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Abstract—The sex pheromone of the hibiscus flower borer Rehimena surusalis (Walker) 19 

(Lepidoptera: Crambidae) was analyzed by gas chromatography with electroantennographic 20 

detection (GC-EAD) and GC-mass spectrometry (GC-MS).  Three EAD-active components 21 

were found in crude pheromone gland extracts of calling females. GC-MS and GC analyses 22 

using synthetic chemicals and derivatization of the extracts identified three components as 23 

(10E,12Z)-hexadeca-10,12-dienal (E10,Z12-16:Ald,), (10E,12E)-hexadeca-10,12-dienyl 24 

acetate (E10,Z12-16:OAc) and (3Z,6Z,9Z)-tricosa-3,6,9-triene (Z3,Z6,Z9-23:HC). In field 25 

tests, male moths were remarkably attracted to a ternary blend of E10,Z12-16:Ald, E10,Z12-26 

16:OAc and Z3,Z6,Z9-23:HC at a ratio of 1:5:14, but single and binary blend of either 27 

compound showed only weak or no attraction activity.  28 

 29 
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 32 

INTRODUCTION 33 

Hibiscus flower-bud borer Rehimena surusalis (Walker) (Lepidoptera: Crambidae) is 34 

widely distributed in Africa, Australia, China, India, Indonesia, Taiwan, Korea and Japan 35 

http://en.wikipedia.org/wiki/Australia
http://en.wikipedia.org/wiki/Indonesia
http://en.wikipedia.org/wiki/Taiwan
http://en.wikipedia.org/wiki/Korea
http://en.wikipedia.org/wiki/Japan


(Shibuya, 1928, 1929; Inoue et al., 1982; Liu, 1990; Shin, 2001; Ades and Kendrick, 2004; 36 

Herbison-Evans and Crossley, 2013) and is a continual pest of Malvaceae garden and street 37 

trees including Hibiscus syriacus (rose of Sharon), H. mutabilis (cotton rose), H. rosa-sinensis 38 

(Chinese hibiscus) H. tiliaceus and H. glaber (Sea Hibiscus) (Anonymous 1994, 2006). In 39 

Japan and Korea, H, syriacus is particularly damaged by R. surusalis. H. syriacus 40 

(mugunghwa in Korean) is authorized as the national flower of Korea, and R. surusalis has 41 

been reported to eat the seed of this plant (Lee et al., 2005; Kim et al., 2013; Bea 2012). The 42 

larvae bore into the developed flowers and flower buds. Because of the larval feeding habit as 43 

a typical borer, it is difficult to control this pest with cover sprays of insecticides. To control 44 

insects with a perforative lifestyle in the larval stage, pheromones are advantageous to 45 

monitor the flying adults, and disrupt their mating, resulting in a reduction in oviposition 46 

(Witzgall et al. 2010).  47 

In this study, we identified components of the female sex pheromone of R. surusalis and 48 

demonstrated sex pheromone activity of synthetics in the field. We also discussed a 49 

commonality of the hybrid-type of sex pheromone in Pyraloidea. 50 

 51 
MATERIALS AND METHODS 52 

Insects. Colonies of R. surusalis were maintained as laboratory cultures. Mated females were 53 

allowed to lay eggs in small plastic cylinders that were lined with felt cloth impregnated with 54 

methanol extracts of H. syriacus flower buds. Because of heavy cannibalism, larvae of R. 55 

surusalis were individually reared on an artificial diet composed of Insecta® F-II (Nosan 56 

Corporation, Japan) and dried leaf powder of H. syriacus at a ratio of 8:2. Adults were sexed 57 

at the pupal stage and kept separately in cages at 25 ± 2°C, 60–70% relative humidity (RH) 58 

and a 15L9D photoperiod, and provided with a 10% sugar solution from cotton pads. A red 59 

lamp was used for observations during scotophase. 60 

 61 

Extracts and chemicals. For identification of pheromone components, pheromone extracts 62 

were obtained from 2 to 7 day old calling females, whose abdominal tips were cut with 63 

ophthalmology scissors after half of scotophase by extraction with redistilled n-hexane for 20 64 

min. Pooled extracts (60 female equivalents, FE) were stored at -20°C until use for chemical 65 

analyses and bioassays. Aliquot of the extracts were subjected into GC analysis for 66 

quantitative determination of pheromone candidates in 5 replications.  Each four geometric 67 

isomers of synthetic 10,12-hexadecadienals (Z10,E12-16:Ald, E10,Z12-16:Ald, Z10,Z12-68 

