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ABSTRACT 
 

Lobelia spicata Lam. (Campanulaceae) is a common prairie species found throughout Illinois.  Its breeding 

system, gynodioecy, is relatively rare, and is characterized by having female and hermaphrodite plant morphs 

coexisting within populations.  Although some data on the reproductive ecology of L. spicata has been gathered, the 

population and breeding system dynamics of this species remain unexplored.   Consequently, a literature review and 

a field study were conducted where population and reproductive output and fitness data were collected for 11 L. 

spicata populations across northern and central Illinois during 2008 and 2009. 

Chapter 1 provides a summary of the literature review and includes the classification of and phylogenetic 

relationships within Lobelia L. for determination of L. spicata’s closest relatives.  Information is also provided on 

breeding system distribution within Lobelia, as well as patterns of variation in pollination type, floral compatibility 

and pollination syndrome for the closest relatives of L. spicata.  It was found that the classification of Lobelia has 

undergone multiple transformations throughout history, but the most recent system divides the genus into 18 

sections based on phenotypic characters, biogeographical patterns and molecular phylogenies.  L. spicata is grouped 

with the 21 other eastern North American species into Lobelia section Lobelia.   Members of Lobelia are exclusively 

synoecious with the exception of section Hypsela, which contains dioecious species, and section Lobelia, which 

contains two gynodioecious species including L. spicata.  For L. spicata’s closest relatives in Lobelia section 

Lobelia, only 6 species out of 22 have had data on pollination type and floral compatibility collected, and among 

those species the combinations are highly variable.  Further, 21 of the 22 species (e.g. L. spicata) are insect-

pollinated with white, blue or purple corollas.  L. cardinalis is the only species exhibiting an avian pollination 

syndrome, most likely due to its large, red flowers.  It was concluded that the construction of comprehensive, 

molecular-based phylogenies for the North American Lobelia as well as additional research on individual Lobelia 

species will increase understanding of breeding system evolution within the genus.   

Chapter 2 examines the population dynamics of L. spicata overall by examining the impact of population size 

and density on reproductive output and fitness measurements.  No relationship was found between population size or 

density and any of the four reproductive measurements across two sampling years with three exceptions.  Population 

size exhibited a marginally significant negative correlation with fruit set in 2008 and a positive correlation with seed 

number per fruit in 2009, while population density was positively correlated with seed number per fruit in 2008.  

Size of L. spicata populations may be having an indirect impact on fruit set and seed number per fruit during 

intermittent years due to its influence on the availability of compatible, out-crossed pollen.  Alternatively, high plant 

density may be linked to increased visitation of flowers by pollinators, causing an increase in the number of seeds 

produced per fruit.  Thus, population dynamics such as size and density could impact future reproductive success 

and population persistence in L. spicata.   

Chapter 3 examines the gynodioecious breeding system of L. spicata to determine if reproductive differences 

exist between plant genders, and if so how those differences are impacted by female frequency and/or gender 

density.  Female plants were found to produce greater fruit sets, seed numbers per fruit and percent seed germination 

than hermaphrodites, though these reproductive gender differences varied among populations and between 2008 and 
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2009.  Female frequency, female density and hermaphrodite density did impact the gender-based reproductive 

measurements, particularly fruit set, presumably due to their influence on pollen quantity and quality.   

Chapter 4 assesses whether two abiotic factors, temperature and precipitation, are driving the relationship 

between female frequency, gender morph density and reproduction measurements across a latitudinal gradient.  

Female frequency within L. spicata populations was negatively correlated with latitude, such that there were higher 

percentages of females in southern than in northern populations.  Temperature is likely the driving force behind the 

latitude/female frequency relationship because it negatively correlated with latitude and positively correlated with 

temperature across sampling years.  However, less precipitation in southern populations during intermittent years 

may also account for some of the latitudinal variation in female frequency.  Gender-based reproductive success 

measurements and female advantage did not correlate with geographic location or abiotic conditions with few 

exceptions.  Both hermaphrodite and female seed biomass and percent seed germination were negatively correlated 

with latitude and positively correlated with temperature.  Thus, stressful conditions such as high temperatures and 

low precipitation may somehow favor the success of female plants within populations of L. spicata, while high 

temperatures result in the production of larger and better germinating seeds by hermaphrodite and female plants.   

In summary, this study has provided detailed information on many aspects of Lobelia spicata’s reproductive 

ecology that was formerly unknown.  By starting with the larger issues of breeding system distribution within 

Lobelia (Chapter 1) and species-level reproductive variation with population size and density (Chapter 2), it was 

possible to critically evaluate trends existing due to L. spicata’s gynodioecious breeding system such as gender 

morph differences and the impact of female frequency and gender morph density on female advantage in 

reproduction (Chapter 3).  Further, formerly unknown patterns of latitudinal variation in female frequency and 

reproduction were uncovered for the species (Chapter 4).  In a broader context, these data could have important 

implications for the management of species with polymorphic breeding systems in the face of global climate change. 
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PHYLOGENETIC CLASSIFICATION AND BREEDING SYSTEMS OF THE  

NORTH AMERICAN Lobelia L. (CAMPANULACEAE) SPECIES 

 

 

ABSTRACT 

 

The breeding system of a plant species describes not only gender distribution among plant morphs (gender 

system), but can also include pollination type, floral compatibility, and pollination syndrome.  Since breeding 

system traits are likely to be genetically inherited, predictions about evolutionary relationships within a family or 

genus can be made by examining variation in breeding system dynamics.  In this literature review, the classification 

of and phylogenetic relationships within Lobelia L. were examined to determine the closest relatives of Lobelia 

spicata Lam. (Campanulaceae), a gynodioecious prairie species.  Breeding system distribution was assessed for 

Lobelia overall, and patterns of variation in pollination type, floral compatibility and pollination syndrome were 

reviewed for the closest relatives of L. spicata.  The classification of Lobelia has undergone multiple 

transformations throughout history, but the most recent system divides the genus into 18 sections based on 

phenotypic characters, biogeographical patterns and molecular phylogenies.  L. spicata is grouped with the 21 other 

eastern North American species into Lobelia section Lobelia.   Members of Lobelia are exclusively synoecious with 

the exception of section Hypsela, which contains dioecious species, and section Lobelia, which contains two 

gynodioecious species including L. spicata.  For L. spicata’s closest relatives in Lobelia section Lobelia, only 6 

species out of 22 have had data on pollination type and floral compatibility collected, and among those species the 

combinations are highly variable.  Further, 21 of the 22 species (e.g. L. spicata) are insect-pollinated with white, 

blue or purple corollas.  L. cardinalis is the only species exhibiting an avian pollination syndrome, most likely due 

to its large, red flowers.  The construction of comprehensive, molecular-based phylogenies for the North American 

Lobelia as well as additional research on individual Lobelia species will increase understanding of breeding system 

evolution within the genus. 

 

 

INTRODUCTION 

 

Angiosperms have evolved to employ a wide range of gender distribution strategies within flowers and 

individual plants.  The broadest way to differentiate between strategies is to classify them as either monomorphic or 

polymorphic (Silverton and Charlesworth 2001).  Monomorphic species, though they may possess flowers of 

varying gender, exhibit the same sexual phenotype in all individuals.  Alternatively, polymorphic species will have 

two or three different plant morphs within a population, where each morph is distinguished by the presence of 

characteristic flower genders.  Plants exhibiting a monomorphic gender system may be classified as synoecious, 

monoecious, gynomonoecious, andromonoecious or trimonoecious (Table 1.1).  Approximately 72% of all 

angiosperms display a synoecious gender system, in which all plants have perfect flowers (Yampolsky and 
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Yampolsky 1922).  Polymorphic plants can be described as dioecious, gynodioecious, androdioecious or trioecious.  

The most prevalent polymorphic gender system is gynodioecy followed closely by dioecy, found in 7% and 4% of 

angiosperms, respectively (Yampolsky and Yampolsky 1922). 

The description of a plant’s breeding system can be expanded to include pollination type, floral compatibility, 

and pollination syndrome.  Pollination type describes whether pollen is donated to the same flower (autogamy), 

different flowers on the same plant (geitonogamy), or different flowers on different plants (xenogamy).  Thus, 

autogamous and geitonogamous plants self-pollinate, while xenogamous plants cross-pollinate.  The floral 

compatibility of a flower can be described as either of two character states, namely self-compatible or self-

incompatible.  A self-compatible flower can produce a zygote using its own pollen while a self-incompatible flower 

cannot.  Pollination syndromes fall into two general categories, namely abiotic or biotic, depending upon the vector 

used for pollen dispersal.  Plants with abiotic pollination syndromes rely mainly on wind and water to serve as 

vectors.  Alternatively, those with biotic mechanisms require pollen to be transferred between individuals within a 

species by some type of live, motile organism (e.g. insects or birds).  The type of pollinator a plant will attract is 

largely dependent upon flower morphology (i.e. size, shape or color) and the type of reward (i.e. nectar or pollen) 

that is offered (Eckhart 1991; Johnson et al. 1995; Williams et al. 2000).   

Lobelia spicata Lam. is an herbaceous, eastern North American prairie species in the Campanulaceae.  Unlike 

the majority of angiosperms, L. spicata exhibits the gynodioecious breeding system (Molano-Flores 2002) where 

carpellate and hermaphroditic flowers are located on separate plants (Table 1.1).  Additionally, the species is 

xenogamous, self-compatible and insect-pollinated (Molano-Flores 2002).  Since breeding system traits are likely to 

be genetically inherited, it is worthwhile to examine the variation in breeding systems exhibited within Lobelia.  

Thus, this literature review has three main objectives: 

(1) Determine the classification of and phylogenetic relationships within Lobelia to identify the closest relatives of 

Lobelia spicata. 

(2) Examine the variation in breeding systems within the entire Lobelia genus. 

(3) Assess whether any patterns exist among the closest relatives of L. spicata in regards to pollination type, floral 

compatibility and pollination syndrome. 

 

 

 

CLASSIFICATION AND PHYLOGENETIC RELATIONSHIPS 

 

Classification of Lobelia - The taxonomic composition of Campanulales, an angiosperm order, has been highly 

variable among classification authorities (Lammers 1992), yet it has consistently retained a group of five key taxa 

including Campanulaceae and Lobeliaceae (Cosner et al. 1994).  Debate exists within the Besseyan or “Big Four” 

(Takhtajan, Cronquist, Thorne and Dahlgren) systems of classification regarding the relationship of Campanulaceae 

to Lobeliaceae, in particular if Lobeliaceae should be assigned a family or subfamily taxonomic ranking.  Two of the 

“Big Four” authorities place Lobeliaceae as subfamily Lobelioideae under Campanulaceae (Cronquist [1988] and 
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Thorne [1992]) while the remaining two recognize Campanulaceae and Lobeliaceae as closely related, yet distinct 

families (Takhtajan [1987] and Dahlgren [1980, 1983]).  Morphological synapomorphies for Campanulaceae and 

Lobeliaceae include protandrous pollen presentation, possession of articulated lactifers, and comparably aggressive 

endosperm haustoria (Lammers 1992).  However, Lobeliaceae’s possession of zygomorphic corollas, 2-locular 

ovaries, and often bilobed stigmas and the complete or partial connation of filaments distinguish its members from 

those of Campanulaceae (Lammers 1992).  An analysis of rbcL sequences of 44 species in 21 genera by Cosner et 

al. (1994) showed that the broad circumscription of Campanulaceae to include Lobeliaceae as a subfamily was 

paraphyletic, unless the genus Nemacladus (currently placed in Cyphiaceae) was also included (Figure 1.1).  

However, the bootstrap value for the clade containing Campanulaceae, Lobeliaceae and Nemacladus was not strong, 

whereas the individual Campanulaceae and Lobeliaceae clades were.  This suggests that Campanulaceae and 

Lobeliaceae should be addressed as separate families.  However Lammers (2007a), among others, still continue to 

address Lobeliaceae as subfamily Lobelioideae Burnett (1835) within Campanulaceae, claiming that the ranking 

issue is “strictly a matter of taste” (Lammers, pers. comm.).  For the purposes of this paper, the subfamily 

designation will be assumed. 

