 

and temperature stability, primarily for the automotive industry. La is added in small 

amount in some ferrite applications to make compounds like Baj .xLaxFe12-xCoxO 19 and 

Sri.xLaxFei2-xCoxOi9 (where x = 0, 0.1, 0.2, 0.3, 0.4) which improve magnetization, and 

the coercivity and anisotropy field of the produced magnets (Grossinger et al., 2003). 

The maximum energy can exceed 800 kJm"^ for the magnet (Pang, 2006). Efforts 

have been paid in improving the magnetic properties of REE compounds (Valcanover, 

2005). An example is that the anticorrosion property is improved by coating a layer of 

Zn-Cr on the surface of NdFeB permanent magnet (Figure 1.6). Due to reduction of 

weight compared with traditional magnet, REE magnets are favourable to be used in 

portable devices, such as electric sewing machines, motors in automobiles and heater 

fans. Other applications include used in anti-wax devices and dehydrators in oil mining. 
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Figure 1.6 Corrosion rates of various coatings on NdFeB magnet in 3.5% sodium 
chloride solution immersion test (g/dm^) (Yu and Chen, 2006) 
Notes: Type 1- Coating of zinc plating; Type 2- Coating of nickel plating; Type 3- Zinc 
chromium coating. 

1.8.3 Catalysts 

Petroleum industry is the major market of catalysts made with REEs. Mixture 

of rare earth oxides are used, rather than certain individual REE to reduce the 

production cost, as catalysts for the cracking of crude petroleum (Pedreira et al., 2004). 

Almost all catalysts used in oil refineries have been substituted by REE-containing 

catalysts. Zeolite promoted catalysts were stabilized thermally and hydrothermally by 

the added REEs. The catalysts consist of 5% to 25% zeolite which composed of 4% 

rare earth oxide. The catalyst is also employed in various other organic reactions, 

including hydrogenation of ketones to form secondary alcohols, dehydrogenation of 
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alcohols and butanes and formation of polyesters. Controlling air pollution may be a 

potential use of the REE-containing catalysts. The catalyst provide a platform for 

converting oxides of nitrogen and unbumt hydrocarbons exhausted from motor vehicles 

into nitrogen, carbon dioxide and water vapour which is less environmentally polluted. 

1.8.4 Glass additives 

REEs are used in glass industries in two aspects, glass polishing compounds and 

colouring. Over the last 10 years, REE compounds have almost replaced red iron 

oxide rouges, in which cerium oxide is used extensively because it gives high polishing 

rates and low surface roughness (Osseo-Asare and Suphantharida, 2000). Technical 

grade rare earth oxides powders contain about 40-45% cerium oxide are commonly 

used. The powders are diluted with other materials when used. The polished glasses 

are used in the production of lenses for spectacles, cameras and binoculars. 

Fe (II) ion generates a blue colour to glasses. REEs are used to decolourize the 

undesirable original colour, because of the presence of iron, of glasses. Light rare 

earth oxide is used as an oxidizing agent to control the decolourizing function of Se 

which is the usual decolourizing agent. The oxide controls the oxidation state of Se, 

maintaining a pink colour to complement the green to blue colour of Fe. Cerium 

oxide can decolourize satisfactorily when iron contents are up to 0.1% Fe203. 
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Many REE oxides have attractive and beautiful colour that makes them suitable 

to colour glass. Er makes glass pink, Nd makes glass blue to wine red, Ho gives blue 

and Pr produces a green colour. 

1.8.5 Phosphors in television screens and similar fluorescent surfaces 

High-purity rare earth oxides are used in colour television tubes, fluorescent 

lighting tubes and X-ray intensifying screens as phosphors (Pedreira et al, 2004). 

Silver-activated zinc cadmium was used as red phosphors in the past. However, the 

colour generated by the phosphors cannot match the emission available from green and 

blue phosphors and subsequently they are replaced by the rare earth phosphors. 

High-purity oxide of Eu and Y has been used as the phosphors for colour-television 

picture tubes since the mid 1960s (Barrett and Dhesi, 2001). A mixture of Eu and Y 

oxides provide a brilliant-red phosphor. Europium-doped oxides and oxysulphides, 

particular Y203(Eu), Gd203(Eu) and YiOsSCEu) can give high intensity, good colour 

balance among the three types of phosphors as well as a better overall tube brightness. 

Medical X-ray radiography has applied high-purity rare earth oxides as X-ray 

phosphors (Neary and Highley, 1984). An intensifying screen is used with a matching 

film. Every X-ray photon that is absorbed by a phosphor screen is amplified into 

hundreds of visible or ultra-violet radiation photons which are then recorded by a 

detector like photographic film. Such system can increase film exposure and hence 

decrease the X-ray dosage to patients. In recent years, compounds of REEs and 
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alkaline-earth borates such as RECa40(B03)3, RE2Ca0(B03)2, REBaB90i6 and 

IlEBa3(B03)3 have attracted attention to be developed in this aspect (Duan et al., 2005). 

1.8.6 Fertilizers and feed additives 

REEs have been added to fertilizer, in the form of soluble salts like nitrate. The 

REE-containing fertilizers have been widely used in more than 20 provinces in China 

since 1972 (Zhu et al., 1997). REE-containing fertilizers have been applied to 

different plants, for instance, crops, vegetables, fruit and grasses. Crops added with 

the fertilizers were claimed to have great yield and improved quality. Crop yield was 

reported to increase by 8-50% (Brown et al., 1990). The yields of wheat, com, bean 

and peanut were increased by 6-15%, 7-14%, 6-12% and 8-15% respectively (Xu et al., 

2002). The quality of agricultural crops is also improved. Foliages have darker 

green colour. Amino acids in wheat increased 2-12% after being irrigated with REEs. 

Strength of cotton fibre was improved 0.33-6.70% (Xiong et al.，2000). Sucrose in 

sugar cane treated with REEs was 0.61% more than those without REEs. Starch in 

potato was increased by 1.2%. REEs also increase the resistance to disease of crop. 

Relative resistance of REE-treated cotton to fungi was 20-40% higher than the control. 

REEs have been used as feed additives for pig and sheep (Hu et al., 1998). Pigs 

fed with REEs are red in skin and have good stomach. Their weights gained by 

10-20%. 
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1.8.7 Dyeing auxiliary 

REEs have been used as a dyeing auxiliary in China since 1977 (Wang and Dou, 

1996). The REE-added dye can give a bright and lustrous colour to the fibre. Dyes 

added with REEs are applied to different kinds of fibre like cotton, silk, nylon, nitrilon 

and wool. 

1.9 REEs in the environment 

REEs are present in the earth crust. They also exist in soil and plants in the 

environment. In the natural environment, the concentration of REEs in plants highly 

depends on their concentrations in the surrounding soil. 

1.9.1 REEs in soil 

REEs in natural soil mainly come from the weathering of the soil parent materials 

(Zhu, et al., 1998a). However, extra REEs would be added to the soil as a result of 

human activities on near mining sites or cultivated lands (Zhu et al.’ 1997; Ramanaaiah, 

1998; Diegor et al., 2001). Concentration of REEs varied widely, ranging from below 

detection limit to over 120 mg/kg. Abundance of REEs in soil varied among soil 

types, soil depths and countries. Forest soil in Bulgaria contained 17.9-72.0 mg/kg La, 

while La in a sandy soil from Sweden was below detection limit (Kabata-Pendias and 

Pendias, 1992). In a mangrove area in Brazil, the La contents increased along the soil 

depth (Wasserman et al., 2001). 
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REEs differ in their chondritic normalized concentrations. Light REEs are more 

abundant than heavy REEs (Henderson, 1984). Kabata-Pendias and Pendias (1992) 

found that concentrations of La, Ce, Tm and Lu were 26.1, 48.7, 0.46 and 0.34 mg/kg 

respectively. Chondritic normalized La/Lu ratio was 10 in soil. Some terrestrial 

rocks show great negative Eu anomalies, while some others are abundant in Ce (Sen 

Gupta and Bertrand, 1995; Diatloff et al, 1996a; Wang et al, 2000). 

REEs are more abundant as soil depth increases. Abundance of La, Ce and Nd 

in 0-5 cm soil were 23, 47 and 21 mg/kg respectively, while those concentrations at 

depth of 25-30 cm were 35, 74 and 30 mg/kg in the same soil (Laul et al., 1979). 

REEs exist in soil in various forms. Most of them are dressed strongly in the 

solid phase of soil and the rest remained as free ionic form. Plant cannot assimilate all 

kinds of REEs. Only those can be taken up by plants are said to be bioavailable. In 

order to understand more about the bioavailability of REEs to plants, methods were 

developed to extract REEs in various fractions of soil. The method modified by the 

Community Bureau of Reference has been the one of the most widely used method for 

the fractionation of chemicals in soil (Cao et al., 2002; Mossop and Davidson, 2003). 

By finding the relationship between the abundance of REEs in plants and in different 

fractions, the bioavailability of REEs to plants could be assessed. 
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1.9.2 REEs in plants 

Contents of REEs are usually very low in plants but still exist in a wide range 

(from 1x10-3 to 1x10"' mg/kg). La content in com and potato were 5 j^g/kg and 2 

|ig/kg respectively, while Pr abundance was less than 1 and 2 |ig/kg respectively (Laul 

et al., 1979). In the same experiment, heavy REEs in plant were less abundant than 

light REEs; levels of Lu in vegetables were 0.02-0.04 |ig/kg. In Pinus sylvesths and 

Vaccinium vitis-idaea, REE concentrations ranged from 0.0035 to 0.38 mg/kg (Markert 

and Li, 1991). Although most plants have very few REEs, some were recorded to be 

accumulators of REEs. The concentration accumulated in Euglena gracilis was 1CP 

times more than other green algae (Shen et al., 2002). Total REE content in fern was 

97 mg/kg, which was two orders of magnitude higher than in other species 

(Chiarenzelli et 以/.,2001). 

Patterns of REEs in plants are usually very similar to that of the host soil since 

plants absorb REEs mainly from soil (Djingova and Ivanova, 2002). This implies that 

fractionation of REEs by plants is less likely. However, contradictory results have 

been obtained. Ce contents in fern {Dryopteris filix-mas) and spruce (Picea abies) 

were much smaller than values calculated from the contents of La and Pr (Wyttenbach 

et al., 1998). Samphire showed significant discrimination in the uptake of REEs (Pais 

and Jones, 1997). Markert and Li (1991) reported that Dy, Er and Eu concentration 

ranges were ten times lower than other REEs. More researches are required to get a 

better understanding of the REEs patterns in plants. 
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1.10 Overview of toxicological studies of REEs 

Although the application of REEs is so popular that they are used in many 

aspects, studies on the toxicology of REEs are rare. Most of the studies focus on the 

toxicity of REEs to several species of terrestrial animals (Tu et al., 1994). Table 1.11 

shows the median lethal dose (LD50) of several REEs using rats, mice and guinea pig. 

Rats and guinea pigs are more sensitive than mice. When the route of administration 

was different, the LD50s of REEs also varied. It was found that intraperitoneal or 

intravenous injection would cause a lower LD50s than oral administration (Xiong et al.’ 

2000). The toxicity ranges are reduced by factors of 100 and 1000 for intraperitoneal 

or intravenous injection respectively (Sigel and Sigel, 2003). According to the review 

by Haley (1965), the acute toxicity of REEs was very low that they would not pose a 

threat to the health of human. 

Despite these studies shows that REEs have a very low toxicity to animals, 

toxicity of REEs to plants is still not well understood. Some reports demonstrated that 

plant growth was inhibited by REEs. The elongation of oat (Avena sativa) coleoptile 

was inhibited when coleoptile was soaked in solution of La〕.，Pr̂ ^ and N d � . (Pickard, 

1970). The inhibitory effects brought by La^^ and Nd). were greater than the effect by 

Pr3+. Root elongation of com (Zea mays) and mungbean (Vigna radiata) were 

reduced by half when they were immersed in La and Ce solution (Diatloff et al., 1995a). 

Hu et al. (2002) showed similar results that root elongation of wheat {Triticum aestivum) 

was inhibited by 50% when exposed to 5 mg/L La or Ce. 
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Table 1.11 Median lethal doses of REEs on rats, mice and guinea pig 
(Hirano and Suzuki, 1996; Xiong et al., 2000). 
^ E Route animal LD50 (mg/kgy~ 
LaNOs ip mouse 150 
CeC13 iv rat 55 
CeNOs po mouse 1178 
PrNOs po rat 3500 
NdNOs po rat 2750 
SmNOs po rat 2900 
EuNOs ip rat 210 
EuCls po rat 5000 
DyCls ip mouse 585 
DyCls po mouse 7650 
H0NO3 ip mouse 560 
D0NO3 po mouse 7200 
ErCls ip mouse 535 
ErCls po mouse 6200 
TmNOs ip rat 285 
YbNOs po rat 3100 
ScCls iv mouse 24 
ScCls ip mouse 440 
YbNOs ip rat 255 
YbNOs po rat 3100 
LuNOs ip rat 325 
RECNOs) po mouse 1876 

RE(N03) po rat 1832 
RE(NQ3) po guinea pig 1397 
Notes: ip: intraperitoneal injection; iv: intravenous injection; 
po: oral administration 

Some other studies indicated that plants exposed to REEs had a stimulated 

growth. Chang (1991) found that seedling development was promoted by REEs. 

Biomass, leaf area and height of sugar beet {Beta vulgaris) were increased after 

application of REE mixture (Tian et al., 1990). Dry weight of roots of wheat 

{Triticum aestivum) seedlings treated with Eu was increased by 64% (Shtangeeva and 

Ayrault, 2006). Twice more flowers of Arabidopsis thaliana bolted when they were 

growing in 2.5 \iM Ce nitrate, while increase in the length of primary roots was 

observed in 50 jiM La nitrate and 10 |iM Ce nitrate (He and Loh, 2000). 
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The results of the toxicity studies were contradictory. One possible reason may 

be differences in the methods being used. Further investigation about the effects of 

REEs should be carried out to get more information. 

1.11 Current study 

1.11.1 Thesis outline 

This project consisted of three experiments. Seed germination and root 

elongation test was carried out to reveal the phytotoxicity of REEs. Forestry plants, in 

which tree was the representative in this study, was employed to investigate the effect 

of REEs by assessing their growth performance. Besides, relationship between the 

bioavailability of REEs and soil pH and organic matter content was studied. 

Relationship between bioavailability of REEs and growth performance was also 

determined. 

1.11.2 Objectives 

The present study aimed to provide more information on the effects of REEs to 

forestry plants. The objectives are as follows: 

(1) To study the potential toxicity of REEs on terrestrial plants, 

(2) To assess the effects of REEs on growth performance of forestry plants and the 

distribution of R E E in plants, 

(3) To investigate the bioavailability of REEs in soil, and 

(4) To examine the effect of pH and organic matter on the availability of REEs to 

plants. 
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1.11.3 Significance 

Although REEs are widely used for agricultural crops, there is a paucity of 

toxicity data on terrestrial plants. This study could provide phytotoxicity information 

on REEs by standard phytotoxicity test using sensitive terrestrial plant seeds. 

In recent years, industrial and agricultural application of REEs has been 

developed. For agricultural uses, 50-100 million tonnes of REEs enter the 

agroecosystem every year (Liang et al., 2005). Since 1990s, REE-containing 

fertilizers have been applied in China and the rate has increased drastically. The area 

applied with fertilizer was approximately 3.7x10^ ha in 1993 but increased to 2.0x10^ 

ha in 1995 (Diatloff et al., 1996a). Although REEs exist in the earth crust, application 

of REEs will release extra REEs into the environment. Ecological and toxicological 

consequence of adding extra REEs into the environment is still not clear, and thus more 

research efforts should be put on this. Studies on the effects of REEs have focused on 

agricultural crops, such as wheat and maize, and the results showed that REEs can 

increase the crop yield and improve product quality at low concentration. However, 

there is very limited literature and thorough research concerning the effects of REEs on 

forestry plants. Forests make up a major part of the natural environment. Forests are 

significant for exchange of materials and energy in the biosphere. Many resources, 

such as food, wood, cotton and medicine, used in human daily life come from forests. 

If the beneficial effects exhibited by the crops are also demonstrated in forestry trees, 

REEs can be applied to forests, and it will be a great contribution to ecosystem and 

forestry industry. The present study puts great emphasis on the effects of REE on 
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growth of forestry species which gives useful information on the influences of R E E on 

environment, and as a result, managing the use of REEs in agricultural and industrial 

aspects. 

REE-containing fertilizers can be applied to plants through foliar sprays, seed 

treatments or as additives to soils (Xie et al., 2002). Among these methods, addition 

to soil is most frequently used due to lower cost and higher efficiency. Another 

experiment using tree seedlings in soil was carried out to investigate effect of REEs on 

the soil-plant system, which is a major part of the ecosystem. The result can give 

more information about the effect of REEs on the ecosystem and application of REEs 

to soil-plant system. Plant absorbs REEs in soil through its roots. The quantity of 

REEs that plant can absorb depends on the availability of REEs in soil. REEs react 

with soil and are converted into different fractions which vary considerably in their 

bioavailability. Soil properties such as pH and organic matter affect the reaction as 

well as bioavailability of REEs. Therefore, an experiment with different soil 

properties was carried out to study the influence of pH and organic matter on R E E 

bioavailability and their effects on plant growth. 
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Chapter 2 Phytotoxicity of rare earth elements 

2.1 Introduction 

2.1.1 Ecotoxicity of REEs 

Nevertheless the widespread use of REEs in industry and agriculture, very 

limited information is available on their toxicity to plants. Since REEs are used as 

medical tracer, toxicity to mammals received much attention. Many studies focus 

on several terrestrial mammals, such as rats, mice, dogs and guinea pigs (Tu et al., 

1994). The toxicity of REEs on these animals depends on the routes of exposure. 

The toxicity was the highest when animals were exposed through intravenous 

injection (Ding and Ma, 1984). The median lethal doses (LD50s) were 6 and 7 

mg/kg when rats were injected intravenously with of NdNOs and PrNOs solution 

respectively (Xiong et al., 2000). The toxicity was 100 times reduced when REEs 

were administrated orally which may be because of the low rate of REEs absorption 

in the intestinal tract (Brown et al., 1990). The toxicity of REEs to mammals was 

reported to occur mainly in the pulmonary system (Hirano and Suzuki, 1996; Sigel 

and Sigel, 2003). Prolonged inhalation of REEs by guinea pigs caused bronchitis 

and pulmonary fibrosis. However, Haley (1991) pointed out that the toxicity may 

be brought from the radioactive materials rather than the stable elements. 

Some studies worked on the toxicity of REEs to aquatic organisms. Most of 

the exogenous REEs were adsorbed by sediment (Yang et al.’ 1999b). The 

adsorbed REEs may be desorbed at a later time. Thus aquatic organisms are 

potentially influenced by REEs. Fish is one of the most studied aquatic organisms. 
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Most of the absorbed REEs accumulated in the internal organs and gills of Cyprinus 

carpio (Tu et al., 1994). The major edible part, muscle, contained the least amount 

of REEs. Among the four fish species tested, Hypophthalmichthys molitrix (silver 

carp) was the most sensitive species to REEs (Hu and Luo，1980). The 48-hour 

LC50 was 12.2 mg/L in silver carp, while the LC50s in Ctenopharyngodon idellus 

and Carassius auratus were 32.4 and 36.0 mg/L respectively. Yang et al (1999b) 

reported that daphnia was more sensitive to REEs than fish. The age at maturity 

was delayed by La at concentrations higher than 39 |ig/L. The 48-hour EC50 of La 

to Daphnia carinata was 1.18 mg/L (Barry and Meehan, 2000). 

REEs were reported to have inhibitory effect to plant. The root length was 

reduced almost 50% when seedlings of Triticum aestivum were immersed in 5 mg/L 

La and Ce solution (Hu et al.’ 2002). The growth of oat coleoptile in La, Pr and Nd 

solution was inhibited due to the alternation of permeability of cell to K+ ions 

(Pickard, 1970). Shoot dry weights of maize and mungbean were reduced when 

they were grown in > 0.7 mg/L La and Ce solution culture (Diatloff et al., 1995a). 

The shoot dry weight of Vigna radiata was reduced by 27% when the plants were 

sprayed with La and Ce solution (Diatloff et al., 1996b). However, some other 

information showed that low concentration can promote the growth of plant. 

Germination rate of sugar beet {Beta vulgaris) was increased by 1.6-6.9% (Tian et 

al., 1990). The productions of rice and wheat were enhanced by up to 10 and 13% 

respectively (Ding and Ma, 1984). Solution of low concentration of La increased 

the root growth of com by 36% and mungbean by 21% (Diatloff et al., 1995b). 
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Since the results were controversial, this study aimed at investigating toxicity of 

REEs so that REEs can be used more safely. 

2.1.2 Toxicity tests using higher plants 

Toxicity testing of REEs mainly focused on animals. Since REEs was 

applied increasingly to plants, getting more information about the toxicity of REEs 

on higher plants is necessary for the safe application of REEs. However, previous 

tests have scarcely used higher plants that have been commonly used in toxicity 

assays for heavy metals and other compounds. 

Seed is an important stage in the life cycle of higher plant. A seed is a 

fertilized mature ovule consisting of embryo, stored food material and protective 

coat. A series of events, such as cell expansion, reconstitution of lipid membranes, 

activation of proteins, repair of DNA damage and protein incurred, replacement of 

extensively damaged membranes, resumption of transcription and translation, 

activation of respiration and reserve mobilization, occur after seeds have imbibed a 

sufficient quantity of water (Kapustka, 1997; Soeda et al, 2005). Impact of 

chemical applied to seeds not only influence germination process, but also the 

subsequent reactions as the plant grows. The effect has direct impact on the plant's 

survival (Marchiol et aL, 1999). Seedlings are more sensitive than older plants; the 

concentration or dose that causes effect on seeds may not be sufficient to give 

observable effect on older plants (Misra et al., 1994). Seed germination and root 

elongation test is the most commonly applied technique in assessing the effect of 
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heavy metals and trace elements on plants (Verkleij, 1993). Comparing the rates of 

seed germination and the length of primary root can find out the effect of chemicals 

on plants. 

