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Seasonal variations in phenological traits: leaf shedding
and cambial activity in Parkia nitida Miq. and Parkia velutina
Benoist (Fabaceae) in tropical rainforest

Hélène Morel • Thomas Mangenet • Jacques Beauchêne •

Julien Ruelle • Eric Nicolini • Patrick Heuret • Bernard Thibaut

Abstract

Key message In French Guiana, the leaf and cambium

phenologies should not be considered only as exoge-

nous-driven processes, as the dry season, but also as

endogenous-driven, as tree development stage.

Abstract Studies of the periodicity of wood formation

provide essential data on tree age and on factors that

control tree growth. The aim of this work was to investi-

gate cambial phenology and its relation with leaf phe-

nology and climatic seasonality in two briefly deciduous

tropical rainforest species belonging to the genus Parkia.

Wood microcores were collected every 15 days from April

2009 to February 2012 from five trees of each species. The

microcores were stained with cresyl violet acetate to fa-

cilitate counting the number of cells in the cambial zone, in

the radial enlargement zone and wall-thickening zone. At

the same time, we observed leaf shedding pattern in the

crown of the same trees. In both species, cambial activity

was significantly reduced during the leafless period. In P.

nitida, these two concomitant events were observed during

the dry season whereas in P. velutina they can occur

anytime in the year with no apparent link with seasonality.

In conclusion, the period of reduced cambial activity in

some tropical rainforest trees may be independent of

rainfall seasonality and not necessarily follow an annual

cycle. It appears that leaf phenology is a good proxy to

estimate cambial activity.

Keywords Cambial activity � Tropical rainforest �
Climate � Leaf shedding pattern � French Guiana

Introduction

Studies of the periodicity of wood formation provide

key data that constitute the basis of dendrochronological
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(Krepkowski et al. 2011; Die et al. 2012), the cambial

activity sometimes appears to be independent of season-

ality (Trouet et al. 2012; Pumijumnong and Buajan 2013).

Concerning leaf phenology, both large-scale continental

studies using satellite data (Caldararu et al. 2012; Pennec

et al. 2011) and field studies (Loubry 1994; Nicolini et al.

2012) showed that new flush of leaves appeared shortly

after leaf fall at the beginning of the dry season, but some

species also appeared to have a non-seasonal leaf phe-

nology (Nicolini et al. 2012; Borchert 1999). Finally, the

few studies on the relationship between leaf phenology,

cambial activity, and environmental variables, showed that

cambial activity was reduced during the dry season when

the trees were leafless (Callado et al. 2001; Marcati et al.

2006; Venugopal and Liangkuwang 2007; Lisi et al. 2008;

Marcati et al. 2008; Yàñez-Espinosa et al. 2010; Singh and

Venugopal 2011). However, they rarely focused on species

in which the leafless period and the dry season were dis-

connected in time, which is a necessary condition to dis-

entangle the effect of the dry season and the effect of leaf

fall on cambial activity.

In the present study, we thus investigated seasonal

variations in cambial activity in tropical trees in relation

with their leaf shedding pattern and climatic factors. We

focused on two emergent neotropical species: Parkia nitida

Miq. (Fabaceae) and Parkia velutina Benoist (Fabaceae).

Both are deciduous and have easily identifiable successive

growth rings (Détienne 1989; Nicolini et al. 2012; Morel

2013). P. nitida trees exhibit a stable annual and seasonal

defoliation pattern (Loubry 1994; Mangenet 2013). In

contrast, some P. velutina trees also have a stable annual

and seasonal defoliation pattern while others showed a

stable but infra-annual defoliation pattern, with leaf shed-

ding every 7–10 month, leading to non-seasonal defo-

liation from year to year (census 1990–1991 in Loubry

1994; census 2009–2011 in Nicolini et al. 2012).

Using these two different species, we attempted to

clarify the relationship between cambial activity and leaf

phenology to answer the three following questions: (1) is

cambial activity seasonal?, (2) are cambial activity and leaf

phenology linked?, and (3) are the two processes linked to

climate seasonality?

