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Is ecological speciation a major trend in aphids?
Insights from a molecular phylogeny of the
conifer-feeding genus Cinara

Emmanuelle Jousselin'”, Astrid Cruaud', Gwenaelle Genson', Francois Chevenet®?, Robert G Foottit*

and Armelle Coeur d'acier’

Abstract

Introduction: In the past decade ecological speciation has been recognized as having an important role in the
diversification of plant-feeding insects. Aphids are host-specialised phytophagous insects that mate on their host
plants and, as such, they are prone to experience reproductive isolation linked with host plant association that
could ultimately lead to species formation. The generality of such a scenario remains to be tested through
macroevolutionary studies. To explore the prevalence of host-driven speciation in the diversification of the aphid

genus Cinara and to investigate alternative modes of speciation, we reconstructed a phylogeny of this genus based
on mitochondrial, nuclear and Buchnera aphidicola DNA sequence fragments and applied a DNA-based method of

species delimitation. Using a recent software (PhyloType), we explored evolutionary transitions in host-plant genera,
feeding sites and geographic distributions in the diversification of Cinara and investigated how transitions in these

characters have accompanied speciation events.

Results: The diversification of Cinara has been constrained by host fidelity to conifer genera sometimes followed
by sequential colonization onto different host species and by feeding-site specialisation. Nevertheless, our analyses

Species delimitation, Cladogenesis, DNA phylogeny

suggest that, at the most, only half of the speciation events were accompanied by ecological niche shifts. The
contribution of geographical isolation in the speciation process is clearly apparent in the occurrence of species
from two continents in the same clades in relatively terminal positions in our phylogeny. Furthermore, in
agreement with predictions from scenarios in which geographic isolation accounts for speciation events,
geographic overlap between species increased significantly with time elapsed since their separation.

Conclusions: The history of Cinara offers a different perspective on the mode of speciation of aphids than that
provided by classic models such as the pea aphid. In this genus of aphids, the role of climate and landscape history
has probably been as important as host-plant specialisation in having shaped present-day diversity.

Keywords: Ecological speciation, Niche shifts, Host shift, Host race, Geographic isolation, Phytophagous insect,

Introduction

Understanding processes that contribute to reproductive
isolation and speciation is one of the most challenging
areas in evolutionary biology. Allopatric speciation oc-
curs when populations become spatially separated by re-
gions of unsuitable habitat, which overcomes individual
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dispersal abilities and interrupts gene flow between those
populations. Ecological speciation occurs when a transition
in resource and/or habitat within ancestral species triggers
gene flow interruption and the formation of new sister spe-
cies [1,2]. This process can occur in allopatry (e.g. [3]) but
is also supposed to permit sympatric speciation [4-6]. In
the past decade, the role of ecological speciation in the di-
versification of phytophagous insects has been the focus of
many studies and its importance compared to “ordinary”
allopatric speciation has been reevaluated [4,7,8].

© 2013 Jousselin et al,; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
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Host plants are considered as the main ecological fac-
tor involved in the speciation process of phytophagous
insects. Several studies on various plant-feeding insects
have clearly demonstrated the existence of host races
and suggested that host based selection may underlie
or at least speed up the speciation process in these
organisms. Among textbook examples, are studies on
Rhagoletis pomonella (Walsh) host races [5,9]. Aphids
(Hemiptera, Aphididae) are also considered as model
systems for the study of ecological speciation favored by
adaptation to different host plants. These insects are
often host specific and always mate on their host plants
which make them good candidates for host driven speci-
ation. There is much evidence for host shifts in the
course of the evolution of aphids and examples of
host plant specialisation events in several species have
been reported (reviewed in [10]). The classic model
for ecological speciation in aphids is the pea aphid
(Acyrthosiphon pisum (Harris, 1776)) [11] in which in-
cipient speciation seems to be in progress. Several stud-
ies have indeed shown that populations on different host
plants (e.g. Vicia spp., Trifolium spp., Medicago spp.)
have diverged genetically and exhibit different stages of
reproductive isolation [12-15]. Other studies have also
shown that Aphis gossypii Glover, 1877 consists of several
host-associated populations or races with a world-wide
distribution [16,17].

All these studies suggest that host plant association is
a major driver of reproductive isolation in aphids. How-
ever, explanations involving geographic isolation are
seldom explored [10]. This might be because some aphid
species are known to disperse over long distances,
following aerial currents such as the jet stream, and
successfully find their host plants during such events
[18-20]. This characteristic could limit the influence
of geographic barriers on gene flow. Furthermore,
many aphid species are associated with economically im-
portant host plant species (crops, ornamental plants).
Consequently, long range dispersal events associated
with human transportation of infested plants are com-
mon. These result in many species exhibiting a very
large geographic distribution (spreading over several
continents): this very recent sympatry (on evolutionary
time scale) might sometimes preclude investigating geo-
graphic isolation as a cause of species divergence while
it might actually be relevant. Short distance dispersal,
of 20 km or less, is probably usual in aphids [21] and
the success of long range dispersion events is greatly
dependent on the availability of host plants: aphids
specialised on a few host species or host plants that
have a restricted distribution are probably not success-
ful in colonizing distant areas. Hence, allopatric speciation
is a possible scenario for the diversification of aphids. Fur-
thermore, host plants are not the only components of the

Page 2 of 18

ecological niche of aphids. Temporal shifts in life cycles
[22] or changes in feeding habits on the plant can also be
involved in reproductive isolation [23]. Hence, alternative
scenarios to host-driven speciation probably deserve more
attention than currently given in the aphid literature.

The conifer aphid genus Cinara Curtis, 1835 com-
prises 243 described species [24]. Approximately 154
occur in North America [25], 47 occur in Europe and
the Mediterranean area [26] and about 40 occur in the
Far East. Cinara species feed exclusively on the two
conifer families that are found primarily in temperate
and subtropical regions of the Northern hemisphere:
Pinaceae and Cupressaceae. They exhibit a diversity of
ecological features that make them good models to ex-
plore the importance of ecological specialisation in the
diversification of aphids. Most species feed on a single
or a few species of conifers, while others are less dis-
criminatory, feeding on several species within a genus
(e.g. C. pinea (Mordvilko, 1895) and C. pergandei (Wilson,
1919) on Pinus spp.) and sometimes even on several unre-
lated species of conifers (e.g. C. confinis (Koch, 1856) on
Abies spp. and Cedrus spp.). Species of Cinara have spe-
cific feeding sites on their host plants. Some species feed
only on young shoots, while others feed exclusively on
large trunks [27]. However, some of their biological fea-
tures also make Cinara species susceptible to geographic
reproductive isolation. First, they have limited dispersal
ability, compared to other aphid species. Their weight/
wing length ratio is high [28] and some species are not
recorded as producing winged morphs [25,29], which are
the only ones able to disperse over large distances [19].
Then, because of their association with some conifer spe-
cies living at higher altitude (some Pinus, Picea and. Abies
spp.), some species are restricted to mountain ranges.
Hence, many Cinara species show disjunct distributions
and can encompass several allopatric populations [30].