2.1.3 Advantages of seed germination and root elongation test 

Germination test as a method of phytotoxicity assessment has several 

advantages. Seeds can be stored dry and remain viable for a long time. Most 

seeds remain viable for at least three to five years, or even longer. Cost of storage 

is very low because seeds are simply stored in plastic bags at room temperature. 

Germination test can be conducted at any time. It is an advantage over methods 

that involve seedlings that are available seasonally. Seed germination test can be 

carried out in the seasons when the seedlings are not available. Seeds are activated 

by simple treatment such as soaking in water without complex pretreatment. Seeds 

of some aquatic macrophytes exhibit periods of natural dormancy and require bleach 

or acid treatments, heating, or scarification to facilitate germination (Muller et al., 

2001). 

Germination test is simple and easy to conduct (Zucconi et al.’ 1981). The 

most commonly used equipment includes Petri dish, pots, soil and filter paper, 

which is generally available in most laboratories. 

Results of germination test are obtained after a short time between one to ten 

days. Toxicity of Cu was determined by exposing T. Typha latifolia to copper 
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sulphate for 7 days (Muller et al., 2001). Seed of Brassicaparachinensis, Lactuca 

sativa, Azukia mungo and Lycopersicon esculentum germinated after 5 days and they 

were used to evaluate the toxicity of spent litter (Tarn and Tiquia, 1994). Root 

lengths of Brassica rapa and Lepidium sativum were measured after a 72 hour 

germination period to monitor landfill leachate (Devare and Bahadir, 1994). The 

germination percentage and root length of Hordeum vulgare immersed in urban 

organic waste was measured after 5 days (Pascual et al., 1997) 

A large amount of seeds can be placed in a small container during germination 

test. This can save the space for the experiment (Gorsuch et al., 1990). Volume 

of test sample to which the seeds are exposed is small so that large container is not 

required. The volume of sample preparation and waste disposal are minimized. 

Such advantage is significant when the test chemical is hazardous. 

Chemicals may not appear individually in the environment. The effect of the 

mixture may be synergistic or antagonistic. Seed is a good tool to test the 

synergistic and antagonistic effects by exposing to chemical mixture. Chemical 

analysis alone is not able to show the effects. 

Standardized protocols were established by authoritative organizations, such as 

the Organization for Economic Cooperation and Development (OECD) and the 

United States Environmental Protection Agency (USEPA). Seed germination test has 

been a representative and extensively used method to test the toxicity of chemicals. 
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2.1.4 Selection of species 

Current databases, such as PHYTOTOX, provide information of more than 1500 

different species that have been exposed to a variety of test chemicals (Fletcher, 1988; 

Powell, 1997). 

The selection of species should be based on the ecological relevance of species, 

species specific life-cycle characteristics and region of natural occurrence (OECD, 

2003). The species selected in the germination test should be sensitive to the 

suspected toxic compounds in order to get an index to protect other non-tested 

species. 

An ideal species should be endemic to the area of concern (Powell, 1997). 

They are economically important and constitute major cash crops to the area. They 

should be easily available and can be used at any time in a year. No special 

pretreatment such as chilling, prewashing or scarification is required before the test. 

Seeds should have relatively high and uniform germination rates in order to 

ensure the germination rate obtained is due to the stress applied rather than due to 

the health and viability of seeds (Powell, 1997; OECD, 2003). The species should 

germinate in a short time to give fast, measurable responses (Al-Farraj et al., 1984). 

Various plant species have been recommended by the OECD, USEPA and 

United States Food and Drug Administration (USFDA) for germination testing 
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(Tables 2.1-2.3). Besides the crop species used in the existing plant tests, OECD 

also proposed more than 120 non-crop species for the evaluation of herbicides. 

These species are highly recommended since they are recognized as important to 

wildlife as food sources, though some of them are weed species. Serious problems 

to organisms in higher trophic levels may be avoided if possible impacts on plant are 

monitored and early action is taken. 

2.1.5 Endpoint of test 

A variety of test endpoints have been developed by different organizations. 

Qualitative endpoints include appearance of seed and root. Quantitative 

measurement endpoints are survival, germination rate, seedling growth, shoot length, 

root diameter, root length, root biomass and photosynthesis rates. US EPA relies on 

tests of seed germination, root elongation and growth reduction for evaluation of 

toxicity of chemicals on plants (SCOPE, 1995). The most commonly adopted 

endpoints are percentage of germination, root length and germination index. 

Germination index is obtained by combining seed germination and root length 

according to the following equation (Zucconi et al, 1981): 

G R 
Germination index (GI) = ~ - x ~ - x 100 

Go 灭0 

where Gj = Germination rate in treatment (%) 
Go = Germination rate in control (water) (%) 
Ri = Root length in treatment (mm) 
Ro = Root length in control (water) (mm) 
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Table 2.1 Test species recommended by OECD used in plant tests guidelines (OECD, 
2003). 

Family Species Common names 
Chenopodiaceae Beta vulgaris Sugar beet 
Compositae (Asteraceae) Lactuca sativa Lettuce 
Cruciferae (Brassicaceae) Sinapis alba Mustard 

Brassica chinensis Chinese cabbage 
Brassica napus Oilseed rape 
Brassica oleracea Cabbage 
var. capitata 
Brassica rapa Turnip 
Lepidium sativum Garden cress 
Raphanus sativus Radish 

Cucurbitaceae Cucumis sativa Cucumber 
Leguminosae (Fabaceae) Glycine max (G. soja) Soybean 

Phaseolus aureus Mung bean 
Pisum sativum Pea 
Trigonella foenum-graecum Fenugreek 
Lotus corniculatus Birdsfoot trefoil 
Trifolium pratense Red clover 
Vicia sativa Vetch 

Solanaceae Lycopersicon esculentum Tomato 
Umbelliferae (Apiaceae) Daucus carota Carrot 
Gramineae (Poaceae) Avena sativa Oats 

Hordeum vulgare Barley 
Lolium perenne Perennial ryegrass 
Oryza sativa Rice 
Secale cereale Rye 
Sorghum vulgare Grain sorghum 
Triticum aestivum Wheat 
Zea mays Com 

Liliaceae (Amarylladaceae) Allium cepa Onion 
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Table 2.2 Test species recommended by USEPA (USEPA, 1996). 
Family Species Common names 
Compositae Lactuca sativa Lettuce 
Cruciferae Brassica oleracea Cabbage 
Cucurbitaceae Cucumis sativus Cucumber 
Leguminosae Glycine max Soybean 
Liliaceae Allium cepa Onion 
Poaceae Avena sativa Oat 

Lolium perenne Perennial ryegrass 
Zea may Com 

Solonaceae Lycopersicon esculentum Tomato 
Umbelliferae Daucus carota Carrot 

Table 2.3 Test species recommended by USFDA (Kapustka, 1997; Kapanen and 
Itavaara, 2001). 

Family Species Common names 

Compositae Lactuca sativa Lettuce 

Cruciferae Brassica oleracea Cabbage 

Cucurbitaceae Cucumis sativus Cucumber 

Leguminosae Glycine max Soybean 

Phaseolus vulgaris Bean 

Poaceae Avena sativa Oat 

Lolium perenne Perennial ryegrass 

Triricum aestivum Wheat 

Zea mays Com 

Solonaceae Lycopersicon esculentum Tomato 

Umbelliferae Daucus carota Carrot 
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The definition of germination differs among different organizations and 

authors. American Public Health Association (APHA) and USEPA define 

germination as when radicle attains a length of 5 mm or longer while USFDA sets at 

3 mm. In some cases, germination is considered to be completed when seed coat is 

penetrated by the elongated embryo (Kapustka, 1997). 

2.1.6 Median effect estimates 

Based on the definition proposed by USEPA, median effective concentration 

(EC50) refers to the chemical concentration that affects 50% of the test criterion. 

The EC50 has often been used for comparison because it has the smallest confidence 

interval (Kapustka, 1997). 

2.1.7 Objective 

Most of the toxicity test concerning rare earth elements (REEs) involved 

aquatic system or mammals. The effect of REEs on terrestrial plants is not well 

known. The objective of this experiment is to assess the toxicity effect of REEs on 

seeds of terrestrial plants using germination rate and root length as endpoints. 

2.2 Materials and methods 

The procedure was modified from the Seed Germination/Root Elongation 

Toxicity Test (OPPTS 850.4200) in the Ecological Effects Test Guidelines 

developed by the Office of Prevention, Pesticides and Toxic Substances, USEPA 
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(USEPA, 19%). 

2.2.1 Test species 

The species chosen in the test were Brassica chinensis (Chinese white 

cabbage) and Lolium perenne (perennial ryegrass). B. chinensis is a common 

species in England and one of the most important vegetables consumed in Hong 

Kong (Wong and Leung, 1989). L. perenne is widely used in many phytotoxicity 

tests proposed by USEPA, OECD and USFDA since it is sensitive to many 

chemicals (Gorsuch et al., 1990). The seeds were purchased from local seed 

suppliers. Seeds of similar sizes and without superficial damage were chosen. 

2.2.2 Test chemicals 

Four REEs were used in this experiment, and they were lanthanum (La), 

cerium (Ce), neodymium (Nd) and praseodymium (Pr). All of them are classified 

as light REEs. These REEs occupy the largest proportion in commercial fertilizer 

(Zhang and Shan, 2001). La was purchased from Fluka, Ce was supplied by 

Riedel-de Haen (RdH) while Nd and Pr were provided by Aldrich. The purity of 

the chemicals were no less than 99.9%. All chemicals were in their nitrate forms 

which is the form used in commercial fertilizers. 

2.2.3 Range finding test 

A piece of Whatman #42 filter paper was placed in a Petri dish (9 cm diameter). 

The filter paper was soaked with 5 mL REE solution of different concentrations, 
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ranging 0 (control), 0.01, 0.10, 1.00, 10.0，100 and 1000 mg/L. The REE solutions 

were prepared by dissolving REE nitrate in Milli-Q water at the same day of 

phytotoxicity test. Twenty seeds were distributed evenly on the filter paper (Plate 

2.1-2.2) and there were three replicates for each concentration. The Petri dishes 

were incubated in a controlled environment chamber at 25�C in total darkness for 4 

days and 6 days for B. chinensis and L. perenne respectively (USEPA, 1996). The 

number of seeds germinated was counted at the end of the incubation period. 

Penetration of the radicle out of the seed coat was used as a sign of seed germination 

(Kapustka, 1997). 

2.2.4 Definitive test 

The test species were B. chinensis and L perenne. The concentrations of REE 

solution were 0, 0.16, 0.31, 0.63, 1.25, 2.50, 5.00, 10.0 mg/L. The incubation 

condition was the same as in range finding test. There were three replicates for 

each treatment. The number of seeds germinated was counted and the length of 

primary root was measured by a caliper. 

2.2.5 Statistical analyses 

The means and standard deviations were calculated. The median effective 

concentration (EC50) was calculated from the dose-response relationship between 

percentage of root length of control and REE concentrations by probit analysis using 

SigmaPlot. The criterion of non-overlapping 95% confidence intervals was used to 

determine the significant difference (p 二 0.05) between EC50s (APHA, 1995). 
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2.3 Results 

2.3.1 Range finding test 

Germination rate as a more convenient endpoint was measured in the range 

finding test to find out the concentration range applied in the definitive test. Seeds 

of both B. chinensis and L perenne in pure distilled water (control) had germination 

rate of 92% and 95% at the end of incubation period. This met the criteria set by 

US EPA as test species for phytotoxicity test. 

Germination rates decreased as concentration of REE solution increased. 

The germination rate of both species decreased slightly when concentration of La 

was below 1 mg/L. A rapid decline was found when concentration was higher than 

10 mg/L. Some roots had brownish tips at high concentration. No seeds 

germinated when the concentration was at or higher than 100 mg/L. 

2.3.2 Definitive test 

2.3.2.1 Germination rate 

Germination rates of seeds in solution without REE were 95% for both B. 

chinensis and L. perenne. Germination rates were hereafter expressed as 

percentage of germination of control. 

A general decreasing trend was observed in all treatments for B. chinensis 

(Figure 2.1). A quite even decrease rate was shown by B. chinensis treated with 

most REEs except Pr. The addition of La, Ce, Pr and Nd reduced germination 
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significantly (p < 0.05) at concentrations of 0.63, 2.50, 0.63 and 1.25 mg/L 

respectively. The germination rate decreased to a range from 30.5 to 65.4% at the 

highest concentration of 10 mg/L for the four REEs. The slope of the 

dose-response curve of B. chinensis in Nd solution was relatively smaller. It 

showed that Nd at high concentration had less influence on percentage of 

germination of B. chinensis. 
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Figure 2.1 Germination rate of B. chinensis in solutions of different concentrations 
of REEs. Error bar represents standard deviation (n=3). Asterisk indicates significant 
difference (p < 0.05) when compared with the control. 
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A similar trend was observed for L perenne (Figure 2.2). Germination rates 

of L perenne are not greatly influenced by REEs when concentration of solution 

was below 10 mg/L, with the percentage of germination ranged from 71.9 to 82.5%. 

L. perenne was less sensitive to increasing concentration of REEs than B. chinensis 

as shown by the slopes of the dose response curves. This implies germination of L. 

perenne was less inhibited when subject to the same concentration of REE. For 

instance, germination rate of B. chinensis exposed to 0.63 mg/L La was 71.0%, 

while that of L. perenne was 89.6%. The lowest concentration giving significant 

inhibition to germination of L. perenne was greater than those of B. chinensis. For 

La, concentrations lower than 1.25 mg/L did not significantly (p > 0.05) inhibit the 

germination of L. perenne. For Pr, the lowest concentration that caused significant 

reduction in germination was 5 mg/L. 

2.3.2.2 Root length 

Root elongation in general decreased with increasing REE concentration. 

Figure 2.3 shows the relationship between root length of B. chinensis and REE 

concentration. Significant inhibitory effects of REEs on root length were observed, 

but at different concentrations for the various REEs. The concentration that gave 

significant inhibition to the root elongation for B. chinensis was lower than the 

concentration that significantly affected germination rate. The concentration 

causing significant reduction in root length was 0.16 mg/L for La and Ce, which 

reduced root elongation for 15.8 and 24.3% respectively. The lowest Pr 

concentration that produced significant inhibitory effect to root length was 0.63 
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mg/L, which was higher than those of La and Ce. This concentration was the 

highest for Nd (1.25 mg/L), showing that Nd was the least toxic to B. chinensis 

among the four REEs studied. 
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Figure 2.2 Germination rate of L perenne in solutions of different concentrations of 
REEs. Error bar represents standard deviation (n=3). Asterisk indicates significant 
difference (p < 0.05) when compared with the control. 
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Figure 2.3 Root elongation of B. chinensis in solutions of different concentrations of 
REEs. Error bar represents standard deviation (n=3). Asterisk indicates significant 
difference (p < 0.05) when compared with the control. 

REEs at concentration < 0.63 mg/L were not significantly inhibitory to root 

elongation in L. perenne (Figure 2.4). Root elongations at concentration of 0.63 

mg/L were 80-89% of the control for the four REEs. Root growth of L. perenne 

treated with Nd solution was significantly affected when concentration was higher 

than 2.5 mg/L. However, at the same concentration, root length of B. chinensis 

was lower than that of L. perenne. Root growth of B. chinensis was significantly 

inhibited (p < 0.05) at lower concentration than L. perenne. Root length of B. 
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chinensis was 11.7% lower than that of L perenne for La at a concentration of 2.5 

mg/L. In cases of Pr and Nd, B. chinensis was slightly more inhibited than L 

perenne. B. chinensis may be more sensitive to REEs than L perenne. 
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Figure 2.4 Root elongation of L. perenne in solutions of different concentrations of 
REEs. Error bar represents standard deviation (n=3). Asterisk indicates significant 
difference (p < 0.05) when compared with the control. 

2.3.2.3 Germination index 

Germination index (GI) was obtained by multiplying germination rate and 

root length, both expressed as percentage of control. The germination index 
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decreased as a function of REE concentration for both species (Figures 2.5 and 2.6). 

This implies that lower germination and poorer root growth as the concentration of 

REE increased. 
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Figure 2.5 Germination index of B. chinensis in solutions of different concentration 
of REEs. Error bar represents standard deviation (n=3). Asterisk indicates significant 
difference (p < 0.05) when compared with the control. 
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Figure 2.6 Germination index of L perenne in solutions of different concentration of 
REEs. Error bar represents standard deviation (n=3). Asterisk indicates significant 
difference (p < 0.05) when compared with the control. 

La and Ce gave significantly (p < 0.05) inhibitory effect on B. chinensis at 

concentration of 0.31 mg/L, where GIs were 63.8 and 77.6 for La and Ce 

respectively. For Pr and Nd, inhibitory effect was significant only at 

concentrations greater than 0.63 mg/L. Similarly for L. perenne. La had the lowest 

concentration (0.31 mg/L) that resulted in significant reduction in germination index. 

For the other three REEs, the germination index was significantly reduced at a 

higher concentration (0.63 mg/L). 
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In general, the germination indexes of B. chinensis in all treatments were 

lower than those of L. perenne. The germination index of L perenne exposed to 

0.31 mg/L was 24.7% significantly higher than that of B. chinensis. At a higher 

concentration (10 mg/L), the germination index of L. perenne was almost twice that 

of B. chinensis. This agree with the results obtained from root length and 

germination rate that B. chinensis was more sensitive to REEs than L. perenne. 

2.3.3 The median effective concentration 

The median effective concentrations (EC50s) for the inhibition of the 

development of seeds of B. chinensis and L. perenne were calculated and are shown 

in Table 2.4. The EC50 of La for B. chinensis was the lowest (9.52 mg/L). When 

comparing the 95% confidence interval (CI95) values, the EC50s of La and Ce were 

not significantly different, but were significantly lower than those of Pr and Nd. 

The highest EC50 was obtained in the treatment of Pr (20.1 mg/L), but it was 

statistically similar to the result of Nd. This shows that La and Ce were more toxic 

to B. chinensis than Pr and Nd; La was twice as toxic as Pr. La and Ce had lower 

atomic mass than Pr and Nd. The adverse effects of REEs on root growth of B. 

chinensis diminished as the atomic mass of REE increased. 

For L. perenne, the lowest EC50 was obtained from the treatment of Nd, and 

the highest from Pr. However, the EC50 values for all the REEs were not 

significantly different from each other when regarding their CI95 values. 

6 1 



No significant difference was evidenced between the two species when 

treated with the same REE, since the CI95 of the two species overlapped with each 

other. Both B. chinensis and L perenne were equally sensitive to REEs. 

Table 2.4 Median effective concentration (EC50) (mg/L) of the 
various REEs with 95% confidence interval in parentheses. 

REE EC50 
B. chinensis L. perenne 

T ^ 9.52 (6.39-12.6) 16.2 (12.4-20.0) 
Ce 10.2 (7.26-13.2) 16.0 (7.22-34.7) 
Pr 20.1 (15.3-25.0) 19.9 (19.6-21.3) 
Nd 15.1 (14.6-15.7) 14.5 (10.5-18.6) 

2.4 Discussion 

2.4.1 Dose-response curves of REEs 

At low concentration, seed germination of B. chinensis and L. perenne were 

not different from the control. Root elongation of L. perenne did not differ 

significantly from the control when La and Ce concentrations were lower than 1.25 

mg/L. The results indicate that seeds did not show toxic responses at low 

concentrations. Hu et al. (2002) tested the effect of La and Ce on wheat {Triticum 

aestivum) and found that root length was not decreased by REEs at concentration 

below 1 mg/L. The shoot of Vigna radiata grew similarly to the control until the 

concentrations of REE fertilizer solution were higher than 0.5% (Diatloff et al, 

1996b). 
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Both seed germination and root elongation were adversely affected when 

seeds germinated in solution of REEs at concentrations exceeding 10 mg/L. Seeds 

in all treatments were affected. All seeds did not germinate when concentrations of 

the REEs reached 100 mg/L, which indicated that the REEs concentration was too 

high for seed to germinate. High concentration of REEs would inhibit growth of 

seeds. The results are consistent with other studies. The root length of wheat 

when treated with La and Ce solution at 10 mg/L decreased 53.6% and 53.1% (Hu et 

al., 2002). Elongation of onion roots treated with 40 ĵ M La was inhibited by 40% 

when compared with the control (Clarkson, 1965). A REE solution with the 

concentration of 0.5% caused leaf damages on cucumber and tomato (Jarvan, 2006). 

Solution containing > 2.0 jiM Ce and > 50 La inhibited the vegetative growth of 

Zea mays and Arabidopsis thaliana (Diatloff et al., 1996b; He and Loh, 2000). 

2.4.2 Relative toxicity of the four REEs 

In all the three endpoints, results of seeds treated with La solution differed 

significantly from the other REEs at low concentration. Ce affected the root 

elongation of B. chinensis more severely than Pr and Nd. For B. chinensis, the 

EC50s of La and Ce were significantly different from those of Pr and Nd. La had 

similar effects as Ce on root elongation of Triticum aestivum (Hu et al” 2002). 

Although all the four REEs are classified as light REEs, there was difference 

between one and the other. The ionic radii of the four REEs were slightly different. 

The ionic radius gradually decreases (from 106.1 to 99.5 pm) as atomic number 

increases. Such difference may affect the affinity of the ion to bind to sites on cell 
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surface and consequently cause different effects on germination (Laul et al., 1979; 

Brown et al, 1990). Nevertheless, in the current study, the EC50 of the four REEs 

were indifferent from each other in the case of L per erne. Since the difference in 

ionic radii between the four REEs is very small, L perenne may not be sensitive 

enough to show the difference. 

REEs are usually compared with heavy metals due to their similarity in 

properties. The phytotoxicities of heavy metals are well documented. Shu et al. 