Materials and methods

Study site and tree selection

The study was conducted in the lowland tropical rainforest

of the Paracou experimental site at 5�180N, 52�550W, French

Guiana (Gourlet-Fleury et al. 2004). The site is a stand of

old-growth forest dominated by Leguminosae, Chrysobal-

anaceae, Lecythidaceae, Sapotaceae, and Burseraceae

studies (Boninsegna et al. 2009; Pumijumnong 2013). 
These data are therefore very important to estimate tree age 
(Worbes et al. 2003; Brienen 2005), to study wood prop-

erties (Bouriaud et al. 2005; Franceschini et al. 2013), or 
more generally, to study forest dynamics (Rozendaal and 
Zuidema 2011) and carbon storage (Worbes and Raschke 
2012).

Tree growth is controlled by both endogenous factors, 
such as plant genotype or physiological processes (Schra-

der et al. 2003, 2004), and by exogenous factors, such as 
rainfalls and light availability (Deslauriers and Morin 
2005; Gricar et al. 2007), and these factors affect tree 
growth in an interrelated way.

In temperate regions, winter conditions influence tree 
phenology through a synchronized annual period of rest for 
both primary and secondary growth, which, in deciduous 
species, is associated with leaf shedding. In this case, cli-

matic conditions are the main factor that controls tree 
growth dynamics and the long winter-induced rest period 
leaves markers in the wood and on the stems.

In tropical rainforest, climatic parameters (temperature, 
light, and rainfall) are less restrictive, and fluctuations in 
primary and secondary growth can be caused by various 
environmental factors: rainfall variations (Bullock and 
Solismagallanes 1990; Wright and Cornejo 1990; Pumi-

jumnong et al. 1995; Worbes 1995; Bullock 1997; Borchert 
1999; Worbes 1999; Oliveira et al. 2011; Grogan and 
Schulze 2012), annual floods (Callado et al. 2001; Schön-

gart et al. 2002, 2005; Dezzeo et al. 2003), variations in day 
length (Borchert and Rivera 2001; Williams et al. 2008), 
variations in peaks of irradiance (ter Steege and Persaud 
1991; van Schaik et al. 1993; Wright and van Schaik 1994), 
and by internal rhythms (Alvim and Alvim 1978). Ac-

cording to these various sources of growth fluctuation, 
tropical tree species display more diverse growth patterns 
than temperate ones, from trees exhibiting a continuous 
growth to trees with intermittent growth (Osada et al. 2012; 
Zalamea et al. 2013). Thus, the macro-anatomical or 
morphological growth markers may not correspond to an 
annual rhythm, or to any period of fixed time, and may 
even be absent from the wood or stems (Jacoby 1989; Wils 
et al. 2009; Nicolini et al. 2012). This can be an issue in 
dendrochronological studies, and it highlights the impor-

tance of a better understanding of tropical tree growth 
periodicity.

Despite many studies, our knowledge on leaf and cam-

bium phenologies of tropical trees remains sparse and there 
is still no coordinated vision of how these processes in-

teract with each other and with the environment. In South 
American tropical forests, 15 studies on cambial seasonal 
activity have been conducted using histological approaches 
(Callado et al. 2013). Although a period of cambial 
dormancy appeared to occur during the dry season



(Sabatier and Prévost 1989). The most common soils are

shallow and ferralitic, limited in depth by a more or less

transformed loamy saprolite (Boulet and Brunet 1983).

The site receives nearly two-thirds of the annual

3041 mm of precipitation between mid-March and mid-

June, and less than 50 mm per month in September and

October (Wagner et al. 2011). The daily mean temperature

of 25.8 �C is almost constant over the year.

We studied five trees of each of the two species, dis-

tributed throughout the Paracou field station. Tree di-

ameters at breast height (DBH) ranged from 45 to 100 cm

(Table 1a). Only trees with an emergent crown (full

overhead and side light) or that were in the upper canopy

layer (full overhead light) were selected to minimize the

effects of competition for light on tree growth.