Speciation processes can be investigated by phylogen-
etic studies and inferences about the evolution of char-
acters (e.g. [31-33]). If speciation is only triggered by
ecological changes, lineage splitting in the phylogeny
should be accompanied by transitions in ecological char-
acters and closely related species should not overlap
in their ecological niche. Conversely, if speciation is not
driven by ecological changes, the number of lineage
splitting events in the phylogeny should be greater than
the number of evolutionary transitions in ecological
niche [32] and the phylogenetic reconstruction should
reveal more niche conservatism than expected by
chance. A phylogenetic study by Favret & Voetglin [30]
on twenty-five species of North American Cinara,
showed that closely related species used similar feeding
sites on different host species. This study does not for-
mally estimate the number of speciation events po-
tentially triggered by ecological changes in Cinara but



Jousselin et al. Frontiers in Zoology 2013, 10:56
http://www.frontiersinzoology.com/content/10/1/56

suggests that shifts in feeding sites followed by host
plant specialisation may have driven the diversification
of this group [30].

The objectives of this study were to reconstruct the
phylogeny of European and North American Cinara
species in order to investigate general trends in the di-
versification of this genus and test the scenario sug-
gested by Favret & Voetglin [30] on a more global scale.
More specifically, we aimed at estimating the relative
importance of the two ecological characteristics (host
plant species and feeding site) studied by Favret &
Voetglin [30] versus geographic isolation in the speci-
ation processes. We first investigated how geographic
areas, host ranges and feeding sites were distributed
along our phylogeny using the recently developed soft-
ware PhyloType [34]. Given the distributions of charac-
ters across a set of taxa and a phylogeny, PhyloType
determines if taxa sharing the same character states are
more clustered than expected by chance on the phyl-
ogeny. If evolutionary transitions in host plant associ-
ation and feeding sites were recurrently involved in the
diversification of Cinara, sister taxa should diverge for
these characters and we should not find any significant
phylogenetic clusters associated with these characters.
Conversely, the occurrence of strong geographic clusters
on the phylogeny would be compatible with a scenario
in which geographic isolation has not played a predom-
inant role in the diversification of species within these
clusters. We then followed the method of Nyman et al.
[32] and reconstructed the evolution of a character sum-
marizing the ecological niche (host plants species + feed-
ing site) of each species. We estimated the proportion of
lineage splits accompanied by a shift in this character
and also tested whether species sharing the same niche
were more clustered than expected by chance on our
phylogeny. Finally, to give a coarse estimate of the im-
portance of allopatric speciation in Cinara, we plotted
geographic overlap among sister clades as a function of
time since their divergence. According to theory, if allo-
patric speciation is prevalent, species that have recently
differentiated should not have overlapping geographic
ranges, while they may become more sympatric as time
since divergence increases and their geographic range
expands [33,35,36]. Altogether these analyses should give
insights into the relative role of geography and ecology
in the diversification of this aphid group.

Materials and methods

Taxonomic sampling

In an effort to capture the breadth of the phylogenetic,
ecological and geographical diversity of Cinara species,
we sampled 246 colonies representing 56 species of the
genus Cinara (see Additional file 1). We sampled in
both Cinara subgenera (52 species in the subgenus
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Cinara that encompasses 231 species and 4 species
in the subgenus Cupressobium that encompasses 12
species). This represented 24% of the known species
diversity. However, about 40 Cinara species listed in
Blackman & Eastop [29] are only known from their ori-
ginal description or/and are suspected to be synonyms
of other species, which suggests that our sampling was
actually close to 30% of Cinara species. Whenever pos-
sible, we sampled several colonies per species to check
for intraspecific genetic variation (our sampling varied
from 1 to 18 colonies per species with an average of 4
colonies per species). Our sampling was focused on the
western United States, which encompasses a large part
of the species diversity of the Cinara genus, and France
which with 26 species encompasses more than half
of the European and Mediterranean Cinara fauna.
Altogether we sampled in five states in the U.S,
throughout six regions in France, and also sampled some
specimens from Italy, Greece, Algeria and Kazakhstan.
For each oligophagous species, we tried to sample col-
onies from different host species, in order to investigate
the impact of host association on species differentiation,
as well as from across their distribution range. Outgroup
specimens were collected within the Lachninae subfam-
ily in several genera (Trama, Lachnus, Tuberolachnus).
Each colony was given a unique number and was geo-
referenced. Host trees were identified to conifer genus
and species when possible using local flora. Feeding
sites, coloration and patterning in vivo were recorded
for each colony and photographs were taken. As a
destructive DNA extraction protocol was used, we se-
lected vouchers among specimens from the same colony
(i.e. sampled on the same host-plant at the same time)
as the individual taken for extraction. Voucher speci-
mens were mounted on microscope slides and deposited
in the Aphididae collection of the Center for Biology
and Management of Populations (CBGP) at Montferrier-
sur-Lez, France. All specimens were identified by ACDA
using mainly the keys of Blackman & Eastop [29] and
Favret & Voetglin [37]. Collection details, host plant as-
sociations and nutrition sites as recorded in the field are
given in Additional file 1.

DNA extraction and sequencing

Total genomic DNA was extracted from a single individ-
ual per sample with the DNeasy Blood & Tissue Kit
(Qiagen) in 120 ul of extraction buffer. We amplified
several DNA fragments, two mitochondrial genes [the
barcoding gene region (cytochrome oxidase subunit I.
COI) and a fragment of the cytochrome b gene (Cytb)],
two aphid nuclear DNA fragments [an approximately
770 bp intron corresponding to the para-type gene en-
coding the IIS2-S6 region of the voltage-gated sodium
channel: Aph, and a portion of Elongation Factor (EF)],
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and two Buchnera aphidicola DNA fragments (GroEL:
an approximately 550 bp fragment corresponding to a
portion of the GroEL gene, a chaperonin assisting in the
folding of proteins and His: an approximately 550 bp
fragment of the ATP phosphoribosyltransferase (HisG)
gene and histidinol dehydrogenase (HisD) gene and
intergenic region). Buchnera aphidicola is the primary
endosymbiont of aphids, which is transmitted from
mother to offspring. It has been shown to cospeciate
with its aphid hosts at several taxonomic levels in many
groups of aphids and its genome has been used with
success to reconstruct deep and shallow phylogenetic
relationships in aphids [38-40]. Polymerase chain reac-
tions (PCR) primers (Additional file 2) were designed for
Buchnera DNA fragments using published genomes of
Buchnera aphidicola in Genbank. Primer fidelity across
taxa was not always consistent in Cytb, His and GroEL,
we therefore defined several sets of primers for these
DNA fragments. Despite our efforts, some specimens
have slightly truncated sequence lengths.

PCR were performed in a final volume of 30 ul
containing 1x reaction buffer (CoralLoad PCR Buffer,
Qiagen), 0.1 mM of each ANTP, 0.7 uM of each primer,
1 U of Tag DNA polymerase and 1 ul of DNA extract.
Sequencing reactions were carried out by MWG Op-
eron, (Ebersberg, Germany) using the same primers as
for PCR.