16:Ald and E10,E12-16:Ald) and 10,12-hexadecadienyl acetates (Z10,E12-16:OAc, E10,Z12-69 

16:OAc, Z10,Z12-16:OAc and E10,E12-16:OAc), and (3Z,6Z,9Z)-tricosa-3,6,9-triene 70 

(3Z,6Z,9Z-23:CH) were supplied by coauthors T. A. or S. M. The isomeric purity of all 71 



compounds was confirmed by GC to be ≥ 97%. 72 

 73 

Chemical analysis. Pheromone extracts were subjected to GC-EAD analyses using a HP-5890 74 

series II GS (Agilent Technologies, California, USA) equipped with an HP-5MS capillary 75 

column (30 m × 0.32 mm ID, film thickness 0.25 μm; Agilent Technologies, USA) and 76 

helium as a carrier gas (37 cm/s).  Oven temperature was programmed at 130°C for 2 min, 77 

then increased at a rate of 5°C /min to 250°C and held at the final temperature for 10 min. The 78 

temperature of the detector and injector was 250°C, and that of the outlet for the EAD was 79 

maintained at 300°C. Extracts were injected in splitless mode and chromatographed using 80 

helium as a carrier gas (37 cm/s).  GC effluent from the column was slit in a 1:1 ratio between 81 

the flame inonization detector (FID) and the EAD. The effluent was delivered in humidified 82 

air (23°C) to the antennal preparation connected to an EAG probe (Type PRG-2, Syntech, The 83 

Netherlands) via Ag-AgCl electrodes with 0.1.M KCl. EAD responses of male antenna were 84 

recorded in PC with GC-EAD 2010 software (Ver. 4.60, Syntech) via GC-EAD signal 85 

acquisition controller (IDAC-2, Syntech).  86 

     Analyses of EAD active components in the extracts by GC-MS employed a MS-600H 87 

mass spectrometer (JEOL Ltd., Japan) coupled with HP-6890N GC (Agilent), which was 88 

equipped with a DB-5MS (25 m × 0.25 mm ID, film thickness 0.25 μm, Agilent) capillary 89 

column, and operated in electron impact ionization mode (70 eV).  GC oven temperature was 90 

programmed at 100°C for 1 min, then increased at a rate of 10°C /min to 320°C and held at 91 

the final temperature for 17 min. 92 

     GC analyses were conducted with GC-17A (Shimadzu Co., Ltd., Japan) and GC-6890N 93 

(Agilent) fitted with a nonpolar HP-5MS column and a polar DB-23 column (30 m × 0.25 mm 94 

ID, film thickness 0.15 μm; Agilent), respectively. GC oven temperature of the nonpolar 95 

column was programmed at 130°C for 2 min, then increased at a rate of 5°C /min to 250°C 96 

and held at the final temperature for 10 min. GC oven temperature of the polar column was 97 

programmed at 80°C for 2 min, then increased at the rate of 3°C /min to 250°C and held at the 98 

final temperature for 5 min.  99 

To determine the position of conjugated double bonds, pheromone candidates in the 100 

extracts were reacted with 4-methyl-1,2,4-triazoline-3,5-dione (MTAD), followed by GC-MS 101 

analysis of the resulting derivatives. Kováts retention indices (KRI) (Kováts, 1958; Dool and 102 

Kratz, 1963) of EAD-active components and authentic chemicals were determined with 103 

retention times of standard hydrocarbons. The GC peak area of each component on the HP-104 

5MS column was used to determine the ratio of EAD-active components in the pheromone 105 

extracts.  106 



 107 

Laboratory and field tests. Pheromone activity of candidate components, E10,Z12-16:Ald, 108 

E10,Z12-16:OAc and Z3,Z6,Z9-23:HC and their blends were examined by laboratory and 109 

field assays. Laboratory cage tests were conducted in a mesh cage (30 cm×25 cm×30 cm) 110 

with 10 males at the second half of scotophase that the most of calling by males were 111 

observed. Pheromone extracts or synthetics were applied on a filter paper (1cm x 3cm) in 1 μl 112 

hexane as solvent. Filter paper was suspended 10 cm from the ceiling with a wire clip. 113 