Wood formation monitoring

Wood formation was monitored every 15 days by sampling

microcores (15 mm in length and 2 mm in diameter) from

the stem of the selected trees. The survey lasted 24 months

(February 2010–February 2012) for P. nitida and 34 months

(April 2009–February 2012) for P. velutina. Microcores

were collected at breast height using a Trephor tool (Rossi

et al. 2006a). Samples were taken in a spiral up the stem

from 30 cm below to 30 cm above DBH, 2–8 cm apart

(Deslauriers et al. 2003). This spacing is necessary because

traumatic tissues may form where previous cores have been

removed (Forster et al. 2000). Once sampled, the microcores

were conserved in an ethanol solution (50 % in water) in

Eppendorf microtubes and stored at 5 �C to avoid tissue

deterioration. Some samples were not exploitable (10 % of

the microcore data) due to the extreme fragility of micro-

cores, which break easily when handled.

To allow microscopic observation of cambial activity

and wood formation, transverse sections were prepared

from every microcore. Each sample was oriented by

making a pencil mark on the transversal side under a mi-

croscope at 129 magnification. The samples were then

dehydrated before being embedded in paraffin. Next, 5 lm

transverse sections were cut with a rotary microtome (Le-

ica, RM 2255). Finally, sections were stained with cresyl

violet acetate (0.16 % in water) and observed with visible

and polarized light at 1009 magnification (Rossi et al.

2006a).

We distinguished three distinct cell zones in the sec-

tions: (1) a cambial zone (cz) with cells with thin cell walls

and small radial diameters, (2) a zone in which the cells

were enlarging (ez) where the cells were larger than those

in the cambial zone and had thin walls, and (3) a zone in

which the cell walls were thickening (wz) where the cells

exhibiting birefringence were developing secondary walls

under polarized light and appeared violet and blue under

white light after staining with cresyl violet acetate (Sa-

muels et al. 2006). The Wiesner reaction was performed on

additional sections by pouring a few drops of 2 %

phloroglucinol ethanol solution onto the section mounted

on a glass slide, adding one drop of 35 % HCl and covering

the section with a cover slip. The Wiesner reagent reacts

with coniferyl (G) and sinapyl (S) aldehyde units in lignin.

The higher the Klason lignin content, the more intense the

red color (Yoshizawa et al. 2000). The difference in color

makes it possible to differentiate cells with thickening

walls from the first mature cells.

To determine cambial activity, we recorded the radial

number of cells along three continuous cellular files in each

cell zone (Figs. 1, 2; Skene 1969; Antonova et al. 1995;

Deslauriers et al. 2003; Rossi et al. 2006b). Despite the fact

that these two species are known to have distinct growth

rings (Nicolini et al. 2012 for P. velutina and Morel 2013

for P. nitida), we did not observe growth ring limits in the

microcore sections and were thus unable to include mature

cells in our counts.

Phenological survey

In addition to wood formation monitoring in the same

trees, we used binoculars to assess the vegetative state

according to the four following categories: leafless ([80 %

crown without leaves), young ([80 % crown with light-

green expended leaves), mature ([80 % crown with dark-

Table 1 (a) Diameters at breast height (DBH) and heights (H) of the

sampled trees of Parkia nitida and Parkia velutina and (b) periodicity

of leaf fall and cambial activity

(a) (b)

DBH

(cm)

H

(m)

Leaf fall

periodicity

(months)

Cambial activity

periodicity (months)

Parkia nitida

PN1 85.9 30.0 12 11.5

PN2 105.0 27.0 12 9.5

PN3 76.4 26.6 11 13

PN4 47.8 19.5 13 12

PN5 70.0 28.5 12 –

Parkia velutina

PV1 93.9 34.0 8, 9 7.5

PV2 89.1 32.5 9, 8, 7, 10 14.5

PV3 70.0 31.5 8, 10, 10 10.5

PV4 47.7 31.0 11, 13 12.5

PV5 45.8 31.0 10, 10, 9 11

Leaf fall periodicity is expressed as the length (in months) of the leafy

period between two successive leaf falls

For PN5, ‘‘–’’ for cambial activity means no seasonal pattern observed



(Fig. 3). In this way, we obtained an easy way to interpret

climate variable centered on zero in which negative values

represented hot dry periods and positive values represented

cool moist periods (Fig. 3).