Phylogenetic analyses

Sequences were aligned using ClustalW. Alignments
of COI, Cytb, His and GroEL were straightforward due
to a lack of length variation. Aph and EF comprised
intergenic regions with indels, which complicated align-
ment between distantly related species. To avoid dis-
carding information relevant for resolving shallower
nodes of the phylogeny, we first aligned sequences of speci-
mens for which intergenic regions were unambiguously
aligned. All sequences were then aligned in one file by
inserting gaps in ambiguously aligned regions in sequences
that differed too much. This resulted in sequences having
blocks of gaps aligned with intergenic regions of specimens
that were too phylogenetically distant to assess site hom-
ology with confidence.

The alignment resulting from the concatenation of all
DNA fragments is given in Additional file 3.

Alignments of the protein coding genes were trans-
lated into amino acids using Mega 4.0.2 [41] to detect
frameshift mutations and premature stop codons, which
may indicate the presence of pseudogenes (i.e. a frag-
ment of nucleotide sequence that resembles a known
protein’s domains but with stop codons or frameshifts
mid-domain).

Phylogenetic trees were estimated using maximum like-
lihood (ML) and Bayesian methods. We first conducted
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ML searches on each DNA fragment. We checked for
topological congruence between the trees and then com-
bined all DNA fragments in a single DNA matrix. All ana-
lyses were conducted on a 150-core Linux Cluster at
CBGP as well as on the CIPRES Science Gateway [42].
The data were partitioned into mitochondrial, nuclear and
bacterial gene regions following [38]. The model with best
fit for each partition was identified using the Akaike infor-
mation criterion as implemented in MrAIC.pl 1.4.3 [43].
We performed ML analyses and associated bootstrapping
using the MPI-parallelized RAxML 7.2.8-ALPHA [44].
GTRCAT approximation of models was used for ML boot-
strapping [44] (1000 replicates). Bootstrap percentage
(BP) > 95% was considered as strong support and a BP <
70% as weak support.

Bayesian analyses were conducted using a parallel
version of MrBayes v. 3.2.1 [45]. We assumed across-
partition heterogeneity in model parameters by unlinking
parameters across partitions. Parameter values for the
model were initiated with default uniform priors and
branch lengths were estimated using default exponential
priors. To improve mixing of the cold chain and avoid it
converging on local optima, we used Metropolis-coupled
Markov chain Monte Carlo (MCMC), with each run
including a cold chain and three incrementally heated
chains. The heating parameter was set to 0.02 in
order to allow swap frequencies from 20% to 70%
[46]. We ran two independent runs of 20 million gen-
erations. All values were sampled every 2000 genera-
tions. For the initial determination of burn-in, we
examined the plot of overall model likelihood against
generation number to find the point where the likeli-
hood started to fluctuate around a constant value.
Convergence was also evaluated using Tracer v1.5
[47]. The first 25% samples from the cold chains were
discarded as burn-in. The results were based on the
pooled samples from the stationary phases of the two
independent runs. Posterior probabilities (PP) > 0.95
were considered as strong support and PP < 0.80 were
considered as weak.

Species delimitation

Several studies suggest that species delimitation is some-
times ambiguous within closely related species of aphids
for two reasons. First, aphids are often identified based
on host association, though such taxonomic treatment is
correct only if aphids show a strict specialisation toward
their host plants [48]. Second, aphid morphology often
shows convergent evolution. Cinara species are no ex-
ception. The study by Favret & Voegtlin [30] and Foottit
et al. [49] revealed several ambiguities in species delimi-
tation with some mismatches between morphological
species and genetic clusters. In our analyses, some spe-
cies appeared divided into two or several phylogenetic
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clusters whose level of genetic divergence mirrored usual
inter-specific level of genetic distance. To overcome
these taxonomic issues, we used the species delimitation
method of Pons et al. [50] to identify relevant entities
for our study, i.e. genetic clusters of specimens poten-
tially subject to selection and genetic drift.

The method of Pons et al. [50] identifies clusters
representing independently evolving entities using a gen-
eralized mixed Yule coalescent model (GMYC). The
model optimizes the maximum likelihood value of a
threshold, such that the nodes before the threshold are
identified as species diversification events, while the
branches beyond the threshold are clusters following co-
alescent processes. Two ultrametric trees were constructed
from the combined dataset using the uncorrelated lognor-
mal relaxed clock method implemented in BEAST
v1.7.4 [47], assuming either a Yule tree prior or a co-
alescent tree prior with a constant population size back
through time. The same modelling strategies as for
MrBayes and RAxML were used and clock models for
each partition were unlinked. The relative times of di-
vergence events were estimated by fixing the mean rate
of molecular clock model to 1.0.

Two runs of 60 million generations with sampling
every 6,000 generations were performed for the analysis
assuming a coalescent tree prior. Two runs of 100 mil-
lion generations with sampling every 10,000 generations
were performed for the analysis assuming a Yule tree
prior. For both analyses, the two separate runs were then
combined using LogCombiner 1.7.4. We checked for
convergence using Tracer 1.5 [47]. BEAST was also used
to compare the goodness of fit of the two models based
on Bayes factors (BF) [51,52] computed from harmonic
mean estimators (HME) of the marginal likelihoods
(1000 bootstrap replicates) as well as on the Akaike’s in-
formation criterion through MCMC (AICM). AICM has
been shown to perform better in model selection than
HME [53].

Following the removal of 10% burn-in, the sampled
posterior trees were summarized using TreeAnnotator
1.74 to generate a maximum clade credibility (MCC)
tree. The GMYC method as implemented in the R pack-
age SPLITS (http://www.rforge.r-project.org/projects/
splits/), was then applied to the MCC tree that best fitted
our data.

We then derived a “phylogenetic species” tree based
on the results of the species delimitation method, by
picking (at random) one specimen for each putative spe-
cies and simply pruning subsequent specimens from the
global tree with R using the package APE [54].

Character analyses
We first annotated our specimens with sampling regions
(states, province, and country), host plant (conifer genera

Page 5 of 18

and species when available) and feeding site(s) (trunk,
branches, shoots) as recorded in the field. In a few cases,
aphids were obtained by beating the branches of a tree,
hence feeding sites could not be recorded for those sam-
ples. Character states attributed to each specimen are de-
tailed in Additional file 1.

We then assigned a character state (for continent, host
plant genus, host plant species and feeding site) to each
cluster defined by the species delimitation method. To
do so, we combined information recorded from the field
for all specimens assigned to a species cluster with
information available for each recognized species of
Cinara compiled in the book by Blackman & Eastop [29]
(updated in http://www.aphidsonworldsplants.info) and in
[55] for species found in North America. Geographic areas
were categorized into three character states: Nearctic,
Palearctic and cosmopolitan species (the geographic origin
of two cosmopolitan species is unknown). Host plant
genera were split into seven character states: Picea,
Pinus, Abies, Larix, Cedrus, Pseudotsuga (and occasion-
ally Abies) and Cupressaceae as Cinara associated with
this family often occurred on plants belonging to differ-
ent genera (mostly Cupressus and Juniperus). Feeding
sites were split into three categories: shoot, branch and
trunk. When aphids assigned to a species cluster were
found on non-lignified wood only (shoots, young twigs
or at the base of new cones) in the field and according
to information for the corresponding morphological
species available in [29], they were considered as shoot
feeders. When they were found capable of feeding on
lignified wood (specimens were found on branches,
older twigs and small trunks), they were considered as
branch feeders. When they were found on trunks only,
meaning that they needed a rostrum long enough to
reach the sap through thick bark, they were considered
as trunk feeders.

