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ABSTRACT 

 

Nearly one-third of the world’s tortoises live in South Africa, but little is known about 

their habitat requirements and feeding ecology. Chersina angulata, the angulate 

tortoise, is endemic to southern Africa, with a wide distribution along the western and 

southern coasts. Because this tortoise occupies a number of different habitat types, it 

has always been considered a generalist herbivore, although little is known about its 

diet and other needs. This study evaluates the habitat characteristics and feeding 

ecology of C. angulata at two study sites in the southwestern Cape, the West Coast 

National Park (WCNP) and Dassen Island (DI). The WCNP is a large conserved area 

in the Fynbos biome, along the southwestern coast of South Africa, whereas DI is a 

small offshore island with low floral and faunal diversity, just south of the WCNP. The 

efficacy of three methods used to study the feeding ecology of herbivores, focal 

observations, macroscopic faecal analysis and histological analysis of scats, was 

evaluated.  

 

Plant cover, species diversity, and the variety of growth forms were substantially larger 

at the WCNP than on DI. In the WCNP, shrubs and grasses were the dominant growth 

forms but the vegetation also included herbs, succulents, restios, sedges and parasitic 

plants. A few perennial species such as the grass Ehrharta villosa, shrubs such as 

Helichrysum niveum, Nylandtia spinosa and Rhus spp., and succulents such as 

Carpobrotus edulis and Ruschia spp., provided most of the plant cover. DI had a 

depauperate flora, consisting of succulents and herbs, and ephemeral plants 

contributed more than perennials did to plant cover throughout the year. The 

succulents Mesembryanthemum crystallinum and Tetragonia fruticosa provided most 

of the cover on DI.  

 

Angulate tortoises are herbivores and 72 diet plants in 32 plant families were identified 

to the species or genus level. Several diet species, however, could not be identified. In 

addition to angiosperms, the tortoises’ diet included mosses, mushrooms, insects, 

snails and animal faeces. The most important growth forms in the diet were herbs and 

grasses. The diet of the WCNP tortoises was more diverse than the diet of DI tortoises, 

but the number of principal food items in the diet did not differ between the two sites. 

Over an annual cycle, WCNP tortoises had four principal food plants while DI tortoises 

had five principal food plants. At both sites, principal food plants changed with the 

season and few plants remained principal food items in more than one season. 
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Cynodon dactylon was a principal food item in three of the four seasons in the WCNP, 

whereas Trachyandra divaricata was a principal food plant each season on DI. Most 

principal food plants were grass or herb species but the sedge Ficinia nigrescens, and 

a succulent that could be identified only to the family level (Aizoaceae), featured 

strongly in the spring diets of DI and WCNP tortoises, respectively. 

 

The three study methods did not provide the same type or quality of information about 

the feeding ecology of angulate tortoises. The small size and wary nature of angulate 

tortoises compromised focal studies because it was often not possible to see what the 

tortoises ate. This method, however, provided the interesting observation that rabbit 

faecal pellets contributed nearly 30% to summer and autumn diets on DI when food 

was scarce. Rabbit faeces may not only provide a source of nutrients but may also 

supplement the microflora, required to digest cellulose, in the tortoises’ guts. 

Macroscopic evaluation of the tortoises’ scats appeared to be an ineffective method to 

identify diet plants, and the bulk of the scat mass could not be identified. This indicates 

that angulate tortoises either selected food low in fibrous content or that the digestive 

system of the tortoises dealt efficiently with tough plant material. The macroscopic 

method was the only method that highlighted the large contribution of fruits / seeds to 

the diet of angulate tortoises. Since the tortoises digested many seeds only partially, or 

not at all, C. angulata is potentially an important agent of seed dispersal in the 

southwestern Cape. The macroscopic study showed that on DI, sand made up 28% of 

the scat mass in spring, whereas sand never made a substantial contribution to the 

scat composition of WCNP tortoises. Lithophagy may be an important strategy in a 

depauperate habitat, such as DI, because the abrasive action of sand may help with 

the digestion of tough plants, or the sand may provide the tortoises with important 

minerals that are deficient in their food plants.  

 

The histological analysis of scats provided the most comprehensive diet list for C. 

angulata. Selection indices based on data from the histological analysis indicated that 

angulate tortoises were highly selective in their food choice. Most of the principal food 

items were selected out of proportion to their availability and the tortoises avoided the 

most abundant plants in their habitats. Several factors, such as palatability, 

accessibility and profitability, may have influenced their food choice. The proportional 

similarity indices for WCNP and DI tortoises, respectively, were 0.31 and 0.16, 

confirming that C. angulata is a food specialist and not a food generalist as was 

previously thought. This factor should be considered in the management of this species 

and in future conservation planning of its habitat. 
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1 GENERAL INTRODUCTION 

 
 
1.1 TORTOISES OF THE WORLD AND SOUTH AFRICA 

Tortoises belong to the class Reptilia, and more specific, to the order Testudines 

(=Chelonia). Testudines includes not only tortoises, but also terrapins and turtles. The 

term Testudines is used when ancestral forms are included in the grouping, while 

Chelonia generally refers to the extant groups (Pough et al. 2001). Two suborders are 

distinguished, the side-necked chelonians, Pleurodira, and the hidden-necked 

chelonians, Cryptodira (Boycott  & Bourquin 2000). The Pleurodira includes three 

families, the Chelidae, Pelomedusidae and Podocnemidae. The Cryptodira is more 

diverse and consist of 10 families, which include the family Testudinidae, to which 

tortoises belong (Ernst & Barbour 1989; Pough et al. 2001). 

 

The latest report commissioned by the CITES Nomenclature Committee (Fritz & Havaš 

2006) recognises 44 extant tortoise species, but this list excludes the newly described 

species Homopus solus from southern Namibia (Branch 2007). Thirteen tortoise 

species occur in South Africa, which gives South Africa the largest diversity of tortoise 

species in the world (Boycott & Bourquin 2000). The thirteen tortoise species in South 

Africa belong to five different genera and include Stigmochelys pardalis (previously 

known as Geochelone pardalis), Kinixys belliana, Kinixys lobatsiana, Kinixys spekii, 

Kinixys natalensis, Homopus areolatus, Homopus femoralis, Homopus signatus, 

Homopus boulengeri, Psammobates geometricus, Psammobates oculifer (previously 

P. oculiferus), Psammobates tentorius and Chersina angulata (names according to 

Fritz & Havaš 2006). 

 

1.2 THE DISTRIBUTION AND BIOLOGY OF CHERSINA ANGULATA 

The angulate tortoise, Chersina angulata, is of moderate size, with an elongated shell 

and convex carapace. The species can be distinguished from other South African 

tortoises by its large, undivided gular (Branch 1989). The colour pattern of the shell 

varies substantially but the shields are most often light brown in colour with dark edges 

and centres (Branch 1989; Boycott & Bourquin 2000). Males are larger than females 

and are easily identified by their long gulars and plastral concavities (Branch 1989; 

Mann et al. 2006). The gular is used by fighting males to overturn one another, and the 

plastral concavity aids copulation.  
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Chersina angulata is endemic to southern Africa and has a wide distribution along the 

western and southern coasts, from southern Namibia in the northwest to East London 

in the southeast (Fig. 1.1). Isolated populations are found in the interior and on several 

offshore islands (Greig & Burdett 1976; Branch 1991; Branch et al. 1995). Angulate 

tortoises occur in variable densities in several different vegetation types such as 

Fynbos/thicket mosaic, Karroid shrubland, Thicket, Renosterveld, and Succulent Karoo 

(Greig & Burdett 1976; Branch 1989, Baard 1994; Boycott & Bourquin 2000). The 

density of angulate tortoises can become particularly high in the southwestern Cape 

(Van Heezik et al. 1994) and in disturbed areas such as the partial clearance of thicket 

in the Eastern Cape (Branch 1984; Branch 1989).  

 

 

 

 

 

 

Figure 1.1  The distribution of Chersina angulata in southern Africa and the location of 

the study sites, the West Coast National Park (WCNP) and Dassen Island. 
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Chersina angulata is a relatively common tortoise and more information exists on its 

biology than that of any other tortoise species in South Africa. Female angulate 

tortoises have an unusual reproductive pattern, producing and laying one egg at a time, 

up to six eggs per year (Hofmeyr 2004). The tortoises are active throughout the year 

and shift their activity pattern from bimodal in summer to unimodal in winter (Ramsay et 

al. 2001). Their activity pattern is strongly linked to prevailing weather conditions, 

particularly ambient temperature (Ramsay et al. 2001). Angulate tortoises can bask for 

several hours per day (Keswick et al. 2006), and appear to have some physiological 

control over their heat exchange rates (Perrin & Campbell 1980; Els et al. 1988). They 

spend most of their time in the cover of vegetation, but males appear to be active for 

longer periods and to spend more time feeding than females do (Keswick et al. 2006). 

Angulate tortoises survive well in captivity (Boycott & Bourquin 2000), but information 

about this herbivore’s natural diet is limited to a list of plants that they eat in Sardinia 

Downs, Eastern Cape (Els 1989). 

 

Food availability affects fecundity and survivorship (Caughley & Sinclair 1994), so 

knowledge of the foraging ecology of tortoises is important for their management and 

conservation. Chersina angulata occurs in several conserved areas (Branch 1989) and 

is not rated nationally or internationally, but is listed as a CITES Appendix II species 

(Boycott & Bourquin 2000). Nevertheless, habitat destruction over their range, 

particularly along the coastline and in the fertile valleys of the southwestern Cape, 

gives reason for concern. Habitat transformation has reduced Strandveld (a vegetation 

type with high densities of angulate tortoises) to less than 40% of its original area 

(Knight 1991). Additionally, population densities near urbanised areas have declined 

dramatically (Branch 1989). The ongoing negative impact of man on the environment 

makes it essential to better understand the feeding ecology and habitat requirements of 

angulate tortoises.  

 

1.3 FEEDING ECOLOGY AND METHODOLOGIES 

To determine food preferences and the significance of food items on the ecology of 

angulate tortoises, we need more information than just diet lists (Rall & Fairall 1993), or 

the quantitative composition of the diet. A better understanding of the feeding ecology 

of tortoises requires that food intake be considered in relation to food availability 

(Mason et al. 1999), and that seasonal changes in food availability and diet are 

assessed (Lagarde et al. 2003). 
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The vegetation composition of tortoises’ habitats can be determined by several 

different methods. To estimate the relative availability of plant species in Valley 

Bushveld for leopard tortoises, Mason et al. (1999) used the canopy line-intercept 

method and identified all plants at 10 mm intervals at ground level. Rall & Fairall (1993) 

counted all plant species in a 1 m2 frame quadrat, which they centred over food plants 

of leopard tortoises and Kalahari tent tortoises, whenever they observed the tortoises 

feeding. Lagarde et al. (2003) spaced 27 frame quadrats (1 m2) randomly in the habitat 

of the steppe tortoise to estimate plant cover in their habitat. The size and number of 

sampling units are important considerations in quadrat sampling, and the choice 

between a few large sampling units or a large number of small units is determined by 

the requirements of the study (Greenwood 1996).  

 

Methods used to determine the diets of foraging animals include direct observation of 

feeding animals, stomach content analysis, scat analysis, and fistula techniques 

(Stewart 1967; Saunders et al. 1980; Holechek et al. 1982). Direct observation is 

generally considered an effective method to record diet composition, but this method is 

subject to observer error, and is often confounded when the animals eat the whole 

plant (Smith & Shandruk 1979; McInnis et al. 1983). Two intrusive methods include 

oesophageal fistulation, which requires surgery (McInnis et al. 1983), and the analysis 

of stomach content, which can be accomplished by stomach flushing (Legler 1977) or 

killing the animal (McInnis et al. 1983). Scat analysis is non-intrusive and is the 

preferred method to study the diet of endangered or secretive animals (McInnis et al. 

1983). Microhistological identification of plant epidermi in a herbivore’s scats provides a 

detailed list of plants eaten, but this method may overestimate the importance of some 

diet items, such as grasses, and underestimate the importance of others, such as 

herbs (Vavra et al. 1978; Smith & Shandruk 1979; McInnis et al. 1983). Nevertheless, 

Vavra et al. (1978) found that the ranking of diet species, as determined through faecal 

analysis and oesophageal fistulation, was similar. 

 

When data exist for availability and consumption of a particular diet item, it is possible 

to calculate if the animal consumes the food item out of proportion to availability. Plant 

species consumed in excess of their availability are preferred species, and are species 

that generally enhance the diet nutritionally (Stuth 1991). Abundant plants are often 

consumed in similar proportions to their availability, and these plants generally have 

lower nutritional value than the preferred plants (Stuth 1991). Some plant species are 

consumed in lower proportions than what are available because the plants may be 

toxic or unpalatable (Stuth 1991). When animals use food resources in proportion to 
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their availability, the animals are generalist feeders, in contrast to specialist feeders, 

who are highly selective (Feinsinger et al. 1981). Knowledge about the foraging niche 

breadth of tortoises should facilitate their management and conservation. 

 

1.4 RESEARCH OBJECTIVES AND THESIS ORGANISATION 

The ultimate aim of this study was to understand the feeding ecology and habitat 

requirements of C. angulata in the southwestern Cape. To achieve this aim, I asked the 

following questions: 

 

a) Which plants and other items do angulate tortoises eat? 

b) Are all growth forms (e.g., herbs, shrubs and grasses) of equal importance in 

their diet? 

c) Does their diet change with season? 

d) Are angulate tortoises generalist or specialist feeders? 

e) Which of focal observation, macroscopic-, or histological scat evaluation is the 

most effective method to elucidate the food requirements of angulate tortoises? 

f) How are the habitats of angulate tortoises characterised with respect to plant 

cover, plant species, and growth forms? 

g) Do plant cover and composition change with season? 

h) Does habitat quality influence the feeding ecology of angulate tortoises? 

 

To answer these questions, I evaluated vegetation composition and cover of two 

disparate angulate tortoise habitats over five successive seasons. Over the same 

periods, I studied the feeding activity of angulate tortoises at these sites through focal 

observations, and collected tortoise scats for subsequent macroscopic and histological 

evaluation. The fieldwork was done at the West Coast National Park (WCNP) and 

Dassen Island (DI), two conserved areas in close proximity, but with substantial 

differences in size, weather conditions, vegetation composition and plant diversity. The 

information gained through this study can be used to (a) facilitate conservation and 

management of angulate tortoises and their habitats, and (b) to broaden understanding 

of the way tortoises and other herbivores may respond to changes in their natural 

habitat. 

 

Apart from the general introduction (Chapter 1), the thesis is comprised of six research 

chapters. Chapter 2 evaluates seasonal changes in plant cover, species diversity and 

major growth forms at the two study sites, the WCNP and DI. Chapter 3 considers the 
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activity patterns of angulate tortoises at the study sites, and the foraging behaviour and 

diet of the tortoises. The results of the macroscopic scat analysis are presented and 

discussed in Chapter 4, while results of the histological evaluation of scats, collected 

over four seasons, are presented and interpreted in Chapter 5. Data from the previous 

chapters are combined in Chapter 6 to evaluate the feeding strategies of angulate 

tortoises and to calculate preference indices. In Chapter 7, the epidermal characters of 

plants identified at the study sites are presented and the data are used to construct 

identification keys for 18 monocotyledonous and 63 dicotyledonous plant taxa at the 

study sites. 
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2 HABITAT EVALUATION 

 

 

A revised version of Chapter 2 was published in the South African Journal of Science.   

 

Joshua, Q.I., Hofmeyr, M.D., Henen, B.T. and Weitz, F. 2005. Seasonal changes in the 

vegetation of island and mainland habitats of angulate tortoises in the Western Cape, 

South Africa. South African Journal of Science 101: 439-445. 

 

 

2.1 ABSTRACT 

Understanding variation in vegetation communities is integral to characterising 

resource requirements of herbivores over their range. Here I evaluate seasonal 

environmental effects upon the plant composition of two contrasting angulate tortoise 

habitats in the southwestern Cape. Plant cover, species diversity and the variety of 

growth forms were substantially larger at the West Coast National Park (WCNP) than 

on Dassen Island (DI). Although shrubs and grasses were dominant growth forms at 

the WCNP, herbs, succulents, restios, sedges and parasitic plants contributed 30% of 

the cover. Most species had low relative cover indices, and a few perennial species 

provided most of the cover. On DI, succulents and herbs were the only growth forms 

and ephemeral plants contributed more than perennials did to plant cover throughout 

the year. Seasonal fluctuations in plant cover, species richness and diversity on DI 

were larger than in the WCNP, despite DI having higher annual rainfall and milder 

temperatures. The perennial flora in the WCNP provided greater stability with smaller 

responses to high summer aridity and large temperature fluctuations. Although the 

WCNP supports a greater variety of herbivores, DI has a higher density of angulate 

tortoises, showing this species’ resilience and adaptability to a depauperate flora. 
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2.2 INTRODUCTION 

Climatic and landscape diversity are major determinants of vegetation distribution, 

structure and composition (Partridge 1997; Schulze 1997). Climatic parameters, such 

as the proportional contribution of winter rainfall, summer aridity (Rutherford & Westfall 

1986), and moisture availability (Ellery et al. 1991), have been used successfully to 

differentiate southern African biomes. The Fynbos biome is characterised by a high 

proportion of winter rainfall and a moderate to low summer aridity index (Cowling et al. 

1997). However, regional gradients in climate, physiography and soils are reflected in 

compositional changes of plant communities. The decreasing coast-to-interior rainfall is 

associated with asteraceous and restioid fynbos replacing proteoid and ericaceous 

elements, while an increasing abundance of grasses from west to east is associated 

with decreasing summer aridity (Campbell 1983; Cowling et al. 1997). 
 

The composition of vegetation communities can change seasonally in response to 

environmental fluctuations. The magnitude of change is more pronounced in 

communities with a strong annual component. When perennials are present, inter- and 

intra-specific competition determines spacing among perennial plants, which influences 

the abundance of annuals (Cunliffe et al. 1990; Milton et al. 1997). Prolonged drought 

(Milton et al. 1995), grazing (Van Rooyen 1999), and other disturbance (Milton 1995) 

can also change the composition of plant communities; perennial shrubs decrease 

while annuals and succulents can increase in abundance. Seasonal and long-term 

changes in vegetation composition and quality will influence the fauna, particularly 

herbivores, associated with the community. 

 

Angulate tortoises have a broad coastal distribution along the southern and western 

coasts of South Africa, corresponding roughly to the boundaries of the Fynbos and 

Succulent Karoo biomes. These tortoises reach particularly high densities in the 

southwestern Cape and on nearby islands. Dassen Island is a continental island that 

was separated from the mainland ca. 14 000 years ago after the glacial maximum 

(Tankard 1976). In contrast to the rich biodiversity on the mainland, Dassen Island has 

a depauperate strandveld flora (Hurford 1996) and fauna (Brooke & Crowe 1982). 

Resources available to herbivores and the climatic regime may differ widely between 

Dassen Island and fynbos/thicket mosaic habitats on the mainland. Comparing 

vegetation composition and dynamics of the two sites might elucidate the factors that 

influence the distribution of angulate tortoises. I thus studied the resource utilisation of 

angulate tortoise populations at Dassen Island and the nearby mainland, while 
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evaluating vegetation at the two sites. Here I report differences between the vegetation 

composition of the sites, and evaluate seasonal changes in vegetation cover, species 

richness and heterogeneity.   

 

 

2.3 MATERIALS AND METHODS 

2.3.1 Study sites 

The West Coast National Park (WCNP, 30 000 ha) is a conserved area along the 

southwestern coast of South Africa. The study site at Abrahamskraal (33°13’S, 

18°09’E) falls in the habitat unit, Langebaan fynbos/thicket mosaic (Cowling & Heijnis 

2001), found on calcareous coastal sands. Fynbos/thicket mosaic consists of 

asteraceous or restioid fynbos intermingled with largely evergreen thicket species. 

Asteraceous fynbos occurs in the driest fynbos sites, whereas restioid fynbos occurs in 

more mesic areas where conditions are limiting for shrub growth (Cowling et al. 1997). 

Dassen Island (DI, 222 ha, 33°25’S, 18°06’E) is 9 km from the West Coast, just south 

of the WCNP. The vegetation consists of a depauperate flora with low-growing, salt-

loving species, including several aliens (Hurford 1996). 

  

Both the WCNP and DI have a Mediterranean climate. Summer and autumn months 

are hot and dry, but drought conditions are alleviated by periodic mist that provides 

valuable moisture to flora and fauna (Schaefer & Schaefer 1993). Winter and spring 

conditions are mild and rainfall occurs mainly between April and October. To evaluate 

climate differences between sites, I obtained monthly rainfall and temperature data for 

the WCNP (Geelbek) and DI from the South African Weather Bureau.  

 

2.3.2 Vegetation surveys 

The sampling design represents a compromise to allow comparisons between tortoise 

and vegetation surveys. It is not feasible to survey for tortoises on small plots spread 

through the habitat, so I established two large quadrats, representative of the local 

vegetation and separated by approximately 500 m, at each site. Each quadrat 

measured 120 x 80 m (0.96 ha, 9 600 m2), and was divided by bamboo canes into a 

grid of 5 x 5 m cells (384 cells of 25 m2). The surveys commenced on DI in January 

1999. Subsequent surveys were first completed on DI, followed by WCNP surveys 

within the ensuing 2-4 weeks: March/April 1999 (only one quadrat at WCNP), 

July/August 1999, September/October 1999 and January/February 2000. The final 

WCNP survey was done in April 2000. I assessed cells individually and estimated 
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percent plant cover (in 10% gradations) as the area covered by live or dead plant 

material rooted to the ground. Debris represented dead plant material not attached to 

the ground, and was not considered in the percent cover. When surveying vegetation 

(alive or dead) in each cell, I scored the vegetation’s appearance from one to five to 

establish a condition index. A score of one represented sparse and dry vegetation 

while a score of five represented dense and green vegetation. For each plant species 

in a cell, I noted the condition and assigned a dominance rank. Dominance ranking was 

based on the total cover provided by the species and included live and dead plant 

material. The first, second and third most abundant species were given scores of four, 

three and two, respectively. Other species present received a score of one. 

Unidentified dead plants (rooted), grass and seedlings were also considered in the 

ranking, and for Dassen Island, mosses were included in the seedling category. 

   

I used morphological characteristics and phenological stages to identify most plants to 

the genus or species level. In the WCNP, I combined all grass species, except 

Ehrharta villosa, in one category. Since Carpobrotus quadrifidus (rare) was 

misidentified as C. edulis (abundant) in the non-flowering seasons, I combined it with 

C. edulis in the analysis. On DI, it was often difficult to distinguish the rare Tetragonia 

decumbens from the abundant T. fruticosa and I consequently combined the two 

species in the analyses. 

 

2.3.3 Relative cover index (RCI), species diversity and equitability 

The RCI for each plant species or category in a cell was calculated as the product of 

the dominance score (4 to 1) and the fractional plant cover in that cell. Subsequently, I 

calculated the mean seasonal RCI for each species or plant category in a quadrat (N = 

384) and for the two quadrats combined at each site (N = 768). The mean total RCI for 

each item over the last four seasons was calculated for each study site and used to 

rank the item in order of importance in the landscape. In addition to species RCI, I 

calculated RCI for two combinations of plant categories: (a) succulents, non-succulent 

herbs, non-succulent shrubs, parasitic plants, grasses, and restios (including sedges), 

and (b) annuals and perennials. 

   

I compared species diversity between quadrats, sites and seasons using the (a) 

Shannon-Wiener index of diversity (H'  = –Σ pi log pi, where pi is number of quadrat 

cells with species i / sum of the number of quadrat cells containing species i to species 

j), and (b) Simpson’s index of diversity (D' = 1 – D, where D = Σ pi
2). The Shannon-
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Wiener index is sensitive to changes in the abundance of rare species, while 

Simpson’s index is sensitive to changes in the abundant species (Waite 2000). I also 

compared equitability of abundance, using the Shannon-Wiener index of evenness, J' = 

H' / Hmax, where Hmax is the logarithm of the total number of species (Waite 2000). 

Equitabilities near one indicate more even or homogeneous species distributions than 

do equitabilities near zero; equitabilities near zero indicate strong species dominance.  

 

2.3.4 Statistical analysis 

The data rarely satisfied assumptions of normality and homoscedasticity, preventing 

simultaneous evaluation of site, season and quadrat effects through parametric 

analysis of variance (ANOVA). Instead, I evaluated effects separately either through 

non-parametric one-way ANOVA or by testing for differences between two sample 

medians (Mann-Whitney Rank Sum Tests, T statistic) or means (Student’s t-tests, t 

statistic). 

 

The same quadrats were surveyed each season, so I used Friedman’s repeated 

measures ANOVA (FRMA, χ2 tests) to evaluate separately the effects of season upon 

quadrat means, and upon site means, for percent cover, condition, and RCI. When 

testing the effect of season upon site means (N = 768), I report effects over five 

seasons for DI and over four seasons for WCNP, unless stated otherwise. I also used 

FRMA to make within-season comparisons among the mean RCI for the different 

species, and among the different plant growth forms within a site. Post hoc analyses 

following ANOVA were completed using the Student-Newman-Keul’s method. When 

comparing matched pairs within a season (e.g., mean RCI of annuals versus mean RCI 

of perennials), I used a Wilcoxon signed-ranks test (T- or T+ statistics), or paired t-tests 

(t statistic) when data were parametric. 

  

Statistical comparisons were completed using SigmaStat 2.0 or Statistica ’99, except t-

tests for Shannon-Wiener diversity indices were calculated according to Zar (1999). I 

used a minimal significance criterion of P < 0.05 for all tests, including post-hoc 

analyses. To simplify data summaries and to facilitate interpretation and future 

comparisons, I summarised data as means rather than presenting non-parametric 

summaries. 
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2.4 RESULTS 

2.4.1 Temperature and rainfall 

Ambient temperatures varied more in the WCNP than on DI (Fig. 2.1a). From January 

1998 to December 2000, the WCNP experienced higher maximum and lower minimum 

temperatures than DI experienced (all P < 10-5). At both study sites, rain fell mainly 

from April to September (Fig. 2.1b), but from January 1998 to December 2000, monthly 

rainfall was significantly higher at DI than in the WCNP (P = 0.004).   

 

 

 

Figure 2.1  Average monthly temperatures (A) and rainfall (B) for the West Coast 

National Park (WP) and Dassen Island (DI) from 1998 to 2000. Annual rainfall (mm) is 

indicated below the legend. 
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2.4.2 Plant cover and condition 

Percent plant cover was significantly higher in the WCNP than on DI during each of the 

four comparable seasons (all P < 10-5). Condition on DI was not assessed in summer 

and autumn 1999, but WCNP plants had a higher condition index than DI plants had 

(all P < 10-5) during winter 1999 (3.14 vs. 2.52), spring 1999 (3.79 vs. 2.92) and 

summer 2000 (3.39 vs. 2.61). Both sites showed strong seasonal changes in plant 

cover (all P < 10-5) and condition (all P < 10-5). The variation in percent cover suggests 

that cover varied more among seasons on DI than at the WCNP (ca. 60% and 18%, 

respectively between autumn and spring 1999). Percent cover increased after the first 

rains in autumn and reached maximum values in spring. At both sites, spring values for 

plant condition also exceeded values for all other seasons. 

  

Quadrats were selected to robustly characterise plant availability at each site. 

Consequently, there were many quadrat differences in plant cover (Fig. 2.2) and 

condition. At the WCNP, quadrat two had a higher plant cover than quadrat one during 

spring and summer (all P < 0.004), while cover was similar in autumn and winter. 

Condition in quadrat two was higher than in quadrat one in winter, spring and autumn 

(all P < 0.002), but not in summer. At DI, plant cover differed significantly between 

quadrats in each season (all P < 10-5) with greater fluctuations in quadrat one than in 

quadrat two. Quadrat one had lower plant cover than quadrat two in the first two 

seasons, but in subsequent seasons, quadrat one had higher plant cover than did 

quadrat two. Although quadrat one had a higher condition than did quadrat two in 

winter, this value decreased below the condition index of quadrat two during the 

subsequent spring and summer (all P < 10-5).  
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Figure 2.2  Seasonal changes in plant cover of quadrats (1, 2 and combined) at the 

West Coast National Park (WP) and Dassen Island (DI), South Africa. West Coast 

National Park quadrat two (WP 2) was not sampled in autumn 1999. 

 

 

 

 

 

2.4.3 Relative cover index  

Plant species richness at WCNP exceeded that at DI (Table 2.1), with 45 and eight 

identifiable species, respectively. All subsequent evaluation of species richness 

excludes Tetragonia decumbens on DI, and Carpobrotus quadrifidus in WCNP. The 

relative cover indices (RCI) of WCNP plants varied by more than three orders of 

magnitude (0.0005 to 0.98). This was in part because some species were abundant in 

each season (e.g., Ehrharta villosa), while others were scarcely seen in one season 

(e.g., Pelargonium sp.). The 10 plant items with the highest RCI at WCNP contributed 

approximately 80% to annual cover and had minor seasonal variation in RCI. Nine of 

the top 10 items were perennials, the exception being Senecio elegans, an annual 

herb. The presence of S. elegans in the top 10 RCI was due to S. elegans persisting 

intact after it died. Twenty-four plant families were present in the WCNP quadrats. 
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Asteraceae was the most speciose (eight species) and 15 families were represented by 

a single species. Nearly two-thirds of the WCNP species were scarce, with annual RCI 

less than 0.08 and not differing from zero or each other. 

 

In contrast, only seven plant species (excluding T. decumbens) were identified in DI 

quadrats and five of these were annuals (Table 2.1). Total RCI at DI varied by more 

than 200 fold; high RCI were associated with an annual (Mesembryanthemum 

crystallinum, which included dead plant material in autumn and winter) and a perennial 

(Tetragonia fruticosa), which were present in each season. These two species 

contributed 64% of the total RCI. Six plant families were represented at DI with 

Aizoaceae containing three species (including T. decumbens). Only two species were 

detected at both sites, S. elegans and Cysticapnos vesicaria. These two species were 

rare in DI quadrats, where their total RCI did not differ from zero. When S. elegans was 

found at both sites (spring 1999), the WCNP RCI greatly exceeded that of DI (P < 10-5). 

The annual herb C. vesicaria was available at both sites, but only during spring 1999, 

and the RCI were similar between sites. 

 

Season affected RCI for all annual species at DI (all P < 10-5) and the WCNP (all P < 

10-5), except for Pelargonium sp. at WCNP, which had a very low abundance and was 

present only in spring. I also detected strong seasonal effects upon the two perennial 

plant species on DI (all P < 10-5) and upon the more abundant perennials in the WCNP. 

The RCI of some perennial plants (e.g., Thamnochortus spicigerus, Afrolimon 

purpuratum and Cliffortia filifolia) with a relatively high total cover did not change 

seasonally, although some perennial plants with lower total cover (Asparagus 

rubicundus and Conicosa pugioniformis) differed across seasons. The RCI of seedlings 

at WCNP (P < 10-5) and seedlings and mosses at DI (P < 10-5) changed considerably 

among seasons, being present mainly in winter and spring.   
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Table 2.1  Contribution of plant species and major plant forms to cover at Dassen 

Island and the West Coast National Park. Plant type distinguishes annual (A) and 

perennial (P) plant species. Seedlings, mosses and dead plant material were 

categorised as other (O). Growth form distinguishes succulents (Su) from non-

succulents. Non-succulents were categorised as shrub (S), herb (H), grass (G), restio 

(R), cyperid (C) or parasite (Pa). Total relative cover index (RCI) represents one-year 

averages taken for the last four seasons at each site. Seasonal values indicate means 

for two quadrats (N = 768), except for West Coast National Park in autumn 1999 (N = 

384). Species or category rows with hashes were not significantly influenced by 

season. Letter superscripts in the Total RCI column indicate which species or 

categories were similar in post hoc analyses (non-parametric). Tetragonia fruticosa 

includes T. decumbens and Carpobrotus edulis includes C. quadrifidus. 

 

Family Plant species 
Plant Growth Su Au Wi Sp Su Au Total 

type form 1999 1999 1999 1999 2000 2000 RCI 

Dassen Island           

Aizoaceae Mesembryanthemum crystallinum A Su 1.700 1.479 1.092 1.329 1.685  1.396 

Aizoaceae Tetragonia fruticosa P Su 1.243 0.866 0.785 1.141 1.287  1.020 

Urticaceae Urtica urens A H 0.000 0.000 1.038 1.592 0.000  0.657 

       – Seedlings and mosses O O 0.000 0.000 0.647 0.933 0.075  0.414 

Primulaceae Anagallis arvensis A H 0.000 0.000 0.687 0.000 0.000  0.172 

Asphodelaceae Trachyandra divaricata P H 0.033 0.000 0.076 0.102 0.134  0.078 

Asteraceae Senecio elegans A H 0.023 0.000 0.000 0.073 0.000  0.018a 

Fumariceae Cysticapnos vesicaria A H 0.000 0.000 0.000 0.029 0.000  0.007a 

       – Dead plant material O O 0.000 0.000 0.000 0.000 0.005  0.001a 

West Coast National Park          

Poaceae Ehrharta villosa  P G  1.389 1.308 0.923 0.793 0.887 0.978 

Aizoaceae Carpobrotus edulis  P Su  0.632 0.640 0.547 0.579 0.673 0.610 

Poaceae Grass (e.g., Cynodon dactylon) P G  1.294 0.484 0.865 0.451 0.543 0.586 

Asteraceae Helichrysum niveum P S  0.595 0.350 0.550 0.617 0.592 0.527 

Polygalacea Nylandtia spinosa  P S  0.166 0.415 0.423 0.412 0.466 0.429 

Anacardiaceae Rhus laevigata  P S  0.131 0.274 0.304 0.419 0.441 0.360 

Anacardiaceae Rhus lucida  P S  0.037 0.246 0.280 0.368 0.387 0.320 

Aizoaceae Ruschia sp. P Su  0.425 0.241 0.237 0.227 0.255 0.240b 

Aizoaceae Ruschia macowanii  P Su  0.228 0.230 0.253 0.231 0.244 0.240b 

Asteraceae Senecio elegans A H  0.009 0.191 0.447 0.091 0.056 0.196b 

       – Dead plant material O O  0.000 0.195 0.223 0.095 0.155 0.167 

       – Seedlings O O  0.000 0.541 0.011 0.000 0.000 0.138 

Fabaceae Psoralea repens  P S  0.000 0.068 0.195 0.141 0.113 0.129 

Asteraceae Felicia hyssopifolia P S  0.000 0.129 0.126 0.104 0.101 0.115 

Restionaceae Thamnochortus spicigerus
# P R  0.009 0.111 0.117 0.113 0.117 0.114 
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Table 2.1 continued          

Family Plant species 
Plant Growth Su Au Wi Sp Su Au Total 

type form 1999 1999 1999 1999 2000 2000 RCI 

Asteraceae Trichogyne verticillata  A H  0.215 0.000 0.198 0.100 0.104 0.100 

Plumbaginaceae Afrolimon purpuratum
# P S  0.078 0.074 0.087 0.085 0.078 0.081 

Rosaceae Cliffortia filifolia
# P S  0.000 0.065 0.070 0.073 0.071 0.070c 

Asteraceae Stoebe sp. P S  0.000 0.000 0.067 0.086 0.109 0.066c 

Asteraceae Oncosiphon suffruticosum  A H  0.035 0.000 0.114 0.077 0.068 0.065c 

Solanaceae Lycium tetrandrum
# P S  0.015 0.053 0.041 0.039 0.029 0.041c 

Thymelaeaceae Passerina corymbosa
# P S  0.008 0.035 0.037 0.040 0.032 0.036c 

Geraniaceae Geranium incanum
# P H  0.091 0.022 0.030 0.048 0.038 0.034c 

Celastraceae Gymnosporia buxifolia
# P S  0.000 0.020 0.024 0.028 0.024 0.024c 

Cyperaceae Ficinia nigrescens
# P C  0.013 0.023 0.022 0.025 0.024 0.024c 

Asteraceae Chrysanthemoides monilifera
# P S  0.013 0.018 0.020 0.016 0.018 0.018c 

Apiaceae Stoibrax capense A H  0.000 0.000 0.054 0.000 0.000 0.013c 

Asteraceae Senecio burchellii P S  0.000 0.021 0.019 0.006 0.000 0.011c 

Solanaceae Lycium sp. 1 P S  0.000 0.043 0.000 0.000 0.000 0.011c 

Asparagaceae Asparagus rubicundus P S  0.000 0.017 0.011 0.000 0.005 0.008c 

Lamiaceae Ballota africana
# P H  0.000 0.012 0.007 0.005 0.005 0.007c 

Fumariceae Cysticapnos vesicaria A H  0.000 0.000 0.023 0.000 0.000 0.006c 

Aizoaceae Conicosia pugioniformis  P Su  0.000 0.006 0.015 0.000 0.000 0.005c 

Santalaceae Osyris compressa
# P Pa  0.000 0.004 0.004 0.006 0.005 0.005c 

Zygophyllaceae Zygophyllum flexuosum
# P S  0.000 0.002 0.007 0.006 0.002 0.004c 

Rhamnaceae Phylica thunbergiana
# P S  0.004 0.002 0.003 0.003 0.002 0.002c 

Gentianaceae Chironia baccifera
# P S  0.001 0.005 0.000 0.002 0.000 0.002c 

Chenopodiaceae Manochlamys albicans
# P S  0.004 0.000 0.004 0.000 0.000 0.001c 

Santalaceae Thesidium sp.# P Pa  0.000 0.002 0.000 0.002 0.000 0.001c 

Geraniaceae Pelargonium sp.# A H  0.000 0.000 0.003 0.000 0.000 0.001c 

Loranthaceae Septulina glauca
# P Pa  0.000 0.003 0.000 0.000 0.000 0.001c 

Fabaceae Trifolium burchellianum
# P H  0.000 0.000 0.002 0.000 0.000 0.001c 

Santalaceae Osyris sp.# P Pa  0.000 0.000 0.000 0.000 0.002 0.000c 

Solanaceae Lycium sp. 2# P S  0.016 0.000 0.000 0.000 0.000 0.000c 

Asparagaceae Asparagus lignosus
# P S  0.006 0.000 0.000 0.000 0.000 0.000c 

Anacardiaceae Rhus glauca
# P S   0.002 0.000 0.000 0.000 0.000 0.000c 
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2.4.4 Species diversity 

In the WCNP, species richness in combined quadrats increased 20% from 30 species 

in autumn to 36 species in spring, with quadrat two consistently having a higher 

richness than quadrat one. Although DI had few species, richness increased from two 

species in autumn to six species in spring (200% increase), with minor differences 

occurring between quadrats (Fig. 2.3a). 

   

Species diversities at both sites varied considerably among seasons (Fig. 2.3b). In the 

WCNP, the Shannon-Wiener index varied more than the Simpson’s index, indicating 

season affected rare species more than it affected common species. Species diversity 

differed among seasons (P < 0.001), except between summer and autumn 2000. The 

highest diversity was recorded in spring (H' and D'), corresponding with high species 

richness in this season. Diversities in quadrat two were higher than diversities in 

quadrat one in every season (P << 0.001). Dassen Island had significantly lower 

diversity indices than the WCNP had (P << 0.001), and seasonal fluctuations were 

greater than in the WCNP (Fig. 3b). In DI, species diversity differed among all seasons 

(P << 0.001) and was highest in winter. The diversity index was low in autumn when I 

recorded only two species. Both quadrats on DI contained few plant species, but the 

diversity indices for the quadrats differed in four of the five seasons (P < 0.05); in 

spring 1999, the quadrats had similar diversities. 

  

Species evenness in the WCNP showed smaller changes among seasons compared to 

wide fluctuations in evenness on DI (Fig. 2.3c). Evenness in the WCNP remained high 

in summer and autumn 2000, although richness and diversity decreased after spring. 

On DI, evenness increased sharply from summer to autumn 1999. This high value in 

autumn corresponded with the lowest richness and diversities for DI.   
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Figure 2.3  (A) Seasonal changes in species richness of quadrats (1, 2 and combined) 

at the West Coast National Park (WP) and Dassen Island (DI). (B) The Shannon-

Wiener (H') and Simpson’s (D') diversity indices, and (C) the Shannon-Wiener 

evenness index (J') were calculated for combined quadrats (N = 768), except for WP in 

autumn 1999 (N = 384).   
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2.4.5 Major growth forms 

Succulents and herbs were present at both sites (Fig. 2.4, Table 2.1), but their total 

RCI over an annual cycle were higher on DI than in the WCNP (all P < 10-5). 

Succulents were the dominant growth form on DI (P < 10-5) but herb RCI were elevated 

in winter and spring (P < 10-5). Although succulents had a higher RCI in quadrat two (P 

< 0.01), herb cover did not differ between the quadrats. Non-succulent shrubs, restios 

and grasses were not available on DI quadrats, although I observed small amounts of 

grasses outside the quadrats. 

 

A variety of growth forms was present at the WCNP (Fig. 2.4, Table 2.1). Over an 

annual cycle, shrubs had the highest RCI, followed by grasses, succulents, herbs, 

restios and parasitic plants (P < 10-5, all SNK post hoc results P < 0.05). Seasonal 

changes in RCI were prominent for herbs, grasses, shrubs and succulents (all P < 10-

5), but the RCI for restios and parasitic plants did not change seasonally. The RCI for 

herbs increased in spring, while succulent RCI was highest in autumn. The shift in 

importance of shrubs and grasses between autumn 1999 and autumn 2000 can be 

explained in part by the higher grass and lower shrub composition of quadrat one 

compared to quadrat two (both P < 10-5); quadrat one was the only quadrat surveyed in 

autumn 1999. Nevertheless, grass RCI decreased over time in quadrats one (five 

seasons) and two (four seasons), while the RCI for shrubs increased in both quadrats. 

It thus appears if the overall importance of shrubs increased in the landscape, while the 

importance of grasses decreased. Quadrats in the WCNP also differed in levels of 

succulents (P < 10-5, higher in quadrat one) and restios (P < 10-5, higher in quadrat 

two), but not for herbs or parasitic plants. 
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Figure 2.4  Seasonal changes in the relative cover indices (RCI) of major growth forms 

at Dassen Island (A) and the West Coast National Park (B). Seasonal values are for 

two quadrats (N = 768), except for autumn 1999 (N = 384) at the West Coast National 

Park. The restio RCI include the sedge RCI. Mean RCI for parasitic plants at the West 

Coast National Park is not indicated. 
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Dassen Island and the WCNP contrasted dramatically in their levels of annuals and 

perennials. Dassen Island had a higher RCI for annuals and a lower RCI for perennials 

than the WCNP had (both P < 10-5; Fig. 2.5). On DI, annuals made a larger contribution 

to total cover than perennials (P < 10-5), but quadrats also differed in composition. 

Compared to quadrat two, quadrat one had a higher RCI for annuals and a lower RCI 

for perennials (both P < 10-5). Season affected annuals and perennials (both P < 10-5) 

on DI, with high spring and winter values for annuals, and high summer values for 

perennials. 

  

Perennials were the dominant plant type in the WCNP (P < 10-5), with a higher RCI for 

quadrat two than for quadrat one (P < 10-5). The RCI for annuals did not differ between 

the quadrats. At the WCNP, I detected seasonal changes in RCI for perennials and 

annuals (both P < 10-5). The RCI for perennials was high in spring (mainly quadrat one) 

and autumn (mainly quadrat two), while summer had the lowest RCI. Annual RCI was 

highest in spring for both quadrats, but were lowest in winter for quadrat one, and in 

autumn for quadrat two.   

 

 

 

 

Figure 2.5  Seasonal changes in mean relative cover index for annual (Ann) and 

perennial (Per) plants at Dassen Island (DI) and the West Coast National Park (WP). 

Seasonal values are for two quadrats (N = 768), except for West Coast National Park 

in autumn 1999 (N = 384). 
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2.5 DISCUSSION 

2.5.1 Vegetation types 

The WCNP has strong winter rainfall and is located in fynbos/thicket mosaic habitat 

(Cowling & Heijnis 2001), previously categorised as strandveld or dune thicket. The 

WCNP site contained open to dense scrub vegetation, interspersed with dense patches 

of the restioid, Thamnochortus spicigerus. Non-succulent shrubs (41% of total RCI) 

and grasses (29%) formed the dominant vegetation throughout the year. Asteraceous 

fynbos elements (Cowling et al. 1997) were conspicuous in the landscape (e.g., Felicia 

hyssopifolia, Cliffortia filifolia, Passerina corymbosa), but thicket obligate resprouters 

(e.g., Anacardiaceae and Celastraceae) contributed 13% to the cover. The most 

speciose families, Asteraceae and Aizoaceae, each contributed 20% to annual RCI. 

Fynbos elements at the site best fit the asteraceous fynbos community, which is 

differentiated by a high cover of non-ericaceous ericoids, may have a high grass cover, 

and occupies the driest fynbos sites (Cowling et al. 1997). Boucher & Jarman (1977) 

described 20 terrestrial plant communities near the Langebaan Lagoon. Although the 

quadrats contained elements of dune sands communities (Thamnochortus spicigerus 

restioid herbland, Didelta-Psoralea open grassland, Hermannia pinnata dwarf 

succulent shrubland), the study site did not fit the description of any particular 

community. The quadrats were larger than, but not as numerous and widespread as, 

those of Boucher & Jarman (1977). 

  

In certain regions of strandveld, succulents are more prevalent and strandveld blends 

into the Succulent karoo (Acocks 1988). However, disturbance and drier soils can also 

increase the prevalence of succulent vegetation. The degradation of West Coast 

Strandveld results in a change of scrub dominance to succulents, perennial herbs, and 

finally a dominance by annuals (Boucher 1981). Before the WCNP was proclaimed in 

1985, Abrahamskraal was used mainly for hunting and grazing (Schaefer & Schaefer 

1993) and remained relatively undisturbed. However, between 1989 and 1991 an 

artificial vlei was constructed near quadrat one (S. Yssel, SANP, pers. comm.), 

disturbing surrounding vegetation. Succulents contributed 20% to plant cover at 

Abrahamskraal but were more prevalent in quadrat one than quadrat two. Additionally, 

quadrat one had a lower cover for non-succulent shrubs and perennials, and lower 

species richness and diversity than that of quadrat two. Although differences between 

quadrats may represent natural landscape heterogeneity, it appears if recent 

anthropogenic disturbance contributed to these differences. 
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The vegetation at DI showed little similarity to the fynbos/thicket mosaic vegetation of 

the WCNP. Only two species occurred at both sites and DI had lower species richness 

and diversity than did the WCNP. When DI became separated from the mainland, 

increased salt levels, colonisation by seabirds, and isolation from the mainland would 

have changed the flora and fauna (Brooke & Crowe 1982). Human exploitation 

exacerbated these changes, and the present ecological state of the island is probably 

of recent formation (Brooke & Crowe 1982). Continental islands have different species 

compositions from that of adjacent mainlands, and the diversity on islands increases 

with increasing island size (Gilbert 1980). Distance from the coast had no effect on the 

species richness of 15 continental islands, including DI, off the southwestern coast of 

South Africa (Brooke & Crowe 1982). However, species richness increased 

significantly with the size of the island; DI, the largest island, had more species, 

including plant species, than the smaller islands. The results show that species 

richness and diversity on DI were significantly lower than that on the adjacent mainland 

and that vegetation composition differed between DI and the WCNP. Due to the 

sampling method, species richness for both sites was underestimated. However, since 

both sites were sampled in a similar manner, comparisons between sites are valid. 

 

Hurford (1996) identified three perennial and 29 ephemeral plant species at DI and 

found that 59% of the species are plants that thrive in disturbed areas. The high 

proportion of ephemeral plants, low species richness, and few growth forms relative to 

the mainland, indicate the strong effect of disturbance on DI vegetation. A dense 

perennial cover excludes annual species, but annual plants become established when 

disturbance prevents the formation of a dense perennial cover (Yeaton et al. 1993). 

Burrowing activity of animals reduces perennial cover and advances the establishment 

of annuals (Dean & Milton 1991). On DI, African penguins (Spheniscus demersus) 

often dig nests underneath the most abundant perennial species, Tetragonia fruticosa 

(pers. obs.). Additionally, the introduced European rabbit (Oryctolagus cuniculus) 

reached high densities on DI and their digging for food and shelter disturbs the 

environment (Hurford 1996). The activities of these species probably contribute to the 

high incidence of annuals on DI. The combined effects of island biogeography and the 

high level of past and present disturbance on DI probably account for the depauperate 

flora and prevalence of annual plants in this community.  

 

2.5.2 Seasonal effects 

Strong winter rainfall and summer aridity characterise the Mediterranean climate of DI 

and the WCNP. The DI climate is milder, with higher annual rainfall and less extreme 
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seasonal fluctuations in temperature than the WCNP climate. Both sites showed 

pronounced seasonal effects on plant cover, condition, species richness and diversity. 

A general trend was that the first rains in autumn stimulated plant growth, and 

sustained rain through winter and spring culminated in the highest species richness 

and total plant cover in spring. There were, however, subtle differences between the 

timing of events at the sites. These differences could be ascribed to different climate 

regimes. 

 

At DI, species diversity and the RCI for herbs and annuals were high in winter, while 

these parameters peaked during spring in the WCNP. Although autumn rains 

commenced at the same time at the two sites, maximum temperatures in the WCNP 

were on average 4–8°C higher than on DI during autumn and early winter. Higher 

temperatures would increase evaporation potential and reduce the amount of water 

available to plants. The different thermal regimes might thus explain why plants at DI 

responded quicker to rainfall and showed earlier RCI peaks than in the WCNP. 

However, species-specific phenologies might have also contributed to different timings 

recorded at the sites. 

 

Total plant cover and perennial plant cover in the WCNP were highest in spring and 

decreased substantially in summer. In contrast, perennial cover at DI increased from 

winter through spring to reach maximum values in summer. Additionally, total plant 

cover on DI remained relatively high in summer, although summer cover was lower 

than values in spring and the preceding winter. Rainfall at both sites was low in late 

spring and summer. However, lower temperatures at DI compared to the WCNP, would 

have caused a lower evaporation potential, which may have allowed plants to extend 

cover and condition over a longer period than possible in the WCNP. These results 

should be interpreted cautiously since the two sites did not have a similar species 

composition. The perennial contributing most to summer cover at DI was a succulent 

(Tetragonia fruticosa). Succulent cover in the WCNP showed minor seasonal 

fluctuations (although statistically significant), with the highest RCI in autumn, at the 

end of the dry season. 

  

Despite the milder climate of DI, plant cover was always lower than at the WCNP; large 

areas on DI resembled a barren landscape towards the end of the dry season. 

Seasonal fluctuations for most plant categories were larger on DI relative to fluctuations 

at the WCNP. I ascribe these differences to the different plant composition of the sites 

– the highly ephemeral composition of DI versus the predominantly perennial 
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composition in the WCNP. The perennial component at the WCNP was more resilient 

to large environmental fluctuations and provided greater stability to the plant 

community. The more stable community in the WCNP supports a great variety of 

herbivores, from small reptiles to large mammals and birds.   

 

2.5.3 Angulate tortoises 

It seems an anomaly that the depauperate and highly unstable ecosystem at DI 

supports a higher angulate tortoise density than the WCNP (M.D. Hofmeyr, unpubl. 

data). Important considerations include apparently lower predation pressure on DI than 

in the WCNP (pers. obs.), and that competition with the diverse herbivore fauna in the 

WCNP might limit the density of angulate tortoises. 

 

Apart from angulate tortoises, European rabbits are the only significant herbivore on DI. 