The family Campanulaceae, widely distributed across six continents (Lammers 2007a), is composed of five 

subfamilies including Lobelioideae Burnett, Campanuloideae Burnett, Cyphioideae Walp., Nemacladoideae 

Lammers and Cyphocarpoideae Miers (Lammers 2007b).  The two most abundant subfamilies, Lobelioideae and 

Campanuloideae, contain over 96% of the 2,319 species assigned to Campanulaceae (Lammers 2007b).  Little 

emphasis has been placed on structuring a reliable tribe and subtribe ranking system under Lobelioideae though 

numerous tribes have been proposed for Campanuloideae.  Due to the lack of comprehensive molecular data and 

phylogenetic analysis for both subfamilies, genera are the next accepted level of classification.  Nested within 

Lobelioideae are 29 different genera including the highly diverse and widespread genus Lobelia (Lammers 2007a).  

Of the 416 species in Lobelia, 5.3% and 3.4% of species are found in mainland North America and the Hawaiian 

Islands, respectively.  The remaining species populate areas of Africa, Asia, Australia, South America and the 

Caribbean Islands (Lammers 2011).  

 

 

Sectional Classification in Lobelia - The genus Rapuntium, described by Tournefort, was later renamed Lobelia by 

Linnaeus in 1735 (McVaugh 1936).  Bentham and Hooker (1876) proposed one of the first classification schemes 

for Lobelia, claiming that the entire genus could be divided into eight distinct sections based on habit and a suite of 

morphological characters.  The sections were designated as Trimeris, Tupa, Tylomium, Rhynchopetalum, 

Homochilus, Eulobelia, Hemipogon and Holopogon (Bentham and Hooker 1876).  Under this classification system, 

the majority of North American Lobelia species fell within sections Eulobelia and Hemipogon, characterized by 

their “large short-pedicelled flowers in lax terminal racemes” and “slender, simple or branching stems and few 

flowers”, respectively (Bentham and Hooker 1876).    

McVaugh (1936) later declared the morphological features used by Bentham and Hooker (1876) for sectional 

differentiation to be insignificant.  Based on examination of live and herbarium specimens, McVaugh concluded that 
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a more accurate section classification system of Lobelia could be constructed using seed morphology and 

geographical distribution patterns (McVaugh 1936).  Consequently, McVaugh (1940) published a six section system 

in the form of a dichotomous key that could be used to classify the ninety Lobelia species native to North America.  

The sections were identified as Holopogon Benth. & Hook., Eulobelia Benth. & Hook., Homochilus A.DC., 

Palmerella A. Gray, Hemipogon Benth. & Hook., and Tylomium (Presl) Benth. & Hook.  Each section was 

distinguished by seed shape and surface appearance (i.e. texture, luster), with supplementary information on corolla 

characteristics (i.e. pubescence on lower lip and length), anther/filament tube length, and geographical distribution 

(McVaugh 1940).  With one exception, all Lobelia native to the eastern United States that had previously been 

assigned to section Hemipogon by Bentham and Hooker (1876) were now placed under section Eulobelia with 

Lobelia spicata.  McVaugh (1936) also produced a tree depicting the probable phylogenetic relationships existing 

among 27 species and varieties of Lobelia (Figure 1.2).  Characters used to construct the tree included basal leaf 

arrangement, absence of bracteoles and auricles, a fenestrate corolla and large flowers.  The species were divided 

into two lines based on flower size, namely large and small.  The two branches connected at the bottom of the 

diagram (Lobelia cardinalis, L. siphilitica, L. amoena, L. elongata and L. glandulifera) make up the large-flowered 

line.  Alternatively, small flowers are characteristic of those species (e.g. Lobelia spicata) placed on the upper, 

multi-branched line, with the exception of L. puberula, L. brevifolia and L. glandulosa.  Lobelia dortmanna and L. 

kalmii, two highly specialized species, are depicted as solitary arrows to represent their early divergence from the 

two main ancestral lines.  Though helpful for visualizing relationships, the McVaugh (1936, 1940) classification 

scheme and phylogeny was based on only a few distinctive morphological traits.  Additionally, its scope was limited 

to North American Lobelia species, making it unfit to supersede the Bentham and Hooker (1876) classification. 

The next classification system for Lobelia was outlined by Wimmer (1953).  However, the infrageneric scheme 

he proposed was highly complicated, consisting of three subgenera, ten sections and six subsections (Table 1.2).  

Differentiation between the taxonomic rankings was based predominantly on reproductive traits (i.e. flower shape, 

fruit type and dehiscence), however, like Bentham and Hooker (1876) and McVaugh (1940), geographic distribution 

and habit were also considered.  Most of the North American Lobelia, including Lobelia spicata, were placed under 

subgenus Lagotis section Hemipogon subsection Trachyspermae. 

Bowden (1959) made a slight revision to the Wimmer (1953) classification system by changing the name of 

section Hemipogon subsection Trachyspermae to section and subsection Lobelia in accordance with Article 22 of 

the Code (states that a section containing a genus type specimen should be named after the genus itself) (Table 1.2).  

In addition, Bowden (1959) created a phylogenetic tree for the twenty-one eastern North American species in 

Lobelia section Lobelia (Figure 1.3).  Four distinct lines can be recognized in the diagram, three of which possess 

only a single, morphologically distinct species (i.e. Lobelia dortmanna, L. kalmia and L. inflata).  The early 

evolutionary divergence of L. dortmanna and L. kalmii depicted is in agreement with the rationale of McVaugh 

(1936).  From the fourth line arose three subgroups, referred to as the small-flowered species (Lobelia spicata, L. 

appendiculata, L. gattingeri, L. boykinii, L. canbyi, L. nuttallii and L. feayana), narrow-leaved species (L. 

flaccidifolia, L. glandulosa, L. floridana and L. paludosa) and medium to large flowered species (L. georgiana, L. 

brevifolia, L. puberula, L. siphilitica, L. cardinalis, L. elongata and L. amoena).  As with his predecessors, Bowden 
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(1959) relied heavily on plant morphology and geographical distribution patterns to ascertain evolutionary 

relationships.  All species found within Lobelia section Lobelia were predicted to have arisen from a diploid (2n = 

14) ancestor.    

More detailed examination of seed coat morphology by Murata (1992, 1995) led to a drastic alteration of the 

original classification scheme proposed by Wimmer (1953).  Five distinct seed coat types were identified based on 

number of cell layers and a description of the lumen.  After organizing all species in Wimmer’s classification 

scheme, it was apparent that the type B seed coat appeared in species belonging to four different lineages (Murata 

1995).  Based on the concept of parsimony in phylogenetic relationships, multiple evolution events arriving at the 

same seed coat was highly unlikely.  In response, Murata (1995) proposed a new classification system in which seed 

type B evolved from two rather than four ancestral lines.  Three subgenera were recognized including Lobelia, 

Mezleria and Tupa, and many of the subsections in the Wimmer (1953) classification were given section status for a 

total of fourteen (Murata 1995; Table 1.2).  Distinguishing features such as seed morphology, habit, corolla 

characteristics, chromosome number (Lammers 1993) and geographical distribution were used to create a 

dichotomous key that included each of the subgenera and sections in the Murata (1995) classification system.  As 

with Wimmer (1953) and Bowden (1959), Murata (1995) assigned most of the mainland North American Lobelia 

(including Lobelia spicata) to subgenera Lobelia section Lobelia, while the Hawaiian lobeliads were placed in 

subgenera Tupa sections Revolutella and Galeatella (Table 1.2).  Assignment of the Hawaiian endemics Lobelia 

yuccoides and L. hypoleuca to subgenus Tupa section Revolutella (Murata 1995) was supported based on analysis of 

trnL-F, rbcL and ndhF gene regions (Antonelli 2008; Figure 1.4).  A phylogenetic tree generated from 132 cpDNA 

restriction site mutations, though it excluded subgenus Mezleria due to lack of molecular data, placed subgenus 

Tupa as a more recently derived evolutionary lineage than subgenus Lobelia (Murata 1995; Figure 1.5).  A second 

phylogenetic tree based on sequence analysis and indel variation among gene regions psbA-trnH, trnL-trnF, rpl16, 

trnT-trnL, trnV-trnK and atpB-rbcL showed tight clustering of the Hawaiian Lobelia species (Givnish et al. 2009; 

Figure 1.6).  However, this phylogeny also showed how far removed the Hawaiian endemics were from the eastern 

North American species Lobelia cardinalis, and thus from L. spicata. 

The classification system within Lobelia was further refined by Lammers (2011) through the elimination of 

subgeneric rankings.  Rather, an 18 section classification system was proposed based on phenotypic characters, 

biogeographical patterns and available molecular phylogenies (Lammers 2011; Table 1.3).  Within this classification 

system, Lobelia spicata and the 21 other eastern North American species are included in section Lobelia, while the 

Hawaiian species are divided between sections Revolutella (nine species) and Galeatella (five species). 

In short, the closest relatives of Lobelia spicata appear to be the 21 eastern North American Lobelia species 

grouped into Lobelia section Lobelia.  These taxa have consistently been grouped together throughout the many 

revisions of sectional classification in Lobelia.  Though the Hawaiian Lobelia are located geographically close to the 

eastern North American Lobelia relative to those species found in South America, Africa, Asia and Australia, the 

two groups do not appear to be closely related based on limited phylogenetic evidence.  In the next section of this 

paper the breeding system distribution for Lobelia is discussed, and the pollination types, floral compatibility and  
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pollination syndromes of L. spicata’s closest relatives, the eastern North American species in Lobelia section 

Lobelia, are examined and compared to those found within the less closely related Hawaiian Lobelia species. 

 

 

 

BREEDING SYSTEM DYNAMICS 

 

Breeding Systems in Lobelia - Lobelia species are almost exclusively synoecious, but a few species in sections 

Hypsela and Lobelia do display a polymorphic breeding system (Lammers 2011; Table 1.3).  In section Hypsela, 

species such as Lobelia dioica, L. pedunculata and L. purpurascens are dioecious (Murata 1995).  Alternatively, 

section Lobelia contains two gynodioecious species, Lobelia spicata and L. siphilitica L. (Bowden 1959, Lammers 

2007a, Molano-Flores 2002, Miller and Stanton-Geddes 2004, Mutikainen and Delph 1998; Table 1.4).  Though 

these two species are both assigned to section Lobelia, the phylogenies put forth by McVaugh (1936) and Bowden 

(1959) place them on separate evolutionary lines predominantly due to flower size differences (Figures 1.2 and 1.3).  

As previously stated, these phylogenetic trees were based on a set of characters describing plant morphology, 

geographical distribution and chromosome number rather than molecular evidence.  Morphologically the two 

species are quite distinct, with L. spicata displaying small blue to white flowers in a predominantly single spike 

inflorescence and L. siphilitica possessing large blue to white colored flowers in multiple crowded racemes (Gleason 

and Cronquist 1991).  In any case, parsimony with respect to evolution of the gynodioecious gender system would 

only be reflected if both species were included on one ancestral line rather than two.  To date no phylogenies based 

on molecular data have been published that include both L. spicata and L. siphilitica to resolve this evolutionary 

question. 

It is somewhat unexpected that all thirteen Hawaiian Lobelia found in sections Revolutella and Galeatella 

exhibit a synoecious breeding system (Wagner et al. 1990; Table 1.5), since the Hawaiian Islands are known to have 

a higher incidence of dioecious species than other geographical locations (dioecy displayed by 14.7% of their 

angiosperms).  Perhaps the group’s synoecy is correlated to their avian pollination syndrome (Givnish et al. 2009; 

Wagner et al. 1990) since the evolution of dioecy has been tied to wind pollination in the Hawaiian Islands (Sakai et 

al. 1995b). 

 

 

Pollination Types and Floral Compatibility within Lobelia - Only six of the twenty-two species of Lobelia 

section Lobelia have been examined to determine pollination type and floral compatibility (Table 1.4).  Four of the 

six species (L. boykinii, L. cardinalis, L. siphilitica and L. spicata) were classified as xenogamous.  Alternatively, L. 

dortmanna and L. inflata are autogamous, such that each flower will use its own pollen to form a zygote.  In these 

two species, the stigma and style do not project beyond the anther tube like other Lobelia species, thereby 

preventing cross-pollination (Farmer 1989; Simons and Johnston 2000).  Additionally, the submerged flowers from 

the aquatic L. dortmanna do not open but still produce viable fruit (Farmer 1989).  Of the four xenogamous species, 
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three are self-compatible but have some other mechanism for minimizing geitonomy.  Separation of the gender 

phases within and among flowers could be one potential explanation.  The two autogamous species are, of course, 

self-compatible. 