Information in Blackman & Eastop [29] is sometimes
based on original descriptions or a few taxonomic sur-
veys, therefore adding information from our field cam-
paign generally increased species polymorphism in
feeding sites and host plant use. Further, when a mor-
phological species was divided into several clusters, we
only took into account information recorded in the field
in order to evaluate whether each cluster was associated
with a particular character state.

We then used the PhyloType software [34] to explore
the evolutionary trajectory of host plant genus association
and feeding sites, and to give a coarse biogeographic
scenario for the diversification of North American and
European species. The PhyloType method can be summa-
rized as follows (see [34] for details):

1) ancestral character state reconstruction using
parsimony (ACCTRAN and DELTRAN algorithms).
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2) identification of subsets of taxa having close
phylogenetic relationships and common character
states. Such subsets of taxa are called potential
phylotypes. A phylotype has a unique character state
at its root. All taxa in a phylotype share the same
character state all along the path from every taxon
included in the phylotype to the root of the
phylotype.

identification of relevant phylotypes from among all
potential phylotypes with combinatorial and
numerical criteria. The choice of criteria and
selection thresholds is left to users. Nevertheless,
some constraints are imposed to avoid meaningless
analyses. For instance, the Size criterion, which
checks for a minimal number of taxa in the
potential phylotype, is mandatory. Then come,

the Different criterion which checks for a
maximum number of sub-clades within the
phylotype with different ancestral character states
from that of the phylotype’s root and Persistence,
which measures the extent to which the root
character state of the phylotype is conserved in

its descendants.

once phylotypes have been identified with the
selected criteria, their significance can be assessed:
character states are shuffled among the branches of
the tree and the search for phylotypes is reiterated
with the same criteria. The p values correspond to
the fraction of shuffled data sets in which one finds
a phylotype with the character being investigated
and at least as large a size as the observed
phylotypes.

3

=

4

=~

PhyloType can therefore test whether characters are
phylogenetically conserved and depict their evolution
along the phylogeny.

We mapped the evolution of host plant genera, feed-
ing sites and ancestral areas on our species phylogeny
and determined if some significant phylotypes were as-
sociated with certain character states. The rationales
behind conducting these analyses were to infer the
number of transitions for each character and investi-
gate how phylogenetically conserved they were; a char-
acter that is conserved is not the main driver of
speciation. We also combined some of the characters
and described their sequence of evolution throughout
the diversification of the Cinara genus. For all analyses,
criteria chosen for phylotype selection were as follows:
size =3, size/different=1, persistence=1, only nodes
which ML bootstrap values were > 80 were taken into ac-
count in the analyses. Both ACCTRAN and DELTRAN
optimization were tested and outgroups were excluded
from the analyses. Shuffling procedures were performed
with 1000 iterations.
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We then estimated the proportion of lineage splits ac-
companied by a shift in resource use. We followed the
procedure of Nyman et al. [32] and first identified all
distinct ecological niches for the species included in our
phylogeny (an ecological niche being defined by the
combination of host plant species range and feeding
sites). Each niche was coded with a different number. In
doing so, we assumed that species ecological niches were
overlapping when species shared one or several host
plant species plus their feeding sites. Hence species were
given a different niche number when there was no sim-
ultaneous overlap in host plant species and feeding sites
with another species. We had three instances where one
species shared part of its ecological niche with a first
species and another part of its ecological niche with a
second species; we either attributed two niche numbers
to those or when these species overlapped in their niche
with a sister species, we gave them the number corre-
sponding to the niche of this sister species. Niche evolu-
tion was then optimized on the phylogenetic tree using
maximum parsimony as implemented in PhyloType and
we tested whether significant phylotypes were associated
with these numbers (using the same procedure as de-
scribed above for geography, host genus, and feeding
sites). Furthermore, we also compared the parsimony
score (number of steps) of the character “ecological
niche” to the distribution of parsimony scores obtained
from the 1000 shuffling made with PhyloType. This
allowed for testing, given a tree and given the distribu-
tion of ecological niches across taxa, whether the total
number of transitions in ecological niche was lower or
higher than expected by chance.

To give a coarse estimate of the prevalence of allopat-
ric speciation in Cinara, we plotted geographic overlap
among sister species/ clades as a function of relative
time since their divergence [33,35,36].

We indicated species geographic localization at a re-
gional scale on our species phylogeny. Again, we com-
piled information from the literature [29] and our field
campaigns to define eight geographic zones: North
America (meaning the whole North American continent),
Western North America (meaning all western states, from
the North west coast of Canada to New Mexico), West of
the Rockies (meaning the West coast of the US: California,
Oregon, Washington), East of the Rockies (meaning in
our sampling places in Colorado and New Mexico lo-
cated East of the Rocky mountains), Europe (any country
on the European continent), Mediterranean area (Algeria,
Italy, Greece and the south East of France), Central Asia
(Kazakhstan in our sampling), Cosmopolitan (the species
were found worldwide). For documented cosmopolitan
species that have recently spread over a continent, we used
their area of origin. When a morphological species was di-
vided into several clusters, we only took into account
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information recorded in the field in order to evaluate
whether each cluster was restricted to a particular geo-
graphic zone.

For each node of the phylogeny, the overlap in present
day geographic range of each clade/ species splitting at
this node was set to 0 when no overlap existed between
their geographic range and 1 when their geographic
range overlapped. This variable was plotted against the
depth of the node (i.e. the corresponding branch length
in the ultrametric species tree). A logistic regression
using this binary variable as a response variable and time
as a factor was then calculated with R (using AOD and
GGPlot packages). The prediction under a scenario
where geographic speciation was prevalent was that the
probability of overlap should increase with time [33].

Results

Sequence data

The final matrix contained 56 morphological ingroup
species (five of those could not be assigned to either of
two morphologically similar species, we thus gave them
“mixed” names), six specimens for which identification
keys did not lead to any known species and four
outgroups, representing a total of 246 individuals and
4076 bp (COI+ Cyth=1418 bp, Aph=257 bp, EF=
1135 bp, His = 719 bp, and GroEL = 547 bp). All sequences
have been submitted to Genbank (Additional file 1).
1906 bp were variable and 1705 bp were parsimony in-
formative. Sequences were missing for less than 12% of
specimens for each DNA marker (18 COI 5 Cytb, 8 Aph,
28 EF, 20 His and 25 GroEl). Alignment of protein coding
genes revealed no stop codons or frame shifts.