Concerning leaf phenology, the skewed bell-shaped

patterns of photosynthetic capacity through a leaf’s lifetime

(Kuo et al. 2013), along with the fact that the durations of

the senescent, defoliation, and young leaf stages were very

short when considered separately compared with the du-

ration of the mature leaf stage, lead us to focus on mature

leaves versus other stages of leaf phenology in our analysis.

Concerning cambial phenology, we tested periodicity

using Spearman’s linear correlation coefficient (for more

details see online supplementary materials, Fig. B1).

We then explored the relationships between cambial ac-

tivity, leaf phenology, and climate seasonality using linear

mixed models. We chose to explore these relationships

separately because both cambial activity and leaf phenology

were likely to be sensitive to climate. If we used leaf

light (December 26, 2011). 1 Cambial zone (cz), 2 zone with

enlarging cells (ez), 3 zone with cells with thickening walls (wz), and

4 mature cells. Scale bars 25 lm

Fig. 1 Cross sections of a Parkia nitida stem, a period of low 
cambial activity (May 4, 2010), b transition period (July 13, 2010), 
c strong cambial activity, and d strong cambial activity in polarized

green leaves), and senescent ([80 % crown with yellow–

brown leaves). All observations were made by the same 
researcher (T.M.), thus minimizing subjective estimation 
variability.

Data analysis

Concerning climatic variables, after a preliminary analysis 
(see online supplementary materials for details, Fig. A1), 
we extracted the four following climatic parameters from 
each 15-day time window preceding each sampling data:

(1) sum precipitation, (2) mean temperature, (3) mean 
relative humidity, and (4) mean solar radiation. Because 
climatic parameters were highly interrelated, we chose to 
summarize the climatic information using a principal 
component analysis (PCA). The first axis of the PCA ex-

plained up to 77 % of the inertia. We used the first axis 
score as a summary climatic variable because of its sig-

nificant correlation with each of the climatic parameters



phenology and climate simultaneously in a model to explain

variations in cambial activity, we would not be able to dis-

tinguish real climatic effects from indirect effects. In order to

take into account the inter-individual variability, we inte-

grated in each model an individual random effect on both

intercept and slope. Thus, we first explored the relation be-

tween cambial activity and climate with a linear mixed model

in which we set climate as a fixed variable and individual

ranking as random effect on both intercept and slope: (1)

cambial activity * climate ? (1 ? climate | individual). We

then explored the relation between cambial activity and leaf

phenology using a linear mixed model in which we set leaf

phenology as a fixed variable and individual ranking as a

random effect on both intercept and slope: (2) cambial ac-

tivity * leaf phenology ? (1 ? leaf phenology | indi-

vidual). Finally, we explored the relation between leaf

phenology and climate using a mixed logistic regression

analysis in which we set climate as a fixed variable and

individual ranking as a random effect on both intercept and

slope: (3) leaf phenology * climate ? (1 ? climate | indi-

vidual). We log10-transformed cambial activity in models (1)

and (2) to obtain more symmetric distributions.

Due to the absence of standard statistical procedures to

assess the significance of fixed explicative variables in

mixed models, we used a parametric bootstrap approach to

compute 95 % confidence intervals for each estimated

parameters and we could then infer on the significance of

the fixed explicative variables.