Their high endothermic metabolic demands require the availability of food throughout 

the year. Consequently, the rabbit population on DI regularly experiences high mortality 

in late summer and autumn (pers. obs.). Being ectotherms, tortoises have low 

metabolic requirements. During unfavourable periods, angulate tortoises seek shelter 

and can remain inactive for extended periods (Ramsay et al. 2002), probably 

sustaining their low metabolic needs with stored resources (Henen 1997). Mild 

temperature maxima and minima at DI provide a favourable climate for tortoise activity 

(Ramsay et al. 2002) and probably contribute to high tortoise densities on DI. Less 

extreme temperatures at DI also allow angulate tortoises to tolerate lower plant cover; 

WCNP tortoises would need greater cover to escape the higher temperature maxima of 

the WCNP. Herbs and annuals are preferred food of angulate tortoises (see Chapters 

3, 4 and 5) and these items are available for longer periods on DI than in the WCNP. I 

thus ascribe the high density of angulate tortoises on DI to the favourable temperature 

regime, the availability of annuals and herbs over several seasons and the low level of 

predation on the island. Despite the low plant diversity on DI, the island apparently 

offers the critical resources that angulate tortoises require. 
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3 ACTIVITY PATTERNS AND FEEDING OBSERVATIONS 

 

 

3.1 ABSTRACT 

Angulate tortoises have a wide distribution along the southern and western coasts of 

South Africa, but little information exists on the food requirements of the species over 

its range. I used focal observations to study the diet of angulate tortoises over four 

seasons at two sites in the southwestern Cape, the West Coast National Park (WCNP) 

and Dassen Island (DI). Seasonal fluctuations in temperature, rainfall and the 

availability of food plants influenced the activity pattern and feeding activity of angulate 

tortoises. Activity levels were higher during the wet season, winter and spring, than 

during the dry season, summer and autumn. The composition of the diet differed 

between the study sites and among seasons. Tortoises in the WCNP had a diverse 

diet, which included grasses, shrubs, herbs and succulents, whereas herbaceous 

plants formed the bulk of the tortoises’ diet on DI. At both sites, herbs and seedlings 

were important diet components during the wet season, whereas the dry season’s diet 

consisted largely of dry plant material. Angulate tortoises on DI supplemented their 

intake of dry plant material with rabbit faecal pellets, which contributed more than 27% 

to the composition of their diet in summer and autumn. 
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3.2 INTRODUCTION 

Food is a primary resource of animals, and food availability affects fecundity and 

survivorship (Caughley & Sinclair 1994). Understanding the food requirements of 

organisms is thus of critical importance in wildlife management (Litvaitis 2000). The 

quality and availability of plant species change seasonally, and the food requirement of 

herbivores may change across seasons (Gibson & Hamilton 1983; Caughley & Sinclair 

1994). Two methods that are often used to study food habits of animals include direct 

observations of individuals, and the identification of food remnants in the animals’ 

faeces.  

 

Direct observation is a simple non-invasive procedure for determining an animal’s diet 

(Holechek et al. 1982). Through direct observation, individual animals or groups are 

observed as they forage during their normal daily activities. It is critical, however, that 

the presence of the observer does not influence the animals’ natural activities. The 

accuracy of the feeding records increases with the degree to how tame the animal is 

(Holechek et al. 1982). In general, tortoises are shy animals that are easily disturbed 

when being approached. The endangered geometric tortoise (Psammobates 

geometricus) is an example of a cryptic, easily startled tortoise, which is why little 

information is available on the diet of these animals (Balsamo et al. 2004). Directly 

observing shy animals can be difficult, but not impossible. The speckled padloper 

(Homopus signatus signatus) is one of the world’s smallest tortoises and in the past 

very little was known about its dietary requirements. By directly observing feeding 

tortoises, Loehr (2002) reported that speckled padlopers consume a variety of herbs, 

shrubs, succulent plants and grasses.  

 

To further increase the reliability of feeding observations, scientists have evaluated the 

vegetation in the animals’ habitat before they do feeding observations. Scientists 

studying the feeding ecology of the giant tortoises on the Aldabra Atoll recorded the 

plants that tortoises consume only in transects where, prior to the study, the vegetation 

had been surveyed extensively for over a year (Gibson & Hamilton 1983). This reduced 

the chances of misidentifying plants consumed by tortoises. Giant tortoises on the 

Aldabra Atoll were thus identified as being selective feeders, preferring to consume 

tortoise turf, herbs, and long grasses (Gibson & Hamilton 1983). 

 

The angulate tortoise, Chersina angulata, is found in southern and western South 

Africa and on several continental islands off the southwestern coast (Branch 1989; 
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Boycott & Bourquin 2000). Angulate tortoises can reach high densities in West Coast 

Strandveld while partial clearance of Thicket vegetation in the Eastern Cape 

dramatically increases angulate tortoise densities (Branch 1989). The density of 

angulate tortoises is low in Coastal Fynbos, Renosterveld, the Succulent Karoo and 

Nama Karoo (Branch 1989; Baard 1994; Boycott & Bourquin 2000), but it is not clear 

which factors influence the density of C. angulata over its range.  

 

The distribution of C. angulata spans several vegetation types in the Fynbos and 

Succulent Karoo biomes, indicating that this species may not require a specialised diet 

(Boycott & Bourquin 2000). In the Eastern Cape, grasses and annuals are important in 

the diet of C. angulata (Els 1989), but no information exists on the feeding ecology of 

C. angulata in the vegetation types of the Western Cape. This chapter evaluates 

seasonal changes in the diet of C. angulata at two study sites, with different vegetation 

communities, in the southwestern Cape. The results reported here were obtained 

through direct focal observations. 

 

 

3.3 MATERIALS AND METHODS 

3.3.1 Study sites  

I studied the feeding ecology of C. angulata at Abrahamskraal in the West Coast 

National Park (WCNP, 30 000 ha, 33°13’S, 18°09’E) and at Dassen Island (DI, 222 ha, 

33°25’S, 18°06’E) from March 1999 to February 2000. Both sites have a Mediterranean 

climate with hot, dry summers and cool, wet winters, but temperature fluctuations on DI 

are less extreme and DI rainfall is higher than in the WCNP (Joshua et al. 2005; see 

Fig. 2.1 in Chapter 2). Shrubs and grasses dominate the diverse vegetation of the 

WCNP, whereas the depauperate vegetation of DI is highly ephemeral (Joshua et al. 

2005; see Chapter 2). The ephemeral vegetation of DI caused larger changes in plant 

cover on DI relative to that in the WCNP (Fig. 3.1), which has less ephemeral 

vegetation (Chapter 2). Nevertheless, angulate tortoise density on DI is approximately 

five to eight times higher than in the WCNP (M.D. Hofmeyr, unpubl. data). 
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WCNP – Wet season 

 

 

WCNP – Dry season 

 

 

DI – Wet season 

 

DI – Dry season 

 

Figure 3.1  The condition of the vegetation in the study quadrats during the wet and 

dry seasons, respectively, in the West Coast National Park (WCNP) and on Dassen 

Island (DI). The vegetation in the WCNP was predominantly perennial, with high plant 

cover throughout the year, whereas the vegetation on DI was predominantly 

ephemeral, and the plant cover fluctuated widely between the wet and dry seasons.   
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3.3.2 Feeding observations 

I used two methods to record the feeding activity of C. angulata in the WCNP and at DI 

over four consecutive seasons (Table 3.1).  

 

(a) Quadrat scans 

Each season, two to four observers thoroughly searched the study quadrats (total area 

= 2 ha per site; see Chapter 2) for tortoises and recorded the behaviour of each 

tortoise encountered. A tortoise was categorised as “Inactive” when the tortoise was in 

a refuge under vegetation, with the head and appendages withdrawn into the shell. All 

tortoises that were stationary but not withdrawn into their shells were considered active, 

and categorised as “Immobile”. This category could include tortoises that were resting 

after activity, tortoises that froze their activity after they became aware of an observer, 

and tortoises that were basking. These tortoises could be in the open or in partial 

cover. Angulate tortoises often bask while in the cover of vegetation (Keswick et al. 

2006; pers. obs.) and it was not always possible to distinguish basking from other 

stationary conditions. The other four categories described the active behaviours: 

“Walking”, “Feeding”, “Drinking” and “Socialising” (courtship and fighting behaviours). 

 

(b) Focal observations 

During each season (Table 3.1), I searched in and around the study quadrats for active 

tortoises and used binoculars to observe their behaviour from a distance of 

approximately 10 to 20 m. When a tortoise was feeding, I first tried to identify the food 

item through the binoculars, but if this was not possible, I approached the tortoise and 

collected the food item for later identification. I noted what items the tortoises ate, but 

could not accurately and consistently count the number of bites or the relative size of 

bites (small, medium or large) during most feeding observations. Consequently, bite 

counts were variable and unreliable, and not used in the calculations. The high tortoise 

density at DI made it relatively easy to find active tortoises, but random searching was 

not effective in the WCNP. Consequently, I marked the resting position of 

approximately four to eight tortoises per day, at sunrise or sunset, for subsequent 

observation.  
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Table 3.1  Dates and duration of quadrat scans and focal observations at Dassen 

Island (DI) and the West Coast National Park (WCNP). 

 

 Autumn Winter Spring Summer 

DI 

Month Mar-1999 Jul-1999 Sep-1999 Jan-2000 

Scans (days) 3 4 4 3 

Scans (man-hours) 50.94 37.26 49.54 40.76 

Focals (days) 5 7 4 6 

Focals (man-hours) 17.75 44.25 24.73 59.25 

WCNP 

Month Apr-1999 Aug-1999 Oct-1999 Feb-2000 

Scans (days) 2 4 3 2 

Scans (man-hours) 27.40 38.60 25.93 24.50 

Focals (days) 9 3 4 5 

Focals (man-hours) 48.67 20.73 24.53 41.58 

 

 

 

3.3.3 Data analyses 

3.3.3.1 Feeding observations 

Where possible, food plants were identified to the species level for fresh and dry plant 

material. In many instances, it was not possible to identify individual grass species, 

particularly small annual grasses, thus I treated grass as one taxonomic category. I 

could not identify the seedlings that the tortoises consumed and treated seedlings as a 

specific category. On DI, the tortoises ate moss species, which often grew among the 

seedlings, and the few feeding records for moss were grouped in the seedlings 

category. Because plant debris may form an important component of the diet in some 

seasons, I divided unidentified (UI) plant material into fresh and dry plant material.  

 

To compare the results of the focal studies with results obtained through faecal 

analyses (see Chapters 4 and 5), I analysed feeding records on a presence-absence 

basis (MacDonald & Mushinsky 1988). One feeding record consisted of an observation 

of an individual consuming a particular food species, irrespective of how many bites 

were taken or how long the tortoise fed on that plant. If the tortoise took bites from 

different plants of the same species, it was still counted as a single feeding record. Two 
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feeding records for the same individual thus meant that the tortoise consumed material 

from two different plant species.  

 

I used the feeding records to calculate (a) the percent frequency with which tortoises 

selected various plant species or food categories (percent occurrence) and (b) the 

percent contribution that these categories made to the diet  (percent composition) in 

each season (MacDonald & Mushinsky 1988; Cox 1996). Percent occurrence for a 

plant taxon was calculated as the number of tortoises using that taxon relative to the 

total number of tortoises observed feeding during that particular season. Percent 

occurrence thus provides an index of how commonly a particular food item was used 

by individuals in the population. In contrast, percent composition provides an index of 

the relative importance of a specific food item in the diet of the tortoises. Percent 

composition was calculated as the number of observations for a food item divided by 

the total number of feeding observations recorded for that season (MacDonald & 

Mushinsky 1988; Cox 1996). For example, if 10 tortoises feed on three different plant 

species, and 10 individuals consumed species A, 5 individuals consumed species B, 

and 2 individuals consumed species C, the percent occurrence for species A, B and C 

would be 100%, 50%, and 20% respectively. The contribution of species A to percent 

composition would be 59% (i.e., 10 records relative to 17 feeding observations), 

whereas the percent contribution for species B and C would be 29% and 12%, 

respectively. 

 

3.3.3.2 Growth forms 

The plant species eaten at the two sites were grouped into six major growth forms: 

grasses, succulents, non-succulent herbs, non-succulent shrubs, seedlings and UI 

plant material. In the WCNP, the summer records for Myoporum serratum, a tree, were 

included with the records for shrubs. Some of the growth forms contained fresh and dry 

plant material. I used the same principles as described before when calculating percent 

composition and occurrence for growth forms, and expressed percent composition of 

growth forms relative to all diet items.  

 

3.3.3.3 Statistical analyses 

Statistical tests were done with SigmaStat 2.03 (SPSS Inc., Chicago, U.S.A.) and all 

tests were considered significant at P ≤ 0.05. I used contingency table analyses to test 

for differences in behaviour, and for differences in the frequencies of dietary food types, 

between sites and among seasons. Because all behavioural categories, except for 
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“Inactive” and “Immobile” had low frequencies, I combined all active behaviours into a 

single category and used only two categories (“Inactive” and “Active”) in the 

contingency table analyses. Yates’ corrections were applied when degrees of freedom 

equalled one. I followed the guidelines of Zar (1999) to test for bias in Chi-square 

contingency table analyses and tested the average expected frequency with the 

equation n / (rc), where n is the total records, r is the number of rows and c is the 

number of columns. Whenever I did multiple univariate tests, I applied the Bonferroni 

procedure to adjust the significance level in the family of tests across which the Type I 

error rate had to be controlled (Quinn & Keough 2002).  

 

A two-way analysis of variance (ANOVA), followed by the Student-Newman-Keuls post 

hoc test, was used to determine the effects of site and season on the number of man-

hours required during focal observations.  

 

 

3.4 RESULTS 

3.4.1 Tortoise behaviour 

The most frequent behaviour of angulate tortoises during all seasons, except during 

spring at DI, was to be withdrawn into their shells (Inactive, Table 3.2). Being immobile 

was the second most frequent behaviour, and during spring, more than 50% of the 

tortoises on DI displayed this behaviour. The frequencies for the other four categories 

were very low, and no tortoise at the WCNP was found feeding, drinking or socialising 

during the quadrat scans. 

 

The frequencies of inactive (withdrawn) and active behaviour (Table 3.2) differed 

significantly among the four seasons for tortoises on DI (χ2
3 = 413.69; P < 0.0001) and 

in the WCNP (χ2
3 = 12.86; P = 0.00495). A P value of 0.00833 was required 

(Bonferroni procedure) when testing for significant difference between specific 

seasons. Using these guidelines, the frequencies of active and inactive behaviour on 

DI did not differ between autumn and summer, but differed among all other seasons (all 

χ
2
1 > 65.82; P < 0.0001). The only difference recorded for the WCNP was between 

autumn and summer (χ2
1 = 9.17; P = 0.0025).  
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Table 3.2  Behaviour frequencies of Chersina angulata on Dassen Island (DI) and in 

the West Coast National Park (WCNP), expressed as a percentage of the total number 

of observations (N) recorded when the study quadrats (2 ha) were scanned. 

 

 Autumn Winter Spring Summer 

DI (N =) 316 329 374 365 

Inactive 95.3 70.8 39.9 97.3 

Active 4.7 29.2 60.1 2.7 

     Immobile 2.8 25.5 50.4 0.5 

     Walking 1.9 2.7 7.0 1.6 

     Feeding 0.0 0.3 0.3 0.0 

     Drinking 0.0 0.0 0.8 0.0 

     Socialising 0.0 0.6 1.6 0.5 

WCNP (N =) 53 83 106 55 

Inactive 77.4 91.6 88.7 98.2 

Active 22.6 8.4 11.3 1.8 

     Immobile 18.9 8.4 10.4 1.8 

     Walking 3.8 0.0 0.9 0.0 

     Feeding 0.0 0.0 0.0 0.0 

     Drinking 0.0 0.0 0.0 0.0 

     Socialising 0.0 0.0 0.0 0.0 

 

 

 

When testing for differences in activity levels between the WCNP and DI, the 

Bonferroni procedure indicated that a significance level of P = 0.0125 was required. 

There was no difference between the activity levels of angulate tortoises in the WCNP 

and DI during summer, but the activity levels differed in all other seasons (all χ
2
1 > 

14.13; P < 0.00017; Table 3.2).  

 

During summer, nearly all the tortoises in the quadrats were inactive and withdrawn 

into their shells (Table 3.2), necessitating longer man-hours to find feeding tortoises 

during focal observations (Table 3.3). The effort required to find feeding tortoises 

differed significantly among seasons (F3,7 = 118.96; P = 0.00129) and the effort 
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required in summer was higher than in all other seasons (all P < 0.002). At DI, the 

number of man-hours per feeding tortoise increased by more than an order of 

magnitude from spring to summer. More man-hours were also required to find feeding 

tortoises in the WCNP than on DI (F1,7 = 75.15; P = 0.00323). 

 

 

Table 3.3  The number of man-hours required per feeding tortoise when doing focal 

observations on Dassen Island (DI) and in the West Coast National Park (WCNP). 

 

  Autumn Winter Spring Summer 

DI 0.77 1.16 0.35 4.94 

WCNP 2.70 2.30 2.23 6.93 

 

 

 

 

3.4.2 Feeding observations 

More feeding observations were made on DI (226) than in the WCNP (72), and at both 

sites, the lowest number of tortoises feeding was recorded during summer, when 

search effort  (man-hours) was highest. There was no difference in the number of diet 

items (i.e., species or categories) recorded during the four seasons at the two study 

sites (χ2
3 = 1.84; P = 0.606; Tables 3.4 and 3.5).  

 

On DI, Trachyandra divaricata and faeces of the European rabbit, Oryctolagus 

cuniculus, formed part of the diet of angulate tortoises throughout the year (Table 3.4). 

Although T. divaricata is a perennial, little fresh material was available during the 

summer and autumn months of the study.  Nevertheless, the dry leaves and flower 

stalks of T. divaricata contributed 28% and 47%, respectively, to the tortoises’ diet 

during summer and autumn. Rabbit faeces contributed more than 27% to the 

composition of the diet in summer and autumn. Most of the tortoises consumed 

seedlings (and moss) in winter and spring, and this food source comprised nearly 58% 

of the spring diet. Seedlings made the largest contribution to the diet overall, followed 

by T. divaricata and rabbits’ faeces (Table 3.4).  
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Table 3.4  Percent composition (occurrence) of Chersina angulata’s diet on Dassen 

Island based on focal observations. The N values represent the number of tortoises 

observed, followed by the number of objects seen eaten. 

 

  Autumn Winter Spring Summer  Totals 

  N  = 23, 34 N  = 38, 77 N  = 70, 97 N  = 12, 18 N  = 143, 226 

Albuca flaccida  3.90(7.89) 7.22(10.00)  4.42(6.99) 

Cystocapnos vesicaria   4.12(5.71)  1.77(2.80) 

Grass  2.60(5.26) 1.03(1.43)  1.33(2.10) 

Mesembryanthemum crystallinum  6.49(13.16) 4.12(5.71)  3.98(6.29) 

Oxalis pes-caprae  1.30(2.63)   0.44(0.70) 

Seedlings and moss  36.36(73.68) 57.73(80.00)  37.17(58.74) 

Senecio elegans  5.19(10.53) 2.06(2.86) 5.56(8.33) 3.10(4.90) 

Tetragonia fruticosa 8.82(13.04) 2.60(5.26)   2.21(3.50) 

Trachyandra divaricata 
#47.06(69.57) 15.58(31.58) 10.31(14.29) #27.78(41.67) 19.03(30.07) 

Urtica urens  2.60(5.26) 4.12(5.71)  2.65(4.20) 

Total UI plant material 11.76(17.39) 18.18(36.84) 6.19(8.57) 38.89(58.33) 13.72(21.68) 

     Dry plant material 11.76(17.39)  1.03(1.43) 5.56(8.33) 2.65(4.20) 

     Fresh plant material  18.18(36.84) 5.16(7.14) 22.22(33.33) 10.18(16.08) 

     Unknown bulb    11.11(16.67) 0.88(1.40) 

Total animal material 32.35(47.83) 5.19(10.53) 3.09(4.29) 27.78(41.67) 10.18(16.08) 

     Rabbit faeces 29.41(43.48) 5.19(10.53) 3.09(4.29) 27.78(41.67) 9.73(15.38) 

     Snail shell 2.94(4.35)       0.44(0.70) 

Number of diet items recorded 5 11 11 6 15 

#Feeding observations of T. divaricata in autumn and summer were of dried leaves and stems, in contrast 

with the fresh material that was eaten in winter and spring.  

There were incidental observations of foraging on Cotula sp. and Myoporum serratum but not during 

formal focal observations. 
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Table 3.5  Percent composition (occurrence) of Chersina angulata diet in the West 

Coast National Park based on focal observations. The N values represent the number 

of tortoises observed, followed by the number of objects seen eaten. 

 

  Autumn Winter Spring Summer Totals 

  N = 18, 27 N = 9, 16 N = 11, 20 N = 6, 9 N = 44, 72 

Apocynaceae  6.25(11.11)   1.39(2.27) 

Carpobrotus edulis 3.70(5.56)    1.39(2.27) 

Geranium incanum 3.70(5.56)    1.39(2.27) 

Grass 18.52(27.78) 12.5(22.22) 5.00(9.09) 11.11(16.67) 12.50(20.45) 

Helichrysum niveum 3.70(5.56)  5.00(9.09)  2.78(4.55) 

Myoporum serratum    22.22(33.33) 2.78(4.55) 

Nylandtia spinosa   5.00(9.09)  1.39(2.27) 

Oncosiphon suffruticosum  6.25(11.11)   1.39(2.27) 

Pelargonium sp. 3.70(5.56) 12.5(22.22) 5.00(9.09)  5.56(9.09) 

Seedlings and moss  25.00(44.44)   5.56(9.09) 

Senecio elegans   5.00(9.09) 11.11(16.67) 2.78(4.55) 

Senecio sp.    5.00(9.09)  1.39(2.27) 

Stoibrax sp.    20.00(36.36)  5.56(9.09) 

Trachyandra sp.   5.00(9.09)  1.39(2.27) 

Total UI plant material 59.26(88.89) 37.50(66.67) 45.00(81.82) 55.56(83.33) 50.00(81.82) 

     Dry plant material 51.85(77.78)  5.00(9.09) 55.56(83.33) 27.78(45.45) 

     Fresh plant material 7.41(11.11) 31.25(55.56) 35.00(63.64)  19.44(31.82) 

     Unknown angiosperm  6.25(11.11)   1.39(2.27) 

     Unknown herb   5.00(9.09)  1.39(2.27) 

Animal material (faeces) 7.41(11.11)       2.78(4.55) 

Number of diet items recorded 8 7 11 4 19 

There were incidental observations of foraging on Tetragonia fruticosa, Trichogyne verticillata, Psoralea 

repens, Trifolium burchellianum, Ruschia macowanii, Oxalis pes-caprae and Hebenstretia repens but not 

during formal focal observations. 
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A large proportion (> 77%) of the tortoises in the WCNP were observed feeding on dry 

plant material during summer and autumn (Table 3.5). There was no feeding record for 

dry plant material in winter, and its contribution to the spring diet was very low. In winter 

and spring, seedlings and Stoibrax sp., respectively, contributed 25% and 20% to the 

season’s diet. The WCNP tortoises consumed grass species in each season while they 

used Pelargonium sp. in three of the four seasons, and Helichrysum niveum and 

Senecio elegans in two different seasons. Overall, dry plant material made the largest 

contribution to the composition of the diet, followed by unidentified fresh plant material 

and grass. Nearly 10% of the tortoises were observed feeding on Pelargonium sp., 

Stoibrax sp. and seedlings. I recorded 19 diet items for angulate tortoises in the WCNP 

with the lowest number being recorded in summer and the highest number in spring 

(Table 3.5). 

 

3.4.3 Growth forms 

The diet of tortoises on DI did not include non-succulent shrub species, and grasses 

made a small contribution to their diet (Fig. 3.2). The contribution of the five plant 

categories (excluding UI plant material) to the tortoises’ diet differed from random in 

each seasons (all χ2
4 > 32.0; P < 0.001). Herbs contributed most to the summer and 

autumn diets, and were the only identified plant type eaten in summer. In winter and 

spring, seedlings made the largest contribution to the diet but the tortoises used herbs 

in each of the four seasons. Overall, seedlings and herbs formed the bulk of angulate 

tortoises’ diet on DI.  

 

The composition of the diet on DI differed significantly between autumn and winter (χ2
4 

= 16.55; P = 0.00236), autumn and spring (χ2
4 = 27.34; P < 0.0001) and between 

spring and summer (χ2
4 = 23.63; P < 0.0001). The probability of the change from winter 

to spring was P = 0.0194, and did not meet the required significance criterion of P < 

0.00833. There were also no differences between autumn and summer, and between 

winter and summer diets.  

 

The tortoises in the WCNP consumed herb and grass species in all seasons, while 

they used shrubs mainly in spring and succulents only in autumn (Fig. 3.3). The 

contribution of the five plant categories (excluding UI plant material) to the tortoises’ 

diet differed from random only in spring (χ2
4 = 13.83; P < 0.05). The five plant 

categories did not contribute equally to the overall diet (χ2
4 = 12.33; P < 0.05); the 

contribution from herbs was higher than the expected frequency (i.e., homogeneous 
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distribution among categories) and the contribution from succulents was lower than the 

expected frequency. Seasonal changes in the composition of the diet in the WCNP did 

not meet the required significance level.  

 

There was a significant difference between the annual (i.e., overall) diets of angulate 

tortoises in the WCNP and on DI (χ2
5 = 91.78; P < 0.0001). The composition of the diet 

at the two sites also differed in autumn and in spring (χ2
5 > 24.0; P < 0.0001), but not in 

winter or summer (P > 0.5).  
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Figure 3.2  Percent composition of the diet of Chersina angulata on Dassen Island 

based on focal observations. Succ and Unid represent succulent plants and 

unidentified plant material, respectively. Other plant categories were non-succulent. 

Mosses were included in the Seedlings category. See Table 3.4 for sample sizes. 
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Figure 3.3  Percent composition of the diet of Chersina angulata in the West Coast 

National Park based on focal observations. Succ and Unid represent succulent plants 

and unidentified plant material, respectively. Other plant categories were non-

succulent. Two records for tree leaves eaten in summer were included with the records 

for shrubs. Mosses were included in the Seedlings category. See Table 3.5 for sample 

sizes. 
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3.5 DISCUSSION 

3.5.1 Activity levels and feeding 

Angulate tortoises appear to maintain a low level of activity through most of the year, 

similar to the low activity levels that have been reported for several other chelonians, 

particularly species from arid regions (e.g., Gopherus agassizii, Nagy & Medica 1986; 

Testudo horsfieldi, Lagarde et al. 2003). Tortoises, being ectothermic animals, 

generate little heat internally and therefore depend on external heat sources to attain 

optimal body temperatures before activity can begin (Walker & Liem 1994; Lagarde et 

al. 2003). Low ambient temperatures thus restrict tortoise activity but high temperatures 

may also elicit a decrease in the level of activity if the tortoises seek cover to prevent 

overheating (Els et al. 1988; Walker & Liem 1994). In addition to the effects of 

temperature, seasonal changes in the availability of water and food influence the 

activity levels in tortoises (Rose & Judd, 1975; Gibson & Hamilton 1983; Henen 1997).  

 

The activity levels of angulate tortoises at both study sites fluctuated with the seasons. 

Activity on DI was at its lowest level during summer and autumn. High temperatures 

and low rainfall (see Fig. 2.1), in combination with low food availability (Fig. 3.1) can 

explain the low activity levels of angulate tortoises during summer and autumn. In the 

WCNP, the activity level of C. angulata was low during summer but not in autumn. 

During autumn 1999, the first autumn rains fell just after fieldwork on DI terminated and 

before fieldwork started in the WCNP. The high autumn activity levels in the WCNP 

thus appear to be a direct consequence of the first autumn rains, rather than a 

response to food availability, because food was still scarce during the sampling period. 

An increased level of activity in response to rain has also been reported for other arid-

zone tortoises such as Gopherus agassizii (Medica et al. 1980; Henen et al. 1998) and 

Gopherus berlandieri (Rose & Judd 1975). 

 

The activity of angulate tortoises on DI peaked when environmental conditions were 

conducive to plant growth during winter and spring. The diversity and cover of plants at 

the two study sites increased significantly during winter and spring, but temperatures 

during these colder seasons may limit tortoise activity. Ramsay et al. (2002) found that 

active behaviours (e.g., feeding, fighting, courtship) occur within a restricted 

temperature range that corresponds closely with high ambient temperatures recorded 

during peak activity. In order to utilise increased food resources in the colder months, 

angulate tortoises might need to spend more time basking to reach body temperatures 

that would allow feeding activity. Keswick et al. (2006) reported that during spring 2004, 
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angulate tortoises on DI spent approximately 30% of daylight hours basking. It seems 

probable that the tortoises would require more basking time during winter to reach 

optimal temperatures for feeding and subsequent digestion of food. Cloudy conditions 

and rainfall may limit the feeding and digestive ability of angulate tortoises during the 

cold and rainy season.  

 

The different temperature regimes of the two study sites may explain why angulate 

tortoises in the WCNP had lower activity levels during winter and spring than the 

tortoises on DI had. Although maximum temperatures of the two sites differed little 

through winter and spring, minimum temperatures in the WCNP were consistently 

lower than were minimum temperatures at DI during that time of the year (see Fig. 2.1). 

It is possible that during winter and spring, angulate tortoises on DI managed more 

often to reach body temperatures that were optimal for active behaviours than was the 

case for tortoises in the WCNP.  

 

Few feeding records were obtained through the quadrat scans, indicating that this 

method is not suitable to study the feeding ecology of angulate tortoises. It is possible 

that the movements of the observers disturbed the tortoises sufficiently to stop feeding 

so that feeding tortoises were included in the “Immobile” or “Walking” records. Low 

feeding frequencies, however, have been recorded for other tortoise species and 

Testudo horsfieldii spends less than 15 minutes per day foraging, despite the fact that 

these tortoises have to accumulate enough resources during three months to 

reproduce, and last through nine months of dormancy (Lagarde et al. 2003). 

Nevertheless, Keswick et al. (2006) found that in spring 2004, angulate tortoises on DI 

spent approximately 6% of daylight hours feeding. These results confirm that the 

quadrat scans do not reflect reliable frequencies for the feeding activities of angulate 

tortoises.  

 

The focal observation method provided better records of feeding, but it required many 

man-hours to record sufficient data. The longer man-hours per feeding tortoise in the 

WCNP compared to DI can be ascribed to: (1) the low tortoise density in the WCNP 

compared to tortoise density on DI (M.D. Hofmeyr, unpubl. data), (2) lower visibility of 

tortoises in the WCNP compared to DI due to a higher percent plant cover in the 

WCNP than on DI (see Fig. 2.2), and (3) the low level of activity of angulate tortoises in 

the WCNP compared to tortoises on DI (Table 3.2). Future studies may be more 

efficient if the focal animals are supplied with thread-trailing devices, as in Keswick et 

al. (2006), to facilitate continuous observations of individuals. 
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3.5.2 Seasonal variation in diet 

3.5.2.1 The wet season 

Both study sites in the southwestern Cape experienced large seasonal fluctuations in 

temperature and rainfall, typical of a Mediterranean climate. Because of the climate, 

the vegetation at the study sites, and the diet of the angulate tortoises varied greatly 

across seasons. Autumn and winter rains stimulated plant growth and the percent plant 

cover at both study sites increased significantly in winter and spring (see Fig. 2.2). On 

DI, the availability of seedlings and mosses remained high throughout the wet season, 

explaining why seedlings constituted the bulk of the angulate tortoises’ diet in winter 

and spring. The diet of the tortoises on DI included a high diversity of annual plants in 

winter and spring, relative to other seasons, corresponding to a high relative cover 

index for annual, herbaceous plants during these two seasons. 

 

For angulate tortoises in the WCNP, seedlings formed an important diet component 

only in winter, the only season when seedlings had a high availability at the site. The 

diet of the WCNP tortoises became more diverse in spring, which was the only season 

when the relative cover indices of herbaceous and annual plants increased 

substantially in the WCNP. The different availability and consumption of annual plants 

in the WCNP and DI were probably a consequence of the predominantly perennial 

vegetation at the WCNP (Chapter 2).  

 

The digestibility of plants is influenced largely by the fibre content of the plants, 

particularly the concentration of lignin in the plant tissues (Martin 1955; Mauseth 1988; 

Balsamo et al. 2004). Vertebrates are unable to digest lignified plant tissue and 

vertebrate herbivores rely on cellulolytic microflora in their gut to digest cellulose in 

their diet (Bjorndal 1987). The fibre content of plants differs widely, and the protein 

content of the plant tends to change inversely with the fibre content (Caughley & 

Sinclair 1994). Thus, more digestible plants also tend to have higher protein content. 

The protein and fibre content of grass and leaves change with age so that young 

growth generally is more digestible, with a higher protein content. The decrease in 

protein content with age is more pronounced for grasses than it is for the leaves of 

dicotyledonous plants (Caughley & Sinclair 1994). Young plants may also have high 

concentrations of soluble carbohydrates, which should be highly digestible (Henen et 

al. 2005). These factors probably account for the large contribution of seedlings, and 
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other soft annual plants, to the diet of angulate tortoises during the wet season in the 

southwestern Cape. 

 

Many tortoise species appear to favour annuals and herbaceous plants. Milton (1992) 

reported that Stigmochelys pardalis in the Succulent Karoo avoided woody plants and 

selected forbs and grasses. However, these tortoises switched their preference to 

succulents when green grass was no longer available. Psammobates oculiferus in the 

Kalahari selects herbaceous and succulent plants when available, and only uses grass 

species during periods of low rainfall when the tortoises do not have access to 

herbaceous plants (Rall & Fairall 1993). Desert tortoises (Gopherus agassizii) eat 

primarily fresh annuals but switch to perennials, cryptogamic soils and faeces in dry 

years when fresh annuals are not available (Henen 2002). 

 

3.5.2.2 The dry season 

During summer and autumn, when rainfall was low and temperatures high, percent 

plant cover and species diversity were lower than during the wet season (see Chapter 

2). Despite DI having a milder climate than the WCNP, the low plant diversity at DI 

exposed the tortoises on DI to harsh conditions during the dry season. In summer and 

autumn, rabbit faeces and the dead leaves and flower stalks of T. divaricata constituted 

the bulk of the tortoises’ diet. Trachyandra divaricata is a perennial plant but little fresh 

material was available in the dry season during the study period. However, the leaves 

and flower stalks of the dead plants remained as debris through summer and autumn. 

The dead leaves were not brittle and probably contained a small amount of moisture. 

During the dry season, DI often experienced incidences of fog, and the fog may have 

increased the water content of dead T. divaricata leaves. Additionally, angulate 

tortoises that rehydrate by drinking condensed fog (M.D. Hofmeyr, pers. comm.) are 

probably able to store energy when digesting dry plant matter (see Henen 1997). Yet, it 

is not clear what nutritional value dead T. divaricata provides. 

 

Tetragonia fruticosa and Mesembryanthemum crystallinum were the only two plant 

species on DI that were available in large quantities during summer and autumn (see 

Table 2.1). Tortoises often took refuge under Tetragonia fruticosa bushes but were only 

observed eating young seedlings of this species and were never seen to eat parts of 

the adult plants. A high salt content may limit the use of this species because Els 

(1989) reported that Tetragonia sp. from DI has a sodium content of 2 693 ± 18.9 mmol 

kg-1 dry mass. Mesembryanthemum crystallinum is an annual plant that develops 
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during winter and spring. Dead M. crystallinum plants, however, remained anchored to 

the ground from late summer to early winter and formed part of the plant cover on DI. 

The trichomes of M. crystallinum form bladder cells, which act as storage organs for 

NaCl (Adams et al. 1998). The salt content of adult plants can reach high levels 

because the concentration of salt in the bladder cells increases during conditions 

stressful for the plants. Juvenile M. crystallinum stores lower concentrations of salt in 

their bladder cells than mature plants do (Adams et al. 1998), and the tortoises 

probably found the young seedlings of M. crystallinum more palatable than the mature 

plants.  

 

In summer and autumn, rabbit pellets contributed nearly 30% to the diet of angulate 

tortoises on DI. There have been reports of other tortoise species eating faecal 

material: Geochelone pardalis eat hyena faeces (Branch 1998), Gopherus berlandieri 

eat faeces of other tortoises and rabbit faeces (Auffenberg & Weaver 1969), and 

Gopherus agassizii eat tortoise, lizard and wood rat faeces (Henen 2002). The energy 

and nutritional value of rabbit faeces varies according to the age and the type of faecal 

pellet. The energy content of exposed rabbit pellets decreases with time due to the 

activities of coprophilous microflora (Angel & Wicklow 1974). Angulate tortoises were 

observed sniffing rabbit pellets before feeding (pers. obs.), perhaps trying to assess the 

nutritive value based on odours and how long the pellets have been exposed. Rabbits 

are hindgut fermenters and produce soft faeces that they normally re-ingest before 

excreting the typical hard faecal pellets (McBee 1971). The soft faeces have a high 

percentage of protein, most of which is bacterial cells. Hard pellets have lower protein 

content but the bacterial cells can contribute as much as 56% to the composition of the 

dry pellet (McBee 1971). Not all faecal pellets of rabbits are re-ingested and tortoises 

consuming select rabbit pellets probably obtain an additional source of protein (McBee 

1971). The amount of protein gained from consuming rabbit faeces will depend on the 

type of scat consumed, but the use of rabbit pellets in the diet may aid the tortoise in 

acquiring additional sources of energy. By consuming rabbit pellets, tortoises could 

also be actively increasing their gut microflora (Angel & Wicklow 1974). The gut 

microflora from rabbit faeces possibly assist the tortoise to digest the cellulose of 

fibrous plants in the dry season.  

 

The only season when angulate tortoises in the WCNP were observed eating faecal 

material was autumn, but faecal material did not make a substantial contribution to their 

diet. During the dry season, dry plant material and grasses formed a large proportion of 

the angulate tortoises’ diet in the WCNP. It is not clear why dry plant material was so 
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important in their diet, and it is not known if the normal degradation processes rendered 

the dead plant material more digestible. Dry plant material can be a source of energy if 

a tortoise is reasonably hydrated (Henen 1997); hydrated desert tortoises increase 

their lipid reserves while consuming dry grass. 

 

The high relative cover index for grass species in the WCNP, particularly in autumn 

1999, may have contributed to the high consumption of grasses during the dry season. 

Cynodon dactylon, one of the common grass species in the WCNP, is considered good 

pasture under natural conditions (Van Oudtshoorn 2002). This grass also forms part of 

the diet of other South African tortoises, e.g., Psammobates geometricus (Balsamo et 

al. 2004), and Stigmochelys pardalis (Mason et al. 1999). Although mature grass 

leaves may have a low protein content during the dry season, young annual grass 

species started growing soon after the first autumn rains. 

 

3.5.3 Importance of the major growth forms  

The vegetation composition differed strongly between the WCNP and DI. The strong 

perennial plant component in the WCNP persisted from year to year and presented a 

stable habitat in terms of plant variety and availability. In contrast, the low diversity of 

perennial plants and the dominance of ephemeral plant species on DI allowed wide 

fluctuations in plant cover with low plant diversity. It was to be expected that the 

different vegetation types of the WCNP and DI would influence the diet of angulate 

tortoises at these sites. 

 

Herbaceous plants, including seedlings, constituted the bulk of the diet of angulate 

tortoises on DI throughout the year. The diet composition of tortoises in the WCNP 

differed from the diet composition on DI, mainly because the WCNP diet included 

shrubs and grasses, and was more diverse. Nevertheless, when soft herbaceous 

plants were available in winter and spring in the WCNP, herbaceous plants became an 

important component of the tortoises’ diet.  

 

There were few plant species that occurred at both study sites and the only plants 

observed being eaten at both sites were grasses and Senecio elegans. Because grass 

is relatively scarce on DI (Hurford 1996; pers. obs.), only a few feeding observations for 

grass were recorded during winter and spring, in contrast to the consumption of grass 

throughout the year in the WCNP. Els (1989) reported that buffalo grass 

(Stenotaphrum secundatum) is the most common diet item of angulate tortoises in the 

Eastern Cape. Grass thus appears to be an important diet item for C. angulata in 
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different parts of its range. Nevertheless, the low consumption of grass in the WCNP 

during spring suggests that angulate tortoises preferred herbs and shrubs when new 

growth was available.  

 

Angulate tortoises in the WCNP ate two shrub species. Helichrysum niveum is an 

ericoid shrublet, with small leaves, and had a high relative cover index through most of 

the year. Tortoises consumed young leaves of the shrublet when new growth 

developed in spring whereas the feeding observations in autumn were of mature 

leaves. Nylandtia spinosa is a low-growing shrublet with small, thick leaves. Angulate 

tortoises were never observed eating the leaves of N. spinosa, but consumed the fruits 

of this shrub in spring. The fleshy, red fruits are edible, but astringent (Manning & 

Goldblatt 1996). 

 

The two plant species on DI with the highest relative cover index included a succulent 

annual (M. crystallinum) and a succulent shrub (T. fruticosa). Yet, these two species 

contributed little to the diet of angulate tortoises on DI. In the WCNP, one succulent 

herb, Carpobrotus edulis, contributed to the feeding records for autumn. The fleshy fruit 

of this plant is edible, but I have witnessed only attempts of the tortoises to tear off 

pierces of the thick, fleshy leaves and have not seen them eating the fruits. An 

incidental feeding observation was made for Ruschia macowanii, another succulent 

shrub with fleshy, but smaller leaves. The consumption of succulent plants may be an 

attempt by the tortoises to alleviate the water shortages during the dry season. 

Tortoises are known to consume succulent plants to help increase their water intake 

during unfavourable periods (Nagy & Medica 1986; Milton 1992; Rall & Fairall 1993; 

Henen 2002).  

 

The WCNP and DI are habitats that have suffered anthropogenic disturbances to 

different extents in the past. The disturbance had a greater impact on DI than at the 

WCNP, evidenced by the ephemeral weedy growth forms that dominate the islands’ 

vegetation. The mild climate at DI, low metabolic requirements of the tortoises, and 

high availability of easily digestible herbaceous species, probably made it possible for 

angulate tortoises to be so successful in this disturbed habitat. Additionally, it appears if 

the presence of the introduced European rabbit may be important to the survival of 

angulate tortoises during the long and hot dry season. 
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4 MACROSCOPIC EVALUATION OF TORTOISE FAECES 

 

 

4.1 ABSTRACT 

Based upon macroscopic analysis of tortoise faeces, the diet of angulate tortoises in 

the West Coast National Park (WCNP) included herbs, shrubs, grasses, restios, and 

succulent plants. Twelve different diet items, including insect parts, were identified in 

the WCNP scats. The only plants that were identified each season were grass and the 

shrub Nylandtia spinosa. A large proportion of the scats could not be identified and the 

percent composition by mass of unidentified plant material varied seasonally between 

54% and 99% for scats from the WCNP. The percent composition of unidentified plant 

material was even higher (96-100%) for scats of Dassen Island (DI) tortoises. Only four 

diet items, all herbaceous plants, could be identified in their scats. The identification of 

dietary items at both study sites was influenced strongly by plant part; seeds and stems 

were most easily recognised. Most of the unidentified material had a fibrous or pulpy 

appearance, indicating that most plant material was at least partially digested. 

Digestion of fibrous plant material was probably facilitated by cellulolytic bacteria in the 

large hindgut of the tortoises. Seeds formed an important constituent of the diet. 

Overall, seeds contributed 23% to faecal mass of WCNP tortoises and reached a 

maximum value of 51% in spring. On DI, seeds contributed 6% to the faecal mass with 

the highest value (19%) in winter. Many fruits and seeds appeared intact or only 

partially digested, indicating that angulate tortoises may be important agents for seed 

dispersal in the southwestern Cape. Tortoise scats at both study sites contained sand, 

with higher incidences on DI than in the WCNP. The faecal samples from DI contained 

sand in three of the four seasons, and the sand made up 28% of the faecal mass in 

spring.  
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4.2 INTRODUCTION 

Tortoises are herbivores and require cellulolytic microflora in their alimentary tracts to 

digest the cell walls of plants in their diet (Bjorndal 1987). The digestive efficiency of 

tortoises varies considerably and is dependent mainly on the plant species ingested 

and their phenological stages (Bjorndal & Bolton 1993; Nagy et al. 1998). Tortoises do 

not masticate their food but tear-off small pieces from plants and consume the pieces 

whole (Balsamo et al. 2004; Strong & Fragoso 2006). Consequently, the analyses of 

scats from herbivorous reptiles such as leopard tortoises have shown that ingested 

plant material may appear to differ little from their pre-ingested state (Milton 1992). 

 

A simple and easy method to study the diet of tortoises would be to evaluate the scats 

macroscopically. This method requires relatively little training as dietary items observed 

in scats can be compared directly to reference material collected in the animals’ 

habitat. Milton (1992) used macroscopic evaluation of faecal samples to identify 75 

species of plants in the scats of leopard tortoises in the southern Karoo, South Africa. 

Macroscopic evaluation is also a highly suitable method to study seed ingestion by 

tortoises, as has been shown for Testudo graeca in Spain (Cobo & Andreu 1988) and 

for Geochelone carbonaria and G. denticulata in northwestern Brazil (Strong & Fragoso 

2006).  

 

Chersina angulata occurs in several habitat types (Branch 1989) and is thus exposed 

to a variety of vegetation types and potential dietary items. Here I report seasonal 

changes in the diet of C. angulata at two study sites in the southwestern Cape, as 

assessed through macroscopic evaluation of the tortoises’ scats. 

 

 

4.3 MATERIALS AND METHODS 

4.3.1 Study sites 

I studied the feeding ecology of Chersina angulata in the West Coast National Park 

(WCNP, 30 000 ha, 33°13’S, 18°09’E) and on Dassen Island (DI, 222 ha, 33°25’S, 

18°06’E) over four seasons from March 1999 to February 2000. Detailed descriptions 

of the study sites and climate are provided in Chapters 2 and 3.  

 

4.3.2 Faecal samples 

During each study period (see Table 3.1 in Chapter 3), I collected scats from angulate 

tortoises in and around the study quadrats for macroscopic analysis. I collected 15 
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faecal samples each season at each site, except in spring 1999 when only 13 samples 

were collected in the WCNP. When tortoises were encountered in the field and were 

lifted, many excreted some faecal droppings. The fresh faecal pellets were placed in 50 

ml labelled vials and air-dried. Samples were labelled with the date and site at which 

the faecal material was collected. After the scats were dry, the samples were weighed 

and the vials were sealed and stored in a location devoid of moisture to prevent fungal 

growth on the scats. 

 

The dried scats were too hard and compacted to be dissected without further 

fragmenting the brittle plant parts in the scats. Therefore, before dissecting the scats, I 

placed the scats in a dilute solution of hydrochloric acid and distilled water for 30 to 60 

minutes to soften the faecal material. When the softened material could be teased 

apart, each sample was strained through three sieves (2 mm, 1 mm and 63 micron), 

washed with distilled water, and air-dried.  

 

Using a dissecting microscope (Vickers Limited, Model 177359, Japan) with a 

maximum magnification of 45x, I sorted faecal components into leaves, fruits, seeds, 

seed capsules, stems, unidentified (UI) plant material, animal material, sand and stone. 

Subsequently, the individual pieces were sorted and identified to the species level, 

where possible, by comparison with reference material. Each individual group was then 

weighed with an analytical balance to the nearest 0.0001 mg and stored in FAA 

(formaldehyde : glacial acetic acid : 70% ethanol, in the proportion 0.5 : 0.5 : 9.0). 

 

4.3.3 Macroscopic identification of plants 

To aid with the macroscopic identification of plant fragments in the scats, I collected 

leaves, flowers and seeds of plants within and around the study quadrats throughout 

the year. The plant parts were stored in labelled plastic bags. Unknown plants were 

identified by a plant taxonomist in the Department of Biodiversity and Conservation 

Biology at the University of the Western Cape. The plant reference material was stored 

in a freezer at –18 °C until needed.  

 

Macroscopic identification of plant fragments in scats was limited to the comparison of 

leaf venation patterns, laminar shape, leaf margin type, the surface texture of the plant 

parts, and the size and shape of the fruits and seeds. The presence of trichomes was 

used to identify plant parts whenever trichomes were macroscopically visible. The 

presence of trichomes were treated with care, however, as it was not possible to 
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determine macroscopically if the trichomes were glandular or non-glandular (Stace 

1965). 

 

4.3.4 Data analyses 

4.3.4.1 Faecal samples 

Small losses of material may have occurred during processing, so I did not use the 

mass of the intact scats in the analysis. I summed the masses of the individual dietary 

items to derive a total mass for each faecal sample. Similarly, for each sample I 

calculated a total mass for plant material (including UI material), animal material (insect 

parts), and inorganic material (sand and stone). Because the size of individual faecal 

samples differed, I expressed each diet component as percent mass. Percent mass for 

individual plant items was expressed relative to the total mass for all plant items to 

allow direct comparisons of plant items among seasons and sites. Percent mass for 

animal and inorganic material, however, was expressed relative to total scat mass 

(plant, animal and inorganic material). For convenience, the percent mass of the scat 

constituents for each season and for all seasons combined was summarised as mean 

and 95% confidence intervals, even in instances when the distributions were non-

parametric. 

 

In addition to evaluating the tortoises’ diet by percent mass, I also evaluated the results 

on a presence-absence basis (MacDonald & Mushinsky 1988). For comparison to 

results from focal observations (Chapter 3) and histological analyses (Chapter 5), the 

presence of a particular species in a faecal sample was regarded as a single feeding 

record and the different plant species or food items in a scat were regarded as 

separate feeding records. I calculated percent occurrence of a dietary item as the 

number of scats containing that particular item divided by the total number of scats 

collected during that season. When calculating percent composition by presence-

absence, I considered all diet items and thus included animal material in the analysis. 

Percent composition was calculated as the records for a particular item divided by the 

total number of records of all plant taxa and animal items for the relevant period. The 

percent composition for inorganic material in the scats was calculated as the records 

for inorganic material divided by the total records of all items in the scats collected 

during the relevant period.  

 

I used the same principles when calculating the percent composition by mass, and 

percent occurrence and composition by presence-absence for the plant parts and 
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growth forms. The categories for plant parts consisted of leaves, seeds, seed capsules, 

stems and UI plant material. The categories for growth forms included succulents, non-

succulent herbs, non-succulent shrubs, grasses and UI plant material. The single 

record for restioids during summer in the WCNP was combined with the grasses. 

 

4.3.4.2 Statistical analyses 

Statistical tests were done with SigmaStat 2.03 (SPSS Inc., Chicago, U.S.A.) and all 

tests were considered significant at P ≤ 0.05. The data rarely satisfied assumptions of 

normality and homoscedasticity but log transformation often allowed parametric 

analyses. Whenever it was possible, I used a two-way ANOVA (Fdf) to simultaneously 

test for more than one effect (e.g., site and season, or season and diet item).  A two-

way ANOVA was followed by the Student-Newman-Keul’s (SNK) post hoc test to 

evaluate differences among groups for the categories of diet items, sites or seasons. 