Phylogenetic analyses

Models chosen by MrAIC for each partition were as
follows: GTR + T’ (nuclear), GTR + I + T (mitochondrial
and Buchnera aphidicola fragments). Visual inspection
of ML phylogenetic trees obtained with each inde-
pendent partition showed no strong incongruences
validating the use of combined analyses. Given that «
and the proportion of invariable sites cannot be opti-
mized independently from each others and following
the recommendations provided in the RAxML manual,
we used GTR+T with 4 discrete rate categories for
all partitions.

ML and Bayesian analyses produced similar topologies.
We obtained well-resolved phylogenetic trees (Additional
files 4 and 5), in which most nodes were supported by
high ML bootstraps and Bayesian posterior probability
values.

Species delimitation analyses
For each partition of the two analyses (assuming either
a Yule tree prior or a coalescent tree prior), BEAST
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returned a 95% credible interval for the coefficient of
variation of rates that was not abutting against zero,
suggesting among branch rate heterogeneity (i.e., rejection
of the molecular clock) [47]. Furthermore, the covariance
statistics showed no strong evidence of autocorrelation of
rates in the two combined phylogenies (covariance values
spanning zero).

Bayes Factors (BF) and AICM both indicated that a
Yule tree prior was a better fit to our data (log BF = 9.0;
AAICM = -38.5). We therefore chose to use the top-
ology obtained with a Yule prior to conduct the species
delimitation method.

For both tree priors, MCC topologies were very similar
to ML and Bayes topologies. We mapped node support
values (pp and BP) obtained with ML and Bayesian ana-
lyses on the MCC topology obtained with a Yule tree
prior (Figure 1).

The GMYC model was preferred over the null model
of uniform (coalescent) branching rates (P <0.001).
Using the single-threshold GMYC model, 76 (CI=70-
94) putative species (54 genetic clusters and 22 single-
tons) were inferred for the MCC tree reconstructed
using a Yule prior (T =-0.0097 substitutions/site). We
further used the 76 putative species (72 ingroups species
and four outgroups) inferred by the single-threshold
GMYC model (Figure 1).

In most cases, phylogenetic species inferred by the
GMYC model matched morphological species. However,
we observed several mismatches. Some morphological
species were clearly separated into two or even three
genetically differentiated clusters. Among species associ-
ated with the genus Pinus, Cinara ponderosae (Williams,
1911) specimens formed two clusters, C. terminalis
(Gillette & Palmer, 1924) specimens were split into three
clusters, and C. pini (Linnaeus, 1758) specimens were
split into two clusters. Among species associated with
Picea, C. pilicornis (Hartig, 1841) was divided into three
clusters and C. pruinosa (Hartig, 1841) into four clusters.
Among species associated with Abies and/or Pseudotsuga,
C. pseudotaxifoliae Palmer, 1952 formed three clusters and
C. occidentalis (Davidson, 1909) formed four clusters.

In a few cases, our phylogenetic analyses revealed
that some specimens were probably misidentified: one
specimen (3085) associated with Pinus lambertiana
Douglas, 1927 and identified as Cinara moketa Hottes,
1957 clustered with Cinara anelia (Favret & Voegtlin,
2004) (Figure 1, Clade B). The latter was known as be-
ing associated with P. monophylla Torrey et Frémont
1845 only while C. moketa was referenced as being
associated with P. lambertiana. Our results therefore
suggest that C. anelia might occasionally infest Pinus
lambertiana.

Groups of specimens associated with Pinus contorta
Douglas ex Loudon 1838 did not match morphological
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Figure 1 Molecular phylogenetic hypothesis for Cinara species resulting from BEAST analysis using a Yule tree prior. The topology on
the left corresponds to the topology obtained with all specimens, it is divided into 3 sub-trees A, B and C, corresponding to the clades indicated
in the global tree. Numbers at nodes correspond to ML bootstrap values > 50 and to BEAST posterior probability values > 0.80. ¢ Red rhombuses
correspond to nodes that were not present in the ML tree. For each specimen, voucher number, species morphological identification, host
species, sampling locality are indicated from left to right. The red coloration delimits clusters of specimens recognized as species by the
GMYC method.
A\

species (Figure 1, Clade A): there was one cluster includ-
ing specimens identified as C. murrayanae (Gillette &
Palmer, 1924), C. medispinosa (Gillette & Palmer, 1929)
and C. contortae Hottes, 1958, and a second cluster
including specimens identified as C. murrayanae only.
C. brevispinosa (Gillette & Palmer, 1924) on the other
hand formed a monophyletic cluster that was retrieved

by all phylogenetic analyses as well as by the species de-
limitation method.

Character analyses

Parsimony reconstructions as implemented in PhyloType
suggested a Nearctic origin for Cinara, and several shifts
to the Palearctic as well as one shift back to the Nearctic
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(14 transitions in character states for “geographic origin”
when geography was defined as broadly as continents,
Figure 2A). Using ACCTRAN optimization, a single sig-
nificant geographic phylotype associated with the charac-
ter state “Palearctic” was found (Table 1, Figure 2A, filled
circles). Hence, lineage splitting events were often accom-
panied by geographic shifts. Conversely, the reconstruc-
tion of the history of host genera association revealed that
this character was conserved in our phylogeny. The parsi-
monious reconstruction of the evolution of host range
suggested only 10 evolutionary transitions for this charac-
ter (Figure 2B). Species were clustered into 6 phylotypes
corresponding to the 6 defined host ranges (Figure 2B).
These phylotypes included 94% of the species in our phyl-
ogeny. This meant that there were very few lineage splits
events associated with a shift to a new host genus. Recon-
struction of the evolutionary trajectory of feeding sites
yielded a single significant phylotype (Figure 2C, filled
circle), meaning that there were many evolutionary transi-
tions for this character. The parsimonious reconstruction
of the evolution of feeding sites suggested 17 transitions
(Figure 2C). No additional significant phylotype was found

Page 9 of 18

when combining “host plant genus” with “feeding sites” or
“geographic origin” with “feeding site” (e.g. looking for
phylotype “feeding on shoots of Pinus” or “feeding on
trunks in the Nearctic”). However, combining the two main
host plant genera (Picea and Pinus) with geographic ori-
gins, i.e. creating four new character states (Picea and Ne-
arctic, Picea and Palearctic, Pinus and Nearctic, Pinus and
Palearctic) yielded four significant additional phylotypes
(Figure 3, Table 1), meaning that there was some geo-
graphic structure within species associated with Pinus on
the one hand and with Picea on the other hand. Based on
our results, the diversification of the genus can be summa-
rized by Figure 3. Cinara associated with the genus Abies
(P16 on Figure 3), indifferently of their geographic origin,
formed a group of closely related species from which all
species associated with Cupressaceae (P17) but one were
derived. This latter phylotype (P17) actually corresponded
to the subgenus Cinara group Cupressobium. A Nearctic
species collected on Picea, which we failed to identify as
either C. engelmanniensis (Gillette & Palmer, 1925) or
C. bonica Hottes, 1956 (N° 2908), was found as sister
species to the rest of this clade. Further diversification of
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Table 1 Detailed table of the significant phylotypes found
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Analysis P-label Character state Cov (%) Sz Ps Df Sz/Df