 

 

Pollination Syndromes within Lobelia - In the case of Lobelia section Lobelia, most species have a biotic 

pollination syndrome that utilizes either insect or avian vectors.  Specifically, all of the eastern North American 

species in section Lobelia (including Lobelia spicata) are insect-pollinated with white, blue or purple corollas, with 

one exception, Lobelia cardinalis.  L. cardinalis has an avian pollination syndrome, most likely due to its large, red 

flowers (Johnston 1991; Table 1.4).   Originally L. cardinalis was predicted to have diverged early in evolutionary 

history (McVaugh 1936), however it has also been labeled as diverging recently from the same ancestral lineage as 

the gynodioecious species L. siphilitica (Bowden 1959).  No molecular work has been published regarding how 

close of a relative L. cardinalis is to L. siphilitica or to any of the other eastern North American Lobelia species.  

The Hawaiian species in sections Revolutella and Galeatella are predominantly thought to be bird-pollinated and 

display a great range in corolla color from crimson to blue/violet to yellow/green (Table 1.5).   

 

 

CONCLUDING STATEMENT 

 

 The classification of Lobelia has undergone multiple revisions throughout history to incorporate new 

information, techniques and species.  Despite this, no molecular phylogenies have been published that include all 

species within the genus.  If sequence analysis could be used to ascertain relationships among all species, it would 

be possible to assess the accuracy of past morphology-based classification systems and phylogenies.  Expansion of 

the research completed on Lobelia species breeding systems combined with more complete phylogenies, particularly 

of the North American species, will allow further study into the evolutionary history behind plant gender systems 

and pollination syndromes.  
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TABLE 1.1 Summary of gender system classification, including both monomorphic and polymorphic strategies 
 

Gender System Description Percent Occurrence* 
 
Monomorphic 
 

  

Synoecious Plants have exclusively perfect flowers 72.0% 
Monoecious Staminate and carpellate flowers are located on the same plant 5.0% 
Gynomonoecious Carpellate and hermaphrodite flowers are located on the same plant 2.8% 
Andromonoecious Staminate and hermaphrodite flowers are located on the same plant 1.7% 
Trimonoecious Staminate, carpellate and hermaphrodite flowers are located on the same plant Very rare 

   
Polymorphic 
   

Dioecious Staminate and carpellate flowers are located on separate plants 4.0% 
Gynodioecious Carpellate and hermaphroditic flowers are located on separate plants 7.0% 
Androdioecious Staminate and hermaphroditic flowers are located on separate plants  Very rare 
Trioecious  Staminate, carpellate and hermaphroditic flowers are located on separate plants  Very rare 
   

*Percentage of angiosperms utilizing each sex system as documented in a large scale study by Yampolsky and Yampolsky (1922) 
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TABLE 1.2  Classification systems proposed by Wimmer (1953), Bowden (1959) and Murata (1995) for Lobelia, including 
subgenus, section and subsection divisions. 

 
Wimmer (1953) Bowden (1959) Murata (1995) 
   
Subgenus Lagotis 

Section Hemipogon 
Subsection Trachyspermae 
Subsection Leiospermae 

Section Holopogon 
Subsection Cryptostemon 
Subsection Delostemon 

Subgenus Lobelia 
Section Lobelia 

Subsection Lobelia 
Subsection Leiospermae 

Section Holopogon 
Subsection Cryptostemon 
Subsection Delostemon 
 

Subgenus Lobelia 
Section Lobelia 
Section Heyneana 
Section Cryptostemon 
Section Delostemon 

Subgenus Mezleria 
Section Eumezleria 
Section Paramezleria 

Subgenus Mezleria 
Section Eumezleria 
Section Paramezleria 

Subgenus Mezleria 
Section Dioica 
Section Pratia 
Section Paramezleria 
Section Isolobus 

 
Subgenus Tupa 

Section Isobulus 
Section Eutupa 

Subsection Primanae 
Subsection Haynaldianae 

Section Rhynchopetalum 
Section Homochilus 
Section Revolutella 
Section Galeatella 

Subgenus Tupa 
Section Isobulus 
Section Eutupa 

Subsection Primanae 
Subsection Haynaldianae 

Section Rhynchopetalum 
Section Homochilus 
Section Revolutella 
Section Galeatella 

Subgenus Tupa 
Section Tupa 
Section Colensoa 
Section Rhynchopetalum 
Section Homochilus 
Section Revolutella 
Section Galeatella 
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TABLE 1.3  Number of species, geographic distribution, breeding system and corolla color characteristic of the 18 Lobelia 
sections recognized by Lammers (2011) (information summarized from Lammers [2011]) 

 

Section Number  
of Species Geographic Distribution Breeding  

System Corolla Color 

     
Delostemon 44 Southern Africa, Tropical Africa, Southern and 

eastern Asia, South America 
Synoecious Shades of blue or purple; sometimes 

pink or white 

Holopogon 14 Africa Synoecious Shades of blue or purple; sometimes 
marked with yellow 

Colensoa 1 New Zealand Synoecious Purple or blue (sometimes pale) 

Cryptostemon 9 New World (Southwestern United States to 
Panama and Peru) 

Synoecious Shades of blue or purple; rarely 
white 

Stenotium 144 Continental North America, Caribbean, South 
America, Africa, Madagascar and the Mascarenes, 
Southern and Eastern Asia 

Synoecious Shades of blue, purple, pink or white 

Lobelia 22 Eastern and Central North America Synoecious 
Gynoecious 

Shades of blue or purple, often with 
a white eye; rarely white or red 

Hypsela 43 Southern and Eastern Asia, Australia, New 
Zealand, Southern South America 

Synoecious 
Dioecious 

Blue, purple, magenta, pink or white 

Mezleriopsis 7 Cape Provinces of South Africa Synoecious Blue, purple, pink or white 

Jasionopsis 1 Cape Provinces of South Africa Synoecious White or purple with several red or 
purple marks on each corolla lobe 

Tylomium 38 North America (Greater and Lesser Antilles and 
Southern Mexico to Panama) 

Synoecious Magenta, pink, red, orange, yellow, 
green or white 

Homochilus 6 New World (Southern Arizona to Southwestern 
Columbia and Peru) 

Synoecious Magenta, purple, red, pink, orange 
or yellow 

Tupa 4 Central Chile Synoecious Red, pink or purple; rarely yellow 

Trimeris 1 St. Helena Synoecious White 

Speirema 4 Southeastern Asia Synoecious Greenish, bluish lilac, red-purple or 
dark violet 

Plagiobotrys 2 Malesia (Borneo, Sulawesi and Flores) Synoecious Purple or red-purple, red or white 

Rhynchopetalum 62 Southern and Eastern Asia, Tropical Africa, South 
America 

Synoecious Shades of blue, purple, red, yellow, 
green or white 

Revolutella 9 Hawaiian Islands Synoecious Blue (when tree habit) and magenta 
(when shrub habit) 

Galeatella 5 Hawaiian Islands Synoecious Pale purple, red, yellow or white 

Total 416    
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TABLE 1.4 Summary of available information on the current name, breeding system (S = synoecious, G = gynodioecious), 
pollination type, compatibility (SI = self-incompatible, SC = self-compatible), pollination syndrome and corolla 
color of the 22 eastern North American species in Lobelia section Lobelia. 

 

Current Name Breeding  
System Pollination Type Compatibility Pollination 

Syndrome Corolla color 

      
L. amoena Michx. S --- --- --- Blue [24] 

L. appendiculata A. DC. S --- --- --- Light violet blue, lilac [24] 

L. boykinii Torr. & A. Gray ex A. DC. S [32] Xenogamous [32] SI [32] Insect [32] Blue, white center [12] 

L. brevifolia Nutt. ex A. DC. S --- --- --- Pale blue to azure [24] 

L. canbyi A. Gray S --- --- --- Blue [12, 24] 

L. cardinalis L. S [15] Xenogamous [27] SC [16] Avian [15, 38] Scarlet [12] 

L. dortmanna L. S [10] Autogamous [10] SC [10] Insect [10] Pale blue or white [12, 24] 

L. elongata Small S --- --- --- Blue [12] 

L. feayana A. Gray S --- --- --- Blue, white eye with two 
green tubercles [24] 

L. flaccidifolia Small S --- --- --- Blue [24] 

L. floridana Chapm. S --- --- --- Blue [24] 

L. gattingeri A. Gray S --- --- --- Light violet-blue or lilac 
[24] 

L. georgiana McVaugh S --- --- --- Violet 

L. glandulosa Walter S --- --- --- Blue with a white eye [12] 

L. inflata L. S [35] Autogamous [35] SC [35] Insect [38] Blue, white [12] 

L. kalmii L. S --- --- Insect [38] Blue, white center [12, 24] 

L. nuttallii Schult. S --- --- --- Blue, white center with 2 
greenish spots [12, 24] 

L. paludosa Nutt. S --- --- --- Light blue, white [24] 

L. puberula Michx. S --- --- --- Blue [12, 24] 

L. reverchonii B. L. Turner S --- --- --- Violet 

L. siphilitica L. G [27] Xenogamous [27] SC [27] Insect [15, 16] Blue, occasionally white 
[12] 

L. spicata Lam. G [27] Xenogamous [27] SC [27] Insect [27] Blue to white [12] 
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TABLE 1.5 Summary of available information on the current names, pollinator (insect or avian) and corolla color of the 
Hawaiian Lobelia species of in sections (A) Revolutella and (B) Galeatella. 

 

(A)  Current Name Pollinator Corolla Color 

   
L. dunbariae Rock --- Lilac, blue [31, 39] 

L. grayana E. Wimm. --- Blue [39] 

L. hillebrandii Rock --- Blue to lilac [31, 39] 

L. hypoleuca Hillebr. Avian [11, 23] Blue [31, 39] 

L. monostachya (Rock) Lammers --- Magenta [39] 

L. niihauensis H. St. John Avian [11] Magenta [39] 

L. oahuensis Rock --- Pale blue [31, 39] 

L. remyi Rock --- Purplish pink [31] 

L. yuccoides Hillebr. Avian [11, 23] Blue to lilac [31, 39] 

 

(B)  Current Name Pollinator Corolla Color 

   
L. gaudichaudii A. DC. --- Crimson, rarely greenish or yellowish white [31, 39] 

L. gloria-montis Rock Avian [11] Yellowish or greenish white with purple stripes [8, 31,39] 

L. koolauensis (Hosaka & Fosberg) Lammers --- White [21] 

L. villosa (Rock) H. St. John & Hosaka Avian [11] Yellowish to greenish white with purple veins [39] 

L. wahiawa Lammers --- Pale purple with dark purple longitudinal stripes [21] 
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FIGURE 1.1  Phylogenetic tree constructed by analyzing rbcL sequences of 44 species (in 21 genera) in the 
Campanulales/Asterales clade.  Numbers above the branches include bootstrap values (in parentheses) and 
changes at each node, and numbers below the branches are decay indices (Figure reproduced from Cosner et al. 
1994) 
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FIGURE 1.2  Early hypothesis of phylogenetic relationships of North American Lobelia species generated using seed 

morphology and geographical distribution patterns (Figure reproduced from McVaugh 1936) 
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FIGURE 1.3  Hypothesis of phylogenetic relationships for 21 species in Lobelia section Lobelia generated using plant 

morphology, geographical distribution patterns and somatic chromosome numbers (presented in parentheses; 
2n) (Figure reproduced from Bowden 1959)  
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FIGURE 1.4 Phylogenetic relationships between species in Campanulaceae subfamily Lobelioideae generated by Bayesian 

inference using trnL-F, rbcL and ndhF gene regions.  Number above branch indicates posterior probability 
values and numbers below each branch are jackknife support values; major clades are designated by brackets 
and are labeled C1 – C8 (Figure reproduced from Antonelli 2008). 
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FIGURE 1.5 Phylogenetic tree for select subgenera and sections of Lobelia under the Murata (1995) classification system 
based on 132 cpDNA restriction site mutations.  Major seed coat types (A-D) and chromosome numbers follow 
species names (Lammers 1993), and bootstrap values (under branches) are also indicated (Figure reproduced 
from Murata 1995) 
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FIGURE 1.6 Phylogenetic relationships among the Hawaiian lobeliads as determined by sequence analysis and indel 

variation of psbA-trnH, trnL-trnF, rpl16, trnT-trnL, trnV-trnK, atpB-rbcL and rbcL DNA sequences.  Jackknife 
value is indicated above branches and posterior probabilities written as percentages are below the branches.  
Lobelia cardinalis was used as an outgroup. (Figure reproduced from Givnish et al. 2009) 
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THE EFFECTS OF POPULATION SIZE AND DENSITY ON REPRODUCTIVE SUCCESS OF  

THE PRAIRIE SPECIES Lobelia spicata Lam. (CAMPANULACEAE) 

 

 

ABSTRACT 

 

 The expansion and dispersal limitations placed on plant populations through habitat fragmentation have 

increased the relative importance of intra-population dynamics (e.g. population size and density) in determining 

species persistence.  Both population size and density have been linked to individual reproductive success and thus 

may influence the overall viability of existing plant populations.  In this study, the impact of population size and 

density on reproductive output and fitness measurements were examined for the prairie species Lobelia spicata Lam. 