(2002) reported root growth of Cynodon dactyl on was severely inhibited when 

exposed to 0.17 mg/L of Cu and there was no root growth when Cu concentration 

reached 2 mg/L. Leaves of L. perenne showed chlorosis when Ni was added to the 

growth medium (Khalid and Tinsley, 1980). The EC50s of REEs were higher than 

those for most heavy metals (Table 2.5). Wong and Bradshaw (1982) determined 

the toxicity of several heavy metals using root elongation of L. perenne as endpoint. 

The EC50s of Cu, Mn and Ni were lower than 1 mg/L. The EC50s of Cu ranged 

from 0.0015 to 0.5 mg/L for different plant species (Wong and Bradshaw, 1982; 

Gorsuch et al., 1990; Shu et al., 2002; Charles et al., 2006). The EC50s of heavy 

metals were much lower than those of REEs. Cu was 725-995 times more toxic 

than the REEs. Zn is a less toxic heavy metal and is also an essential element for 

plant growth; its EC50s ranged from 1.6 to 4.2 mg/L for different plant species 

(Wong and Bradshaw, 1982; Gorsuch et al., 1990; Shu et al., 2002). The EC50s of 

Zn found from root elongation of L. perenne was 9-12 times more toxic than the 

four REEs. By comparing EC50 with heavy metals, the four tested REEs were in 
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general much less toxic to plants. 

Table 2.5 Summary of literature on phytotoxicity tests with heavy metals. 
Test 
chemicals Test organisms Duration EC50s References 
Cd Lolium perenne 14-day 1.85 mg/L Wong and Bradshaw, 

1982 
Cr Lolium perenne 4-week 2.5 mg/L Dijkshoom et al, 1979 

Lolium perenne 14-day 2.00 mg/L Wong and Bradshaw, 
1982 

Cu Chlorella sp. 72-hour 0.0015 mg/L Franklin et a/., 2000 

Cynodon dactylon 14-day 0.17 mg/L Shu et al, 2002 

Lactuca saliva 5-day 0.5 mg/L Gorsuch et al., 1990 

Lemna 48-hour 0.0162 mg/L Charles et al., 2006 
aequinoctialis 
Lolium perenne 14-day 0.02 mg/L Wong and Bradshaw, 

1982 
Paspalum 14-day 0.19 mg/L Shu et ai, 2002 
distichum 
Zea mays 14-day 0.27 mg/L Craig, 1978 

Mn Lolium perenne 14-day 0.45 mg/L Wong and Bradshaw, 
1982 

Ni Lolium perenne 14-day 0.18 mg/L Wong and Bradshaw, 
1982 

Im mays 14-day 0.39 mg/L Craig, 1978 

Pb Cynodon dactylon 14-day 8.2 mg/L Shu et al, 2002 

Lolium perenne 14-day 1.7 mg/L Wong and Bradshaw, 
1982 

Paspalum 14-day 7.8 mg/L Shu et al., 2002 
distichum 

Zn Cynodon dactylon 14-day 1.8 mg/L Shu et al, 2002 

Lactuca sativa 5-day 2.16 mg/L Gorsuch et al, 1990 

Lolium perenne 14-day 1.6 mg/L Wong and Bradshaw, 
1982 

Paspalum 14-day 4.2 mg/L Shu et al, 2002 
distichum 
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REEs did not cause serious harmful effect on other tested organisms. 

Biomass of wheat was reduced when REE concentration was > 5.5 g/L (Jarvan, 

2006). The leaf biomass of wheat treated with Eu was similar to those without Eu 

(Shtangeeva and Ayrault, 2006). The 48-h LC50 of Hypophthalmichthys molitrix 

and Carassius auratus to REEs was 12.2 and 36.0 mg/L respectively (Hu and Luo, 

1980). All the Cyprius carpio that exposed to 0.5 mg/L Gd and Y solution 

survived during the exposure period (Tu et al., 1994). 

Some studies found that REE gave beneficial effects on seedlings. The root 

dry weight of Zea mays was increased by Ce and La at concentration lower than 

0.56 mg/L (Diatloff et al., 1996b). REEs increased the dry weight of seedling of 

Beta vulgaris at a range of 4.0-19.2% (Tian et al 1990). The root biomass of 

wheat increased by 20% when it was exposed to 0.01 mg/L Eu (Shtangeeva and 

Ayrault, 2006). The pollen growth of Nicotiana tabacum and Primus perscia were 

also promoted by 14.9-27.7% at low La concentration (Sun et al., 2003). The 

amaranthin synthesis and the plant growth were promoted after the plant exposed to 

0.4 mmol/L Eu (Wahid et al., 2000; Zeng et aL, 2003). However, significant 

growth promotion was not observed in the present studies. The deviation may be 

attributed to the different growth stages of plants. Seeds were used in the present 

study while seedlings were used in other studies. Seed is a vulnerable stage in the 

life of a plant. Once there is damage on the seeds during germination, no remedy 

can be done to make the seed germinate. The remaining stages in the life cycle 

will not occur. Therefore, testing the toxic effect of a chemical on plants using 
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seed germination is highly valuable. Seeds contain virtually all the materials to 

start off a new plant. No external sources of nutrients are required for seeds to 

germinate. The promotional effect of REEs may be shown by seedlings but not 

seeds. After seed grows into seedling, external nutrients are needed by the seedling 

to grow. REEs may act as nutrient or mimic other nutrients to promote growth at 

low concentrations. 

2.4.3 Mechanism of effect of REEs on seed growth 

The mechanism underlying the effects, both positive and negative, of REEs 

on plants is still not clear. The most widely discussed mechanism was the 

displacement or replacement of Ca^^ by REE on cells. Activities of many enzymes 

and proteins depend on Ca^^-binding sites in the cell membrane. Change in 

element on the binding site will affect the function of enzymes, and eventually plant 

growth. The ionic radii of REE ions were similar to that of Ca^^. REEs would 

compete for binding sites with Ca^^ (Jie et al., 2003). As the valence of REE ion 

was higher than that of Ca� . , once REEs have bound to the sites, the binding would 

be less reversible (Lettvin et al., 1964). Displacement of Ca^^ from the binding 

sites would convert the active site structure and the consequent enzyme activities. 

Effect of REE on pollen grain was reported to be related to calmodulin, which is a 

receptor protein (Sun et al., 2003). In the presence of La, calmodulin is 

stimulated and started the transduction of signal into the cell which causes 

germination. Ca^^-dependent protein kinases from silver beet leaves were inhibited 

by the presence of REE ions. The inhibition ranged from 66-93% for different 
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REEs (Brown et al., 1990). Another type of enzyme, spinach ferredoxin, was 

inhibited by the replacement of Ca^^ by REE ions. Replacement of Ca^^ by REEs 

in enzyme may not always inhibit its activity. On the other hand, REEs can 

activate enzymes after the replacement of Ca^^ (Chen et al., 2001; Jie et al, 2003; 

Sun et al., 2003). Such activation may explain the promotion of seed germination 

and plant growth in the presence of REEs. 

Besides influence on the calcium level, REE was reported to block 

Ca^^-channel (Pickard, 1970). Ca^^-channel is a major path for flux of many ions 

through the cell membrane. Since the channel was blocked by REEs, uptake of 

nutrients was disturbed which inhibited seed growth. However, some studies found 

that such inhibition occurred at high La concentration only (Zeng et al., 2003). 

When external La concentration was low, the nutrient levels in cells were the same 

as those in treatment without La (Hu et al, 2002). The blocking may be 

concentration dependent. 

2.4.4 Comparison between different endpoints 

Effects of chemicals on the plants may be analyzed by seed germination, 

shoot or root length change over the duration of the exposure, plant growth 

measured by fresh weight or qualitative observations such as yellowing of leaves 

and chlorosis. (Klaine et al., 1995). Among the various endpoints, quantitative 

measurement would provide an evaluation of toxicity of the chemical tested. Two 

quantitative endpoints were used to test the phytotoxicity of REE in this experiment. 
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The sensitivities of the endpoints REEs were different. Percentage of germination 

remained at relatively high levels at low concentrations. Germination rate was less 

sensitive to REEs. Although the difference between germination rate and root 

elongation for B. chinensis was not greatly apparent, the sensitivity of root 

elongation was higher. 

Root elongation is generally inhibited at lower toxicant concentrations than 

seed germination (Gorsuch et al., 1990; Linder et al., 1990; Wang and Keturi, 1990; 

Klaine et al., 1995; Peralta et al., 2000; Lau et al., 2001; Wong, et al,, 2001; Lee et 

al., 2002; Ali et al., 2004). The lowest concentrations that gave significant 

inhibition to root elongation for B. chinensis were 0.16 mg/L for La and Ce, which 

had no difference in germination rate. The lowest concentration of La and Ce 

which reduced germination significantly were 0.63 mg/L and 2.5 mg/L respectively. 

Root elongation may be a more sensitive indicator for REEs. The germination of 

seeds of Vicia faba was not affected by different solutions of Ca, Co, Ni and Zn 

chlorides alone and in combination, but effects on root elongation were recorded 

(Misra et al., 1994). The median inhibitory concentration (IC50) of Cr on lettuce 

was lower for root growth than seed germination (Cureton et al., 1994). The IC50 

estimated from seed germination was 90 jig/g while that from root growth was 3 

|xg/g. Ali et al. (2004) also obtained similar results that the IC50 from root growth 

was lower than that measured from germination for barley. This applied also to the 

whole experiment of spent pig litter (Tarn and Tiquia, 1994). 
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Root elongation is more sensitive than germination rate with response to 

REEs. Therefore, root elongation should be a better indicator about the toxicity of 

REEs on plants. 

2.4.5 Comparison between different species 

The concentrations that cause significantly inhibition to B. chinensis and L. 

perenne were different. When the seeds were treated in La solution, root lengths of 

B. chinensis and L. perenne were significantly shorter than that in the control at 

concentration of 0.16 mg/L and 1.25 mg/L respectively. B. chinensis was affected 

at lower concentration than L. perenne. Similarly, germination index of B. 

chinensis was lower. It may be due to the shorter root elongation of B. chinensis 

when treated with REEs. However, the EC50s of B. chinensis and L. perenne were 

not significantly different for each REE, showing that the sensitivity of B. chinensis 

to REE was comparable to that of L. perenne. 

L. perenne is proposed by the USEPA, OECD and USFDA as a test species 

for phytotoxicity test using seed germination and root elongation as endpoints. The 

species is sensitive to many chemicals, including both organic and inorganic 

chemicals such as acetic acid, herbicides, heavy metals, ammonium, salts and 

minerals. Gorsuch et al (1990) evaluated 26 commercially important chemicals, 

including various heavy metals using seed germination as well as root and shoot 

elongation of L. perenne as endpoint. L. perenne has been commonly used in 

phytotoxicity test. 
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B. chinensis is not a species proposed by the USEPA or USFDA, but by the 

OECD. B. chinensis is one of the most important vegetables consumed in Hong 

Kong and England (Wong and Leung, 1989; Mahmud et al., 1999). The species is 

endemic to the area of concern. They are economically important and constitute 

major cash crops in Hong Kong and China. The seeds can be easily purchased 

from local suppliers. Its root was thicker than that of L perenne; it is more easily 

and efficiently to handle during root length measurement. The germination rate of 

seeds in aqueous medium was high and uniform, with an average of over 95%, 

which meets the criteria for standard phototoxicity test protocol. B. chinensis is a 

suitable species for phytotoxicity test. It has been used in many studies, for 

toxicity testing of spent pig litter, landfill leachate, dredged sediment and sewage 

sludges (Tarn and Tiquia, 1994; Wong et al, 2001; Chen et al., 2002; Cheng and 

Chu, 2007). From the result of the present study, B. chinensis would be a suitable 

species for testing REEs. 

2.4.6 Limitations and improvement 

Seeds germinate in a short time, generally 2-4 days. This is an advantage 

with regard to the experimental duration. However, as the time for seed exposed to 

chemicals is short, germination test can only determine acute rather than chronic 

effect of chemicals. 

Endpoints of seed germination/root elongation test are germination rate and 

root length, which provided limited information about the effect of REEs on plants. 
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Symptoms such as changes in height, foliar biomass, standing leaf number, colour of 

leaf and flower cannot be assessed by germination test. Seedlings should be tested 

also to display the effect of REEs on these aspects. 

Since most of the germination tests are carried out in laboratory where 

conditions such as light and humidity are favourable for seeds to germinate; the test 

may not provide situation similar to the field, which are more variable. In 

application aspect, REEs are usually applied to plants in cultivated and forestry 

areas, test using seedlings will better reveal the field conditions. 

Seeds were soaked in REE solution in the germination test. However, the 

usual method for applying REEs to plants is by mixing REEs with soil. After 

REEs was added to soil, reactions will occur and lead to change in their availability. 

Based on these limitations, test using seedlings grown in soil will be an alternative 

to seed germination and root elongation test to determine the effects of REEs on 

plants. 

2.4.7 Methods of measuring root length 

Root length was measured manually by a caliper in the present study. This 

had the advantages that the appearance of seeds and roots can be observed during 

measurement. However, the method has several limitations. It is labour and time 

consuming. One root can be measured at the same time. Most of the time would 

be spent on measurement. It would be worsened if a large scale experiment was 

7 2 



carried out. The length was judged by the naked eyes, which affects the accuracy 

of measurement. In order to improve the precision, computer-aided analysis is 

suggested. 

Image of root would be captured using either a scanner or camera. 

Germinated seeds are placed horizontally on top of a flat-bed scanner to get the 

image of root (Geneve and Kester, 2001). Camera can capture continuous image of 

root growing vertically. The image are then transferred to a computer and analysed 

by specialized software to obtain the length of root. The greatest stride over 

manual measurement is the improvement of precision to less than 0.1 mm. The 

result should be more reproducible. Tens of roots can be handled at the same time 

so that measurement time is saved. The image can be saved in a computer to allow 

review in the future. 

2.5 Conclusions 

Toxicity of four REEs, viz. La, Ce, Pr and Nd, were tested by seed 

germination and root elongation. Inhibition to root elongation by REEs was more 

severe than inhibition to germination. Root elongation was a more sensitive 

parameter than seed germination. La and Ce were more toxic to B. chinensis than 

Pr and Nd. The effects of REEs on L. perenne were statistically indifferent. 

Although B. chinensis was not a highly recommended species in phytotoxicity test, 

EC50s of REEs measured by the two species were not significantly different. 

Seeds of both B. chinensis and L perenne were sensitive to the four REEs. EC50s 
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of REEs were much higher than those of heavy metals, implying lower acute toxic 

effect. Seeds are more sensitive than seedlings. The low toxicity to seed 

germination implies that the chance for REEs exhibiting toxic effect to seedling 

would be low. However, the effects of REEs on other aspects of plants are still not 

well known. This information will allow a better understanding of the value and 

the application of REEs to plants. 
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Chapter 3 Growth of tree seedlings in soil treated with rare earth 

elements 

3.1 Introduction 

Rare earth elements (REEs) are commonly used in industrial and agricultural 

applications. Nd and Sm are used to make permanent magnet. Catalysts for the 

cracking of crude petroleum contain mixture of rare earth oxides. Since 1990s, REE 

fertilizers have been widely applied, especially in China, and the application rate 

increased rapidly. The yield and quality of products irrigated with REE solution 

were claimed to be improved. Yield of com and wheat grown in soil added with 

REE were increased by 7-14% and 6-15% respectively (Xiong et al., 2000). Quality 

benefits to plants included a greater production of roots, a darker green foliage, an 

enhanced rate of development, and better fruit colour in apples, oranges and 

watermelons (Brown, et al., 1990). 

Experimental studies about application of REEs for plant growth have 

reported both positive and harmful effects. The length of primary roots, dry weight 

and number of flowers of Arabidopsis thaliana subjected to La and Ce solution 

increased (He and Loh, 2000). Growth of Dryopteris erythrosora in La solution was 

more than two fold when compared with control (Ozaki et al., 2000). Root biomass 

of wheat {Triticum aestivum) seedling grown in Eu solution was significantly higher 

against control (Shtangeeva and Ayrault, 2007). In contrast, oat coleoptile growth 

was restricted by Nd while leaf of com was burnt when treated in Ce solution (Pickard, 

1970). Most of the studies focused on agricultural crops, such as wheat, com, maize 
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and bean, which are grown in farms which are isolated from natural environment. It 

may not extrapolate the situation in the natural environment. 

Forestry plants, especially trees, are important to both environment and human. 

Trees purify air by taking in carbon dioxide and releasing oxygen. They are great 

energy collectors that convert solar energy to chemical energy. Trees reduce force of 

rainsplash at soil surface by intercepting and absorbing water, so run off as well as 

erosion are prevented. They harbour a diversity of wildlife that they are home of 

many animals. Every part of tree is economically important: timber, oil, rubber, 

flower and fruit. Studies of the effects of REEs on forestry plants would better 

reflect the influence on the natural environment, but such studies are lacking. In this 

study, tree seedlings will be used to investigate the effect of REEs on forestry plants. 

Results of the phytotoxicity test in the previous chapter shows that the toxicity of 

REEs to sensitive crop species was not so high. Since the REEs were found to be 

beneficial to agricultural crops, it would be a contribution to forest ecosystems if such 

positive effects were also demonstrated in tree seedlings. 

Despite similarities in the physical and chemical properties of REEs, some 

studies reported that there is difference in absorption and effect on plants between 

REEs. Maize absorbed more La than Lu under the experimental conditions carried 

out by Xu et al. (2002). Wheat tended to absorb light REEs at higher rates when 

compared with heavy REEs (Liang et al., 2005). Results from seed germination/root 

elongation test showed that effects of the tested REEs were different from one another. 
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The major components in REE fertilizers are La, Ce, Pr and Nd which are all light 

REEs. The four REEs make up of more than 80% of commercial fertilizers that 

contain REEs. Studies using light REEs would be emphasized. 

The present study aims to examine the effect of REEs on tree growth. Plants 

were exposed to different REE application rates in a greenhouse pot experiment. 

Biological responses and tissue contents in tree seedlings were monitored and 

analysed during and at the end of the experiment. 

3.2 Materials and methods 

3.2.1 Soil 

Soil was collected from the campus of The Chinese University of Hong Kong. 

The soil was sieved through a 5-mm mesh sieve to remove large particles before use. 

One part of peat moss was added to every three parts of soil as soil conditioner. 

3.2.2 Tree seedlings 

Seedlings of Acacia auriculiformis and Eucalyptus citriodora with height of 

15-20 cm were used. They were chosen since they were species that commonly 

planted in Hong Kong and they can grow rapidly. Seedlings of Acacia 

auriculiformis were bought from the Tai Tong Nursery of the Agriculture, Fisheries 

and Conservation Department, while seedlings of Eucalyptus citriodora were 

provided by Pegasus Greenland Ltd (Hong Kong). 
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3.2.3 REEs 

REEs used in this study were lanthanum (La), cerium (Ce), praseodymium (Pr) 

and neodymium (Nd). All of them were light REEs and occupied the largest 

proportion (83%) in the commercial fertilizer. Reagent grade chemicals were used 

and all chemicals were in their nitrate forms (Fluka, Riedel-de Haen (RdH) and 

Aldrich) which is the form used in the commercial fertilizer. The purity of the 

chemicals used was > 99.9%. 

3.2.4 Greenhouse experiment 

Pot experiment was carried out in a greenhouse of The Chinese University of 

Hong Kong. One seedling of either A. auriculiformis or E. citriodora was planted to 

pot (19 cm in diameter and 18 cm in height). They were acclimated for 1 month 

after received. Known amounts of REEs were added to the soil before seedling 

transplant and mixed thoroughly to result in soil concentrations of 0, 1, 5, 25 mg 

REE/kg of the different REEs. There was only one REE per pot which treated with 

REE. Each treatment had four replicates and the pots were arranged in a randomized 

block design (Plate 3.1). To each pot, 1.22 g of urea and 1.40 g of potassium 

dihydrogen phosphate were added to supply 200 kg/ha nitrogen and phosphorus 

respectively (Bradshaw, 1983). 
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Plate 3.1 Tree seedlings of A. auriculiformis and E. citriodora in 19-cm pots arranged 
in randomized blocks in a greenhouse. 

The seedlings were watered with deionized water every day. The growth and 

health of the plants were monitored. The height, standing leaf number and basal 

diameter of the seedlings were measured every 15 days. Chlorophyll fluorescence was 

represented as Fy/Fm which were measured using a plant efficiency analyser (PEA) 

(Hansatech, England) every 30 days. The plants were harvested after 90 days, and 

the harvested tissues were chemically examined. 
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3.2.5 Soil analysis 

3.2.5.1 Initial properties 

Soil used in the pot experiment was sampled and air-dried for 2 weeks. The 

soil was then sieved through 2-mm mesh sieve. 

Soil texture 

Soil texture was determined by the Bouyoucos hydrometer method which 

measures the decrease in density of a suspension as soil particles settle (Allen, 1989; 

Grimshaw, 1989). A soil sample of 50 g was stirred with 25 mL 5% sodium 

hexametaphosphate (Calgon solution) and 400 mL water in an electric blender for 15 

minutes. The mixture was poured into a measuring cylinder and stirred with paddle 

for 1 minute. The hydrometer readings were taken at 4 min 48 seconds for silt and 

clay contents and 5 hours for clay content. The sand, silt and clay contents were 

expressed as percentages by weight. Classification of the International Society of 

Soil Science was used to find out the textural class of the soil. 

pH 

Water extract of the soil was measured by the glass and Pt electrode using the 

Jenway 4330 pH and conductivity meter. Milli-Q water was added to 10 g of soil to 

form aqueous slurry in 1:1 (w/v) ratio. The mixture was shaken at 150 rpm for 15 

minutes and allowed to stand for 30 minutes before measurement. 
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Organic matter 

Organic matter in soil was determined by wet combustion method modified by 

Kandeler (1995). Potassium dichromate solution and concentrated sulphuric acid 

were added to 2 g of air dried soil. The mixture was allowed to stand for 3 h and 

then fill up to 100 mL. The samples stood overnight before spectroscopic 

measurement at 570 nm. 