When the data did not meet the assumptions for a two-way ANOVA, I used a one-way 

ANOVA (Fdf) and SNK post hoc test, or a Kruskal-Wallis ANOVA (Hdf) and Dunn’s post 

hoc test, to evaluate the effect of season on diet items. To evaluate differences among 

diet items within a site and within a particular season, I used Friedman’s repeated 

measures ANOVA (χ2
df) followed by the SNK post hoc test. A Mann-Whitney Rank 

Sum Test (Tn,n) was used to compare diet items between sites. I used Chi-square 

contingency table analysis or Fisher exact test to test for differences in the frequencies 

(occurrences) of dietary food items, between sites and among seasons. I followed the 

guidelines of Zar (1999) to test for bias in Chi-square contingency table analyses and 

tested the average expected frequency with the equation n / (rc), where n is the total 

records, r is the number of rows and c is the number of columns. When using multiple 

univariate tests, I applied the Bonferroni procedure to adjust the significance level in 

the family of tests across which the Type I error rate had to be controlled (Quinn & 

Keough 2002). 

 

 

4.4 RESULTS 

4.4.1 Mass of faecal samples 

Overall, the difference in faecal mass of angulate tortoises from the WCNP (N = 58) 

and DI (N = 60) approached significance (F1,110 = 3.85, P = 0.052); faecal mass differed 

between the two sites in summer but the differences were not significant for the other 

seasons (Table 4.1). There was a strong seasonal effect on faecal mass (F3,110 = 13.90, 

P < 0.0001) and an interaction between site and season (F3,110 = 5.88, P = 0.00092). 
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Overall, winter and spring faecal masses were similar, but were higher than the faecal 

mass of autumn and summer, while autumn faecal mass was higher than the faecal 

mass in summer. Faecal samples from the WCNP had a lower mass in summer than in 

the other seasons, whereas faecal samples from DI had a higher mass in spring than in 

autumn and summer.  

 

 

Table 4.1  Mean mass (± CI, in grams) of scats collected from Chersina angulata in the 

West Coast National Park (WCNP; N = 58) and on Dassen Island (DI; N = 60). 

 

  Autumn Winter Spring Summer 

WCNP 0.74±0.17 1.12±0.37 0.92±0.22 0.26±0.06 

DI 0.56±0.11 1.13±0.47 1.38±0.39 0.71±0.20 

 

 

 

4.4.2 Diet composition 

4.4.2.1 Diet composition in the WCNP 

Twelve plants species/groups were identified in the scats of tortoises from the WCNP 

(Table 4.2). Because the masses did not satisfy the assumptions of a two-way ANOVA, 

I evaluated the effects of season and plant species/groups separately. Within a season 

and for all seasons combined, the difference in the percent mass of the plant 

species/groups was highly significant (all χ2
11 > 64.6, P < 0.0001), but post-hoc results 

showed that only the UI plant mass differed from the mass of other plant taxa. The 

large proportion of UI plant material, in combination with the large confidence intervals 

for the mean mass of individual plant taxa, rendered few statistical tests significant. The 

large confidence intervals of the diet items were due to wide differences in the faecal 

composition of individual tortoises within a season. For example, during spring in the 

WCNP, only three of the 13 faecal samples contained Trichogyne verticillata, and the 

percent contribution of this species to the diet (faeces) of these tortoises was 1%, 38% 

and 89%. 

 

Three plant species/groups were detected each season in the tortoises’ faeces: 

Nylandtia spinosa, grass and UI plant material. The seeds of N. spinosa contributed 

17% and 10%, respectively, to the spring and summer plant mass in the faeces (Table 
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4.2). The percent mass of plant diet items differed significantly among seasons for UI 

plant material (H3 = 31.80, P < 0.0001), Geranium sp. (H3 = 14.57, P = 0.0022) and 

Psoralea repens (H3 = 9.23, P = 0.026), and approached significance for T. verticillata 

(H3 = 7.30, P = 0.063) and N. spinosa (H3 = 7.55, P = 0.056). The percent mass for UI 

plant material was higher in winter than in spring and summer, and the percent mass in 

autumn was higher than in summer.  

 

There was sand, but no stones, in the faecal samples of angulate tortoises from the 

WCNP and the sand only occurred in scats collected in autumn. Season had a 

significant effect on percent mass of sand (H3 = 12.08, P = 0.0071). Only one faecal 

sample collected in summer contained remnants of an insect. 

 

The diet composition, by presence-absence, of angulate tortoises in the WCNP (Table 

4.3) corresponded broadly to the percent mass results. The percent composition and 

percent occurrence of the faecal (diet) items differed among the seasons (composition: 

F3,36 = 3.90, P = 0.016; occurrence: F3,36 = 5.30, P = 0.0039). For percent composition, 

winter and summer results differed significantly, whereas winter values differed from all 

other seasons for the occurrence data. Percent composition and occurrence varied 

considerably among diet items (F12,36 = 6.48, P < 0.0001 and F12,36 = 27.55, P < 0.0001, 

respectively). The percent composition of UI plant material differed from all other diet 

items except for N. spinosa and grass, while values for both N. spinosa and grass 

exceeded values for restioids and insect parts, and percent composition for grass was 

also larger than that of Ruschia macowanii. The percent occurrence of UI plant material 

exceeded the percent occurrence of all other groups. The percent occurrence of grass 

was higher than all remaining groups except for N. spinosa, and the percent 

occurrence of N. spinosa differed from that of T. verticillata, Albuca sp., H. niveum, R. 

macowanii, restioids and insects. 
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Table 4.2  Percent composition by mass (mean ± CI) of plants and non-plant items in 

the scats of Chersina angulata in the West Coast National Park. The N values 

represent the number of scats per season. Percentages for plant items are expressed 

relative to the mass of total plant material, whereas the non-plant components are 

expressed relative to the total mass of the scats.  

 

 Autumn Winter Spring Summer Totals 

 (N=15) (N=15) (N=13) (N=15) (N=58) 

Albuca sp. leaves 0.59±1.15 0 0.03±0.05 6.86±9.49 1.93±2.53 

Cystocapnos vesicaria total 0.33±0.44 0 2.21±3.81 0.43±0.64 0.69±0.88 

     Capsule 0.33±0.44 0 1.65±2.84 0.43±0.64 0.57±0.67 

     Seeds 0 0 0.56±0.98 0 0.13±0.22 

Geranium sp. seeds 0 0 10.78±10.72 0.49±0.95 2.54±2.61 

Grass total 1.70±1.84 0.28±0.39 1.61±1.16 3.75±4.72 1.84±1.35 

     Leaves 0.79±0.95 0.28±0.39 0.47±0.61 1.15±1.67 0.68±0.52 

     Seeds 0.90±1.05 0 1.14±1.09 2.60±4.24 1.16±1.15 

Helichrysum niveum total 0.19±0.37 0 0 0.69±0.91 0.23±0.26 

     Leaves 0.19±0.37 0 0 0.39±0.75 0.15±0.21 

     Seeds 0 0 0 0.30±0.58 0.08±0.15 

Nylandtia spinosa total 3.43±4.78 0.01±0.02 17.17±12.79 13.21±14.34 8.15±5.04 

     Leaves 0.29±0.39 0.01±0.02 0.43±0.49 2.74±5.24 0.88±1.36 

     Seeds 3.14±4.72 0 16.74±12.62 10.47±13.89 7.27±4.89 

Psoralea repens leaves 1.36±1.98 0 0 4.41±6.85 1.49±1.86 

Restioid leaves 0 0 0 0.26±0.51 0.07±0.13 

Ruschia macowanii leaves 0 0.29±0.56 0 0.19±0.38 0.12±0.17 

Senecio elegans seeds 0.62±1.02 0 0.08±0.16 10.80±10.44 2.97±2.90 

Trichogyne verticillata seeds 0 0 9.82±14.11 4.81±9.43 3.44±4.01 

UI plant material total 91.79±6.72 99.42±0.82 58.31±15.56 54.12±16.58 76.52±7.66 

     Fibre or pulp 67.26±13.68 98.47±1.80 35.36±13.56 2.39±4.68 51.40±10.53 

     Leaves 2.87±3.59 0.08±0.12 5.76±4.52 11.81±11.19 5.11±3.32 

     Seeds 9.75±9.03 0.87±1.70 11.77±12.39 1.11±1.15 5.67±3.78 

     Stems 11.91±11.40 0 5.41±1.87 38.82±15.68 14.33±6.27 

Insect parts 0 0 0 0.09±0.17 0.02±0.04 

Sand 3.41±3.59 0 0 0 0.88±0.99 
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Table 4.3  Percent composition (occurrence) by presence-absence of plants and non-

plant items in the scats of Chersina angulata in the West Coast National Park. The N 

values represent the number of scats per season. Percentage composition of diet items 

is expressed relative to the total scores for plant and animal items in the scats, 

whereas percent composition of sand is expressed relative to the scores for all items in 

the scats.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=13) (N=15) (N=58) 

Albuca sp. 2.78 (6.67) 0 2.50 (7.69) 4.44 (13.33) 2.86 (6.90) 

Cystocapnos vesicaria 5.56 (13.33) 0 10.00 (30.77) 4.44 (13.33) 5.71 (13.79) 

Geranium sp. 0 0 12.50 (38.46) 2.22 (6.67) 4.29 (10.34) 

Grass  16.67 (40.00) 10.53 (13.33) 17.50 (53.85) 11.11 (33.33) 14.29 (34.48) 

Helichrysum niveum 2.78 (6.67) 0 0 6.67 (20.00) 2.86 (6.90) 

Insect parts  0 0 0 2.22 (6.67) 0.71 (1.72) 

Nylandtia spinosa 11.11 (26.67) 5.26 (6.67) 15.00 (46.15) 13.33 (40.00) 12.14 (29.31) 

Psoralea repens 13.89 (33.33) 0 0 6.67 (20.00) 5.71 (13.79) 

Restioid 0 0 0 2.22 (6.67) 0.71 (1.72) 

Ruschia macowanii 0 5.26 (6.67) 0 2.22 (6.67) 1.43 (3.45) 

Senecio elegans 5.56 (13.33) 0 2.50 (7.69) 8.89 (26.67) 5.00 (12.07) 

Trichogyne verticillata  0 0 7.50 (23.08) 2.22 (6.67) 2.86 (6.90) 

UI plant material 41.67 (100.00) 78.95 (100.00) 32.50 (100.00) 33.33 (100.00) 41.43 (100.00) 

Sand 10.00 (26.67) 0 0 0 2.78 (6.90) 
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4.4.2.2 Diet composition on DI 

Cystocapnos vesicaria was the only plant species identified in the scats for both sites. 

Only five plant species/groups were identifiable in the DI scats and UI plant material 

contributed more than 95%, each season, to the mass of plant material in the scats 

(Table 4.4). For all seasons combined, the percent mass differed among plant species 

or groups (χ2
4 = 206.8, P < 0.0001). The percent mass of UI plant material exceeded 

the percent mass of the other plant species, but the other items did not differ from one 

another.  

 

The percent mass of Urtica urens and UI plant material differed significantly among 

seasons (all H3 > 31.8, P < 0.0001). The spring mass for U. urens exceeded the values 

in the other seasons, whereas the spring mass for UI plant material was lower than in 

the other seasons (based on medians).  

 

In general, the percent composition and percent occurrence by presence-absence of 

diet items in the scats from DI (Table 4.5) showed the same pattern as the composition 

by percent mass. All faecal samples contained UI plant material, and in spring, U. 

urens occurred in more than 70% of the tortoises’ scats. Season had no effect on 

percent composition and percent occurrence, but the effect of faecal category (species 

or group) was significant for percent composition (F4,12 = 8.30, P = 0.0019) and for 

percent occurrence (F4,12 = 7.64, P = 0.0027). The percent composition and percent 

occurrence of UI plant material was higher than the values for all other plant groups.  

 

The scats of angulate tortoises from DI did not contain animal material but sand/stone 

was present in three seasons (Table 4.4). One scat collected in winter and two scats 

collected in summer contained stones, while sand contributed more than 27% to the 

faecal mass in spring. The percent mass of sand/stone differed significantly among 

seasons (H3 = 42.87, P < 0.0001) and was higher in spring than in the other seasons. 

More than 90% of the tortoises’ scats contained sand/stone (Table 4.5). 
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Table 4.4  Percent composition by mass (mean ± CI) of plants and non-plant items in 

the scats of Chersina angulata on Dassen Island. The N values represent the number 

of scats per season. Percentages for plant items are expressed relative to the mass of 

total plant material, whereas the non-plant component is expressed relative to the total 

mass of the scats.  

 

 Autumn Winter Spring Summer Totals 

 (N=15) (N=15) (N=15) (N=15) (N=60) 

Albuca flaccida leaves 0.97±1.89 0 0.06±0.11 0 0.26±0.47 

Cystocapnos vesicaria seeds 0 0.65±1.28 0.02±0.03 0 0.17±0.32 

Trachyandra divaricata stalk 3.33±6.53 0 0 0 0.83±1.63 

Urtica urens total 0 0.0043±0.0085 2.84±3.21 0 0.71±0.84 

     Leaves 0 0 0.15±0.20 0 0.037±0.051 

     Seeds 0 0.0043±0.0085 2.69±3.07 0 0.67±0.81 

UI plant material total 95.70±6.67 99.34±1.29 97.09±3.19 100 98.03±1.88 

     Fibre or pulp 95.31±6.64 74.03±9.26 96.68±3.18 99.30±0.74 91.33±3.87 

     Leaves  0.11±0.19 2.29±2.31 0.028±0.037 0.21±0.41 0.66±0.62 

     Seeds 0.28±0.55 18.43±8.28 0.38±0.74 0.49±0.66 4.89±2.85 

     Stems 0 4.60±3.17 0 0 1.15±0.92 

Sand/Stone 0 2.01±3.94 27.73±6.88 1.78±2.79 7.88±3.58 

 

 

Table 4.5  Percent composition (occurrence) by presence-absence of plants and non-

plant items in the scats of Chersina angulata on Dassen Island. The N values represent 

the number of scats per season. Percentage composition of plant items is expressed 

relative to the total scores for plant items in the scats, whereas sand or stone is 

expressed relative to the scores for all items in the scats.  

 
  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=15) (N=15) (N=60) 

Albuca flaccida 5.88 (6.67) 0 3.57 (6.67) 0 2.60 (3.33) 

Cystocapnos vesicaria 0 5.88 (6.67) 3.57 (6.67) 0 2.60 (3.33) 

Trachyandra divaricata  5.88 (6.67) 0 0 0 1.30 (1.67) 

Urtica urens 0 5.88 (6.67) 39.29 (73.33) 0 15.58 (20.00) 

UI plant material 88.24 (100.00) 88.24 (100.00) 53.57 (100.00) 100.00 (100.00) 77.92 (100.00) 

Sand/Stone  0 5.56  (6.67) 33.33 (93.33) 11.76 (13.33) 18.09 (28.33) 
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4.4.3 Plant parts in the diet 

4.4.3.1 Plant parts in the diet of tortoises in the WCNP 

The percent mass of the plant part categories in the WCNP scats differed within each 

season and for all seasons combined (Table 4.6; all χ2 > 36.4, P < 0.0001). The 

percent mass for UI plant material was higher than the mass of all other plant parts and 

the percent mass of seeds exceeded the mass of the other categories. While the mass 

of leaves and stems did not differ, they were higher than the mass of seed capsules. In 

autumn and winter, percent mass for UI plant material was highest and the remaining 

categories did not differ, except that the mass for capsule was significantly lower than 

all other categories in autumn. In spring, seeds and UI plant material had the highest 

mass and capsule had the lowest mass. In summer, there was no difference among 

the mass of stems, seeds and leaves, which were all higher than the mass for UI plant 

material and capsule.  

 

WCNP tortoises had leaves, seeds and UI plant material in their scats during each 

season (Table 4.6). The percent mass of stems differed significantly among the 

seasons (H3 = 35.68, P < 0.001). Summer and spring values did not differ but the 

percent mass in summer was higher than in autumn and winter, and the percent mass 

in spring was higher than in winter (based on medians). The contribution of leaves to 

the diet of the tortoises differed among seasons (F3.54 = 12.59, P < 0.0001), with 

summer values higher than in the other seasons, while spring and autumn masses 

exceeded the percent mass in winter (all P < 0.0079). The percent mass of seeds in 

the scats was higher in spring than in all other seasons, whereas percent mass for 

seeds was lower in winter than in all other seasons (F3.54 = 22.64, P < 0.0001). Percent 

mass for UI plant material changed significantly with season (H3 = 48.38, P < 0.0001); 

percent mass in winter was higher than summer and spring masses, while the percent 

mass in autumn was higher than the percent mass in summer. There was no effect of 

season on the percent mass of capsules (P = 0.50). 

 

In spring, all the scats contained seeds and stems, while all the summer scats 

contained leaves and stems (Table 4.7). Although diet category had a significant effect 

on percent composition (F5,15 =  6.11, P = 0.0028) and on percent occurrence (F5,15 =  

4.29, P = 0.013), there were few significant differences among the categories. Insect 

parts had lower values than those of leaves, seeds and UI plant material, and the 

percent composition of stems also exceeded the percent composition of insect parts. 

Season had no effect on percent composition or percent occurrence (all P > 0.17).  

 

 

 

 



Chapter 4 

69 

 

Table 4.6  Percent composition by mass (mean ± CI) of plant parts in the scats of 

Chersina angulata in the West Coast National Park. The N values represent the 

number of scats per season. Percentages for plant parts are expressed relative to the 

mass of total plant material.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=13) (N=15) (N=58) 

Capsule  0.33±0.44 0 1.65±2.84 0.43±0.64 0.57±0.67 

Leaves  6.09±3.81 0.66±0.81 6.69±4.30 27.80±15.09 10.43±4.87 

Seeds  14.41±9.46 0.87±1.70 50.89±14.12 30.57±15.80 23.27±7.33 

Stems  11.91±11.40 0 5.41±1.87 38.82±15.68 14.33±6.27 

UI plant material 67.26±13.68 98.47±1.80 35.36±13.56 2.39±4.68 51.40±10.53 

 

 

 

Table 4.7  Percent composition (occurrence) by presence-absence of plant parts and 

animal material in the scats of Chersina angulata in the West Coast National Park. The 

N values represent the number of scats per season. Percentage composition is 

expressed relative to the total scores for plant and animal items in the scat.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=13) (N=15) (N=58) 

Capsule  4.26 (13.33) 0 3.85 (15.38) 4.26 (13.33) 3.59 (10.34) 

Insect parts 0  0 0 2.13 (6.67) 0.60 (1.72) 

Leaves  27.66 (86.67) 19.05 (26.67) 23.08 (92.31) 31.91 (100) 26.35 (75.86) 

Seeds  25.53 (80.00) 9.52 (13.33) 25.00 (100) 27.66 (86.67) 23.95 (68.97) 

Stems  10.64 (33.33) 0 25.00 (100) 31.91 (100) 19.76 (56.90) 

UI plant material  31.91 (100) 71.43 (100) 23.08 (92.31) 2.13 (6.67) 25.75 (74.14) 

 

 

 

 

 



Chapter 4 

70 

4.4.3.2 Plant parts in the diet of tortoises on DI 

The scats of angulate tortoises on DI did not contain seed capsules. The percent mass 

of the plant categories in the scats (leaves, seeds, stems and UI plant material) differed 

significantly within seasons and for all seasons combined (Table 4.8; all χ2
4 > 48.2, P < 

0.0001). The percent mass of UI plant material was higher than the mass for all other 

plant parts in all seasons, while the percent mass for seeds was higher than the mass 

of leaves and stems in winter, spring, and overall.  

 

There were seasonal differences in the percent mass of all plant parts (all H3 > 29.29, 

P < 0.0001), except for leaves, which only approached the statistical criterion for 

significance (P = 0.076). The percent mass of UI plant material did not differ for 

autumn, spring and summer, but the mass for winter was lower than in the other 

seasons. The mean percent mass for seeds was higher in winter than in autumn and 

summer, and higher in spring than in autumn. The winter value for stems was higher 

than that of the other seasons.  

 

Percent composition by presence-absence of plant parts in the scats of tortoises on DI 

(Table 4.9) did not differ significantly among seasons, but the effect of season 

approached significance for percent occurrence (P = 0.064). There were significant 

differences among plant parts for percent composition and percent occurrence (all F3,9 

> 7.50, P < 0.0081); UI plant material values exceeded the values for leaves, seeds 

and stems. The percent occurrence values indicate that approximately 90% of the 

scats contained seeds during winter and spring. 

 

4.4.3.3 Comparison between sites 

For all seasons combined, the percent mass for leaves, seeds and stems was higher in 

tortoise scats from the WCNP than in the scats from DI, whereas DI scats had a higher 

mass for UI plant material than measured on WCNP scats (all T58,60 > 2488, P < 

0.0013; Bonferroni adjusted significance level of P = 0.0125). Based on contingency 

table analysis of presence-absence counts of leaves, seeds, stems, and UI plant 

material, the occurrence of plant parts in the scats of WCNP and DI tortoises differed 

significantly in winter (χ2
3 = 12.19, P = 0.0068), spring (χ2

3 = 13.29, P = 0.0040), 

summer (χ2
3 = 41.04, P < 0.0001), and for the whole year (χ2

3 = 22.22, P < 0.0001). 

Autumn diets (χ2
3 = 10.10, P = 0.018) just failed significance relative to the Bonferroni 

adjusted P value of 0.01.  
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Table 4.8  Percent composition by mass (mean ± CI) of plant parts in the scats of 

Chersina angulata on Dassen Island. The N values represent the number of scats per 

season. Percentages for diet items are expressed relative to the mass of total plant 

material, exclusive of inorganic material. 

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=15) (N=15) (N=60) 

Leaves 1.07±1.89 2.29±2.31 0.23±0.21 0.21±0.41 0.95±0.77 

Seeds 0.28±0.55 19.09±7.97 3.09±3.07 0.49±0.66 5.74±2.88 

Stems 3.33±6.53 4.60±3.17 0 0 1.98±1.84 

UI plant material 95.31±6.64 74.03±9.26 96.68±3.18 99.30±0.74 91.33±3.87 

 

 

 

 

Table 4.9  Percent composition (occurrence) by presence-absence of plant parts in the 

scats of Chersina angulata on Dassen Island. The N values represent the number of 

scats per season. Percentage composition of plant parts is expressed relative to the 

total scores for plant items in the scat, exclusive of inorganic material.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=15) (N=15) (N=58) 

Leaves 15.00 (20.00) 15.22 (46.67) 15.15 (33.33) 5.00 (6.67) 13.45 (26.67) 

Seeds 5.00 (6.67) 30.43 (93.33) 39.39 (86.67) 20.00 (26.67) 26.89 (53.33) 

Stems 5.00 (6.67) 21.74 (66.67) 0 0 9.24 (18.33) 

UI plant material 75.00 (100) 32.61 (100) 45.45 (100) 75.00 (100) 50.42 (100) 
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4.4.4 Growth forms in the diet 

4.4.4.1 Growth forms in the diet of tortoises in the WCNP 

Apart from the UI plant material, the scats of angulate tortoises in the WCNP contained 

grasses (including restios), succulents, non-succulent herbs, and non-succulent shrubs 

(Table 4.10). Succulents included Ruschia macowanii; herbs included Albuca sp., 

Cystocapnos vesicaria, Geranium sp., Trichogyne verticillata and Senecio elegans; and 

shrubs included Helichrysum niveum, Nylandtia spinosa and Psoralea repens.  

 

The percent mass of the growth forms differed significantly within each season and for 

all seasons combined (all χ2
4 > 27.73, P < 0.0001). For all seasons combined, the 

percent mass differed among all growth forms except between shrubs and herbs (UI 

plant material > shrubs = herbs > grass > succulents). The autumn percent mass of UI 

plant material exceeded that of shrubs, and both masses were higher than that of the 

other growth forms. Winter percent mass was higher for UI plant material than for the 

other categories. In spring, the sequence for percent mass was UI plant material > herb 

> shrub = grass > succulent, while for summer the sequence was UI plant material > 

shrubs = herbs > grass > succulents.  

 

The percent mass for grass and for succulents in the faecal samples did not differ 

among seasons (all P > 0.17), but seasonal differences were detected for herbs, 

shrubs and UI plant material (all H3 > 12.87, P < 0.0049; Table 4.10). Percent mass for 

herbs in winter was lower than in spring and summer, whereas summer mass for 

shrubs exceeded winter mass. The mean percent mass of UI plant material was higher 

in winter than in summer and spring, while autumn values also exceeded summer 

values.  

 

There was no effect of season on the percent composition by presence-absence of 

growth forms in the WCNP (Table 4.11), but faecal composition varied among plant 

categories (F5,15 = 9.37, P = 0.00033) with UI plant material having higher values than 

the other categories. Concerning percent occurrence, the effect of season just failed 

significance (P = 0.080), but the percent occurrence differed among growth forms (F5,15 

= 17.5, P < 0.00001). The occurrence of UI plant material in the scats was higher than 

the occurrence of the other categories, and the occurrence of shrubs, herbs and 

grasses was higher than the occurrence of succulents and insect parts. 
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Table 4.10  Percent composition by mass (mean ± CI) of growth forms in the scats of 

Chersina angulata in the West Coast National Park. The N values represent the 

number of scats per season. Percentages for growth forms are expressed relative to 

the mass of total plant material.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=13) (N=15) (N=58) 

Grass / restio 1.70±1.84 0.28±0.39 1.61±1.16 4.00±5.19 1.91±1.46 

Herbs 1.54±1.67 0 22.92±15.40 23.38±13.80 11.58±5.65 

Shrubs 5.78±4.87 0.04±0.06 17.17±12.79 23.65±16.74 11.47±5.74 

Succulents 0 0.29±0.56 0 0.19±0.38 0.12±0.17 

UI plant material 90.98±6.66 99.39±0.82 58.31±15.56 48.77±15.84 74.92±7.83 

 

 

 

Table 4.11  Percent composition (occurrence) by presence-absence of growth forms 

and animal material in the scats of Chersina angulata in the West Coast National Park. 

The N values represent the number of scats per season. Percentage composition of 

diet categories is expressed relative to the total scores for plant and animal items in the 

scats.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=13) (N=15) (N=58) 

Grass / restio 17.14 (40.00) 10.00 (13.33) 19.44 (53.85) 11.63 (33.33) 14.93 (34.48) 

Herbs 11.43 (26.67) 0 27.78 (76.92) 23.26 (66.67) 17.91 (41.38) 

Insect parts 0 0 0 2.33 (6.67) 0.75 (1.72) 

Shrubs 28.57 (66.67) 10.00 (13.33) 16.67 (46.15) 25.58 (73.33) 21.64 (50.00) 

Succulents 0 5.00 (6.67) 0 2.33 (6.67) 1.49 (3.45) 

UI plant material 42.86 (100) 75.00 (100) 36.11 (100) 34.88 (100) 43.28 (100) 
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4.4.4.2 Growth forms in the diet of tortoises on DI 

Most of the plant material in the scats of angulate tortoises from DI could not be 

identified and the all identified fragments were herbaceous (Table 4.12). Herbs made a 

higher contribution to the spring scats than in the other seasons (based on ranked data 

in a Kruskal-Wallis ANOVA; H3 = 27.99, P < 0.0001). Percent occurrence values 

showed that there was UI plant material all scats and that herbaceous species 

occurred in 80% of the scats in spring (Table 4.13).   

 

4.4.4.3 Comparison between sites 

The mean percent mass of UI plant material was higher in the tortoise scats from DI 

than in the scats from the WCNP (T58,60 = 2436, P < 0.0001), whereas the mean 

percent mass for herbs was higher in the WCNP scats than in the DI scats (T58,60 = 

3825, P = 0.044; Tables 4.10 and 4.12). The occurrence of herbs and UI plant material 

in the tortoises’ scats from the WCNP and DI differed only in summer (Fisher exact 

test, P = 0.0063; Tables 4.11 and 4.13). 
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Table 4.12  Percent composition by mass (mean ± CI) of growth forms in the scats of 

Chersina angulata on Dassen Island. The N values represent the number of scats per 

season. Percentages for diet categories are expressed relative to the mass of total 

plant material, exclusive of inorganic material.  

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=15) (N=15) (N=60) 

Herbs 4.30±6.67 0.66±1.29 2.91±3.19 0 1.97±1.88 

UI plant material 95.70±6.67 99.34±1.29 97.09±3.19 100 98.03±1.88 

 

 

 

 

 

Table 4.13  Percent composition (occurrence) by presence-absence of growth forms in 

the scats of Chersina angulata on Dassen Island. The N values represent the number 

of scats per season. Percentage composition of growth forms is expressed relative to 

the total scores for plant items in the scat.   

 

  Autumn Winter Spring Summer Totals 

  (N=15) (N=15) (N=15) (N=15) (N=60) 

Herbs 11.76 (13.33) 6.25 (6.67) 44.44 (80.00) 0 20.00 (25.00) 

UI plant material 88.24 (100) 93.75 (100) 55.56 (100) 100.00 (100) 80.00 (100) 
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4.5 DISCUSSION 

4.5.1 Unidentified plant material in the scats 

The scats of angulate tortoises consisted mainly of UI plant material and the number of 

diet items identified was relatively low, particularly on DI. During the dry season, UI 

plant material was dry and fibrous, whereas UI faecal material in the wet season had a 

pulpy texture. It seems likely that the explanation for the high incidence of UI plant 

material may differ for the wet and dry seasons.  

 

At the study sites, environmental conditions during summer and autumn are hot and 

dry. In this winter rainfall region, plant growth in the dry season is slow or absent and 

plant material available to tortoises are probably quite fibrous. Plant cell walls consist 

largely of structural carbohydrates, such as cellulose, and with advancing cellular 

maturity, many plants accumulate additional cellulose and lignin in their cell walls 

(Robbins 1983; Huston & Pinchak 1991). Herbivorous reptiles do not synthesize 

enzymes to digest cellulose but have microbes in their digestive tracts to digest 

cellulose through fermentation (Throckmorton 1973; Bjorndal 1985; Bjorndal 1991). 

Lignin, in contrast, is largely indigestible even by cellulolytic bacteria and protozoa 

(Robbins 1983).  

 

Mechanical breakdown facilitates the digestion of fibrous plant material by increasing 

the surface area available for the action of cellulolytic microbes (Robbins 1983; 

Caughley & Sinclair 1994). Herbivorous reptiles do not masticate their food (Sokol 

1971; Throckmorton 1973; Balsamo et al. 2004; Strong & Fragoso 2006) but bite and 

tear off pieces of plant material that are ingested whole. Digestion takes place in the 

stomach and intestine and the large hindgut of angulate tortoises (MD Hofmeyr, pers. 

comm.) is probably important in the symbiotic digestion of structural plant parts. High 

temperatures in the dry season most likely increased the number or efficacy of gut 

microbes that facilitate fermentation of fibrous plants (Bjorndal 1987).  

 

Focal observations have shown that angulate tortoises at both study sites ingest large 

quantities of dry plant material in the dry season (see Tables 3.4 and 3.5), similar to 

findings for Gopherus agassizii (Nagy et al. 1998). Dry plant materials probably have a 

high fibre content but the natural degradation processes may have rendered the plant 

material more accessible to the digestive actions of the symbiotic microbes and the 

tortoise’s digestive enzymes. Wind blown sand can abrade the superficial layers of leaf 

surfaces (Cleugh et al. 1998) of fresh and dry plant material, to expose the softer 
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tissues to digestion. These processes would not only facilitate digestion of dry plant 

material but may also have destroyed identifiable characters, contributing to the high 

percentage of UI plant material in scats during the dry season. On DI, rabbit faeces 

formed an important component of the angulate tortoise’s diet during the dry season 

(see Chapter 3) and it is reasonable to expect that the original plant material would no 

longer be identifiable.   

 

Winter rains stimulate plant growth and new plant growth has relatively little structural 

components, making new growth easy to digest (Robbins 1983; Huston & Pinchak 

1991). The activity level of the angulate tortoises was higher in winter and spring than 

in the dry season (see Chapter 3) and the tortoises probably consumed large quantities 

of good quality food in the wet season. This may explain why dry faecal mass was 

higher during the wet season than during the dry season. At both study sites, the 

availability of annual and herbaceous plants increased substantially during the wet 

season (see Chapter 2), while focal studies on angulate tortoises showed a high 

consumption of seedlings in the wet season (see Chapter 3). The high level of UI plant 

material in the scats of angulate tortoises during the wet season was most likely the 

remnants of easily digested herbaceous plants that were consumed in large quantities. 

 

A strong botanical training (e.g., Milton 1992), or histological analyses of faeces (see 

Chapter 5), should enhance the identification of plant species and parts in tortoise 

faeces. Nevertheless, it seems that angulate tortoises may have a relatively efficient 

digestive system, and select highly digestible food items when possible, so that few 

items in the faeces are unaltered and easily recognisable. Macroscopic scatological 

evaluations are valuable in dietary analyses, but this method is not very suitable for 

studying the diet of herbivores with efficient digestion or strong preferences for low fibre 

foods. 

 

4.5.2 Diet mixing: growth forms and plant parts in the diet 

Succulent plants had a low occurrence in the scats of angulate tortoises in the WCNP 

and were absent from the DI scats. The focal studies (see Chapter 3) also showed a 

low incidence of succulents in the diet despite the high relative cover of succulents on 

DI and a moderate abundance in the WCNP (see Fig. 2.4). The succulents in the 

WCNP were perennials possessing thick epidermi and were tough to the touch (pers. 

obs.). It may have been difficult or impossible for tortoises to tear off and consume 

large, easily identifiable pieces of perennial succulents because of their tough epidermi 

(e.g., Carpobrotus edulis and Carpobrotus quadrifidus), reducing their representation in 
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the faeces. The slender leaves of Ruschia macowanii may have contributed to this 

succulent species being detected in the scats. The dominant succulent plants available 

for consumption on DI were Mesembryanthemum crystallinum and Tetragonia 

fruticosa. Tortoises may have avoided consuming these species due to their high 

concentrations of ions (e.g., Mesembryanthemum crystallinum concentrates potassium 

and sodium; Adams et al. 1998), which may make them unpalatable to tortoises. 

 

The low contribution of grass to the diet of angulate tortoises was surprising because 

grasses form an important constituent in the diet of several tortoise species (Milton 

1992; Nagy et al. 1998; Mushinsky et al. 2003). It is possible that angulate tortoises 

consumed mainly the young shoots of annual and perennial grasses, which would be 

more difficult to detect macroscopically because young shoots have higher digestibility 

(Huston & Pinchak 1991). Annual grasses may also be more palatable than perennial 

grasses because annual plants spend little or none of their resources to produce anti-

herbivore defences (Cates & Orians 1975). 

 

The relatively high values recorded for herbs and shrubs in the macroscopic evaluation 

are mainly due to the presence of their fruits or seeds, which often remained intact and 

thus were easy to identify. The shrub, Nylandtia spinosa, was the most prominent diet 

item identified in the WCNP mainly due to a high consumption the plant’s fruits in 

spring and summer. The fruits are small enough to swallow completely, and some fruits 

in the scats were unaltered while others were partially digested (pers. obs.). It is known 

that the fruits of N. spinosa are edible and widely used by birds and tortoises, hence 

the common name of the plant, tortoise berry (Van Rooyen & Steyn 1999).  

 

Fruits and seeds are storage tissue with high energy content, but the protein content of 

seeds can be low (Janzen et al. 1985; Caughley & Sinclair 1994). Tortoises may thus 

consume seeds in high quantities, when available, to satisfy their energy requirements. 

However, fruits and seeds often appear intact in the scats and it is not clear what the 

nutritional gain of the tortoise may be. As is the case for N. spinosa, only a certain 

percentage, or a certain part, of the fruits of other species may have been digested by 

the tortoise. This seems to be the case for Cystocapnos vesicaria, where the scats of 

angulate tortoises in the WCNP contained seeds and remnants of the capsule, but the 

scats from DI contained only the seeds. Although angulate tortoises may have eaten 

seeds per se, in most instances the primary diet items were probably the flower heads 

or unripe ovaries of the plants. In these instances, digestion of the petals, nectar, pollen 

and ovaries would have provided important nutrient while the seeds were left intact or 
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partially digested. In this study, C. angulata consumed seeds of at least eight plant 

species and C. angulata is potentially an important agent of seed dispersal in both the 

WCNP and on DI. Several studies have shown that tortoises are important agents of 

seed dispersal (Milton 1992; Varela & Bucher 2002; Strong & Fragoso 2006) and, in a 

few instances, germination success of the seeds increased after passing through a 

tortoise’s digestive system (Cobo & Andreu 1988).  

 

The proportion of leaves and stems in the scats of angulate tortoises did not differ 

although leaves generally have lower fibre content than stems, and stems have lower 

digestibility (Huston & Pinchak 1991). It is not clear if the ingestion of stems was 

deliberate or incidental to the consumption of leaves. Young leaves have a higher 

energy and protein content than old leaves (Caughley & Sinclair 1994), and in the 

winter rainfall region more young leaves would be available in winter and spring than in 

summer. Nevertheless, the ingestion of leaves in the WCNP appears to be highest in 

summer. It seems likely that young leaves that were consumed in winter may form part 

of the large UI plant category because improved digestibility would have rendered the 

leaves unidentifiable.  

 

Chersina angulata consumed a mixed diet that consisted of a variety of plant parts, 

different growth forms and even included animal material. The benefits of a mixed diet 

have been widely researched but the basis of food choice, for most species, is still 

poorly understood (Bjorndal 1991). The nutritional value of dietary items can be 

additive and the additive interdependence of diet items can become quite complex in 

herbivores that ingest a range of diet items (Robbins 1983). The complexity of food 

choice increases even more when the non-additive interactions among diet items are 

considered. For example, in wild ruminants fed on a mixture of grass and shrub stems 

the digestion of fibre increased because gut retention time increased (Robbins 1983). 

Non-additive interactions of diet items may play an important role in the food choice of 

angulate tortoises since associative effects likely occur in herbivores that ingest a 

mixture of plant parts and food types (Bjorndal 1991). 

 

4.5.3 Geophagy and lithophagy 

Angulate tortoises consumed sand at both study sites. The ingestion of sand 

(lithophagy) and stone (geophagy) has been observed in a variety of reptiles (Sokol 

1971; Rhodin 1974; Mason et al. 1999). The abrasive properties of sand and stone 

against ingested plant material is thought to help increase the amount of nutrients 
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assimilated by removing the outer epidermis and exposing the underlying soft tissues 

to digestive enzymes (Sokol 1971; Throckmorton 1973; Sylber 1988).  

 

The scats of angulate tortoises in the WCNP contained sand only in autumn. The high 

incidence of UI plant fibre in the scats indicates that angulate tortoises in the WCNP 

may have consumed predominately high-fibre plants in autumn, the end of the dry 

season. The ingestion of sand may have facilitated digestion of fibrous plants by 

abrading the tough outer plant surfaces. However, the first autumn rains fell just before 

this field season and the tortoises may have ingested sand incidentally when they 

drank water.  

 

Fourteen of the 15 spring scat samples from DI contained sand, and the sand 

contributed 12–54% of the faecal mass. It seems unlikely that such high quantities of 

sand in the faeces represent incidental ingestion. Yet, focal observations (see Chapter 

3) indicated that more than 50% of the spring diet on DI consisted of seedlings and 

mosses, and these plants would hardly require the abrasive action of sand to facilitate 

digestion. If the sand was not ingested incidentally while the tortoises fed on seedlings 

and mosses, the sand probably served a different purpose to abrasion in the feeding 

ecology of DI tortoises during spring.  

 

It is well known that mammals use salt licks (areas where ungulates actively ingest 

sand) to supplement elements such as sodium, magnesium and carbonates in their 

diet (Ayotte et al. 2006). The limited food choice on DI (see Chapter 2) could be 

responsible for the ingestion of sand in that the tortoises try to acquire minerals to 

address deficiencies in their diets. Alternatively or additionally, lithophagy on DI may 

serve the purpose to increase the presence of cellulolytic microbes in the guts of 

angulate tortoises, as has been suggested for other reptiles (Sokol 1971). 
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5 HISTOLOGICAL EVALUATION OF TORTOISE FAECES 

 

 

 

5.1 ABSTRACT 

Microhistological analyses identified 94 plant items in the scats of angulate tortoises in 

the West Coast National Park (WCNP) compared to 33 plant items in the scats of 

Dassen Island (DI) tortoises. The diverse diet of WCNP tortoises can be ascribed to the 

diverse vegetation at the site, whereas the depauperate vegetation on DI offered fewer 

food species to these tortoises. Monocots and dicots were of equal importance in the 

diet of WCNP tortoises. In contrast, the diet of DI tortoises was dominated by 

monocotyledonous plants. At both sites, perennial plants made a larger contribution to 

the tortoises’ diet than annual plants made. The diet of angulate tortoises included 

several growth forms; overall, grasses and herbs made the largest contributions, 

respectively, to the WCNP and DI diets. Cynodon dactylon, a perennial grass, was the 

most important diet item of WCNP tortoises, which consumed mainly the 

inflorescences of this grass. The perennial herb, Trachyandra divaricata, was the most 

important diet item of the DI tortoises. Shrub and succulent plant species occurred in 

the scats of WCNP tortoises but not in the scats of DI tortoises. The only woody plant 

eaten on DI was a tree species, Myoporum serratum. Sedge species formed part of the 

tortoises’ diet at both sites, but inflorescences of the sedge Ficinia nigrescens were 

particularly important in the spring diet of DI tortoises. The scats of the tortoises at both 

study sites contained insect parts. The tortoises may have ingested the insects 

incidentally, but the insect tissue should nevertheless contribute to the nutrition of the 

tortoises. Parasite eggs in the scats were not regarded as diet items. The high parasite 

infestation noted for DI tortoises may be linked to the high tortoise density on DI, or the 

infestation may be caused by the ingestion of sand and rabbit faeces on DI. 
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5.2 INTRODUCTION 

Food not only affects animals’ body condition but also their ability to reproduce 

successfully (Clark 1982; Avery et al. 1993; Henen 1997). A good understanding of 

animals’ dietary requirements will consequently improve our ability to manage animals 

and their associated habitats (Ferreira & Bigalke 1987; Kennett & Tory 1996; Mouden 

et al. 2006). Plants display greater fluctuations in nutrient content compared to animal 

material (Nagy et al. 1998), and the nutrient content of plant material varies among 

plant species as well as differs among plant parts, e.g., leaves, seeds and stems 

(Huston & Pinchak 1991). Herbivorous reptiles may thus select a wide range of plant 

species and plant parts to satisfy their nutritional needs (Hailey et al. 1998; Mushinsky 

et al. 2003). 

 

Microhistological faecal analysis is one of several methods that have been used to 

study the diets of mammals (Bhadresa 1977; Thompson & McCourt 1981) and reptiles 

(Mason et al. 1999; Loehr 2002; Mouden 2006). This method is based on the 

recognition of unique microscopic features of epidermal plant fragments in the scats of 

herbivorous animals (Vavra & Holechek 1980). Although the method requires extensive 

training in epidermal preparation and a thorough knowledge of microscopic epidermal 

characters for the identification of plant fragments, it provides both qualitative and 

quantitative information of an animal’s diet (Vavra & Holechek 1980; Holechek et al. 

1982). Diet data can also be combined with plant availability data to determine food 

preferences of animals.  

 

I undertook a histological evaluation of the scats of angulate tortoises at two sites in the 

southwestern Cape to compare the efficacy of histological scat analysis with a) 

macroscopic scat analysis and b) focal studies for assessing the feeding ecology of 

angulate tortoises.  

 

 

5.3 MATERIALS AND METHODS 

5.3.1 Study sites and the collection of faecal samples 

I studied the feeding ecology of Chersina angulata in the West Coast National Park 

(WCNP, 30 000 ha, 33°13’S, 18°09’E) and on Dassen Island (DI, 222 ha, 33°25’S, 

18°06’E) over four seasons from March 1999 to February 2000. Detailed descriptions 

of the study sites and climate are provided in Chapters 2 and 3. During each study 

period (see Table 3.1 in Chapter 3), I collected scats from angulate tortoises in and 
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around the study quadrats for macroscopic and histological analyses. I collected 15 

faecal samples each season at each site, except in spring 1999 when only 12 samples 

were available for the WCNP. After completing the macroscopic evaluation of the 

samples (see Chapter 4), I stored each faecal sample individually in FAA 

(formaldehyde : glacial acetic acid : 70% ethanol, in the proportion 0.5 : 0.5 : 9.0) for 

histological preparation. 

 

5.3.2 Preparation of faecal samples for histological analysis 

The preserved faecal samples were removed from the FAA and allowed to air dry 

before each sample was homogenised in a coffee grinder. Ground faecal material was 

funnelled into a 10 ml vial and the grinder was brushed with a camel-hair brush to 

remove residual particles. The vial was labelled and three-quarter filled with FAA for 

storage. The coffee grinder was thoroughly cleaned with a damp paper towel before I 

processed the next sample. 

 

I used a diamond cutter and ruler to cut a grid, with 1 mm graduations, into a number of 

glass slides. When a faecal sample was studied, I placed one to two drops of the 

faecal-FAA solution in the middle of the graduated slide with a pipette. A few drops of a 

50:50 glycerol and water mixture were placed on the slide to help retard sample 

desiccation (Ferreira & Bigalke 1987). The slide was then viewed under a light 

microscope (Olympus CX40RF200) at 400x magnification and the epidermal fragments 

were identified. 

 

5.3.3 Histological evaluation 

I collected leaves, flowers and seeds of a variety of plants within and around the study 

quadrats throughout the study period, and collected additional material in the 

subsequent year in an attempt to identify some of the previously unidentified epidermi 

in the scats. The plant material was used to make an epidermal reference collection, 

which was used in the histological evaluation of the faecal samples. A detailed 

description of the procedures to make reference slides, and the characteristics of the 

plant epidermi, are provided in Chapter 7. I also made wet mounts of floral parts 

(anthers and corolla) to help identify pollen grains in the scats. 

 

Because the histological evaluation of faecal samples is a time-intensive process, it 

was important to establish, at the outset of the study, how many epidermal fragments 

per scat should be counted and identified to ascertain where the cumulative number of 

plant taxa peaked. The objective was to count enough fragments to accurately reflect 
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the composition of the sample, but to not waste time counting more fragments than 

was necessary. A preliminary analysis showed that the number of taxa levelled-off at 

less than 200 counts for the WCNP, and at less than 100 counts for Dassen Island. 

Consequently, for the analysis, I identified the first 200 fragments in each sample from 

the WCNP and the first 100 fragments in each sample from DI.  

 

Some faecal samples contained large quantities of pollen or trichomes. Counting the 

detached trichomes and pollen would have overestimated the contribution of that 

specific plant to the diet. My approach was thus to use trichomes or pollen for 

identification only when the trichomes or pollen were still attached to epidermal 

fragments or floral parts, respectively.  

 

While doing the histological analysis, I made detailed drawings of the epidermal 

fragments or objects that were counted but could not be identified. These drawings 

were subsequently compared to new reference material from the study sites for 

identification. Whenever possible, the diet items were identified to the species level. 

When I could not establish the species, genus or family, I tried to identify the growth 

form (e.g., grass) or establish if the plant belonged to the monocotyledons or 

dicotyledons. The objective was to provide individual, recognisable identities to all plant 

items that were considered separate species, albeit unidentified. In the end, all plant 

fragments that could not be categorised were combined as unidentified (UI) plant 

material. Some items that were counted in the scats were in fact animal material, and 

where possible, the animal material was identified; a few fragments were placed in a 

category for unknown animal material. 

 

5.3.4 Data analyses 

In order to allow direct comparison of plant items among seasons and between sites, I 

used percent counts, and expressed the counts of individual plant items relative to the 

total counts of the plant items. The counts for the animal items were expressed relative 

to the total counts for each scat. I calculated the mean and standard deviation of the 

percent counts for each diet item per season and for all seasons combined. To allow a 

comparison among histological, focal and macroscopic data, I evaluated the 

histological data also on a presence-absence basis (MacDonald & Mushinsky 1988). In 

these calculations, the presence of a particular plant species in a scat was regarded as 

a single record, whether one or several fragments per scat were counted. Percent 

occurrence was calculated as the number of scats in a sample that contained a 

particular diet item divided by the total number of scats in the sample (e.g., 15 scats 

 

 

 

 



Chapter 5 

87 

per season). Similarly to the focal and macroscopic studies, I included animal material 

in the calculation of percent composition by presence-absence. However, I excluded 

the counts for parasite eggs from the animal material.  

 

I used the same principle when calculating the percent composition and percent 

occurrence by presence-absence for plant types and growth forms. Two different plant 

type groups were identified: monocots-dicots and annuals-perennials. Growth forms 

were categorised as grasses, restioids, sedges, succulents, non-succulent herbs and 

non-succulent shrubs. Items in the scats that did not fit the listed categories were 

categorised as UI plant material or as animal material. 

 

5.3.4.1 Statistical analysis 

Statistical tests were done with SigmaStat 2.03 (SPSS Inc., Chicago, U.S.A.) at α = 

0.05. In most instances, the data were non-parametric despite log and square-root 

transformations. Consequently, I often could not use multi-factorial analysis of variance 

(ANOVA) to simultaneously test for more than one effect. When multiple tests were 

done, I used the Sequential Bonferroni procedure (Holm 1979 in Quinn & Keough 

2002) to sequentially test the P-values against adjusted α levels. 

 

I used Friedman’s repeated measures ANOVA (χ2
df) followed by the Student-Newman-

Keul’s (SNK) post hoc test to evaluate differences among diet items within a site and 

within a season. For the comparison of diet items among seasons, I used a one-way 

ANOVA (Fdf) followed by the SNK test if data were parametric, and I used a Kruskal-

Wallis ANOVA (Hdf) followed by Dunn’s post hoc test when the data were non-

parametric. When data met parametric assumptions, I used a two-way ANOVA (Fdf) to 

test simultaneously for the effects of diet item and season. Only a few diet items were 

shared between sites and I used either Student’s t test (tdf) or Mann-Whitney Rank 

Sum Test (Tn,n) to compare diet items between sites. In a few instances (e.g., for 

presence-absence data), it was possible to do a three-way ANOVA to test 

simultaneously for the effects of site, season and diet category.  
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5.4  RESULTS 

5.4.1 Diet composition in the WCNP 

5.4.1.1 Diet composition within each season and overall 

For all seasons combined, a total of 94 plant items and three animal items were 

identified in the scats of angulate tortoises from the WCNP (Table 5.1). Forty-seven 

plant items were identified to the species or genus level while two plant items were 

identified to the family level. The unidentified plant items consisted of 10 grasses, one 

sedge, two succulents, one herb, 24 dicots, five monocots, one unidentified fruit, and 

the category UI plant material. The animal material consisted of insect parts, nematode 

eggs and unknown animal material (Table 5.1).  

 

A total of 17 grasses were identified in angulate tortoise scats from the WCNP; 

Cynodon dactylon ranked first in the list of diet items while three other grass species 

fell within the top-ten ranks. Thirteen non-succulent herbaceous species were 

identified. Geranium incanum ranked second overall while two other herbs, Albuca sp. 

and Senecio elegans, also fell within the top-ten ranks (Table 5.1). Nine succulent 

plants were identified in the scats and the succulent classified as Aizoaceae ranked 

third on the list. Chersina angulata in the WCNP consumed material from 21 non-

succulent shrubs (woody plants, including the parasite plant Septulina glauca). 

Hermannia scabra, a low growing shrub, was the only shrub in the top-ten ranks. The 

epidermi of only two cyperids were identified in the scats, and both cyperids, Ficinia 

nigrescens and Sedge 1, made small contributions to the overall composition of the 

scats. Thamnochortus spicigerus was the only restioid identified and occurred in only 

one faecal sample. UI plant material was ranked in the fifth position on the list (Table 

5.1).  