(Campanulaceae).  During the summers of 2008 and 2009, data on population size, population density, and 

reproductive output (i.e. fruit set, seed number per fruit, seed biomass) and fitness (i.e. percent seed germination) 

were collected for 11 L. spicata populations across Illinois.  In 2008 and 2009, no relationship was found between 

population size or density and any of the four reproductive measurements with three exceptions.  Population size 

exhibited a marginally significant negative correlation with fruit set in 2008 and a positive correlation with seed 

number per fruit in 2009, while population density was positively correlated to seed number per fruit in 2008.  Size 

of L. spicata populations may be having an indirect impact on fruit set and seed number per fruit during intermittent 

years due to its influence on the availability of compatible, out-crossed pollen.  Alternatively, high plant density may 

be linked to increased visitation of flowers by pollinators, causing an increase in the number of seeds produced per 

fruit.  Thus, population dynamics such as size and density could impact future reproductive success and population 

persistence in L. spicata. 

 

 

INTRODUCTION 

 

 Human-mediated habitat fragmentation poses a major threat to the persistence of plant species due to their 

sessile nature and limited seed dispersal capabilities (e.g. Honnay et al. 1999).  When fragmentation occurs, 

established plant populations become surrounded by a matrix of unsuitable and/or impassable habitat.  This matrix 

prevents the flow of genetic information between populations by acting as a barrier to either pollinator movement 

(Jennersten 1988; Rathcke and Jules 1993; Kwak et al. 1998) or seed dispersal (Benitez-Malvido 1998; Santos et al. 

1999; Herrera and García 2010).  Consequently, persistence of currently established populations through continued 

reproductive success is vital for species preservation (Fischer and Stöcklin 1997).  By examining intra-population 

characteristics linked to plant reproduction such as population size (Lamont et al. 1993; Kéry et al. 2000; Jacquemyn 

et al. 2002; Vergeer et al. 2003; Hansen and Totland 2006) and density (Kunin 1997; Roll et al. 1997; Molano-

Flores and Hendrix 1999; Ågren et al. 2008; Klank et al. 2010), predictions about long-term population viability can 

be made. 
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 Population size often indirectly influences plant reproductive success through its impact on genetic variability 

(Ellstrand and Elam 1993; Young et al. 1996; Reed and Frankham 2003) and/or plant-pollinator interactions 

(Jennersten and Nilsson 1993; Kolb 2008).  In general, as population size decreases, genetic diversity is reduced via 

random genetic drift or inbreeding (Young et al. 1996; Reed and Frankham 2003; Spigler and Chang 2009).  Low 

genetic diversity has been linked to reduced reproductive output and offspring fitness in a number of species (e.g. 

Menges 1991; Dole and Sun 1992; Widen 1993; Heschel and Paige 1995; Fischer and Matthies 1998a), particularly 

self-incompatible species which are obligatory outcrossers and must receive pollen from genetically compatible 

mates in order to reproduce (Byers 1995; Mustajärvi et al. 2001; Leimu et al. 2006).  Population size may also 

influence plant-pollinator interactions and thus the quantity and/or quality of pollen plants receive.  Pollinators are 

typically attracted to the more visually apparent floral displays of large populations for foraging (e.g. Sih and Baltus 

1987; Jennersten 1988; Ågren 1996).  By attracting more pollinators, a large population may increase the probability 

of each individual plant (and flower) receiving sufficient amounts of compatible pollen, thus increasing overall 

reproductive output (Jennersten 1988; Matsumura and Washitani 2000; Kolb 2008).  However, if population size is 

large enough for pollinator saturation (Steven et al. 2003), intraspecific competition among plants may reduce 

pollinator visitation rates per plant (Sõber et al. 2009).  In this scenario, population size may not exhibit a positive 

correlation with reproductive output (Mustajärvi et al. 2001).  Though population size has been linked to plant 

reproductive success, this relationship is highly dependent on species and the reproductive measurement type.     

 The impact of population density on plant reproduction is also highly species and habitat-dependent.  In high 

density populations, some species have greater reproductive output due to either their attractiveness to pollinators 

(Klinkhamer et al. 1989; Kunin 1993; Roll et al. 1997) or establishment in resource-rich environments (Obeso 2002; 

Dainese 2011).  Pollinator abundance, and thus quantity of pollen deposition, has been cited to increase with 

population density due to greater visual appeal and potential for rewards (Dreisig 1995; Nattero et al. 2011).  

Further, the minimal foraging distance between plants in high-density populations encourages xenogamous 

pollination (Krueger and Knapp 1991; van Treuren et al. 1993; Karron et al. 1995), and thus higher pollen quality 

and reproductive success, through increased pollinator movement among plants.  Alternatively, pollinators in sparse 

populations reduce their foraging distance by visiting more flowers on the same plant (Bateman 1956; Field et al. 

2005), thereby increasing geitonogamy and potentially decreasing pollen quality and reproductive output.  The 

covariance of population density with high resource availability may also explain why reproduction can increase 

with conspecific plant density.  Regardless of density, plants located in high quality, nutrient-rich environments are 

cited to have higher reproductive output because they can invest energy into reproduction without becoming 

resource-limited (Breen and Richards 2008; Dainese 2011). Reproduction in other plant species may not be density-

dependent at all due to the overriding effects of intraspecific competition.  As with population size, if population 

density becomes too great an individual plant’s pollinator visitation rate (Mustajärvi et al. 2001) and probability of 

growth and survival (Feldman and Morris 2011) may decrease due to competition with conspecifics. 

 Lobelia spicata Lam. (Campanulaceae) is a gynodioecious, self-compatible species (Molano-Flores 2002) 

commonly found in prairies.  Currently the variation as well as the impact of population size and density on 

reproductive output and fitness for the species is unknown.  This study has three main objectives:  
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(1) Examine differences in Lobelia spicata reproductive output (i.e. fruit set, seed number per fruit and seed 

biomass) and fitness (i.e. seed germination) among populations and between years.  

(2) Assess relationships existing among L. spicata’s reproductive output and fitness measurements. 

(3) Determine if population size and/or population density influences reproductive output and fitness of L. spicata 

plants. 

 

 

MATERIALS AND METHODS 

 

Study system – Lobelia spicata is a short-lived, herbaceous perennial found throughout eastern North America 

(McVaugh 1936) in loess, sandy and loam prairies (Byers et al. 2005).  As previously mentioned, it is a 

gynodioecious species (Molano-Flores 2002) like another member of its genus (i.e. Lobelia siphilitica).  Female and 

hermaphrodite L. spicata plants produce single, terminal raceme inflorescences from May to June (Swink and 

Wilhem 1994).  These racemes contain 2 to 70+ zygomorphic flowers that are approximately 7 to 13mm long 

(Molano-Flores 2002).  Hermaphroditic flowers are protandrous and self-compatible (Molano-Flores 2002).  After 

being pollinated by small bees in the Augochlorella genus (Molano-Flores 2002), L. spicata plants produce capsule 

fruits containing few to over 200 very small seeds. 

 

Population Surveys – During the summers of 2008 and 2009, comprehensive searches were conducted during peak 

flowering time to determine the total number of individuals in 11 Illinois L. spicata populations (Table 2.1).  

Population density was calculated for each of the 11 populations by dividing total population size by the area of each 

population in square meters using ArcMap 9.3.1 (ESRI 2011).  Forty individual plants (both hermaphrodite and 

female of approximately equivalent height) per population were randomly tagged and collected to examine 

reproductive success between years and among populations.  The fruit set of each infructescence was determined by 

dividing the number of mature fruits by the total number of flowers.  Five unopened fruits in the center of each 

infructescence were selected to determine the mean seed number per fruit for each individual.  Seed collected from 

each individual was pooled, and due to the seeds’ small size (< 1mm diameter), 200 were counted out and weighed 

to obtain an estimate of seed biomass.  All seed produced was pooled by population for a total of 11 seed samples.  

Ten petri dishes per population were lined with moist filter paper and 20 seeds were placed in each.  Seed 

germination in a growth chamber set at 21.1°C with a 14 hour photoperiod was recorded three times a week for 12 

weeks.  Total percent seed germination was calculated for each dish and mean values were calculated for each 

population. 

 

Statistical analyses – All statistical analyses were performed using Sigma Stat 3.1 (Systat Software, Inc.).  To 

determine differences between years and among populations in reproductive output (i.e. fruit set, seed number per 

fruit, seed biomass) and fitness (i.e. percent seed germination), multiple 2-way ANOVAs were performed.  A log-

transformation of the seed biomass data allowed it to pass the normality assumption for ANOVA, however none of 
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the transformations (i.e. log(10), log(n+1) and arcsinsqrt) used for fruit set, seed number per fruit and percent seed 

germination resulted in normally distributed data with homogeneity of variances.   For these variables, we 

performed 2-way ANOVAs with ranked values to determine differences between years and among populations (Zar 

1996).  Pearson correlations were used to examine whether population size and/or density was related to the 

reproductive output or fitness variables.   

 

 

RESULTS 

 

Reproductive Success  – There was a significant interaction between population and year for fruit set, seed number 

per fruit, seed biomass and percent seed germination, indicating that the differences among populations for these 

variables were not consistent between 2008 and 2009 (Table 2.2; Figure 2.1).  Mean fruit set for the L. spicata 

populations surveyed was higher in 2008 (�̅� = 0.78 ± 0.07) than in 2009 (�̅� = 0.65 ± 0.14).  Alternatively, the 

number of seeds produced per fruit was slightly lower on average in 2008 (�̅� = 54.3 ± 11.7) than in 2009 (�̅� = 62.8 ± 

13.3).  Seed biomass and percent seed germination were both slightly greater in 2008 (�̅� = 4.4mg ± 0.9 and 19% ± 

19%, respectively) than in 2009 (�̅� = 3.8 ± 0.6 and 13% ± 51%, respectively).   

 Lobelia spicata fruit set, seed number per fruit and seed biomass were not correlated to one another (Table 2.3).  

Alternatively, percent seed germination was negatively correlated with fruit set and seed number per fruit in 2009 (r 

= -0.592 and -0.612, respectively, P < 0.05) though not in 2008 (r = -0.273 and -0.175, respectively, P > 0.010).  

Further, percent seed germination was positively correlated to seed biomass in 2008 (r = 0.761, P < 0.01) and 

marginally so in 2009 (r = 0.566, P < 0.10). 

 

Population Size and Density – In the 11 L. spicata populations surveyed, population size ranged from 203 to 3478 

and from 215 to 5322 plants in 2008 and 2009, respectively (Table 2.1).  There was a significant change in 

population size from 2008 to 2009, with the direction of the change varying among populations (χ2 = 1398.99, df = 

10, P < 0.01).  Population density ranged from 0.01 to 2.66 plants per square meter in 2008 and from 0.02 to 3.64 

plants per square meter in 2009 (Table 2.1).  There was not a significant relationship between population size and 

population density in 2008 or 2009 (r = 0.144 and 0.132, respectively, P > 0.05). 