Cation exchange capacity 

Cation exchange capacity of soil was determined by ammonium acetate 

method modified by Kim (1996). Air-dried soil was weighed in a 100-mL centrifuge 

tube and 25 mL ammonium acetate solution was added. The soil mixture was 

mechanically shaken for 1 h. The supernatant solution was separated from the soil 

by centrifugation. The NH4-saturated soil was washed three times with 20 mL 95% 

ethanol, by shaking and centrifugation. After removing ethanol, the soil was mixed 

with 25 mL sodium chloride (pH 2.5) solution and shaken mechanically for 30 

minutes. The supernatant was separated from the residue by centrifugation. The 

ammonium concentration was determined by a Skalar SAN竹segmented flow 

auto-analyser (Skalar Analytical BV, Breda, The Netherlands). 

3.2.5.2 Post harvest analysis 

Soil was sampled from each pot after harvesting. Collection of the soil 

samples was made after soil in each pot was mixed thoroughly. The soil samples 

were then air-dried for 2 weeks. Air-dried soil was sieved through 2-mm mesh sieve 
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before analysis. Sieved soils were stored in plastic bags to prevent contamination 

until being analysed. 

REE contents 

A portion of 0.4 g of dried soil samples was digested with mixed acid of 

concentrated nitric acid and 30% hydrogen peroxide by microwave digestion using a 

Milestone ETHOS touch control close vessel microwave digester following the 

method of Milestone (2003). The digested samples were stored at 4°C before 

analysis. The total contents of REEs in soil were determined by Optima 4300 DV 

inductively coupled plasma optical emission spectrometer (ICP-OES) (Perkin Elmer, 

USA) after mixed acid digestion. 

Total Kjeldahl and mineral nitrogen 

Soil samples were digested by semi micro-Kjeldahl digestion (Skalar, 1995). 

Total N content in soil was determined by a Skalar SAN竹segmented flow 

auto-analyser. 

Extractable NHx-N and NOx-N were measured by Skalar SAN仲segmented 

flow auto-analyser after extraction with 1 M potassium chloride at 150 rpm for 1 h 

(Rowell, 1996). 

Total and available phosphorus 

Total P content was measured by Skalar SAN外""segmented flow auto-analyser 
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using the same method as described for total N . 

Available phosphorus was extracted by Troug's reagent (0.001 M (NH4)2S04 

buffered at pH 3) at 150 rpm for 30 min (Troug, 1930). The content was then 

determined by Skalar SAN""�segmented flow auto-analyser. 

Mineral nutrients 

The sample used to measure REE content was also used to determine metals 

using ICP-OES. 

3.2.6 Plant analysis 

Leaves and roots were harvested at the end of the experiment. Leaves were 

washed with tap water and Milli-Q water. Roots were separated from soil by 

washing in tap water until no soil particles were visually detected on the roots, and 

then with Milli-Q water. The plant samples were dried in an oven at 65°C until 

constant weight. The dry biomass of the plant samples was weighed. Dried plant 

samples were ground to pass through 1 mm mesh before further analysis. The 

methods of digestion and determination were the same as those for soil analysis. 

3.2.7 Statistical analysis 

The data were processed by SigmaStat 3.1. The differences between 

treatments were tested by three-way analysis of variance (ANOVA) and Tukey's 

Honestly Significant Difference test at p = 0.05 wherever appropriate. 
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3.3 Results 

3.3.1 Growth 

All tree seedlings survived until the end of the experiment. No apparent 

illness appearance such as spots and change in leaf colour was observed throughout 

the period before harvesting. 

3.3.1.1 Height 

When comparing the height of tree seedlings, in general, those treated with 

REEs grew better than those without REEs (Table 3.1). All REEs with application 

rate of 1 mg/kg resulted in greater heigh in A. auriculiformis than the control. 

Seedlings in the lowest La and Nd concentration were four times and twice as tall as 

that in the control. There was no significant difference (p > 0.05) between the 

treatment of 25 mg/kg and the control for most of the REEs, whereas A. 

auriculiformis treated with 25 mg/kg Ce was significantly taller than that of the 

control. Seedlings treated with 1 mg/kg Pr were significantly taller than the control, 

while those in the other two concentrations were not different from control. 

For E. citriodom, the concentrations that gave the best height increment were 

1 mg/kg for La and Pr, and 5 mg/kg for Ce and Nd. Seedlings in the most effective 

concentration were almost twice as tall as the control. Except for Ce, all other REEs 

in the highest concentration did not give significantly higher height than the control. 

All the four REEs promoted height growth for both A. auriculiformis and E. 
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citriodora. Promotional efficiencies of them were similar. The height increments 

of the two species were similar except those exposed to Nd. 

Table 3.1 Plant growth in height (% change) after 90-day exposure to REEs. 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 30.1 b 128 a 99.5 a 68.2 ab 

Ce 30.1 b 81.0a 71.1 a 69.9 a 
Pr 30.1 b 104 a 78.7 ab 52.8 ab 
Nd 30.1b 73.6 a 56.1 a 41.2b 

E. citriodora La 66.0 b 127 a 101 a 78.3 b 
Ce 66.0 c 91.9 ab 114 a 79.8 b 
Pr 66.0 b 108 a 101 a 77.5 b 
Nd 66.0 b 101 a 132 a 85.1 b 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05, Tukey's test). 

At the initial growth period, the height of A. auriculiformis increased slowly in 

all REE treatments (Figure 3.1). An obvious difference was observed for most REEs 

after 45 days. The height increment of the control was the slowest when compared 

with REEs. Height increase in soils treated with Pr was the highest at 1 mg/kg 

throughout the whole period of study. However, for the other REEs, application rate 

at 1 mg/kg gave the highest growth only at the end of the experiment. Height of A. 

auriculiformis exposed to Ce at the highest concentration was similar to the second 

highest concentration. For E. citriodora, the growth rate was consistent throughout 

the experiment (Figure 3.2). Similar to the growth of A. auriculiformis, height 
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increment of eucalyptus without REE application was the lowest. Tree seedlings 

treated with 5 mg/kg Ce grew the fastest when compared with other concentrations of 

the same REE. For La and Pr, the growth in various application rates were similar at 

the beginning of the experiment, differences were apparent at a later period of the 

experiment. At the end of the experiment, seedlings exposed to 1 and 5 mg/kg 

doubled their height. 
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0 15 30 45 60 75 90 0 15 30 45 60 75 90 

Time (Days) Time (Days) 

Figure 3.1 Growth of A. auriculiformis exposed to REEs at 0 mg/kg ( • ) , 1 mg/kg ( • ) , 
5 mg/kg ( • ) and 25 mg/kg (參). 
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Figure 3.2 Growth of E. citriodora exposed to REEs at 0 mg/kg ( • ) , 1 mg/kg ( • ) , 5 
mg/kg (A) and 25 mg/kg (#) . 

3.3.1.2 Basal diameter 

Basal diameters of A. auriculiformis seedlings treated with REEs were 

generally significantly larger than those without REEs (Table 3.2). Except Ce, other 

REEs gave higher basal diameter to seedlings at all concentrations. At 5 mg/kg Ce, 

seedling basal diameter was not significantly different from the control. The 
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increment of basal diameter ranged from 16.7 to 47.6% under treatment of REEs, 

which was smaller than that of height. There was no significant difference (p > 0.05) 

between all REE concentrations for each REE. When comparing the REEs at the 

same concentration level, there was no significant difference between the four REEs 

studied. 

Table 3.2 Plant growth in basal diameter (% change) after 90-day exposure 
to REEs. 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 9.56 b 30.0 a 23.4 a 47.6 a 

Ce 9.56 b 40.6 a 16.7 ab 24.9 a 
Pr 9.56 b 28.2 a 21.4 a 33.9 a 
Nd 9.56 b 29.6 a 23.9 a 30.4 a 

E. citriodora La 30.1 c 59.6 a 42.6 b 35.6 be 
Ce 30.1 b 34.3 b 65.0 a 35.5 b 
Pr 30.1c 78.4 a 40.8 b 26.9 c 
Nd 30.1b 72.0 a 64.0 a 64.5 a 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05，Tukey's test). 

Most of the four REEs at concentrations of 1 and 5 mg/kg significantly 

promoted basal stem growth of E. citriodora seedlings (Table 3.2). Seedlings treated 

with the lowest concentration (1 mg/kg) of La and Pr had significantly greater basal 

diameter than other application rates, while this happened at 5 mg/kg Ce. The 

greatest basal diameter was 2-2.5 times of the seedlings that did not expose to REEs. 

The greatest increment occurred at 1 mg/kg Pr. Basal diameter of E. citriodora 
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treated with Nd was similar at all the three application rates. The increase of basal 

diameter ranged from 64.0 to 78.4% when exposed to Nd, while the control was 

30.1%. Change in basal diameter in treatments of La, Ce and Pr at 25 mg/kg were 

similar to the control; only Nd at 25 mg/kg resulted in significantly higher than the 

control. At the lowest concentration, the basal diameter of seedlings treated with Ce 

was smaller than the other REEs, while at 5 mg/kg REEs, Ce gave the highest growth 

in stem diameter. 

3.3.1.3 Biomass 

After the 90-day experiment, the control foliar biomass was almost double of 

the initial biomass (Figure 3.3). The increase of foliar biomass of A. auriculiformis 

ranged from 201 to 266% when treated with different application rates of REEs. 

There are no significant differences (p > 0.05) among all treatments. For E. 

citriodora, seedlings treated with 1 and 5 mg/kg REEs had significantly higher foliar 

biomass than those without REE. The promotional effect of 1 mg/kg REEs was the 

greatest, whereas those treated with 25 mg/kg REEs did not grow better than the 

control. 

In general, the four tested REE performed similarly regarding foliar biomass 

production in various concentrations. 
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Figure 3.3 Foliar biomass (% change) after 90-day exposure to REEs (a) A. 
auriculiformis and (b) E. citriodora. 

The effect of REEs on root biomass was more obvious than that on foliar 

biomass. For A. auriculiformis, there was a significant difference (p < 0.05) between 

the applied concentrations (Figure 3.4). Root biomass treated with REEs at the two 

90 



lowest concentrations was greater than control. However, all REEs added at the 

highest concentration did not significantly promote root growth of A. auriculiformis 

seedlings. Nd at the highest application rate had similar effect as the other two 

concentrations, though it was not significantly different from control. 
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Figure 3.4 Root biomass (% change) after 90-day exposure to REEs (a) A. 
auriculiformis and (b) E. citriodora. When compared within REE in the same 
species, bars with the same letters are not significantly different at p > 0.05 by 
Tukey's test. 

91 



E. citriodora had root growth similar to that of A. auriculiformis. The 

concentration that brought about the highest root biomass was 1 mg/kg for all REEs. 

With the addition of 5 mg/kg REEs, they were significantly different from the control. 

With the exception of La, root biomass at 5 mg/kg was not significantly different from 

the root biomass at 25 mg/kg. The difference in root biomass of the control and the 

highest REE concentration were not statistically significant. 

When comparing the performance between the REEs, there were no 

significant differences in all levels for both species. 

3.3.1.4 Standing leaf number 

There was no massive leaf fall during the experiment period. Both A. 

auriculiformis and E. citriodora treated with REEs had more standing leaf number 

than the control seedlings. In general, the effects of the four REEs were not different 

with statistic significance (p > 0.05). 

All REEs resulted in greater standing leaf number than the control. With the 

addition of REEs, the standing leaf number at the end of the experiment increased by 

60-256% (Table 3.3). The four tested REEs at the lower two concentrations gave 

significant beneficial effect to A. auriculiformis seedlings. At 1 mg/kg Ce and 5 

mg/kg La and Nd, the leaf numbers were over 300% of the initial numbers. In the 

other treatments, the standing leaves on REE treated seedlings were almost twice of 

the control. The standing leaf number of tree seedlings treated with Ce and Pr at the 
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highest application rates were significantly higher than the control, while seedlings 

treated with La and Nd were not. 

Table 3.3 Standing leaf number (% change) after 90-day exposure 
to REEs. 
Species REE Application rate of REE (mg/kg) 

Q 1 5 25 

~ La 129 B 271 a 314a 193 ab 
A. auriculiformis 

Ce 129 B 325 a 286 a 261 a 
Pr 129 B 296 a 272 a 253 a 
Nd 129 C 266 ab 356 a 160 be 

La 190 C 549 a 284 b 229 be 
E. citriodora 

Ce 190 C 280 b 423 a 257 b 
Pr 190 C 545 a 352 b 240 c 
Nd 190 C 406 a 395 a 324 b 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05, Tukey's test). 

The concentration which brought about the highest standing leaf number of E. 

citriodora for La and Pr was 1 mg/kg, while that for Ce was 5 mg/kg. The effects of 

two lower Nd concentrations (1 and 5 mg/kg) were similar to one another. The leaf 

numbers under treatments of REEs were twice to five times more than the initial 

number. The leaf numbers from 1 mg/kg La and Pr were 3 times of the control, 

which had the highest standing leaf number among all treatments. Seedlings treated 

with the highest concentration of Ce and Nd had significantly more leaves than those 

from the control (p < 0.05). 
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The changes in standing leaf number are shown in Figures 3.5 and 3.6. The 

increase in the leaf number of A. auriculiformis was rapid initially that the growth was 

more than 100%. The increment in most treatments then slowed down during to 

45th day. The growth rate rose again before harvest. The leaf number of seedlings 

treated with REEs was obviously higher than that in the control after 15 days. The 

trend for 5 mg/kg Nd was unlike the others that growth rate was even over the 

experimental period. The trends of Ce and Pr treatments were similar to one another, 

while those La and Nd were more varied. Increase in leaf number at 1 and 5 mg/kg 

La were faster than the other treatments. 

The highest increment rate in standing leaf number of E. citriodora appeared 

after 45 days. Seedlings in the absence of REEs produced the least number of leaves. 

A higher increase was found in seedlings treated with 25 mg/kg La and Ce. 

However, the growth rate was superior by others after 45 days. For Pr and Nd, 1 

mg/kg gave the best leaf growth of E. citriodora throughout the 90 days. The 

cumulative increment was more than twice after 45 days, and more than 400-500% of 

the beginning. There was no adverse effect in leaf number throughout the whole 

period. 
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Figure 3.5 Standing leaf number of A. auriculiformis exposed to REEs at 0 mg/kg ( • ) , 
1 mg/kg ( • ) , 5 mg/kg ( • ) and 25 mg/kg ( • ) . 

3.3.1.5 Chlorophyll fluorescence 

In general, there were no significant differences between all the treatments as 

well as control for the Fv/Fm for both species (Table 3.4). The photosynthetic system 

was not significantly affected by the application of REEs. 
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Figure 3.6 Standing leaf number of E. citriodora exposed to REEs at 0 mg/kg ( • ) , 1 
mg/kg ( • ) , 5 mg/kg ( • ) and 25 mg/kg (#) . 

Table 3.4 Chlorophyll fluorescence (Fy/Fm) after 90-day exposure to 
REEs (n=4). 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 0.80 0.82 0.82 0.81 

Ce 0.80 0.82 0.83 0.81 
Pr 0.80 0.83 0.81 8.82 
Nd 0.80 0.82 0.82 0.78 

E. citriodora La 0.83 0.83 0.83 0.83 
Ce 0.83 0.83 0.84 0.83 
Pr 0.83 0.84 0.82 0.83 
Nd 0.83 0.83 0.83 0.83 
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3.3.2 Tissue contents 

3.3.2.1 REEs concentrations 

Foliar REE contents in A. auriculiformis were significantly higher (p < 0.05) 

at 25 mg/kg than those in the control without REE addition to the soil (Table 3.5). 

The accumulation of Ce and Pr in leaves from treatments of 1 and 5 mg/kg REE were 

not significantly different from the control. The La content in leaf exposed to 1 

mg/kg REE was significantly higher than the content in control leaf. All Nd 

treatments gave significantly higher Nd contents in leaf. The Ce concentration in 

leaf was relatively lower than those of the other three REEs. 

Table 3.5 Foliar REE content (mg/kg) after 90-day exposure to REEs. 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 0.18 c 1.14 b 3.10 b 8.30 a 

Ce 0.007 b 0.054 b 0.18 b 3.94 a 
Pr 0.69 b 0.17 b 1.58 b 7.05 a 
Nd 0.36 b 0.98 a 2.68 a 4.41 a 

E. citriodora La 0.28 c 1.27 be 2.85 b 6.55 a 
Ce 0.21 b 3.95 a 3.75 a 3.11 a 
Pr 0.13 c 2.15 be 2.38 b 5.21 a 
Nd 0.32 c 1.90 b 3.63 ab 5.86 a 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05, Tukey's test). 

With the exception of Ce, the REE concentrations in leaves of E. citriodora 

gradually increased as the applied level increased (Table 3.5). The foliar 

concentrations of La and Pr from 1 mg/kg application rate were similar to those of the 
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control, while those from 25 mg/kg were significantly higher than other application 

rates. Foliar Ce contents increased with the presence of the element but irrespective 

of its application rate. The concentrations of the four tested REEs in leaves of E. 

citriodora were similar. 

Similarly, the REE concentrations in roots of A. auriculiformis increased with 

the application rates (Table 3.6). There were significant differences in the root La 

contents between the control and all the application rates. The La contents were the 

highest among the four REEs. Concentrations of 1 mg/kg Ce, Pr or Nd from 1 

mg/kg did not differ significantly from the control. 

Table 3.6 Root REE content (mg/kg) after 90-day exposure to REEs. 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 0.19 d 4.31 c 7.28 b 12.4 a 

Ce 0.16 b 2.86 b 2.78 b 6.70 a 
Pr 0.11 b 0.99 b 1.28b 4.39 a 
Nd 0.18c 1.66 be 4.54 ab 5.68 a 

E. citriodora La 0.18c 5.60 b 5.86 b 10.3 a 
Ce 0.16 b 2.05 b 2.46 b 7.64 a 
Pr 0.18 c 1.65 be 3.00 b 8.08 a 
Nd 0.19 c 1.87 be 4.36 b 7.41a 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05, Tukey's test). 
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With respect to root of E. citriodora, the treatment of the highest application 

level always gave significantly more REE content than the other application levels 

(Table 3.6). The root REE concentrations of seedlings treated with 1 mg/kg REE 

were similar to the control except in the treatment of La. There was significant 

difference among the root contents of various REEs at the same application rate. 

When compared within a application rate, the results of La were always 

significantly higher than that of Pr, whereas results of Ce were always similar to other 

REEs. 

The concentrations of REEs in leaves of A. auriculiformis were statistically 

indifferent (p > 0.05) with those in leaves of E. citriodora respectively. There was 

also no statistically difference between their roots. 

3.3.2.2 Nitrogen concentration 

The nitrogen content in leaves of A. auriculiformis did not differ significantly 

(p > 0.05) with respect to different REEs and different application rates of REEs 

(Table 3.7). The same applies to both species, though A. auriculiformis had higher 

foliar N than E. citriodora. The foliar N concentration of A. auriculiformis ranged 

from 4.30 to 4.72 mg/g, while those of E. citriodora ranged from 3.40 to 3.99 mg/g 

(Table 3.7). 
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Table 3.7 Foliar N content (mg/g) after 90-day exposure to REEs (n二4). 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 4.40 4.30 4.59 4.48 

Ce 4.40 4.45 4.72 4.60 
Pr 4.40 4.65 4.73 4.32 
Nd 4.40 4.49 4.58 4.56 

E. citriodora La 3.75 3.55 3.49 3.92 
Ce 3.75 3.77 3.76 3.99 
Pr 3.75 3.40 3.83 3.48 
Nd 3.75 3.58 3.57 3.44 

Similarly, for the N content in roots, there was no significant difference (p > 

0.05) among all treatments (Table 3.8). The average N concentration in roots of A. 

auriculiformis and E. citriodora were 2.30 mg/g and 1.78 mg/g respectively. The 

average N content in roots of A. auriculiformis was significantly higher than those in 

roots of E. citriodora. 

Table 3.8 Root N content (mg/g) after 90-day exposure to REEs (n=4). 

Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 2.32 2.40 2.38 2.34 

Ce 2.32 2.14 2.31 2.07 
Pr 2.32 2.57 2.06 2.48 
Nd 2.32 2.31 2.19 2.27 

E. citriodora La 1.74 1.80 1.88 1.85 
Ce 1.74 1.90 1.74 2.19 
Pr 1.74 1.63 1.79 1.85 
Nd 1.74 1.50 1.81 1.63 
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3.3.2.3 Phosphorus concentration 

The foliar P of A. auriculiformis from the control was significantly higher than 

those treated with REEs (p < 0.05) (Table 3.9). However, the P contents in 

treatments of REEs were similar to each other. Comparing among various 

application rates in individual REE, significant difference occurred within Ce only. 

The P concentration was 16.4 mg/kg in 25 mg/kg Ce, which was significant lower 

than that in control, which was 138 mg/kg. For E. citriodora, there was no 

significant difference between REEs and control. There was no significant 

difference among the P content in all REE treatments. 

Table 3.9 Foliar P content (mg/kg) after 90-day exposure to REEs. 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 
A. auriculiformis La 138 a 58.3 a 70.0 a 115 a 

Ce 138 a 70.6 ab 84.9 ab 16.4 b 
Pr 138 a 83.6 a 67.4 a 39.6 a 
Nd 138 a 27.6 a 23.5 a 43.4 a 

E. citriodora La 77.9 a 112 a 87.9 a 105 a 
Ce 77.9 a 103 a 59.0 a 123 a 
Pr 77.9 a 70.6 a 93.0 a 66.0 a 
Nd 77.9 a 71.1 a 68.3 a 65.5 a 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05, Tukey's test). 