 

When doing the statistical analysis, I considered plant and animal items separately. For 

all seasons combined, the contribution of the 94 plant items to the composition of the 

diet differed significantly (χ2
93 = 1484.0, P << 0.0001). Cynodon dactylon made a larger 

contribution than any other item to the diet of WCNP angulate tortoises. The 

contribution of G. incanum was second largest, followed by Aizoaceae and UI plant 

material. There was no difference among the remaining plant items. The apparent 

contradictory result that the contribution of UI plant material exceeded the contribution 

of Albuca sp. (see Table 5.1) should be viewed in the light that the repeated measures 

ANOVA compared the different diet components within the same scat.  
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When considering individual seasons, 33 plant items were identified in autumn scats 

(Table 5.1). The grasses C. dactylon and Lolium perenne ranked first and second, 

respectively. The top-ten ranks for autumn also included two herbs, G. incanum and 

Albuca sp., and two shrubs, Rhus laevigata and H. scabra. The contribution of the diet 

items to scat composition differed significantly (χ2
32 

 = 145.8, P << 0.0001) but only C. 

dactylon made a significantly larger contribution to the diet than the other diet items 

made. Winter scats contained 46 plant items (Table 5.1) and the contribution of 

individual items to the diet composition differed significantly (χ2
45

 = 276.1, P << 0.0001). 

The herb G. incanum made the largest contribution to the diet composition followed by 

the herb Albuca sp. and the grass Pennisetum setaceum. The contribution of the other 

diet items did not differ. Cynodon dactylon ranked only eighth in the winter diet. The 

spring scats were comprised of 34 plant items (Table 5.1). Grass featured prominently 

in the spring diet with five grass species in the top-ten ranks. There was a significant 

difference in the contribution of diet items to the composition of scats (χ2
33

 = 150.2, P 

<< 0.0001); C. dactylon made a larger contribution to the diet than any other diet item, 

and was followed by the succulent Aizoaceae and UI plant material. There was no 

difference in the contribution of the remaining diet items. In summer, 52 plant items 

were identified in angulate tortoise scats (Table 5.1). The diet items did not contribute 

equally to the summer diet (χ2
51

 = 184.2, P << 0.0001) but only the contribution of C. 

dactylon differed significantly from the others. The succulent Aizoaceae ranked second 

and four herbs, Oncosiphon suffruticosum, Senecio elegans, Albuca sp. and Herb 1 (a 

creeper), were in the top-ten ranks.  

 

5.4.1.2 Seasonal changes in the importance of diet items 

Fifty-four of the 94 plant diet items in the scats were found in one season only while the 

number of plant items recorded for two, three and four seasons, respectively, were 18, 

13 and nine. In many instances, the contribution of plant items to the diet composition 

of angulate tortoises in the WCNP changed with season (Table 5.1). 

 

The most prominent diet item, C. dactylon, formed part of each season’s diet, and the 

mean counts for C. dactylon differed among the four seasons (H3 = 29.61, P << 

0.0001); percent counts in autumn was higher than in the other seasons. Percent 

counts in winter scats was higher than in all the other seasons for G. incanum and P. 

setaceum, and winter counts for Hebenstretia repens exceeded autumn and summer 

values while winter counts for Albuca sp. was higher than spring counts (all H3 > 16.91, 

P < 0.00074). The counts for Aizoaceae and UI plant material differed significantly 
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among seasons (all H3 > 16.91, P < 0.00074) and were particularly high in spring. The 

spring count for Aizoaceae exceeded autumn and winter values, whereas the spring 

count for UI plant material was higher than the autumn and summer counts, and the 

winter count for UI plant material was larger than the autumn count. The percent counts 

for Nylandtia spinosa was higher in summer than in winter (H3 = 14.38, P = 0.0024).  

 

The counts for Avena fatua, Cystocapnos vesicaria, Dicot 8, Dicot 9, Dicot 13, Dicot 22, 

Grass 5, Helichrysum niveum, Lolium perenne, O. suffruticosum, Psoralea repens, 

Rhus laevigata, Ruschia macowanii, Ruschia sp. and Senecio elegans changed among 

seasons (all H3 > 7.85, P < 0.05). However, there were no post hoc differences among 

seasons for these species. The effect of season approached significance for F. 

nigrescens, Grass 2, Grass 7, Grass 9, H. scabra and Monocot 5 (all H3 > 7.59, P = 

0.051 to 0.055), but had no effect on the remaining plant items (all P > 0.066).  

 

The contribution of animal material to the composition of angulate tortoise scats 

changed significantly among seasons (H3 = 11.98, P = 0.0074) and was higher in 

summer than in autumn. The effect of season was significant for insect parts (H3 = 

12.32, P = 0.0064) and for nematode eggs (H3 = 15.22, P = 0.0016) but failed 

significance for unknown animal material (P = 0.057). Insect parts had higher counts in 

summer than in autumn. 
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Table 5.1  Diet composition of Chersina angulata in the WCNP based on percent 

counts (mean ± SD) of histological fragments in the scats of 15 tortoises each season 

but12 tortoises in spring. Two hundred fragments were counted per scat. 

Taxon Category Autumn Winter Spring Summer Total 

Afrolimon purpuratum D / P / S 0  0  0  0.3 ± 1.1 0.1 ± 0.6 
Aizoaceae D / P / Su 0.6 ± 0.8 2.7 ± 5.6 17.7 ± 24.8 8.7 ± 17.8 6.9 ± 15.8 
Albuca sp. M / P / H 4.0 ± 7.6 14.5 ± 18.3 0.5 ± 1.6 3.5 ± 6.1 5.9 ± 11.7 
Apocynaceae D / A / H 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Aspalathus hispida D / P / S 0  0  0  0.8 ± 2.1 0.2 ± 1.1 
Asparagus lignosus M / P / S 0  0.1 ± 0.5 0  0  0.0 ± 0.3 
Avena fatua M / A / G 0  0  0  1.8 ± 5.7 0.5 ± 3.0 
Avena sp. M / A / G 0.3 ± 1.2 0.5 ± 1.0 1.8 ± 2.8 0.2 ± 0.4 0.6 ± 1.6 
Carpobrotus edulis  D / P / Su 0  0  0  1.0 ± 3.8 0.3 ± 2.0 
Carpobrotus quadrifidus D / P / Su 0  0  0  0.0 ± 0.1 0.0 ± 0.1 
Chaetobromus dregeanus M / P / G 0  0  0  0.5 ± 1.5 0.1 ± 0.8 
Chironia baccifera D / P / S 0  0.3 ± 0.7 0  1.8 ± 6.8 0.6 ± 3.5 
Chrysanthemoides monilifera D / P / S 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Cynanchum africanum D / P / S 0.6 ± 1.7 0  0  0.6 ± 2.1 0.3 ± 1.4 
Cynodon dactylon M / P / G 54.8 ± 21.7 4.3 ± 6.6 15.8 ± 22.2 19.3 ± 22.9 24.0 ± 27.1 
Cystocapnos vesicaria D / A / H 0  0.8 ± 1.4 0  2.2 ± 8.4 0.8 ± 4.4 
Dicot 1 D 0  0  0.4 ± 1.3 0  0.1 ± 0.6 
Dicot 2 D 0  0.1 ± 0.3 1.3 ± 3.6 0  0.3 ± 1.7 
Dicot 3 D 0.1 ± 0.5 0  2.4 ± 8.4 0  0.5 ± 3.9 
Dicot 4 D 0  0  0.1 ± 0.3 0  0.0 ± 0.1 
Dicot 5 D 0  0  0.2 ± 0.6 0  0.0 ± 0.3 
Dicot 6 D 0  0  0.6 ± 2.2 0  0.1 ± 1.0 
Dicot 7 D 0  2.0 ± 5.2 0  1.3 ± 4.9 0.9 ± 3.7 
Dicot 8 D 1.0 ± 2.5 0  0  0.1 ± 0.3 0.3 ± 1.3 
Dicot 9 D 1.7 ± 4.3 0  0  0  0.4 ± 2.3 
Dicot 10 D 2.7 ± 7.9 0.7 ± 2.4 0  0.6 ± 2.5 1.1 ± 4.4 
Dicot 11 D 0  0  0  0.2 ± 0.7 0.1 ± 0.4 
Dicot 12 D 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Dicot 13 D 4.5 ± 9.9 0  0  0  1.2 ± 5.3 
Dicot 14 D 0.0 ± 0.1 0  0  0  0.0 ± 0.1 
Dicot 15 D 0.1 ± 0.5 0  0.2 ± 0.4 0.1 ± 0.4 0.1 ± 0.4 
Dicot 16 D 0  0  0  0.5 ± 1.6 0.1 ± 0.8 
Dicot 17 D 0  1.3 ± 4.1 0  3.4 ± 9.5 1.2 ± 5.4 
Dicot 18 D 0  0  0  0.1 ± 0.3 0.0 ± 0.1 
Dicot 19 D 0.6 ± 1.7 0  0  0.1 ± 0.3 0.2 ± 0.9 
Dicot 20 D 0  0  0  0.7 ± 2.1 0.2 ± 1.1 
Dicot 21 D 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Dicot 22 D 0  0  0  2.9 ± 7.6 0.8 ± 4.0 
Dicot 23 D 0.7 ± 1.8 0.8 ± 3.1 0  4.3 ± 16.6 1.5 ± 8.7 
Dicot 24 D 0  0  0.2 ± 0.6 0  0.0 ± 0.3 
Ehrharta villosa  M / P / G 0  0  0.2 ± 0.7 0.4 ± 1.7 0.2 ± 0.9 
Ficinia nigrescens M / P / C 0  0  0.5 ± 1.6 0  0.1 ± 0.7 
Geranium incanum D / P / H 6.1 ± 12.8 22.1 ± 15.6 0.4 ± 0.5 2.4 ± 5.1 8.2 ± 13.5 
Grass 1 M / G 0.0 ± 0.1 0  0  0.4 ± 1.6 0.1 ± 0.8 
Grass 2 M / G 0.2 ± 0.4 5.0 ± 12.0 5.8 ± 8.6 3.4 ± 10.6 3.5 ± 9.1 
Grass 3 M / G 0.1 ± 0.5 0  0  0  0.0 ± 0.3 
Grass 4 M / G 1.1 ± 4.0 0.3 ± 0.5 0  1.4 ± 2.4 0.7 ± 2.4 
Grass 5 M 0.4 ± 0.8 0  0  0.1 ± 0.5 0.1 ± 0.5 
Grass 6 M / G 0  1.1 ± 2.8 3.4 ± 8.2 0.4 ± 1.6 1.1 ± 4.2 
Grass 7 M / G 0  0  4.9 ± 15.1 0  1.0 ± 7.0 
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Table 5.1 continued       

Taxon Category Autumn Winter Spring Summer Total 

Grass 8 M / G 0  0  0.5 ± 1.8 0  0.1 ± 0.8 
Grass 9 M / G 0  0  2.7 ± 6.5 0  0.6 ± 3.1 
Grass 10 M / G 0.1 ± 0.3 0.4 ± 1.1 0  0  0.1 ± 0.6 
Gymnosporia buxifolia D / P / S 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Hebenstretia repens D / A / H 0.0 ± 0.1 5.6 ± 9.4 0.8 ± 1.6 0  1.6 ± 5.3 
Helichrysum niveum D / P / S 0.0 ± 0.1 0  0  3.8 ± 7.8 1.0 ± 4.3 
Herb 1 D / P / H 0  0  0  3.5 ± 13.4 0.9 ± 6.9 
Hermannia pinnata D / P / S 0  0  0  0.1 ± 0.3 0.0 ± 0.1 
Hermannia scabra D / P / S 2.9 ± 8.8 5.6 ± 13.8 4.8 ± 9.4 0.2 ± 0.7 3.3 ± 9.4 
Lachnospermum imbricatum D / P / S 0  0  0  0.0 ± 0.1 0.0 ± 0.1 
Lolium perenne M / P / G 8.1 ± 15.5 0.2 ± 0.7 0.1 ± 0.3 2.0 ± 5.7 2.7 ± 8.9 
Manochlamys albicans D / P / S 0  0.1 ± 0.3 0  0  0.0 ± 0.1 
Monocot 1 M 0  0.1 ± 0.4 0  0  0.0 ± 0.2 
Monocot 2 M 0  0  1.2 ± 4.1 0.1 ± 0.3 0.3 ± 1.9 
Monocot 3 M 0  0.2 ± 0.8 0  0  0.1 ± 0.4 
Monocot 4 M 0  0.2 ± 0.5 0.0 ± 0.1 0.0 ± 0.1 0.1 ± 0.3 
Monocot 5 M 0  0  0.4 ± 1.0 0  0.1 ± 0.5 
Nylandtia spinosa D / P / S 0.4 ± 1.1 0  0.6 ± 1.2 3.3 ± 5.4 1.1 ± 3.1 
Oncosiphon suffruticosum D / A / H 0  0  0  8.4 ± 20.5 2.2 ± 10.9 
Osyris compressa D / P / S 0  0  0  1.4 ± 5.4 0.4 ± 2.8 
Oxalis sp. D / A / H 0  0.6 ± 1.9 0.6 ± 1.7 0  0.3 ± 1.3 
Passerina corymbosa D / P / S 0  0.5 ± 1.9 0  0  0.1 ± 1.0 
Passerina ericoides D / P / S 0  0.2 ± 0.7 0  0  0.0 ± 0.3 
Pelargonium myrrhifolium D / P / S 0.3 ± 1.0 0  0  0.0 ± 0.1 0.1 ± 0.5 
Pennisetum setaceum  M / P / G 0  11.7 ± 18.2 2.3 ± 7.5 2.2 ± 7.0 4.2 ± 11.3 
Psoralea repens D / P / S 0  3.5 ± 8.0 0  0  0.9 ± 4.3 
Rhus laevigata D / P / S 4.6 ± 9.7 0.3 ± 0.6 0  1.6 ± 3.9 1.7 ± 5.5 
Rhus sp. D / P / S 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Ruschia macowanii D / P / Su 0.4 ± 0.7 2.9 ± 5.0 0  1.1 ± 2.6 1.2 ± 3.1 
Ruschia sp D / P / Su 0  0.4 ± 0.7 0  0  0.1 ± 0.4 
Sedge 1 M / C 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Senecio elegans D / A / H 1.3 ± 3.1 0  12.6 ± 29.9 5.3 ± 12.9 4.4 ± 15.6 
Senecio maritimus D / A / Su 0.0 ± 0.1 0  6.3 ± 21.7 2.4 ± 5.0 2.0 ± 10.2 
Senecio sp. D / H 0.1 ± 0.4 0  0  0  0.0 ± 0.2 
Septulina glauca D / P / S 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Succulent 1 D / Su 0  0  0.1 ± 0.3 0  0.0 ± 0.1 
Succulent 2 D / Su 0  0.0 ± 0.1 0.3 ± 1.2 0  0.1 ± 0.5 
Tetragonia sp. D / H 0  0.1 ± 0.3 0  0  0.0 ± 0.1 
Thamnochortus spicigerus M / P / R 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
Trifolium burchellianum D / P / H 0  0.0 ± 0.1 0  0  0.0 ± 0.1 
UI plant material UI 1.7 ± 5.5 10.2 ± 17.4 10.3 ± 10.9 0.7 ± 1.6 5.5 ± 11.3 
Unknown fruit UI 0  0.1 ± 0.3 0  0  0.0 ± 0.1 
Zantedeschia aethiopica M / P / H 0  0  0  0.0 ± 0.1 0.0 ± 0.1 
Zygophyllum morgsana D / P / Su 0  0  0  0.3 ± 1.2 0.1 ± 0.6 
Animal material* Am 0.1 ± 0.3 0.8 ± 0.9 1.0 ± 1.5 5.1 ± 10.1 1.8 ± 5.5 
     Insect parts Am 0.1 ± 0.3 0.3 ± 0.7 0.7 ± 1.3 3.9 ± 9.5 1.3 ± 5.1 
     Nematode eggs Am 0.0 ± 0.1 0  0  1.1 ± 1.7 0.3 ± 1.0 
     Unknown Am  0   0.4 ± 0.8 0.3 ± 0.6 0.1 ± 0.3 0.2 ± 0.5 

The different categories include: M = Monocot, D = Dicot, A = Annual, P = Perennial, G = Grass, C = 
Cyperid, R = Restio, Su = Succulent, H = Herb (non-succulent), S = Shrub (non-succulent), UI = 
Unidentified plant material, Am = Animal material. *Percent counts for animal material and its 
subcategories are relative to the total number of counts in the scats, whereas percent counts for plant 
items are relative to the total number of counts for plant material. 
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5.4.1.3 Diet composition based on presence-absence data 

The results for the presence-absence data, percent composition and percent 

occurrence, corresponded roughly to the results based on counts of the diet items, 

although the ranking of diet items for the two procedures was not identical (Table 5.2). 

Both procedures illustrated the overall importance of C. dactylon, G. incanum and 

Aizoaceae in the diet of angulate tortoises in the WCNP. A two-way ANOVA to test for 

the effects of season and plant item on percent composition of the 41 diet items that 

occurred in more than one season, showed a significant effect for diet item (F40,120 = 

3.36, P << 0.0001) but not for season (P = 0.80). Percent composition for C. dactylon 

was larger than that of 25 other diet items, while percent composition for Aizoaceae 

and G. incanum exceed that of 10 and six other diet items, respectively.  

 

For all seasons combined, four diet items occurred in the scats of at least 50% of 

angulate tortoises: C. dactylon, G. incanum, Aizoaceae, and UI plant material (Table 

5.2). In autumn, more than 50% of the tortoise scats contained C. dactylon, G. 

incanum, L. perenne, H. scabra and S. elegans. The percent occurrence for C. 

dactylon and G. incanum remained high in winter, and in addition, percent occurrence 

for Albuca sp., P. setaceum, H. repens, Aizoaceae and UI plant material also increased 

to more than 50%. Percent occurrence in spring remained above 50% for C. dactylon, 

G. incanum, Aizoaceae and UI plant material, and percent occurrence for H. scabra, 

Avena sp., Grass 2 and insect parts also exceeded 50% in spring. Only four diet items 

featured in the scats of more than half of Chersina angulata in summer: C. dactylon, 

Aizoaceae, N. spinosa and insect parts.  

 

A two-way ANOVA to test for the effects of season and diet item on percent 

occurrence, using only the 41 diet items that occurred in more than one season, 

showed a significant effect for diet item (F40,120 = 3.45, P << 0.0001) but not for season 

(P = 0.88). Percent occurrence for C. dactylon was larger than that of 25 other diet 

items, while percent occurrence for Aizoaceae and G. incanum exceed that of eight 

and seven other diet items, respectively.  
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Table 5.2  Percent composition and occurrence, based on presence-absence, of diet 

items in the scats of Chersina angulata in the WCNP.  

 Percent composition  Percent occurrence 

 Au Wi Sp Su Total  Au Wi Sp Su Total 

Afrolimon purpuratum 0 0 0 1.2 0.3  0 0 0 13.3 3.5 
Aizoaceae 5.6 4.5 10.5 6.8 6.6  46.7 53.3 100 73.3 66.7 
Albuca sp. 4.0 7.3 0.9 3.7 4.3  33.3 86.7 8.3 40.0 43.9 
Apocynaceae 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Aspalathus hispida 0 0 0 1.2 0.3  0 0 0 13.3 3.5 
Asparagus lignosus 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Avena fatua 0 0 0 1.9 0.5  0 0 0 20.0 5.3 
Avena sp. 1.6 1.7 5.3 1.9 2.4  13.3 20.0 50.0 20.0 24.6 
Carpobrotus edulis  0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Carpobrotus quadrifidus 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Chaetobromus dregeanus 0 0 0 1.2 0.3  0 0 0 13.3 3.5 
Chironia baccifera 0 1.7 0 1.2 0.9  0 20.0 0 13.3 8.8 
Chrysanthemoides monilifera 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Cynanchum africanum 2.4 0 0 1.2 0.9  20.0 0 0 13.3 8.8 
Cynodon dactylon 12.1 6.8 10.5 8.7 9.2  100 80.0 100 93.3 93.0 
Cystocapnos vesicaria 0 4.0 0 0.6 1.4  0 46.7 0 6.7 14.0 
Dicot 1 0 0 0.9 0 0.2  0 0 8.3 0 1.8 
Dicot 2 0 0.6 1.8 0 0.5  0 6.7 16.7 0 5.3 
Dicot 3 0.8 0 0.9 0 0.3  6.7 0 8.3 0 3.5 
Dicot 4 0 0 1.8 0 0.3  0 0 16.7 0 3.5 
Dicot 5 0 0 0.9 0 0.2  0 0 8.3 0 1.8 
Dicot 6 0 0 0.9 0 0.2  0 0 8.3 0 1.8 
Dicot 7 0 1.7 0 0.6 0.7  0 20.0 0 6.7 7.0 
Dicot 8 3.2 0 0 0.6 0.9  26.7 0 0 6.7 8.8 
Dicot 9 3.2 0 0 0 0.7  26.7 0 0 0 7.0 
Dicot 10 2.4 1.7 0 0.6 1.2  20.0 20.0 0 6.7 12.3 
Dicot 11 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Dicot 12 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Dicot 13 4.0 0 0 0 0.9  33.3 0 0 0 8.8 
Dicot 14 0.8 0 0 0 0.2  6.7 0 0 0 1.8 
Dicot 15 0.8 0 1.8 0.6 0.7  6.7 0 16.7 6.7 7.0 
Dicot 16 0 0 0 1.2 0.3  0 0 0 13.3 3.5 
Dicot 17 0 2.3 0 1.9 1.2  0 26.7 0 20.0 12.3 
Dicot 18 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Dicot 19 1.6 0 0 0.6 0.5  13.3 0 0 6.7 5.3 
Dicot 20 0 0 0 1.2 0.3  0 0 0 13.3 3.5 
Dicot 21 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Dicot 22 0 0 0 1.9 0.5  0 0 0 20.0 5.3 
Dicot 23 1.6 0.6 0 1.2 0.9  13.3 6.7 0 13.3 8.8 
Dicot 24 0 0 0.9 0 0.2  0 0 8.3 0 1.8 
Ehrharta villosa  0 0 0.9 0.6 0.3  0 0 8.3 6.7 3.5 
Ficinia nigrescens 0 0 1.8 0 0.3  0 0 16.7 0 3.5 
Geranium incanum 7.3 8.5 6.1 4.3 6.6  60.0 100 58.3 46.7 66.7 
Grass 1 0.8 0 0 0.6 0.3  6.7 0 0 6.7 3.5 
Grass 2 1.6 1.7 6.1 1.9 2.6  13.3 20.0 58.3 20.0 26.3 
Grass 3 0.8 0 0 0 0.2  6.7 0 0 0 1.8 
Grass 4 1.6 2.3 0 3.1 1.9  13.3 26.7 0 33.3 19.3 
Grass 5 3.2 0 0 0.6 0.9  26.7 0 0 6.7 8.8 
Grass 6 0 1.7 3.5 0.6 1.4  0 20.0 33.3 6.7 14.0 
Grass 7 0 0 1.8 0 0.3  0 0 16.7 0 3.5 
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Table 5.2 continued    

 Percent composition  Percent occurrence 

 Au Wi Sp Su Total  Au Wi Sp Su Total 

Grass 8 0 0 0.9 0 0.2  0 0 8.3 0 1.8 
Grass 9 0 0 1.8 0 0.3  0 0 16.7 0 3.5 
Grass 10 0.8 1.7 0 0 0.7  6.7 20.0 0 0 7.0 
Gymnosporia buxifolia 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Hebenstretia repens 0.8 6.2 2.6 0 2.6  6.7 73.3 25.0 0 26.3 
Helichrysum niveum 0.8 0 0 3.7 1.2  6.7 0 0 40.0 12.3 
Herb 1 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Hermannia pinnata 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Hermannia scabra 6.5 4.0 5.3 0.6 3.8  53.3 46.7 50.0 6.7 38.6 
Insect parts 0.8 2.8 5.3 6.2 3.8  6.7 33.3 50.0 66.7 38.6 
Lachnospermum imbricatum 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Lolium perenne 7.3 0.6 0.9 2.5 2.6  60.0 6.7 8.3 26.7 26.3 
Manochlamys albicans 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Monocot 1 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Monocot 2 0 0 0.9 0.6 0.3  0 0 8.3 6.7 3.5 
Monocot 3 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Monocot 4 0 1.1 0.9 0.6 0.7  0 13.3 8.3 6.7 7.0 
Monocot 5 0 0 1.8 0 0.3  0 0 16.7 0 3.5 
Nylandtia spinosa 2.4 0 3.5 5.6 2.8  20.0 0 33.3 60.0 28.1 
Oncosiphon suffruticosum 0 0 0 4.3 1.2  0 0 0 46.7 12.3 
Osyris compressa 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Oxalis sp. 0 1.1 1.8 0 0.7  0 13.3 16.7 0 7.0 
Passerina corymbosa 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Passerina ericoides 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Pelargonium myrrhifolium 0.8 0 0 0.6 0.3  6.7 0 0 6.7 3.5 
Pennisetum setaceum  0 6.8 1.8 1.2 2.8  0 80.0 16.7 13.3 28.1 
Psoralea repens 0 2.3 0 0 0.7  0 26.7 0 0 7.0 
Rhus laevigata 5.6 2.8 0 4.3 3.3  46.7 33.3 0 46.7 33.3 
Rhus sp. 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Ruschia macowanii 4.0 4.0 0 1.9 2.6  33.3 46.7 0 20.0 26.3 
Ruschia sp. 0 2.8 0 0 0.9  0 33.3 0 0 8.8 
Sedge 1 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Senecio elegans 6.5 0 3.5 4.3 3.3  53.3 0 33.3 46.7 33.3 
Senecio maritimus 0.8 0 0.9 2.5 1.0  6.7 0 8.3 26.7 10.5 
Senecio sp. 0.8 0 0 0 0.2  6.7 0 0 0 1.8 
Septulina glauca 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Succulent 1 0 0 0.9 0 0.2  0 0 8.3 0 1.8 
Succulent 2 0 0.6 0.9 0 0.3  0 6.7 8.3 0 3.5 
Tetragonia sp. 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Thamnochortus spicigerus 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Trifolium burchellianum 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
UI plant material 2.4 6.2 9.6 2.5 5.0  20.0 73.3 91.7 26.7 50.9 
Unknown fruit 0 0.6 0 0 0.2  0 6.7 0 0 1.8 
Zantedeschia aethiopica 0 0 0 0.6 0.2  0 0 0 6.7 1.8 
Zygophyllum morgsana 0 0 0 0.6 0.2  0 0 0 6.7 1.8 

Nematode eggs* 0.8 0 0 3.7 1.2  6.7 0.0 0.0 40.0 12.3 

*Note that the percent composition of nematode eggs is expressed relative to the scores for all items in the 
scats, whereas percent composition of the diet items is expressed relative to the total scores for plant 
items and insect parts in the scats. 
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5.4.2 Diet composition on DI 

5.4.2.1 Diet composition within each season and overall 

For all seasons combined, I identified a total of 33 plant items and three animal items in 

the scats of angulate tortoises on DI (Table 5.3). Fifteen plant items were identified to 

the species or genus level. The UI plant items consisted of seven dicots, five grasses, 

four monocots, one unidentified fruit and the diet category UI plant material. The animal 

material consisted of insects, nematode eggs and other parasite eggs. 

 

Nine grass species were identified in angulate tortoise scats from DI (Table 5.3) of 

which three species were present in the top-ten ranks. Avena byzantina was the 

highest ranked grass (third overall) followed by Phalaris minor, which ranked seventh 

overall. The epidermi of seven non-succulent herbaceous plant species were identified 

in the scats (Table 5.3). Trachyandra divaricata, a perennial herb, which was 

consumed throughout the year, ranked first in the diet list while Senecio elegans and 

Albuca flaccida were included in the top-ten ranks. Three cyperids were identified in the 

scats and Ficinia nigrescens, the highest ranked cyperid, ranked second in the diet list. 

Angulate tortoises on DI consumed only one woody plant species, the leaves of an 

introduced tree Myoporum serratum (Table 5.3). 

 

When doing the statistical analysis, I considered plant and animal items separately. For 

all seasons combined, the contribution of the 33 plant items to the composition of the 

diet differed significantly (χ2
32

 = 497.9, P << 0.0001). Multiple comparisons revealed 

that T. divaricata made the largest contribution to the diet, and that the contribution of 

A. byzantina exceeded the contribution of the remaining diet items, which did not differ 

from one another. The nature of the analysis (RM ANOVA) explains the apparent 

anomaly that the contribution of A. byzantina exceeding the contribution of F. 

nigrescens (see Table 5.3). 

 

When considering individual seasons, 15 plant items were identified in the autumn 

scats (Table 5.3) and the contribution of the diet items to the scat composition differed 

significantly (χ2
14

 = 87.8, P << 0.0001); T. divaricata made a larger contribution than all 

other diet items and there was no difference among the other diet items. Thirteen plant 

items were identified in the winter scats, including epidermal fragments of an 

unidentified fruit. The plant items in the winter scats differed significantly (χ2
12

 = 87.4, P 

<< 0.0001); the contribution of T. divaricata was larger than all other plant items and 

the contribution of Dicot 5 exceeded the remaining contributions.  
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The spring scats contained 17 plant items (Table 5.3) and the contribution of the plant 

items to the scat composition differed significantly (χ2
16

 = 115.6, P << 0.0001). The 

cyperid F. nigrescens made the largest contribution to the diet, while the percent 

counts for A. byzantina and T. divaricata did not differ but exceeded that of all 

remaining plant items. Summer scats were comprised of 16 plant items (Table 5.3). 

There was a significant difference in the contribution of plant items to the composition 

of scats (χ2
15

 = 56.0, P << 0.0001) but only T. divaricata made a larger contribution than 

the other plant items to the summer scats.  

 

5.4.2.2 Seasonal changes in the importance of diet items 

Fifteen of the 33 plant items in angulate tortoise scats on DI were found in one season 

only while the number of diet items recorded for two, three and four seasons, were 11, 

4 and 3, respectively. In many instances, the contribution of plant items to the DI diet 

changed with season (Table 5.3). 

 

Trachyandra divaricata formed part of each season’s diet and the counts for T. 

divaricata differed among the seasons (F3,56 = 9.63, P < 0.0001). The autumn and 

winter counts did not differ but exceeded the spring and summer counts, which were 

similar. The mean counts for A. byzantina differed among seasons (H3 = 19.86, P = 

0.00018) with higher values in spring than in winter. Season also influenced the counts 

for P. minor (H3 = 14.59, P = 0.0022) with summer counts being larger than the counts 

for winter. Ficinia nigrescens and the unknown fruit occurred in the scats in only one 

season, spring and winter respectively (Table 5.3), but the effect of season was 

significant for both diet items (H3 > 30.97, P << 0.00001). Dicot 5 had higher counts in 

winter than in the other seasons (H3 = 48.48, P << 0.0001). 

 

The counts for Bromus pectinatus, Dicot 1, Dicot 2, Grass 1, Grass 2, Grass 4, 

Hemimeris racemosa, M. serratum, Oxalis sp. and Zantedeschia aethiopica all 

changed among seasons (all H3 > 8.28, P < 0.041) but there were no post hoc 

differences for these plants. Season had no significant effect on the remaining plant 

species (all P > 0.070). 

 

The scats of angulate tortoises on DI contained animal material throughout the year 

(Table 5.3), with significant differences among seasons (F3,56 = 10.58, P < 0.0001). 

Spring and winter counts did not differ and exceeded counts for autumn and summer. 
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Season had an effect on parasite eggs (H3 = 11.76, P = 0.0082), nematode eggs (F3,56 

= 6.20, P = 0.0010) and insect parts (H3 = 17.13, P = 0.00066). There were no post hoc 

differences for parasite eggs but counts for nematode eggs were higher in spring than 

in autumn and winter and higher in summer than in autumn. For insect parts, the winter 

and spring counts did not differ but the counts for these seasons were higher than the 

counts in autumn. 
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Table 5.3  Diet composition of Chersina angulata on DI based on percent counts 

(mean ± SD) of histological fragments in the scats of 15 tortoises per season. One 

hundred fragments were counted per scat. 

 
Taxon Category Autumn Winter Spring Summer Annual 

Albuca flaccida M / P / H 12.2 ± 32.3 3.0 ± 11.7 3.7 ± 10.6  0  4.7 ± 18.1 

Avena byzantina  M / A / G 4.2 ± 9.0 0.2 ± 0.8 11.5 ± 9.4 10.9 ± 17.9 6.7 ± 11.8 

Avena sp. M / A / G 0.8 ± 2.0 0.1 ± 0.3  0  3.4 ± 7.7 1.1 ± 4.1 

Bromus pectinatus M / A / G 0.7 ± 2.1  0   0  4.9 ± 7.3 1.4 ± 4.2 

Cyperus sp. M / C  0  0.5 ± 2.0  0   0  0.1 ± 1.0 

Dicot 1  D  0   0  3.0 ± 8.4  0  0.7 ± 4.3 

Dicot 2 D  0   0  3.0 ± 4.4 2.2 ± 4.3 1.3 ± 3.3 

Dicot 3 D  0   0  1.2 ± 2.7 1.0 ± 2.3 0.5 ± 1.8 

Dicot 4 D 2.5 ± 9.6 1.3 ± 2.2  0  0.9 ± 2.7 1.2 ± 5.0 

Dicot 5 D 0.3 ± 1.0 13.6 ± 12.9  0   0  3.5 ± 8.6 

Dicot 6 D  0   0   0  0.8 ± 3.1 0.2 ± 1.5 

Dicot 7 D  0   0   0  0.1 ± 0.3 0.0 ± 0.1 

Ficinia nigrescens M / P / C  0   0  48.8 ± 27.9  0  12.2 ± 25.3 

Grass 1 M / G 0.3 ± 1.3 3.4 ± 5.6  0   0  0.9 ± 3.2 

Grass 2 M / G  0   0  2.3 ± 3.9 5.3 ± 20.4 1.9 ± 10.4 

Grass 3 M / G  0   0  0.1 ± 0.3  0  0.0 ± 0.2 

Grass 4 M / G  0   0  5.5 ± 10.8  0  1.4 ± 5.8 

Grass 5 M / G  0   0  0.1 ± 0.3  0  0.0 ± 0.1 

Hemimeris racemosa D / A / H  0   0  2.3 ± 4.3  0  0.6 ± 2.3 

Isolepis antarctica M / A / C  0   0  1.3 ± 3.9  0  0.3 ± 2.0 

Monocot 1 M 0.1 ± 0.3  0   0   ±  0.0 ± 0.1 

Monocot 2 M  0   0  0.2 ± 0.8  0  0.1 ± 0.4 

Monocot 3 M  0  1.1 ± 4.2  0   0  0.3 ± 2.1 

Monocot 4 M 0.3 ± 0.8  0   0  0.1 ± 0.3 0.1 ± 0.4 

Myoporum serratum D / P / T 12.2 ± 24.2  0   0  10.9 ± 26.0 5.8 ± 18.3 

Oxalis sp. D / A / H 0.3 ± 0.9  0   0  2.7 ± 5.6 0.7 ± 3.0 

Phalaris minor M / A / G 0.7 ± 1.5  0  3.8 ± 6.5 12.4 ± 21.6 4.2 ± 12.1 

Senecio elegans D / A / H 0.1 ± 0.3 2.1 ± 5.3 1.8 ± 7.0 18.5 ± 31.7 5.6 ± 17.7 

Trachyandra divaricata M / P / H 65.4 ± 38.0 59.5 ± 34.9 11.1 ± 13.3 22.0 ± 20.0 39.5 ± 36.4 

UI plant material UI 0.1 ± 0.3 0.9 ± 2.4  0   0  0.2 ± 1.2 

Unknown fruit UI  0  14.2 ± 21.3  0   0  3.5 ± 12.1 

Urtica urens D / A / H  0  0.2 ± 0.7  0   0  0.0 ± 0.4 

Zantedeschia aethiopica M / P / H  0   0  0.3 ± 1.2 4.1 ± 9.6 1.1 ± 5.0 

Animal material* Am 1.1 ± 1.6 7.7 ± 8.0 12.0 ± 9.8 4.3 ± 3.4 6.3 ± 7.6 

     Insects Am 0.3 ± 0.8 1.9 ± 2.0 5.1 ± 8.0 0.4 ± 0.6 1.9 ± 4.5 

     Nematode eggs Am 0.8 ± 1.3 2.8 ± 3.7 6.3 ± 5.6 3.9 ± 3.4 3.4 ± 4.2 

     Parasite eggs Am  0  3.0 ± 6.1 0.6 ± 1.1  0  0.9 ± 3.3 

The different categories include: M = Monocot, D = Dicot, A = Annual, P = Perennial, G = Grass, C = 
Cyperid, H = Herb (non-succulent), S = Shrub (non-succulent), T = Tree, UI = Unidentified plant material, 
Am = Animal material. *Percent counts for animal material and its subcategories are relative to the total 
number of counts in the scats, whereas percent counts for plant items are relative to the total number of 
counts for plant material. 
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5.4.2.3 Diet composition based on presence-absence data 

The results for the presence-absence data, percent composition and percent 

occurrence, corresponded roughly to the results based on counts of the diet items 

although the ranking of diet items for the two procedures was not identical (Table 5.4). 

For both data types, T. divaricata ranked first. When simultaneously evaluating the 

effects of season and diet item on the 19 diet items that occurred in more than one 

season, percent composition showed a significant effect for diet item (F18,54 = 3.81, P < 

0.0001) but not for season (P = 0.51). Percent composition for T. divaricata was larger 

than that of all other diet items. 

 

In every season, more than 85% of the scats contained T. divaricata while all scats in 

spring had fragments of F. nigrescens. Insect parts, A. byzantina, P. minor, H. 

racemosa, Dicot 2, Dicot 5, Grass 4, and Unknown fruit occurred in at least one season 

in more than 50% of the scats. For the 19 diet items that occurred in more than one 

season, season did not have an effect on percent occurrence (P = 0.61), but diet item 

influenced percent occurrence (F18,54 = 3.80, P < 0.0001). Percent occurrence for T. 

divaricata exceeded all other occurrences.  
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Table 5.4  Percent composition and occurrence, based on presence-absence, of diet 

items in the scats of Chersina angulata on DI.  

 
 Percent composition  Percent occurrence 

Taxon Au Wi Sp Su Annual  Au Wi Sp Su Annual 

Albuca flaccida 3.8 1.4 2.9 0 1.9  13.3 6.7 20.0 0 10.0 

Avena byzantina  13.5 1.4 12.4 10.1 9.4  46.7 6.7 86.7 53.3 48.3 

Avena sp 5.8 1.4 0 5.1 2.6  20.0 6.7 0 26.7 13.3 

Bromus pectinatus 3.8 0 0 7.6 2.6  13.3 0 0 40.0 13.3 

Cyperus sp 0 1.4 0 0 0.3  0 6.7 0 0 1.7 

Dicot 1  0 0 2.9 0 1.0  0 0 20.0 0 5.0 

Dicot 2 0 0 7.6 5.1 3.9  0 0 53.3 26.7 20.0 

Dicot 3 0 0 2.9 3.8 1.9  0 0 20.0 20.0 10.0 

Dicot 4 1.9 6.8 0 3.8 2.9  6.7 33.3 0 20.0 15.0 

Dicot 5 1.9 19.2 0 0 4.9  6.7 93.3 0 0 25.0 

Dicot 6 0 0 0 1.3 0.3  0 0 0 6.7 1.7 

Dicot 7 0 0 0 1.3 0.3  0 0 0 6.7 1.7 

Ficinia nigrescens 0 0 14.3 0 4.9  0 0 100 0 25.0 

Grass 1 1.9 9.6 0 0 2.6  6.7 46.7 0 0 13.3 

Grass 2 0 0 4.8 1.3 1.9  0 0 33.3 6.7 10.0 

Grass 3 0 0 1.0 0 0.3  0 0 6.7 0 1.7 

Grass 4 0 0 7.6 0 2.6  0 0 53.3 0 13.3 

Grass 5 0 0 1.0 0 0.3  0 0 6.7 0 1.7 

Hemimeris racemosa 0 0 7.6 0 2.6  0 0 53.3 0 13.3 

Insect 5.8 15.1 10.5 6.3 9.7  20.0 73.3 73.3 33.3 50.0 

Isolepis antarctica 0 0 1.9 0 0.6  0 0 13.3 0 3.3 

Monocot 1 1.9 0 0 0 0.3  6.7 0 0 0 1.7 

Monocot 2 0 0 1.0 0 0.3  0 0 6.7 0 1.7 

Monocot 3 0 1.4 0 0 0.3  0 6.7 0 0 1.7 

Monocot 4 3.8 0 0 1.3 1.0  13.3 0 0 6.7 5.0 

Myoporum serratum 13.5 0 0 6.3 3.9  46.7 0 0 33.3 20.0 

Oxalis sp 3.8 0 0 5.1 1.9  13.3 0 0 26.7 10.0 

Phalaris minor 7.7 0 6.7 11.4 6.5  26.7 0 46.7 60.0 33.3 

Senecio elegans 1.9 6.8 1.0 6.3 3.9  6.7 33.3 6.7 33.3 20.0 

Trachyandra divaricata 26.9 17.8 13.3 16.5 17.5  93.3 86.7 93.3 86.7 90.0 

UI plant material 1.9 4.1 0 0 1.3  6.7 20.0 0 0 6.7 

Unknown fruit 0 12.3 0 0 2.9  0 60.0 0 0 15.0 

Urtica urens 0 1.4 0 0 0.3  0 6.7 0 0 1.7 

Zantedeschia aethiopica 0 0 1.0 7.6 2.3  0 0 6.7 40.0 11.7 

Nematode eggs* 10.7 13.2 11.9 14.0 12.5  40.0 66.7 86.7 80.0 68.3 

Other parasite eggs* 0 6.6 4.6 0 3.1  0 33.3 33.3 0 16.7 

*Note that the percent composition of nematode and other parasite eggs is expressed relative to the 
scores for all items in the scats. 
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5.4.3 Comparison of diet items in WCNP and DI scats 

Only three plant species occurred in the scats at both sites: Ficinia nigrescens, Senecio 

elegans and Zantedeschia aethiopica. The scats at both sites also contained UI plant 

material, insect parts, and parasite eggs. Parasite eggs in the WCNP scats were from 

nematodes, whereas parasite eggs in DI scats included nematode eggs plus the eggs 

of other unidentified parasites.  

 

Ficinia nigrescens occurred only in angulate tortoise scats collected during spring, 

when counts in DI scats were substantially larger than counts in WCNP scats (T12,15 = 

78, P << 0.0001). Angulate tortoises from DI consumed S. elegans in every season, 

whereas this plant did not occur in WCNP scats collected in winter. After applying the 

Bonferroni correction, the counts for S. elegans did not differ between the two sites, 

within a particular season or for all seasons combined (all P > 0.033). Zantedeschia 

aethiopica did not occur in autumn or winter scats, but was found in DI scats during 

spring, and in scats from both sites in summer. There was no difference in the counts 

for Z. aethiopica between sites in spring, summer or all seasons combined (all P > 

0.0947). Scats from the WCNP contained UI plant material in every season, whereas 

scats from DI did not have UI plant material in spring or summer. Autumn and summer 

values for UI plant material did not differ between the two sites (all P > 0.23) but the 

counts were higher in WCNP scats than in DI scats in winter (T15,15 = 168, P = 0.0078), 

spring (T12,15 = 251, P << 0.0001) and for all seasons combined (T57,60 = 4137, P << 

0.0001).  

 

The counts for animal material in angulate tortoise scats were influenced by site (F1,109 

= 36.01, P << 0.0001) and season (F3,109 = 10.02, P << 0.0001), and there was a 

significant interaction between site and season (F3,109 = 5.79, P = 0.0010). The counts 

were higher in DI scats than in WCNP scats for winter, spring and overall, but the 

counts did not differ significantly between the sites in autumn or summer. In DI scats, 

spring values for animal material were higher than summer values, and autumn scats 

had lower values than in all other seasons. For scats from the WCNP, summer counts 

for animal material exceeded the autumn counts.  

 

With regard to the subcomponents of animal material, there was no difference between 

the counts for insect part in DI and WCNP scats for autumn, spring, summer and all 

seasons combined (all P > 0.031), but in winter DI scats had higher counts than WCNP 

scats had (T15,15 = 298, P = 0.0069). The scats of Chersina angulata in DI had more 

nematode eggs than the scats of tortoises from the WCNP had in spring (T12,15 = 90, P 
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<< 0.0001), winter (T15,15 = 308, P = 0.0019), summer (T15,15 = 175, P = 0.0170), and for 

all seasons combined (T57,60 = 2352, P << 0.0001), but the counts for nematode eggs 

did not differ in autumn (P = 0.095). Similar results were found when all parasite eggs 

(nematode and other eggs) in the scats of DI angulate tortoises were compared with 

parasite eggs (only nematodes) in the scats of angulate tortoises from the WCNP.   

 

5.4.4 Plant growth forms in the diet of angulate tortoises in the WCNP 

5.4.4.1 The contribution of growth forms to seasonal diets 

Six plant growth forms were identified in the scats of angulate tortoises in the WCNP 

but because there was only one count for a restioid, I combined the restioid with the 

sedges. The scats also contained UI plant material (Table 5.5). Overall, there was a 

significant difference among the contribution of plant growth forms to angulate 

tortoises’ diet (χ2 
5 = 126.4, P << 0.0001). The relative presence among the growth 

forms was: grass > herb > UI plant material > shrub = succulent > sedge/restio. 

 

The contribution of growth forms to the autumn diet differed significantly (χ2
4
 = 28.2, P 

<<0.0001), with the counts for grass being larger than that of the other categories. The 

growth forms in the scats differed in winter (χ2
5
 = 47.7, P << 0.0001) and the ranking 

among the growth forms had the sequence: herb > grass > UI plant material > shrub = 

succulent > sedge/restio. In spring the relative presence among the growth forms was: 

grass = UI plant material > succulent = herb > shrub > sedge/restio (χ2
5
 = 35.3, P << 

0.0001). There was no difference among the contribution of the growth forms to the 

summer scats (P = 0.21). 

 

The contribution of grass to the diet of angulate tortoises in the WCNP changed over 

the seasons  (F3,53 = 7.58, P = 0.00026); percent counts in autumn were higher than in 

winter and summer. Season also had an effect on herbs (F3,53 = 7.67, P = 0.00024), 

and in this instance, the winter value for herbs was larger than in the other seasons. 

Seasonal comparisons of counts for succulents showed significant differences (F3,53 = 

6.66, P = 0.00067); spring and summer values were higher than value for autumn, 

while the spring value was also higher than the winter value. Season had no effect on 

the contributions of UI plant material, shrubs and sedge/restio to the scat composition 

of WCNP angulate tortoises (all P > 0.181). 
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5.4.4.2 Percent occurrence and percent composition 

Nearly all angulate tortoises had grass and herbs in their scats in each season 

whereas at most 17% of the tortoises had fragments of sedge/restio in their scats 

(Table 5.6). Growth form had a strong effect on percent occurrence (F6,18 = 25.7, P << 

0.0001) and on percent composition (F6,18 = 20.8, P << 0.0001), but season had no 

effect (all P > 1.0). Grass, herbs, UI plant material, succulents and shrubs had higher 

values than insect parts and sedge/restio, while values for insect parts exceeded that 

of sedge/restio.  
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Table 5.5  Diet composition based on percent counts (mean ± SD) of plant growth 

forms in the scats of angulate tortoises in the WCNP. 

 
Growth form Autumn Winter Spring Summer Annual 

Grass 65.2 ± 23.0 23.4 ± 22.5 37.5 ± 27.7 32.1 ± 28.3 39.7 ± 29.5 

Herb 11.6 ± 13.4 43.7 ± 21.6 14.8 ± 29.1 25.3 ± 27.2 24.3 ± 26.0 

Sedge/restio  0  0.1 ± 0.2 0.5 ± 1.6  0  0.1 ± 0.7 

Shrub 8.8 ± 12.7 10.8 ± 18.4 5.5 ± 10.3 14.0 ± 15.4 10.0 ± 14.7 

Succulent 1.0 ± 1.1 6.1 ± 7.1 24.4 ± 29.1 13.5 ± 17.8 10.6 ± 18.2 

UI plant material 13.3 ± 16.0 15.8 ± 17.6 17.3 ± 13.1 15.1 ± 23.6 15.2 ± 17.8 

 
 
 
 
 
 
 
 

Table 5.6  Percent composition and occurrence based on presence-absence of plant 

growth forms and insect parts in the scats of angulate tortoises in the WCNP.  

 
 Percent composition  Percent occurrence 

Growth form Au Wi Sp Su Ann  Au Wi Sp Su Ann 

Grass 24.6 20.0 19.4 18.7 20.5  100 100 100 93.3 98.2 

Herb 21.3 20.0 17.7 18.7 19.4  86.7 100 91.7 93.3 93.0 

Insect parts 1.6 6.7 9.7 13.3 8.1  6.7 33.3 50.0 66.7 38.6 

Sedge/restio 0 2.7 3.2 0 1.5  0 13.3 16.7 0 7.0 

Shrub 19.7 17.3 11.3 17.3 16.5  80.0 86.7 58.3 86.7 78.9 

Succulent 14.8 14.7 19.4 16.0 16.1  60.0 73.3 100 80.0 77.2 

UI plant material 18.0 18.7 19.4 16.0 17.9  73.3 93.3 100 80.0 86.0 
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5.4.5 Plant growth forms in the diet of angulate tortoises on DI 

5.4.5.1 The contribution of growth forms to seasonal diets 

Four plant growth forms were identified in the scats of Chersina angulata on DI (Table 

5.7). As for the WCNP, the scats also contained UI plant material. Overall, there was a 

significant difference among the contribution of plant growth forms to angulate 

tortoises’ diet (χ2
4 = 87.6, P << 0.0001). All the categories differed from one another 

and the sequence from largest to smallest was: herbs > grass > UI plant material > 

sedge > tree.   

 

The contribution of growth forms to the composition of the scats differed in autumn 

(F4,56 = 33.4, P << 0.0001), winter (χ2
4
 = 45.0, P << 0.0001), spring (F4,56 = 38.2, P << 

0.0001) and summer (F4,56 = 23.1, P <<0.0001). In autumn, herbs made a larger 

contribution than any other category, and the contribution of grass and tree exceeded 

the contribution of sedge.  The sequence of importance in the winter scats was: herbs 

> UI plant material > grass > sedge = tree, and the sequence in spring scats was: 

sedge > grass = herbs > UI plant material > tree. The summer contributions of herbs 

and grasses did not differ but exceeded the contribution of all other categories. 

Additionally, the percent counts for UI plant material was larger than for sedges but the 

remaining categories did not differ.  

 

The contribution that grasses made to the diet of angulate tortoises on DI changed with 

the seasons (F3,56 = 15.1, P <<0.0001). Spring and summer counts for grasses were 

similar and were larger than autumn and winter counts. Sedges were only found in 

spring and winter scats, and spring values differed significantly from the other seasons 

(H3 = 54.9, P << 0.0001). Epidermi for the tree species were found in two of the four 

seasons and, although season influenced the counts (H3 = 15.3, P = 0.0016), there 

were no significant post hoc differences. The contribution of herbs to the composition of 

angulate tortoise scats changed with season (F3,56 = 12.6, P << 0.0001); autumn, 

winter and summer values were larger than spring values, while autumn values were 

also larger than summer values. Season also influenced the counts for UI plant 

material (F3,56 = 9,8, P < 0.0001); winter counts were higher than in the other seasons.  