 Size and density of the L. spicata populations surveyed were not related to any of the reproduction 

measurements (fruit set, seed number per fruit, seed biomass and percent seed germination) in 2008 or 2009 with 

three exceptions (Table 2.4).  A marginally significant negative correlation existed between population size and fruit 

set in 2008 (r = -0.562, P < 0.10).  In 2009, a positive correlation was found between population size and seed 

number per fruit (r = 0.660, P < 0.05).  Lastly, in 2008 population density was positively correlated to seed number 

per fruit (r = 0.658, P < 0.05). 
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DISCUSSION 

 

Reproductive Success – In this study, the reproductive success and fitness of Lobelia spicata was highly variable 

among populations and between sampling years.  Site characteristics could potentially be having a large impact on 

the amount of resources plant populations have available for reproduction.  Specifically, those populations in 

resource-poor environments may be unable to expend as much energy on reproduction as those populations in 

resource-rich environments (Obeso 2002), independent of population dynamics.  Likewise, yearly variation in 

climatic conditions (i.e. temperature and precipitation) may influence resource availability for growth and 

reproduction or pollinator behavior (Vaughton and Ramsey 2010) and thus indirectly affect plant reproductive 

success. 

Relationships existing between select reproductive measurements indicate trade-offs in resource investment.  

Though not significant, there was a trend in L. spicata toward larger seed biomass in populations with lower mean 

fruit set and fewer seeds per fruit during intermittent years.  Consequently, plants may invest more resources per 

seed if they are not expending as much on producing high numbers of fruits or seeds (Kosiński 2010).  Greater seed 

biomass is advantageous as it has been linked to higher percent seed germination in many species (e.g. Oostermeijer 

et al. 1994; Kéry et al. 2000).  In L. spicata, percent seed germination was negatively correlated to fruit set and seed 

number per fruit in one sampling year, but positively correlated to seed biomass in both 2008 and 2009.  Thus, it is 

likely that L. spicata populations producing high fruit set or seed number per fruit will have more seeds available to 

germinate, but those populations that produce low fruit sets or fewer seeds per fruit will exhibit higher percent seed 

germination due to greater maternal resource investment per seed. 

 

Population Size and Density – Variation in population size and density existed among populations and across years 

in Lobelia spicata.  As with reproductive output, population size and density may vary with habitat quality (Dainese 

2011) or display yearly variation due to climatic conditions.  Alternatively, it is important to consider that when 

conducting population surveys for this species, only flowering individuals were counted due to the difficulty of 

locating sterile rosettes.  Thus yearly variation in population size and density could be a product of population age 

structure, where younger individuals have not begun producing a raceme inflorescence, or mature individuals 

choose to flower only during intermittent years.   

Overall, the size and density of L. spicata populations did not impact their levels of reproductive output or 

fitness, with three notable exceptions.   L. spicata population size exhibited a marginally significant, negative 

correlation with fruit set in 2008, but only a non-significant, negative trend in 2009.  Though many species have 

been cited to produce higher fruit sets in large populations (e.g. Lamont et al. 1993; Molano-Flores and Hendrix 

1999; Kéry et al. 2000; Ågren et al. 2008), presumably due to increased pollinator attraction (Sih and Baltus 1987; 

Jennersten 1988; Ågren 1996), other species like L. spicata only demonstrate a weak or non-existent relationship 

between these two variables (e.g. Jennersten and Nilsson 1993; Fischer and Matthies 1998b; Molano-Flores et al. 

1999).  It is possible that individuals in large L. spicata populations experience increased intraspecific competition 
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for environmental resources (Mustajärvi et al. 2001) or pollinators (Sõber et al. 2009) that could mask the positive 

effects on reproduction generally associated with large population size.   

Larger L. spicata populations were shown to produce significantly more seeds per fruit in 2009, with a positive, 

though non-significant trend existing between the two variables in 2008.  A number of other species are cited to 

produce more seeds per fruit in large populations (e.g. Fischer and Matthies 1998b; Jacquemyn et al. 2002; Vergeer 

et al. 2003; Johnson et al. 2004; Waites and Ågren 2004; Hansen and Totland 2006; Winter et al. 2008) though no 

relationship between population size and seeds per fruit has been found for others (e.g. Lamont et al. 1993; Kunin 

1997; Weber and Kolb 2011).  This disparity in seed production between populations of different sizes has often 

been attributed to pollen quantity and quality.  Due to the greater attraction of pollinators (Jennersten and Nilsson 

1993; Kolb 2008) and higher genetic variability (Ellstrand and Elam 1993; Young et al. 1996; Reed and Frankham 

2003) associated with large populations, the probability of receiving compatible, genetically diverse pollen is 

greater. This is particularly important in self-incompatible species (Byers 1995; Mustajärvi et al. 2001; Leimu et al. 

2006), since they are required to outcross.  Though L. spicata is a self-compatible species, its gynodioecious 

breeding system necessitates outcrossing for female plants at least.  Thus, it is highly likely that the quantity and 

quality of pollen are influencing the amount of seeds produced per fruit in this species. 

Density of L. spicata populations was positively correlated to fruit set in 2008, but the two variables displayed 

only a positive trend in 2009.  Positive correlations between population density and fruit set have been found for a 

number of other species (e.g. Platt et al. 1974; Roll et al. 1997; Kéry et al. 2000) due to greater pollinator abundance 

(Dreisig 1995; Nattero et al. 2011) and movement among plants (Krueger and Knapp 1991; Van Treuren et al. 1993; 

Karron et al. 1995).  Increased inter-plant versus intra-plant visitation by pollinators leads to more out-crossed, and 

thus higher quality pollen.  Due to the small flowers and slim raceme inflorescences associated with L. spicata, 

density may be particularly important in the initial attraction of pollinators. 

Seed biomass and percent seed germination were not correlated to population size or density in L. spicata 

populations in either year.  It could be that seed biomass only experiences slight, indirect effects of population size 

and density due to their impact on fruit set and seed number per fruit.  Alternatively, percent seed germination was 

low overall and may not show population size and density effects due to the benign laboratory conditions the seeds 

were grown under. 

In conclusion, though population size and density do appear to have some impact on Lobelia spicata’s 

reproductive success, other population factors may be more influential due to the species’ gynodioecious breeding 

system.  For instance, female plant frequency within gynodioecious populations has been cited to influence the level 

of reproductive advantage (Delph 1990; McCauley and Brock 1998) that females often exhibit over their 

hermaphroditic counterparts (reviewed in Shykoff et al. 2003).  Further, gender-based density measurements may 

have a more pronounced effect on reproduction (Williams et al. 2000) than overall population density.  Thus, 

additional research is required to determine if other population dynamics (i.e. female frequency, female density and 

hermaphrodite density) unique to the gynodioecious breeding system are better predictors of the continued 

reproductive success of L. spicata (see Chapter 3).  
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TABLES AND FIGURES 
 
 
TABLE 2.1  Population size and density (plants per m2) in 2008 and 2009 for 11 Lobelia spicata populations 
 

Site 
Code Population 

Population size  Population density 

2008 2009  2008 2009 

BEA Beaverville Prairie 541 747  0.27 0.37 
BEL Belmont Prairie 445 909  0.02 0.05 
FD1 Falling Down Prairie Site #1 530 724  2.66 3.64 
FD2 Falling Down Prairie Site #2 965 1244  1.36 1.75 
FUL Fulton Prairie 3478 2999  0.13 0.11 
LOD Loda Cemetery Prairie 203 215  0.01 0.02 
MID Midewin National Tallgrass Prairie 222 300  0.02 0.03 
PAX Paxton Cemetery Prairie 1233 2508  0.57 1.16 
PEL Pelville Railroad Prairie 1976 1005  0.55 0.28 
PRO Prospect Cemetery Prairie 209 591  0.03 0.07 
SOM Somme Prairie 3076 5322  0.04 0.07 
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TABLE 2.2  Results of 2-Way ANOVAs examining the effects of year and population on Lobelia spicata fruit set, seed number 
per fruit, seed biomass and percent seed germination. 

 
Variable Source of variation df F P 
Fruit set Year 1 14.329 < 0.001 
 Population 10 56.637 < 0.001 
 Year × Population 10 5.408 < 0.001 
Seed number per fruit Year 1 4.372 < 0.001 
 Population 10 8.960 0.003 
 Year × Population 10 2.208 0.016 
Seed biomass Year 1 14.676 < 0.001 
 Population 10 43.101 < 0.001 
 Year × Population 10 3.080 < 0.001 
Percent seed germination Year 1 41.138 < 0.001 
 Population 10 18.816 < 0.001 
 Year × Population 10 2.707 0.004 
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TABLE 2.3  Pearson correlation coefficients among the four reproduction measurements examined for plants in Lobelia 
spicata populations during summer 2008 and 2009.  P < 0.10 designated by *, P < 0.05 by ** and P < 0.01 by ***. 

 

Reproduction  
Measurements 

Seed number per fruit  Seed biomass  Percent seed germination 

2008 2009  2008 2009  2008 2009 

Fruit set  0.163 0.132  -0.504 -0.032  -0.273 -0.592** 
Seed number per fruit  --- ---  -0.095 -0.483  -0.175 -0.612** 
Seed biomass --- ---  --- ---  0.761*** 0.566* 
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TABLE 2.4  Pearson correlation coefficients between population size or population density and the four reproduction 
measurements collected in 2008 and 2009 for 11 Lobelia spicata populations.  P < 0.10 designated by * and P < 
0.05 by **. 

 

Reproduction 
Measurements 

Population Size  Population Density 

2008 2009  2008 2009 

Fruit set  -0.562* -0.358  0.658** 0.323 
Seed number per fruit  0.303 0.660**  0.053 0.049 
Seed biomass 0.241 -0.324  -0.399 -0.130 
Percent seed germination  -0.225 -0.155  -0.209 -0.153 
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Figure 2.1 Mean reproductive output and fitness measurements (± SE) during summer 2008 and 2009 for 11 Lobelia spicata 

populations (refer to Table 2.1 for population abbreviations).  (A) Fruit set, (B) Seed number per fruit, (C) Seed 
biomass for 200 seeds in milligrams and (D) Percent seed germination. 
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THE IMPACT OF FEMALE FREQUENCY AND GENDER DENSITY ON REPRODUCTIVE GENDER 

DIFFERENCES IN Lobelia spicata Lam. (CAMPANULACEAE), A GYNODIOECIOUS PRAIRIE SPECIES 

 

 

ABSTRACT 

 

Gynodioecious species are characterized by having female and hermaphrodite plant morphs coexisting within 

populations.  Female plants are often at a disadvantage due to their reliance on hermaphroditic pollen donation and 

lower attractiveness to pollinators.  In some gynodioecious species, females compensate for these disadvantages 

through greater reproductive output and progeny fitness.  However, the level of female advantage in reproduction 

may vary based on population dynamics including female frequency and the density of plant genders.  Thus, the 

objective of this study was to determine if reproductive differences exist between plant genders in the gynodioecious 

prairie species Lobelia spicata Lam. (Campanulaceae), and if so how those differences are impacted by female 

frequency and/or gender density.  During the summers of 2008 and 2009, population measurements (i.e. female 

frequency, female density and hermaphrodite density) and reproductive output (i.e. fruit set, seed number per fruit, 

seed biomass) and fitness (i.e. percent seed germination) measurements for both plant genders were obtained for 11 

L. spicata populations located in northern and central Illinois.  Female plants were found to produce greater fruit 

sets, seed numbers per fruit and percent seed germination than hermaphrodites, though these reproductive gender 

differences varied among populations and between sampling years.  Female frequency, female density and 

hermaphrodite density did impact the gender-based reproductive measurements, particularly fruit set, presumably 

due to their influence on pollen quantity and quality.   Future studies should examine how resource availability and 

pollinator behavior varies among gender morphs and populations of varying female frequencies and densities. 