The P content in root was lower than the detection limit (< 5 mg/kg) in some 

treatments, such as in the control, 25 mg/kg Ce, Nd and Pr of A. auriculiformis and 5 
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mg/kg of Ce and Pr of E. citriodora (data not shown). The P concentrations in roots 

of both A. auriculiformis and E. citriodora are not significantly different between 

control and various REE treatments. 

The P contents in leaf and root of E. citriodora were generally higher than 

those in A. auriculiformis. The P content in E. citriodora leaf from treatment 1 

mg/kg La, 5 mg/kg La, 1 mg/kg Ce and 5 mg/kg Pr were 92.5%, 25.5%, 45.1% and 

38.0% higher than those in A. auriculiformis leaf respectively. The P contents in E. 

citriodora root exposed to 5 mg/kg and 25 mg/kg La were 86.4% and 80.7% higher 

than the contents in the root of A. auriculiformis. 

3.3.2.4 Mineral concentrations 

Most of the foliar mineral nutrient contents did not significantly change after 

application of REEs for both species (Table 3.10). The concentrations of metals in 

leaf were significantly different (p < 0.05) between A. auriculiformis and E. citriodora. 

E. citriodora had significantly higher K, Mg and Zn contents but less Fe and Na 

contents than A. auriculiformis. 

The concentrations of Ca in leaves under the influence of REEs were in 

general significantly (p < 0.05) higher than those seedlings in soil without REEs. 

Effect of REE application rate on Ca content was not apparent. In the treatment of 5 

and 25 mg/kg REE, seedlings treated by La had the lowest Ca in their leaves among 

four REEs. Seedlings exposed to 1 mg/kg Nd and Pr had the highest Ca content. 
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Leaves of control had significantly more Mn than leaves affected by 5 and 25 mg/kg 

REE. Among various REEs, Mn concentration in leaves of E. citriodora exposed to 

La was significantly higher than the values in Nd and Ce. 

Table 3.10 Foliar metal contents (mg/kg) after 90-day exposure to REEs (n=4). 
Species REE Application Concentration (mg/kg) 

rate o f R E E " ^ F ^ K ^ N f o ^ 
(mg/kg) 

A. Control 2.36 0.042 4.42 0.79 0.16 0.94 0.009 
auriculiformis La 1 3.36 0.042 5.24 0.74 0.18 0.97 0.007 

5 2.72 0.052 5.47 0.83 0.16 0.90 0.007 
25 2.24 0.044 5.27 0.78 0.16 0.92 0.008 

Ce 1 2.27 0.044 4.62 0.80 0.18 0.97 0.009 
5 2.97 0.043 5.29 0.79 0.13 0.95 0.013 
25 5.82 0.047 4.57 0.78 0.092 1.02 0.006 

Pr 1 3.69 0.046 5.74 0.93 0.17 0.97 0.009 
5 3.25 0.045 5.64 0.81 0.15 0.82 0.005 
25 3.77 0.045 6.96 0.89 0.17 0.91 0.010 

Nd 1 3.66 0.047 4.35 0.79 0.13 0.89 0.007 
5 4.34 0.045 5.66 0.84 0.14 0.94 0.010 
25 3.78 0.036 4.80 0.86 0.15 0.81 0.008 

E. citriodora Control 3.92 0.042 6.78 1.10 1.15 0.37 0.033 
La 1 4.13 0.042 7.03 1.18 1.00 0.35 0.044 

5 4.12 0.037 5.77 1.20 1.21 0.35 0.042 
25 3.52 0.037 7.37 1.14 1.03 0.36 0.035 

Ce 1 3.30 0.033 6.81 1.02 1.10 0.35 0.029 
5 5.81 0.037 6.15 1.15 0.405 0.43 0.033 
25 5.67 0.036 7.27 1.13 0.89 0.46 0.030 

Pr 1 4.95 0.032 6.85 1.21 0.92 0.34 0.037 
5 5.28 0.036 7.24 1.14 0.91 0.39 0.037 
25 6.50 0.044 7.61 1.31 0.75 0.44 0.043 

Nd 1 6.16 0.035 6.79 1.10 0.74 0.40 0.031 
5 5.53 0.041 6.74 1.20 0.87 0.35 0.033 
^ 4.68 0.036 6.89 1.03 0.75 0.36 0.029 
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In general, the metal concentrations in roots of A. auriculiformis were 

significantly different from those in roots of E. citriodora (Table 3.11). Metals like 

Fe and Zn were not different among various REE treatments. Some metals, like Ca, 

Na and Mg, in roots of seedlings exposed to REEs were more than that of the control. 

K contents in the roots exposed to 25 mg/kg La were significantly higher than those in 

the control and 1 mg/kg La. The concentrations of Mg and Mn were similar when 

comparing among the four REEs. REEs at different concentrations gave similar 

effect on the Mn content in roots of E. citriodora. REEs did not affect the Na 

concentration in roots of A. auriculiformis, whereas REEs at all levels increased 

significantly the Na concentration in roots of E. citriodora. 

3.3.3 Soil 

3.3.3.1 Initial properties 

The soil for this study was a sandy loam with 74.0% sand, 15.5% silt and 

10.5% clay (Table 3.12). The soil was slightly acidic with pH value of 6.59. The 

cation exchange capacity and organic matter were 13.1 cmol/kg and 4.21% 

respectively. The concentrations of total La, Ce, Pr and Nd before the experiment 

were 0.494, 0.376, 0.209 and 0.488 mg/kg respectively. 
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Table 3.11 Root metal contents (mg/kg) after 90-day exposure to REEs (n二4). 
Species REE Application Concentration (mg/kg) 

rate of R E E ' ^ Fe K ^ N ^ ^ 
(mg/kg) 

A. auriculiformis Control 0.95 1.74 1.50 0.20 0.16 0.43 0.012 

La 1 1.31 1.08 1.60 0.22 0.15 0.45 0.011 

5 1.08 1.93 1.82 0.24 0.20 0.48 0.014 
25 0.82 1.82 1.89 0.22 0.19 0.45 0.011 

Ce 1 1.02 1.95 1.60 0.24 0.19 0.50 0.010 
5 1.09 1.48 1.55 0.21 0.15 0.46 0.011 
25 2.81 1.48 1.69 0.31 0.13 0.51 0.011 

Pr 1 1.44 1.73 1.74 0.24 0.17 0.49 0.016 
5 1.19 1.72 1.46 0.22 0.18 0.45 0.013 
25 1.20 1.76 1.59 0.22 0.15 0.42 0.010 

Nd 1 1.45 1.74 1.76 0.25 0.17 0.48 0.011 
5 2.18 1.91 1.44 0.25 0.15 0.52 0.013 
25 1.27 2.35 1.50 0.23 0.24 0.45 0.018 

E. citriodora Control 2.62 1.17 1.68 0.23 0.28 0.57 0.016 
La 1 2.83 1.16 1.71 0.22 0.23 0.61 0.015 

5 2.67 1.10 1.87 0.25 0.25 0.55 0.019 
25 3.06 0.75 2.13 0.25 0.28 0.62 0.014 

Ce 1 2.90 0.92 1.76 0.23 0.26 0.63 0.014 
5 5.16 1.04 1.56 0.32 0.13 0.90 0.022 
25 4.58 1.23 1.68 0.32 0.19 0.75 0.021 

Pr 1 3.46 0.69 1.62 0.26 0.21 0.71 0.014 
5 4.00 0.61 1.59 0.28 0.20 0.65 0.013 
25 4.43 1.00 1.79 0.30 0.17 0.78 0.018 

Nd 1 3.87 0.75 1.76 0.27 0.16 0.77 0.013 
5 4.20 1.06 1.57 0.28 0.21 0.74 0.018 
^ 3.54 1.05 1.61 0.27 0.19 0.69 0.018 
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Table 3.12 Initial properties of the soil. 
Soil 

Sand (%) ^ 
Silt (%) 15.5 
Clay (%) 10.5 
Texture (class) Sandy loam 
pH 6.59 
Cation exchange capacity (cmol/kg) 13.1 
Organic matter (%) 4.21 
Total La concentration (mg/kg) 0.494 
Total Ce concentration (mg/kg) 0.376 
Total Pr concentration (mg/kg) 0.209 
Total Nd concentration (mg/kg) 0.488 

3.3.3.2 REEs concentrations 

The total REE contents in soil are shown in Table 3.13. For soil planted with 

A. auriculiformis, soil REEs in the control and treatment added with 1 mg/kg REE 

were similar, irrespective to the REE examined. When comparing among treatments 

of different application levels, significant differences were observed. The final soil 

concentrations were consistent with the application rates. At the highest application 

level, soil concentrations of Ce and Pr were lower than those of La and Nd. 

In soil grown with E. citriodora, the total REE concentration in the control 

was not significantly different from that in treatment with 1 mg/kg REE added (Table 

3.13). The total contents of Pr in soil added with 1 and 5 mg/kg Pr were similar, 

while contents of other REEs in the 5 mg/kg treatment were significantly higher than 

those in the 1 mg/kg treatment. When combining the data from the two species, the 

concentrations of La and Nd were generally higher than those of Ce and Pr. 
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Table 3.13 Soil REE content (mg/kg) after 90-day exposure to REEs. 
Species REE Application rate of REE (mg/kg) 

0 1 5 25 

A. auriculiformis La 0.45 c 0.49 c 4.87 b 12.7 a 

Ce 0.36 c 0.24 c 3.89 b 7.67 a 

Pr 0.20 c 0.20 c 2.83 b 6.60 a 

Nd 0.46 c 0.44 c 4.42 b 11 .3a 

E. citriodora La 0.45 c 0.49 c 4 . 1 5 b 11 .8a 

Ce 0.25 c 0.23 c 3.86 b 7.00 a 

Pr 0.14 b 0.24 b 2 . 1 6 b 6.89 a 

Nd 0.46 c 0.43 c 4.54 b 11 .0a 

For each REE, the same letter represents no significant difference 
between concentrations (p < 0.05, Tukey's test). 

3.3.3.3 Nitrogen and phosphorus concentrations 

The total and extractable N contents of soil after harvest are shown in Table 

3.14. Extractable N should include NH4+ and NO3" However, the NH4+ content in 

soil was below the detection limit of 1 mg/kg. The extractable N therefore consisted 

of NO3-only. The soil grown with A. auriculiformis had significantly (p < 0.001) 

lower extractable N than the soil of E. citriodora at harvest. The extractable N levels 

in soil with REEs added were slightly higher than the control. The levels in the 

control were 16.7 and 26.4 mg/kg for A. auriculiformis and E. citriodora respectively, 

while the averaged extractable N in REE treatments was 17.2 and 27.5 mg/kg 

respectively. 
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Table 3.14 Amount of total and extractable N contents in soil after 90-day exposure to 
REEs (n=4). 

Species REE Application rate Extractable N Total N 

of REE (mg/kg) (mg/kg) (mg/g) 
A. auriculiformis Control 16.7 I.59 

La 1 18.2 1.88 

5 17.0 1.99 

25 17.3 2.16 

Ce 1 16.3 1.41 

5 17.4 1.46 

25 16.9 2.09 

Pr 1 15.9 1.33 

5 17.5 1.53 

25 18.4 1.74 

Nd 1 17.6 2.00 

5 16.9 2.00 

25 16.8 1.26 

E. citriodora Control 26.4 2.31 

La 1 20.4 2.16 

5 23.7 1.15 

25 49.3 2.02 

Ce 1 23.2 1.98 

5 26.3 1.99 

25 26.2 1.46 

Pr 1 21.7 1.96 

5 31.6 1.82 

25 36.7 1.16 

Nd 1 31.8 1.25 
5 22.0 0.97 
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In soil planted with A. auriculiformis, the levels of total N (after the addition 

of 25 mg/kg La and Ce) were higher than the control. However, soils in some other 

treatments, such as 1 mg/kg Ce and Pr, had less total N than the control. There was 

overall no significant difference (p > 0.05) among REE treatments. For E. citriodora, 

there was significantly (p < 0.01) lower total N content in soil added with 5 mg/kg Nd 

than control. Significant difference was not observed between other treatments. 

The total N contents in soil added with 5 and 25 mg/kg REEs were significantly lower 

than the control. 

Total and available P concentrations in soil with and without REEs were below 

the detection limit (5 mg/kg). 

3.3.3.4 Mineral concentrations 

Soils added with REEs had more Fe, Mn and Zn than the control (Table 3.15). 

The Zn content in soil added with 25 mg/kg Ce was significantly higher than those in 

treatments of La and Pr at the same application rate. The treatment with the highest 

REE application rate gave a significant difference from the control (p < 0.05) with 

respect to soil Zn content, while the treatments with lower application rates did not 

cause significantly difference. The Ca concentrations in soil added with Pr and Nd 

were the lowest among soil added with REEs. Soils planted with A. auriculiformis 

had similar metal concentrations when compared with those of E. citriodora. 
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Table 3.15 Total metal contents (mg/kg) in soil after 90-day exposure to REEs (n=4). 
Species REE Application Concentration (mg/kg) 

rate of R E E " ^ Fe K ^ ^ ^ Z n 
(mg/kg) 

A. auriculiformis Control 0.14 3.00 1.01 0.095 0.20 0.33 0.003 

La 1 0.42 3.59 1.08 0.119 0.52 0.35 0.008 

5 0.20 3.40 0.80 0.092 0.19 0.29 0.007 

25 0.41 3.13 0.91 0.099 0.17 0.32 0.005 

Ce 1 0.46 3.38 0.99 0.10 0.15 0.28 0.005 

5 1.16 3.38 1.01 0.11 0.47 0.27 0.008 

25 0.53 3.56 1.00 0.12 0.44 0.27 0.017 

Pr 1 0.46 3.22 1.39 0.13 0.40 0.29 0.012 

5 0.41 3.40 1.03 0.11 0.19 0.35 0.007 

25 0.31 3.22 1.02 0.12 0.22 0.29 0.010 

Nd 1 0.16 3.26 0.96 0.11 0.28 0.26 0.010 

5 0.32 3.11 0.98 0.11 0.35 0.26 0.015 

25 0.23 3.52 1.10 0.13 0.27 0.31 0.012 

E. citriodora Control 0.40 2.98 0.93 0.097 0.16 0.28 0.005 

La 1 0.24 3.34 1.24 0.11 0.18 0.30 0.005 

5 0.24 3.22 1.02 0.11 0.26 0.26 0.005 

25 0.46 3.43 1.02 0.10 0.16 0.26 0.008 

Ce 1 0.28 2.99 0.93 0.095 0.16 0.30 0.005 

5 0.50 3.48 0.87 0.11 0.39 0.28 0.015 

25 0.37 3.10 0.79 0.099 0.25 0.27 0.021 

Pr 1 0.22 3.53 0.90 0.12 0.32 0.27 0.009 

5 0.37 3.27 0.94 0.11 0.45 0.25 0.010 

25 0.38 3.27 0.86 0.11 0.25 0.27 0.010 

Nd 1 0.25 3.17 1.00 0.12 0.30 0.27 0.014 

5 0.43 3.61 0.81 0.12 0.28 0.35 0.013 

25 0.18 3.36 1.02 0.12 0.23 0.29 0.012 

3.4 Discussion 

3.4.1 Effects of REEs on growth 

There was no evidence to support that REEs are essential for plant growth. 

The results obtained in the early investigation showed that REEs brought about 
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adverse effects to plant growth (Brown et al., 1990). However, more recent studies 

showed that plants applied with REEs grew better than those without REEs. The 

contradictory results may be explained by the levels of REEs applied and the species 

being used. In the present experiment, addition of the four REEs significantly 

improved the growth of A. auriculiformis and E. citriodora in terms of height, basal 

diameter, biomass and standing leaf number. However, the positive effects were 

dose-dependent that seedlings grew better only at application rates of 1 and 5 mg/kg. 

Zhang and Shan (2001) obtained similar results that the dry shoot weight was 

significantly higher than the control when the concentration was below 20 mg/kg. 

Growth stimulations at low REE concentration were also obtained in other studies. 

Applying 0.05-6 mg/L La or Ce promoted the yield of rice in terms of weight and the 

number of grain per plant (Xie et al., 2002). When sprayed with fertilizer containing 

less than 0.5% REE, the shoots of corn and mungbean grew better than the control 

(Diatloff et al., 1996b); the dry root weight of corn increased after applying < 2 jiM of 

Ce and La. Root growth of coconut was stimulated when 1 g/pot of REE was added 

to the soil (Wahid et al., 2000). The optimum level for the growth of cucumber was 

0.02 m M La (Zeng et al.’ 2000). Pollen tube growth of Nicotiana tahacum was 

promoted by 44.1% when 10 |iM of La was added (Sun et al., 2003). There were 

earlier and more flowering of Arabidppsis thaliana after being exposed to low levels 

of La or Ce (He and Loh, 2000). 

Beneficial response was found at REE concentration lower than 10 mg/kg 

(Shtangeeva and Ayrault, 2007). Higher concentration diminished the beneficial 
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effect and may become harmful to plant. The dry weight of shoot decreased 

gradually when the application levels of REEs were higher than 40 mg/kg (Zhang and 

Shan, 2001). Symptoms of leaf b u m and small necrotic spots were observed, and 

shoot dry weight was reduced when received 0.5-1.0% La and Ce (Diatloff et al., 

1996b). In the present experiment, the growth stimulation was not significant for 

addition of REEs at concentration of 25 mg/kg. 

The differences in growth performance at various REE concentrations may be 

related to the tissue concentration in plant. The foliar and root REE concentrations 

increased with the application rate which agreed with other studies (Chang et al, 1991; 

Chua et al., 1998; Xu et al., 2003). The abundance of REEs in root and shoot of 

com increased sharply when soil was applied with 1-5 mg/kg REE (Wang et al., 

2001). When applied with 2.6 kg/ha of REEs mixture to soil, REEs in root of winter 

wheat increased by 10% (Liang et al., 2005). When the application rate increased to 

7.7 kg/ha, REE abundance in both shoot and root increased 2 times compared with the 

control. Increasing level of REEs in the plant tissues outweighed the beneficial 

effects and symptoms of intoxication became apparent. 

3.4.2 Mechanisms of the effect of REEs 

REEs significantly promoted the growth of tree seedlings in many aspects, 

including height, basal diameter, standing leaf number and biomass. As the 

concentrations of REEs in roots of treatments were significantly higher than control, 

REEs may enhance the uptake of nutrients, such as P and Ca. which consequently 
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promoted plant growth. Ozaki et al (2000) found that the absorbed REEs were 

mainly accumulated in the active growing points of Dryopteris erythrosora. 

The most widely accepted mechanism of the effect of REEs on plant growth is 

through their binding of sites which are originally occupied by Ca^^. The ionic radii 

of ions of REEs and Ca are similar. For the first REE, La^^, the radius of ion is 3.1 

A , while the radius of Ca^^ is 2.8 A (Lettvin et al., 1964). Owing to the similarity in 

ionic radii, ions of REEs and Ca compete for the binding sites (Chang, 1991; Xie et 

al., 2002; Jie et al., 2003). The higher valence of REE ions allows them to bind 

superficially to Ca^^ sites in a less reversible manner than Ca^^ (Nagahashi et al., 1974; 

Hu et al., 1998; Tyler, 2004). The structure of Ca-binding sites and ion channels are 

altered. The ion distribution and thus the complex formation are changed. Such 

modification may interfere with hormones responsible for controlling the 

physiological and biochemical activities of plants. 

Ca2+ is one of the messengers in plant responses to stimuli, which affects plant 

growth (Zeng et al., 2000). REE was reported to mimic or interfere with signal 

system involving Ca^^. Calmodulin (CaM) was originally combined with Ca^^ to 

form Ca^^-CaM. When La^^ and Ca^^was present simultaneously, La^^ had higher 

affinity to site than Ca^^ for binding with CaM (Sun et cd., 2003). The La^^-CaM 

signal passed across the plasma membrane through the pathway of Ca^^-CaM. By 

modifying the signal transduction system, the levels of proteins and enzymes were 

increased. Eu^^ promoted the synthesis of amaranthin while La3+, Ce^^ and N d � . had 
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positive effect on the synthesis of phenylethanoid glycosides (PeG) at low 

concentration (Jie et al., 2003; Zeng et al., 2003). The extent of stimulation by Eu^^ 

was higher than that by Ca^^. 

The level and metabolism of Ca^^ were also reported to be adjusted in the 

presence of intracellular REEs. REEs were illustrated to increase the transport of 

Ca2+ across plasma membrane (Xie et al., 2002; Zeng et al., 2003). The level of 

2+ • 

Ca was important in regulating ion absorption and the activities of other substances. 

• • • 2+ • The activities of Ca -ATPase was affected by the presence of REEs, which may be 

the consequence of regulating Ca^^ level (Zeng et al., 2000). Synergistic stimulation 

2 + 3 + • • 

was reported when solution of Ca and La was applied by foliar spray (Brown et al., 

1990). One of the ways that REEs affect plant growth may be related to the 

concentration of C a � . . The absorption and use of nutrients may be improved and 

gave better growth. Nevertheless, beneficial effects brought about by La may be 

attributed to the intrinsic nature of La rather than replacing the function of Ca^^ 

(Ozaki et al., 2000). Further studies are needed to get more information about the 

mechanism. 

3.4.3 Nutrient uptake 

Measuring the amount of nutrients in plant tissue reflects the nutrient taken up 

by plant. The nutrient contents in seedlings were influenced by the presence of 

REEs, which implied the nutrient uptake was affected when soil was added with 

REEs. There was no significant enhancement in N uptake after application of REEs. 
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This contrasted with previous studies that N uptake by coconut increased after 

addition of REEs at low concentration (Wahid et al., 2000). The deviation may be 

attributed to the N content in soil. Improvement in nutrient uptake may be obvious 

under deficiency conditions. In the present experiment, sufficient N was provided 

such that the plants had optimal rate of N uptake, and therefore, addition of REEs 

could not further increase the rate of N uptake. 