Geographic origin (Figure 2A) 1 Palearctic 46 12, P=0.004 2 1 12

Tot cov=16%

Host genus (Figure 2B) 2 Pinus 100 32, P=0.008 3 4 8

Tot cov=90.4% 3 Pseudotsuga 100 5, P <0.0001 2 0 o
4 Larix 100 4, P <0.0001 1 0 oo
5 Picea 82 15, P <0.0001 2 1 14
6 Cupressaceae 80 4, P=0.004 2 0 o
7 Abies 88 7, P <0.0001 1 1 7

Feeding site (Figure 2C) 8 Shoot & branch 67 4, P=0.005 2 3 13

Tot cov =5%

Host genus & geographic origin (Figure 3) 9 Nearctic & Pinus 100 20, P < 0.0001 3 1 "

Tot cov=282.2% 10 Pseudotsuga/ Abies 100 5, P <0.0001 2 0 oo
11 Larix 100 4, P <0.0001 T 0 oo
12 Palearctic & Pinus 42 5, P=0054 1 0 oo
13 Palearctic & Picea 100 7, P <0.0001 2 0 oo
14 Nearctic & Picea 70 7, P <0.0001 1 0 oo
15 Palearctic & Pinus 50 6, P=0.001 1 0 oo
16 Abies 88 7, P <0.0001 1 1 7
17 Cupressaceae 80 4, P=0.002 2 0 o

Ecological niche (Figure 4) 18 Shoots and branches of Pseudotsuga spp. 100 5, P <0.0001 2 0 oo

and/or Abies spp.

Tot cov = 56.2% 19 Shoots of Pinus spp. subsect. Pinus 100 4, P <0.0001 1 1 4
20 Shoots of Picea spp. 60 3, P=0.002 1 0 oo
21 Branches of Picea spp. 70 7, P <0.0001 1 5 14
22 Branches of Pinus contorta 100 3, P=0.002 1 2 15
23 Shoots of Pinus edulis and/or monophylla 100 3, P=0.003 1 0 oo
24 Branches of Pinus sylvestris and/or P. nigra 100 3,P=0.003 1 1 3
25 Shoots of Pinus spp. subsection Pinaster 100 3, P <0.0001 1 0 oo
26 Shoots of Juniperus spp. 100 4, P <0.0001 2 0 oo
27 Branches of Abies spp. 86 6, P <0.0001 2 1 2

The analyses were run with ACCTRAN option (similar results with DELTRAN option). Abbreviations are: P-label, identifier of phylotype; Cov, coverage, i.e.
percentage of taxa annotated with Character state that belongs to the phylotype. The p-value of Sz is given in the corresponding column.
Selection criteria are Size (Sz > 3), Size/Different (Df < 1), Persistence (Ps > 1) and Support (Sp > 0.80).

Cinara stemmed from species associated with the genus
Pinus in North America (P9). Within this latter phylotype,
were nested two phylotypes associated with Pinus in
Europe (P12, P15), one clade associated with the genus
Picea, the latter being divided into a Nearctic phylo-
type (P14) and a Palearctic phylotype (P13). One North
American species, C. wahluca Hottes, 1952 associated
with a number of Juniperus species was found as sister to
this clade. Species on Larix and species on Pseudotsuga
(and occasionally Abies) formed two separate phylotypes
(respectively P11 and P10) with no geographic substruc-
ture and also derived from P9. Several singleton species
were scattered in the phylogeny, namely C. cedri Mimeur,

1936 (a cosmopolitan species, native to North Africa and
the South East Mediterranean region, associated with
the genus Cedrus), C. curtihirsuta Hottes & Essig, 1954
a species associated with Abies, C. cembrae (Seitner, 1936)
a European species associated with pine trees, and two un-
identified North American species associated with Picea.
The existence of 72 ingroup species in our phylogenetic
tree requires at least 71 past speciation events. The recon-
struction of the history of ecological niches suggested that
there have been 31 transitions for this character (Figure 4).
This meant that among the 71 “speciation” events in our
tree, less than half of them were accompanied by a shift in
resource use. The results of 1000 shufflings, showed that
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the number of changes in ecological niche was lower than
expected by chance (P < 0.001). Phylotype analyses yielded
10 significant phylotypes associated with ecological niche
(Table 1) meaning that among species sharing the same
ecological niche, there were 10 species groups that
were more clustered than expected by chance. To give a

different estimate of the importance of shifts in resource
use in species differentiation, when only sister species on
the ML species tree were considered, only three out of 21
pairs had non overlapping niches (i.e. 15%), and among
those three, two had also non overlapping geographic
ranges (Figure 4).
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Figure 4 Evolution of niche differentiation among species as inferred by MP using Phylotype: branch colors and numbers correspond
to a niche (an ecological niche being defined by the combination of host-plant species range and feeding sites). Species names are
followed by a number referring to their ecological niche. The root node identifiers of phylotypes are provided and refer to numbers in Table 1.
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As a comparison, 8 out of these 21 pairs (38%) had non-
overlapping geographic ranges (Figure 4). The results of
the logistic regression showed that the probability of
clades overlapping in their contemporary geographic
range increased significantly with time since their di-
vergence (Coeff =32.82, P=0.038) (Additional file 6),
which followed the prediction of the scenario in which
geographical isolation played a significant role in the
speciation process.

Discussion

Molecular systematics of the genus Cinara

We obtained a well-resolved phylogeny of the genus
Cinara encompassing a quarter of the species diversity.
Our results confirmed the monophyly of the subgenus
Cupressobium though it appeared nested within a group
of species belonging to the subgenus Cinara. These rela-
tionships suggest that the subgeneric classification
within Cinara needs revision. The data presented here
will be useful for future work dealing with the taxonomy
of the genus.

Our molecular work on species delimitation was
largely concordant with previous taxonomic investiga-
tion in the genus [25,37,56,57]. Overall there was a good
correspondence between morphological species and
genetic clusters inferred by the GMYC species delimita-
tion method. But our analyses revealed more diversity
than currently described in some common species with
large geographic distributions: C. pilicornis, C. pruinosa,
C. ponderosae, C. terminalis, C. pini and C. occidentalis.
The subdivision of C. terminalis into several lineages
was already suggested by [30]. In addition, species
clusters on Pinus contorta did not correspond to mor-
phological identifications. These results confirmed that
taxonomic relationships in this group of species require
further investigation [29,58]. The published taxonomic
treatments of the genus Cinara are quite extensive. This
is probably because the genus encompasses several for-
est pests that are sometimes considered invasive [59,60].
Some species are important producers of forest-honey
[61] and they show variations in their natural history,
which make them attractive to biologists. The concord-
ance of our molecular results with morphological tax-
onomy on our broad geographical sampling suggests
that biological information (patterns of host-plant asso-
ciation, geographic distribution, feeding sites) compiled
from the taxonomic literature are reliable and can be
used with confidence to infer character history on phylo-
genetic trees.