Amounts of synthetics were adjusted to 1 female equivalent (FE)/μl. Crude extracts were 114 

concentrated to 1 FE/μl under a gentle N2 stream. Numbers of males showing orientation 115 

flight (OF) by hovering to pheromone source and source contact (SC) were counted for 3 min 116 

with 5 ~ 7 replications and the cumulative numbers compared in single, binary and ternary 117 

blends of the candidate compounds.  118 

Field experiments were conducted in fields with H. syriacus plantations on the campus of   119 

University of Tsukuba (36.1°N, 140.1°E) during June and August in 2013. Similar sets of 120 

synthetic blends with those used in the laboratory assays were loaded on gray rubber septa 121 

(West Corp., Singapore) at 500 μg / trap. In addition to the regular blend, blends with two and 122 

five times excessive Z3,Z6,Z9-23:HC (750 μg and 1750 μg/ trap) were also tested. Each 123 

rubber septum was placed on a sticky board trap with a triangle roof (SE-trap, 30 cm in length 124 

ｘ 27 cm in width x 10 cm in height; Sankei Chemical Co., Ltd., Kagoshima, Japan). Traps 125 

were hung ca. 1.5 m above the ground on tree branches with at least 10 m intervals, and were 126 

set in a completely randomized design, and the lure were renewed once a week. Positions of 127 

traps were rotated one position every three days to avoid positional effects. As a control, 128 

empty traps were also tested. Numbers of captured males in each trap were counted every 3 129 

days.  130 

 131 

Statistical analyses. Results of laboratory and field assays were analyzed using one-way 132 

analysis of variance (ANOVA), followed by a Tukey-Kramer’s honestly significant difference 133 

(HSD) test. Numbers of captured males (x) in field tests were transformed √(x +0.5) prior to 134 

ANOVA. Software package R 3.0.1 (R Core Team 2013), was used for the statistical analyses. 135 

 136 
RESULTS 137 

Chemical analysis. GC-EAD analyses of crude pheromone gland extracts of female Rehimena 138 

surusalis showed three active components A (Rt  11.28 min) B (Rt  14.66 min) and C (Rt    139 

18.52 min) on FID chromatogram (Fig. 1).  In GC-MS analyses, spectra of the active 140 

component A showed putative parental ion at m/z 236 (M+, 36 %), and fragment ions at m/z 141 



67 ([C5H7]+, base peak), m/z 95 ([C7H11]+, 41 %), m/z 96 ([C7H12]+, 42 %) and m/z 109 142 

([C8H13]+, 28 %). The ion peaks spaced by m/z 14 and peaks at m/z 96 and 109 suggested the 143 

double bonds at the 10- and 12- (ω4, ω6) positions in a straight carbon chain (Ando et al. 144 

1998). From these spectral data, the  145 

structure of compound A was consistent to 10, 12-hexadecadienal (C16H28O). Relatively high 146 

intensity of molecular ion peak (m/z 236) also supported this identification for component A.  147 

GC-MS analysis of component B showed ion peaks at m/z 280 (M+, 38 %), m/z 61 148 

([CH3COOH+2H, 5%], m/z 67 ([C5H7]+, base peak), m/z 95 ([C7H11]+, 48 %), m/z 96 149 

([C7H12]+, 58 %), m/z 109 ([C8H13]+, 29 %), and m/z 220 ([M-CH3COOH]+, 16%).  Mass 150 

spectra with ion peaks spaced by m/z 14 and two prominent peaks at m/z 96 and 109 151 

suggested a straight carbon chain and double bond positions at 10, 12- (ω4, ω6) positions in 152 

C16H32O2. Two diagnostic ion peaks at m/z 61 and m/z 220 predicted structure of compound 153 

B to be 10, 12-hexadecadienyl acetate. Relatively high intensity of molecular ion peak at m/z 154 

280 also indicated conjugated double bonds in compound B.  155 

In GC-MS analysis, component C showed ion peaks at m/z 318 (M+, 6 %), m/z 79 156 

([C6H7]+, 79%), m/z 93 ([C7H9]+, 33%), m/z 107 ([C8H11]+, 15%), m/z 108 ([C8H12]+, base 157 

peak), m/z 121 ([C9H13]+, 18%) and m/z 262 ([M-C4H8]+, 19%). The fragmentation pattern 158 

indicated an unsaturated straight-chain compound, with possible molecular formula of 159 