The foliar P of A. auriculiformis treated with REEs was significantly lower 

than that of the control, which may be attributed to the interference in translocation of 

P in seedlings (Wahid et al, 2000; Huang et al., 2003). However, the previous 

studies only examined the foliar P content. REE application did not cause 

accumulation of P in root. It may show that the absorption of P from soil was 

influenced by REEs. 

In most cases, the foliar mineral contents in REE-treated plants and the control 

were similar. However, concentration of foliar Ca under exposure to REEs was 

significantly higher than the control, whereas foliar Mn in treated plants was 

significantly lower. The level of K significantly increased whereas the level of Mn 

was similar to the control. Diverse results were also observed in other studies. 

Absorption of K, Mg and Zn was suppressed, but uptake of Ca, Fe, Mn and Na was 

promoted (Chang, 1991; Wahid et al., 2000; Zeng et al., 2000; Zeng et al., 2003; 

Jarvan, 2006). Shtangeeva and Ayrault (2007) obtained different results that Eu did 

not affect the uptake of K, but increased the tissue contents of Ca, Zn and Au. Zn 
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and Au concentrations in Triticum aestivum were 2.5 and 1.7 times higher than those 

in the control. The uptakes of Cu, Fe, Mg, Ca, Mn and Zn in rice were also elevated 

at La concentration of 0.75 mg/L (Xie et al., 2002). Besides major nutrients, the 

uptakes of some other minerals such as Se, Co and V were also affected by exposure 

to REEs (Huang et al., 2003). The mechanism for the alteration in mineral uptake 

was still not clear. Chang (1991) suggested that change in the permeability of 

plasma membrane led to leakage of metals ions. Equilibrium of ions thus shifted, 

and this triggered a change in uptake of metal ions. Huang et al. (2003) argued that 

La was involved in the ion transport in plants. Change in the concentration of La 

would affect the mechanism and lead to alteration in ion uptake. 

Among the metal studied, Ca received the most concern owing to the 

similarity in the ionic radii and chemical properties between REE ions and Ca^^ 

(Aruguete et al., 1998). Uptake of Ca^^ by seedlings was increased in the treatment 

with REEs applied in low concentration in the present study. However, 

contradictory results were obtained in the previous studies as both stimulation and 

inhibition in uptake were observed (Chang, 1991; Zeng et al., 2000; Zeng et al., 2003). 

More investigations are needed to study the effect of REEs on nutrient uptake. 

3.4.4 Soil nutrient contents 

Some studies revealed that soil reactions involving N and P were affected by 

REEs. N mineralization in soil with < 45 mg La/kg or < 23 mg mixed REE/kg did 

not significantly differ from the control (Xu and Wang, 2001). The effect of La on 
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ammonia oxidation was similar to that of N mineralization. Nitrification was 

another important process of N transformation of NH4+ to NO3" state (Xu and Wang, 

2001; Chu et al., 2002). In the present study, NH4+-N was not detectable, probably 

because of the increased nitrification that converts NH4+ to NO3-. The rate of 

nitrification was increased by 20% and 14% in red soil and fluvo-aquic soil 

respectively after the addition of La at low doses (Zhu et al, 2002). 

The extractable N in soil grown with acacia was not significantly higher than 

that grown with eucalyptus. This may be attributed to the increased nitrification in 

soil grown with eucalyptus after addition of REEs. Besides, it may be due to the 

addition of urea as N source and high N level could be harmful to nodule activity and 

N fixation (Roberts and Bradshaw, 1985a, b) 

The improvement in nitrification may be due to the increase of microbial 

activity in soil. Chu et al (2002) showed that the biomass carbon and nitrogen 

increased 4 weeks after addition of La. Pot culture of Oryza sativa demonstrated 

that the biomass increased in the treatment with La addition which may be related to 

the elevated nitrate in soil. 

Most P compounds in soil are highly insoluble, making them not available to 

plant uptake. Even though P in available form was applied to soil in the form of 

fertilizer, they rapidly changed to insoluble complexes. As P is essential to plant 

growth, the transformation of unavailable P to available form is beneficial to plant. 
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Chu et al (2002) found that the P transformation process was stimulated by low La 

concentration. However, P transformation would be inhibited when the 

concentration of La was over 30 mg/kg, implying that less P would be available to 

plant. In the present study, the P contents in soil in all treatments were below 

detection limit. This may be attributed to leaching and uptake by the seedlings. 

Moreover, the tissue P content in seedlings exposed to the highest REE concentration 

in this experiment was significantly lower than the control, implying less P was taken 

up. As the soil P content is closely related to the efficiency of nitrogen fixation of 

legumes, the improvement in P availability not only increased the amount of available 

P, but also improved the content of NHx-N, as well as NOx-N (Xu and Dell, 2003). 

Addition of low dose of REEs would be beneficial to the conversion of unavailable 

forms of N and P to available ones. 

3.4.5 Comparison between REEs 

Owing to the similarity in ionic radii and outermost electronic configuration, 

REEs rarely exist in compounds of single elements. REEs were absorbed together 

from soil, and thus there should be no preference in the assimilation of individual 

REE by plants. Fungi absorbed REEs as a group and there were similar pattern of 

REE accumulation in fungi with the nearby soil (Aruguete et al., 1998). The 

patterns of REE composition in rice and wheat were similar to the soil profile, which 

implied that there was no obvious selective uptake of REEs (Liu et al., 1997; Wang et 

al., 2001). There was no fractionation in REE abundance in matured wheat (Ding et 

al., 2006). The concentrations of La, Ce, Pr and Nd in com exposed to various 
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application levels were not statistically different (Wang et al., 2001). Contrasting, 

results of the present study shows a significant difference among the various REEs. 

A significantly higher La content was observed in A. auriculiformis and E. citriodora. 

The results were not consistent with the above studies, whereas in line with other 

studies which found that plant did not absorb each REE at the same extent. 

Plants preferred light REEs to heavy REEs in soil-plant systems. The ratio of 

light to heavy REEs was much higher in plants than in soil (Liang et al, 2005). 

Enrichment of La and Ce was found when a mixture of REEs was applied to rice and 

wheat (Sun et al., 1994). There were more light REEs than heavy REEs in the 

tissues of Dicranopteris pedata, Elaeocarpus sylvestis and Pinus massoniannai (Gao 

et al., 1999). There was also a light REE enrichment in the environment of estuary 

(Borrego et al., 2004). Norway spruces in Switzerland and Southern Germany 

preferred La to Sc (Wyttenbach et al., 1994). In wheat, the preference was more 

obvious at the early stage of life cycle, including the sprouting and jointing stages 

(Ding et al., 2006). The ratio of chondrite-normalized light REEs to heavy REEs 

(LREE/HREE) represents the difference in the abundance of light REEs and heavy 

REEs and ratio greater than 1 implies fractionation. The concentration ratios of 

La/Sm in stem and leaf of Triticum aestivum were statistically higher than 1 (Ding et 

al., 2006). The La/Sm values and Gd/Yb values of stem and lamina of 

Dicranopteris linearis were greater than 1 (Wei et al., 2001). La/Lu ratios were high 

in the region of northern Ethiopia, ranging from 8.49 to 10.42 (Worash and Valera, 

2002). This showed that REEs did not behave as a completely homogeneous group 
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in the uptake process. 

When compared within members of light REEs, there were usually differences 

in tissue concentration. Plants preferred taking up La to Ce and Nd (Franca et al., 

2002). The concentration ratio of La/Ce was greater than 3.0, which showed that 

there was an apparent preference to La in maize (Xu et al., 2002). The results were 

consistent with the present study that La concentration was higher than the other 

REEs studied. Besides discrimination of light REEs, it was commonly reported that 

Ce did not show the same abundance pattern as other REEs. The theoretical level of 

Ce was expected to be in intermediate position between concentrations of La and Pr. 

However, the Ce level measured in the environment was lower than the theoretical 

level. In the environment of transition beds, there was a significant negative Ce 

anomaly (Worash and Valera, 2002). It was an outcome of the formation of Ce4+. 

The other REEs as ions only have the highest oxidation state of +3 but not +4. The 

chemistry of Ce4+ were different from those trivalent REEs (Wyttenbach et al., 1998). 

Ce4+ was less bioavailable than Ce) . because it was retained in oxygenated subsoil in 

the form of CeOi, which has very low solubility and penetrability and thus being less 

taken up by plants (Laul et al., 1979; Fu et al., 2001; Xu et al., 2003). In the present 

study, negative Ce anomaly was not observed. The content of Ce was not 

significantly lower than other REEs, probably because Ce was added to soil in form of 

Ce(N03)3 which is relatively soluble. Szefer et al. (1999) demonstrated an absence 

of Ce anomaly in Vistular Lagoon. Sun et al. (1994) even found that there was an 

enrichment of Ce in roots of wheat and rice sprayed with Ce-containing fertilizer. 
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Although there was variation in the absorption of REEs, owing to their 

similarity in many aspects, fractionation may not always be apparent. Furthermore, 

there were great differences between individual plants in natural environment which 

may mask the fractionation in plants (Wyttenbach et al., 1998). 

3.4.6 Comparison between species 

A. auriculiformis and E. citriodora are commonly planted in Southeast Asia, 

including Hong Kong and southern China. Forests of A. auriculiformis have covered 

30000 ha in China since 1960s, while there were 1547000 ha of eucalyptus 

plantations (Zhang et al., 1998; Qi, 2003). They were widely planted since they are 

well adapted to the southern China environment, grow fast and mature precociously 

(Zhang et al., 1998; Chen et al., 1999; Cheung et al., 2000; Qi, 2003; Simpson et al., 

2003). Some of the eucalypts are planted for economic purposes due to their 

excellent fibre and relatively high wood density (Martin, 2003; Midgley et al., 2003; 

Xu and Dell, 2003). A. auriculiformis has been commonly used as a pioneer species 

to grow on the infertile soil due to its symbiotic N-fixing capability. Both species 

are important to the economy and ecological restoration in Southern China. 

The effects of the four REEs on the growth of A. auriculiformis and E. 

citriodora were similar in some of the growth parameters, such as height and biomass 

increment. The amounts of REEs retained in the plants were also similar when 

compared within the same application rate. The results were consistent with Laul et 

al. (1979) that peas and corns had similar concentrations of REEs. Nevertheless, the 

1 2 1 



results did not agree with some other studies that showed inter-species differences. 

Various species growing under the same condition generally took up different 

amounts of REEs (Markert and Li, 1991; Wyttenbach et al., 1996; Wyttenbach et al., 

1998; Fu et al., 2001; Franca et al., 2002; Merten et al., 2005). Fern and maple 

growing in a forest in Swiss midlands had ten times more REEs than spruce, whereas 

ivy had similar REE contents as spruce (Wyttenbach et al, 1998). P achy stroma 

longifolium had higher REE contents than Esenbeckia leiocarpa growing in the same 

tropical forest (Franca et al., 2002). Populus species had the highest REE abundance 

whereas Robinia species grown on the same site had the lowest REE contents (Merten 

et al., 2005). In the forest of Grasmoor, levels of REEs in Sphagnum species and 

Polytrichum species were higher by a factor of three and two respectively than those 

in other plants (Markert and Li, 1991). The abundance of REEs in Populus sieboldii 

was several t imes higher than that in Sasa nipponica (Fu et al., 2001). The variation 

in REE contents may reflect differences in the uptake of REE by various species. 

Not only there were inter-species differences in the concentration of REEs in plants, 

intra-species variation was also observed (Wyttenbach et al., 1998). Such variation 

may be due to the variation between individuals and difference in environmental 

factors. Since the previous studies were carried out in natural forests, where growth 

conditions were not well controlled, it may reflect the possible effect of environmental 

factors to REE uptake. 

A. auriculiformis generally grows better than other species in infertile soil due 

to its ability to fix atmospheric N by the symbiotic rhizobia. However, after adding 
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REEs, the superiority f rom symbiotic N-fixing capability was less apparent. 

Addit ion of small amount of REE increased the rate of nitrification and 

ammonif icat ion in soil (Zhu et al., 2002). The amount of available N in soil could 

be increased even in the absence of N-fixing legume providing that there was 

adequate capital of N. Therefore, non N-fixing could take up more N from soil, 

resulting to a better growth after being exposed to REEs. Therefore, even there was 

more N in soil growing with acacia, the growth of A. auriculiformis may not be better 

than another species. 

3.5 Conclusions 

Application of REEs to soil is favourable to the growth of A. auriculiformis 

and E. citriodora. Growth in the terms of height, standing leaf and biomass 

production were enhanced after treatment with REEs. The beneficial effects of 

REEs were dose dependent that small amount of REEs promoted the growth but the 

effects diminished at high dose, causing negative effects at further higher application 

rates. The uptake of nutrient was also influenced by the presence of REEs. The 

amount of REEs available to plants would affect the amount being taken up. Further 

research on factors influencing the bioavailability of REEs would help the 

understanding of the effects of REEs on plant growth. 
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Chapter 4 Bioavailability and accumulation of rare earth elements 

4.1 Introduction 

There is extensive literature on the abundance and distribution of REEs in the 

natural environment, but information on the biogeochemistry including transport, 

bioaccumulation and bioavailability of REEs in the soil plant system is scanty. 

There have been increasing quantities of proceeded REEs entering into the 

environment f rom various sources and pathways because of the rapid growth in the 

usage of REEs in human life. The information about the bioavailability of REEs in 

soil is important to study on the uptake of REEs by plants. After being absorbed, the 

REEs would be stored in the different parts of the plant. Their distribution inside the 

plant body determines the effect of REEs on plants. 

Plants do not take up all forms of REEs in soil. Various fractions of metals in 

soil have different availability to be taken up by plants. Total content in soil may not 

accurately reflect the concentration of actual assimilation. Information on the 

physicochemical forms of elements is thus essential for assessing their behaviour. 

One-step extraction of REEs from soil using strong chelating agents can examine the 

bioavailability of REEs (Cao et al., 2000). However, this method suffered from the 

difficulty of finding a single reagent that only extracts out the non-residue fractions 

but not attacks the detrital forms (Tessier et al.，1979). Sequential extraction 

developed in recent decades solves the drawback. REEs from different fractions are 

extracted from soil in individual step using corresponding extractants. Concentration 

of REEs from a variety of fractions can be examined separately so that their 
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availability can be determined. The most commonly applied sequential extraction 

methods nowadays are that proposed by Tessier and his colleagues (1979), and 

another proposed by Standard Measurements and Testing Programme of the European 

Communi ty (SMT) formerly the Community Bureau of Reference (BCR) 

(Quevauviller et al., 1993). The SMT method was widely used in experiments on 

soils and sediments. Although these methods also have the disadvantage of 

nonselectivity of the extractants used during the extraction processes, they are still the 

most popular methods. 

Mobility, transformation and bioavailability of REEs in soil are driven by 

various mechanisms such as precipitation-dissolution and sorption-desorption 

processes. These mechanisms are governed by the soil properties, such as pH, redox 

potential, cation exchange capacity and organic matter content. Changing the soil 

properties would alter the biogeochemistry and bioavailability of REE in soil, and 

consequently affect the plant growth. Since bioavailability affects the movement of 

REEs along the tropic level, controlling their bioavailability is essential to 

management of REE application. Therefore, information on soil conditions that 

influences the fractionation and hence bioavailability of REEs is valuable. 

Among a variety of edaphic properties, pH and organic matter are the most 

important factors which govern metal bioavailability (Masscheleyn et al., 1990; Cao 

et aL, 2001; Gu et al., 2001; Shan et al.’ 2002). Metals are more available in 

conditions with lower pH. Organic matter was reported to be a great pool for REEs 
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to be deposited. However, the uptake and accumulation of REEs under the influence 

of pH and organic matter have attracted less attention. This study investigated the 

uptake of REEs by plants under different pH and organic matter conditions. The 

aims of the present study are to examine the chemical speciation of REEs in soils after 

being applied to soil, to examine the bioavailability and distribution of REEs under 

different soil conditions, and to determine the relationship between plant uptake and 

chemical speciation of REEs. 

4.2 Materials & Methods 

4.2.1 Soil 

The soil used was collected from the campus of The Chinese University of 

Hong Kong. The soil was sieved through 5-mm mesh sieve to remove large particles 

before use. 

4.2.2 Tree seedlings 

Seedlings of Eucalyptus citriodora with height of 15-20 cm were used. E. 

citriodora is successfully introduced and well adapted to the southern China (Zhang et 

al., 1998; Chen et al., 1999; Cheung et al., 2000; Qi, 2003; Simpson et al., 2003). 

Also, seedling growth was promoted after being treated with REEs (Chapter 3). 

Seedlings were bought from the Tai Tong Nursery of the Agriculture, Fisheries and 

Conservation Department (Hong Kong). 

1 2 6 



4.2.3 Pot experiment 

Soil was modified to obtain variation in pH and organic matter content. The 

pH of soil was adjusted to 4, 6 and 8 by adding 1 M hydrochloric acid (HCl) or 1 M 

sodium hydroxide (NaOH) (Masscheleyn et al., 1990; Chuan et al., 1996; Cao et al., 

2002; Xie et al., 2002). Peat moss was mixed with soil in three different ratios, viz 

3:1, 1:1 and 1:3 soil to peat (v/v). Totally there were nine soil treatments after 

combining various pH and peat moss ratio (Table 4.1). Lanthanum (La) was added 

to the treated soils at a concentration of 5 mg/kg soil. A set of control was included 

without the addition of La. The soil received urea and potassium dihydrogen 

phosphate to provide 200 kg/ha of N and P respectively (Bradshaw, 1983). 

Seedlings of E. citriodora were planted in pots of 19 cm in diameter and 18 

cm in height. One seedling was planted in each pot. Each treatment was replicated 

four times and the pots were arranged in a randomized block design in a greenhouse 

(Plate 4.1). During the 90-day experiment, the growth and health of seedlings were 

monitored. The methodology was the same as that described in Chapter 3. 

The seedlings were harvested at the end of the experiment (after 90 days). 

Leaves and stems were washed with tap water and then with Milli-Q water. Roots 

were collected by washing with tap water and Milli-Q water until visibly clean. 

Plant tissues were oven-dried at 65°C until constant weight for the determination of 

biomass. The dried materials were ground to powder by an electric grinder. Soil 

was collected after harvesting and then air-dried for 2 weeks. 

1 2 7 



Table 4.1 Abbreviations for various combinations 
of soil conditions. 

Organic matter (%) pH 

4 6 8 

T s 4L ^ ^ 

50 4M 6M 8M 

75 4H 6H 8H 

Plate 4.1 Tree seedlings in 19-cm pots arranged in randomized blocks in a 
greenhouse. 

Both soil and plant samples were analysed using the method described in 

Chapter 3. 
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4.2.4 Chemical speciation of soil 

In soil, REEs present in various forms and associated with different chemicals. 

Chemical fractionation helps to find out the form of REEs in soils and thus bridges the 

relationship between the contents of REEs in soil and in plant (Wen et al., 2006). 

Sequential extraction was a commonly used method to fractionate the chemical types 

of REEs in soils. REEs were divided into fractions based on the three-stage 

sequential extraction scheme developed by the Standard Measurements and Testing 

Programme of the European Community (SMT). The procedure resulted in three 

chemically distinct fractions, exchangeable and carbonated bound fraction (B1 

fraction), Fe-Mn oxide bound fraction (B2 fraction) and organic and sulphide bound 

fraction (B3 fraction). The extraction was performed with 0.5 g dried soil samples 

which was placed into a 50 mL centrifuge tube and then added with 0.1 M acetic acid. 

The centrifuge tubes were shaken mechanically at 25°C for 16 h. The mixture was 

centrifuged to separate the supernatant (B1 fraction) and the residues. The 

remaining soil was washed with Milli-Q water and further extracted using 

hydroxylamine hydrochloride (0.1 M), the pH of which was adjusted to pH 2 by 

concentrated nitric acid. The tubes were mechanically shaken again at room 

temperature for 16 h, and centrifuged to give the B2 fraction. After the second 

extraction, 5 mL of 30% (w/v) hydrogen peroxide was added to the soil. The tubes 

were placed at room temperature for 1 h and then at 85°C for another 1 h. After the 

solution was nearly dried, a further 5 mL hydrogen peroxide was added and incubated 

in water bath for 1 h. After the tube was cooled, 25 mL of ammonium acetate was 

added. The shaking, centrifugation and washing processes were repeated to obtain 
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the B3 fract ion. Extracts were analysed by an Opt ima 4300 DV Inductively Coupled 

P lasma Optical Emiss ion Spectrometer ( ICP-OES) (PerkinElmer, USA) . 

4.2.5 Statistical analysis 

The data were processed by SigmaStat 3.1. The differences between 

t reatments were tested by three-way analysis of variance (ANOVA) and Tukey 's 

Honest ly Signif icant Difference test at p = 0.05 wherever appropriate. 

4.3 Results 

4.3.1 Plant performance 

The height of E. citriodora seedlings exposed to La was in general higher than 

that of the control (Figure 4.1). The height increment of the control seedlings ranged 

f rom 26.4 to 68.7%, while those in the La treatment ranged f rom 42.0 to 80.5%. The 

growth differed when compared among groups with different soil properties. In the 

control, the seedlings grew best in soil with pH 6, while in La treatment, the height 

was the highest in soil with pH 4. However, in the soil with pH 8，the height was 

significantly lower than in the above pH conditions. The effect of organic matter 

was not as apparent as that of pH (Table 4.2). No significant difference could be 

observed among difference soil organic mater contents. 
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Figure 4.1 Percentage change in height in E. citriodora after being exposed to La 
under different conditions in (a) control soil and (b) La treated soil. When compared 
within the same level of pH and organic matter, treatments indicated with asterisk and 
2 asterisks were significantly different from the controls at p < 0.05 and p < 0.01 
respectively by Tukey's test. 
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Table 4.2 ANOVA table for height of E. citriodora under various soil 
conditions and treatment. 