Distribution patterns across continents and among
conifer genera

Groups of phytophagous insects with large Holarctic dis-
tributions offer good models for comparing the effects
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of host shifts and geographic events on their diversifica-
tion [62]. We can investigate whether their phylogenetic
history reflects host conservatism followed by range ex-
pansion and diversification with their host or geographic
clustering of closely related species and opportunistic
shifts to new unrelated hosts. Our reconstructions of the
history of the genus Cinara and PhyloType inferences
depict a global diversification scenario where speciation
processes are strongly constrained by host genus associ-
ation. There are few transitions in host plant genera that
have occurred early in the diversification of the genus.
Each Cinara clade associated with a particular host
genus naturally present on both continents encompasses
Nearctic and Palearctic Cinara species. In two of the
most diverse Pinaceae genera (Pinus and Picea), geo-
graphic clustering of species at continental scales is ob-
served. This pattern of distribution suggests repeated
independent evolution of Nearctic and Palearctic line-
ages in each “host genus cluster” via large scale geo-
graphic isolation. The recurrent presence of species
from two continents in relatively terminal positions on
phylogenetic trees is not rare in phytophagous insects
[62] and these patterns are always interpreted as
reflecting speciation by geographic processes such as
vicariance and dispersal (see [63] and [64] for studies
on aphids).

Understanding the distribution of Cinara species at
continental scales requires more thorough biogeographic
analyses (e.g [65]). This is beyond the scope of this paper
as elaborating robust scenarios would require including
Asian species (about 40 known species), species restricted
to Eastern North America (about 10-15 species) and fossil
data to calibrate the phylogeny. In any case, the genus
Cinara probably offers a good model to test hypotheses on
historical biogeography of the Holarctic fauna [66]. The
coarse scenario given by our analyses already suggests that
the diversity of the genus has probably arisen from the
Nearctic zone. Numerous faunal exchanges between the
Palearctic and Nearctic are then highlighted by our ana-
lyses. Inferring the relative importance of vicariance versus
dispersal events to explain this pattern requires further
study. It is noteworthy that many Cinara species are now
found worldwide, which clearly reflects the impact of hu-
man activities on aphids’ dispersal. For instance, many spe-
cies associated with Cupressus and Thuja, often used as
ornamental hedges, are found across the globe. Some
Cinara species (C. pilicornis, C. pruinosa) also probably
hitchhike around the world with Christmas trees (several
Picea spp. and Abies spp.). Therefore, inferring a proper
biogeographical history for the genus will necessitate cat-
egorizing species that have been transported around the
world relative to locations of natural populations.

Interestingly, the history of host genera association
throughout the evolution of Cinara does not parallel
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conifer phylogeny [67-69]. In the classification of conifers,
Cupressaceae and Pinaceae form two well-differentiated
families. Within Pinaceae, Abies, Tsuga and Cedrus form a
sister clade to the other genera hosting Cinara. Within
this latter group, Larix + Pseudotsuga are sister to Pinus +
Picea [67]. In our phylogeny, most Cinara species associ-
ated with Cupressaceae (P6 Figure 2B, and P17 Figure 3)
have evolved from an Abies feeding ancestor: this repre-
sents a shift to a distant host. The colonisation of all
Pinaceae genera then arose from Cinara associated with
Pinus (P2 Figure 2B and P9 Figure 3). The only phylogen-
etic relationships in Cinara that mirrors conifer genera re-
latedness is the proximity of species feeding on Larix and
Pseudotsuga. Therefore, the history of Cinara reflects
shifts to available hosts that are not always closely related.
Comparing this history with the biogeographic history of
associated conifer genera will allow clarification of how
constraints linked with host association and Cinara’s bio-
geographic history are entangled and have shaped present-
day diversity.

Previous studies of conifer-feeding insects in the
Holarctic region have also rejected the hypothesis of in-
dependent radiations of these insects in Europe, Asia and
North America [70-72]. The lack of resolution and/or in-
complete sampling in these phylogenies does not allow for
a detailed comparison of the evolution of the association
with conifer genera with our results. However in contrast
to our study, the history of Megastigmus (Hymenoptera:
Torymidae) [71] suggests that species on Cupressaceae
form a distinct clade from species feeding on Pinaceae
(including Abies-feeding species). On the other hand, the
relatedness of species feeding on Pseudotsuga and Larix
was also found in a Dendroctonus (Scolytidae) phylogeny
[72,73]. Comparative historical biogeography of these
conifer-feeding groups should provide insights on the
role of conifer history on the diversification of phytopha-
gous insects with similar ecological requirements in the
Holarctic.

Speciation in the genus Cinara

In the last decade, the topic of ecological speciation has
fueled many debates in the literature [7] and stimulated
many research projects, such as the search for signature
of this process in various genomes [74-80]. Conse-
quently, studying “ordinary” geographic speciation has
almost become an unusual area of research. As Coyne
and Orr [81] mention in their book on speciation “allo-
patric speciation appears so plausible that it hardly
seems worth documenting”. Ecological speciation is def-
initely a plausible scenario for several taxa [82-84] and
several studies have convincingly demonstrated that this
process can occur in sympatry [85,86]. However, these
studies were generally conducted on very closely related
species or lineages that have not always achieved complete
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reproductive isolation [6,85,87]. Because of this narrow
focus on a few model species, it is difficult to give an esti-
mate of the frequency of ecological speciation even for spe-
cies belonging to the same taxonomic groups as the focal
species. This needs to be approached by broader macro-
evolutionary studies. Phylogenetic studies on the patterns
of diversification of phytophagous insects have largely fo-
cused on the role of host plant shifts in the speciation
process (e.g. [88-94]). This also applies to aphids (see [10]
for a review but see also [63,64,95] for other views). How-
ever, these studies rarely evaluate the frequency of speci-
ation by host shifts or weight it against alternative modes
of speciation.