 

 

INTRODUCTION 

 

Gynodioecy, a plant breeding system where populations are composed of female and hermaphrodite plant 

morphs, has been documented in only 543 plant species across 50 families (Jacobs and Wade 2003).  Unlike other 

breeding systems, gender dimorphism in gynodioecious systems occurs at the plant rather than flower level (Shykoff 

et al. 2003; Miller and Stanton-Geddes 2007), with nucleo-cytoplasmic gene interactions controlling gender 

inheritance.  Specifically, the presence and/or absence of cytoplasmic male sterility (CMS) mutations and nuclear 

restorers are responsible for the occurrence of female and hermaphrodite plants within populations (Dudle et al. 

2001).  Female plants will contain at least one CMS mutation, while hermaphrodite plants will either not have a 

CMS mutation, or if they do they will also have the corresponding nuclear restorer to restore male function.   

Though gender dimorphism in gynodioecious plant species does have a genetic basis, ecological factors may 

also aid in the maintenance of two plant genders.  Gynodioecious populations can derive a number of potential 

benefits from the inclusion of female plants due to the females’ ability to produce more flowers (López-
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Villavicencio et al. 2005), larger fruit and seed sets (e.g. Delph 1990; Widén and Widén 1990; Sugawara and Horii 

1995; Koelewijn 1996; Sakai et al. 1997; Gigord et al. 1999), and larger, more quickly-germinating seeds 

(Dulberger and Horovitz 1984; Koelewijn 1996; Manicacci et al. 1998; Gigord et al. 1999) than hermaphrodites 

(reviewed in Shykoff et al. 2003).  Despite these advantages, a female plant’s inability to produce pollen leaves its 

reproductive output entirely dependent upon pollen donation by hermaphrodites.  In addition, lack of nectar and 

smaller flower size (Caruso et al. 2003; reviewed in Shykoff et al. 2003) in female plants may result in reduced 

pollinator visitation (Eckhart 1991; Johnson et al. 1995; Williams et al. 2000), which could limit reproductive 

success (Jennersten 1988; Matsumura and Washitani 2000; Asikainen and Mutikainen 2005; Kolb 2008).  Thus, the 

degree to which female’s superior reproductive success aids in maintenance of their gender is unclear.   

In some species the level of reproductive superiority exhibited by females may vary with female frequency 

(Delph 1990; McCauley and Brock 1998) and to a lesser extent female or hermaphrodite density (Williams et al. 

2000) within a population.  Since female plants are required to outcross with hermaphrodites, high female frequency 

and density or low hermaphrodite density may reduce the number of hermaphrodites (i.e. pollen donors) available or 

in proximity to a female plant, reducing pollination levels and thereby their reproductive success.  Variation in 

female frequency across populations is often high for many gynodioecious species (Koelewijn and Van Damme 

1996; Webb 1999; Alonso et al. 2007; Caruso and Case 2007; Landry et al. 2009) and thus female advantage in 

reproduction may vary greatly among populations. 

Lobelia spicata Lam. (Campanulaceae) is cited as a gynodioecious species (Molano-Flores 2002), however it is 

currently unknown if females possess a reproductive advantage over hermaphroditic plants and if so, how this 

advantage varies based on population dynamics (i.e. female frequency, female density and hermaphrodite density).  

The two objectives of this study are to: 

(1) Examine differences in reproductive output (i.e. fruit set, seed number per fruit and seed biomass) and fitness 

(i.e. seed germination) between female and hermaphrodite plants in Lobelia spicata populations. 

(2) Determine if L. spicata female frequency, female density or hermaphrodite density influences (A) female or 

hermaphrodite reproductive output and fitness or (B) female advantage in reproduction. 

 

 

MATERIALS AND METHODS 

 

Study system – Lobelia spicata is a short-lived, herbaceous perennial that is common in loess, sandy and loam 

prairies (Byers et al. 2005) throughout eastern North America (McVaugh 1936).  It produces a single terminal 

raceme inflorescence that matures acropetally, with flowering and fruiting occurring from May to August (Swink 

and Wilhem 1994).  Each inflorescence contains 2 to 70+ zygomorphic flowers that are approximately 7 to 13mm 

long (Molano-Flores 2002).  The principal pollinators of L. spicata are small bees, the most common being members 

of the Augochlorella genus (Molano-Flores 2002).  It has been cited as a gynodioecious species like another member 

of its genus (i.e. Lobelia siphilitica), and the hermaphrodite plant flowers are protandrous and self-compatible 

(Molano-Flores 2002).  L. spicata produces few to over 200 tiny seeds in capsule fruits. 
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Population Dynamics – During the summers of 2008 and 2009, comprehensive searches were performed in Illinois 

during peak flowering time to determine the population size and female frequency of 11 L. spicata populations 

(Table 3.1).  ArcMap 9.3.1 (ESRI 2011) was used to find the area (in square meters) of land that the L. spicata 

population occupied, and female and hermaphrodite plant density was calculated by dividing the number of female 

or hermaphrodite plants, respectively, by the area of each population.   

 

Reproductive Output and Fitness – Twenty individual plants per gender per population of approximately equivalent 

height were randomly tagged and collected in order to examine reproductive success between genders and among 

populations.  Fruit set was obtained for each individual by dividing the number of mature fruits by the total number 

of flowers.  Seed counts were performed for five unopened fruits in the center of each infructescence to determine 

average seed number per fruit.  Seed was pooled by individual and 200 seeds were counted out and weighed to 

obtain seed biomass due to the small size of the seeds (< 1mm diameter).  Within the 11 populations, all produced 

seed was pooled by maternal parent (female or hermaphrodite) for a total of 22 seed samples.  Five petri dishes per 

gender per population were lined with moist filter paper and 20 seeds were placed in each.  Seed germination in a 

growth chamber set at 21.1°C with a 14 hour photoperiod was monitored three times a week for 12 weeks.  Mean 

percent seed germination values were calculated for seed produced by female and hermaphrodite plants within each 

population.  The level of female advantage (FA) in fruit set, seed number per fruit and seed biomass was calculated 

for each population using Equation 1.  FA was not calculated for percent seed germination due to the extremely low 

(or non-existent) levels of germination exhibited by both plant genders across the populations. 

 

Equation 1   Female Advantage (FA)= Female Reproductive Measurement Mean 
Hermaphrodite Reproductive Measurement Mean

 

 

 

Statistical analyses – All statistical analyses were performed using Sigma Stat 3.1 (Systat Software, Inc.).  A chi-

square test was performed to determine if gender ratio was independent of sampling year and population.  To 

determine differences between genders, among populations and between years in reproductive output (i.e. fruit set, 

seed number per fruit, seed biomass) and fitness (i.e. percent seed germination), multiple 3-way ANOVAs were 

performed.  A log(10)-transformation of the seed number per fruit data and a log(n+1)-transformation of the percent 

seed germination data allowed them to pass the equal variance and normality assumptions, respectively, for 

ANOVA.  None of the transformations (i.e. log(10), log(n+1) and arcsinsqrt) used for fruit set and seed biomass 

resulted in normally distributed data with homogeneity of variances.   For these two variables, we performed 3-way 

ANOVAs with ranked values to determine differences between genders, among populations and between years (Zar 

1996).  Pearson correlations were used to examine whether female frequency, female density or hermaphrodite 

density were related to reproductive output and fitness measurements or female advantage in reproduction.   
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RESULTS 

 

Female Frequency and Gender Density – The frequency of female plants in Lobelia spicata populations ranged 

from 12.8 to 63.4% in 2008 and from 12.2 to 72.8% in 2009 (Table 3.1).  There was not a significant change in 

female frequency from 2008 to 2009 (χ2 = 13.21, df = 10, P > 0.05).  Female plant density ranged from 0.01 to 0.71 

and from 0.01 to 1.05 plants/m2 in 2008 and 2009, respectively, while hermaphrodite plant density ranged from 0.01 

to 1.96 and from 0.01 to 2.59 plants/m2 in 2008 and 2009, respectively.  Female and hermaphrodite densities were 

positively correlated in 2008 and 2009 (r = 0.829 and 0.849, respectively, P < 0.01).  In 2008 and 2009, there was 

not a significant relationship between female frequency and female density (r = -0.107 and -0.189, respectively, P > 

0.10), but there was a marginally significant, negative correlation between female frequency and hermaphrodite 

density (r = -0.535 and -0.521, respectively, P < 0.10). 

 

Reproductive Output and Fitness – Female fruit set was on average 1.2 and 1.4 times higher than that of 

hermaphrodites in 2008 and 2009, respectively (Table 3.2).  Females also produced 1.4 and 1.8 times more seeds per 

fruit than hermaphrodites in 2008 and 2009, respectively (Table 3.2).  Though females did produce a significantly 

greater fruit set and number of seeds per fruit than hermaphrodites overall, the interactions between gender and 

population, gender and year, and population and year were significant, suggesting that female advantage in fruit set 

and seed number per fruit varies among populations and between years (Figure 3.1A and 3.1B; Table 3.3).  Seed 

biomass did not statistically differ between the plant genders; however it did vary among populations and between 

years (Figure 3.1C; Table 3.3). 

 Percent seed germination levels were very low overall in both 2008 and 2009, with only four out of eleven 

populations having any gender/population/year category exceed 40% germination (Figure 3.1D).  Seed produced by 

female plants did germinate at a significantly greater frequency than seed from hermaphrodites (Table 3.3).  There 

was, however, a significant interaction between gender, population and year for percent seed germination, 

suggesting that the degree and direction of the difference between the genders is highly dependent on site and the 

collection year. 

 Regardless of gender, fruit set was not related to number of seeds per fruit, seed biomass or percent seed 

germination nor was the number of seeds per fruit related to seed biomass (Table 3.4).  For females the number of 

seeds per fruit had a marginally significant, negative relationship with the percent of seeds that germinated in 2009 

(r = -0.572, P < 0.10), but not in 2008.  Additionally, female seed biomass had a significant and marginally 

significant positive correlation with percent seed germination in 2008 (r = 0.630, P < 0.05) and 2009 (r = 0.535, P < 

0.10), respectively.  For hermaphrodites, higher seed biomass did tend to result in higher seed germination in 2008 (r 

= 0.389, P > 0.05), and this relationship was significant in 2009 (r = 0.638, P < 0.05).   

 

Impact of Female Frequency and Gender Density on Reproduction – Female frequency was negatively correlated 

with female fruit set in 2009 (r = -0.750, P < 0.01) and with hermaphrodite fruit set in 2008 and 2009 (r = -0.663 and 

-0.665, respectively, P < 0.05; Table 3.5).  Additionally, an increase in female frequency resulted in a significant 
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decrease in the number of seeds per female-produced fruit in 2008 and 2009 (r = -0.662 and -0.598, respectively, P < 

0.05), and a significant increase in biomass of female-produced seed in 2008 (r = 0.608, P < 0.05), but not in 2009 (r 

= 0.108, P > 0.05).  There was a strong positive correlation between female frequency and percent seed germination 

for both genders during intermittent years, however, this may be a product of the extremely low germination levels 

in 7 out of 11 L. spicata populations (Table 3.5). 

Female and hermaphrodite plant densities were not significantly correlated to female or hermaphrodite seed 

number per fruit, seed biomass, or percent seed germination in 2008 and 2009 (Table 3.5).  Female density exhibited 

a marginally significant positive relationship with female fruit set in 2008 (r = 0.546, P < 0.10), and but not in 2009 

(r = 0.475, P > 0.10).  Hermaphrodite density was positively correlated with female fruit set in 2008 and 2009 (r = 

0.706 and 0.637, respectively, P < 0.05) and with hermaphrodite fruit set in 2008 (r = 0.600, P < 0.05) but not in 

2009 (r = 0.084, P > 0.10).  These results suggest that fruit set, particularly of female plants, is relatively greater in 

denser plant populations. 

Overall, female frequency and the density of female and hermaphrodite plants within populations had little 

impact on female advantage in the four reproduction measurements collected (Table 3.6).  However, female 

advantage in seed number per fruit was lower in populations with high female frequency in 2009 (r = -0.646, P < 

0.05), though only a non-significant negative trend existed between the variables in 2008 (r = -0.462, P > 0.10).  

Female density was positively correlated to female advantage in fruit set in 2009 (r = 0.697, P < 0.05), and exhibited 

a positive, non-significant trend in 2008 (r = 0.323, P > 0.10).   