 

5.4.5.2 Percent occurrence and percent composition 

Herbs were prominent in angulate tortoise scats on DI, with high percent occurrences 

in every season (Table 5.8). Results of a two way ANOVA for percent occurrence 
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revealed no effect of season (P = 0.31) but growth forms displayed an effect (F5,15 = 

4.32, P = 0.012); percent occurrence for herbs was larger than for tree and sedge. 

Similarly, season had no effect on percent composition (P = 1.0) but growth forms had 

an effect (F5,15 = 4.45, P = 0.011); the percent composition for herbs was larger than for 

tree and sedge. 
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Table 5.7  Diet composition based on percent counts (mean ± SD) of plant growth 

forms in the scats of angulate tortoises on DI. 

 
Growth form Autumn Winter Spring Summer Annual 

Grass 6.7 ± 11.3 3.6 ± 5.5 23.2 ± 16.7 36.8 ± 30.7 17.6 ± 22.5 

Herbs 77.9 ± 28.9 64.8 ± 31.4 19.3 ± 19.0 47.2 ± 29.5 52.3 ± 34.9 

Sedge  0  0.5 ± 2.0 50.1 ± 27.1  0  12.7 ± 25.5 

Tree 12.2 ± 24.2  0   0  10.9 ± 26.0 5.8 ± 18.3 

UI plant material 3.1 ± 10.5 31.0 ± 32.3 7.4 ± 9.5 5.1 ± 5.4 11.7 ± 20.8 

 
 
 
 
 
 
 
 
 
 

Table 5.8  Percent composition and occurrence based on presence-absence of plant 

growth forms in the scats of angulate tortoises on DI.  

 
  Percent composition   Percent occurrence 

Growth form Au Wi Sp Su Ann  Au Wi Sp Su Ann 

Grass 21.6 18.4 22.7 30.6 23.4  53.3 60.0 100 100 78.3 

Herbs 40.5 28.6 22.7 28.6 28.9  100 93.3 100 93.3 96.7 

Insects 8.1 22.4 16.7 10.2 14.9  20.0 73.3 73.3 33.3 50.0 

Sedge 0 2.0 22.7 0 8.0  0 6.7 100 0.0 26.7 

Tree 18.9 0 0 10.2 6.0  46.7 0 0 33.3 20.0 

UI plant 10.8 28.6 15.2 20.4 18.9  26.7 93.3 66.7 66.7 63.3 
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5.4.6 Comparison of growth forms in WCNP and DI tortoise scats 

Overall, the scats of angulate tortoises in the WCNP contained higher counts for 

grasses (T57,60 = 4198, P << 0.0001), shrubs/tree (T57,60 = 4311, P << 0.0001) and UI 

plant material (T57,60 = 3808, P = 0.015) than the scats of tortoises on DI contained. In 

contrast, overall counts for DI scats were higher than counts for WCNP scats were for 

herbs (T57,60 = 2560, P << 0.0001) and sedges (T57,60 = 2995, P = 0.045). There were 

no succulents in the scats from DI. 

 

The counts for grasses in the scats of angulate tortoises in the WCNP were higher than 

in the scats of DI tortoises in autumn (T15,15 = 124, P << 0.0001) and in winter (T15,15 = 

140, P << 0.0001), while these counts did not differ in spring (P = 0.11) and in summer 

(P = 0.67). Herbs made a much larger contribution to angulate tortoise diets for DI 

compared to the WCNP for autumn (t28 = 8.06, P << 0.0001), winter (t28 = 2.15, P = 

0.041), spring (T12,15 = 127, P = 0.048) and summer (t28 = 2.12, P = 0.043). I compared 

the shrub counts in the WCNP scats with the tree counts in the DI scats and found 

higher values for WCNP scats than for DI scats in winter (T15,15 = 135, P << 0.0001), 

spring (T12,15 = 221, P = 0.011) and summer (T15,15 = 289, P = 0.020), while the values 

did not differ in autumn (P = 0.254).  

 

Sedges were not present at either of the sites in autumn and summer and the counts in 

the scats did not differ in winter (P = 0.80). Spring counts for sedges were substantially 

higher in DI scats than in WCNP scats (T12,15 = 78, P << 0.0001). The counts for UI 

plant material did not differ in winter (P = 0.121) and summer (P = 0.33), but were 

higher in WCNP scats than in DI scats in autumn (T15,15 = 172, P = 0.013) and spring 

(T12,15 = 218, P = 0.016).  

 

A three-way ANOVA, that considered the effects of site, season and growth form for 

percent composition (presence-absence), showed a significant effect for growth form 

(F4,12 = 14.06, P < 0.0001), but not for season or site (all P > 0.13). Similarly, results for 

percent occurrence showed no effect for season (P = 0.10), approached significance 

for site (P = 0.069) and showed a strong effect for growth form (F5,15 = 17.94, P < 

0.0001). In both instances, the relationship among the growth forms were: herb = grass 

= UI plant material > shrub / tree = insect parts > sedge. 
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5.4.7 Plant types in the diet of WCNP angulate tortoises  

5.4.7.1 Monocotyledons and dicotyledons in WCNP scats 

The scats of angulate tortoises in the WCNP contained monocots and dicots in every 

season (Fig. 5.1). For all seasons combined, the counts for monocots and dicots were 

similar, but were higher than the counts for UI plant material were (χ2
2 = 65.8, P << 

0.0001). The relationship among the plant types in autumn was: monocots > dicots > 

UI plant material (F2,28 = 41.47, P << 0.0001), whereas the relationship in winter and 

spring was: monocot = dicot > UI plant material (winter: F2,28 = 9.67, P = 0.00064; 

spring: F2,22 = 5.62; P = 0.011). In summer, dicots had the highest count, and the count 

for monocots was higher than the count for UI plant material (F2,28 = 62.9, P < 0.0001). 

 

The importance of the diet categories changed with season (Fig. 5.1). The contribution 

of monocots to the diet of angulate tortoises in the WCNP was higher in autumn than in 

all other seasons (F3,53 = 5.48, P = 0.0023). In contrast, the contribution of dicots to the 

autumn diet was lower than its contribution to the diet in all other seasons (F3,53 = 4.99, 

P = 0.0040). The counts for UI plant material were higher in spring than in autumn and 

summer, while winter counts also exceeded autumn counts (H3 = 21.07, P = 0.00010).  

 

All angulate tortoise scats had fragments of monocots and dicots in every season 

(Table 5.9). Season had no effect on percent occurrence or composition (all P > 0.32) 

but diet item had an effect on percent occurrence (F3,9 = 9.21, P = 0.0042) and 

composition (F2,6 = 6.06, P = 0.036). In both instances, the counts for dicots and 

monocots were similar and exceeded the counts for UI plant material and insect parts; 

the latter two categories did not differ.   

 

5.4.7.2 Annuals and perennials in WCNP scats 

Every season I recorded high values for perennials in the scats of angulate tortoises in 

the WCNP (Fig. 5.2). For all seasons combined, the count for perennials was higher 

than for annuals and UI plant material and the count for UI plant material was higher 

than the counts were for annuals (χ2
2 = 51.2, P << 0.0001). The same trend was 

evident in autumn and winter (autumn: F2,28 = 118.1; winter: χ2
2 = 18.75; all P < 

0.0001). Spring counts for perennial and UI plant material did not differ and their counts 

were higher than the count for annuals (F2,22 = 4.40, P = 0.025). The summer count for 

perennials was higher than the counts for annuals and UI plant material were (χ2
2 = 

8.37, P = 0.015).  
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The counts for perennials and annuals changed significantly with season (perennial: 

F3,53 = 6.49, P = 0.00080; annual: F3,53 = 5.06, P = 0.0037) but season had no effect on 

UI plant material (P = 0.10). Values for perennials were higher in autumn than in spring 

and summer, and also higher in winter than in spring. Annuals had lower counts in 

autumn than in all the other seasons.  

 

All the scats of angulate tortoises in the WCNP contained perennials in every season 

(Table 5.10). Season had no effect on percent occurrence or percent composition (all P 

> 0.063) but percent occurrence and composition were influenced by diet item (all F3,9 

> 11.76, P < 0.0018); the values for insect parts were lower than values for the other 

categories.  

 

 

 

 



Chapter 5 

112 

 

 

Figure 5.1 Diet composition based on percent counts (mean ± SD) of monocotyledons 

and dicotyledons in the scats of angulate tortoises in the WCNP. 

 
 
 
 
 
 

Table 5.9  Percent composition and occurrence based on presence-absence of 

monocotyledons, dicotyledons and insect parts in the scats of angulate tortoises in the 

WCNP. 

 
  Percent composition   Percent occurrence 

Plant type Au Wi Sp Su Total   Au Wi Sp Su Total 

Dicot 44.1 32.6 29.3 34.1 34.5  100 100 100 100 100 

Insect parts 2.9 10.9 14.6 22.7 13.3  6.7 33.3 50.0 66.7 38.6 

Monocot 44.1 32.6 29.3 34.1 34.5  100 100 100 100 100 

UI plant material 8.8 23.9 26.8 9.1 17.6  20.0 73.3 91.7 26.7 50.9 

Autumn Winter Spring Summer Annual

M
ea

n 
pe

rc
en

t c
ou

nt
s 

in
 s

ca
ts

0

20

40

60

80

100

120 Monocot 
Dicot 
UI plant 

 

 

 

 



Chapter 5 

113 

  

 

Figure 5.2  Diet composition based on percent counts (mean ± SD) of annuals and 

perennials in the scats of angulate tortoises in the WCNP. 

 
 
 
 
 

Table 5.10  Percent composition and occurrence based on presence-absence of 

annuals, perennials and insect parts in the scats of angulate tortoises in the WCNP.  

 
  Percent composition   Percent occurrence 

Plant types Au Wi Sp Su Ann   Au Wi Sp Su Ann 

Annual 23.7 27.7 26.8 26.4 26.3  60.0 86.7 91.7 93.3 82.5 

Insect parts 2.6 10.6 14.6 18.9 12.3  6.7 33.3 50.0 66.7 38.6 

Perennial 39.5 31.9 29.3 28.3 31.8  100 100 100 100 100 

UI plant material 34.2 29.8 29.3 26.4 29.6  86.7 93.3 100 93.3 93.0 
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5.4.8 Plant types in the diet of DI angulate tortoises 

5.4.8.1 Monocotyledons and dicotyledons in DI scats 

The diet of angulate tortoises on DI consisted largely of monocots (Fig. 5.3), and for all 

seasons combined, the contribution of all the diet items differed significantly (χ2
2
 = 78.3, 

P << 0.0001). The count for monocots was highest, followed by dicots, while the count 

for UI plant material was the lowest.   

 

The contribution of monocots, dicots and UI plant material to the scats differed 

significantly within each season (autumn: χ2
2 = 25.08, winter: χ2

2  = 12.88, spring: χ2
2 = 

25.56, summer: χ2
2 = 22.8, all P < 0.0016) but the relative importance of the categories 

was not the same. During autumn the order was: monocot > dicot > UI plant material. 

The winter sequence was: monocot > dicot = UI plant material, largely due to the 

increase in UI plant material. The sequence of importance for spring was: monocot > 

dicot > UI plant material. In summer, the counts for monocots and dicots were similar, 

and both were higher than the count for UI plant material (monocot = dicot > UI plant 

material). 

  

The contribution of the categories changed with the seasons (Fig. 5.3). Seasonal 

comparisons of monocots displayed a significant effect (H3 = 11.24, P = 0.011) and 

autumn counts exceeded summer counts. The importance of dicots changed with the 

season (F3,56 = 4.32, P = 0.0082) and the count for dicots was higher in summer than in 

autumn and spring. The winter count for UI plant material was larger than the counts in 

all other seasons (H3 =36.03, P << 0.0001).  

 

All the scat samples on DI contained monocots (Table 5.11). Season did not influence 

percent occurrence or composition (all P > 0.13) but plant type had an effect (all F3,9 > 

8.76, P < 0.0049). There were higher counts for monocots and dicots than for UI plant 

material, and a higher count for monocots than for insects. 

 

5.4.8.2 Annuals and perennials in DI scats 

Every season, epidermi of annual and perennial plants were present in angulate 

tortoise scats (Fig. 5.4). For all seasons combined, perennial plants had higher counts 

than annuals and UI plant material had, and the latter two categories did not differ (χ2
2 

38.9, P << 0.0001). The same trend was detected in autumn (χ2
2
 = 25.3, P < 0.0001) 

and spring (F2,42 = 29.4, P << 0.0001). In winter, the relationship among the categories 
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was: perennial > UI plant material > annual (F2,28 = 20.87, P <0.0001), whereas in  

summer the relationship was: perennial = annual > UI plant material (χ2
2
 = 10.38, P = 

0.0056).  

 

The counts for the annual and perennial categories changed with the seasons (annual: 

F3,56 = 25.24, perennial: H3 = 22.8, UI plant material: F3,56 = 14.88, all P < 0.0001). For 

annual plants, summer values were the highest, and spring values were higher than 

autumn and winter values; the latter two did not differ. For perennial plants, autumn 

had the largest value while winter and spring values did not differ but exceeded the 

value in summer. For UI plant material, the winter and spring counts were similar, but 

were higher than the summer and autumn counts; summer counts exceeded autumn 

counts.  

 

Percent occurrence of the annual and perennial categories (Table 5.12) was not 

influenced by season (P = 0.14) or by plant type (P = 0.11). Similarly, season and 

category did not affect percent composition (all P > 0.14). 
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Figure 5.3 Diet composition based on percent counts (mean ± SD) of monocotyledons 

and dicotyledons in the scats of angulate tortoises on DI. 

 
 
 
 
 

Table 5.11  Percent composition and occurrence based on presence-absence of 

monocotyledons, dicotyledons and insect parts in the scats of angulate tortoises on DI. 

 
  Percent composition   Percent occurrence 

Plant type Au Wi Sp Su Ann   Au Wi Sp Su Ann 

Dicot 29.6 27.5 31.6 42.9 32.5  53.3 93.3 80.0 100 81.7 

Insects 11.1 21.6 28.9 14.3 19.9  20.0 73.3 73.3 33.3 50.0 

Monocot 55.6 29.4 39.5 42.9 39.7  100 100 100 100 100 

UI plant 3.7 21.6 0 0 7.9  6.7 73.3 0 0 20.0 
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Figure 5.4  Diet composition based on percent counts (mean ± SD) of annuals and 

perennials in the scats of angulate tortoises on DI. 

 
 
 
 
 
 

Table 5.12  Percent composition and occurrence based on presence-absence of 

annuals, perennials and insect parts in the scats of angulate tortoises on DI. 

 
  Percent composition   Percent occurrence 

Plant types Au Wi Sp Su Ann   Au Wi Sp Su Ann 

Annual 26.7 14.9 27.3 34.9 25.7  53.3 46.7 100 100 75.0 

Insects 10.0 23.4 20.0 11.6 17.1  20.0 73.3 73.3 33.3 50.0 

Perennial 50.0 29.8 27.3 30.2 32.6  100 93.3 100 86.7 95.0 

UI plant material 13.3 31.9 25.5 23.3 24.6  26.7 100 93.3 66.7 71.7 

 

Autumn Winter Spring Summer Annual

M
ea

n 
pe

rc
en

t c
ou

nt
s 

in
 s

ca
ts

0

20

40

60

80

100

120 Annual 
Perennial 
UI plant 

 

 

 

 



Chapter 5 

118 

5.4.9 Comparisons between sites 

5.4.9.1 Comparisons for monocotyledons and dicotyledons 

Monocots were more prevalent in angulate tortoise scats from DI than in angulate 

tortoise scats from the WCNP for all seasons combined (T57,60 = 2362, P << 0.0001), 

autumn (T15,15 = 294, P = 0.011), winter (t28 = 2.97, P = 0.0061), spring (t25 = 5.62, P < 

0.0001) and summer (T15,15 = 293, P = 0.013). In contrast, the percent counts for dicots 

were higher in the WCNP than on DI (overall: T57,60 = 4401, P << 0.0001; autumn: T15,15 

= 171, P = 0.011; winter: t28 = 5.26, P < 0.0001; spring: t25 = 4.32, P = 0.00022; 

summer: T15,15 = 174, P = 0.016). The percent counts for UI plant material was higher 

in the WCNP than on DI for all seasons combined (T57,60 = 3852, P = 0.0077) and in 

spring (T12,15 = 251, P << 0.0001), but there was no difference between the sites during 

winter and spring (all P > 0.21). 

 

A three-way ANOVA on percent occurrence data showed no effect of site or season (all 

P > 0.068), but showed an effect of diet category (F3,9 = 20.7, P = 0.00022). Similarly, 

diet category had a significant effect on percent composition (F3,9 = 22.52, P = 

0.00016), and there was no effect of site or season (all P > 0.99). For percent 

composition and percent occurrence, the values for monocots and dicots did not differ 

but exceeded the values for UI plant material and insect parts.  

 

5.4.9.2 Comparisons for annuals and perennials 

Percent counts for annuals were higher in scats from DI than from the WCNP only in 

summer (t28 = 2.91, P = 0.0070), while the counts did not differ in the other seasons 

and for all seasons combined (all P > 0.022). There was no difference for percent 

counts of perennials between the two sites (all P > 0.026). The percent counts for UI 

plant material were higher in scats from the WCNP than in scats from DI in autumn, 

spring and for all seasons combined (autumn: T15,15 = 157, P = 0.0018; spring: t25 = 

2.87, P = 0.0083; overall: T57,60 = 3838, P = 0.0097), but did not differ in winter and 

summer (all P > 0.064).  

 

Percent composition was not influenced by site or season, but was influenced by diet 

item (F3,9 = 10.77, P = 0.0025); percent composition of annuals, perennials and UI plant 

material was higher than the percent composition of insect parts. Percent occurrence, 

however, was influenced by diet category (F3,9 = 12.64, P = 0.0014) and by season 

(F3,9 = 4.65, P = 0.032), but not by site (P = 0.37). Percent occurrence for perennials 
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was higher than for insect parts, and percent occurrence was higher in spring than in 

autumn.  

 

 

5.5 DISCUSSION 

5.5.1 Importance of different plant types 

The importance of monocotyledonous and dicotyledonous plants in the diet of angulate 

tortoises differed between the two study sites. Overall, C. angulata consumed similar 

quantities of monocots and dicots in the WCNP even though monocots made up only 

30% of the diet plant species, whereas on DI, monocots made up 61% of the diet plant 

species and contributed larger quantities to the tortoises’ diet than the dicots did. In 

general, the leaves of dicots have a higher nutritive value than the leaves of monocots 

have, but this beneficial effect is offset by secondary compounds, such as tannins, 

which often accumulate in dicotyledonous plants (Huston & Pinchak 1991). These 

factors should influence the selection of monocots or dicots by tortoises, provided the 

plant diversity of the environment, such as in the WCNP, allows the tortoises a wide 

choice. The low plant diversity on DI (Hurford 1996) provided the angulate tortoises 

with few choices, particularly during the dry season.  

 

Perennial and annual plant species consumed included varieties of both monocot and 

dicot plant species. At both study sites, perennial plants formed a significantly larger 

part of angulate tortoise diets over all seasons compared to annual plants. Perennials 

represent a stable, reliable source of plant material that is always available for tortoise 

consumption. Perennial plant types included grasses, restios, sedges, herbs, shrubs 

and succulents. Long-lived perennial plants invest more resources into the production 

of anti-herbivore defences to deter herbivores from consuming them (Cates & Orians 

1975). The production of secondary compounds, such as lignin and suberin, are 

responsible for the strengthening of plant tissues, making the plants more difficult to 

digest (Briske 1991; Balsamo et al. 2004). Perennial plant material would thus be 

easier to detect in scats compared to annual plants, and it seems likely that the 

consumption of annual plants may have been underestimated, particularly on DI.  

 

Angulate tortoises on DI had to deal with wide fluctuations in the availability of plants 

due to the ephemeral nature of vegetation on the island (Hurford 1996). The 

consumption of ephemeral, annual species may have benefited angulate tortoises 

because annuals often have higher digestible nutrient contents compared to 
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established perennial plants (Cates & Orians 1975). First successional plants species 

are the first colonisers in a disturbed habitat. They grow and mature quickly, investing 

little if any resources in anti-herbivore defences (Cates & Orians 1975). Angulate 

tortoises would thus gain higher levels of nutrients from these plants compared to 

perennials. Annual plants were present in low levels in C. angulata scats for three out 

of four seasons, but equalled the contribution of perennial plants in summer. The high 

digestibility of annual plants compared to perennial plants may have contributed to 

annuals being under-represented in the scats. The importance of perennials in the diet 

of angulate tortoises on DI was largely due to their high consumption of a dominant 

species, Trachyandra divaricata, over all seasons.  

 

5.5.2 Growth forms and important diet plants 

Perennial grass species comprised the most important growth form in the diet of 

angulate tortoises in the WCNP, while annual grasses contributed significantly to the DI 

diet during spring and summer. Els (1989) reported that buffalo grass contributes 25% 

to the diet of angulate tortoises in the Eastern Cape. Grasses also form an important 

component in the diets of several other tortoise species (Macdonald & Mushinsky 

1988; Milton 1992; Rall & Fairall 1993; Nagy et al. 1998; Henen 2002). Grasses 

generally have a lower nutritive value than most forbs and shrubs (Huston & Pinchak 

1991), thus it is somewhat surprising that grasses seem to be so important in the diet 

of several tortoise species. However, consuming grasses appears useful for lipid 

storage and achieving energy surpluses, at least for desert tortoises (Henen 1997). 

 

Cynodon dactylon was the most important diet item of angulate tortoises in the WCNP. 

The tortoises consumed this perennial grass throughout the year, with a particularly 

high consumption in autumn. Cynodon dactylon is a short, creeping grass, which 

makes all plant parts easily accessible to angulate tortoises. This grass provides good 

fodder, and flowers from early spring to late autumn (Van Oudtshoorn 1999). The 

epidermal fragments identified for C. dactylon were mainly from the bracts of 

inflorescences, indicating that the long flowering season made this species a 

particularly useful diet plant. Balsamo et al. (2004) evaluated the biomechanical 

properties of food plants used by geometric tortoises and found that the leaves of C. 

dactylon have a low failure load, which would make it easy for small tortoises to tear 

pieces off the plant. Other important diet grasses in the WCNP included Lolium 

perenne, a highly palatable grass (Van Oudtshoorn 1999), and Pennisetum setaceum, 

which provide poor pasture because the leaves are course and tough (Van Oudtshoorn 

1999). The angulate tortoises consumed P. setaceum mainly in winter when the leaves 
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were probably younger and softer. It is also possible that increased water availability in 

winter may have enabled angulate tortoises to better digest coarse plant material, as 

tortoises require water to digest dry plants (Nagy et al. 1998).  

 

Although grasses had a patchy distribution on Dassen Island, annual grasses were 

important in the diet of angulate tortoises. Animals are thought to gain more nutrients 

from ingesting fast-growing annual plants than from perennial plants because the 

perennial plants divert resources into the production of structural material (low 

digestibility) and anti-herbivore defences, which would make them less palatable to 

herbivores (Cates & Orians 1975; Huston & Pinchak 1991). Annual plants, such as the 

grasses Avena byzantina and Phalaris minor, would therefore divert fewer resources 

into the production of anti-herbivore defences than perennial grasses do, which might 

make annual grasses more palatable to angulate tortoises. Nevertheless, P. minor is 

not considered a palatable grass (Van Oudtshoorn 1999), and its high consumption in 

summer may be linked to the flowering season, which covers spring and summer (Van 

Oudtshoorn 1999). In contrast, Avena byzantina is regarded as palatable and is 

cultivated for grain and fodder (Animal feed resources information system). 

 

Herbaceous plants constituted the most important growth form in the diet of angulate 

tortoises on DI, and was the growth form that made the largest contribution to the 

WCNP diet in winter. Herbaceous species, in general, are more digestible than grasses 

and shrubs, and often have a high protein and phosphorous content (Huston & Pinchak 

1991). The wet season stimulates the germination and growth of new annual plants, 

and new growth of perennial plants, and the younger plant parts provided angulate 

tortoises with a potentially more nutritious source of food compared to tougher, more 

mature plant material consumed during the dry season (Huston & Pinchak 1991). The 

high digestibility of soft plant material may have contributed to the lower quantities of 

herbaceous plant material identified in diets during spring. Plant parts such as flower 

petals are probably more digestible than leaves. Flowers tended to fall apart during the 

process of removing epidermi for producing reference slides (pers. obs.). A high 

digestibility of flowers may have caused an under-representation of herbaceous plant 

material in the diets of angulate tortoises in this study.  

 

The herbaceous perennial, Geranium incanum, was the second most important diet 

plant of angulate tortoises in the WCNP. This low-growing plant forms a dense carpet, 

which would be easily accessible to tortoises. The plant flowers from spring to autumn 

(Joffe 2003), but the high consumption of G. incanum in winter indicates that the 
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tortoises probably consumed mainly new leaves, which developed after the rainfall 

season commenced. The herb, Senecio elegans, was present in high quantities in 

angulate tortoise scats in the WCNP during spring. Senecio elegans has soft leaves, 

which have been described as becoming succulent when growing near the coast (Kidd 

2002). Chersina angulata probably gained not only nutrients from these soft leaves but 

also access to an additional source of water. This may also be the case for C. angulata 

on DI, where S. elegans formed an important diet component in summer.  

 

The perennial herb Trachyandra divaricata was the most important diet plant of 

angulate tortoises on DI. All parts of this plant are considered edible (Manning 2003), 

although consumption of T. divaricata has been linked to lipofuscin storage disease in 

sheep (Newsholme et al. 1985). Trachyandra divaricata forms new leaves at the start 

of the rainfall season in late autumn (pers. obs.) and the tortoises fed extensively on 

the fresh leaves in winter. During the dry season (summer and autumn), the condition 

of the plants deteriorate, and the leaves may even die-off during particularly dry years 

(pers. obs.). This was the situation during the study period, when the angulate tortoises 

consumed high quantities of dry T. divaricata leaves in autumn. Albuca flaccida also 

featured prominently in the autumn diet of angulate tortoises. This fleshy-leaved 

geophyte was observed growing between the branches of Tetragonia fruticosa, which 

probably protected this geophyte from unfavourable conditions and grazing pressure, 

and enabled it to persist after flowering in spring. It is not clear, however, if the high 

consumption of A. flaccida in autumn was of new leaves, or if the tortoises consumed 

old leaves that persisted until autumn.  

 

Angulate tortoises consumed Zantedeschia aethiopica, a geophyte possessing 

moderately fleshy leaves but containing oxalic acid (van Wyk et al. 2002). Oxalic acid 

in large concentrations can be harmful to animals and the consumption of leaves from 

Z. aethiopica is known to cause distress if ingested (van Wyk et al. 2002). Only 

epidermi of floral parts of Z. aethiopica were identified in scats. The ingested floral 

parts may contain lower concentrations of oxalic acid compared to leaves, making 

them more palatable to angulate tortoises. The fleshy fruits of this plant are also 

popular with birds (Joffe 2003). 

 

Angulate tortoises on DI did not consume shrubs or succulent plants, whereas both 

growth forms were represented in the WCNP diet. Hermannia scabra is a low-growing 

shrublet and both the leaves and flowers (winter and spring; Manning & Goldblatt 1996) 

would have been within reach of angulate tortoises. Rhus laevigata was an important 
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diet plant in autumn, when the tortoises probably fed on the fruits of the plant. The low 

levels of shrubs identified in tortoise scats may be because of the height restrictions 

faced by tortoises, which feed at a lower level than larger herbivores such as cows and 

sheep (Rall & Fairall 1993). Angulate tortoises were thus restricted to feed from the 

lower branches of shrubs, and on the leaves or fruits that dropped to the ground. On 

DI, the consumption of leaves from the tree, Myoporum serratum, made a significant 

contribution to the dry season’s diet of angulate tortoises. Myoporum serratum is an 

evergreen tree species that was introduced to DI (Hurford 1996), and is recorded as 

being a tree xerophyte (Gindel 1969). Chersina angulata might have consumed M. 

serratum as a last resort when more nutritious plant material was unavailable in the 

environment.  

 

Succulent plant species dominated the study site on DI (see Chapter 2), but the diet of 

angulate tortoises on DI did not include succulents, although the tortoises experienced 

long periods of low rainfall during summer and autumn. Milton (1992) found that 

leopard tortoises change their diet from grasses to succulents during the summer 

months when green grass was no longer available. It is possible that a high 

concentration of ions, or other toxic substances, precluded the used of succulent plants 

on DI. Mesembryanthemum crystallinum, an abundant succulent on DI, concentrates 

ions in its tissues in response to drought conditions; potassium and or sodium are 

commonly concentrated in specialised trichomes modified to form bladder cells (Adams 

et al. 1998). The concentration of these ions may have contributed to these plants 

being unpalatable to angulate tortoises. 

 

In the WCNP, succulents increased in the diet of angulate tortoises during spring and 

summer. Although it is possible that the low value recorded during the driest season, 

autumn, is due a high digestibility of succulent species, a more likely explanation is that 

angulate tortoises do not rely on succulent plants to supplement water during the dry 

season. The spring scats of angulate tortoises in the WCNP contained large quantities 

of a succulent species that could be classified only to the family Aizoaceae. This small 

plant was not present in the study quadrats, and was scarce at the study site. The 

succulent plant Carpobrotus edulis has tough fleshy leaves and edible fruits (Roux & 

Schelpe 1994; Manning & Goldblatt 1996), and has a high abundance in the WCNP. 

Despite its palatability, this plant was not detected in the scats of angulate tortoises, 

perhaps because angulate tortoises do not have the bite strength to tear off large 

enough pieces from C. edulis. Succulent species that appeared in their diet, e.g., 
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Senecio maritimus and Ruschia macowanii, have smaller leaves that would be easier 

for these tortoises to bite and tear. 

 

Angulate tortoises avoided restios, except that one tortoise in the WCNP appeared to 

have sampled small quantities of Thamnochortus spicigerus, a common but tough 

plant. On DI, the sedge Ficinia nigrescens, a small tufted perennial that flowers from 

late autumn to spring (Manning & Goldblatt 1996), was a very important diet plant in 

spring. Most of the epidermi observed in the scats were from floral parts of F. 

nigrescens, indicating that C. angulata avoided consuming the tougher stems but 

favoured the inflorescences. Baard (1990) reported that two sedge species contributed 

2% to the diet of geometric tortoises at the Elandsberg Private Nature Reserve.  

 

The scats of C. angulata at both study sites contained low quantities of UI plant 

material. This indicates that the bulk of material identified in the scats could at least be 

classified to the level of genus or plant type. The lower level of UI plant material 

observed in DI scats was partly due to the low plant diversity on the island, which 

limited the potential to overlook inconspicuous plants in the environment when 

collecting specimens for reference slides. The high plant diversity on the mainland 

made it easier to overlook less common plant species. The low levels of UI plant 

material recorded in scats also indicate that microscopic faecal analysis is an effective 

method to determine the diet of angulate tortoises.  

 

5.5.3 Animal material in the scats 

The scats of angulate tortoises at both study sites contained insect parts, but it is not 

clear if the insects were eaten deliberately, or were ingested incidentally. Angulate 

tortoises were never observed actively seeking and ingesting insects, and the tortoises 

are probably too slow to seek and capture most insects. It seems more likely that 

angulate tortoises incidentally ingested insects while consuming plant organs such as 

flowers. Insects have been observed also in the scats of other tortoises and turtles 

(Bjorndal 1991; Milton 1992; Spencer et al. 1998). Even if the ingestion of insects was 

incidental, the animal material probably contributed to the nutrition of angulate tortoises 

and may have provided nutrients that might not be obtained from plant material. It is 

possible that C. angulata selected plant parts covered in insects to acquire additional 

sources of nutrients such as animal protein. 

 

An indirect interaction practiced by angulate tortoises with other animals was the 

consumption of faecal material. Faecal material excreted by an animal may contain 
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material edible to other animals, such as seeds (Logiudice 2001). This excreted edible 

material may serve as a source of food to other animals, which risk infection by faecal 

parasites or pathogens when eating the faeces (Logiudice 2001). Parasite infection 

caused through the ingestion of faecal material has been observed in animals 

consuming racoon faeces (Logiudice 2001; Evans 2002). Racoons infested with the 

parasitic roundworm Baylisascaris procyonis pass their infection to other animals 

through contaminated faeces. 

 

The scats of angulate tortoises at both study sites contained parasite eggs, but the 

level of infestation on DI was particularly high, perhaps as a consequence of the high 

tortoise density on DI. Most internal parasites are host-specific but parasites may be 

transferred between different animal species through the consumption of faeces that 

contain viable parasite eggs (Logiudice 2001; Evans 2002). The practice of coprophagy 

by angulate tortoises may have contributed to the high level of infection observed 

amongst these tortoises. Chersina angulata were not observed consuming their own 

scats but rather those of other animals such as the European rabbit on DI. The island 

also hosts a number of breeding seabird colonies from which C. angulata may 

consume faecal material. Focal studies (see Chapter 3) showed that angulate tortoises 

on DI consumed rabbit faeces mostly during the dry season, in summer and autumn. 

This does not correspond with the highest level of parasite infestation, which occurred 

in spring. Thus, there may not be an immediate link between coprophagy and parasite 

infestation on DI.  

 

It is interesting to note that angulate tortoises on DI had significantly higher levels of 

sand in the scats than tortoises in the WCNP had, and that the incidence of sand in 

their scats peaked in spring (see Chapter 4). There may thus be an association 

between sand ingestion and parasite infestation in C. angulata. It is known that there is 

a direct correlation between geophagy and geohelminth infections in humans (Saathoff 

et al. 2002). 
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6 FEEDING STRATEGIES AND METHODOLOGIES 

 
 
 
6.1 ABSTRACT 

The diet of angulate tortoises consisted mainly of angiosperms, but also included 

mosses, mushrooms, insects, snails, and animal faeces. Seventy-two diet plants, in 

32 different families, were identified to the genus level. The histological method 

provided the most comprehensive diet list, but macroscopic evaluation of faecal 

samples and focal observations provided information about the feeding strategies of 

angulate tortoises that could not be obtained by histological scat analysis. Tortoises 

in the WCNP and DI had 12 and 11 principal food plants, respectively, of which most 

were principal food items in one season only. Most principal food items were grass or 

herb species. Over the whole year, four principal food items were distinguished for 

WCNP tortoises and five principal food items were distinguished for DI tortoises. 

Cynodon dactylon was a principal food species in the WCNP for three of the four 

seasons, whereas on DI, Trachyandra divaricata was a principal food item in every 

season. Although the number of principal food items of angulate tortoises did not 

differ between the two sites, the tortoises in the WCNP had a more diverse diet than 

the tortoises on DI had. Most plant species, however, occurred in low frequencies in 

the scats, and it seems likely that the tortoises sampled some of these plants to test 

their potential as new food items or to monitor changes in their nutrient content. Two 

preference indices, forage ratio and Manly’s α, were calculated to assess food 

selection of angulate tortoises. Manly’s α appeared to be a more conservative index 

because the forage ratio indicated positive selection for substantially more plant 

species than Manly’s α did. Plants, which were selected out of proportions to their 

availability, included principal food items as well as plants with low frequencies in the 

diet. The latter category may have been selected because the plants contained 

specific nutrients that the tortoises required. The tortoises showed a strong aversion 

for some of the abundant plant species, which may be very fibrous, have a high salt 

content, or may be poisonous. The proportional similarity index was 0.31 and 0.16 for 

tortoises in the WCNP and DI, respectively, indicating that angulate tortoises are 

selective feeders and not generalist feeders, despite the tortoises inhabiting a variety 

of habitat types.  
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6.2 INTRODUCTION 

Foraging ecology provides critical information about factors that influence the survival 

of animals. In the past, most foraging studies were simply descriptive, but in recent 

years, the focus shifted from diet lists to analytical evaluations that improve 

understanding of the cause and effect basis of foraging (Robbins 1983). The optimal 

foraging strategy represents a balance between the costs and benefits associated 

with foraging: costs include factors such as the energy and time spent searching for 

food, while benefits include factors such as long-term reproductive success (Robbins 

1983). Foraging strategies differ among species, and some animals, food generalists, 

have broad diets, whereas food specialists are highly selective and ignore most of 

the food items they encounter (Smith & Remington 1996).  

 

Food selection can be driven by a number of factors, e.g., availability of the food 

item, its palatability, accessibility and profitability (Smith & Remington 1996). It is 

often found that a few plant species constitute the bulk of a herbivore’s diet while a 

range of other species are present in small quantities (Robbins 1983). This may be a 

consequence of a generalist herbivore’s habit to often sample available food items in 

order to monitor changes in nutrient content and secondary plant compounds 

(Robbins 1983; Dearing & Schall 1992). Consequently, food selection may be 

influenced by food nutrient levels (Henen et al. 2005; Tracy et al. 2006). 

Experimental studies have shown that when birds are given food choices, they select 

a diet with the most favourable amino acid composition within 16 hours (Murphy & 

King 1987). Furthermore, populations of the same species could achieve the same 

nutritional balance from the food types available in different habitats (Dearing & 

Schall 1992).  

 

Habitat destruction and transformation pose significant threats to the continued 

existence of many animals, including tortoise species of South Africa (Gardner et al. 

1999; Hofmeyr et al. 2006). The effective conservation and management of animals 

require an understanding of the animals’ habitats and their foraging ecology (Norton 

1983). In this chapter, I used data on the availability of food resources and the diet 

composition of angulate tortoises (reported in Chapters 2 and 5, respectively) to 

evaluate seasonal changes in food preferences and aversions of C. angulata at two 

study sites in the southwestern Cape. I also assessed the efficacy of three different 

methods, focal observations, macroscopic faecal analysis, and histological analysis 

of scats, which were used to evaluate the feeding strategies of angulate tortoises.  
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6.3 MATERIALS AND METHODS 

6.3.1 Principal food items and cumulative percentages in the scats 

Principal food species are food items that contribute substantially to the diet of an 

animal (Mason et al. 1999). In this analysis, I followed the example of Mason et al. 

(1999) to regard plant taxa that have an average frequency greater than 5% in the 

diet as principal food. I used the data for the histological evaluation of the faecal 

samples to represent the proportion of each plant taxon in the diet. Although the 

category unidentified plant material contributed more than 5% to the WCNP scat 

composition in winter, spring and overall (see Table 5.1), I did not regard this 

category as principal food. The scats from DI had low percentages of unidentified 

plant material (see Table 5.3). When I calculated cumulative percentages for the 

plant taxa in the scats, I first ranked the taxa from the largest percentage to the 

lowest percentage, but placed the unidentified plant category last in the list. 

 

6.3.2 Preference indices 

Several methods are available to calculate food preferences of animals. I calculated 

two preference indices for angulate tortoises; forage ratio (Gerald 1966) and Manly’s 

α (Chesson 1978).  The forage ratio (FR) simply compares usage of a diet item with 

availability. A FR of 1.0 indicates that the food item is used in the same proportion as 

its availability in the environment.  In contrast, a FR > 1.0 indicates preference for the 

food item and a FR < 1.0 indicates avoidance of the food item (Gerald 1966). 

 

 
FRi  = 

pi                              ………….…………. [1] 
 qi 
 

Where   FRi =  Forage ratio for species i 

  pi =  Percentage / proportion of species i in the diet 

  qi =  Percentage / proportion of species i available in the environment 
 

 

The FR does not take the availability and use of other food items in the environment 

into consideration, whereas Manly’s preference index (αi) indicates an animal’s 

preference for a specific food item relative to the other food items available in the 

environment (Chesson 1978, 1983). When the consumer does not influence the 

abundance of the food item in the environment, αi can be estimated as the ratio of 
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the food item i in the diet to the food item i in the environment (thus the FRi), scaled 

to the sum of the ratios for all diet items, so that the sum of αi = 1.0.   

 

 

 
αi  = 

pi / qi                    ………….…………. [2] 
 m 

∑  pi / qi  

i=1 
 

Where  αi =  Manly’s preference index for food type i 

 m =  Number of food species available 

 

 

When the animal is using the available food items in the environment at random, αi 

would be identical for all food items (αi  = 1/m), consequently αi > 1/m indicates 

selection whereas αi < 1/m indicates avoidance (Chesson 1978, 1983; Krebs 1999).   

 

I used the data for the histological evaluation of the faecal samples to represent the 

proportion of plant species in the diet. For these calculations, I excluded the animal 

material in the faecal samples and calculated the percentage for each plant 

species/category relative to the plant material in the faeces. I combined all grass 

species identified in the histological evaluation, except Ehrharta villosa, to 

correspond with availability data for grass.  

 

The availability of plant species at the study sites was calculated as relative cover 

indices (RCI; see Chapter 2). In order to use RCI in the calculation of preference 

indices, I had to convert RCI to percentages so that availability data and consumption 

data were measured on the same scale. I calculated the total RCI of each 5x5 m cell 

and expressed each plant species/category in that cell as a percentage of the total 

RCI for that cell. The average percentage for each plant species/category was then 

calculated from all cells for each season and for the four seasons combined (annual).  

The four seasons used in the calculations corresponded with the four seasons for 

which faecal samples were collected and analysed.  

 

Trachyandra divaricata was an important diet item for angulate tortoises on Dassen 

Island. During autumn 1999, T. divaricata was available as debris and not as live 

plant material. Debris was not included in the analyses of the vegetation composition 
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presented in Chapter 2, but for the percent availability of each plant species/category 

in this chapter, I included debris when calculating the RCI of T. divaricata. 

 

Many plant species identified in the faecal analyses were not identified in the plant 

surveys. I made the assumption that these plant species were scarce in the 

environment, and for each season when these species occurred in the diet, I 

assigned a standard percent availability value that was smaller than the lowest value 

recorded for any species in the vegetation surveys (Mason et al. 1999). 

 

In order to determine if the preference or avoidance of plants was statistically 

significant, I used a Mann-Whitney Rank Sum Test (Tn,n) to compare use (mean pi) 

with availability (mean qi). 

 

6.3.3 Niche breadth 

Feinsinger et al. (1981) suggested that “niche breadth be defined as the degree of 

similarity between the frequency distribution of resources used by members of a 

population and the frequency distribution of resources available to them”. I used the 

Proportional Similarity Index (PSI) proposed by Feinsinger et al. (1981) to estimate if 

C. angulata is a generalist or a specialist feeder (Mason et al. 1999; Lagarde et al. 

2003). The PSI can range from 1.0 for a generalist feeder, when the population uses 

resources in proportion to their availability, to a minimal qi for a highly selective 

feeder, which exclusively feeds on the rarest resources (Feinsinger et al. 1981).   

 

 
PSI = 

            m 

1 – 0.5 ∑ │pi - qi│ 
            i=1 

    .…..……………….. [3] 

 

 

When calculating the PSI for tortoises at each study site and each season, I used the 

records of plants detected in the faeces and plants identified in the vegetation 

surveys. 

  

6.3.4 Comparison of focal, macroscopic and histological data 

In order to evaluate the level of correspondence among the results for the focal, 

macroscopic and histological methods, I used one-way repeated measures ANOVA 

to compare percent composition over four seasons for the diet items that were 

detected by all three methods.  
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6.4 RESULTS 

6.4.1 Cumulative percentages and principal food items 

Overall, six plant taxa contributed 50%, and 22 taxa contributed 80%, to the scat 

composition in the WCNP (Fig. 6.1a). The number of taxa required to reach the 80% 

mark changed with season, and was six, 11, 12, and 17, respectively, in autumn, 

winter, spring and summer. For angulate tortoises on DI, two plant taxa made up 

50%, and eight taxa made up 80% of the annual scat composition (Fig. 6.1b). The 

number of taxa that contributed 80% to the scat composition was lower in autumn 

and winter (three taxa) than in spring and summer (six taxa).  

 

Twelve plant taxa in the WCNP were identified as principal food items of angulate 

tortoises (Table 6.1). The contribution of these items to the diet differed seasonally, 

and most taxa were categorised as principal food in one season only. Cynodon 

dactylon, however, was a principal food species in three seasons, while Senecio 

elegans, Geranium incanum, and the unknown succulent (Aizoaceae) qualified in two 

seasons. When the contribution of the plant taxa was considered over the whole 

year, four principal food items were distinguished in the WCNP. Angulate tortoises on 

DI had 11 principal food items in their diet (Table 6.1). Trachyandra divaricata 

qualified as a principal food item in each season, while Avena byzantina and 

Myoporum serratum were principal food items in two seasons each. For the whole 

year, five diet species were categorised as principal food items. The number of 

principal food plants recorded each season did not differ between the WCNP and DI 

(P = 0.29, Chi-square test). 
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Figure 6.1  Cumulative percentages for plant taxa in the scats of angulate tortoises 

from the West Coast National Park (only the first 50 taxa) and Dassen Island over 

one annual cycle.  
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Table 6.1  Principal food species of angulate tortoises in the West Coast National 

Park and on Dassen Island. Plant species that contributed more than 5% to the diet 

in a particular season (in bold) were considered principal food items. 

 

Sample Au Wi Sp Su Ann 

West Coast National Park      

Aizoaceae 0.6 2.7 17.7 8.7 6.9 

Albuca sp 4.0 14.5 0.5 3.5 5.9 

Cynodon dactylon 54.8 4.3 15.8 19.3 24.0 

Geranium incanum 6.1 22.1 0.4 2.4 8.2 

Grass 2 0.2 5.0 5.8 3.4 3.5 
Hebenstreitia repens 0.0 5.6 0.8 0.0 1.6 
Hermannia scabra 2.9 5.6 4.8 0.2 3.3 
Lolium perenne 8.1 0.2 0.1 2.0 2.7 
Oncosiphon suffruticosum 0.0 0.0 0.0 8.4 2.2 
Pennisetum setaceum  0.0 11.7 2.3 2.2 4.2 
Senecio elegans 1.3 0.0 12.6 5.3 4.4 
Senecio maritimus 0.0 0.0 6.3 2.4 2.0 
      

Dassen Island      

Albuca flaccida 12.2 3.0 3.7 0.0 4.7 
Avena byzantina  4.2 0.2 11.5 10.9 6.7 

Dicot 5 0.3 13.6 0.0 0.0 3.5 
Ficinia nigrescens 0.0 0.0 48.8 0.0 12.2 

Grass 2 0.0 0.0 2.3 5.3 1.9 
Grass 4 0.0 0.0 5.5 0.0 1.4 
Myoporum serratum 12.2 0.0 0.0 10.9 5.8 

Phalaris minor 0.7 0.0 3.8 12.4 4.2 
Senecio elegans 0.1 2.1 1.8 18.5 5.6 

Trachyandra divaricata 65.4 59.5 11.1 22.0 39.5 

Unknown fruit 0.0 14.2 0.0 0.0 3.5 
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6.4.2 Dietary preferences of tortoises in the WCNP 

Selection indices were calculated for 77 plant taxa (grass species combined) in the 

WCNP (Table 6.2). The forage ratios (FR) revealed that angulate tortoises used most 

plant taxa out of proportion to their abundance. Manly’s preference index appears to 

be more conservative and for all seasons combined, only 14 of the 77 plant taxa 

were selected. The number of taxa that appeared to be selected according to the FR 

and Manly’s α, respectively, were 21 and six taxa in autumn, 29 and seven taxa in 

winter, 22 and four taxa in spring, and 34 and nine taxa in summer.  

 

It was possible to statistically evaluate selection and avoidance of 25 plant taxa, for 

which both availability and utilization data were recorded (Table 6.1). When the diet 

for the entire year was considered, angulate tortoises showed a preference for G. 

incanum, S. elegans and grasses (all T57,2683 > 93245; P < 0.011) and avoided C. 

edulis, E. villosa, H. niveum and R. laevigata. The statistical values for the other taxa 

were not significant (all P > 0.078), indicating that the use of these diet items were 

not used out of proportion with their availability.  

 

Statistical tests on 19 plant taxa available in autumn showed that angulate tortoises 

selected G. incanum, R. laevigata, S. elegans and grasses (all T15,379 > 4051; P < 

0.012), and avoided E. villosa and H. niveum (all T15,379 > 1944; P < 0.019). The 

results approached significance (avoidance) for C. edulis (T15,379 = 2115; P = 0.0501). 

In winter, 24 taxa were analysed, of which three were selected (C. vesicaria, G. 

incanum and grasses; all T15,768 > 8568; P < 0.0020), and three were avoided (C. 

edulis, E. villosa and R. macowanii; all T15,768 > 4177; P < 0.050). The spring data of 

22 plants showed that G. incanum and grasses were selected (all T12,768 > 7250; P < 

0.0001), and that E. villosa was avoided (T12,768 = 3133; P = 0.045). During summer, 

21 plant taxa were available and the tortoises selected G. incanum, O. suffruticosum, 

S. elegans and grasses (all T15,768 > 8317; P < 0.0090) while they avoided E. villosa 

(T15,768 = 3920; P < 0.024). 
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Table 6.2  Seasonal variation in the preference indices, Forage ratio and Manly's α, 

of angulate tortoises in the West Coast National Park. Values in bold indicate 

selection (>1.0 for Forage ratio and > 1/m for Manly’s α) and the asterisks indicate for 

which dietary items Mann-Whitney tests could be done.  For convenience, Manly’s α 

is shown as a percentage rather than a fraction of 1.0.  