Our analyses on the conifer-feeding aphid genus, Cinara,
reveal a pattern of frequent niche shifts in terms of host
plant use and feeding habits. Cinara species show frequent
host specialisation events and multiple transitions from
branch-feeding to shoot-feeding. We do not find the clus-
tering of species using similar feeding sites observed by
Favret and Voegtlin [30] on North American Pinyon pines
Cinara on a broader scale. Despite these multiple transi-
tions, mapping the evolution of ecological niche on our
phylogeny shows that less than 50% of lineage splits have
been accompanied by a shift in resource use. Though par-
simony can tend to underestimate the frequency of
changes [96], this should not affect our conclusions, as
randomization tests clearly show that the probability of ob-
serving 31 changes is much lower than expected by chance.
If we look more precisely at terminal nodes of our phyl-
ogeny, phylogenetic clusters revealed by the species delimi-
tation method do not correspond to host specialised races
or lineages specialised on particular feeding sites, and only
a few sister species pairs differ in their resource use (15%).
Given that there is a broad range of host specificity in
Cinara (species range from strictly monophagous to highly
polyphagous), this is not that surprising. Such diversity in
feeding diets already suggests that different speciation
mechanisms have been acting. Ecological speciation via
host shifts in generalist lineages (e.g. feeding on several
Pinus species or even across conifer families in our bio-
logical model) can only occur by shifts to higher plant taxa,
i.e. by shifting to a new plant genus, which probably re-
quire important physiological and behavioural changes that
might constitute rare events (see [97] for a thorough dis-
cussion on the importance of niche width in ecological
speciation). Our estimate of the number of ecology driven
speciation events is similar to the finding of Nyman et al.
[32] on sawflies (Hymenoptera: Tenthredinidae), and the
conclusions from a broad literature survey of macro-
evolutionnary studies by Winkler & Mitter [98] that both
suggest that the ratio of ecological versus non-ecological
speciation in phytophagous insect is at the most “1:1”. This
also echoes the results of Imada et al. [99] on a group of
25 phytophagous moth species showing that none of them
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have speciated via ecological speciation and a study by
Roesch Goodman et al. [100] that demonstrates that geog-
raphy and not ecology is responsible for the diversification
of host specific Hawaiian plant hoppers. Furthermore, as
underlined by previous authors [31,35], showing that a
shift in ecological resource has accompanied a speciation
event does not mean that ecological differentiation has
triggered the formation of two species. Resource shifts fre-
quently occur after speciation. Therefore, our estimate of
50% of ecology-based speciation events is an upper limit.
This result contrasts with the signature of geographical
isolation imprinted in the biogeographical history of the
genus, as outlined in the previous paragraph. The com-
parison of sister-species pairs (there are more sister spe-
cies that do not overlap in their geographic range than
species that do not overlap in their resource use) and the
fact that geographic overlap between lineages tends to in-
crease with time elapsed since the speciation event also in-
dicate that geographic isolation has promoted speciation
events in Cinara, Geographical barriers such as mountain
ranges have probably shaped some of the diversity at the
regional scale. Indeed, in some western North American
species, we observe a disjunct distribution in sister species
pairs, with some species being restricted on either side
of the Rocky Mountains [for instance Cinara splendens
(Gillette & Palmer, 1924) and Cinara pseudotsugae (Wilson,
1912) (Figure 4)]. C. ponderosae is also subdivided into
two sub-clades (as identified by the species delimita-
tion method) found either West or East of the Rockies
(Figure 4). Western North America actually contains a
large part of the diversity of Cinara (about 40% with more
than 85 species [29]). Topographic complexity in western
North America [101] and more specifically in the southern
Rocky mountains and intermontane plateau has been sug-
gested to be responsible for high diversification rates in
several organisms including several insects [102,103]. It is
also probably implicated in the diversification of Cinara.
Evidence for geographical isolation linked with long dis-
tance is not always obvious in the terminal nodes of our
phylogeny. If we compare Central Asian populations with
European populations of several species exhibiting a large
Palearctic distribution, they do not always show significant
divergence. C pinea specimens from Europe and Central
Asia appear divided into two separate clades, however
these clades are not diverged enough to be recognized
as different species (Figure 1, clade A). However, in
C. pilicornis, a Kazakh cluster is retrieved that is clearly
differentiated from the rest of the specimens (Figure 1,
clade A). This east—west divergence can be interpreted as
a result of range expansion across the Palearctic and sub-
sequent isolation by distance. Nevertheless, within the
European cluster, there is one Kazakh-type individual,
which may correspond to a recent long dispersal event
associated with human transport. American specimens
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from C. pinea and C. pilicornis are entangled within
European specimens which agrees with the fact that they
have been recently introduced (early last century) into
North America from Europe [55].

Several issues could bias our conclusions. First our
sampling only encompasses a third of the diversity of
the genus and missing species might influence the re-
sults of our studies. However, our sampling was mainly
focused on maximizing the number of species sampled
from one geographical location rather than sampling
the genus throughout its geographic range (for instance
within Colorado (US) we have included 21 species
among the 39 that are recorded from this state). The
vast majority of species missing from our study is re-
stricted to eastern Nearctic or occurs throughout Asia.
Therefore, we believe that adding species in our analyses
will add at least as much geographic variation as eco-
logical variation and that it should not significantly
affect the proportion of speciation events driven by eco-
logical niche shifts inferred by our analyses. More im-
portantly, taxonomic issues concerning host plants
might have influenced our conclusions. Host identifica-
tion can be difficult and Pinus sub-species or hybrids
that we have not managed to identify might occur
throughout our sampling. For instance, Pinus ponderosa
and P. lambertiana encompass infra-specific diversity
[104-106]. Some of the species diversity in Cinara attrib-
uted to geographic factors might actually reflect special-
isation to particular hybrid or subspecies. In the Picea
genus, many species are planted as ornamental trees and
occur outside their geographic range, which renders
identification quite difficult. Cinara feeding on Picea are
often indicated as feeding on Picea spp. [29] with no
precise definition of their host range. We have also
found a lot of “phylogenetic species” within widely dis-
tributed species feeding on Picea (e.g. C. pruinosa and
C. pilicornis). This suggests that the taxonomic treat-
ment of Cinara species on Picea and determination of
their host associations might have been less thorough
than the treatment of species associated with Pinus.
Hence, patterns of host association in Picea-feeding spe-
cies in the literature and our study probably lack preci-
sion and we might have failed at identifying host
specialisation events on Picea species. However, it is also
likely that there have also been more vicariance events
than suggested by our phylogeny. Present day distribu-
tions of many Cinara species are obviously the result
of range expansion. Climatic history has probably con-
tributed to repeated instances of range contraction and
range expansion in response to glacial cycles. These
changes in geographic distributions could have led to
sympatry in many species of our study while they had
actually separated in allopatric conditions. But there are
actually many cases where geographic factors and hosts
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adaptation are simply confounded. The species diversity
and intraspecific variation in Cinara hosts trees have
also resulted from geographic events. Pine tree species
occurring naturally in the Nearctic region are different
from species occurring in Europe. Climatic fluctuations
occurring during the last glacial cycles have also prob-
ably affected the genetic structure of Cinara’s host
plants, especially in the mountainous environments of
western North America where conifer diversity is high.
Therefore, when the genetic clusters observed in aphids
mirror the genetic structure of their hosts and also cor-
respond to isolated geographic zones; it will be difficult
to tell apart geographic isolation from host adaptation
in the speciation process. Finally, we have limited our
definition of ecology-based speciation events to events
due to host shifts and/or changes in feeding sites. We
believe that these are the two main ecological factors
that could lead to species divergence in our system.
However, divergence in the timing of reproduction [22]
and changes in reproductive modes could also be
driven by ecological forces such as competition or es-
cape from parasites [107], and might account for some
speciation events in Cinara.

Conclusions

Our broad inference regarding diversification within
Cinara suggests that even in this group of specialised
phytophagous insects, ecological differentiation linked
with host plant and feeding sites shifts is not the sole
driver of speciation. In this aphid genus, climatic events
and landscape history are probably as important as ecol-
ogy in having shaped present day diversity. The history
of Cinara offers a different view on the processes of spe-
ciation in aphids than that provided by models such as
the pea aphid.
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