For models (1) and (2), we expressed the goodness-of-fit

with the marginal R2 (R2
m), which gives the variance ex-

plained by the fixed variables, and with the conditional R2

(R2
c), which gives the variance explained by both fixed and

random variables (Nakagawa and Schielzeth 2013). For

model (3), we expressed the goodness-of-fit with the area

under the receiver operating characteristic (ROC) curve

(expressed thereafter as AUC), which represents the

Fig. 2 Cross sections of a Parkia velutina stem, a reduced cambial

activity period (May 4, 2010), b transition period (July 27, 2010),

c high cambial activity, and d high cambial activity in polarized light

(December 2, 2010). 1 Cambial zone (cz), 2 zone with enlarging cells

(ez), 3 zone with cells with thickening walls (wz), and 4 mature cells.

Scale bars 25 lm



Cambial activity pattern

Cambial activity varied between the two species and

among trees, with each tree alternating in the periods of

low and high cambial activity during the survey (Fig. 4). In

P. nitida, the periodicity of cambial activity was close to

annual in PN1, PN3, and PN4, but less than annual in PN2

(Fig. 4; Table 1b). We did not observe any periodicity in

PN5, probably due to its very weak cambial activity. In P.

velutina, cambial activity periodicity ranged from 7.5 to

14.5 months.

In both species, the variation in cambial activity was

mainly the result of changes in the number of enlarging

cells (ez) and wall-thickening cells (wz) (Fig. 4, green-

dashed lines and blue dash-dotted lines), whereas the

number of cells in the cambial zone (cz) remained more or

less constant over time (Fig. 4, red-dotted lines).

Relationships between cambial activity, leaf phenology,

and climate

In both species, cambial activity at the population scale

tended to increase from hot and dry periods to moist and

cool periods, but this trend was not significant (Table 2;

Fig. 5a, b). The result was reinforced by the fact that we

observed individual trees showing an opposite trend in the

relationship between cambial activity and climate in both

species (Fig. 5a, b).

Fig. 3 a Correlations between

climatic parameters

(precipitation, relative humidity,

temperature, and global solar

radiation) and the summary

climate variable. b Monthly

variation in summary climatic

variable during the survey

(black line) and during the

2004–2012 period (gray line).

The summary variable is

centered on zero. Negative

values represented dry and hot

periods while positive values

represented rather moist and

cool periods. Bars represent

95 % bootstrapped confidence

intervals. Rho Spearman’s rank

correlation coefficient.

Significance levels associated

with the Spearman’s rank

correlation coefficient was

P \ 0.001 in all cases

discriminative ability of the model, i.e.. in our case, the 
ability of the model to predict tree phenology according to 
climatic data. AUC can be seen as the proportion of true 
predictions made by the model, and range from 0.5 (null 
prediction ability) to 1 (excellent prediction ability).

All analyses were performed using the R statistical 
platform (R Development Core Team 2011) and the lme4 
package (Bates et al. 2014).

Results

Leaf shedding pattern

In 2010 and 2011, all P. nitida trees lost their leaves at the 
same time during the long dry season, at intervals of 
11–13 months (Fig. 4; Table 1b). The leafless period lasted 
15–30 days.

During the 3 years of the survey, individual P. velutina 
trees went through three to five leafless periods (Fig. 4; 
Table 1b), implying that some trees lost their leaves twice 
a year. The leafless period was slightly synchronous be-

tween trees, but could occur at any time of the year 
(Fig. 4). Most trees lost their leaves at sub-annual scale, at 
intervals from 7 to 10 months (PV1, PV2, PV3, and PV5) 
and only one tree showed annual defoliation behavior 
(PV4, Table 1b). Like P. nitida, the leafless period lasted 
15–30 days.



On the other hand, we found a positive and statistically

significant increase of cambial associated with the presence

of mature leaves at the population scale in both species

(Table 2; Fig. 5b, c), and this increase in cambial activity

was observed in all individuals. Cambial activity tended to

decrease before leaf fall and to increase again immediately

or with a lag of a few months after canopy leafing (Fig. 4).

Finally, while the presence of mature leaves was sig-

nificantly related to cool moist periods in P. nitida, no

significant link between climate and leaf phenology at the

population scale was observed for P. velutina. In only one

tree out of the five of this species, the probability of ob-

serving mature leaves increased significantly from the hot

and dry to the moist and cool periods.