C23H42, consistent with a tricosatriene (3,6,9-23:HC). In addition, three conspicuous 160 

diagnostic ion peaks at m/z 79, m/z 108 and m/z 262 indicated three double bonds at 3, 6 and 161 

9-position of compound C (Ando et al. 2004).  162 

The position of double bonds in A and B were further confirmed by derivatization with 163 

MTAD, which reacts specifically with conjugated dienyl structures.  The mass spectra of 164 

MTAD reaction products exhibited ions at m/z 349 (M+, [C19H31O3N3]+, 17 %), m/z 208 165 

([C10H12O2N3]+, base peak) and m/z 306 ([C16H24O3N3]+, 57%) for compound A, and at m/z 166 

393 (M+, [C21H35O4N3]+, 17 %), m/z 208 ([C10H12O2N3]+, base peak) and m/z 350 167 

([C18H28O4N3]+ for compound B supporting two conjugated double bonds at either 3- and 5-168 

positions or 10- and 12-positions in hexadecadienal and hexadecadienyl acetate, respectively.  169 

 Components A and B had KRIs similar to those of each four isomers of 10, 12-16: Ald 170 

and 10,12-16: OAc on both nonpolar and polar GC columns.  The 3, 5-dienes would have 171 

been expected to elute much more earlier than 10, 12-dienes on GC (Ando et al., 2004). As 172 

shown in Table 1, KRIs of components A and B corresponded well to those of (10E,12Z)- 173 

hexadeca-10,12-dien-1-al (E10,Z12-16:Ald,) and (10E,12Z)-hexadeca-10,12-dien-1-yl acetate 174 

(E10,Z12-16:OAc), respectively, on both HP-5MS and DB-23 columns. KRI of component C 175 

was compared with only that of Z3,Z6,Z9-23:HC, because 3,6,9-tricosatrienes as insects 176 



pheromones are considered to be biosynthesized from (9Z,12Z,15Z)-octadeca-9,12,15-trienoic 177 

acid with elongation of the carbon chain (Ando et al. 2008).  The geometric configuration of 178 

component C was confirmed to be 3Z,6Z,9Z–isomer from agreement with the RI.  179 

The amounts of these three components (A, B and C) in the extracts were determined to 180 

be 0.77 ±0.08 ng, 3.60 ± 0.56 ng and 11.1 ± 0.96 ng per female, respectively, at ratio of 181 

1:5:14.  182 

 183 

Laboratory and field tests. In the laboratory test, pheromone activities of the crude pheromone 184 

extract and all of possible combinations of synthetic E10,Z12-16:Ald, E10,Z12-16:OAc and 185 

Z3,Z6,Z9-23:HC are summarized in Fig. 2. Three one-component baits and binary blends of 186 

E10,Z12-16:Ald and E10,Z12-16:OAc, and Z3,Z6,Z9-23:HC with E10,Z12-16:Ald or 187 

E10,Z12-16:OAc showed  no pheromone activity in both activity criteria, orientation flight 188 

and source contact by male moths, whereas significantly higher activity in orientation flight 189 

was observed with binary combination of E10,Z12-16:Ald and E10,Z12-16:OAc though it 190 

was still lower than that of the extract. Highest activity in orientation flight was observed with 191 

the ternary blend of the above synthetics in natural amounts, and it corresponded well to 192 

activity of the extract.  In source contact by male moths, only the ternary blend showed 193 

significantly different activity from that of the crude extract.  194 

In the field tests, the ternary blend of E10,Z12-16:Ald, E10,Z12-16:OAc and Z3,Z6,Z9-195 

23:HC attracted the highest number of male moths in all treatments tested, whereas single and 196 

binary blends attracted fewer or no male moths (Fig. 3). Similar to the results of the 197 

laboratory tests, the binary blend of E10,Z12-16:Ald and E10,Z12-16:OAc showed also 198 

relatively high activity in male attraction. When the amount of Z3,Z6,Z9-23:HC was 199 

increased, trap catches somewhat decreased at 700 µg, and significantly decreased at 1750 μg 200 

(Fig. 3).  201 

 202 

DISCUSSION 203 

Three GC-EAD active components were identified as E10,Z12-16:Ald, E10,Z12-16:OAc 204 

and Z3,Z6,Z9-23:HC by GC and GC-MS analyses.  The ternary blend of these compounds in 205 

a ratio of 1:5:14 showed pheromone activity to male moths of R. surusalis in laboratory and 206 

field bioassays. These results show that the sex pheromone of R. surusalis consists of three 207 

components in this ratio. 10,12-Hexadecadienals are widely known as major or minor 208 

components of sex pheromones of several moth families including Noctuidae (Cork et al., 209 