 
 Forage ratio  Manly's αααα 

Plant taxon Au Wi Sp Su Ann  Au Wi Sp Su Ann 

Afrolimon purpuratum* 0.0 0.0 0.0 0.2 0.1  0.0 0.0 0.0 0.0 0.0 

Aizoaceae 28.4 137.6 890.9 451.5 347.9  2.8 7.4 46.5 23.0 21.2 

Albuca sp. 201.9 720.0 23.2 177.4 295.6  19.7 38.7 1.2 9.0 18.1 

Apocynaceae  1.7   0.4   0.1   0.0 

Aspalathus hispida    38.7 9.8     2.0 0.6 

Asparagus lignosus* 0.0 6.7   3.2  0.0 0.4   0.2 

Carpobrotus edulis* 0.0 0.0 0.0 0.1 0.0  0.0 0.0 0.0 0.0 0.0 

Carpobrotus quadrifidus    1.8 0.4     0.1 0.0 

Chironia baccifera* 0.0 4.6  41.3 12.0  0.0 0.2  2.1 0.7 

Chrysanthemoides monilifera* 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

Cynanchum africanum 28.4   33.4 16.1  2.8   1.7 1.0 

Cystocapnos vesicaria*  42.0 0.0 112.4 8.0   2.3 0.0 5.7 0.5 

Dicot 1   19.0  4.0    1.0  0.2 

Dicot 2  3.4 65.3  14.7   0.2 3.4  0.9 

Dicot 3 6.7  122.2  27.7  0.7  6.4  1.7 

Dicot 4   6.3  1.3    0.3  0.1 

Dicot 5   8.4  1.8    0.4  0.1 

Dicot 6   31.6  6.7    1.6  0.4 

Dicot 7  102.4  65.0 43.8   5.5  3.3 2.7 

Dicot 8 51.7   3.5 14.7  5.1   0.2 0.9 

Dicot 9 85.1    22.8  8.3    1.4 

Dicot 10 135.1 36.9  33.4 54.5  13.2 2.0  1.7 3.3 

Dicot 11    8.8 2.2     0.4 0.1 

Dicot 12  1.7   0.4   0.1   0.0 

Dicot 13 225.2    60.3  22.0    3.7 

Dicot 14 1.7    0.4  0.2    0.0 

Dicot 15 6.7  8.4 5.3 4.9  0.7  0.4 0.3 0.3 

Dicot 16    19.3 4.9     1.0 0.3 

Dicot 17  63.8  175.7 61.6  0.0 3.4  8.9 3.8 

Dicot 18    3.5 0.9     0.2 0.1 

Dicot 19 31.7   3.5 9.4  3.1   0.2 0.6 

Dicot 20    36.9 9.4     1.9 0.6 

Dicot 21  1.7   0.4   0.1   0.0 

Dicot 22    151.1 38.4     7.7 2.3 

Dicot 23 33.4 40.3  228.4 77.7  3.3 2.2  11.6 4.7 

Dicot 24   8.4  1.8    0.4  0.1 

Erharta villosa* 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

Ficinia nigrescens* 0.0 0.0 1.9 0.0 0.3  0.0 0.0 0.1 0.0 0.0 
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Table 6.2 continued    

 Forage ratio  Manly's αααα 

Plant taxon Au Wi Sp Su Ann  Au Wi Sp Su Ann 

Geranium incanum* 2.7 55.1 0.9 2.2 9.6  0.3 3.0 0.0 0.1 0.6 

Grass* 2.6 2.7 2.7 3.6 3.2  0.3 0.1 0.1 0.2 0.2 

Gymnosporia buxifolia*  0.1 0.0 0.0 0.0   0.0 0.0 0.0 0.0 

Hebenstretia repens 1.7 276.9 37.9  82.2  0.2 14.9 2.0  5.0 

Helichrysum niveum* 0.0 0.0 0.0 0.3 0.1  0.0 0.0 0.0 0.0 0.0 

Herb 1    175.7 44.7     8.9 2.7 

Hermannia pinnata    3.5 0.9     0.2 0.1 

Hermannia scabra 145.1 282.0 242.2 8.8 167.5  14.2 15.1 12.6 0.4 10.2 

Lachnospermum imbricatum    1.8 0.4     0.1 0.0 

Manochlamys albicans* 0.0 3.4 0.0  0.6  0.0 0.2 0.0  0.0 

Monocot 1  5.0   1.3   0.3   0.1 

Monocot 2   59.0 3.5 13.4    3.1 0.2 0.8 

Monocot 3  10.1   2.7   0.5   0.2 

Monocot 4  10.1 2.1 1.8 3.6   0.5 0.1 0.1 0.2 

Monocot 5   19.0  4.0    1.0  0.2 

Nylandtia spinosa* 0.1 0.0 0.1 0.4 0.2  0.0 0.0 0.0 0.0 0.0 

Oncosiphon suffruticosum* 0.0  0.0 4.4 1.3  0.0  0.0 0.2 0.1 

Osyris compressa*  0.0 0.0 17.0 6.0   0.0 0.0 0.9 0.4 

Oxalis sp.  30.2 29.5  14.3   1.6 1.5  0.9 

Passerina corymbosa* 0.0 0.9 0.0 0.0 0.2  0.0 0.0 0.0 0.0 0.0 

Passerina ericoides  8.4   2.2   0.5   0.1 

Pelargonium myrrhifolium 13.3   1.8 4.0  1.3   0.1 0.2 

Psoralea repens*  3.3 0.0 0.0 0.5   0.2 0.0 0.0 0.0 

Rhus laevigata* 2.5 0.1 0.0 0.2 0.3  0.2 0.0 0.0 0.0 0.0 

Rhus sp.  1.7   0.4   0.1   0.0 

Ruschia macowanii* 0.1 0.8 0.0 0.2 0.3  0.0 0.0 0.0 0.0 0.0 

Ruschia sp.* 0.0 0.1 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

Sedge 1  1.7   0.4   0.1   0.0 

Senecio elegans* 12.3 0.0 1.9 3.1 1.3  1.2 0.0 0.1 0.2 0.1 

Senecio maritimus 1.7  315.9 126.5 99.6  0.2  16.5 6.4 6.1 

Senecio sp. 5.0    1.3  0.5    0.1 

Septulina glauca*  0.8   0.7   0.0   0.0 

Succulent 1   4.2  0.9    0.2  0.1 

Succulent 2  1.7 16.8  4.0   0.1 0.9  0.2 

Tetragonia sp.  3.4   0.9   0.2   0.1 

Thamnochortus spicigerus* 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

Trifolium burchellianum*  1.7 0.0  1.1   0.1 0.0  0.1 

Zantedeschia aethiopica    1.8 0.4     0.1 0.0 

Zygophyllum morgsana    15.8 4.0     0.8 0.2 
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6.4.3 Dietary preferences of tortoises on Dassen Island 

The FR showed that over the annual cycle, angulate tortoises selected 18 of the 27 

diet plants on DI out of proportion to their availability (Table 6.3). For the same 

period, Manly’s α indicated that only five taxa were selected. The number of plant 

items selected seasonally, according to the FR and Manly’s α respectively, were 

eight and three taxa in autumn and in winter, 12 and two taxa in spring, and 10 and 

three taxa in summer. Statistical analysis showed that for all seasons combined, 

angulate tortoises selected T. divaricata and S. elegans, and avoided U. urens (all 

T60,3071 > 63440; P < 0.013). Urtica urens was not present in the environment in 

autumn and summer, but the plant was avoided in winter and spring (all T15,768 > 

1199; P < 0.0001). The tortoises selected T. divaricata in each season (all T15,768 > 

8283; P < 0.0054), and they selected S. elegans in winter and in summer (all T15,768 > 

7789; P < 0.027).  
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Table 6.3  Seasonal variation in the preference indices, Forage ratio and Manly's α, 

of angulate tortoises on Dassen Island.  Values in bold indicate selection (>1.0 for 

Forage ratio and > 1/m for Manly’s α) and the asterisks indicate for which dietary 

items Mann-Whitney tests could be done.  For convenience, Manly’s α is shown as a 

percentage rather than a fraction of 1.0. 

 
 Forage ratio  Manly's αααα 

Species Au Wi Sp Su Ann  Au Wi Sp Su Ann 

Albuca flaccida 121.6 30.2 37.0  47.2  34.9 10.1 4.2  8.9 

Anagalis arvensis  0.0   0.0   0.0   0.0 

Cyperus sp.  5.1   1.3   1.7   0.2 

Cystocapnos vesicaria   0.0  0.0    0.0  0.0 

Dicot 1    29.7  7.4    3.4  1.4 

Dicot 2   30.2 22.0 13.0    3.4 2.8 2.5 

Dicot 3   11.5 10.4 5.5    1.3 1.3 1.0 

Dicot 4 24.7 12.5  9.5 11.7  7.1 4.2  1.2 2.2 

Dicot 5 2.7 136.0   34.7  0.8 45.4   6.5 

Dicot 6    8.0 2.0     1.0 0.4 

Dicot 7    0.7 0.2     0.1 0.0 

Ficinia nigrescens   488.2  122.1    55.5  23.0 

Grass 67.4 36.5 232.4 367.8 176.0  19.3 12.2 26.4 47.1 33.2 

Hemimeris racemosa   23.1  5.8    2.6  1.1 

Isolepis antarctica   13.2  3.3    1.5  0.6 

Mesembryanthemum crystallinum 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

Monocot 1 0.7    0.2  0.2    0.0 

Monocot 2   2.1  0.5    0.2  0.1 

Monocot 3  10.9   2.7   3.6   0.5 

Monocot 4 2.8   0.7 0.9  0.8   0.1 0.2 

Myoporum serratum 121.6   108.8 57.6  34.8   13.9 10.9 

Oxalis sp. 3.4   26.5 7.5  1.0   3.4 1.4 

Senecio elegans* 0.7 20.7 1.2 184.6 15.2  0.2 6.9 0.1 23.6 2.9 

Tetragonia fruticosa 0.0 0.0 0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 

Trachyandra divaricata* 3.4 47.9 7.2 1.6 4.5  1.0 16.0 0.8 0.2 0.8 

Urtica urens*  0.0 0.0  0.0   0.0 0.0  0.0 

Zantedeschia aethiopica   3.1 40.7 11.0    0.4 5.2 2.1 
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6.4.4 Niche breadth in the WCNP and DI 

The PSI values of angulate tortoises in the WCNP and on DI were low in all seasons 

and overall (Table 6.4). A two-way ANOVA showed that season had no effect on PSI 

values (P = 0.27), but PSI values of tortoises in the WCNP were higher than the 

values were on DI (F1,3 = 78.8; P = 0.0030).  

 

 

 

Table 6.4  Seasonal changes in the Proportional Similarity Index of angulate 

tortoises in the West Coast National Park and on Dassen Island.   

 

 Au Wi Sp Su Ann 

WC National Park  0.31 0.27 0.29 0.26 0.31 

Dassen Island  0.19 0.16 0.12 0.15 0.16 

 
 
 
 
 
 
 
 
 
6.4.5 The diet of Chersina angulata and methodologies 

The three study methods used to evaluate the feeding ecology of angulate tortoises 

did not generate similar diet lists; substantially more diet species were identified 

through the microscopic method than through focal studies or macroscopic analysis. 

The diet of C. angulata included 72 plants that were identifiable to the genus level, 

and also included mosses (Phylum: Bryophyta), mushrooms (Phylum: 

Basidiomycota), insects, snails and animal faeces. The 72 angiosperms belonged to 

32 different plant families (Table 6.5). 

 

 

 

 

 



Chapter 6 

 144

Table 6.5  Food plants (Y), and plants not eaten (N) by Chersina angulata in the 

West Coast National Park and Dassen Island. Only plants identified to the genus 

level were included in the list. Food items (L=leaves, S=seeds, f=flowers, St = stem) 

were identified through focal studies (F), macroscopic (M) and histological (H) 

evaluation of faeces, and incidental observations (O). 

 Study site Family Species Food L S f F M H O 

 WCNP Aizoaceae Carpobrotus edulis  Y L   F  H  
 WCNP Aizoaceae Carpobrotus quadrifidus Y L     H  
DI  Aizoaceae Mesembryanthemum crystallinum Y L   F    
 WCNP Aizoaceae Ruschia macowanii Y L    M H O 
 WCNP Aizoaceae Ruschia sp. Y L     H  
DI WCNP Aizoaceae Tetragonia fruticosa Y L   F   O 
 WCNP Aizoaceae Tetragonia sp. Y L     H  
 WCNP Amaranthaceae Manochlamys albicans Y L     H  
 WCNP Anacardiaceae Rhus laevigata Y L S    H  
 WCNP Anacardiaceae Rhus sp. Y  S     H  
 WCNP Apiaceae Stoibrax capense Y L   F   O 
 WCNP Apocynaceae Cynanchum africanum Y L     H O 
DI WCNP Araceae Zantedeschia aethiopica Y   f   H  
 WCNP Asparagaceae Asparagus lignosus Y L     H  
DI  Asphodelaceae Trachyandra divaricata Y L   F M H  
 WCNP Asphodelaceae Trachyandra sp. Y L   F    
 WCNP Asteraceae Chrysanthemoides monilifera Y L     H  
DI WCNP Asteraceae Cotula sp. Y L      O 
 WCNP Asteraceae Helichrysum niveum Y L S  F M H  
 WCNP Asteraceae Lachnospermum imbricatum Y L     H  
 WCNP Asteraceae Oncosiphon suffruticosum Y L S f F  H  
 WCNP Asteraceae Pteronia uncinata Y   f    O 
 WCNP Asteraceae Senecio burchellii Y L      O 
DI WCNP Asteraceae Senecio elegans Y L  f F M H  
DI WCNP Asteraceae Senecio maritimus Y L  f   H  
 WCNP Asteraceae Senecio sp. Y L   F  H  
 WCNP Asteraceae Trichogyne verticillata  Y L S   M  O 
DI WCNP Boraginaceae Amsinckia calycina Y   f    O 
 WCNP Celastraceae Gymnosporia buxifolia Y L     H  
DI  Cyperaceae Cyperus sp. Y L     H  
DI WCNP Cyperaceae Ficinia nigrescens Y L    M H  
DI  Cyperaceae Isolepis antarctica Y L     H  
 WCNP Fabaceae Aspalathus hispida Y L     H  
 WCNP Fabaceae Psoralea repens Y L    M H O 
 WCNP Fabaceae Trifolium burchellianum Y L     H O 
DI WCNP Fumariceae Cystocapnos vesicaria Y L S  F M H  
 WCNP Gentianaceae Chironia baccifera Y L     H  
 WCNP Geraniaceae Erodium moschatum Y L  f    O 
 WCNP Geraniaceae Geranium incanum Y L S f F M H  
 WCNP Geraniaceae Pelargonium myrrhifolium Y   f   H  
 WCNP Geraniaceae Pelargonium sp. Y   f F    
DI  Hyacinthaceae Albuca flaccida Y L   F M H  
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Table 6.5 continued         

 Study site Family Species Food L S f F M H O 

 WCNP Hyacinthaceae Albuca sp. Y L    M H  

 WCNP Loranthaceae Septulina glauca Y L     H  
DI WCNP Myoporaceae Myoporum serratum Y L   F  H O 
DI  WCNP Oxalidaceae Oxalis pes-caprae Y   f F   O 
DI WCNP Oxalidaceae Oxalis sp. Y L     H  
 WCNP Plumbaginaceae Afrolimon purpuratum Y   f   H  
DI  Poaceae Avena byzantina  Y  S    H  
 WCNP Poaceae Avena fatua Y L S    H  
DI WCNP Poaceae Avena sp  Y L     H  
DI  Poaceae Bromus pectinatus Y L     H  
 WCNP Poaceae Chaetobromus dregeanus Y  S    H  
 WCNP Poaceae Cynodon dactylon Y L S    H  
 WCNP Poaceae Erharta villosa  Y L S    H  
 WCNP Poaceae Lolium perenne Y L S    H  
 WCNP Poaceae Pennisetum setaceum  Y L S    H  
DI  Poaceae Phalaris minor Y L     H  
 WCNP Polygalaceae Nylandtia spinosa Y L S  F M H  
DI  Primulaceae Anagalis arvensis Y   f    O 
 WCNP Restionaceae Thamnochortus spicigerus Y L     H  
 WCNP Rosaceae Cliffortia filifolia Y L      O 
 WCNP Santalaceae Osyris compressa Y L     H  
 WCNP Santalaceae Thesidium sp. Y St       O 
 WCNP Scrophulariaceae Hebenstretia repens Y L     H O 
DI  Scrophulariaceae Hemimeris racemosa Y L     H  
 WCNP Sterculiaceae Hermannia pinnata Y L     H  
 WCNP Sterculiaceae Hermannia scabra Y L     H  
 WCNP Thymelaeaceae Passerina corymbosa Y L     H  
 WCNP Thymelaeaceae Passerina ericoides Y L     H  
DI  Urticaceae Urtica urens Y L S  F M H  
 WCNP Zygophyllaceae Zygophyllum morgsana Y L     H  
DI    Mosses Y    F    
DI    Mushrooms Y       O 
DI WCNP   Animal faeces Y    F   O 
DI WCNP   Insect parts Y     M H  
DI    Snail shells Y    F    
 WCNP Aizoaceae Conicosa pugioniformis  N        
DI  Aizoaceae Dorotheanthus sp. N        
 WCNP Amaranthaceae Atriplex semibaccata N        
DI WCNP Amaranthaceae Chenopodium album N        
 WCNP Amaryllidaceae Haemanthus coccineus N        
 WCNP Anacardiaceae Rhus glauca N        
 WCNP Anacardiaceae Rhus lucida  N        
 WCNP Anthericaceae Chlorophytum undulatum N        
 WCNP Apiaceae Torilis arvensis N        
 WCNP Asparagaceae Asparagus rubicundus N        
 WCNP Asteraceae Berkheya armata N        
 WCNP Asteraceae Felicia hyssopifolia N        
DI WCNP Asteraceae Sonchus oleraceus N        
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Table 6.5 continued         

 Study site Family Species Food L S f F M H O 

 WCNP Asteraceae Stoebe sp. N        

 WCNP Ebenaceae Diospyros austro-africana N        
 WCNP Euphorbiaceae Euphorbia burmanii N        
 WCNP Euphorbiaceae Euphorbia mauritanica N        
 WCNP Euphorbiaceae Euphorbia peplus N        
 WCNP Fabaceae Aspalathus sp. N        
 WCNP Hyacinthaceae Ornithogalum thyrsoides N        
 WCNP Hypoxidaceae Spiloxene capensis N        
 WCNP Iridaceae Babiana ringens N        
DI  Iridaceae Homeria flaccida N        
 WCNP Lamiaceae Ballota africana N        
 WCNP Lamiaceae Salvia africana-lutea N        
DI WCNP Malvaceae Malva parviflora N        
 WCNP Menispermaceae Cissampelos capensis N        
DI WCNP Molluginaceae Pharnaceum exiguum N        
 WCNP Oxalidaceae Oxalis obtusa N        
DI  Poaceae Avena barbata N        
 WCNP Poaceae Bromus diandrus N        
 WCNP Rhamnaceae Phylica ericoides N        
 WCNP Rhamnaceae Phylica thunbergiana  N        
 WCNP Rutaceae Agathosma sp. N        
 WCNP Santalaceae Osyris sp. N        
 WCNP Solanaceae Lycium sp. N        
 WCNP Solanaceae Lycium tetrandrum N        
 WCNP Solanaceae Lyperia lychnidea N        
  WCNP Zygophyllaceae Zygophyllum flexuosum N               

 
 
 
 
Only five diet categories of angulate tortoises in the WCNP were indicated by all 

three methods: Geranium incanum, Helichrysum niveum, Nylandtia spinosa, Senecio 

elegans and UI plant material. Percent composition results obtained through the 

focal, macroscopic and histological methods differed significantly for Nylandtia 

spinosa (F2,6 = 24.42, P = 0.0013) and for UI plant material (F2,6 = 9.64, P = 0.013), 

but not for the other three diet species (all P > 0.22). For N. spinosa, percent 

composition determined through macroscopic evaluation was higher than percent 

composition determined through focal and histological evaluation, while the results 

for the latter two methods did not differ. The percent composition of UI plant material 

was higher for the focal and macroscopic methods than for the histological method. A 

further eight diet items were detected by two of the three methods: Albuca sp., 

Apocynaceae, Carpobrotus edulis, Cystocapnos vesicaria, Oncosiphon 

suffruticosum, Psoralea repens, Trachyandra sp. and insects.  
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On DI, four diet items were detected by all three methods: Albuca flaccida, 

Trachyandra divaricata, Urtica urens and UI plant material. Percent composition of T. 

divaricata obtained through the focal and histological methods was higher than the 

percent composition obtained through macroscopic evaluation (F2,6 = 11.09, P = 

0.0097). In contrast, the macroscopic method gave the largest percent composition 

for UI plant material (F2,6 = 57.40, P = 0.00012). There was no difference among the 

results of the three methods for A. flaccida and U. urens (all P > 0.33). Two other 

species, Oxalis sp. and S. elegans, were detected by two of the three methods.  

 

For angulate tortoises in the WCNP, the histological method detected a higher 

percent composition for grass (F2,6 = 5.25, P = 0.048) and for succulents (F2,6 = 42.81 

P = 0.00028) than the focal or macroscopic method detected. There was no 

difference in the percent composition of herbs and shrubs (all P > 0.69) detected by 

the three methods. Similarly, the percent composition for herbs in the diet of angulate 

tortoises on DI did not differ among the three methods. 

 
 

6.5 DISCUSSION 

6.5.1 Principal, preferred and avoided plants 

Despite the WCNP having much wider plant diversity than DI, the number of principal 

food items in the diets of angulate tortoises from these sites did not differ. This 

finding suggests that a few, well chosen, plant species can probably provide most of 

the nutritional requirements of the tortoises. The diet of tortoises in the WCNP was 

nevertheless more diverse than the diet on DI was, but most plant species occurred 

in low quantities in the faeces. It seems likely that many of the food items with low 

frequencies represent plants that the tortoises sampled to monitor changes in plant 

composition, or to test potentially new food plants that they encountered (Robbins 

1983; Dearing & Schall 1992). It is also possible that some food items with low 

frequencies contained specific nutrients that the tortoises needed.  

 

Most of the principal food items at both sites were grasses or herbs. Grasses were 

eaten out of proportion to availability in every season. The strong selection for 

grasses throughout the year indicates that the digestive system of angulate tortoises 

probably processed grasses effectively so that the tortoises gained sufficient energy 

and nutrients from this resource. The ingestion of grasses was probably particularly 

important to tortoise survival during the dry season when soft, edible herbaceous 
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plants were in short supply. Grasses also form an important part of other tortoises’ 

diets, e.g., desert tortoises, leopard tortoises and gopher tortoises (Macdonald & 

Mushinsky 1988; Milton 1992; Nagy et al. 1998).  

 

The low diversity and highly ephemeral nature of plants on DI probably influenced the 

food choices made by angulate tortoises. Their principal and preferred plants were 

predominately soft and herbaceous in nature. Annual plants, which include growth 

forms such as grasses and herbs, invest little resources in anti-herbivore defences 

and can contain higher levels of nutrients compared to perennial plant species (Cates 

& Orians 1975). Herbaceous plants generally have high nutritive value, which may be 

offset by high levels of secondary compounds (Huston & Pinchak 1999). The access 

to annual and herbaceous plants probably helped angulate tortoises to survive and 

reproduce successfully on DI. Angulate tortoises in the WCNP also displayed high 

levels of preferences for herbaceous plants.  

 

Chersina angulata appears to avoid tough plants such as perennial shrubs and 

restios, and the principal food plants at the two sites included only one shrub and one 

tree species. No restio or cyperid species was used as a principal dietary item by 

angulate tortoises in the WCNP, probably due to the tougher and more fibrous nature 

of these plants. Nevertheless, angulate tortoises on DI showed a high preference for 

the sedge Ficinia nigrescens during spring, when they fed on the flowers. Not all 

plants that were avoided (consumption low relative to availability) were tough and 

fibrous. Urtica urens was abundant on DI during the wet season but was used at low 

levels, probably because the stinging emergences cause irritation of the skin 

(Bromilow 2001).  

 

6.5.2 Generalist or specialist feeder? 

Chersina angulata consumed a large number of plant species when the vegetation in 

their environment was diverse (e.g., in the WCNP), but they did not necessarily select 

abundant plants. Two highly abundant plant species in the WCNP, E. villosa and C. 

edulis, were avoided. Similarly, C. angulata on DI avoided the most abundant 

species M. crystallinum and T. fruticosa. Many plants eaten by angulate tortoises 

were consumed in disproportion to their availability, and the tortoises’ diet included 

many rare plant species that were not recorded in the study quadrats. These findings 

suggest that C. angulata may be a specialist feeder, which was confirmed by the low 

PSI values for the tortoises at both sites.  

 

 

 

 

 



Chapter 6 

 149

The Proportional Similarity Indices of angulate tortoises in the WCNP and on DI were 

0.31 and 0.16, respectively, and were lower than values reported for tortoises that 

are considered midway between specialist and generalist herbivores (0.497 for 

Stigmochelys pardalis, Mason et al. 1999; and 0.55 for Testudo horsfieldi, Lagarde et 

al. 2003). The PSI of C. angulata corresponded closer to that of Testudo graeca 

graeca (0.20), which was recorded in an arid and overgrazed zone in Morocco 

(Mouden et al. 2006). The result that C. angulata is a specialist feeder contradicts the 

perception of Boycott & Bourquin (2000) that these tortoises are generalist feeders 

just because they occupy a large variety of habitat types. 

 

Season had no effect on foraging niche breadth of angulate tortoises, indicating that 

the animals remained selective feeders even when the availability of food species in 

the habitat changed. The highly specialised feeding pattern of DI tortoises was 

probably due to the low diversity and ephemeral nature of the plants on the island. 

The ephemeral nature of plants resulted in high cover values for plant species during 

the wet seasons and lower values during the dry seasons. The most abundant plants 

on DI appear to be unpalatable and the tortoises had a restricted choice of palatable 

and nutritious plants. The greater diversity of food plants in the WCNP allowed more 

choice and can explain the higher PSI values for WCNP tortoises. 

 

6.5.3 Evaluation of the three methods to study diet 

Focal observations, macroscopic analysis and histological analysis had different 

levels of success in cataloguing the diet of angulate tortoises and their preferences 

for specific food items. In this study, the focal and macroscopic methods recorded 

substantially lower diversities of food items than the histological method did, but 

those two methods supplied other information that could not be gained by the 

histological method.  

 

Since angulate tortoises are relatively small animals, the height and density of 

vegetation, particularly in the WCNP, made it difficult to observe feeding tortoises 

without alarming them. Furthermore, the tortoises often fed under bushes or in thick 

grass patches, which compromised the identification of food plants and the plant 

parts consumed. Nevertheless, focal observation provided a wider diet list than was 

obtained by macroscopic scat analysis, and the focal method brought to light that 

rabbit faecal pellets made a substantial contribution to the diet of angulate tortoises 

on DI.  
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Macroscopic scat analysis provided useful data on the range and frequencies of plant 

parts used by angulate tortoises. Macroscopic analysis revealed that seeds formed 

an important dietary component of angulate tortoises, and that C. angulata may be 

an important agent of seed dispersal. Seed epidermi, for the majority of plant 

species, were difficult to identify in histological scat analysis and the latter method 

thus did not supply useful information on plant parts in the diet.  

 

The histological analysis of angulate tortoises’ scats provided the most extensive list 

of food plants consumed by the tortoises, which emphasised the inadequacies of the 

other two methods. The histological method may underestimate some food plants 

(e.g., soft plant material), and overestimate others (e.g., grasses), but the range of 

food plants identified made it possible to evaluate food preferences and aversions, 

and foraging niche breadth of angulate tortoises. 

 

6.5.4 Implications for the conservation of Chersina angulata 

The fact that C. angulata is a specialist feeder should be taken into account in the 

conservation of the species. The narrow foraging niche breadth of C. angulata may 

influence the survival of the tortoises if they have to compete with domestic ungulates 

or large, wild herbivores that may have the same food preferences. The restricted 

food choices of angulate tortoises on DI mean that great care should be taken when 

conserving C. angulata in this nature reserve. The continued availability of 

herbaceous plants would be critical to the survival of this population. 

 

The improved understanding of the foraging ecology of angulate tortoises will benefit 

animals reared in captivity, or as part of conservation programmes. Knowledge of the 

tortoises’ preference for specific food types can be used to supply captive bred 

animals with wider food choices. If this knowledge is combined with information on 

the nutrient content of preferred food plants, the tortoises can be provided the most 

nutritious plant species, which will help the tortoises to survive better in captivity, and 

increase their chances to reproduce successfully.    
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7 GENERAL CONCLUSIONS 

 

 

Scientific studies often advance understanding by elucidating detailed mechanisms that 

answer research questions, and by revealing knowledge gaps that provoke further 

scientific inquiry. My dissertation has advanced our understanding of Chersina 

angulata feeding ecology and has revealed nutritional ecology gaps plaguing our 

understanding of angulate tortoises and other ectothermic herbivores. Yet, we are far 

from a comprehensive understanding of the nutritional ecology of most organisms 

(Robbins 1993). 

 

Here I intend to elaborate on some of these gaps and concerns, and suggest future 

studies that may address these concerns. Also, by evaluating inherent physiological 

abilities of ectotherms, and distributions of flora and fauna, we may grasp better the 

elements critical to the feeding or nutritional ecology of angulate tortoises and other 

animals. Ultimately in this synthesis, I suggest, and hope we implement, ways to 

conserve angulate tortoises and their ecosystems. 

 

7.1 METHODOLOGICAL IMPROVEMENTS AND FUTURE STUDIES 

To understand feeding and nutritional ecology, we must do more than generate a list of 

food items for a species (Rall & Fairall 1993; Robbins 1993). However, it is much more 

difficult to quantify how selective animals feed, how much food they eat or require, and 

how animals balance intake of various, and varying, foodstuffs to meet nutrient 

requirements. To complicate matters, nutrient requirements may vary between sexes 

and among individuals, developmental stages, reproductive states, seasons, habitats 

and activity levels (Nagy 1987 & 2001; Robbins 1993). 

 

My dissertation demonstrates seasonal and habitat (by proxy of site) influences, and to 

a degree, individual variation (individual scats). However, these two sites represent 

only a small portion of the species’ range and habitat types (see Heterogeneity, below). 

We would benefit from similar detailed analyses in the Succulent Karoo and Thicket of 

the Eastern Cape. These are other C. angulata habitats, which have disparate plant 

species (food and refugial), physiognomies, climates and other ecosystem influences 

(e.g., predation). Desert tortoises (Gopherus agassizii) are also exposed to 

considerable variation in plant species and plant condition across the species’ range 

(Hansen et al. 1976, Nagy & Medica 1986; Esque 1994; Avery 1998; Henen 2002, 
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Oftedal 2002 and others). This variation will have important ecological, physiological 

and conservation implications.  

 

We may also enhance our understanding of C. angulata feeding or nutritional ecology 

by improving, and then applying, my current methods, and by using powerful methods, 

such as nutrient balance trials and isotope methods, to quantify food and nutritional 

requirements (Nagy & Medica 1986; Henen 1997; Oftedal et al. 2002). Integrating 

these methods in a well-designed, multifaceted study is necessary to provide a detailed 

and accurate evaluation. Each of the three methods I used has advantages and 

disadvantages. Some disadvantages may be overcome if all three methods are used 

simultaneously, especially if faeces can be collected from individuals monitored in focal 

observations. Attaching faecal collection bags (e.g., Avery et al. 1993) may help, but 

focal observations usually provide numerous opportunities to collect fresh samples 

from active tortoises (QI Joshua, pers. obs.). One caveat is that long, gut transit times 

in tortoises (e.g., 10 to 60 days, Meienberger et al. 1993; Nagy et al. 1998) would 

require matching faecal samples to prior days or weeks of focal observations. Sufficient 

observation hours, and sample sizes for faecal analyses, will improve quantitative 

estimates of the composition of the diet for each population. This would be an 

expensive and time intense venture. 

 

Additionally, the three methods can be improved to limit error. Error is reduced 

primarily by increasing methodological and statistical power. The speed, accuracy and 

precision of the histological method may be improved by using computer imaging 

software, having an extensive collection of reference slides (accounting for variation 

among species, morphological structures and phenological stages), using fresh scats 

(not preserved), and using gentle solutions when preparing soft epidermi (Vavra & 

Holechek 1980). Focal observations may be improved largely by increased sample size 

and sampling effort (Chapters 2 & 6), observing tortoises not influenced by monitors 

(habituated tortoises may facilitate accurate observations of foraging), and using 

observers extremely well trained in the local flora. Experts on the local flora would also 

increase the accuracy and speed of identifying species, plant parts and phenological 

stages of plants in the macroscopic faecal analyses.  

 

Additional studies - Controlled nutrient balance trials would reveal the importance of gut 

microflora to cellulose digestion, free-fatty acid metabolism, and vitamin and energy 

absorption (Robbins 1993). Such studies may indicate the motivation for coprophagy, 

and whether the dung of European rabbits (e.g, Dassen Island) is an adequate or 
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superlative substitute for the dung of the dassies that inhabited Dassen Island before 

Europeans altered the South African landscape. Similar trials may reveal whether 

ingested sand is incidental to foraging, supports mineral balance (Ayotte et al. 2006), 

aids abrasion and digestion of plant cell walls and fibre (Chapter 4), or helps eliminate 

gut parasites (Logiudice 2001; Evans 2002; Chapter 5). 

 

The results of nutrient balance trials are most useful within the context of the absolute 

food and nutrient requirements of free-ranging angulate tortoises. The food and nutrient 

requirements of free-ranging vertebrates and invertebrates have been quantified with 

various isotopic methods, with the doubly-labelled water method perhaps the most 

versatile and accurate technique for terrestrial vertebrates (Nagy 2001). Knowing these 

absolute requirements would also quantify how important gut microflora and sand 

ingestion are to free-ranging angulate tortoises at Dassen Island, the West Coast 

National Park, and sites where human influences are negligible. Doubly-labelled water 

studies have elucidated key metabolic advantages ectothermic vertebrates use to 

endure and succeed in harsh or limiting environments (Bennett & Nagy 1977; Nagy 

1983, 2001; Peterson 1996a&b; Henen 1997). These advantages may be instrumental 

to the success of tortoises and other ectothermic herbivores. Such advantages may 

help angulate tortoises in disturbed environments, or in conservation efforts requiring 

physiological exaptations and acclimation to new or changing environments.  

 

7.2 ECTOTHERM PHYSIOLOGY AND BEHAVIOUR 

The angulate tortoise has a wide distribution, and in some regions, has high population 

densities (Boycott & Bourquin 2000; MD Hofmeyr, unpublished data). Consequently, C. 

angulata appears to have adapted, or been adaptable (exapted), to endure and 

reproduce among a range of climates and environments, some of which are harsh and 

exemplify temporal and spatial heterogeneity of resources (e.g, the Succulent Karoo; 

Milton et al. 1997). This apparent success may be due, largely, to the angulate 

tortoise‘s ectothermic physiology, behaviour and activity levels (see Pough et al. 2004).  

 

Ectotherms may require only 3% of the energy that similarly sized endotherms use 

(Pough et al. 2004), enabling ectotherms to succeed in low productivity environments, 

and environments where food and water vary considerably in time and space. Low 

daily energy requirements are due to a) using external heat sources to maintain body 

temperature while active, b) reducing body temperature and metabolic rates at night 

when ambient temperature is low and basking is not possible, and c) reducing activity 
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(see Bennett & Nagy 1977 and Pough et al. 2004). Angulate tortoises bask (Keswick et 

al. 2006) like desert tortoises and many other reptiles, so they should conserve 

considerable energy in the costs of thermoregulation. Furthermore, under laboratory 

conditions, their heating rate exceeds their cooling rate, which should expedite heating 

while basking, and retard cooling when inactive or in refugia.  (Els 1989) 

 

The Q10 effect on ectotherm metabolism, where metabolic rates double approximately 

with 10 °C increases in body temperature (Schmidt-Nielsen 1997), may confer 

considerable energy savings to angulate tortoises. Except for opportunities for basking 

and associated cooling and heating lags, body temperatures of angulate tortoises 

should approximate ambient temperature. Consequently, metabolic costs should be 

reduced greatly at night when angulate tortoises are inactive in refugia (under 

vegetation), cool days without sunshine (e.g., foggy days on Dassen Island), or days 

when tortoises remain inactive within their refugia (Bennett & Nagy 1977; Pough et al. 

2004). Angulate tortoises in refugia with partial sunshine may have elevated body 

temperatures compared to those without partial exposure; these elevated temperatures 

might facilitate digestion without exposing tortoises to wind or predators (Keswick et al. 

2006). Conversely, partial exposure at night could cause body temperatures to drop 

due to radiative heat loss to the cold night sky. 

 

Angulate tortoises may also reduce metabolism, conserving reserves, by not being 

active every day. By remaining inactive in refugia for days (Nagy & Medica 1986), or 

even longer adverse periods (e.g., droughts), desert tortoises (Gopherus agassizii) can 

reduce field metabolic rates (i.e., daily energy expenditures) by 90% compared to 

similar seasons in favourable years (Henen 1997, Henen et al., 1998). Desert tortoises 

may be active every three days, on average, during the active season, and only 

aboveground 5% of the year; they brumate (winter dormancy) for about five months 

each year (Nagy & Medica 1986; Henen 1997). Angulate tortoises can be active at low 

ambient temperatures in winter and spring (Ramsay et al. 2002; Keswick et al. 2006). If 

their corresponding body temperatures are also low, the Q10 effect on metabolic rates 

may help them conserve energy. The same effect would apply to nighttime metabolism, 

when angulate tortoises reside in refugia, or even daytime metabolism on days 

angulate tortoises remain inactive within their refugia (Keswick et al. 2006). Remaining 

inactive may confer savings beyond Q10 effects, but empirical studies are necessary to 

quantify activity costs separate from temperature effects. If empirical studies 

demonstrate metabolic savings of ectothermy in C angulata, we may employ these 
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savings in conserving the species (e.g., reducing body temperatures and activity during 

translocation projects should reduce depletion of nutrient reserves). 

 

Ectothermy probably confers great physiological tolerance to angulate tortoises, as it 

appears to do for desert tortoises (Nagy & Medica 1986; Peterson 1996a, b; Henen 

1997, 2002). Desert tortoises are highly opportunistic in acquiring food and water to 

replenish and build body stores (water, lipids and protein), and very conservative with 

metabolism and reserves when environmental conditions are unfavourable. They are 

also extremely tolerant to dehydration and other changes in body condition (Nagy & 

Medica 1986; Peterson 1996a, b; Henen 1997, 2002). Their ability to relax or relinquish 

homeostasis enables them to endure extended droughts without food or water. As 

ectothermic herbivores, angulate tortoises probably share, to a degree, many of the 

physiological and behavioural traits facilitating survival and reproduction in desert 

tortoises. 

 

On a mass specific basis, ectotherms have lower metabolic requirements, and higher 

production efficiencies than endotherms (Pough et al. 2004). Of the energy they 

consume, ectotherms convert more into tissue (growth or reproduction) than 

endotherms convert. This is largely because ectotherms spend less energy maintaining 

their body temperatures for activity (Pough et al. 2004). One ecological consequence is 

that, compared to endotherms, ectotherms tend to require less food to produce the 

same mass or number of offspring. Some ectotherms can produce offspring in habitats 

that have low production levels (Louw & Seely 1982; Henen 1997; Pough et al. 2004).  

 

Herbivores often do well in low production habitats because the biomass of primary 

producers is higher than that of the primary consumers (see Louw & Seely 1982); there 

is potentially more food available (biomass) to herbivores than to carnivores. Since 

tortoises are not as mobile as most birds and mammals, particularly migratory species, 

they must cope with local vagaries (temporal and spatial) and their consequences on 

nutrient availability. Desert tortoises deal with such vagaries by relaxing homeostasis 

(tolerating large nutrient imbalances), decoupling nutrient balances (e.g, water, 

electrolyte, protein and lipids; Nagy & Medica 1986; Peterson 1996a; Henen 1997), 

reducing nutrient losses, and judiciously allocating resources towards maintenance or 

reproduction (Henen 1997). The desert tortoise might be, to a degree, an ecological 

equivalent of angulate tortoises. It would be worthwhile to know to what extent angulate 

tortoises share the same physiological abilities and life history traits exhibited by 

Gopherus agassizii. 
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7.3 HETEROGENEITY AND SELECTIVITY INFLUENCES IN FEEDING ECOLOGY 

Angulate tortoises may have the greatest number of individuals and, one of the widest 

distributions of southern African tortoise species (Boycott & Bourquin 2000). What is 

the basis of the angulate tortoise’s successful inhabitation of the wide range of habitats 

in the Cape Floristic Kingdom (CFR) and Succulent Karoo (SK)? The climate of the 

CFR is moderated somewhat by coastal climate influences, yet there is considerable 

variation (spatial) in rainfall levels and predictability from the Western Cape to the 

Eastern Cape (Schulze 1997; Hofmeyr et al. 2005). Inland or continental climate 

influences also impose strong seasonal variation on rainfall and temperature regimes in 

the Succulent Karoo where angulate tortoises are also found (Schulze 1997). 

Ectothermy, herbivory (see above), and a nearly aseasonal or continuous reproductive 

pattern (Hofmeyr 2004), are probably essential to the survival and reproductive 

success of angulate tortoises in such disparate environments. 

 

How important is feeding ecology to the species’ success in these habitats? On the 

surface, data from captive tortoises, plus the extremely broad range, suggest that 

angulate tortoises may succeed by being dietary generalists (Boycott & Bourquin 

2000). However, my data (Chapter 6) indicate that C. angulata at Dassen Island and 

the West Coast National Park were dietary specialists, and specialised more than 

Horsfield’s tortoises (Lagarde et al. 2003) and leopard tortoises (Mason et al. 1999), 

the latter sympatric with C. angulata in parts of the species’ distributions. Data from my 

study are not inconsistent with data across the species’ range, if we consider scale of 

analysis. Angulate tortoises may specialise on plant species within a region, but each 

region or habitat has distinct flora, often with little overlap with other habitats. In fact, 

diets differed between DI and WCNP, probably due to little overlap in flora at the two 

sites (Chapter 2). Literature for desert tortoises (Gopherus agassizii), which inhabit a 

wide range and disparate habitats among the Colorado, Mojave, Sinaloan and Sonoran 

Deserts, also indicate specialisation on a few species of the local flora (Hansen et al. 

1976, Nagy & Medica 1986; Esque 1994; Avery 1998; Henen 2002, Oftedal 2002), with 

little dietary overlap among sites. The same pattern may apply to Horsfield’s tortoise 

and other species with wide distributions.  

 

We need to evaluate degree of dietary specialisation of angulate tortoises in other 

portions of its range, such as in Namaqualand, the Karoo and in the Eastern Cape 

(e.g., Thicket). Furthermore, reverse transplant and common garden experiments may 
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indicate whether dietary specialisation has genetic components, including behavioural 

tendencies of food choice, and physiological or digestive tolerances to certain plants. 

Such studies may also provide information important to understanding the evolution of 

lineages within C. angulata (Daniels et al. 2007). Furthermore, our species lists, faecal 

analyses and proportional similarity indices provide some information about feeding 

ecology. We must also understand the biomechanical constraints (Balsamo et al. 

2004), and nutritional consequences (Meienberger et al. 1993; Nagy et al. 1998; 

Oftedal 2002, Oftedal et al. 2002; Henen et al. 2005), affecting dietary specialisation. 

 

Understanding the digestive physiology and physiological tolerance of C. angulata may 

be useful in addressing whether dietary specialisation is either inherent to a population, 

or a behavioural and physiological exaptation of tortoises. There are very few distinct or 

unique dietary requirements among vertebrates, at least at the level of cellular 

physiology (Oftedal 2002). Nutritional distinctions (adaptations?) among chelonian 

species may occur at tissue or whole-animal levels of organisation (e.g., the 

importance of the urinary bladder to osmoregulation; Dantzler & Schmidt-Nielsen 

1966), and be related mostly to a matter of degree (e.g., the hydration and dehydration 

tolerance of Gopherus agassizii) or scale (e.g., degree of fermentation possible by 

large or small species). Whether dietary specialisation has a genetic basis may be 

important for designing conservation action plans. 

 

Although angulate tortoises were dietary specialists within each season, their diets, 

particularly the principle dietary items at the WCNP, changed among seasons. This 

suggests that angulate tortoises may adapt their diet to nutritional needs, food 

availability, or both. Desert tortoises opportunistically forage on different foodstuffs, 

e.g., different species, plant parts or phenological stages of species, in different 

seasons (Nagy & Medica 1986; Henen 1997, 2002; Oftedal 2002). At least part of 

these shifts have benefits for nutrient balances, although the prime nutritional benefits 

may vary among seasons or years (e.g., for growth or building protein or lipid reserves; 

Nagy & Medica 1986; Henen 1997). If angulate tortoises have physiological abilities 

similar to G. agassizii, C. angulata may capitalise upon food availability changes 

among seasons. Likewise, angulate tortoises may limit food choices, activity and food 

consumption during drier periods (see Henen 1997, 2002) to minimise use of nutrients 

or nutrient reserves. 

 

Dassen Island tortoises represent an intriguing population. Although human influences 

have greatly altered Dassen Island’s flora and fauna, the population densities represent 
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one of the highest population densities of any tortoise species (MD Hofmeyr, 

unpublished data). This density may be due, in part, to a lack of non-avian predators 

and a relatively mild climate with substantial fogs that provide tortoises with water (MD 

Hofmeyr, unpublished data). Relative to nearby mainland populations, Dassen Island 

has a depauperate flora (Hurford 1996), and the tortoises subsist on only some of the 

plants available. Still, angulate tortoises were very common at Dassen Island. Dassen 

Island tortoises may be useful for transplant or common garden experiments (see 

above), the results of which may be important to conservation action plans anticipating 

regional aridification (Rutherford et al. 1999). 

 

7.4 CONSERVATION OF ANGULATE TORTOISES  

Because angulate tortoises are relatively numerous in South Africa, they are not on the 

IUCN’s Red List (IUCN 2007). Yet, South Africa restricts trade of angulate tortoises, or 

any of its tortoises. Nonetheless, angulate tortoises are poached for the international 

pet trade (BT Henen, MD Hofmeyr & EHW Baard, unpublished manuscript; EHW 

Baard, pers. comm.), sometimes by the hundreds. These numbers are likely small in 

comparison to the thousands of road kills that must occur annually in South Africa (MD 

Hofmeyr & BT Henen, pers. comm.). Both of these numbers may pale in comparison to 

those killed or displaced by destruction of habitat for housing and agriculture, and due 

to altered fire regimes (Knight 1991; Baard & de Villiers 2000). In the WCNP in 2000, 

more than 200,000 angulate tortoises were killed in one fire that lasted only a couple of 

days (M.D. Hofmeyr & E.H.W. Baard, unpublished data). Consequently, altered fire 

regimes (Baard & de Villiers 2000) may be responsibly for inordinately high mortality 

rates, from direct fire-killed tortoises and eggs (in nests), severely burned- or smoke-

damaged tortoises, destroyed refugia and food sources, and subsequently altered 

reproductive cycles and recruitment rates for surviving populations. Fires are natural to 

the CFR, but their frequency may be unnatural (Baard & de Villiers 2000). Impending 

climate change may also aridify substantial parts of the Succulent Karoo and CFR 

(Rutherford et al. 1999, and Chapter One), perhaps limiting the tortoise food and 

refugial plants throughout most of the current range of angulate tortoises. 

 

Since the long-term future is uncertain for South Africa’s tortoises, it is critical that we 

act now to minimise these impacts. Developing assurance colonies and evolutionary 

corridors, plus developing translocation projects, may be the most effective means of 

protecting individual and genetic diversity of angulate tortoises. Assurance colonies are 

essentially captive populations of tortoises that hold sufficient numbers of tortoises to 
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retain the genetic integrity and diversity represented in wild populations. This may 

require several colonies to represent the different regions and clades of angulate 

tortoises (Daniels et al. 2007). If large fires or other disasters occur, natural or 

manmade, these colonies can be used to help repopulate wild areas. They will also 

facilitate in translocating tortoises, helping develop and support husbandry techniques 

while transporting tortoises to areas where C. angulata has been extirpated, and in 

areas reclaimed for restoring tortoise populations. 

 

Landscape-scale management is necessary if we are to manage the effects of human 

population growth and associated infrastructure and agriculture projects. Corridors 

should help maintain connection among isolated or highly fragmented populations. 

Angulate tortoises, like most tortoises, do not move extreme distances (Branch 1984), 

so corridors would serve on an evolutionary scale, helping maintain gene flow among 

regions. For these corridors, it would be critical to maintain the integrity of the 

ecosystem structure and dynamics for angulate tortoises. This would include 

maintaining the large diversity of food and refuge plants for C. angulata.  

 

My dissertation identifies principle and preferred food items necessary to support C. 

angulata populations in the southwestern Cape, and documents the relative abundance 

of food and non-food plants that help characterise suitable habitat. Such information 

may be useful for managing plant species diversity and abundance, and the overall 

physiognomy of C. angulata habitat. Similar data should be collected, as soon as 

possible, for other populations of angulate tortoises, especially different habitats along 

the southern Coast, in the Eastern Cape (Thicket), up the West Coast of South Africa 

(e.g., Namaqualand), and the Little Karoo. Such information would be useful for 

maintaining plant diversity for specific populations, and for identifying possible 

substitute habitats for translocated tortoises, suitable avenues for corridors, and locales 

where head-start programs and assurance colonies can be developed. 

 

Dietary specialists - If we find that the dietary specialisation of angulate tortoises is 

genetically determined, then we will need to cultivate dietary species for each 

population. However, there is no evidence of this specialisation, and many pet C. 

angulata survive and reproduce on a variety of non-native plants. Consequently, there 

may be great opportunities to apply translocation, assurance colony and corridor 

programs to conserve angulate tortoises.  
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Angulate tortoises may be able to learn to eat novel plant species that the tortoises 

might encounter at translocation sites, sites recovering from fires, revegetation sites, or 

in corridors. Similarly, offspring that hatch or mature in new locations may quickly learn 

to eat the local flora; this could be important for translocation and assurance colony 

projects. In such situations, supplementing the local flora with additional, nutritious 

plants, should facilitate survival and growth of the tortoises, and may reduce dispersal 

movements in attempt to find food. Dispersal may expose tortoises to anthropogenic or 

natural hazards as individuals explore a new area. Thus, it is important to know the 

best types of plants to provide, and ensure that the habitat has them. 

 

Many tortoises eat grasses (desert tortoises, leopard tortoises, C. angulata, P 

geometricus, T. horsfieldi) and annual herbs (this study; Nagy & Medica 1986; Milton 

1992; Rall & Fairall 1993; Esque 1993, Henen 2002; Lagarde et al. 2003; Henen et al. 

2005). These plant types can be important sources of water, energy, electrolytes and 

protein (Nagy & Medica 1986; Oftedal 2002; Henen et al. 2005). In fact, the ratio of 

water and protein to potassium may be a major influence on food choice in tortoises 

(see Oftedal 2002; Oftedal et al. 2002). This is probably related to the ability to excrete 

excess potassium, if the diet has sufficient water and protein, or if the animal is well 

hydrated. This selectivity is not known for C. angulata. Additionally, the concentration of 

soluble carbohydrates and phosphorus in plants may influence tortoise food choice 

(Henen et al. 2005).  

 

Consequently, knowing the nutritive value of plants is important. We need to know the 

nutrient content and digestibility of foods. Furthermore, knowing the biomechanical 

properties of potential food items may influence whether they should be fostered as 

food sources for angulate tortoises (Balsamo et al. 2004). Another complication is 

whether to substitute new, potentially invasive, species. Although some evidence 

indicates that exotic species, under controlled conditions (Nagy et al. 1998), may be as 

nutritious as native food species, it is not known whether the same applies in the wild. 

Furthermore, invasive exotics can have detrimental effects on the ecosystem’s species 

diversity, species composition, and fire regime (Brooks 1999). 

 

Ecosystem processes, disturbance and subsidies - Protecting ecosystem processes 

may effectively manage suitable food species for angulate tortoises. Fire is inherent to 

Fynbos (Cowling et al. 1997), where C. angulata can be common. Fire may remove 

overgrowth and may open areas for the growth of annual plant species. These annuals 

and open spaces may benefit angulate tortoises while serving part of the natural 
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ecosystem. If natural fire regimes can be maintained, without disrupting normal plant 

and animal function, then allowing natural fires may be the most efficient way to 

maintain food plants and habitat for angulate tortoises. At the same time, this process 

should provide for more than just one species. 

 

Disturbance due to fire or other natural processes may be complemented, in some 

circumstances, with anthropogenic disturbances. Disturbances at Dassen Island and 

the West Coast National Park seem to promote ‘weedy’ species at these sites (Chapter 

2; Dean & Milton 1991, Yeaton et al. 1993). If these weedy species can support 

angulate tortoises, as at Dassen Island, they may serve at least a temporary 

conservation function. They may substitute for fire disturbance, and may generate 

quality forage for angulate tortoises in translocation and corridor projects. Nonetheless, 

we must protect natural environments from invasive exotics that alter the ecosystem 

and fail conservation programs. 

 

Symbiotic functions should also be considered, or investigated, for translocation and 

corridor projects. Angulate tortoises may distribute seeds via their faeces. Thus, faeces 

from source populations might help generate suitable flora at destinations of 

translocated animals, or along corridors. In addition, if coprophagy is important to 

inoculate gut microflora, then transporting faeces may help tortoises inoculate their gut 

flora and aid digestion at translocation sites. 