Discussion

The present work is original, in that it is among the very

few studies on tropical trees to explore cambial activity

through regular sampling of microcores at a bi-monthly

scale (see Callado et al. 2013 for a review of studies in

South America). Importantly, we included leaf phenology

as an additional biological covariable because it reflected

the functioning of the primary meristems while most other

studies focused only on cambial activity and its links with

environmental factors, sometimes on the radial increment

alone (Callado et al. 2013). In our opinion, cambial activity

plus leaf phenology definitely offer a larger insight on the

growth regulation occurring inside the growing plant and

Fig. 4 Cambial activity and

leaf shedding patterns of the five

Parkia nitida (on the left) and of

the five P. velutina trees (on the

right) from April 2009 to

February 2012. The red-dotted,

green-dashed, and the blue

dash-dotted lines represent,

respectively the number of cell

layers of the cambial zone (cz),

of the zone with enlarging cells

(ez) and of the zone with cells

with thickening walls (wz),

while the circles represent the

sum of these three

measurements (R_cz_ez_wz)

and the local fitting is

represented by the solid line.

The color of the circles

indicates the phenological stage

of the tree at the time of the

microcore sampling: black for

‘‘mature leaves’’ and white for

‘‘senescent leaves’’, ‘‘leafless’’,

and ‘‘young leaves’’. The long

dry season (July–November) is

symbolized by the gray stripes

in the background



Buajan 2013); our results show that the other types of cells

should also be taken into account in the analysis of cambial

activity in tropical trees. Indeed, variations in the number of

cells in the cambial zone can be significantly smaller than

variations in the number of other cell types.

Despite the fact these two species are known to have

distinct growth rings (Nicolini et al. 2012 for P. velutina,

Morel 2013 for P. nitida), we were unable to distinguish

the limits of the growth rings in the microcores due to (1)

the small size of the core and (2) the confusion between the

bands of axial parenchyma lines located within the ring and

the continuous band of axial parenchyma corresponding to

Table 2 Summaries of the linear mixed model analyses of relation-

ships between cambial activity and climate (model 1), and cambial

activity and leaf phenology (model 2), the mixed logistic regression

model analyses of relationships between phenology and climate

(model 3) for Parkia nitida and Parkia velutina

Parkia nitida Parkia velutina

Model (1) ln(cambial activity) ~ intercept 1 climate 1 (intercept 1 climate | individual)

Fixed effects Coefficient [95 % CI] Fixed effects Coefficient [95 % CI]

Intercept b0 2.85 [2.70; 2.99] Intercept b0 3.02 [2.77; 3.27]

Climate b1 0.04 [–0.04; 0.12] Climate b1 0.04 [–0.04; 0.11]

Individual random effects SD Individual random effects SD

Intercept b0 0.16 Intercept b0 0.26

Climate b1 0.08 Climate b1 0.08

Goodness-of-fit Goodness-of-fit

Marginal R2 0.02 Marginal R2 0.01

Conditional R2 0.21 Conditional R2 0.24

Model (2) ln(cambial activity) ~ intercept 1 phenology 1 (intercept 1 phenology | individual)

Fixed effects Coefficient [95 % CI] Fixed effects Coefficient [95 % CI]

Intercept b0 2.51 [2.33; 2.68] Intercept b0 2.61 [2.42; 2.81]

Phenology b1 0.38 [0.14; 0.34] Phenology b1 0.49 [0.30; 0.71]

Individual random effects SD Individual random effects SD

Intercept b0 0.01 Intercept b0 0.15

Phenology b1 0.19 Phenology b1 0.13

Goodness-of-fit Goodness-of-fit

Marginal R2 0.06 Marginal R2 0.10

Conditional R2 0.17 Conditional R2 0.29

Model (3) phenology ~ intercept 1 climate 1 (intercept 1 climate | individual)

Fixed effects Coefficient [95 % CI] Fixed effects Coefficient [95 % CI]