 

 

 

DISCUSSION 

 

Female Frequency and Gender Density – Like many other gynodioecious species (e.g. Plantago coronopus L. 

[Koelewijn and Van Damme 1996], Daphne laureola L. [Alonso et al. 2007] and Lobelia siphilitica L. [Caruso and 

Case 2007]), female frequency was highly variable across Lobelia spicata populations.  However, female frequency 

within populations remained relatively constant from summer 2008 to 2009 despite significant changes in overall 

population size between the two years (see Chapter 2).  Thus, though L. spicata may experience slight variation in 

intra-population female frequency, these data suggest that the species possesses a stable gynodioecious breeding 

system at least in the short term (Asikainen and Mutikainen 2003).  Inter-population variation and intra-population 

consistency in female frequency could be attributed to genetic and/or environmental causes.  Due to the complicated 

nucleo-cytoplasmic gene interactions controlling gender inheritance in gynodioecious species, genetic diversity and 

thus population size (Spigler and Chang 2009) can have a large impact on female frequency within populations.  A 

select number of studies have shown female frequency to increase with population size (e.g. Plantago maritima L. 

[Nilsson and Ågren 2006]) presumably due to an increase in cytoplasmic male sterility (CMS) gene diversity.  

However, L. spicata female frequency and population size were not correlated in 2008 or 2009 (r = -0.021 and -

0.138, respectively, P > 0.10; Ruffatto, unpublished data), suggesting that its populations possess the nuclear 
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restorer genes corresponding to the represented CMS genes.  Alternatively, environmental factors may be more 

influential in determining L. spicata female frequency by promoting the success of a particular gender morph.  

Female plants are often reproductively superior to hermaphrodites under resource-poor conditions (Barrett 1992; 

Costich 1995; Sakai and Weller 1991), and thus their frequency may increase with environmental stress levels.   

Both female and hermaphrodite plant densities were highly variable among populations; however the two 

density measures were positively correlated such that populations with high female density also had high 

hermaphrodite density.  Further, female frequency for L. spicata was not correlated with female or hermaphrodite 

plant density in 2008 or 2009.  These results suggest that female and hermaphrodite plants are comparable in their 

ability to withstand the effects of intraspecific competition for environmental resources, or that resources are not 

limited in these populations making intraspecific competition negligible even under high density conditions.  By 

contrast, other polymorphic species, such as Silene alba (Mill.) Krause, have found female frequency to increase 

with plant density (Doust et al. 1987).  Thus, the relationship between female frequency and gender-based density 

measurements in plants with gynodioecious breeding systems could be both species and habitat quality dependent. 

 

Reproductive Output and Fitness – Female Lobelia spicata plants produced greater fruit sets and a larger number of 

seed per fruit overall than did hermaphrodites.  These trends are consistent with a number of other gynodioecious 

species including Hebe strictissima (Kirk) L.B. Moore (Delph 1990), Glechoma hederacea L. (Widén and Widén 

1990), Plantago coronopus L. (Koelewijn 1996), Schiedea adamantis H. St. John (Sakai et al. 1997) and Thymus 

vulgaris L. (Gigord et al. 1999).  Two different rationales could explain female advantage for these reproductive 

measurements.  First, female plants are able to devote their resources exclusively to fruit and seed production, 

whereas hermaphrodites must allocate some resources away from the manufacture of fruit and seeds in favor of 

pollen production (Delph 1990).  Thus, hermaphrodite fruit and seed production would be lower overall and may 

display a more pronounced decline under resource-poor conditions than females.  Conversely, inbreeding avoidance 

by females due to required xenogamous pollination and/or inbreeding depression in hermaphrodites due to their 

potential for geitonogamous pollination may increase the reproductive advantage females have over hermaphrodites.  

Though the plant genders did differ in fruit and seed production, the amount varied among populations and between 

years.  It is probable that variation in environmental conditions across sites and sampling years indirectly alters 

female reproductive advantage through its impact on resource availability and/or pollinator behavior (Vaughton and 

Ramsey 2010). 

Seed biomass did not differ between the gender morphs, however it did vary among populations and between 

years presumably because of environmental conditions influencing the amount of resources available for 

reproductive investment.  Female advantage in seed biomass has been found for some species (e.g. Plantago 

coronopus L. [Koelewijin 1996], Thymus vulgaris L. [Gigord et al. 1999]), however others like L. spicata have 

exhibited no difference between female and hermaphrodite seed biomass (e.g. Silene vulgaris (Moench) Garcke 

[Jolls and Chenier 1989], Echium vulgare L. [Klinkhamer et al. 1991], Raphanus sativus L. [Miyake et al. 2009]).  

Interspecies variation of female advantage in seed biomass has been tied to whether or not the species produces a 

finite number of seeds.  Generally, gynodioecious species that produce large, variable amounts of ovules will exhibit 
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a female advantage in seed set (e.g. Lobelia spicata), whereas species that produce small, finite amounts of ovules 

will display a female advantage in either fruit production or seed biomass since they have an upper limit on seed 

production per fruit.  In L. spicata, a slight tradeoff was detected between the number of seeds produced per fruit by 

females and female seed biomass.  These trends provide further evidence that female L. spicata plants gain an 

advantage over hermaphrodites in superior seed production than through better seed provisioning. 

Females did exhibit higher percent seed germination than did hermaphrodites under laboratory conditions in L. 

spicata populations, as with other gynodioecious species (e.g. Thymus vulgaris and T. zygis [Manicacci et al. 1998]).  

However, differences among the genders varied significantly among populations and across years.  Further, percent 

seed germination was very low overall, with only 4 of 11 L. spicata populations exhibiting over 40% germination 

for either gender.  Germination chamber conditions may not have been optimal for seed germination in all 

populations (see Chapter 4), thereby contributing to inconsistent population and sampling year trends as well as 

overall low germination rates.  Alternatively, differences in seed biomass among populations may have lead to 

germination differences in both genders, as seed biomass was positively correlated with percent seed germination in 

L. spicata and was highest in those 4 populations with more substantial germination.  Percent seed germination has 

been cited to increase with seed biomass in a number of other studies (e.g. Oostermeijer et al. 1994; Kéry et al. 

2000), due to the better seed provisioning. 

 

 

Impact of Female Frequency and Gender Density on Reproduction – High female frequency in L. spicata 

populations was linked to a reduction in female and hermaphrodite fruits sets, as well as the number of seeds in 

female-produced fruits.  Further, female advantage in the number of seeds produced per fruit decreased with 

increasing female frequency in 2009, though there was only a non-significant trend for this in 2008.  As previously 

mentioned, in gynodioecious species hermaphrodites are the only pollen donors and thus a relative reduction in their 

number or density can result in a reduction in pollen quantity or quality.   For L. spicata females, this could be 

particularly detrimental as they need outcrossed, hermaphroditic pollen in sufficient quantities (McCauley and 

Taylor 1997) or their fruit and seed production will suffer.  Alternatively, a reduction in available pollen may not be 

as critical to L. spicata hermaphrodites since they have the option of selfing,(i.e. geitonogamy) though receiving 

quality (i.e. xenogamous) pollen often results in higher reproductive output.   

Female frequency was positively correlated with female seed biomass and percent seed germination of both 

gender morphs during intermittent years.  As previously mentioned, only 4 of the L. spicata populations surveyed 

exhibited over 40% seed germination and those populations also had the highest percent of females within 

populations as well as the greatest seed biomass.  Since larger seeds have been linked to greater percent seed 

germination in many species, female frequency may be indirectly influencing percent seed germination through its 

impact on seed biomass. 

Female advantage in fruit set increased with female density in 2009, with a non-significant positive trend 

between the two variables in 2008.  It is probable that superior fruit set production by females is resulting in a 

significantly greater amount of female progeny being produced, since L. spicata females have been cited to produce 
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approximately 50% female offspring whereas hermaphrodite maternal parents average around 10% female offspring 

(Byers et al. 2005).  Thus, female advantage in fruit set may be increasing female plant density, rather than female 

density itself driving changes in female advantage.   

In summary, Lobelia spicata does exhibit reproductive differences between gender morphs; specifically females 

have greater fruit sets, numbers of seeds per fruit and percent seed germination than hermaphrodite plants though 

variability does exist among populations and between sampling years.  Additionally, female frequency and to a 

lesser extent gender-based density within populations influences the degree of difference between the two gender 

morphs in reproduction.  Further study on environmental conditions (see Chapter 4) and pollinator behavior among 

L. spicata populations will allow more precise explanations of population dynamics and reproductive gender 

differences. 
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TABLES AND FIGURES 
 
 
TABLE 3.1  Female frequency and female and hermaphrodite density (plants per m2) in 2008 and 2009 for 11 Lobelia spicata 

populations 
 

Site 
Code Population 

Female frequency (%)  Female density  Hermaphrodite density 

2008 2009  2008 2009  2008 2009 

BEA Beaverville Prairie 25.5 25.7  0.07 0.09  0.20 0.27 
BEL Belmont Prairie 36.0 40.2  0.01 0.02  0.02 0.03 
FD1 Falling Down Prairie Site #1 26.6 28.7  0.71 1.05  1.96 2.59 
FD2 Falling Down Prairie Site #2 12.8 12.2  0.17 0.21  1.18 1.54 
FUL Fulton Prairie 31.6 33.8  0.04 0.04  0.09 0.07 
LOD Loda Cemetery Prairie 51.2 60.9  0.01 0.01  0.01 0.01 

MID Midewin National Tallgrass 
Prairie 35.1 38.3  0.01 0.01  0.02 0.02 

PAX Paxton Cemetery Prairie 63.4 53.6  0.36 0.62  0.21 0.54 
PEL Pelville Railroad Prairie 50.3 52.9  0.28 0.15  0.27 0.13 
PRO Prospect Cemetery Prairie 63.2 72.8  0.02 0.05  0.01 0.02 
SOM Somme Prairie 44.1 38.3  0.02 0.03  0.02 0.04 
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TABLE 3.2  Female advantage in fruit set, seed number per fruit and seed biomass in 2008 and 2009 for 11 Lobelia spicata 
populations 

 

Site 
Code 

Fruit set  Seed number per fruit  Seed biomass 

2008 2009  2008 2009  2008 2009 

BEA 1.21 1.05  2.21 1.54  0.71 1.11 
BEL 1.21 1.48  0.80 1.41  1.18 1.15 
FD1 1.21 1.79  1.57 1.32  0.82 1.28 
FD2 1.09 1.41  1.76 3.17  0.78 1.05 
FUL 1.12 1.08  1.64 2.28  0.89 1.20 
LOD 1.16 1.20  0.92 1.12  1.08 0.98 
MID 1.10 1.27  0.96 1.92  0.89 1.24 
PAX 1.40 1.86  1.31 1.96  0.84 0.81 
PEL 1.27 1.70  1.90 1.44  0.98 1.14 
PRO 1.13 1.49  0.98 1.25  0.91 1.12 
SOM 1.35 1.43  1.18 2.19  1.46 0.97 
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TABLE 3.3  Results of 3-Way ANOVAs examining the effects of gender, population and year on Lobelia spicata fruit set, seed 
number per fruit, seed biomass and percent seed germination 

 
Variable Source of variation df F P 
Fruit set Gender 1 141.849 <0.001 
 Population 10 14.381 <0.001 
 Year 1 76.134 <0.001 
 Gender × Population 10 2.532 0.005 
 Gender × Year 1 5.495 0.019 
 Population × Year 10 6.564 <0.001 
 Gender × Population × Year  10 1.270 0.243 
Seed number per fruit Gender 1 58.535 <0.001 
 Population 10 5.370 <0.001 
 Year 1 3.547 0.060 
 Gender × Population 10 2.516 0.006 
 Gender × Year 1 6.542 0.011 
 Population × Year 10 2.696 0.003 
 Gender × Population × Year  10 1.519 0.129 
Seed biomass Gender 1 0.219 0.640 
 Population 10 17.800 <0.001 
 Year 1 49.299 <0.001 
 Gender × Population 10 1.553 0.118 
 Gender × Year 1 7.251 0.007 
 Population × Year 10 3.431 <0.001 
 Gender × Population × Year  10 2.858 0.002 
Percent seed germination Gender 1 5.093 0.025 
 Population 10 83.458 <0.001 
 Year 1 30.435 <0.001 
 Gender × Population 10 3.583 <0.001 
 Gender × Year 1 12.919 <0.001 
 Population × Year 10 5.899 <0.001 
 Gender × Population × Year  10 22.253 <0.001 
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TABLE 3.4  Pearson correlation coefficients among the four reproduction measurements examined for (A) female and (B) 
hermaphrodite plants in Lobelia spicata populations during summer 2008 and 2009.  P < 0.10 designated by * and 
P < 0.05 by **. 