 

Finally, ‘subsidies’ to predators on angulate tortoises, such as pied crows or ravens, 

should be minimised or eliminated. Humans provide numerous food and water 

resources or ‘subsidies’ to predators (e.g., pied crows or ravens; Boarman 2003). 

These resources, such as open landfills, refuse bins, littered motorways, excessively 

irrigated lawns and agricultural fields, support the survival, growth and reproduction of 

predator populations, increasing predation upon tortoises. Many juvenile angulate 

tortoises are killed at roosts, fence posts or other manmade structures or clearings 

(M.D. Hofmeyr & B.T. Henen, unpublished observations) in the West Coast National 

Park. Similar subsidies cause unusually high densities of common ravens (Corvus 

corax) and desert tortoise mortalities in the Mojave Desert (Boarman 2003). 

Conservation efforts for angulate and desert tortoises are likely to fail without 

controlling populations of subsidised predators. 
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8 APPENDIX 1: EPIDERMAL CHARACTERS OF PLANTS 

 

 

8.1 ABSTRACT 

The epidermal and cuticular characters of 18 monocotyledonous and 63 

dicotyledonous plants were examined to identify informative characters that group 

these plants into taxonomic units or plant types, and to construct identification keys for 

these plants. The epidermal cells of monocots had a parallel arrangement whereas the 

epidermal cells of dicots did not have a systematically structured appearance. Both 

groups, however, contained exceptions, and additional characters were required to 

reliably separate the monocots from the dicots. Important characters that aided in 

separating taxonomic units included the shape of the anticlinal wall, the type of 

periclinal surface, the shape of stomata, the type and number of cells surrounding the 

stoma, and the different types of trichomes. Monocots in general had a smooth cuticle, 

paracytic stomata and no glandular trichomes. The Poaceae were characterised by 

costal / intercostal zones, sinuous anticlinal walls, dumb-bell shaped stomatal guard 

cells, and prickle hairs. Many dicot species had cuticle striations, and dicots generally 

had anomocytic stomatal complexes. Eighteen different trichome shapes were 

distinguished for the dicots but a simple trichome shape occurred most frequently. Key 

characters of the succulents included the absence of trichomes, thick stomatal walls, 

and the absence of cuticular striations. A good character to distinguish between herbs 

and shrubs was the relatively small stomatal length-to-width ratios of shrubs. 

Herbaceous plants were characterised by the presence of anomocytic stomatal 

complexes, sinuous anticlinal walls, and glandular trichomes. Two separate epidermal 

keys were constructed, one for the Monocotyledoneae and one for the Dicotyledoneae. 
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8.2 INTRODUCTION 

Plant taxonomy not only allows for the cataloguing of plants but also aids in 

determining the evolutionary and genetic interrelationships of plants. Macroscopic plant 

features have been utilised extensively in plant taxonomy (Stace 1965). When 

identifying plants from stored leaf material, taxonomists often use characters such as 

the shape of the leaf lamina, venation patterns, petiole features, and the shape of the 

leaf base and apex (Leaf Architecture Working Group 1999; Singh 2004). Relative to 

the macroscopic studies of plant leaves, microscopic studies of leaf epidermi have only 

recently gained importance as an alternative method to identify plants (Stace 1965). 

Plant taxonomists use a number of characters to identify leaf epidermi; the most 

important characters include the cell shape, stomatal complex type, and the trichome 

structure and distribution (Stace 1965; Mauseth 1988; Stenglein et al. 2003; Singh 

2004). 

  

Both macroscopic and microscopic techniques have their merits and shortcomings. 

Macroscopic studies do not require specialised equipment and it is easy to identify 

most plant features with a hand lens. However, identification keys based on 

macroscopic features often require additional characters from sources such as flowers 

and fruit, which are available only at certain times of the year (Jarvie & Stevens 1998). 

Microscopic studies, in contrast, require the use of specialised equipment, but leaf 

material for the analysis is generally available throughout the year. 

 

In microscopic studies, the arrangement of epidermal cells on the leaves helps 

distinguish the monocotyledons from the dicotyledons. The epidermal cells of 

monocotyledons are often elongated and arranged in parallel rows along the parallel 

veins (Ellis 1979; Mauseth 1988). In some monocotyledons, the cells overlying the 

parallel veins, the costal cells, differ substantially from the epidermal cells between the 

veins so that distinct costal and intercostal zones can be distinguished (Ellis 1979; Fig. 

7.1; see Glossary). These zones emphasize the structured appearance of 

monocotyledonous epidermi. Dicotyledonous plants, in contrast, do not have such an 

ordered appearance. Dicots generally have reticulate veins with a random distribution 

of the trichomes and stomata over the epidermis, and modified cells along the margins 

of the leaf (Dunn et al. 1965; Stace 1965; Croxdale 2000). In some dicot species, 

cuticle striations may be confined to the cells overlying the veins (Stace 1965; Mauseth 

1988). 
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The ordinary epidermal cells have a variety of shapes, which include round to 

rectangular cells, or the cell outline can be irregular. Poaceae can have long cells that 

alternate with short cells; the short cells often have distinct taxonomic characters and 

can differentiate into silica cells and cork cells (Mauseth 1988). The silica bodies inside 

silica cells can be useful taxonomic characteristics of grasses, but may occur also in 

other monocotyledons (Ellis 1979; Mauseth 1988). The shape of the anticlinal walls is 

often responsible for the overall appearance of epidermal cells in surface view. The 

anticlinal walls show a variety of shapes such as straight (Fig. 7.2), curved, undulate 

and sinuous (Fig. 7.1). Undulate anticlinal walls have only one peak and trough per wall 

whereas sinuous anticlinal walls have a number of peaks and troughs per cell wall 

(Christophel et al. 1996). The external environment is known to influence the shape of 

a plant’s anticlinal walls (Stenglein et al. 2003). Increased salt stress in the external 

environment, for example, is known to increase the waviness, or number of 

undulations, on anticlinal walls (Curtis & Lauchli 1987). 

  

The cuticle covers the periclinal walls (Fig. 7.2) of epidermal cells. In some instances, 

the cuticle has complex patterns (striations or wrinkles), which may be limited to the 

surface of a single cell, or may extend over several epidermal cells (Stace 1965). The 

periclinal walls of epidermal cells can be smooth and featureless, or the cells may have 

ridges, or bear projections, the trichomes (Stace 1965; Singh 2004). Trichomes are 

hair-like structures, with an epidermal origin, that project markedly from the periclinal 

surface (Mauseth 1988). These projections can consist of a single cell or a number of 

cells, which can be branched or unbranched (Mauseth 1988; Singh 2004). Trichomes 

are classified as glandular when they secrete a substance such as water, salt, 

mucilage, adhesives or irritants (e.g., in Urtica urens). Non-glandular trichomes lack a 

secretory function (Mauseth 1988). Trichomes can have a variety of shapes and 

appear as spines, thorns, prickles, hairs, warts, papillae and emergences (Mauseth 

1988; Singh 2004; Figs. 7.1 & 7.2). The type, shape and distribution of trichomes have 

been used successfully in plant taxonomy, e.g., to distinguish the different taxa in the 

genus Solanum (Edmonds 1982) and to distinguish among genera in the family 

Combretaceae (Singh 2004). In the Poaceae, prickles are usually associated with 

costal cells, whereas intercostal cells may have hooks, papillae, and or macro hairs. 

The presence of papillae is especially useful for distinguishing monocotyledonous 

species (Pridgeon 1982). Many plants contain a single type of trichome, but a single 

plant leaf may also possess a variety of trichome types (Stace 1965; Larkin et al. 

1997). 
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The stomatal pores open on the surface of the epidermis and two guard cells surround 

each pore (Fig. 7.2). The structure formed by the two guard cells and stomatal pore is 

called a stoma (plural = stomata; Stace 1965; Mauseth 1988; Salisbury & Ross 1992). 

Two basic types of guard cells are distinguished: dumb-bell shaped guard cells occur in 

grasses (Fig. 7.1) and sedges while other plant groups have crescent-shaped guard 

cells (Mauseth 1988). Epidermal cells surrounding the guard cells can be 

unspecialised, with no distinguishing characters from the surrounding epidermal cells 

(Stace 1965; Mauseth 1988). Modified epidermal cells adjacent to the guard cells are 

called subsidiary cells (Fig. 7.2; Salisbury & Ross 1992). The stoma and surrounding 

epidermal cells are collectively called the stomatal complex (Stace 1965; Mauseth 

1988). Many different stomatal complexes have been described (see Glossary). An 

anomocytic stomatal complex has no obvious subsidiary cells whereas other 

complexes are categorised by the number and arrangement of subsidiary cells. For 

example, in the paracytic complex one or more subsidiary cell is aligned parallel with a 

guard cell (Fig. 7.2; Stace 1965; Salisbury & Ross 1992; Singh 2004).  

 

The stomata often have a random distribution over the leaf surface but in some 

instances, they form clusters, or are aligned parallel with the pattern of the epidermal 

cells (Mauseth 1988). In many plants, the stomata are more numerous on the abaxial 

than on the adaxial surfaces of leaves, requiring an evaluation of both surfaces. A 

certain stomatal complex type may be typical for a plant taxon, but several plant 

families have more than one stomatal complex type (Metcalf & Chalk 1957; Gopal & 

Shah 1970). 
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Figure 8.1  Epidermal characters of the Poaceae. 

 

 

 

 

Figure 8.2  Epidermal characters on a hypothetical leaf epidermis.  
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The epidermal characteristics of plants can be used in a variety of ways. The most 

obvious being plant identification, taxonomic research and phylogenetic investigations 

(Stace 1965; Yukawa et al. 1992). Paleobotanists utilize epidermal characters, such as 

the structure of anticlinal walls (Krings & Kerp 1998), to classify the remains of 

prehistoric plants. They also study the cuticle impressions left behind on sandstone 

(Stace 1965; Guignard et al. 2004) or the fossilized remains of plants (Stace 1965). 

The classification of plant material based on cuticle and epidermal characters can also 

serve as a valuable tool in the study of peat stratigraphy, pharmacognostical analyses, 

and animal diet research (Stace 1965; Stace 1989). 

  

Microscopic techniques can be used to identify food plants from the epidermal 

fragments in animal scats. It is relatively easy to collect scat samples from large 

numbers of animals, at different times of the year, and at different sites. Scat analysis 

thus offers a way to gain a comprehensive record of the diet plants used by a particular 

animal. When the diet study is combined with a record of plant species availability, 

ecologists can determine which plants are selected, avoided, or form the principal food 

items during different times of the year. This knowledge can help managers identify 

habitats that should be given a high priority when determining suitable areas for 

conservation.  

 

Despite the advantages of using histology in animal diet research, few studies used 

this technique (Stewart 1967; Holechek et al. 1982; Loehr 2002; Mouden et al. 2006). 

One important reason is that the sheer number of epidermal characters available for 

identification can overwhelm researchers with no botanical background (Jarvie & 

Stevens 1998). If identification keys of the epidermal characters of plant taxa in South 

Africa become readily available, more scientists will be able to evaluate the food 

requirements of the rich herbivore fauna in this country. In this thesis, I evaluated the 

feeding ecology of angulate tortoises at two study sites in the southwestern Cape. The 

aims of this particular chapter are to:  

(a) Identify epidermal characters that are reliable and easy to use when identifying 

a range of plant taxa in the southwestern Cape 

(b) Compare epidermal characters of species within the same genus to determine 

characters common to that genus 

(c) Determine if epidermi of different plant types show trends for specific characters 

(d) Use the epidermal characters analysed to construct identification keys that can 

assist future users with plant identification. 
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8.3 MATERIALS AND METHODS 

8.3.1 Study site and sampling 

Most plant samples were collected between January 1999 and February 2000 in the 

West Coast National Park (WCNP) and Dassen Island (DI). Some plant material was 

lost during a power failure and I collected additional reference material during 2003 and 

2004. Leaf material was collected from mature perennial and annual plants. Upon 

collection, samples were sealed in plastic bags, clearly marked, and refrigerated (ca. 5 

°C) for short-term storage, or frozen (-20 °C) for long-term storage. A plant taxonomist 

at the University of the Western Cape identified the unknown plants. 

 

I collected a variety of herbs, shrubs and grasses in the WCNP. Dassen Island is a 

highly disturbed habitat composed mainly of ephemeral weeds (Hurford 1996). This 

restricted the time when certain plants could be collected for epidermal analysis. From 

DI, I collected a variety of annual plants and three perennial plants, Tetragonia 

fruticosa, Trachyandra divaricata and Myoporum serratum.  

 

8.3.2 Epidermal preparation 

In general, I prepared epidermi from the abaxial and adaxial sides of leaves except for 

certain delicate plants where I could remove the epidermis from only one side. To 

distinguish between the abaxial and adaxial epidermi, I marked the surface of the leaf 

with a permanent marker before processing the leaf. For a few species, the ink flaked 

off and thus it is not known if the histology was determined from the abaxial or adaxial 

surfaces of these species. Epidermal fragments were taken midway between the apex 

and base of the leaf, and the fragments included the central portion and margins of the 

leaf. The leaf margins of some species have epidermal characters that can help identify 

the species and are thus important in plant epidermal taxonomy (Stace 1965). 

Including the leaf margins also facilitated the removal of the epidermis from the 

underlying parenchyma. 

 

I used the epidermal scraping method outlined in Metcalfe (1960) and Zuloaga et al. 

(1993) to prepare epidermal samples. Before scraping the epidermis from the leaf, the 

leaf fragments were placed in a petri dish and floated in a weak solution of domestic 

bleach and water (3.5% m/v sodium hypochlorite - NaOCl). Domestic bleach acts as a 

softening agent and lubricant when scraping unwanted plant material from the 

epidermis. The leaf fragments were removed from the bleach solution when the 

epidermis started to separate from the underlying parenchymatous tissue. This process 
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required approximately 15 minutes for delicate plants (e.g., Senecio elegans) and 

between 15 and 30 minutes for tougher plants (e.g., Chrysanthemoides monilifera).  

 

The softened plant fragments were placed in a petri dish with distilled water and 

inspected under a dissecting microscope. Any parenchymatous material adhering to 

the abaxial or adaxial epidermi was scraped away with a flexible needle, and 

subsequently with a camel hairbrush, if necessary (Metcalfe 1960). The ease of 

removing parenchymatous tissue from plant epidermi varied from species to species. 

Epidermi prepared from shrubs were easier to make than epidermi from herbaceous 

material. When all the parenchymatous material was removed, the epidermis was 

washed in water and preserved. All epidermal preparations were preserved in 

individual vials containing FAA (formaldehyde : glacial acetic acid : 70% ethanol, in the 

proportion 0.5 : 0.5 : 9.0) and subsequently mounted on glass microscope slides using 

Haupt’s adhesive (1 g gelatine + 100 ml distilled water + 2 g phenol crystals + 15 ml 

glycerol). 

 

The plant epidermi were stained for 24 to 48 hours in safranin epidermal stain solution 

(4 g safranin + 22 ml methyl cellosove + 100 ml 95% alcohol + 100 ml distilled water + 

4 g sodium acetate + 8 ml formaldehyde), and subsequently rinsed (once or twice) with 

distilled water (formula for stain modified from Metcalfe & Chalk 1983). I used a light 

microscope to examine the epidermi for correct staining. Shrubs, grasses, restioids and 

succulents stained more strongly than did soft herbs, which often under-stained. Over-

stained epidermi were discarded if the excess stain could not be leached out of the 

epidermis. The epidermi that were salvaged by leaching-out excess stain were 

restained. When herbaceous epidermi could not be stained in the normal manner, I 

floated the epidermal fragment directly on a drop of the safranin stain. This procedure 

dramatically improved the chance that soft herbaceous epidermi stained properly. 

 

After staining, the plant epidermi were placed through successive concentrations of 

ethanol (70%, 90% and absolute ethanol) to desiccate the plant epidermis. The 

duration of each dehydration stage could vary from a few minutes to one hour, 

depending on the type of plant. The ethanol leached the stain within minutes from 

herbaceous material, so the thin-walled epidermi of herbaceous leaves were left for 

only a few minutes in each dehydration stage. Preparations from plants with relatively 

thick epidermi could be left in the dehydration solution for up to one hour with no visible 

change in the stain intensity. 
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The alcohol used in the dehydration process is not miscible with the mountant. Xylene 

is miscible with the mountant and the epidermal samples remained overnight in 100% 

Xylene to be cleared. The cleared slides were permanently mounted with two drops of 

DPX mountant and the slides were subsequently air-dried for seven days before being 

used. 

 

8.3.3 Microscopic analysis 

Stained epidermal preparations were examined with an Olympus CX40RF200 light 

microscope at 400x magnification in order to distinguish the cuticle and epidermal 

characters. For each epidermis I recorded the arrangement of the epidermal cells, the 

shape of the anticlinal walls, the structure of the cuticle and periclinal walls, stomatal 

shape and stomatal complex type, and the type and shape of the trichomes. The 

shapes of trichomes were determined visually and terminologies used to distinguish 

between shapes were based on Payne (1978). Where no suitable term existed to 

classify a trichome’s shape, a new term was created (e.g., flame or rod shaped).   

 

For each dicotyledonous plant species, I measured the length and width (microns) of 

15 stomata on the abaxial and adaxial surfaces, when both surfaces were available. 

The objective was to ascertain if stoma size could aid in the construction of a plant 

identification key of the dicots. Stomatal shapes were classified according to their 

length-to-width ratios. These measurements were recorded from a single specimen 

and thus do not represent the range of the population. For these measurements, I used 

an Olympus CX40RF200 light microscope (400x magnification) equipped with a 

calibrated ocular.  

 

When all characters were recorded, I took digital pictures of the abaxial and adaxial 

surfaces. The epidermi were photographed on a Leica DMLS compound microscope 

with an attached video camera system. This system malfunctioned however, 

whereafter I used an Olympus BX50 compound microscope with an attached Olympus 

DP11 digital camera to photograph the remaining epidermi. Images were recorded and 

converted to a digital format with Leica Lida Imaging software (version 1.50). 

 

In some instances, the surface view of the epidermi did not provide a clear, three-

dimensional view of the trichomes and stomata. When focussing could not provide 

sufficient depth, it was difficult to distinguish short trichomes (unicellular and 

multicellular) from the surrounding cells. If the neck cells of the trichome could not be 

seen, it was difficult to determine if the trichome was glandular or non-glandular. Short, 
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glandular trichomes can be unicellular or multicellular, but often this feature could not 

be determined from the surface view. Stomata can be level with the epidermal surface 

or sunken, as in xerophytic plants (Stace 1965). It was not always clear if stomata were 

sunken when focussing did not provide sufficient depth of view. Improper staining of 

the epidermi aggravated this problem and prevented the identification of some stomatal 

complexes. 

 

The abaxial surface of Atriplex semibaccata and Salvia africana-lutea stained 

incorrectly and I could only record stomata measurements on these slides. Observing 

epidermal characters for Salvia africana-lutea was particularly difficult as the sheer 

numbers of trichomes present obscured the unspecialised epidermal cells underneath. 

The process of dehydrating the epidermi also influenced the shape of trichomes for 

Salvia africana-lutea. Trichomes appeared to be squashed in ways associated with 

dehydration. In such instances, trichomes were indicated as present only, if no other 

characters could be distinguished. 

 

8.3.4 Data analysis and the construction of identification keys 

The quantitative stomata data (length and width) were summarized as means and 

ranges for each species. To develop an objective estimate of stoma shape, I calculated 

the length-to-width ratio for each individual stoma and presented the ratios as means. 

Using length-to-width ratios of the guard cells, I identified four stomatal shapes among 

the dicotyledonous plants. The shapes were round, round to elliptical, elliptical, and 

rectangular. Round-shaped stomata had length-to-width ratios between 0.99 and 1.14. 

Round-to-elliptical stomata had ratios of 1.15 to 1.24 compared with elliptical stomata 

that had ratios between 1.26 and 1.44. Rectangular-shaped stomata had length-to-

width ratios of 1.46 to 1.93. 

 

The taxonomic software program DELTA (version 1.04) was used to develop an 

identification key based on the microscopic characters of the plants. After finding very 

low resolution in the key, I developed two separate keys based on the two major plant 

groups, the Monocotyledoneae and the Dicotyledoneae. I used the venation pattern of 

these groups to classify each plant species into either group. The epidermal and cuticle 

characters of the groups were then used to develop two separate keys, to the genus 

level, in the program DELTA. 

  

Before DELTA constructs an identification key, the program first determines which 

character is the most informative. As a first step, DELTA eliminates all characters that 
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are present in only a single taxon. The remaining characters are then evaluated using a 

comparison function and the most informative character (with the lowest value) is used 

to divide the dataset into a number of subsets (Dallwitz et al. 2000). The remaining 

characters are used to further divide the subsets. This process is continued until either 

no suitable character is left or each subset only contains one taxon (Dallwitz et al. 

2000). 

 

The dataset for the monocots included 14 characters (Table 7.1) but the DELTA 

program used only 13 characters to construct the epidermal key for the 

Monocotyledoneae. The original dataset for dicots included 15 characters (Table 7.1), 

but the key based on these characters was not satisfactory because some plant 

species occurred more than once in the key. After determining which characters were 

problematic, I excluded five characters from the dataset, and in the final analysis, 

DELTA used the remaining 10 characters to construct a key for the Dicotyledoneae. 

The characters included were those that represented the most complete data set, i.e., 

those characters that were present for most of the plant species. The DELTA program 

did not respond well to gaps in data and, in some instances where a character could 

not be placed in a specific category and was simply recorded as present, I had to 

manipulate the key manually. Additionally, plant species belonging to the same genus 

but appearing in distant positions on the identification key were manually moved closer 

together to aid the grouping of genera belonging to the same family. 

 

For various reasons, I cannot provide detailed epidermal descriptions of all the plants 

that were identified in the histological scat evaluation (Chapter 5). For example, the 

epidermi of Hebenstreitia repens and Pelargonium myrrhifolium consistently under-

stained, despite several attempts, and although it was possible to identify epidermal 

fragments in the scats, it was not possible to discern sufficient characters to warrant 

inclusion in this chapter. Because of under-staining, stomatal measurements were not 

recorded from Passerina vulgaris and the adaxial leaf epidermal surface of 

Manochlamys albicans. No stomatal measurements were recorded from the epidermal 

preparations of Lachnospermum imbricatum, Passerina ericoides, Phylica ericoides 

and Phylica thunbergiana as no stomata were present on the prepared epidermi. No 

stomatal complex types could be recorded for Salvia africana-lutea, as the epidermal 

cells around the stomata did not stain properly. The dehydration process affected the 

trichomes on the epidermis of Salvia africana-lutea and the shrivelled appearance of 

the trichomes made it impossible to determine their shape. 
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Table 8.1  Leaf epidermal and cuticle characters considered for the identification keys 

of monocotyledonous and dicotyledonous plants at the West Coast National Park and 

Dassen Island, South Africa. Character states are defined in the Glossary and 

character states not used for the keys are marked by an asterisk. 

Characters  Character states 

Monocotyledoneae  

1 Arrangement of cells on leaf Parallel / random 
2 Costal and intercostal zones Present / absent 
3 Anticlinal wall shape  Straight / curved / sinuous / data absent 
4 Anticlinal wall thickness Thin / thickened (visual estimation) 
5 Cuticle appearance Smooth / striate 
6 Stomatal guard cell shape Dumb-bell / elliptical 
7 Stomata complex type Anomocytic / paracytic 
8 Subsidiary cells Present / absent 
9 Number of stomata rows 1 / 2 / 3 / 1 or 2 / 2 or 3 / 4 or 5 
10 Intercostal cells between stomata Six different states for intercostal cell length 

relative to costal cell length 
11 Trichome types Macro hairs / prickles / macro hairs and prickles / 

papillae / none 
12 Macro hair distribution Margins / intercostal zones /costal zones / 

combinations 
13 Prickle hair distribution Margins / intercostal zones / costal zones / 

combinations 
14 Number of subsidiary cells* 0 / 2 
Dicotyledoneae  

1 Arrangement of cells on leaf Parallel / random 
2 Cuticle Smooth / striate / wrinkled 
3 Cuticle striations  On a single cell / spanning a number of cells 
4 Subsidiary cells Present / absent 
5 Stomatal complex type Anomocytic / anomotetracytic / anisocytic / 

amphibrachyparacytic / brachyparacytic / 
cyclocytic / paracytic 

6 Polar thickening of guard cells  Present / absent 
7 Trichomes  Present / absent 
8 Trichome type Glandular / non-glandular / both types 
9 Number of trichome types  1 / 2 
10 Trichome shape and special 

adaptations 
Anvil / acerate / attenuate / bladder cells / cruciate 
/ filiform / flagelliform / flame / hirsute / prickles / 
ornithorhynchous / papillae / peltate / rod / stellate 
/ serpentine / sunken / stinging emergences  

11 Trichome location* Margins / randomly over the epidermis  
12 Trichome distribution* Abaxial / adaxial / both surfaces  
13 Epidermal cells around stomata* The numbers 3 to 8  
14 Stomatal complex distribution* Abaxial / adaxial / both surfaces  
15 Anticlinal wall shape* Straight / curved / undulate / sinuous / 

combinations  
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8.4 RESULTS AND DISCUSSION 

8.4.1 Monocotyledoneae 

8.4.1.1 Cell pattern and shape 

I evaluated epidermal characters of 18 monocotyledonous plant taxa belonging to eight 

different families (Table 7.2). The epidermal cells of all the monocotyledonous plants, 

except Zantedeschia aethiopica, had a parallel arrangement, which appears to be a 

reliable histological character to separate the monocots from the dicots. For Z. 

aethiopica, the epidermal cells had a random arrangement, as found in dicotyledonous 

plants (Plate 1). Exceptions like Z. aethiopica can be problematic, as no epidermal 

character clearly distinguished this species from the dicots.  

 

The nine Poaceae species evaluated had costal / intercostal zones (Plates 10-16), 

consistent with the findings of Metcalfe (1960) and Ellis (1979). However, in contrast to 

the findings of these authors, the epidermi of Cyperus sp. did not have costal / 

intercostal zones (Plates 3 and 4). Among the geophytes, only Trachyandra divaricata 

had the costal / intercostal arrangement (Plate 2). The presence of costal / intercostal 

zones are thus strongly indicative of the Poaceae. The stomata of most but not all the 

monocots were arranged in rows. Stace (1965) considers the distribution and 

frequency of stomata to be of significant systematic and diagnostic value to help 

distinguish between the monocots and the dicots. 

 

The cuticles of all monocotyledons were smooth (Table 7.2), except for Avena barbata, 

Bromus diandrus, Phalaris minor, Asparagus lignosus and Z. aethiopica, which had 

striation patterns on the cuticle that stretched over a number of epidermal cells. The 

cuticle striation of Z. aethiopica covered a number of unspecialised cells, while the 

cuticle striation of P. minor covered unspecialised epidermal cells in the costal zones 

but not in the intercostal zones. A few light cuticle striations were observed over the 

unspecialised epidermal cells of A. barbata in the intercostal zones.  

 

The anticlinal wall shape of many taxa appeared straight, or straight to curved (Table 

7.2), whereas most taxa in the Cyperaceae (Plates 5-6) and Poaceae families had 

sinuous cell walls (Plates 10-11, 13, 15-16). The long cells in the intercostal zones 

were rectangular with numerous undulations at regular intervals. The sinuous anticlinal 

walls together with the rectangular shape of the intercostal long cells gave a good 

indication of either the Poaceae or Cyperaceae. The undulations of the sinuous 
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anticlinal walls of monocots appeared smaller and more consistent in frequency and 

size than those of the dicots. 

 

8.4.1.2 Stomatal complexes and trichomes 

Two stomatal shapes were observed for the monocotyledonous plants (Table 7.2). 

Dumb-bell shaped stomatal guard cells occurred in all the Poaceae (Plates10-13 and 

15-16), while the remainder of the plant species had elliptical stomata (Plates 1-4, 7-8, 

9 and 17). Several authors reported that dumb-bell shaped guard cells characterise the 

Poaceae and Cyperaceae (Ellis 1979; Mauseth 1988; Salisbury & Ross 1992; Singh 

2004). The dumb-bell shape is caused by differential thickening of guard cell walls, 

which are thin-walled at the ends and thickened towards the centre (Ellis 1979; 

Mauseth 1988). Dumb-bell shaped guard cells were not found in the dicots (see next 

section) so this characteristic is thus reliable to separate monocots from dicots.  

 

The monocotyledons had only two stomatal complex types. Three taxa had anomocytic 

stomata, characterised by the absence of subsidiary cells around the guard cells (Plate 

23). The majority of the monocots had paracytic stomata, where one subsidiary cell 

was found parallel to each guard cell. In the Poaceae and Cyperaceae, the stomata 

were confined to the intercostal zones (Plates 5-6, 10-13 and 15-16).  

 

None of the monocotyledonous plants had glandular trichomes but three non-glandular 

trichome types, papillae, prickles and macro hairs, were represented. Papillae were 

observed on the periclinal surfaces of the leaves of Asparagus lignosus and 

Thamnochortus spicigerus (Plate 17). The papillae were distributed all over the 

epidermis of T. spicigerus whereas the distribution of the papillae was clumped on 

some portions of the leaf of A. lignosus. The presence of prickle hairs and macro hairs 

is of great importance in the classification of the Poaceae and Cyperaceae (Metcalfe 

1960). In this study, prickle hairs (Plate 10) were limited to the Poaceae, whereas 

macro hairs (Plate 11) occurred in the Poaceae and in one geophyte, Spiloxene 

capensis. The Cyperaceae did not have prickle hairs, in contrast to the findings of 

Metcalfe (1960).  
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8.4.2 Dicotyledoneae 

8.4.2.1 Cell pattern and shape 

I evaluated 63 dicotyledonous plant taxa belonging to 30 different families (Table 7.3). 

The epidermal cells of the dicotyledonous plants were not arranged in an orderly 

fashion and the cells appeared to have a random distribution. My samples, however, 

included dicotyledonous species that did not conform to this arrangement. The dicots 

Thesidium sp. and Cliffortia filifolia showed a parallel arrangement of epidermal cells 

but the epidermal cells were not grouped into costal and intercostal zones (Plate 84 

and 86). Although the parallel and random arrangement of epidermal cells are strongly 

linked to the monocotyledonous and dicotyledonous groups, respectively, the 

exceptions show that this feature is not infallible and that additional characteristics 

should be considered to separate these groups. 

 

In contrast to the pattern in monocots, nearly half of the dicots had striations on the 

cuticle (Table 7.3). The cuticular striations most often overlapped a number of cells but 

four species, Helichrysum niveum, Myoporum serratum, Agathosma sp. and Phylica 

thunbergiana, had striations confined within the boundaries of a cell. The value of 

cuticle striations confined to certain epidermal cells were especially useful when 

viewing Myoporum serratum (Plate 76) and Zygophyllum morgsana epidermal 

preparations, as I was unable to identify other epidermal characters that were confined 

to these species. 

 

In most dicots, the periclinal walls were smooth and featureless and the features were 

identical for the abaxial and adaxial surfaces. Three dicot species had trichomes that 

were modified to form bladder cells on their periclinal walls. Two of these species 

belonged to the Aizoaceae, Dorotheanthus sp. and Mesembryanthemum crystallinum 

(Plate 20). The third plant species, Atriplex semibaccata, belonged to Chenopodiaceae 

and possessed trichomes only on the abaxial surfaces of the leaf epidermi. One dicot, 

the shrublet Psoralea repens, had papillae on the periclinal walls of the unspecialised 

cells (Plate 67-68). 

 

Most of the dicotyledonous plants had similar anticlinal wall characteristics on the 

abaxial and adaxial sides of the leaf (Table 7.3). However, the anticlinal walls of dicots 

varied substantially in shape, which made it difficult to limit descriptions to specific 

shapes, as much information can be lost by this practice. A descriptive term such as 

sinuous does not take into consideration how frequently the undulations occur along 
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the anticlinal walls of the cell, the size of undulations, and the overall shape of the cell. 

In this study, severely sinuous anticlinal walls sometimes obscured the overall shape of 

the cells.  

 

The use of anticlinal wall shape as a diagnostic feature, nevertheless, had some merit. 

For example, the anticlinal walls of the Aizoaceae were straight to curved (Plates 18-19 

& Plates 21-24), giving the unspecialised cells of Carpobrotus and Ruschia a 

hexagonal shape. In general, the epidermi of these two genera appeared quite similar. 

The anticlinal walls of Euphorbia peplus showed areas of irregular thickening 

resembling beads (Plate 66), which facilitated identification of this species. 

Furthermore, Agathosma sp. characteristically had thick, dark-staining anticlinal walls 

(Plate 85). The anticlinal walls observed for Carpobrotus spp. and Ruschia spp. 

supported the findings of Stace (1965) that xerophytic plants have a tendency to bear 

straight anticlinal walls.       

 

8.4.2.2 Stomatal complexes  

Stomatal length and width measurements (Table 7.4) showed large variations for many 

plant species. These measurements were obtained from one leaf of one plant, and the 

variation among the leaves of the plant, and within the species, will probably be larger. 

Stomatal length-to-width ratios provide an objective assessment of the different 

stomatal shapes.  

 

In this study, the mean length-to-width ratios of the stomata (abaxial, abaxial, or both) 

ranged from 0.99 to 1.93 with 89.7% of the taxa having ratios between 1.1 and 1.5. 

Consequently, the stomata of most dicots had an elliptical shape. The stomatal ratio of 

species within a genus showed close correspondence for the congenerics of Rhus, 

Hermannia and Senecio. This corresponds with the findings that the stomata of 

Heracleum mantegazzianum, H. sphondylium and their hybrid have similar 

measurements (i.e., lengths and widths; Arora et al. 1982), supporting the idea that 

stomatal length-to-width ratio is a useful diagnostic feature in plant taxonomy. 

 

I distinguished seven different stomatal complex types in the dicotyledons (Table 7.5). 

The anomocytic complex (e.g., Plate 47) occurred most often (67%) followed by the 

brachyparacytic complex (13%; Plate 21). The paracytic stomatal complex, which 

occurred in most of the monocotyledons, was found only in the three Rhus spp. (Plates 

25-30), and in the parasite plant Septulina glauca (Plate 74). The other four stomatal 
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complex types had a limited distribution among the different taxa. The majority of plant 

epidermi had only one stomatal complex type on a leaf surface. Two of the three 

parasitic plants (Septulina glauca and Thesidium sp.) had more than one stomatal 

complex type on a single plant leaf or stem. In certain Carpobrotus spp. and Ruschia 

spp., the stomata appeared sunken, which is considered an adaptation to drought 

conditions (Mauseth 1988). The wide distribution of some stomatal complex types 

among plants limits the diagnostic value of this feature although the stomatal complex 

types with low occurrences can be useful to distinguish specific plant species.  

 

8.4.2.3 Trichomes 

Over 60% of the dicot species had trichomes, most of which had a simple structure, 

were non-glandular, and resembled hairs (Table 7.5). The observation of Mauseth 

(1988) that non-glandular, unicellular trichomes are very common among plants 

supports my findings. The majority of trichomes had smooth surfaces devoid of any 

striations or ornamentation but there were exceptions, such as Trifolium burchellianum, 

which had bulbous outgrowths on the surface of the trichomes. The prevalence of 

simple trichomes in different plants limits the usefulness of this feature.   

 

Of the four complex trichome types, a four-armed (cruciate) and seven-armed (stellate) 

type occurred on Hermannia pinnata and H. scabra, respectively, while Oxalis obtusa 

and Psoralea repens had an anvil-shaped trichome type (Plate 67) and Septulina 

glauca a peltate-shaped trichome type. The cruciate and stellate trichome types made 

it possible to distinguish between H. pinnata and H. scabra as the epidermi of these 

two species were very similar. The complex trichome types were very useful diagnostic 

features.  

 

I found 18 different varieties of trichome shapes (including those with special 

adaptations) for the dicotyledonous plant species (Table 7.5 & Glossary). For the 

majority of leaves examined, the trichomes were distributed over the entire epidermis 

and were not confined to specific areas. In Felicia hyssopifolia and Cliffortia filifolia, the 

trichomes were found mainly along the leaf margins, and in F. hyssopifolia, only one or 

two cells attached to the trichome base cell remained in the epidermal preparation. 

When the trichomes were limited to the leaf margins, the tips often broke off during 

sample preparation. 
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Four species, Hermannia pinnata, H. scabra, Urtica urens, and Erodium moschatum, 

had glandular and non-glandular trichomes. Both trichome types occurred on the 

abaxial and adaxial surfaces of these plants. Chrysanthemoides monilifera was the 

only species with sunken glandular trichomes (Plates 36-37). Stinging emergences 

occur in a number of families (Mauseth 1988) but are best known in the Urticaceae 

(Stace 1965; Thurston 1974). In this study, Urtica urens was the only plant bearing 

stinging emergences (Plate 96). 

 

8.4.3 Identification keys 

A variety of epidermal characters was evaluated to construct identification keys for 

monocotyledonous plants (Table 7.6) and dicotyledonous plants (Table 7.7) that occur 

in the southwestern Cape. The use of histological characters to construct identification 

keys for plants is not an easy process and the difficulties encountered were highlighted 

in this chapter. Nevertheless, the usefulness of epidermal keys in various science 

disciplines by far outweighs the problems associated with this method.  

 

8.4.4 Growth forms 

For most of the succulent plants examined, the epidermal cell walls were fairly straight 

with curved corners. The anticlinal wall shape of these genera supports the deduction 

of Stace (1965) that straight anticlinal cell walls on leaf epidermi are common to 

xeromorphic plants. The periclinal walls of most succulents were smooth, although 

some succulent species had faint cuticular striations. The epidermal arrangement of 

the succulents, particularly the Carpobrotus genus, showed no association with the leaf 

venation patterns. The stomata of succulents had thicker walls and stained darker than 

the surrounding cells. Some succulents had sunken stomata. None of the succulent 

plant epidermi possessed trichomes.  

 

Many herbaceous plants had sinuous anticlinal walls whereas this character had a 

limited occurrence among the shrub species. The number of undulations varied from 

one per cell wall to many undulations, as in Apocynaceae (Plates 31-32). All the 

herbaceous plants had anomocytic stomatal complexes, whereas the shrubs had four 

additional stomatal complex types. The length-to-width ratios of the stomata of shrubs 

appeared small compared to the ratios of the herbs, succulents and parasitic plants 

(Table 7.4). One shrub, Psoralea repens had a very high ratio. When this shrub was 

removed from the data, the ratio, of the adaxial surfaces, for shrubs was significantly 

smaller that the ratios for the other four groups (One way ANOVA untransformed data 

– F3,39 = 9.944, P = 0.00005). Most of the herbs and shrubs had trichomes, but 
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glandular trichomes were more prevalent among the herbaceous plants than among 

the shrubs. In shrubs, the epidermal cells overlying the veins were distinctive from the 

epidermal cells among the veins, whereas in herbaceous plants the difference between 

these cell types was less defined or absent. Xerophytic plants also have little or no 

venation pattern on their epidermal cells (Stace 1965). 

 

8.4.5 Recommendations 

The descriptions and keys in this chapter focussed on the leaf characteristics of 

monocotyledonous and dicotyledonous plants. However, herbivores may also eat the 

flowers and/or fruits of the plants. For ecological studies, it may be important to know 

which part of the plant the animal eats and in which proportions the different plant 

structures are used. I made epidermal preparations of flowers and seeds whenever it 

was possible to remove epidermal fragments from the seeds. This procedure is 

recommended for dietary studies. 

  

Although Martin (1955) stated that one epidermal surface often suffices for plant 

species identification in faecal samples, my recommendation is to prepare, whenever 

possible, epidermi from the abaxial and abaxial sides of leaves. Some plant species 

have diagnostic characters on one side of the leaf only, and if this side has not been 

prepared, one would not be able to identify the plant. 

 

A thorough research of the literature is necessary before a histological study should be 

undertaken because the sheer number and subcategories of epidermal characters can 

be overwhelming and confusing. Additionally, it is important to experiment with different 

staining procedures, because improper staining can make it impossible to identify 

particular diagnostic features. These problems can lead to incorrect identification. 

 

Further study is necessary to evaluate the potential importance of subsidiary cell shape 

as an aid in the identification of plant epidermi. Stomatal complex type alone was not 

very effective due to considerable overlap in occurrence among plant genera and 

species. The shape of subsidiary cells together with the stomatal complex type may 

prove to be of greater value in identifying plant epidermi.  

  

It is preferable to use fresh plant material to make epidermal preparations. Some 

epidermal characters may not be intact in dry or decaying leaf material. Blowing sand 

can abrade the leaf surface and may remove the trichomes, which are important 

characters in plant identification. Fresh plant material should be sealed in a plastic bag 
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and can be kept at 5 °C for a number of days without adversely affecting the epidermal 

characters. For long-term storage, however, the plants should be frozen at –20 °C. 

Representative structures of the plant should also be dried, labelled, and stored for 

future reference. 
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Table 8.2  Cuticle and epidermal characteristics from the midsections of leaves (stems of restioids) of the Monocotyledoneae. 

Family   Genus and species Anticlinal 
surface 

Stomatal 
shape 

Subsidiary 
cells  

Stomatal 
complex 

Stomatal 
rows 

Size of cells between 
stomata 

Prickle hair 
distribution 

Macro hair 
distribution 

Araceae         

 Zantedeschia aethiopica*†
 Straight to 

curved 
Elliptical 0 Anomocytic Absent Absent Absent Absent 

Asparagaceae         

 Asparagus lignosus*†#
 Straight to 

curved 
Elliptical 0 Anomocytic Absent Absent Absent Absent 

Asphodelaceae         

 Trachyandra divaricata Straight to 
curved 

Elliptical 2 Paracytic 3 Shorter than costal cells Absent Absent 

Cyperaceae         

 Cyperus sp.* Straight Elliptical 0 Anomocytic 0 Absent Absent Absent 

 Ficinia nigrescens Sinuous Elliptical 0 Anomocytic 1 or 2 Shorter than costal cells Absent Absent 

 Isolepis antarctica Sinuous Elliptical 2 Paracytic 1 or 2 Longer than costal cells Absent Absent 

Hyacinthaceae         

 Albuca flaccida* Straight Elliptical 2 Paracytic Absent Absent Absent Absent 

Hypoxidaceae         

 Spiloxene capensis*
TR

 Straight to 
curved 

Elliptical 2 Paracytic Absent Absent Absent Margins 

Poaceae         

 Avena barbata
†
 Straight to 

sinuous 
Dumb-bell 2 Paracytic 1 or 2 Similar to or longer than 

costal cells 
Margins and costal 
zones 

Costal zones 

 Avena fatua Sinuous Dumb-bell 2 Paracytic 1 or 2 Shorter to or equal in size 
to costal cells 

Absent Absent 

 Bromus diandrus
†
 Straight Dumb-bell 2 Paracytic 2 Cannot determine Margins Costal and 

intercostal zones 
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Table 8.2 continued 

Family   Genus and species Anticlinal 
surface 

Stomatal 
shape 

Subsidiary 
cells 

Stomatal 
complex 

Stomatal 
rows 

Size of cells between 
stomata 

Prickle hair 
distribution 

Macro hair 
distribution 

 Bromus pectinatus Straight Dumb-bell 2 Paracytic 2 Similar to shorter than 
costal cells 

Absent Absent 

 Chaetobromus dregeanus Straight Dumb-bell 2 Paracytic 2 Similar to shorter than 
costal cells 

Margins, costal and 
intercostal zones 

Margins and 
intercostal zone 

 Cynodon dactylon Sinuous Dumb-bell 2 Paracytic 2 Shorter than costal cells Margins Absent 

 Ehrharta villosa Curved to 
sinuous 

Dumb-bell 2 Paracytic 4 or 5 Shorter than costal cells Margins Costal and 
intercostal zones 

Lolium perenne Sinuous Dumb-bell 2 Paracytic 2 or 3 Longer than costal cells Absent Absent 

 Phalaris minor
†
 Sinuous Dumb-bell 2 Paracytic Indistinct Similar to costal zones Absent Absent 

Restionaceae         

 Thamnochortus spicigerus*
# Straight to 

curved 
Elliptical 2 Paracytic Absent Absent Absent Absent 

* Epidermal cells were not divided into costal and intercostal zones; † Striations on the cuticle; # Taxa bear papillae on their periclinal surfaces; TRTrichomes present on 
the periclinal surface. Zantedeschia aethiopica was the only monocotyledon with randomly orientated epidermal cells in contrast to the parallel arrangements of the other 
monocots. Pennisetum setaceum was not included in the list because of the poor quality of the reference material. 
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Table 8.3  Cuticle and epidermal characteristics from the midsections of leaves of the Dicotyledoneae. 

Family   Genus and species Plant 
type 

Leaf  
surface 

Anticlinal wall shape 
Cuticle surface 

Appearance Striations Location of striations 

Aizoaceae       

 Carpobrotus edulis Su One side Straight to curved Smooth   

 Carpobrotus quadrifidus Su One side Straight to curved Smooth   

 Conicosia pugioniformis Su One side Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

 Dorotheanthus sp. Su One side Curved Smooth   

 Mesembryanthemum 
crystallinum 

Su One side Straight to curved Smooth   

 Ruschia macowanii Su One side Straight to curved Smooth   

 Ruschia sp. Su One side Straight to curved Smooth   

 Tetragonia sp. Su Ab Straight to curved Light striation Overlap cells Striations confined to cells around 
stomata 

Anacardiaceae       

 Rhus glauca Sh Ab and Ad Curved Smooth   

 Rhus laevigata Sh Ab and Ad Straight (ad); curved (ab) Smooth   

 Rhus lucida Sh Ab and Ad Straight (ad); curved (ab) Light striation (ab); 
smooth (ad) 

Overlap cells Unspecialised epidermal cells 

Apocynaceae       

 Unknown H Ab and Ad Sinuous Light striation Overlap cells Small groups of striations with smooth 
areas between successive groups 

 Cynanchum africanum Sh Ab and Ad Straight to curved Heavily wrinkled Overlap cells Unspecialised epidermal cells 

Asteraceae       

 Berkheya armata H One side Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

 Chrysanthemoides 
monilifera 

Sh Ab and Ad Straight to curved Smooth   
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Table 8.3 continued 

Family   Genus and species Plant 
type 

Leaf  
surface 

Anticlinal wall shape 
Cuticle surface 

Appearance Striations Location of striations 

 Felicia hyssopifolia Sh Ab and Ad Straight to curved Light striation Overlap cells Striations confined to cells around 
stomata (Ad); Striations not restricted 
and occur over all unspecialised 
epidermal cells (Ab) 

 Helichrysum niveum Sh One side Sinuous Smooth to striate Within a cell Striations confined to cells around 
stomata 

 Lachnospermum 
imbricatum 

Sh Entire leaf Curved Smooth   

 Oncosiphon suffruticosum H One side Sinuous Light striation Overlap cells Unspecialised epidermal cells 

 Pteronia uncinata Sh / 
Su 

Entire leaf Straight to curved Light striation Overlap cells Unspecialised epidermal cells, 
overlapping edges of stomata 

 Senecio burchelli Sh Ad Straight to curved Smooth   

 Senecio elegans H Ab and Ad Straight to curved (ad); straight to 
sinuous (ab) 

Light striation Overlap cells Unspecialised epidermal cells 

 Senecio maritimus H Ab and Ad Straight to slightly undulate (ad); 
undulate to sinuous (ab) 

Light striation Overlap cells Venation cells and trichome base cells 

 Sonchus oleraceus H Ab and Ad Sinuous (ad); curved to sinuous (ab) Smooth   

 Trichogyne verticillata H Ab and Ad Curved to undulate Smooth   

Celastraceae       

 Gymnosporia buxifolia Sh Ab and Ad Curved (rarely straight) Smooth   

Chenopodiaceae       

 Atriplex semibaccata Sh Ad Straight to curved Smooth   

 Chenopodium album H Ad Straight to slightly undulate (ad); 
Undulate (ab) 

Lightly wrinkled / 
striate abaxially  

Overlap cells Unspecialised epidermal cells 

 Manochlamys albicans Sh Ab and Ad Straight to curved Smooth   

 

 

 

 

 



Chapter 7 

192 
 

Table 8.3 continued 

Family   Genus and species Plant 
type 

Leaf  
surface 

Anticlinal wall shape 
Cuticle surface 

Appearance Striations Location of striations 

Ebenaceae       

 Diospyros austro-africana Sh Ab and Ad Straight to slightly curved Smooth   

Euphorbiaceae       

 Euphorbia burmannii Su Stem Curved Smooth   

 Euphorbia mauritanica Su One side Straight to curved Smooth   

 Euphorbia peplus Su Ab and Ad Straight to curved (ad); sinuous (ab) Smooth   

Fabaceae       

 Psoralea repens Sh Ab and Ad Straight to curved Smooth   

 Trifolium burchellianum H Ab Sinuous Smooth   

Fumariceae       

 Cysticapnos vesicaria H Ab and Ad Curved to undulate Smooth   

Gentianaceae       

 Chironia baccifera Sh Ab Sinuous Smooth   

Geraniaceae       

 Erodium moschatum H One side Sinuous Light striation Overlap cells Unspecialised epidermal cells 

 Geranium incanum Sh Ab and Ad Curved (ad); curved to undulate (Ab) Light striation Overlap cells Unspecialised epidermal cells 

Lamiaceae       

 Salvia africana-lutea Sh Ab Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

Loranthaceae       

 Septulina glauca Pa / 
Sh 

One side Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

Menispermaceae       

 Cissampelos capensis Sh Ab and Ad Straight / slightly curved (ad); 
undulate (ab) 

Smooth   
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Table 8.3 continued 

Family   Genus and species Plant 
type 

Leaf  
surface 

Anticlinal wall shape 
Cuticle surface 

Appearance Striations Location of striations 

Myoporaceae       

 Myoporum serratum T One side Straight to curved Light striation Within a cell Mainly confined to cells around 
stomata 

Oxalidaceae       

 Oxalis obtusa H Ab and Ad Straight to slightly curved Smooth   

Plumbaginaceae       

 Afrolimon purpuratum Sh Ab and Ad Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

Polygalaceae       

 Nylandtia spinosa Sh One side Straight to slightly curved Smooth   

Primulaceae       

 Anagalis arvensis H Ab and Ad Sinuous Light striation Overlap cells Unspecialised epidermal cells 

Rhamnaceae       

 Phylica thunbergiana Sh Ad Straight Light striation Within a cell Unspecialised epidermal cells 

 Phylica ericoides Sh Ab and Ad Straight Smooth   

Rosaceae       

 Cliffortia filifolia Sh Entire leaf Curved to slightly undulate Smooth   

Rutaceae       

 Agathosma sp. Sh Entire leaf Straight to curved Light striation Within a cell Unspecialised epidermal cells 

Santalaceae       

 Osyris compressa Pa / 
Sh 

Ab Curved, rarely straight Smooth   

 Thesidium sp. Pa / 
Sh 

Stem Straight to curved Smooth   
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Table 8.3 continued 

Family   Genus and species Plant 
type 

Leaf  
surface 

Anticlinal wall shape 
Cuticle surface 

Appearance Striations Location of striations 

Scrophulariaceae       

 Amsinckia calycina H Ab and Ad Straight to curved (ad); undulate to 
sinuous (ab) 

Smooth   

 Hemimeris racemosa H Ad Sinuous Smooth   

Solanaceae       

 Lycium afrum Sh Entire leaf Curved Light striation Overlap cells Unspecialised epidermal cells 

Sterculiaceae       

 Hermannia pinnata Sh Entire leaf Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

 Hermannia scabra Sh Ad Straight to curved Light striation Overlap cells Unspecialised epidermal cells 

Thymelaeaceae       

 Passerina sp. Sh Entire leaf Curved to undulate Smooth   

 Passerina vulgaris Sh Entire leaf Curved / undulate to slightly sinuous Smooth   

 Passerina ericoides Sh Entire leaf Curved / undulate to slightly sinuous Smooth   

Urticaceae       

 Urtica urens H Ab Sinuous Smooth   

Zygophyllaceae       

 Zygophyllum morgsana Sh / 
Su 

Ab and Ad Straight to curved Smooth to lightly 
striate 

Overlap cells Confined to cells around stomata 

Su = succulent, Sh = shrub, H = herb, Pa = parasite, T = tree, Ab = abaxial and Ad = adaxial. For Agathosma sp., the anticlinal walls of cells surrounding 
the stomata were thicker than the walls of the cells not in contact with stomata. For Euphorbia peplus, the anticlinal walls had thickened areas resembling 
beads. 
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Table 8.4  Mean length and width (µm), and mean length-to-width ratios of 15 stomata on the adaxial and abaxial leaf surfaces, respectively, of the 

Dicotyledoneae. 