Intercept b0 2.87 [2.21; 4.34] Intercept b0 1.54 [1.21; 1.98]

Climate b1 0.80 [0.31; 1.51] Climate b1 0.06 [-0.16; 0.31]

Individual random effects SD Individual random effects SD

Intercept b0 0.47 Intercept b0 0.20

Climate b1 0.43 Climate b1 0.16

Goodness-of-fit Goodness-of-fit

AUC 0.82 AUC 0.63

Cambial activity was log10-transformed in model (1) and (2). Fixed effects indicate the model estimated parameters at the population scale while

taking into account the inter-individual variability. Random effects provide information concerning the inter-individual source of variability

(expressed as standard deviation) of the model estimated parameters. The significance of relationships can be inferred from the 95 % parametric

bootstrap confidence intervals. The marginal R2 gives the variance explained by the fixed effects and the conditional R2 gives the variance

explained by both fixed and random effects. AUC represent the ability of the model to predict tree phenology according to climatic data and range

from 0.5 (null prediction ability) to 1 (perfect prediction ability). See the data analysis section for more details

on the possible interactions with exogenous parameters like 
temperature or precipitation.

In both species, the variation in cambial activity was 
mainly the result of changes in the number of enlarging and 
wall-thickening cells rather than changes in the number of 
cells in the cambial zone. While the majority of studies on 
cambial activity in both temperate and tropical trees only 
focused on the number of cells in the cambial zone to explain 
cambial activity (temperate studies: Bäucker et al. 1998; 
Frankenstein et al. 2005; Marion et al. 2007, tropical studies: 
Pumijumnong and Wanyaphet 2006; Marcati et al. 2008; 
Krepkowski et al. 2011; Die et al. 2012; Pumijumnong 
and



the end of the current ring. Consequently, we were unable

to take the mature cells into account in our counting and

thus, to obtain other cambial activity parameters like the

speed of differentiation of the cells, a parameter indicative

of tree growth status was introduced. Future studies should

include longer cores but at a monthly scale to prevent

disease entrance.

The main result of this study was that periods of low

cambial activity significantly matched with leaf fall and

leafless periods in both species, and this result was reported

in several others studies in deciduous and semi-deciduous

tree species (Callado et al. 2001; Venugopal and Liangku-

wang 2007; Marcati et al. 2008; Cardoso et al. 2012). Leaf

phenology is known to be an important factor influencing

the activity of the vascular cambium and leaf fall generally

has a significant and direct effect on cambial activity, as

reported by Callado et al. (2001) where the period of leaf

abscission was correlated with the formation of latewood in

three deciduous and semi-deciduous species. Thus, it’s clear

that the radial growth cannot be considered and interpreted

in deciduous and semi-deciduous species without taking

into account the leaf phenology in studies about effects of

climate on tree radial growth.

Leaf shedding patterns are largely determined by the

seasonality of rainfall in tropical regions (Frankie et al. 1974;

Lieberman 1982; Reich and Borchert 1982, 1984; van Schaik

et al. 1993; Lisi et al. 2008). To avoid hydric stress, de-

ciduous trees that shed their leaves at the beginning of the dry

season, remain leafless throughout the dry season and only

grow new leaves when the first rains fall at the end of the dry

season. Conversely, in the Paracou experimental site, P. ni-

tida trees change their leaves early in the dry season, just

before depletion of soil water reserves (Wagner et al. 2011),

and end the dry season with new leaves (see also trees ob-

served by Loubry 1994, Pennec et al. 2011 and Mangenet

2013). The dry season is characterized by a minimum cloud

cover and high solar irradiation, a situation that probably

allows trees to optimize their photosynthetic activity (Wright

and van Schaik 1994; Huete et al. 2006; Xiao et al. 2006).