1988), Sphingidae (Starratt et al., 1979; Bestmann et al., 1992; Uehara et al., 2012, 2015), 210 

Pyralidae or Crambidae (Klun et al., 1986; Raina et al 1986; Honda et al.,1994), Saturniidae 211 



(Dai et al. 1988; McElfresh and Millar, 1999a.b) and also Bombycidae (Daimon et al., 2012).  212 

E10,Z12-16:Ac was also identified as a sex pheromone in Bombycidae (Daimon et al,. 2012) 213 

and Saturniidae  (Dai et al., 1987; McElfresh and Millar 1999a,b,c; 2001).  214 

Sex pheromone components can be categorized into Type I and Type II groups depending 215 

on whether they have or don’t have terminal functional groups in the molecules, and 216 

compounds such as E10,Z12-16:Ald, and E10,Z12-16:OAc belong to the Type I group but 217 

polyenyl hydrocarbons such as Z3,Z6,Z9-23:HC belong to Type II group (Ando et al. 2004).  218 

Recently so-called hybrid type of pheromone systems consisting of Type I and Type II 219 

compounds such as that of R. surusalis, are reported mainly in Crambid and Pyralid species 220 

(Cabrera et al 2001; Millar et al. 2005; Leal et al. 2005; Gibb et al. 2007; Miller et al. 2010; 221 

Löfstedt et al. 2012; EI-Sayed et al. 2013; Yan et al. 2014).  222 

 Rehimena surusalis male moths showed low but significant orientation flight responses to 223 

a binary blend of E10,Z12-16:Ald and E10,Z12-16:OAc, although neither component was 224 

active as a single component, in the laboratory cage test and field tests (Fig. 2 and 3),  225 

indicating a crucial synergistic function of E10,Z12-16:Ald and E10,Z12-16:OAc in male 226 

attraction from a long distance. Z3,Z6,Z9-23:HC significantly increased male catches in the 227 

field traps, suggesting synergistic effect to E10,Z12-16:Ald and E10,Z12-16:OAc.  However, 228 

trap catches decreased when Z3,Z6,Z9-23:HC was mixed with these dienyl components at 229 

1:5:70 (25. 125, 1750 µg), showing an optimal ratio of the trienyl hydrocarbon component for 230 

the pheromone system in this species.   231 

In the laboratory tests, the numbers of source contacts by male moths significantly 232 

increased when Z3,Z6,Z9-23:HC was added to the binary blend. In some lepidopteran 233 

species, hydrocarbons of body waxes have critical effects, such as a releaser for copulation 234 

(Grant et al. 1987) or stimulator for contact to pheromone source (Schlamp et al. 2005; Xiao 235 

et al 2010; 2011; 2012), over short range behaviors such as synergistic effects with other high 236 

volatile pheromone components.  Xiao (2011) showed the possibility that although their 237 

actual functions are unknown, homologous polyene hydrocarbons including Z3,Z6,Z9-23:HC 238 

also widely exist in body wax of moths other than Crambidae, because similar synergistic 239 

activity was observed when body wax extracts of some Noctuidae and Sphingidae species 240 

were mixed with the two aldehydes as sex pheromone components. 241 

The four families, Noctuidae, Arctiidae, Lymantriidae and Geometridae use Type II 242 

compounds as female sex pheromones (Ando, 2014; El-Sayed, 2014).  However, Zahiri et al 243 

(2010) reconstructed Noctuidae sensu lato by molecular phylogeny, and showed traditional 244 

Arctiidae and Lymantriidae sensu Miller (1991) were included in Erebidae with various Type 245 

II-pheromone-using noctuids.  This indicated that only Geometroidea and Noctuoidea, which 246 



show sister linkages in recent molecular phylogenetic trees (Regier et al 2009) use Type II sex 247 

pheromones and also that the origin of Type II pheromones may be from a common ancestor 248 

of the two taxa.  However, recently hybrid type pheromone system has been reported in 249 

several Pyraloidea species (Cabrera et al 2001; Millar et al. 2005; Leal et al. 2005; Gibb et al. 250 