  Adaxial  Abaxial 

Family   Genus and species Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio    
(L/W) 

 Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio  
(L/W) 

Aizoaceae            

 Carpobrotus edulis
#
 28 25 - 32 22 17 - 25 1.30  n/a  n/a   

 Carpobrotus quadrifidus
#
 40 32 - 49 23 20 - 30 1.76  n/a  n/a   

 Conicosia pugioniformis
#
 38 30 - 47 26 20 - 33 1.48  n/a  n/a   

 Dorotheanthus sp.# 33 27 - 40 27 20 - 36 1.24  n/a  n/a   

 Mesembryanthemum crystallinum  22 19 - 28 18 15 - 20 1.27  n/a  n/a   

 Ruschia macowanii
#
 27 25 - 32 17 10 - 21 1.68  n/a  n/a   

 Ruschia sp.# 30 26 - 35 29 27 - 31 1.07  n/a  n/a   

 Tetragonia sp. n/a  n/a    47 33 - 64 36 31 - 47 1.31 

Anacardiaceae            

 Rhus glauca       26 22 - 35 24 20 - 30 1.09 

 Rhus laevigata       29 25 - 35 25 22 - 27 1.18 

 Rhus lucida       28 25 - 32 25 20 - 31 1.13 

Apocynaceae            

 Unknown 31 25 - 37 21 17 - 26 1.48  n/a  n/a   

 Cynanchum africanum 23 20 - 27 22 19 - 27 1.06  25 21 - 27 23 20 - 25 1.07 

Asteraceae            

 Berkheya armata 25 20 - 27 18 15 - 22 1.39  n/a  n/a   

 Chrysanthemoides monilifera 33 30 - 37 30 25 - 35 1.11  32 30 - 35 30 27 - 35 1.07 

 Felicia hyssopifolia 18 15 - 21 18 15 - 20 1.03  19 15 - 21 17 15 - 20 1.11 

 Helichrysum niveum 21 20 - 23 21 16 - 25 1.05  n/a  n/a   
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Table 8.4 continued 

  Adaxial  Abaxial 

Family   Genus and species Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio    
(L/W) 

 Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio  
(L/W) 

 Oncosiphon suffruticosum 27 25 - 30 20 15 - 25 1.35  n/a  n/a   

 Pteronia uncinata 40 37 - 47 37 32 - 40 1.10       

 Senecio burchelli 30 25 - 37 23 20 - 27 1.33  n/a  n/a   

 Senecio elegans 43 25 - 57 30 20 - 42 1.44  39 28 - 49 30 25 - 36 1.34 

 Senecio maritimus 32 25 - 37 24 20 - 30 1.36  28 22 - 35 25 21 - 30 1.16 

 Sonchus oleraceus 27 22 - 35 22 20 - 25 1.21  21 17 - 25 16 12 - 19 1.31 

 Trichogyne verticillata 24 20 - 30 20 17 - 23 1.21  n/a  n/a   

Celastraceae            

 Gymnosporia buxifolia 27 26 - 30 25 22 - 27 1.09  25 22 - 27 19 15 - 22 1.30 

Chenopodiaceae            

Atriplex semibaccata 23 20 - 27 18 16 - 20 1.30  21 17 - 27 16 12 – 17 1.33 

 Chenopodium album 26 25 - 30 20 17 - 23 1.31  25 20 - 30 20 17 - 23 1.23 

Manochlamys albicans n/a  n/a    20 17 - 25 17 15 – 20 1.18 

Ebenaceae            

 Diospyros austro africana 28 25 – 32 19 15 – 25 1.46  26 20 – 32 20 16 – 25 1.30 

Euphorbiaceae            

 Euphorbia burmannii* 30 27 – 32 27 25 – 32 1.10       

 Euphorbia mauritanica 37 28 – 47 31 22 – 37 1.22  n/a  n/a   

 Euphorbia peplus       18 15 – 21 12 10 – 15 1.53 

Fabaceae            

 Psoralea repens 18 12 – 21 9 7 – 12 1.93  19 14 – 30 12 9 – 17 1.65 

Trifolium burchellianum n/a  n/a    25 23 - 27 18 15 - 20 1.41 
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Table 8.4 continued 

  Adaxial  Abaxial 

Family   Genus and species Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio    
(L/W) 

 Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio  
(L/W) 

Fumariceae            

 Cysticapnos vesicaria       33 25 – 37 27 22 – 33 1.22 

Gentianaceae            

 Chironia baccifera n/a  n/a    52 43 – 56 39 37 – 42 1.34 

Geraniaceae            

 Erodium moschatum 24 21 - 27 16 15 - 17 1.47       

Geranium incanum 27 23 - 30 22 20 - 25 1.21  27 22 - 32 21 20 - 22 1. 27 

Lamiaceae            

Salvia africana lutea n/a  n/a    18 15 - 22 16 12 - 20 1.13 

Loranthaceae            

 Septulina glauca 40 30 - 49 25 19 - 27 1.65  n/a  n/a   

Menispermaceae            

 Cissampelos capensis n/a  n/a    27 25 - 32 25 22 - 27 1.10 

Myoporaceae            

 Myoporum serratum 34 27 - 40 20 12 - 25 1.81  33 28 - 37 21 15 - 25 1.63 

Oxalidaceae            

 Oxalis obtusa 21 16 - 25 16 12 - 19 1.31  25 22 - 27 20 17 - 22 1.23 

Plumbaginaceae            

 Afrolimon purpuratum 36 31 - 38 34 30 - 40 1.06  34 30 - 40 35 25 - 42 0.99 

Polygalaceae            

 Nylandtia spinosa 
#
 28 25 - 32 25 22 - 27 1.14  n/a  n/a   

Primulaceae            

 Anagalis arvensis 48 32 - 62 32 30 - 36 1.48  42 37 - 49 32 27 - 37 1.33 
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Table 8.4 continued 

  Adaxial  Abaxial 

Family   Genus and species Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio    
(L/W) 

 Mean 
length 

Range for 
length 

Mean 
width 

Range for 
width 

Ratio  
(L/W) 

Rosaceae            

 Cliffortia filifolia
#
 33 27 - 37 30 26 - 35 1.07  n/a  n/a   

Thymelaeaceae            

 Passerina sp.# 31 28 - 37 27 25 - 35 1.17  n/a  n/a   

Rutaceae            

 Agathosma sp. 33 30 - 37 30 27 - 35 1.12  n/a  n/a   

Santalaceae            

 Osyris compressa n/a  n/a    29 25 - 37 26 20 - 30 1.17 

 Thesidium sp.* 37 32 - 41 24 21 - 27 1.53       

Scrophulariaceae            

 Amsinckia calycina 29 23 - 33 22 20 - 27 1.36  33 30 - 35 24 20 - 28 1.39 

 Hemimeris racemosa 45 40 - 52 31 25 - 37 1.46  n/a  n/a   

Solanaceae            

Lycium afrum 33 28 - 40 27 22 - 31 1.20       

Sterculiaceae            

 Hermannia pinnata 22 20 - 25 19 17 - 21 1.15  n/a  n/a   

 Hermannia scabra 22 20 - 26 21 20 - 23 1.07  n/a  n/a   

Urticaceae            

 Urtica urens n/a  n/a    22 19 - 25 18 15 - 21 1.27 

Zygophyllaceae            

 Zygophyllum morgsana 35 27 - 40 28 25 - 30 1.27  36 27 - 47 28 22 - 30 1.29 

#Unable to distinguish between the abaxial and adaxial surfaces of the leaf due to the shape of the leaf. *Thesidium sp. and Euphorbia burmannii measurements were 
taken from the stem. 
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Table 8.5  Stomatal and trichome characteristics from the midsections of leaves of the Dicotyledoneae.  

Family Genus and species Plant 
type 

Leaf  

surface 

Stomata  

shape 

Stomatal  

complex 
Subsidiary and non-
subsidiary cells 

Trichome  

structure 
Trichome 
type 

NG trichome 
shape 

Aizoaceae         

 Carpobrotus edulis Su One side Elliptical Brachyparacytic 2 None   

 Carpobrotus quadrifidus Su One side Rectangular Brachyparacytic 2 None   

 Conicosia pugioniformis Su One side Rectangular Anomocytic 2 None   

 Dorotheanthus sp. Su One side Round to Elliptical Anomocytic 2 to 4 Simple NG Bladder cells 

 Mesembryanthemum 
crystallinum 

Su One side Elliptical Anomocytic 2 to 4 Simple NG Bladder cells 

 Ruschia macowanii Su One side Rectangular Brachyparacytic 2 None   

 Ruschia sp. Su One side Round Brachyparacytic 2 None   

 Tetragonia sp. H Ab Elliptical Anomocytic 5 None   

Anacardiaceae         

 Rhus glauca
# Sh Ad and Ab Round Paracytic 2 Simple NG Rod 

 Rhus laevigata
# Sh Ad and Ab Round to Elliptical Paracytic 2 Simple NG Hirsute 

 Rhus lucida
# Sh Ad and Ab Round Paracytic 2 Simple NG Rod 

Apocynaceae         

 Unknown H Ab Rectangular Anomocytic 3 to 4 None   

 Cynanchum africanum H Ad and Ab Round Anomocytic 4 to 8 (ab);  
4 to 6 (ad) 

Multicellular NG Acerate 

Asteraceae         

 Berkheya armata H One side Elliptical Anomocytic 4 to 6 Present NG Filiform with 
swollen base 

 Chrysanthemoides 
monilifera 

Sh Ad and Ab Round Anomocytic 4 to 5 Simple G  

 Felicia hyssopifolia Sh Ad and Ab Round Anomocytic 3 to 6 (ad) / 3 to 5 (ab) Simple Tips broken  
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Table 8.5 continued 

Family Genus and species Plant 
type 

Leaf  

surface 

Stomata  

shape 

Stomatal  

complex 
Subsidiary and non-
subsidiary cells 

Trichome  

structure 
Trichome 
type 

NG trichome 
shape 

 Helichrysum niveum Sh One side Round Anomotetracytic 4 to 5 striate and 
sinuous 

Multicellular NG Serpentine 

 Oncosiphon suffruticosum H One side Elliptical Anomocytic 4 to 5 Multicellular G  

 Pteronia uncinata Sh 
/Su 

Entire leaf Round Anomocytic 3 to 6 Present   

 Senecio burchelli Sh Ad Elliptical Anomocytic 3 to 4 Present   

 Senecio elegans H Ad and Ab Elliptical Anomocytic 3 to 5 Simple G Flagelliform 

 Senecio maritimus H Ad and Ab Round to Elliptical Anomocytic 3 to 5 Simple G Flagelliform 

 Sonchus oleraceus H Ad and Ab Round to Elliptical Anomocytic 3 to 5 None   

 Trichogyne verticillata H Ad and Ab Round to Elliptical 
(ad); none (ab) 

Anomocytic 3 to 5 Simple NG Flagelliform 

Celastraceae         

 Gymnosporia buxifolia Sh Ad and Ab Round Anomocytic 4 to 7 (ad);  
4 to 6 (ab) 

None   

Chenopodiaceae          

Atriplex semibaccata Sh Ad Elliptical Anomocytic 3 to 4 Present NG Bladder cells 
(ab) 

 Chenopodium album H Ad and Ab Elliptical Anomocytic 4 to 5 Multicellular G  

Manochlamys albicans Sh Ad and Ab Round to Elliptical 
(Ab) 

Anomocytic (Ab and Ad) 4 to 5 Present   

Ebenaceae         

 Diospyros austro africana Sh Ad and Ab Rectangular Brachyparacytic 2 Simple NG Flame 

Euphorbiaceae         

 Euphorbia burmannii Su Stem Round Anisocytic to 
anomotetracytic 

3 to 4 None   
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Table 8.5 continued 

Family Genus and species Plant 
type 

Leaf  

surface 

Stomata  

shape 

Stomatal  

complex 
Subsidiary and non-
subsidiary cells 

Trichome  

structure 
Trichome 
type 

NG trichome 
shape 

 Euphorbia mauritanica Su One side Round to Elliptical Anomocytic 3 to 5 None   

 Euphorbia peplus
#
 Su Ad and Ab Rectangular Anomocytic 3 to 4 None   

Fabaceae         

 Psoralea repens Sh Ad and Ab Rectangular Anomocytic 4 to 7 Simple / 
Multicellular 

NG Anvil / 
Papillose 

Trifolium burchellianum H Ab Elliptical Anomocytic 3 to 4 Simple NG Acerate / 
Bosselated 

Fumariceae         

 Cysticapnos vesicaria
# H Ad and Ab Round to Elliptical Anomocytic 2 to 5 None   

Gentianaceae         

 Chironia baccifera Sh Ab Elliptical Anomocytic 3 to 4 None   

Geraniaceae         

 Erodium moschatum H Ad and Ab Elliptical Anomocytic 3 to 5 Simple / 
Multicellular 

G / NG Attenuate  

Geranium incanum Sh Ad and Ab Round to Elliptical 
(ad); Elliptical (ab) 

Anomocytic 3 to 4 Present   

Lamiaceae         

Salvia africana-lutea Sh Ab Round n/a n/a Multicellular NG n/a 

Loranthaceae         

 Septulina glauca Pa One side Rectangular Anomocytic, paracytic and 
brachyparacytic 

2 Present NG Peltate 

Menispermaceae         

 Cissampelos capensis Sh Ad and Ab None (ad); round 
(ab) 

Anomocytic 4 to 5 None   
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Table 8.5 continued 

Family Genus and species Plant 
type 

Leaf  

surface 

Stomata  

shape 

Stomatal  

complex 
Subsidiary and non-
subsidiary cells 

Trichome  

structure 
Trichome 
type 

NG trichome 
shape 

Myoporaceae         

 Myoporum serratum T One side Rectangular Anomocytic 3 to 4 Simple G  

Oxalidaceae         

 Oxalis obtusa H Ab Elliptical Anomocytic 4 to 6 Mullticellular NG Anvil 

Plumbaginaceae         

 Afrolimon purpuratum Sh Ad and Ab Round Cyclocytic 3 to 4 None   

Polygalaceae         

 Nylandtia spinosa Sh One side Round Cyclocytic 3 to 8 Simple NG Attenuate 

Primulaceae         

 Anagalis arvensis H Ad and Ab Rectangular Anomocytic 3 to 4 Simple G  

Rhamnaceae         

Phylica ericoides Sh Ad and Ab n/a n/a n/a None   

Phylica thunbergiana Sh Ad n/a n/a n/a Simple NG Acerate 

Rosaceae         

 Cliffortia filifolia Sh One side Round Anomotetracytic 4 to 5 Simple NG Prickles 

Rutaceae         

 Agathosma sp. Sh Entire leaf Round Anomocytic 5 to 6 Simple NG Attenuate 

Santalaceae         

 Osyris compressa Pa Ab Round to Elliptical Brachyparacytic 2 None   

 Thesidium sp. Pa Stem Rectangular Brachyparacytic and 
amphibrachyparacytic 

2 to 4 None   

Scrophulariaceae         

 Amsinckia calycina H Ad and Ab Elliptical Anomocytic 3 to 4 Simple NG Hirsute 

 Hemimeris racemosa H Ad Rectangular Anomocytic 3 to 4 Simple G  
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Table 8.5 continued 

Family Genus and species Plant 
type 

Leaf  

surface 

Stomata  

shape 

Stomatal  

complex 
Subsidiary and non-
subsidiary cells 

Trichome  

structure 
Trichome 
type 

NG trichome 
shape 

Solanaceae         

Lycium afrum Sh Entire leaf Round to Elliptical Anomocytic 4 Present   

Sterculiaceae         

 Hermannia pinnata Sh Entire leaf Round to Elliptical Anomocytic 4 to 6 Simple to 
four-armed 

G / NG Cruciate 

 Hermannia scabra Sh Ad Round Anomocytic 4 to 5 Seven-armed G / NG Stellate 

Thymelaeaceae         

 Passerina sp. Sh Entire leaf Round to Elliptical Anomocytic to 
anomotetracytic 

4 to 5 None   

 Passerina vulgaris Sh Entire leaf Elliptical Anomocytic 4 to 5 Simple / 
multicellular 

NG Ornithorhync
hous 

 Passerina ericoides Sh Entire leaf Elliptical      

Urticaceae         

 Urtica urens H Ab Elliptical Anomocytic 3 to 4 Simple G / NG Hirsute and 
attenuate  

Zygophyllaceae         

 Zygophyllum morgsana Sh / Su Ad and Ab Elliptical Anomocytic 4 to 7 (ad); 4 to 8 (ab) None   

T = tree, Su = succulent, Sh = shrub, Pa = parasite, H = herb, Ad = adaxial, Ab = abaxial, G = glandular, NG = non-glandular, Simple = unbranched, single-armed 
trichomes, *Two trichome types present, †Trichomes only on abaxial side, #Stomata only present on the abaxial epidermal surface of leaf. 
Chrysanthemoides monilifera is the only plant species with sunken, glandular trichomes. Felicia hyssopifolia and Cliffortia filifolia are the only two species with trichomes 
distributed along the margins of their leaves. More than 80% of stomata were orientated in the same direction for Amsinckia calycina, Anagallis arvensis, Chironia 
baccifera, Oncosiphon suffruticosum and Passerina sp. 
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Table 8.6  Identification key of the Monocotyledoneae 

1(0)  Trichome types   
 Prickles Cynodon dactylon 

 Prickles and macro hairs 2 
 None 4 
 Macro hairs 11 
  Papillae 12 
   
2(1)  Anticlinal walls thin; striate cuticle surface  3 
   
 Anticlinal walls thickened; smooth cuticle surface  Erharta villosa 
   
3(2)  Macro hairs along costal and intercostal zones; 

prickles along leaf margins 
Bromus diandrus 

   

 Macro hairs along costal zones; prickles along 
leaf margins and costal zones 

Avena barbata 

   
4(1)  Anticlinal wall shape   
 Straight 5 
  Sinuous 9 
   
5(4)  Subsidiary cells present; paracytic stomatal 

complex 
6 

   
  Subsidiary cells absent; anomocytic stomatal 

complex 
8 

   
6(5)  Anticlinal walls thin 7 
   

 Anticlinal walls thickened, dark staining Trachyandra divaricata 

    
7(6)  Guard cells dumb-bell shaped; costal and 

intercostal zones distinguished 
Bromus pectinatus 

   

 Guard cells elliptical; no costal and intercostal 
zones 

Albuca flaccida 

   

8(5)  Cuticle surface smooth; parallel arrangement of 
unspecialised epidermal cells 

Cyperus sp. 

  . 
  Cuticle surface striated; random arrangement of 

unspecialised epidermal cells 
Zantedeschia aethiopica 

   

9(4)  Size of inter-stomatal cells relative to costal cells   
 Similar to costal cells Phalaris minor 

 Shorter or similar to costal cells Avena fatua 

 Shorter than costal cells Ficinia nigrescens 

 Longer than costal cells 10 
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Table 8.6 continued 

10(9)  Anticlinal walls thin; dumb-bell shaped guard 
cells; two or three intercostal stomatal rows  

Lolium perenne 

   
  Anticlinal walls thickened; elliptical guard cells; 

one intercostal stomatal row 
Isolepis antarctica 

   
11(1)  Dumb-bell shaped guard cells; costal and 

intercostal zones distinguished; macro hairs on 
leaf margins and intercostal zones 

Chaetobromus dregeanus 

   

 Elliptical guard cells; no costal and intercostal 
zones; macro hairs on leaf margins 

Spiloxene capensis 

   
12(1)  Straight anticlinal wall; striated cuticle; subsidiary 

cells absent; stomatal complex anomocytic 
Asparagus lignosus 

   

 Straight to curved anticlinal wall; cuticle surface 
smooth; subsidiary cells present; stomatal 
complex paracytic 

Thamnochortus spicigerus 

Terminology derived from Brown & Johnson (1962), Ellis (1979), and Dávila & Clark (1990). 
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Table 8.7  Identification key of the Dicotyledoneae 

1(0) Random distribution of epidermal cells; single 
stomatal complex type 

 Anomocytic 2
 Brachyparacytic 8
 Paracytic 12
 Anomotetracytic 13
 Cyclocytic 15
  
 Random distribution of epidermal cells; more than 

one stomatal complex type  
 Anomocytic and anomotetracytic 6
 Anisocytic and anomotetracytic 7
 Anomocytic, paracytic and brachyparacytic 18
   
 Parallel epidermal cells; brachyparacytic and 

amphibrachyparacytic stomatal complex types 
Thesidium sp.

  
2(1) Cuticle surface 
 Smooth 3
 Striate 16
  Wrinkled 21
  
3(2) Trichomes present but not identified  
 Anticlinal walls straight to curved Senecio burchelli
  
 Glandular trichomes  
  Trichomes project above epidermal surface; 

anticlinal walls sinuous 
Hemimeris racemosa

 Sunken glandular trichomes; anticlinal walls 
straight to curved 

Chrysanthemoides monilifera 

  
 Non-glandular trichomes 4
  
 Trichomes absent  5
  
4(3) One trichome shape or specialised trichome type  
 Acerate Trifolium burchellianum 
 Anvil Oxalis obtusa 
 Flagelliform Trichogyne verticilata 
 Hirsute Amsinckia calycina 
 Ornithorhynchous Passerina vulgaris 
 Bladder cells Atriplex semibaccata 

Dorotheanthus sp.
Mesembryanthemum crystallinum 

 Stinging emergences Urtica urens 
  
 Two trichome shapes present  
 Anvil and papillae Psoralea repens 
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Table 8.7 continued 

5(3) Anticlinal wall shape 
 Straight to curved Zygophyllum morgsana, 

Euphorbia mauritanica, 
Manochlamys albicans

  Round to curved Gymnosporia buxifolia
 Curved to sinuous (ad) and sinuous (ab) Sonchus oleraceus
 Straight, slightly curved to undulate Cissampelos capensis
 Sinuous Chironia baccifera
 Straight to curved (ad) and sinuous (ab) Euphorbia peplus
 Curved to undulate Cysticapnos vesicaria
  
6(1) Cuticle surface smooth; trichomes absent; anticlinal 

walls curved to undulate 
Passerina sp.

  
7(1) Cuticle surface smooth; trichomes absent; anticlinal 

walls curved 
Euphorbia burmanii

  
8(1) Cuticle surface smooth 
 Trichomes present 9
 Trichomes absent 10
   
9(8) Non-glandular, flame shaped trichomes Diospyros austro africana
  
10(8) Stomatal polar regions not thickened 11
  
 Stomatal polar regions thickened; anticlinal walls 

curved (epidermal cells appear round) 
Osyris compressa

   
11(10) Anticlinal walls straight to curved (epidermal cells 

appear hexagonal) 
  Carpobrotus edulis, 

Carpobrotus quadrifidus, 
Ruschia macowanii, Ruschia sp.

  
12(1) Leaf epidermal surfaces hypostomatic (ab); cuticle 

surface smooth; non-glandular trichomes 
 Trichome shape hirsute; anticlinal walls 

straight (ad) and curved (ab) 
Rhus laevigata 

 Trichomes rod shaped; anticlinal walls curved Rhus glauca
 Trichomes rod shaped; anticlinal walls straight 

(ad) and curved (ab); cuticle surface smooth 
(ad) and striate (ab) 

Rhus lucida

  
13(1) Non-glandular trichomes  14
  

14(13) Prickles; cuticle surface smooth; anticlinal walls 
curved to undulate  

Cliffortia filifolia 

  
 Serpentine-shaped trichomes; cuticle surface 

smooth to striate; anticlinal walls sinuous 
Helichrysum niveum 
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Table 8.7 continued 

15(1) Cuticle surface smooth; non-glandular, attenuate 
trichomes; anticlinal walls straight to slightly curved  

Nylandtia spinosa 

  
 Cuticle surface lightly striated; trichomes absent; 

anticlinal walls straight to curved 
Afrolimon purpuratum 

  
16(2) Trichomes present and identified 17
  
 Trichomes present but not identified 
 Polar regions of stomata not thickened 
 Anticlinal walls curved Lycium afrum
 Anticlinal walls curved (ad) and curved to 

undulate (ab) 
Geranium incanum 

 Anticlinal walls straight to curved Pteronia uncinata
  
 Polar regions of stomata thickened; anticlinal 

walls straight to curved  
Felicia hyssopifolia

  
 Trichomes absent; polar regions of stomata not 

thickened 
 Anticlinal walls straight to curved Conicosa pugioniformis, 

Tetragonia sp. 
Zygophyllum morgsana

 Anticlinal walls sinuous Asclepadiaceae
  
17(16) Non-glandular trichome shape  
 Attenuate 20
  Flagelliform 
 Anticlinal walls straight to curved (ad); 

straight to sinuous (ab) 
Senecio elegans 

 Anticlinal walls straight to undulate (ad) 
and undulate to sinuous (ab) 

Senecio maritimus, 

 Stellate; anticlinal walls straight to curved Hermannia scabra 
 Cruciate; anticlinal walls straight to curved Hermannia pinnata 
 Filiform with swollen base; anticlinal walls 

straight to curved 
Berkheya armata

  
 Glandular trichomes  19
  

18(1) Cuticle striations overlap a number of cells; non-
glandular, peltate trichomes; anticlinal walls straight 
to curved 

Septulina glauca

  

19(17) Cuticle striations overlap a number of cells; anticlinal 
walls sinuous 

Oncosiphon suffruticosum, 
Anagalis arvensis 

  
 Cuticle striations confined to within a cell; anticlinal 

walls straight to curved 
Myoporum serratum 
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Table 8.7 continued 

20(17) Non-glandular and glandular trichomes; cuticle 
striations overlap a number of cells; stomatal polar 
regions not thickened; anticlinal walls sinuous 

Erodium moschatum

  
 Cuticle striations confined within a cell; stomatal 

polar regions thickened; anticlinal walls straight to 
curved 

Agathosma sp.

  
21(2) Cuticle wrinkled; non-glandular, acerate trichomes; 

anticlinal walls straight to curved  
Cynanchum africanum

  
 Cuticle lightly wrinkled or striate; glandular 

trichomes; anticlinal walls straight to undulate 
Chenopodium album

References to anticlinal or periclinal surfaces concern the unspecialised epidermal cells. 
Terminology derived from Stace (1965), Thurston (1974), Payne (1978) and Leaf Architecture 
Working group (1999). 
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8.6 GLOSSARY  

Abaxial The lower surface of the leaf 

Adaxial The top surface of the leaf 

Anticlinal wall Cell wall giving the cell its shape in surface view. This wall is 

perpendicular to the surface of the leaf. 

Curved The corners where cell walls meet are curved, giving the cell a rounded 

appearance. 

Round The anticlinal wall surrounding the unspecialised epidermal cell has a 

rounded shape. 

Sinuous More than one undulation per cell wall. 

Straight The epidermal cell outline appears straight. 

Undulate Typically only one undulation (one peak and trough) per cell wall. 

Undulations need not be of uniform size. 

Costal cells Epidermal cells above the leaf veins in monocots 

Cuticle The cuticle is composed of cutin and forms a continuous layer over all the leaf 

epidermal cells. 

Hypostomatic Stomata found on either the abaxial or the adaxial side of the leaf but 

never on both sides.  

Intercostal cells Epidermal cells located between the leaf veins of monocots, e.g., the 

Poaceae. 

Periclinal wall Cell wall parallel to the leaf surface, normally lying at 90° to the 

anticlinal wall. 

Smooth The surface of the cell is featureless. 

Striate Parallel grooves located on the cuticle surface. Striations may overlay a 

single epidermal cell, or may stretch over a number of cells. 

Polar regions The areas where the two guard cells end. Some plant species have 

thickened epidermi associated with these areas.  

Stomata The structure responsible for leaf transpiration including both guard cells and 

the stomatal pore. 

Stomatal complex Structure formed by two guard cells and adjacent epidermal cells. 

Amphibrachyparacytic Two subsidiary cells per guard cell, arranged parallel to 

the long axis of the guard cell. They do not enclose the guard cell. 
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GLOSSARY continued 

Anisocytic A single ring of three cells enclosing the guard cells. 

Anomocytic No subsidiary cells surround the guard cells. 

Anomotetracytic Three to five subsidiary cells surround the guard cell. 

Brachyparacytic Two subsidiary cells lie parallel to the long axis of the guard 

cells, but do not completely enclose the guard cells. 

Cyclocytic A single ring of five or more modified cells enclosing the guard cells. 

Paracytic Each guard cell has one or more subsidiary cells that lie parallel to it. 

Stomatal ledge A layer of cuticle encircling a stoma, forming a single rim that encloses 

both guard cells. 

Stomatal shape  

Bar-shaped Rectangular in shape. 

Dumb-bell shaped guard cells Characteristic of the Poaceae and Cyperaceae 

where the guard cells are thin walled along the edges and thickened towards their 

centres. 

Elliptical “Shaped like an ellipse.” (Hornsby 1987) 

Oblong Stomata have an acute (narrow) elliptical shape. 

Round Each guard cell forms a crescent shape around the stomatal pore giving 

the stomata a rounded appearance. 

Subsidiary cells Modified epidermal cells adjacent to the guard cells. 

Trichomes Hair-like groups of cells, projecting markedly out of the epidermis. 

Trichome type: 

Branched Trichome is subdivided to form a more complex structure. 

Simple A trichome composed of a single cell, most commonly shaped like a hair. 

Glandular Possess a secretory function. 

Non-glandular Do not possess any ability to secrete substances. 

Emergence Type of trichome derived from the epidermal and sub-epidermal cell 

layers, e.g., stinging emergences. 

Macro hair Larger than prickles, and normally have modified intercostal long cells 

associated with their bases. 

Papillose Finger-like epidermal projections emanating from the periclinal wall of 

normal epidermal cells. 

Prickles Modified costal cells, which may have a variety of shapes, e.g., sharp 

spines or barbs. Typically, found in the Poaceae and Cyperaceae. 
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GLOSSARY continued 

Trichome shape: 

Acerate Trichome is shaped like a needle. 

Anvil Trichome possesses the form of an anvil. Roughly forming the shape of a T 

with a short base.  

Attenuate A long trichome slowly tapering to a point. 

Bosselated Covered by small protuberances or knobs. 

Cruciate Taking the shape of a cross. 

Filiform Trichomes possess a thread-like appearance. 

Flagelliform Trichomes possess a whip-like shape. 

Flame Spindle-shaped with wavy anticlinal walls. 

Hirsute Trichomes are long and stiff. 

Ornithorhynchous Trichome has the shape of a bird’s beak. 

Peltate Trichomes with flattened heads derived from either a single or a number 

of cells. The trichome may either lack a stalk, being directly attached to the 

epidermis, or may be attached to the epidermis by means of a stalk. 

Rod Blunt-tipped trichomes in the shape of a rod. 

Serpentine The trichome is sinuate in appearance. 

Stellate The trichome is subdivided into the shape of a star. 

Xeromorphic Plants adapted to living in arid conditions and displaying characters such 

as a thick cuticle, spines, and succulence. 

Terminology based on definitions from Stace (1965), Thurston (1974), Payne (1978), Ellis 

(1979), Hornsy (1987), Mauseth (1988), Linder et al. (1990), Yukawa et al. (1992), 

Christophel et al. (1996), Leaf Architecture Working group (1999). 
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8.7 PLATES OF EPIDERMAL CHARACTERS 

8.7.1 Monocotyledoneae 

 
 
 
Family: Araceae     Family: Asphodelaceae 

  

Plate 1: Zantedeschia aethiopica abaxial 
surface (200x): Epidermal cells have a 
random distribution over the leaf’s 
surface. 

Plate 2: Trachyandra divaricata (400x): 
Epidermal cells arranged in costal / 
intercostal zones, as in the Poaceae. 
Stomata occur in the intercostal zones 
and are arranged into three rows 

 
 
 
Family: Cyperaceae  

  

Plate 3: Cyperus sp. adaxial surface 
(200x): The epidermi are not divided into 
costal and intercostal zones. 

Plate 4: Cyperus sp. abaxial surface 
(200x): Elliptical-shaped stomata are 
visible. 
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Family: Cyperaceae - continued 

  

Plate 5: Ficinia nigrescens stem (400x): 
The epidermal cells are clearly divided 
into costal and intercostal zones. 

Plate 6: Isolepis antarctica stem (200x): 
Paracytic stomatal complexes are visible 
in the intercostal zones. 

 
 
 
Family: Hyacinthaceae 

 

  

Plate 7: Albuca flaccida adaxial surface 
(400x): Epidermis is slightly overstained, 
which makes it difficult to identify stomatal 
complexes. Unspecialised epidermal cells 
with straight walls are partially visible. 

Plate 8: Albuca flaccida abaxial surface 
(400x): Paracytic stomatal complexes are 
visible with elliptically shaped stomata. 
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Family: Hypoxidaceae   Family: Poaceae  

  

Plate 9: Spiloxene capensis stem (400x): 
Paracytic stomatal complexes present on 
stem epidermis. 

Plate 10: Avena barbata abaxial surface 
(400x): Prickles only observed in the 
costal zones and on margins of leaves.  

 
 
 
 
Family: Poaceae 

  

Plate 11: Avena barbata abaxial surface 
(400x): Macro hairs only observed on the 
costal zones and not on the leaf margins. 

Plate 12: Chaetobromus dregeanus 
adaxial surface (400x): Trichome base 
cells are visible in the intercostal zones. 
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Family: Poaceae - continued 

  

Plate 13: Cynodon dactylon (200x): The 
leaf epidermis is divided into costal and 
intercostals zones with two stomatal rows 
in the intercostals zones. 

Plate 14: Cynodon dactylon abaxial 
surface (400x): Side view of two angular 
prickles on the leaf margin. 

 
 
 
 
Family: Poaceae 

  

Plate 15: Ehrharta villosa adaxial surface 
(400x): Dumb-bell shaped guard cells 
visible in the intercostal zones. 

Plate 16: Ehrharta villosa abaxial surface 
(400x): Epidermal cells in the intercostal 
zones have curved to sinuous anticlinal 
walls. 
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Family: Restionaceae 

 

Plate 17: Thamnochortus spicigerus stem 
(200x): Thick, dark-staining epidermal 
cells visible on the epidermal surface. 
Light-staining areas are paracytic stomatal 
complexes among the unspecialised 
epidermal cells. 
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8.7.2 Dicotyledoneae 

 
 
Family: Aizoaceae  

  

Plate 18: Carpobrotus edulis leaf (200x): 
Incorrectly stained epidermi highlighting  
the problems encountered with using the 
safranin stain. Brachyparacytic stomatal 
complexes are visible on the epidermal 
preparation. 

Plate 19: Carpobrotus quadrifidus leaf 
(400x): Periclinal surface smooth, with no 
striations. 

 
 
 
Family: Aizoaceae  

  

Plate 20: Mesembryanthemum 
crystallinum leaf (400x): Surface view of a 
trichome modified to form a bladder cell. 

Plate 21: Ruschia macowanii leaf (400x): 
Surface view of brachyparacytic stomatal 
complexes. 
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Family: Aizoaceae - continued 

  

Plate 22: Ruschia sp. leaf (200x): 
Unspecialised epidermal cells with straight 
to curved anticlinal walls. 

Plate 23: Tetragonia sp. abaxial surface 
(200x): Anomocytic stomatal complexes 
visible on epidermal surface. 

 
 
 
Family: Aizoaceae    Family: Anacardiaceae 

  

Plate 24: Tetragonia sp. abaxial surface 
(400x): Unspecialised epidermal cells 
have straight to curved anticlinal walls. 
Light striations confined to epidermal cells 
adjacent to stomata. 

Plate 25: Rhus glauca adaxial surface 
(200x): Dark-staining oval areas are short 
trichomes on the epidermal surface. 
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Family: Anacardiaceae - continued 

  

Plate 26: Rhus glauca abaxial surface 
(200x): Numerous paracytic stomatal 
complexes visible on the epidermal 
preparation. 

Plate 27: Rhus laevigata adaxial surface 
(200x): Stomata absent on adaxial 
epidermal surface. 

 
 
 
Family: Anacardiaceae 

  

Plate 28: Rhus laevigata abaxial surface 
(200x): Paracytic stomatal complexes 
clearly visible. 

Plate 29: Rhus lucida adaxial surface 
(200x): Numerous, tightly packed 
unspecialised epidermal cells visible on 
the epidermal surface. 
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Family: Anacardiaceae - continued   Family: Apocynaceae 

  

Plate 30: Rhus lucida abaxial surface 
(200x): Subsidiary cells stained lighter 
than the surrounding unspecialised 
epidermal cells, which made it easier to 
identify the stomatal complexes. 

Plate 31: Unknown Apocynaceae adaxial 
surface (400x): Numerous irregularly 
shaped, unspecialised epidermal cells 
with sinuous walls visible on the epidermal 
surface.  

 
 
 
Family: Apocynaceae 

  

Plate 32: Unknown Apocynaceae abaxial 
surface (400x): Anomocytic stomatal 
complexes interspersed among 
unspecialised epidermal cells. 

Plate 33: Cynanchum africanum adaxial 
surface (400x): Dark-staining 
unspecialised epidermal cells with straight 
to curved anticlinal walls. 
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Family: Asteraceae 

  

Plate 34: Berkheya armata adaxial 
surface (400x): Numerous unspecialised 
epidermal cells with straight to curved 
anticlinal walls on the epidermal surface.  

Plate 35: Berkheya armata abaxial (400x): 
Epidermal preparation displaying elliptical 
shaped stomata. 

 
 
 
Family: Asteraceae 

  

Plate 36: Chrysanthemoides monilifera 
adaxial surface (200x): Dark-stained 
areas show the locations of sunken 
glandular trichomes 

Plate 37: Chrysanthemoides monilifera 
abaxial surface (200x): Anomocytic 
stomatal complexes visible on the 
epidermal preparation. 
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Family: Asteraceae - continued 

  

Plate 38: Felicia hyssopifolia adaxial 
surface (200x): Unspecialised epidermal 
cells with straight to curved anticlinal 
walls. 

Plate 39: Felicia hyssopifolia adaxial 
surface (400x): Cuticle striations mostly 
confined to unspecialised epidermal cells 
adjacent to stomata.  

 
 
 
Family: Asteraceae 

  

Plate 40: Felicia hyssopifolia abaxial 
surface (200x): Anomocytic stomatal 
complexes visible on the epidermal 
surface. 

Plate 41: Felicia hyssopifolia abaxial 
surface (400x): Cuticle striations overlap a 
number of unspecialised epidermal cells. 

 
 

 

 

 

 



Chapter 7 

 227

Family: Asteraceae (Continued) 

  

Plate 42: Helichrysum niveum leaf surface 
(400x): Epidermal characteristics partially 
obscured by numerous non-glandular, 
whip-like trichomes, which increase the 
difficulty to identify stomatal complexes 
and unspecialised epidermal cells. 

Plate 43: Helichrysum niveum leaf surface 
(400x): Anticlinal walls of unspecialised 
epidermal cells show uneven undulations 
along the anticlinal cell walls, after 
removal of trichomes. 

 
 
Family: Asteraceae 

  

Plate 44: Oncosiphon suffruticosum leaf 
surface (400x): Unspecialised epidermal 
cells have sinuous anticlinal cell walls. 

Plate 45: Oncosiphon suffruticosum leaf 
surface (400x): Large multicellular 
trichome with the tip broken off. 

 
 

 

 

 

 



Chapter 7 

 228

Family: Asteraceae - continued 

  

Plate 46: Senecio burchelli adaxial surface 
(200x): Unspecialised epidermal cells 
have straight to curved anticlinal walls, 
with smooth periclinal surfaces. 

Plate 47: Senecio burchelli adaxial 
surface (400x): Elliptical shaped stomata 
surrounded by unspecialised epidermal 
cells (anomocytic). 

 
 
 
Family: Asteraceae 

  

Plate 48: Senecio elegans adaxial surface 
(200x): unspecialised epidermal cells with 
straight to curved anticlinal walls. 

Plate 49: Senecio elegans abaxial surface 
(200x): Unspecialised epidermal cells with 
straight to sinuous anticlinal walls. 
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Family: Asteraceae - continued 

  

Plate 50: Senecio maritimus adaxial 
surface (200x): Unspecialised epidermal 
cells around anomocytic stomatal 
complexes have straight to slightly 
undulate anticlinal walls 

Plate 51: Senecio maritimus abaxial 
surface (200x): Unspecialised epidermal 
cells with undulate to sinuous anticlinal 
walls. 

 
 
 
Family: Asteraceae 

  

Plate 52: Sonchus oleraceus abaxial 
surface (200x): Unspecialised epidermal 
cells with curved to sinuous anticlinal 
walls. 

Plate 53: Sonchus oleraceus abaxial 
surface (400x): Elliptical shaped stomata 
surrounded by unspecialised epidermal 
cells (anomocytic). 
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Family: Asteraceae - continued 

  

Plate 54: Sonchus oleraceus adaxial 
surface (200x): Unspecialised epidermal 
cells with sinuous anticlinal walls. 

Plate 55: Trichogyne verticillata abaxial 
surface (400x): Unspecialised epidermal 
cells with curved to undulate anticlinal 
walls and smooth periclinal surfaces. 

 
 
 
Family: Chenopodiaceae 

  

Plate 56: Atriplex semibaccata adaxial 
surface (200x): Numerous anomocytic 
stomatal complexes visible. Epidermi 
slightly over-stained but stomatal complex 
type and characteristics of unspecialised 
cells still visible. 

Plate 57: Atriplex semibaccata adaxial 
surface (400x): Increased magnification of 
epidermal areas with anomocytic stomatal 
complexes. Unspecialised epidermal cells 
adjacent to guard cells have smooth 
periclinal walls with straight to curved 
anticlinal walls.  
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Family: Chenopodiaceae - continued 

  

Plate 58: Chenopodium album adaxial 
surface (200x): Unspecialised epidermal 
cells with straight to slightly undulate 
anticlinal walls. 

Plate 59: Chenopodium album adaxial 
surface (400x): Increased magnification of 
anomocytic stomatal complexes highlights 
the absence of subsidiary cells. Guard 
cells stained stronger than the 
surrounding unspecialised epidermal cells.  

 
 
 
Family: Chenopodiaceae   Family: Ebanaceae 

  

Plate 60: Manochlamys albicans abaxial 
surface (400x): Anomocytic stomatal 
complexes on the epidermis. 
Unspecialised epidermal cells have 
smooth periclinal surfaces.   

Plate 61: Diospyros austro-africana 
adaxial surface (400x): Light-staining 
subsidiary cells reveal paracytic stomatal 
complexes on the epidermal preparation. 
Subsidiary cells are irregularly shaped in 
contrast with the subsidiary cells of 
species belonging to the family Poaceae. 
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Family: Ebanaceae - continued   Family: Euphorbiaceae 

  

Plate 62: Diospyros austro-africana 
abaxial surface (400x): Numerous 
trichomes on the epidermis obscure the 
view but paracytic stomatal complexes 
and unspecialised epidermal cells still 
visible.  

Plate 63: Euphorbia burmannii leaf 
surface (400x): Epidermis has rare 
characters, such as anisocytic to 
anomotetracytic stomatal complexes, 
which help to differentiate between 
different plant species. 

 
 
 
Family: Euphorbiaceae 

  

Plate 64: Euphorbia mauritanica leaf 
surface (400x): Guard cells surrounded by 
unspecialised epidermal cells (anomocytic 
complex) with smooth periclinal walls.  

Plate 65: Euphorbia peplus adaxial 
surface (400x): Epidermis has no stomata. 
Unspecialised epidermal cells have 
straight to curved anticlinal walls. 
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Family: Euphorbiaceae - continued   Family: Fabaceae 

  

Plate 66: Euphorbia peplus adaxial 
surface (400x): Unspecialised epidermal 
cells have sinuous anticlinal walls with 
thickening areas along the anticlinal wall, 
characteristic for this species. 

Plate 67: Psoralea repens adaxial surface 
(400x): Epidermis has both papillae and 
anvil-shaped trichomes. Small papillae are 
visible on the periclinal surfaces of most 
unspecialised epidermal cells. The 
presence of both trichome types help to 
separate P. repens from other species.   

 
 
 

Family: Fabaceae    Family Fumariaceae 

 
 

  

Plate 68: Psoralea repens adaxial surface 
(400x): Increased magnification shows the 
straight to curved anticlinal walls of the 
unspecialised epidermal cells, common to 
many different plant species and genera. 

Plate 69: Cysticapnos vesicaria leaf 
surface (200x): Epidermal surface has no 
stomata. The large, unspecialised 
epidermal cells, with curved to undulate 
anticlinal walls, help distinguish C. 
vesicaria from other species. 
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Family: Gentianaceae    Family: Geraniaceae 

  

Plate 70: Chironia baccifera leaf surface 
(200x): Relatively large guard cells 
surrounded by numerous unspecialised, 
sinuous-walled epidermal cells. 

Plate 71: Erodium moschatum leaf surface 
(400x): Over-scraping of the epidermis to 
remove parenchymatous tissue resulted in 
areas devoid of stain. However, it is still 
possible to identify anomocytic stomatal 
complexes and a non-glandular trichome 
on the epidermal surface. 

 
 
 
Family: Geraniaceae 

  

Plate 72: Erodium moschatum leaf surface 
(400x): Numerous unspecialised 
epidermal cells with sinuous anticlinal 
walls visible. 

Plate 73: Geranium incanum abaxial 
surface (400x): Light cuticle striations 
present over the periclinal walls of 
unspecialised epidermal cells. 
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Family: Loranthaceae 

 
 
 
Family: Myoporaceae    Family: Oxalidaceae 

 
 

  

Plate 74: Septulina glauca leaf surface 
(400x): Trichomes were removed to show 
the paracytic to brachyparacytic stomatal 
complexes. 

Plate 75: Septulina glauca leaf surface 
(400x): Peltate trichomes obscure the 
epidermis beneath. Peltate trichomes are 
characteristic to this species.  

  

Plate 76: Myoporum serratum leaf surface 
(400x): Cuticular striations are visible on 
the periclinal surface of unspecialised 
epidermal cells that surround anomocytic 
stomatal complexes. 

Plate 77: Oxalis obtuse adaxial surface 
(400x): Anomocytic stomatal complexes 
surrounded by unspecialised epidermal 
cells with straight to curved anticlinal 
walls. 

 

 

 

 



Chapter 7 

 236

Family: Oxalidaceae (Continued)   Family: Plumbaginaceae 

 
 
 
Family: Plumbaginaceae   Family: Polygalaceae 

 
 

  

Plate 78: Oxalis obtuse abaxial surface 
(400x): Elliptically shaped stomata 
surrounded by four to five unspecialised 
epidermal cells. 

Plate 79: Afrolimon purpuratum adaxial 
surface (400x): Cyclocytic stomatal 
complexes are visible. 

  

Plate 80: Afrolimon purpuratum abaxial 
surface (400x): Cyclocytic stomatal 
complexes are visible. The unspecialised 
epidermal cells stained stronger than the 
subsidiary cells around the guard cells 

Plate 81: Nylandtia spinosa leaf surface 
(400x): A resin filled stoma is visible on 
the epidermal surface 
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Family: Primulaceae 

 
 
 
Family: Rosaceae     Family: Rutaceae 

  

Plate 84: Cliffortia filifolia leaf surface 
(200x): Curved to undulate anticlinal walls 
clearly visible. 

Plate 85: Agathosma sp. (400x): Thick-
walled epidermal cells stained very strong. 

 
 

  

Plate 82: Anagalis arvensis adaxial 
surface (200x): Anomocytic stomatal 
complexes and irregularly shaped 
unspecialised epidermal cells with sinuous 
anticlinal walls. 

Plate 83: Anagalis arvensis abaxial 
surface (200x): Anomocytic stomatal 
complexes and irregularly shaped 
unspecialised epidermal cells with sinuous 
anticlinal walls. 
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Family: Santalaceae      

  

Plate 86: Thesidium sp. stem (400x): 
Amphibrachyparacytic stomatal 
complexes are distributed parallel to each 
other. Epidermal cells display a parallel 
distribution over the epidermal surface. 

Plate 87: Osyris compressa adaxial 
surface (400x): Subsidiary cells do not 
completely enclose stomata 
(brachyparacytic stomatal complexes). 

 
 
 
Family: Scrophulariaceae  

  

Plate 88: Amsinckia calycina adaxial 
surface (200x): Epidermis with stiff hirsute 
trichomes. 

Plate 89: Amsinckia calycina abaxial 
surface (200x): Dark grey areas caused 
by crystallisation of stain on the epidermis 
obscure the periclinal surfaces. 
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Family: Scrophulariaceae - continued 

  

Plate 90: Amsinckia calycina abaxial 
surface (400x): Irregularly shaped 
unspecialised epidermal cells with sinuous 
anticlinal walls. 

Plate 91: Hemimeris racemosa adaxial 
surface (200x): Irregularly shaped 
unspecialised epidermal cells with 
sinuous anticlinal walls and a trichome 
with its glandular tip broken off. 

 
 
 
Family: Scrophulariaceae   Family: Sterculiaceae 

  

Plate 92: Hemimeris racemosa adaxial 
surface (400x): An anomocytic stomatal 
complex surrounded by unspecialised 
epidermal cells. 

Plate 93: Hermannia pinnata leaf 
epidermal surface (400x): Anomocytic 
stomatal complexes on the epidermis. No 
trichomes visible due to epidermal 
scraping. 
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Family: Sterculiaceae - continued   Family: Urticaceae 

  

Plate 94: Hermannia scabra leaf surface 
(200x): Stain crystallisation obscures 
some features but the straight to curved 
anticlinal walls of a few unspecialised 
epidermal cells are partially visible. 

Plate 95: Urtica urens abaxial surface 
(400x): Numerous epidermal cells with 
thin, sinuous anticlinal walls. Epidermal 
cells stained very lightly possibly because 
of the thin walls. 

 
 
 
Family: Urticaceae    Family: Zygophyllaceae 

  

Plate 96: Urtica urens abaxial surface 
(400x): A stinging emergence is clearly 
visible on the epidermis. 

Plate 97: Zygophyllum morgsana adaxial 
surface (400x): Anomocytic stomatal 
complexes visible on the epidermal 
surface. 

 
 

78 
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Family: Zygophyllaceae - continued 

 

Plate 98: Zygophyllum morgsana abaxial 
surface (400x): Elliptical shaped stomata 
visible on the epidermal surface. 
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