Zoology 2014 - 12/12/2014 - Liège

Seasonal sampling and stable isotopes use to delineate seagrass phytodetritus macrofauna trophic ecology: baseline variation or actual diet change?

François REMY, Thibaud Mascart, Patrick Dauby, Sylvie Gobert, Gilles Lepoint

What is « exported macrophytodetritus accumulation »?

Posidonia oceanica seagrass

Aim?

Aim of the study :

- Determine if the vagile macrofauna community experiences spatio-temporal changes of its isotopic composition
- Determine whether these variations are due to real diet modifications, or only due to isotopic baseline shifts.

Sampling techniques

- Sampling in August 11, November 11, March 12 and June 12
- 2 different sites (10m depth)
- Litter + macrofauna

Why use N and C "stable isotopes"?

→ "Fractionation"

SOMETIMES THE EXTRA NEUTRON MAKES A DIFFERENCE. IT'S HARDER TO PUSH THE HEAVY MOLECULES UP AN ENERGY HILL ...

... SO THAT PRODUCTS HAVE MORE OF THE LIGHT ISOTOPE AND LESS OF THE HEAVY ISOTOPE.

Differences between food webs components

Why use N and C "stable isotopes"?

→ Main rule in isotopic ecology :

"You are what you eat, plus (or minus) a few permill..." (DeNiro & Epstein 1976)

Why use N and C "stable isotopes"?

- ¹³C/¹²C = food
 marker
- ¹⁵N/¹⁴N = trophic level/ food marker

➔ Food source composition ≠ consumer composition

Results : the global community

Exported litter community

Results : the global community

Exported Litter Community

SIBER model

Good to give the position, shape and are of "isotopic niches" of different species inside a community, or of an entire community

Less sensitive to sample size than Layman metrics → good for our use

- Standard ellipses areas
- Comparison of ares
- Measure of overlap

Results : SIBER model run

Gammarella fucicola Gammarus aequicauda Athanas nitescens Palaemon xiphias Melita hergensis

→ Interspecific niches variations

Results : SIBER model run

→ Spatio-temporal intraspecific level niche variations

Okay BUT...

But... are these differences reflecting a diet change, or only a food sources basline shift?

SIAR Bayesian mixing model

SIAR mixing model run

Drastic changes even if the model takes baseline variations into account

Real diet change independently of food sources isotopic composition!

SIAR mixing model run

Okay for one species but... is it the case for all the community?

Obviously not → each species reacts differently to litter dynamic conditions

SIAR mixing model run

→ Uncertainty differs, but no apparent change of the diet

Predatory shrimp \rightarrow eats the same preys \rightarrow diet of preys differ \rightarrow indirect effect

Take home message

- Mixing models like SIAR and SIBER are powerful tools for trophic ecologists
 IF PROPERLY USED
- Exported litter macrofauna → isotopic niches modification at community, specific, and intraspecific level
- Niche variations may be related to real and important diet modifications

BUT...

Need to work at a specific level

Acknowledgment

The authors warmly thank the STARESO field station staff for their support during the sampling campaign.

The first author acknowledges a PhD F.R.I.A. grant (Fund for Research Training in industry and in agriculture) of the Belgian National Fund for Scientific Research (FRS-FNRS).

Thank you for your attention !

RA