However, Mangenet (2013) reports that some P. nitida

trees (3 of 14 trees) changed their leaves during other pe-

riods than long dry season, suggesting that sensibility to

climate could be unequal between individuals, a well-ob-

served point for P. velutina. Thus, the variability of the leaf

life span we observed in P. velutina, combined with its

apparent non-seasonal and non-annual leaf fall behavior,

suggest that they were not only influenced by climate fac-

tors (e.g., occurrence of the dry season which is supposed to

influence all trees equally). This hypothesis is supported by

similar observations in other tropical studies (Lieberman

1982; Reich and Borchert 1982; van Schaik et al. 1993; Do

Fig. 5 Relationships between leaf phenology, cambial activity and

climate seasonality at population scale in Parkia nitida (a, c, and

e) and Parkia velutina (b, d, and f). The black curves represent the

mixed model predictions for the fixed effect at the population scale

and the gray curves represent the mixed model individual predictions.

The circles represent the actual observations. In a, b, c, and d, the

horizontal striped line corresponds to the mean cambial activity

during the survey at population scale. In a, b, e, and f, the x-axis

corresponded to synthetic climate variable centered on zero (obtained

with a PCA on climatic variables). Negative values represented hot

dry periods and positive values represented cool moist period



et al. 2005; Singh and Kushwaha 2005; Elliott et al. 2006;

Yàñez-Espinosa et al. 2006; Williams et al. 2008; Valdez-

Hernández et al. 2010; Mendez-Alonzo et al. 2013).

Contrary to P. nitida and even if trees grew in the same

conditions, both leaf fall periodicity and cambial activity

were variable in P. velutina in our study. However, we can

also observe in P. nitida leaf fall pattern variability as

shown by Nicolini et al. (2012) and Mangenet (2013). So,

this variability necessarily involves the influence of other

factors than the seasonality of the precipitation alone, such

as soil and microclimatic conditions (Reich and Borchert

1982; Singh and Kushwaha 2005; Valdez-Hernández et al.

2010; Cardoso et al. 2012) or physiological factors like

internal clock (Yàñez-Espinosa et al. 2006; Williams et al.

2008; Lüttge and Hertel 2009; Seyoum et al. 2012). For

example, Brousseau et al. (2013) showed the existence of

an individual variability of the leaves’ photosynthetic ef-

ficiency that could allow the faster realization of the foliar

phenological cycle which could be a rational explanatory

factor of the variation of the length cycle.

In conclusion, this study highlighted the interrelations

between leaf phenology, cambium phenology, and climate

in two closely related tropical tree species in French Gui-

ana. For P. nitida, the cambial activity pattern was sea-

sonal, annual, and synchronous at the population scale

whereas it was non-seasonal, non-annual, and asyn-

chronous in P. velutina but periodic at the tree scale. In

spite of these differences, we found that the periods of

cambial inactivity were significantly associated with leaf

fall and leafless stages in both species. Further studies will

be necessary to examine possible connections between

plant ontogeny and patterns of leaf phenology and cambial

activity and disentangle their interrelated relationships.
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Lüttge U, Hertel B (2009) Diurnal and annual rhythms in trees. Trees

23:683–700
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Yàñez-Espinosa L, Terrazas T, Lopez-Mata L (2010) Phenology and

radial stem growth periodicity in evergreen subtropical rainforest

trees. IAWA J 31:293–307

Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S (2000)

Anatomy and lignin distribution of reaction wood in two

Magnolia species. Wood Sci Technol 34:183–196

Zalamea PC, Sarmiento C, Stevenson PR, Rodriguez M, Nicolini E,

Heuret P (2013) Effect of rainfall seasonality on the growth of

Cecropia sciadophylla: intra-annual variation in leaf production

and node length. J Trop Ecol 29:361–365


	Seasonal variations in phenological traits: leaf shedding and cambial activity in Parkia nitida Miq. and Parkia velutina Benoist (Fabaceae) in tropical rainforest
	Abstract
	Key message
	Abstract

	Introduction
	Materials and methods
	Study site and tree selection
	Wood formation monitoring
	Phenological survey
	Data analysis

	Results
	Leaf shedding pattern
	Cambial activity pattern
	Relationships between cambial activity, leaf phenology, and climate

	Discussion
	Author contribution statement
	References