Source of variation ^ p 
Treatment 1 <0.001 
pH 2 0.009 
Organic matter 2 0.937 
Treatment x pH 2 0.005 
Treatment x Organic matter 2 0.615 
pH X Organic matter 4 0.340 
Treatment x pH x Organic matter 4 0.826 

The height increased with time throughout the experiment period (Figure 4.2). 

The growth at the beginning of the experiment was relatively slow, but became faster 

afterwards. For each condition, the slope of growth curve of the control was smaller 

than that in the La treatments. Growth stimulation by La was the most apparent in 

4L. Since the growth rate of seedlings exposed to La was faster than those in the 

control, the difference between the control and treatment became larger. In the 

control group with soil pH of 6, plant grew faster after Day 60 and reduced the 

deviation between the control and the La treatment. Their growth rates were 

diminished towards the end of the experiment, regardless of the treatment. 

The effect of La on the growth of basal diameter was less obvious than that of 

height (Table 4.3). Thus, there was no significant difference between the treatment 

and the control. When compared within treatment groups, change in soil pH and 

organic matter did not lead to significant change in stem growth. 
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Figure 4.2 Height of E. citriodora grown in soil with La application ( • ) and without 
La application ( • ) in a 90-day experiment. 
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Figure 4.2 Height of E. citriodora grown in soil with La application ( • ) and without 
La application ( • ) in a 90-day experiment (continued). 
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Table 4.3 Percentage change in stem diameter in E. citriodora 
after being exposed to La under various soil conditions (n=4). 
Soil condition Treatment Increase in stem diameter (%) 
^ Control 

La 61.2 

4 M Control 38.7 

La 30.4 

4H Control 46.0 

La 29.8 

6L Control 52.7 

La 56.4 

6M Control 38.1 

La 22.3 

6H Control 35.6 

La 33.6 

8L Control 50.0 

La 50.3 

8M Control 28.1 

La 46.5 

8H Control 45.8 

La 55.5 

There were great increments in the biomass for the foliages and roots (Table 

4.4). At the end of the experiment, the foliar biomass in the control was increased by 

four times, while foliar biomass in the La exposed plants was increased by eight times. 

An improvement effect can be observed for the La treated trees. The increment in 

root biomass was less than that of the leaf. The final root biomass for the control 

was 91-279% of the initial biomass, while the root biomass was 248-576% of the 

initial one for La treated plants. An acidic condition with lower organic matter 

content resulted in a significantly higher biomass of the seedlings. However, for the 

leaf biomass of seedlings exposed to La, there was no statistical difference among 

different soil conditions. 
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Table 4.4 Percentage change in biomass in E. citriodora after being 
exposed to La under various soil conditions. 
Soil condition Treatment Leaf biomass (%) Root biomass (%) 

4L Control 721 171 

La 1330 * 576 ** 

4M Control 756 224 

La 1140 ** 409 * 

4H Control 744 279 

La 933 304 

6L Control 585 195 

La 1074 290 

6M Control 608 235 
La 1120 ** 296 

6H Control 512 206 

La 1010 ** 237 

8L Control 722 239 

La 1060 265 

8M Control 717 179 

La 1093 * 248 

8H Control 567 91 

1190 ** 322 ** 

When compared within the same level of pH and organic matter, treatments 
indicated with asterisk and 2 asterisks were significantly different f rom 
the controls at p < 0.05 and p < 0.01 respectively by Tukey's test. 

When exposed to La, there were greater variations with respect to the root 

biomass among different soil conditions. Roots of seedlings grew at pH 4 had a 

significant higher biomass than those grown at pH 6 and 8. At a lower level of 

organic matter, the effect of pH on plant growth was more apparent. When 

comparing different pH levels within the group of 25% organic matter, the root 

biomass at pH 4 was significantly larger than those at pH 6 and 8. At a higher level 

of organic matter, the root biomass at pH 4 was statistically different from that at pH 8, 
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but not at pH 6. At the highest organic matter content level, there was no difference 

among all pH levels. Nevertheless, the effect of changing organic matter content on 

root biomass was significant only in acidic solution. With soil pH of 4 and organic 

matter of 25%, the root biomass of seedlings was significantly higher than those grew 

in other two organic matter content levels. 

A three-way ANOVA reveals that the addition of La gave a significantly 

higher root biomass to E. citriodora. The root biomass of E. citriodora was 

significantly different (p < 0.05) under various soil pH conditions (Table 4.5). 

However, there was no significant difference (p > 0.05) among various organic matter 

levels tested. 

Table 4.5 ANOVA table for root biomass of E. citriodora under various 
soil conditions and treatment. 

Source of variation ^ p 
Treatment 1 <0.001 
pH 2 <0.001 
Organic matter 2 0.183 
Treatment x pH 2 0.010 
Treatment x Organic matter 2 0.157 
pH X Organic matter 4 0.776 
Treatment x pH x Organic matter 4 <0.001 
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In the treatments, the seedlings gave large change in standing leaf number 

throughout the experiment period (Table 4.6). At the end of the experiment, the 

average standing leaf numbers of the control seedlings and seedlings exposed to La 

were 504% and 557% of the initial leaf number (Figure 4.3). Although the average 

standing leaf number in the control and the treatment was similar, exception was 

observed in a condition (4L) where the standing leaf number was significantly higher 

than the control. The condition with the highest standing leaf number for treatment 

was 4L, the seedlings exposed to La had nine times more leaves counted at the end of 

the experiment. Under the same condition, the final leaf number of the control 

seedling was five times of the initial one, which was almost half of the standing leaf 

number of treatment. Seedlings grew in soil with lower pH conditions (pH 4 and 6) 

had more standing leaves than seedlings grew in alkaline soil (pH 8) (Figure 4.3). 

However, there was no trend between growth and the level of soil organic matter 

(Table 4.6). 

Table 4.6 ANOVA table for standing leaf number of E. citriodora under 
various soil conditions and treatment. 

Source of variation ^ p 
Treatment 1 0.389 
pH 2 0.010 
Organic matter 2 0.120 
Treatment x pH 2 0.057 
Treatment x Organic matter 2 0.066 
pH X Organic matter 4 0.352 
Treatment x pH x Organic matter 4 0.816 
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Figure 4.3 Percentage change in standing leaf number in E. citriodora after being 
exposed to La under different conditions in (a) control soil and (b) La treated soil. 
When compared within the same level of pH and organic matter, treatments indicated 
with asterisk were significantly different from the controls at p < 0.05 by Tukey's test. 
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The leaf number increased in most of the time, with only minor defol iat ion 

be tween the and day (Figure 4.4). However , the foliage soon recovered and 

even became denser af ter then. The standing leaf number increased at a rapid rate at 

the beginning of the experiment. The curve patterns for various experimental 

condi t ions were not the same. Under the condit ions of 6M，8M and 8H, the leaf 

numbers of the control plants were similar to that in the treatment group, whereas 

under other condit ions, greater differences were observed between the control and the 

treatment. In general, the increase in foliage number was faster when grew in acidic 

soils compared with the alkaline soils. 

The chlorophyll f luorescence parameter Fy/Fm was used to evaluate the 

m a x i m u m quantum efficiency of photosystem II (Figure 4.5). The Fy/Fm of 

seedlings exposed to La was significantly higher than the values in the control (Table 

4.7). W h e n considering the individual condition, only results in 4L had significant 

difference between the treatment and the control. The effect of La application on 

chlorophyll f luorescence was not obvious for other soil conditions. 
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Figure 4.4 Standing leaf number of E. citriodora grown in soil with La application ( • ) 
and without La application ( • ) in a 90-day experiment. 
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Figure 4.4 Standing leaf number of E. citriodora grown in soil with La ( • ) and 
without La ( • ) in a 90-day experiment (continued). 
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grown in different conditions in (a) control soil and (b) La treated soil. When 
compared within the same level of pH and organic matter, treatments indicated with 
asterisk were significantly different from the controls at p < 0.05 by Tukey's test. 



Table 4.7 ANOVA table for chlorophyll fluorescence parameter Fy/Fm 
of E. citriodora under various soil conditions and treatment. 

Source of variation ^ p 
Treatment 1 0.028 
pH 2 0.490 
Organic matter 2 0.835 
Treatment x pH 2 0.117 
Treatment x Organic matter 2 0.947 
pH X Organic matter 4 0.739 
Treatment x pH x Organic matter 4 0.051 

4.3.2 Tissue contents of La 

The foliar La concentrations of seedlings exposed to La ranged f rom 1.60 to 

2.40 mg/kg (Table 4.8). It was on average four times of the control and the 

difference was significant. Seedlings grown in acidic soil had more La in their 

leaves. 

The contents of La in root ranged from 1.15 to 2.35 mg/kg and 3.02 to 4.86 

mg/kg for the control and the treatment respectively (Table 4.8). The root La content 

was obviously the lowest under alkaline condition. Root REE at pH 4 was 

significantly different from that at pH 8 at all organic matter content levels. The 

influence of soil organic matter was not apparent. 

4.3.3 Soil 

Before manipulation, the soil had a pH of 4.82, and the cation exchange 

capacity and organic matter content were 16.9 cmol/kg and 0.22% respectively (Table 

4.9). The soil was a sandy loam with 74.8% sand, 13.6% silt and 11.6% clay. The 
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concentra t ions of La in the Bl，B2 and B3 fract ions were 0.033, 0.039 and 0.15 mg/kg 

respectively. 

Table 4.8 Concentrat ion of La in leaf and root of E. citriodora 
at the end of experiment . 
Soil condit ion Treatment La concentration (mg/kg) 

Leaf Root 

Control 0.502 

La 2.40 ** 4.86 * 

4 M Control 0.618 1.86 

La 2.35 ** 3.83 ** 

4H Control 0.441 2.11 

La 1.92 4.24 * 

6L Control 0.647 1.96 

La 1.94 ** 3.02 

6 M Control 0.500 1.97 

La 2.25 ** 2.09 

6H Control 0.607 2.44 

La 1.80 * 4.61 

8L Control 0.298 1.17 

La 2.20 *** 3.04 ** 

8M Control 0.755 1.15 

La 1.93 2.44 * 

8H Control 0.744 2.35 

L^ 1.60 * 3.47 * 

When compared within the same level of pH and organic matter, 
t reatments indicated with asterisk, 2 asterisks and 3 asterisks were 
significantly different f rom the controls at p < 0.05, p < 0.01 
and p < 0.001 respectively by Tukey's test. 
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Table 4.9 Initial properties of the soil. 

Soil 

Sand (%) ^ 

Silt (%) 13.6 

Clay (%) 11.6 

Texture (class) Sandy loam 

pH 4.82 

Cation exchange capacity (cmol/kg) 16.90 

Organic matter (%) 0.22 

La concentration in B1 fraction (mg/kg) 0.033 

La concentration in B2 fraction (mg/kg) 0.039 

La concentration in B3 fraction (mg/kg) 0.15 

4.3.3.1 Soil final pH 

From the results of the ANOVA, the pH was significantly different between 

various soil conditions, but the values were similar between treatment and control 

(Tables 4.10 and 4.11). Under the soil condition with pH 4, the final pH was similar 

to the pre-set pH. For the other two pH conditions, the final pH was lower than the 

initial pH, but no significant difference was observed. 

4.3.3.2 Soil La contents 

The soil La concentration was significantly higher for soil added with La than 

the control in some conditions (Figure 4.6). In the condition with organic matter 

content of 75%, the average soil La content in the La treatment groups was significant 

higher when compared with the corresponding controls. 
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Table 4.10 pH of soil after harvest. 

Soil condition Treatment pH 

Control ^ 

La 4.18 

4 M Control 3.99 

La 4.00 

4H Control 4.63 

La 4.60 

6L Control 6.06 

La 5.95 

6M Control 5.26 

La 5.19 

6H Control 5.63 

La 5.53 

8L Control 7.24 

La 7.20 

8M Control 6.40 

La 6.36 

8H Control 6.56 
^ ^ 

Table 4.11 ANOVA table for pH of soil sampled after 
harvest under various soil conditions and treatment. 

Source of variation ^ p 
Treatment 1 0.287 
pH 2 <0.001 
O M 2 <0.001 
Treatment x pH 2 0.881 
Treatment x OM 2 0.951 
p H x O M 4 <0.001 
Treatment x pH x OM 4 1.000 
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Figure 4.6 Content of La in (a) Bl fraction, (b) B2 fraction and (c) B3 fraction for soil 
under various conditions. When compared within the same level of pH and organic 
matter, treatments indicated with asterisk were significantly different from the 
controls at p < 0.05 by Tukey's test. 
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Regarding the three extractable fractions, concentration of La in the organic 

and sulphide bound fraction (B3 fraction) was the highest, it contributed 

36.6%-83.7% of the total REE in soil (Figure 4.6). The concentration in the 

exchangeable and carbonated bound fraction (B1 fraction) was the lowest that this 

fraction occupied 0.994%-12.4% of the total soil REE. 

Within the same organic matter content level, B1 fraction in soil with pH 4 

was significantly higher than the soil with higher pH (p < 0.05). While within 

treatment of pH 4, lower organic matter content significantly increased the B1 fraction. 

The trends of Fe-Mn oxide bound fraction (B2 fraction) upon change in pH and 

organic matter content were less obvious as B1 fraction. Increase in the organic 

matter gave a higher La concentration in B3 fraction, and the effect was more 

remarkable at higher pH. 

4.3.4 Association between pH，organic matter and La contents in soil and plant 

Table 4.12 presents the multiple regression equations between pH, organic 

matter content and REE concentrations in different tissues. In general, there was a 

significant association between the parameters. 

The La content in fraction B1 had a significant negative regression with pH as 

well as organic matter content (p < 0.001) (Equation 1). For B2 fraction, the 

concentration of La was positively related with pH but inversely related with organic 

matter content (Equation 2). The La content in fraction B3 was negatively related 
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with pH, but positively related with organic matter content (Equation 3). 

Table 4.12 Regression equations between pH, organic matter and La concentrations. 
Regression equation R^ P 

1. B1 = 0 .649-0.0725pH-0.04750M 0.627 <0.001 

2. B2 = 0 .802+0.0322pH-0.3270M 0.587 <0.001 

3. B3 = 1.38-0.0363pH+1.5450M 0.364 <0.001 

4. Leaf La = 2 .92-0.0776pH-0.8150M 0.133 0.095 

5. Root La = 5.02-0.33 l p H + 0 . 9 4 3 0 M 0.176 0.041 

6. Leaf La = 2.32+0.530Bl+0.856B2+0.635B3-0.309Total La 0.150 0.060 

7. Root La = 6.195+4.19Bl-3.44B2+0.148B3+0.223Total La 0.530 0.016 

The reverse associations between foliar tissue contents and pH and organic 

matter were not significant (Equation 4). The regression equation had a lower 

coefficient of determination (R ), revealed that variation in foliar La content was not 

attributable to pH and organic matter. 

A significantly reverse relationship was existed between pH and La content in 

root of E. citriodora (p < 0.05) (Equation 5). Root La content changed positively 

with organic matter content, however, it was not statistically significant. The model 

can significantly predict 42.0% of the variability of the root La content. 
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The association between the La content in plant tissue and different soil 

fractions was analysed separately for foliar content and root content. The foliar La 

content was not predictable neither by the total content nor the levels in various soil 

fractions (p > 0.05) (Equation 6). However, the association between root La content 

and contents in soil fractions was significant (p < 0.05) (Equation 7). The root La 

content was predictable by the La in fraction B1 (p < 0.05). However, the total La 

content in soil had a poor predictability for the root content. The regressions 

between tissue La content and B2 and B3 fractions were not significant, implying that 

B1 fraction was a better predictor for the La content in root. 

4.4 Discussion 

4.4.1 Growth performance of tree seedling on different soil conditions 

There was generally a better growth performance for those seedlings grown in 

soil added with La. This may imply that La can promote tree seedling growth at the 

level applied. Significant differences were observed only in some of the conditions. 

Growth stimulation was more often observed in acidic soil, which may be attributed 

to a higher bioavailability at lower soil pH (Zhu et al., 1998a; Zhang and Shan, 2001). 

More La was taken up by plant to extent its effect and there was a strong regression 

between tissue La concentration and the pH. They had a significant reverse 

relationship implying that the trees absorbed more La at lower pH. 

Changing the organic matter content in soil seems did not lead to any 

difference of the La treated plants and the control in the current study. Organic 
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matter was not a significant factor governing REE bioavailability. Since the uptake 

of La was not significantly influenced by organic matter content, the effect of La on 

growth would be less dependent on organic matter. Regression analysis showed a 

poor association between tissue La content and organic matter level. pH was a 

stronger determinant for the bioavailability of REEs (Masscheleyn et al., 1990). 

4.4.2 Comparison between growth parameters 

Tree seedlings exposed to REEs in general had better growth than those 

without REEs. Significant stimulating effects brought by REEs were exhibited in 

terms of height, biomass, standing leaf number and chlorophyll fluorescence. Height 

was the most sensitive parameter (Hemery and Savill, 2001; Brown and Newman, 

2003). The application concentration that can affect height increment may not be 

high enough to affect other parameters such as basal diameter. On the other hand, 

the duration of experiment may be too short for basal diameter to show a significant 

effect of REEs. The growth in height was faster than that of basal diameter so that 

effects could only be demonstrated by height increment. 

Shtangeeva and Ayrault (2007) reported that small amounts of REEs could 

promote biomass production. Biomass of coconut root was the most sensitive 

growth parameter to the effect of REEs (Wahid et al., 2000). The foliar and root 

biomasses of seedlings exposed to La were significantly higher than those of the 

control seedlings. It implied that biomass was also a sensitive parameter in the 

current study. However, the effect of REEs on tree seedling was not only expressed 
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in terms of biomass, but also height and standing leaf number. Most of the studies 

concerning effect of REEs on growth were assessed in terms of yield (Chang, 1991). 

They mainly concentrated on agricultural crops such as rice and wheat. Leaf is the 

main site for photosynthesis, which produces food and energy for maintaining tree life. 

More leaf number indicates a better growth of tree. Leaf number therefore was an 

important indicator for trees. It was suggested that more non-destructive 

benchmarks should be assessed for the determination of the effect of REEs on tree 

seedling. 

REEs were claimed to able to improve the rate of photosynthesis and increase 

chlorophyll concentration (Xiong et al., 2000). The effect was also observed in this 

study. Measurement of chlorophyll fluorescence was noninvasive, simple, rapid and 

without disrupting the integrity of the plant (Maxwell and Johnson, 2000; Brown and 

Newman, 2003; Mallick and Mohn, 2003). It is a useful tool to monitor the 

photosynthetic performance of plants under effects of chemicals. The optimal value 

of Fv/Fm was around 0.83 which reflect the highest photosynthetic efficiency. The 

optimal value of Fv/Fm was not achieved in the control but reached after REE 

exposure in the present study. It means that the condition in the control might be 

suboptimal for plant growth, but photosynthetic efficiency was improved by addition 

of La. The enhanced photosynthesis after application of REEs may be attributed to 

the increased synthesis of chlorophyll and deposit of REEs in chloroplast and 

thylakoid (Xu and Wang, 2001). Chlorophyll fluorescence can also be used to 

measure the suppression of photosynthetic system by chemicals (Maxwell and 
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Johnson, 2000). It indicates the extent to which PSII is using energy absorbed by 

chlorophyll and the extent to which it is being damaged. Decrease in Fy/Fm or 

increase in Fo indicates the presence of environmental stresses on plants and the extent 

to which these stresses have damaged the photosynthetic system. The Fy/Fm of 

Gracilariopsis longissma was significantly reduced by copper at applied 

concentration greater than 0.25 mg/L (Brown and Newman, 2003). However, no 

decrease in Fv/Fm was observed in REE treatment. This may indicate that REE had 

little adverse impact on the photochemical system. 

4.4.3 Speciation in soils 

The proportion of each fraction in soil was not always the same. The 

proportion of B1 fraction was always the lowest. In a natural environment, the B1 

fraction was lower than 4% of the total REE content (Wen et al., 2002). Content of 

water soluble REEs was the lowest in the topsoil sample collected from China (Zhu et 

al., 1998a). In the present study, the B1 fraction also occupied the lowest percentage, 

because REEs in this fraction was in form of simple or complexed ions in the soil 

solution, so that it was easily absorbed by plants or leached out rapidly after 

application (Han et al., 2001). 

In the present study, the major fraction was B3 fraction, which in agreed with 

other studies. The soil collected from a com fields in China had as high as 30.3% of 

REEs distributed in B3 fraction (Li et al., 1998). Zhang and Shan (2001) also found 

that there were 28.4% of the total La contents existed as B3 fraction, which was the 
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greatest percentage among the three fractions. Other than B3 fraction, B2 fraction 

was of ten reported to occupy a great portion. Wen et al (2002) found that B2 

occupied more than half of the total REEs. In the study carried out by Cao et al 

(2002), majori ty of REEs existed in B2 fraction of soil collected f rom a wheat field. 

The difference in the proportion of REE forms may be attributed to the 

variation in soil composition. Those soil rich in B2 fraction had a high Fe and Mn 

content. Concentration of B2 fraction has strong association with Fe and Mn 

contents (Chuan et al., 1996). REEs adsorbed on the Fe-Mn oxides by coordination 

with OH" on surface of Fe-Mn oxides (Cao et al., 2001). For soil with lower Fe and 

Mn concentration, B2 would no longer become the major fraction, as the elements 

preferred to bind with organic matter (Cao et al., 2000). There are numerous 

negatively charged binding sites on the organic matters of soil which had high affinity 

to metal cations. The reaction between REEs and organic matter was fast. REE 

would be easily attracted to the organic matter and formed the B3 fraction. Such 

association is reversible and the distribution among fraction can be shifted in response 

to the changed soil properties. 