2007; Miller et al. 2010; Lofstedt et al. 2012; EI-Sayed et al. 2013; Yan et al. 2014).  In 251 

Pyraustinae sensu lato, R. surusalis is the 4th species that has a hybrid type pheromone 252 

system as shown in two Conogethes species (Xiao et al 2010, 2011b, 2012; El-Sayed et al 253 

2013) and Omphisa anastomosalis (Yan et al 2014).  These results suggest that the hybrid 254 

type pheromone system is at least common in Pyraloidea, and the origin of Type II 255 

pheromones may be a common ancestor of Pyraloidea and Geometroidea + 256 

Noctuoidea.  However, the Pyraloidea + (Geometroidea + Noctuoidea) clade include some 257 

taxa, e.g., Bombycoidea, Lasiocampoidea or Drepanoidea, that have no reports of Type II 258 

pheromones (Regier et al 2009).  To reveal the origin of Type II pheromones, we must 259 

carefully reinvestigate some species which use only Type I compounds for their female sex 260 

pheromones, included into the Pyraloidea + (Gemoetridea + Noctuoidea clade), by 261 

physiological or molecular biological methods. 262 

Three Crambidae species, Haritalodes derogate, H. basipunctalis and R. surusalis use 263 

E10,Z12-16:Ald as a sex pheromone component, and occur sympatrically in hibiscus 264 

plantations. This sympatric reproductive biology may be allowed by their species-specific 265 

pheromone systems, which consist of binary mixtures of E10,Z12-16:Ald and E10,E12-266 

16:Ald at different ratios in the two Haritalodes (Notracha) species (Honda et al., 1994), and 267 

addition of E10,Z12-16:OAc and  Z3,Z6,Z9-23:HC in R. surusalis.  268 

 269 
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Figure legends 453 

 454 

Fig.1 GC/EAD analysis of a crude pheromone extract from R. surusalis on HP-5MS GC 455 

column (upper trace EAD, lower trace GC) 456 

 457 



Fig.2 Cumulative number of male exhibiting orientation flight (OF) to pheromone source and 458 

source contact (SC) in laboratory assays. The amount of the synthetic components in the 459 

respective baits are shown under the bars. Bars with the same letters are not significantly 460 

different at P<0.05 by Tukey–Kramer’s HSD test after ANOVA (OF: N=5, F=56.75, P<0.01; 461 

SC: 21.31, P<0.01). The number of trapped males was transformed to √(x+0.5) prior to the 462 

test. 463 

 464 

Fig.3 Field catches of male R. surusalis in traps baited with synthetic E10,Z12-16:Ald(Ald), 465 

E10,Z12-16:OAc(OAC) and Z3,Z6,Z9-23:HC(HC) and their mixtures. Bars with the same 466 

letters are not significantly different at P<0.05 by Tukey–Kramer’s HSD test after ANOVA 467 

(N=9, F=5.838, P<0.01). The number of trapped males was transformed to √(x+0.5) prior to 468 

the test. 469 

 470 

Fig.4 Type of female sex pheromone and molecular phylogenetics in the crade Ditrysia 471 

(Lepidoptera).  Type II pheromone was identified from 3 taxonomic groups (Geometroidea, 472 

Geometridae and Noctuoidea: Erebidae and Pyraloidea).  Papilionoidea etc. indicates a crade 473 

((((Nymphalidae + Pieridae) + (Hesperioidea + Hedyloidea)) + Thyridoidea) + (Papilionidae 474 

+ Calliduloidea)) + (Copromorphoidea + Hyblaeoidea).  Alucitoidea, Urodoidea and 475 

Choreutoidea were omitted from the phylogenetic tree that was modified from Regier et al 476 

(2009).  477 

 478 
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Table 1

Retention indices of EAD-active components and synthetic compounds on GC columns with different polarities

Compounds HP-5MS DB-23

Compound A 1862 2252

Compound B 2051 2369

Compound C 2276 2391

Z10,E12-16:Ald 1853 2243

E10,Z12-16:Ald 1862 2252

Z10,Z12-16:Ald 1874 2254

E10,E12-16:Ald 1880 2257

Z10,E12-16:OAc 2039 2360

E10,Z12-16:OAc 2051 2369

Z10,Z12-16:OAc 2063 2372

E10,E12-16:OAc 2069 2374

Z3,Z6,Z9-23:HC 2276 2390

Kovats Retention Index (KRI)
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