4.4.4 Bioavailability of REEs in soil 

The contents of La in E. citriodora planted in La-treated soil were 

significantly higher than those grown in soil without addition of La. This implies 

that the plant could take up La. However, the La contents in tree seedling had poor 

association with their total contents in soil. The results were consistent with other 
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studies, in which the total content of La, Pr, Nd, Yb and Y was poorly correlated with 

the contents in c o m and rice and other plant species (Li et al., 1998; Wang et al., 2001; 

Tyler, 2004; Chojnacka et al., 2005). The REEs in soil are distributed in different 

fractions, in which not all of them are available to plant. The total REE 

concentration not only included the portion available to plants, but also those strongly 

bound within crystal structure of soil. The latter fraction was not expected to be 

released for plant uptake over a reasonable time span and regarded as fraction of 

residue (Tessier et al., 1979; Han et al., 2001). In nature, a great portion of metal 

contents in soil were in this fraction. Yuen et al. (2001) reported that there were 

more than 80% of total REE remained in the form of residue. Since a portion of 

total REE was not available to plant, total amount was a poor indicator for predicting 

their contents in plants. 

The concentration of La in plants has stronger relationship with defined soil 

fractions of La. In the present study, the La content in roots was better correlated 

with B1 fraction whereas there was no significant regression between contents in leaf 

and all soil fractions. Other studies reported significant positive relationship 

between B1 fraction and the contents in various parts of plant. Lu et al. (2003a) 

found that REEs in B1 fraction was positively correlated with REEs in root and shoot 

of rice. Wang et al. (2001) demonstrated that concentrations of La, Ce, Pr and Nd in 

B1 fraction were significantly correlated with their concentration in shoot of wheat. 

A good correlation between tissue contents and the B1 fraction suggested that REEs in 

B1 fraction was liable to plant uptake. It was commonly agreed that B1 fraction 
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represented the most bioavailable form (Laul et al., 1979; Cao et al., 2000; Han et aL, 

2001; Wang et al., 2001; Tyler, 2004; Liang et al., 2005). Metals were taken up by 

plants f rom the soil solution. B1 fraction represented the water soluble, 

exchangeable and carbonate bound portion, which is the most mobile and easily 

absorbed form. 

The results concerning the bioavailabilities of B2 and B3 fractions were still 

controversial. In the present study, their correlations with the tissue contents were 

not significant, implying that the plants would not take up more La even though La in 

these fractions increased. The REEs in these two fractions were poorly bioavailable 

to plants. REEs contents in Vaccinium vitis-idaea (lingonberry) were poorly 

correlated with abundance of REEs in the fractions (Markert, 1987), while 

concentrations of several REEs in six woody plants were independent to these 

fractions (Wyttenbach et al., 1998). However, other studies reported good 

correlations between REE contents in B2 or B3 fractions and contents of REEs in 

plant tissue. Organically bound REEs were available to com and rice (Li et al., 

1998), and a significant correlation existed between shoot uptake and REE contents in 

B2 fraction (Wang et al., 2001). The inconsistency between results may be 

attributed to the difference in soil properties. REEs in B3 fraction could be taken up 

after they were released to the soil solution. However, the REEs associated with 

organic matter were not easily desorbed owing to slow mineralization of peat moss. 

For those studies with high bioavailability of B3 fraction, REEs may be bound to 

soluble organic matter which were easily dissolved into soil solution and assimilated 
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by plant (Han et al., 2001; Wen et al., 2006). 

As the forms of REEs existed in soil highly depend on soil properties. 

Maintaing a soil condition that favoured the formation of the bioavailable form of 

REEs can make the application of REEs to plants more efficiently. Chemical 

fractionation was a useful approach to determine the bioavailability of REEs in soil 

and suggest the needs for modifying soil properties. 

4.4.5 Factors affecting bioavailability of REEs 

The total abundance of REEs in soil had a poor correlation with the tissue 

REEs contents since not all REE forms can be assimilated. The bioavailability of 

REEs was affected by the soil conditions. 

Among the soil properties that would affect the bioavailability of REEs, pH 

was the most important. In the current study, a significant reverse association was 

obtained between soil pH and La content in B1 fraction, implying that the REEs 

would be more available at low pH. This was further proved by the significant 

association between pH and the tissue content of La. Other than those REEs existed 

in exchangeable and carbonated bound form, which were readily absorbed, most of 

them were bound to soil particles. At a higher pH level, the immobilization by soil 

was more rapid, and insoluble compounds would be formed when REEs reacted with 

hydroxides or oxides (Obrador et al., 1997). However, at low pH, they dissolved 

and so released the bound REEs. REEs also formed complexes with Fe-Mn oxides. 
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The Fe and Mn dissolved at low pH, which released REEs to soil solution. 

(Masscheleyn et al., 1990). 

A lower pH also favoured the uptake of REEs by plants. Rhizosphere has a 

lower pH than the soil far away from plant roots as root secretes acidic substances 

such as organic acids to facilitate the metal uptake (Li et al., 1998). The result of 

present study shows that the final pH was lower than the pre-set pH which may be 

explained by the secretion. This would help the dissolution of metals so more REEs 

appeared as free ions for plant assimilation. 

Under acidic condition, competition between cations and hydrogen ions leads 

to release of REEs (Cao et al., 2002; Wen et al., 2002). REEs are soluble in low soil 

pH. Chuan et al. (1996) found that solubilities of REEs at pH 5 were higher than 

those at alkaline pH and further increased at pH 3. REEs were converted from 

precipitable forms to soluble ions under acidic condition (Yang et al., 1999a; Rimmer 

et al., 2001; Shiowatana et al, 2001). The adsorption process diminished and the 

elements preferred to exist as ions, and remained in soil solution (Jansen et al., 2002; 

Shan et al., 2002; Borrego et al., 2004; Olias et al., 2005). Those REEs originally 

bound to Fe-Mn oxides (B2 fraction) and organic matters (B3 fraction) shifted to the 

soluble and exchangeable fraction (B1 fraction) (Cao et al.’ 2001). As a result, the 

REEs contents in B1 fraction increased and so improved the bioavailability of REEs. 
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Organic matter in soil plays an important role in providing REEs to plants. 

There have been studies recorded that organic matter could improve the 

bioavailability of REEs. Astrom and Corin (2003) reported an increase in REEs 

when the amount of colloidal-sized organic matter increased. However, in the 

present study, altering the amount of organic matter content in soil did not change the 

La content in tree seedling significantly. The improvement effect of organic matter 

may also depend on their forms which have different capability in releasing REEs, 

making the reaction between organic matter and REEs complicated (Oli'as et al., 

2005). Dissolved organic matter had the highest affinity to REEs and was easily 

assimilated by plants (Nierop et al., 2002). The amount of metals in soil solution 

was obviously related to the quantity of dissolved organic matter (Zhu et al., 1998b). 

The presence of ligand would also change the bioavailability of REEs. There 

were more REEs in plant tissue when low concentration of fluvic acid was present in 

soil (Gu et al., 2001). In the absence of ligands, REEs were merely bound to soil 

particles. Soluble organic ligands in soil compete for REEs with the soil adsorption 

sites. Organic ligands, such as EDTA and low molecular weight organic acids, 

reacted with the metals bound to soil particles to form organo-metallic complexes, 

which are more soluble in soil solution. This helps the release of metals from the 

insoluble components. Fe and Mn were released from their oxides which were 

originally insoluble (Wang et al., 2001). Since the products were more soluble, there 

was reduction in adsorption on soil and, at the same time, there was increase in 

desorption (Yang et al.’ 1999a; Shan et al., 2002). Furthermore, the organic acids 
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can promote REE adsorption onto root surface and thus increase the uptake of REEs 

(Wang et al., 2004; Wen et al., 2006). 

Besides, the influence of organic matter on bioavailability was pH-dependent; 

alteration in pH would change the forms of organic compounds (Shan et al, 2002). 

Since various compounds have different affinity to REEs, the desorption f rom organic 

matter becomes complicated under the influence of pH. 

The dominant forms of metal ion shifted under influence of soil redox 

potential. Chuan et al (1996) found that solubility of all the tested heavy metals (Pb, 

Cd and Zn) was higher under reducing condition. It may be because these metals 

were adsorbed on Fe-Mn oxyhydroxides and dissolution of the solid occurred under 

reducing condition which resulted in the release of the adsorbed ions. Similar results 

were also obtained for REEs. More La, Ce, Gd and Y were released into soil 

solution at decreasing redox potential (Cao et al., 2001). Such REEs ions were 

proposed to be adsorbed on Fe-Mn oxides or precipitated as hydroxide. Under 

reducing condition, dissolution of Fe-Mn oxides subsequently releases REEs. 

Contrastingly, the release of metals was also observed under highly oxidizing 

condition. The amount of heavy metals released from solid phase of sediment 

increased under oxidizing condition which might come from the oxidation of metal 

sulphides (such as iron sulphide) (Masscheleyn et al., 1990; Chuan et al., 1996). 

Besides, the ionic form changes under various redox conditions. Most of Se in 

sediment was converted to soluble Se04^~ under highly oxidizing condition 
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(Masscheleyn et al., 1990). 

4.4.6 Distribution of REEs in plants 

The REEs concentrations in roots and shoots were similar in the control. 

However, the REE concentrations in different parts of the plant varied when seedlings 

were exposed to REEs. More REEs were accumulated in roots than in leaves. 

Wheat and rice f rom soil with REE dressing also had similar distribution pattern (Liu 

et al., 1997; Yang et al., 1999a; Wang et al., 2001; Nakamam et al., 2006). REEs 

were restricted to roots of agricultural crops rather than transported to shoots. The 

concentrations of La in roots of com and mungbean were 20-150 times higher than 

the concentrations in shoots (Diatloff et al., 1995b). Contents of La, Ce, Pr and Nd 

in roots of Troticum aestivum ranged from 1.03 to 4.30 mg/kg, while their contents in 

shoots were f rom 0.02 to 0.11 mg/kg (Wang et al., 2001). Roots of Taxodium 

japonicum, Vivia villosa and The a sinensis had the highest REE contents while the 

trunk had the lowest (Fu et al., 2001). Trees mainly accumulated REEs in roots, 

which could accumulate 20-150 times REEs as much as the shoot (Tyler, 2004). The 

results were consistent with the present study. 

However, leaves had more REEs than other parts when the REEs were sprayed 

on the leaves (Sun et al., 1994; Chua et al., 1998). A significant increased of La, Ce, 

Pr, Nd and Gd concentration in shoot was observed when application rate was 2 kg/ha, 

while it required more than 10 kg/ha to raise the contents in grain (Tyler, 2004). The 

translocation was relatively slow and REEs was confined at the site of exposure. 
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However, some studies demonstrated that such pattern will become less significant 

some t ime after REE application to either soil or leaves (Chua et al., 1998; Ding et al., 

2006). The absorbed REEs will be transported to other parts, which is a kind of 

homeostatic regulation mechanism. Such even distribution was not obtained in the 

present experiment probably due to the relatively short duration of the experiment. 

REEs were absorbed into roots as ions (Xu et al., 2003). The ions were 

adsorbed on the surface of roots, passed into the vascular tissues and were transferred 

to the aerial parts (Yuen et al., 2001; Zhang and Shan, 2001). The transport 

mechanism of REEs throughout the plant is still not clear. For the REEs applied to 

soil, the most widely reported pathway would be via mass flow in xylem (Fu et al., 

2001; Shtangeeva and Ayrault, 2007), while for REEs applied through foliar spray, the 

transport route may be via phloem (Ding et al, 2006). 

Casparian strip has been claimed to be a barrier to movement of REEs (Brown 

et al., 1990; Yuen et al., 2001; Xu et al., 2003). Diffusion of REEs in the apoplast 

was completely avoided and REEs cannot pass through the plasma membrane 

(Nagahashi et al., 1974; Chang, 1991; Diatloff et al., 1995b; Xie et al., 2002). 

Deposit of REEs was reported at and along cell wall and cortical side of endodermal 

cells. There were approximately 10% of REEs deposited in the cell membrane of 

Dicropteris dichotoma (Shan et al., 2003). REEs were also located at the outer 

membranes and bound tightly with the membrane sites of Ca^^ on the cell surface (Xu 

et al., 2003). La^^ was recorded to accumulate on the surface of palsmalemma of 
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Avena sativa (Brown et al., 1990). The stelar side of Casparian strip and cells in 

stele were totally free of REEs. It was therefore believed that REE ions could not 

pass through Casparian strip until recent discovery of REE passage through Casparian 

strip and enter to cell organelles (Lai et al., 2006). Although most of the REEs (68%) 

were found to deposit on the cell wall of Pronephrium simplex, about 30% REEs 

passed the cell membrane. Casparian strip was partially permeable to REEs which 

depended on the development of Casparian strip (Brown et al., 1990). La^^ could 

reach the phloem cells by passing through the Casparian strip in Yucca flaccida 

(Adam's needle). There were some chemicals which could help the passage of REE 

ions across the membrane, such as pectin acid on the cell wall (Lai et al., 2006). In 

normal cases, pectin acid bound with Ca〗—，but REE ions replaced Ca^^ and reacted 

with pectin acid, and transported across membrane since REE ions have higher ability 

to bind with the acid. 

There were 8% of REEs accumulated in the chloroplast in the leaves of 

Dicranopteris dichotoma. Half of the REEs were present on the chloroplast 

membrane and another half were in the thylakoid (Wang et al., 2003). In the 

chloroplast of Pronephrium simplex, there were 46.6% and 53.4% of the absorbed 

REEs deposited on chloroplast membrane and thylakoid respectively (Lai et al., 2006). 

The REEs ions interacted with thylakoid membrane surface and were associated with 

photosystem II (PS II) in thylakoid while a small portion was associated with PS I 

(Yuen et al., 2001). PS II is an important site for photosynthesis, which affects the 

plant's total productivity directly (Lu et al, 2003b). Deposit of REEs can improve 

1 6 4 



photosynthesis and thus facilitate plant growth. Other than chloroplasts, REEs were 

also detected in tannin vacuoles, endoplasmic reticulum and vacuoles (Brown et al， 

1990). 

4.5 Conclusions 

Seedling of E. citriodora took up significant amount of the La applied to soil. 

When REEs in soil were fractionated by sequential extraction, the La content in plant 

tissue was poorly related with the total La content in soil but positively related to the 

La concentration in B1 fraction. B1 fraction was the most bioavailable fraction for 

plants. The magnitude of the B1 fraction can give a rough prediction on the amount 

of REE assimilated by plants. The speciation of REEs was governed by soil 

properties. pH was a more important factor than organic matter in affecting the REE 

fractionation and hence bioavailability. A significantly negative correlation was 

obtained between La concentration in B1 fraction and pH. More REEs were 

converted to available form under acidic condition. Since plants take up metals in 

form of free ions, the results suggest that REEs would be more bioavailable at low pH. 

However, the bioavailability was also influenced by other factors such as the 

competition for ion exchange sites, obtaining more information about the soil 

properties would improve the prediction of bioavailability of REEs. 

Most of the absorbed La was stored in roots of seedlings and only a small 

portion was transported to the aerial parts. As the translocation of REEs was a slow 

process, a longer experimental period may provide more valuable information about 
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the translocation of REEs in plants. 
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Chapter 5 General conclusions 

5.1 Summary of major findings 

The present research investigated the effects of REEs on plants and the 

influence of various soil factors on the bioavailability of REEs. The information 

obtained can fill the knowledge gap. 

Seed germination and root elongation test demonstrated reduced germination 

rate and root growth when seeds of B. chinensis and L. perenne were immersed in 

solutions of various REEs including La, Ce, Pr and Nd. The EC50s of REEs ranged 

f rom 9.52 to 20.1 mg/L, while the EC50s of the heavy metals such as Cr, Cu, Ni and 

Zn were not higher than 2.5 mg/L for L perenne (Dijkshoom et al., 1979). These 

heavy metals were much more toxic than the REEs. The adverse effect of REEs on 

seed growth was not as serious as heavy metals. The threat of REEs to environment 

seems to be smaller. There was difference between the four REEs tested for the 

results obtained from B. chinensis. The EC50s of La and Ce were significantly 

lower than those of Pr and Nd. It was commonly believed that REEs were highly 

similar in electronic configuration and chemical properties with each others. 

However, from the results of the present study, it was found that the difference among 

each REE would be exhibited when they were examined in a test with high sensitivity 

assay in a well controlled condition. The germination rate and root elongation were 

less affected by environmental factors. The results can preciously reflect the toxicity 

of REEs. Germination and root growth of B. chinensis were affected at a lower REE 

levels than those of L. perenne. Nevertheless, when comparing the EC50s, there was 
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no statistically difference among the values obtained from these two species. L 

perenne was a species suggested by many standard protocols since it was sensitive 

towards many chemicals. However, B. chinensis has been appeared in the protocol 

prepared by the OECD only. In the present study, B. chinensis was found to be as 

sensitive as L perenne. B. chinensis is one of the most important vegetables 

consumed in Hong Kong. This species is also common in England because of the 

influx of immigrants f rom Hong Kong and mainland China (Mahmud et al., 1999). 

B. chinensis has high economic values. It was proposed that B. chinensis would be a 

useful species when determining the phytotoxicity of REEs. 

Germination and root elongation test involving seeds exposed to REE solution 

was a sensitive method to investigate the phytotoxicity of REE. Nevertheless, it 

cannot reflect the plant performance in the rest of the life cycle. Directly evaluating 

the growth of plant in REE-amended soils would provide more completed information 

about the effects of REEs on plant growth so as to help the application of REEs to 

soil. 

The increments in height, leaf number and biomass of seedlings of A. 

auriculiformis or E. citriodora were significantly increased when low application rate 

of REEs were applied to soil. Plant grew at a higher rate when REEs were added to 

soil, which may be attributed to the better growth observed at the end of the 

experiment. The stimulating effect was dose-dependent, which diminished when the 

concentration was 25 mg/kg. The increment in growth contributed by La, Ce, Pr and 
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N d varied. This implies that there was difference among these REEs about their 

interaction with the plants. It is proven by the higher La concentration in the plant 

tissue compared with the others. It is reported that REEs increased the nutrient 

uptake by plants (Wahid et al., 2000). However, no significant improvement in 

nutrient uptake could be observed in the present study. Further investigation should 

be carried out to clarify the contradictory results. 

In most cases, information about the effect of REEs is derived from crops, 

especially wheat and rice. However, data should include forestry plants which are 

also recipients of REEs and are important to human life and ecosystem. REEs were 

reported to be able to increase yield and improve crop quality. Once these beneficial 

effects are also exhibited in forestry plants, a great contribution could be given to the 

ecology and forestry industry. The present study indicates that the influence 

experienced by tree seedlings was similar to economic crops, thus REEs may be 

useful in promoting tree growth. Since the effect of REEs could be dose-dependent, 

the amount of REEs applied should be carefully managed. 

The growth of seedlings E. citriodora was significantly improved by REEs 

under acidic condition, under which REE availability and uptake were elevated. The 

absorbed REEs were mainly stored in roots. The translocation of REEs inside plant 

may be slow, causing the absorbed REEs to accumulate in the assimilated part. 

REEs exist in soil in various forms. Some of them are more easily taken up than the 

other forms. Among the fractions extracted, the water soluble, exchangeable and 
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carbonated bound fraction (B1 fraction) was the most bioavailable form, while Fe-Mn 

oxide bound fraction (B2 fraction) and organic and sulphide bound fraction (B3 

fraction) was less bioavailable. It was proposed that concentration of REEs in B1 

fraction in soil would be a better prediction of the abundance of REEs in plant. The 

effects of change in soil pH and organic matter content on converting REEs fractions 

were investigated. There was a significant relationship between B1 fraction and soil 

pH. The concentration of B1 fraction increased under acidic condition, but decrease 

under alkaline condition. Therefore, the REE contents in plant tissue were higher 

under low pH condition. Change in soil organic matter did not cause impact as 

significant as pH. It was proposed that regulating the soil pH would be the most 

critical for managing REE bioavailability. 

In the field, environmental conditions could vary greatly and change 

continuously. Plant dose not assimilate all forms of REEs in soil. Those can be 

easily absorbed by plant are regarded as readily bioavailable. The change in soil 

properties can lead to alteration of chemical speciation of REEs, and thus converting 

the proportion of REEs which is bioavailable to plants. The present study provided 

more information about the bioavailability of REEs under different soil conditions. 

Such information would help in regulating the amount of REEs being absorbed by 

plants f rom soil. 

REEs were still not reported to be essential to plant growth. From the present 

study, REEs were found to have low toxicity and stimulate plant growth at certain 
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concentrations. Plants with better growth are benefits to human life and ecosystem. 

It would be a contribution to plant when REEs were applied in a proper condition and 

application rate. The present study investigated information on the effect of REEs 

on plant, which is valuable in managing application of REEs to plants. 

5.2 Suggestions for further investigation 

The present study investigated the effect of REEs on plant growth for three 

months. It is a relatively short period with respect to the life of trees. Once the 

REEs were absorbed by plants, they would be stored in the plant body rather than 

being excreted. The possibility for REEs affecting plant after a long time was least 

addressed in the current literature. Thus, the information about chronic effect would 

be highly valuable in the view of environmental concern. 

Moreover, one REE was added to soil in each treatment in the present study to 

investigate the growth performance alternation of plant contributed by the REEs. As 

an ingredient of fertilizer, mixture of REEs exists. However, the growth of plant 

under the condition that REEs simultaneously exist was not well studied. Thus, 

effect of applying more than one REE to plants is an important issue that further 

research is needed. 

There were various forms of REEs existed in soil. Not all of them can be 

assimilated by plant. The conversion from the unavailable form to the available 

form is controlled by many factors. Soil properties, including pH and organic matter 
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were tested to be factors influencing the bioavailability of REEs. Other than the 

chemical and physical properties of soil, biological aspect is also an important 

component of soil. Bacteria and soil fauna help to improve the soil conditions that 

favour plant growth. Nevertheless, their contribution on the bioavailability of REEs 

has received less concern. Earthworm was reported to increase the concentration of 

the most available form of REEs in soil (Wen et al., 2006). The mechanism behind 

the observation was not well known. Further investigation on this aspect is also 

highly recommended. 
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