 

(A) 
Seed number per fruit  Seed biomass  Percent seed germination 

2008 2009  2008 2009  2008 2009 

Fruit set  0.019 0.096  -0.401 0.086  -0.073 -0.433 
Seed number per fruit  --- ---  -0.233 -0.507  -0.332 -0.572* 
Seed biomass --- ---  --- ---  0.630** 0.535* 

 

(B) 
Seed number per fruit  Seed biomass  Percent seed germination 

2008 2009  2008 2009  2008 2009 

Fruit set  0.244 -0.024  -0.265 -0.157  -0.250 -0.493 
Seed number per fruit  --- ---  -0.203 -0.307  0.255 -0.209 
Seed biomass --- ---  --- ---  0.389 0.638** 
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TABLE 3.5  Pearson correlation coefficients between female frequency, female density or hermaphrodite density and the eight 
gender-specific (F = female; H = hermaphrodite) reproduction measurements obtained in 2008 and 2009 for 11 
Lobelia spicata populations.  P < 0.10 designated by *, P < 0.05 by ** and P < 0.01 by ***. 

 

Reproduction 
Measurements 

Female Frequency  Female density  Hermaphrodite density 

2008 2009  2008 2009  2008 2009 
F Fruit set -0.398 -0.750***  0.546* 0.475  0.706** 0.637** 
H Fruit set  -0.663** -0.655**  0.148 -0.149  0.600** 0.084 
F Seed number per fruit -0.662** -0.598**  -0.001 -0.063  0.301 0.028 
H Seed number per fruit -0.179 -0.026  -0.535* 0.116  -0.197 -0.011 
F Seed biomass 0.608** 0.180  -0.291 -0.092  -0.513 -0.071 
H Seed biomass 0.462 0.330  -0.016 -0.018  -0.262 -0.168 
F Percent seed germination 0.762*** 0.650**  0.089 0.026  -0.224 -0.195 
H Percent seed germination  0.534* 0.768***  -0.293 0.097  0.293? -0.225 
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TABLE 3.6  Pearson correlation coefficients between female frequency, female density or hermaphrodite density and female 
advantage in four reproduction measurements obtained in 2008 and 2009 for 11 Lobelia spicata populations.  P < 
0.05 by **. 

 

Female Advantage in: 
Female frequency  Female density  Hermaphrodite density 

2008 2009  2008 2009  2008 2009 

Fruit set  0.475 0.230  0.323 0.697**  -0.099 0.454 
Seed number per fruit -0.462 -0.646**  0.349 -0.082  0.374 0.188 
Seed biomass 0.302 -0.285  -0.367 0.052  -0.406 0.253 
Percent seed germination 0.196 -0.415  0.212 -0.057  0.072 0.498 
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Figure 3.1. Mean reproductive output and fitness measurements (± SE) during summer 2008 and 2009 for 11 Lobelia spicata 

populations (refer to Table 3.1 for population abbreviations).  (A) Fruit set, (B) Seed number per fruit, (C) Seed 
biomass for 200 seeds in milligrams and (D) Percent seed germination 
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FEMALE FREQUENCY AND REPRODUCTIVE SUCCESS OF THE GYNODIOECIOUS PRAIRIE 

SPECIES Lobelia spicata Lam. (CAMPANULACEAE) ACROSS A LATITUDINAL GRADIENT 

 

 

ABSTRACT 

 

The high variability in female frequency observed for gynodioecious species has been linked to genetic, biotic 

and abiotic factors among populations and across a latitudinal gradient.  This study focuses on assessing whether 

two abiotic factors, temperature and precipitation, are driving the relationship between female frequency and 

reproduction measurements across a latitudinal gradient for the gynodioecious prairie species Lobelia spicata Lam. 

(Campanulaceae).  Data on latitude, longitude, mean temperature and mean precipitation from May to July (growing 

season), female frequency, female density, hermaphrodite density, reproductive output (i.e. fruit set, seed number 

per fruit, seed biomass) and fitness (i.e. percent seed germination), and female advantage in reproduction were 

collected for 11 populations across Illinois during the summer of 2008 and 2009.  Female frequency within L. 

spicata populations was negatively correlated with latitude, such that there were higher percentages of females in 

southern than in northern populations.  Temperature is likely the driving force behind the latitude/female frequency 

relationship because it negatively correlated with latitude and positively correlated with temperature across sampling 

years.  However, less precipitation in southern populations during intermittent years may also account for some of 

the latitudinal variation in female frequency.  Gender-based reproductive success measurements and female 

advantage did not correlate with geographic location or abiotic conditions with few exceptions.  Both hermaphrodite 

and female seed biomass and percent seed germination were negatively correlated with latitude and positively 

correlated with temperature.  Thus, stressful conditions such as high temperatures and low precipitation may 

somehow favor the success of female plants within populations of L. spicata, while high temperatures result in the 

production of larger seeds, better germinating seeds by hermaphrodite and female plants. 

 

 

INTRODUCTION 

 

 Gynodioecy, or the classification assigned to all joint female and hermaphrodite plant breeding systems, has 

been documented in only 7% of angiosperms (Yampolsky and Yampolsky 1922).  Unlike other breeding systems, 

gender dimorphism in gynodioecious systems occurs at the plant rather than flower level, such that there are 

separate female and hermaphrodite plants found within populations.  Female plants within populations are unable to 

produce pollen necessitating their dependence on hermaphroditic pollen donation, and may suffer from lower 

pollinator visitation due to their lack of nectar incentives and smaller mean flower size (Asikainen and Mutikainen 

2005).  It has been suggested that female plants may compensate for these deficiencies by producing more flowers, 

larger fruit and seed sets, and larger, more quickly-germinating seeds than their hermaphroditic counterparts 

(Ashman 1992; Kohn 1989).  The degree to which females’ superior reproductive success aids in maintenance of 
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their gender is unclear, especially since the level of reproductive superiority may change according to the female 

frequency (Delph 1990b; McCauley and Brock 1998; Shykoff et al. 2003), female density or hermaphrodite density 

(Doust et al. 1987; Williams et al. 2000) of the given population (see Chapter 3).   

 Female frequency and gender morph density is often highly variable in gynodioecious populations (Alonso et 

al. 2007; Caruso and Case 2007; Koelewijn and Van Damme 1996; Landry et al. 2009; Webb 1999).  Though the 

genetics behind gender inheritance in gynodioecious species (i.e. nucleo-cytoplasmic gene intractions) has been 

suggested to cause female frequency and gender morph density variation, ecological factors may also play a role.  

For instance, abiotic factors such as precipitation and temperature may promote the success of one gender morph 

over the other in different environments, thereby altering its abundance or density.  Female plants have often been 

found to be reproductively superior to hermaphrodites when in stressful, resource poor environments (Barrett 1992; 

Costich 1995; Sakai and Weller 1991).  One potential reason for this is differential resource allocation between the 

two genders.  While hermaphrodites must use their resources to produce both pollen and fruit, females only need 

resources to produce fruit, making them less susceptible to resource limitation than hermaphrodites (Delph 1990a).  

As a result, female frequency is often higher in areas with low precipitation (Ashman 1999; Costich 1995; Cuevas et 

al. 2005; Wolfe and Shmida 1997).  However, the definition of stressful conditions in regards to temperature has 

been found to vary depending on the life history of the gynodioecious species in question.  Some species display a 

positive correlation between the percent of females in a population and temperature where warmer temperatures are 

more stressful and thus better suited to female plants (Alonso and Herrera 2001; Caruso and Case 2007; Vaughton 

and Ramsey 2004).  Others display a strong negative relationship such that colder temperatures favor female success 

and/or superiority over hermaphrodites (Asikainen and Mutikainen 2003, Puterbaugh et al. 1997). 

 Abiotic factors such as temperature and precipitation are known to vary in predictable ways across the 

geographic landscape.  Thus, predictions about female frequency within populations of a gynodioecious species 

could be made strictly by geographic location if the study populations are spread over a sufficient latitudinal or 

longitudinal range (Cuevas et al. 2008).  A number of studies have been conducted on individual polymorphic 

species (e.g. Lobelia siphilitica [Caruso and Case 2007]) to examine the relationship between latitude and female 

frequency (Alonso et al. 2007; Van Rossum and Prentice 2004).  The latitudinal ranges of these studies vary 

anywhere from 1.9° to 12° latitude and are mostly restricted to a particular country.   

 Lobelia spicata Lam. (Campanulaceae) is a gynodioecious prairie species (Molano-Flores 2002) that exhibits 

high variation in female frequency across populations (2-85%, Byers et al. 2005).  Currently it is unknown if female 

frequency or gender morph density variation in the species is related to geographic location and/or abiotic 

conditions.  Since female frequency and to some extent female and hermaphrodite plant density have been linked to 

reproductive success in both L. spicata gender morphs (see Chapter 3), it is necessary to determine what factors are 

most influential in determining these population dynamics.  Thus, this study has three main objectives: 

(1) Examine the strength of the relationship between geographic location (i.e. latitude and longitude) and abiotic 

conditions (i.e. temperature and precipitation) in Illinois. 
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(2) Determine if female frequency, female density or hermaphrodite density of Lobelia spicata populations are 

correlated to geographic location (i.e. latitude and longitude) and/or abiotic conditions (i.e. temperature and 

precipitation). 

(3) Assess whether L. spicata reproductive output and fitness measurements are correlated to abiotic conditions (i.e. 

temperature and precipitation). 

 

 

METHODS 

 

Study Species – Lobelia spicata is a short-lived, herbaceous perennial that is common in loess, sandy and loam 

prairies (Byers et al. 2005) throughout eastern North America (McVaugh 1936).  Its terminal raceme inflorescence 

matures acropetally, with flowering and fruiting occurring from May to August (Swink and Wilhem 1994).  Each 

inflorescence will contain 2 to 70+ zygomorphic flowers that are approximately 7 to 13mm long (Molano-Flores 

2002).  The principal pollinators of L. spicata are small bees, the most common being members of the Augochlorella 

genus (Molano-Flores 2002).  Molano-Flores (2002) determined that this species is gynodioecious like another 

member of its genus (i.e. Lobelia siphilitica).  Flowers on hermaphroditic plants are protandrous and self-compatible 

(Molano-Flores 2002).  Few to over 200 tiny seeds are encased within L. spicata’s capsule fruits. 

 

Data Collection – During the summer of 2008 and 2009, comprehensive searches were conducted to obtain total 

population size and female frequency for 11 Lobelia spicata populations across Illinois (Table 4.1).  Female and 

hermaphrodite density were calculated for each population by dividing the number of female or hermaphrodite 

plants, respectively, by the area of each population in square meters using ArcMap 9.3.1 (ESRI 2011).  Mean 

temperature and precipitation measurements during the growing season (May through July) were obtained for each 

population from the Illinois State Water Survey weather station in the closest proximity to the site 

(http://www.isws.illinois.edu/data/climatedb/).  Twenty infructescences for each gender per population were 

collected and examined to obtain fruit set, seed number per fruit and seed biomass measurements (see Chapter 3).  

Percent seed germination was determined at 21.1°C with a 14 hour photoperiod for seed produced by female and 

hermaphrodite plants within each population.  The level of female advantage (FA) in fruit set, seed number per fruit, 

seed biomass and seed germination was calculated for each population using Equation 1.   

 

Equation 1   Female Advantage (FA)= Female Reproductive Measurement Mean 
Hermaphrodite Reproductive Measurement Mean

 

 

Statistical Analysis – Sigma Stat 3.1 (Systat Software, Inc.) was used to conduct all statistical analyses.  A chi-

square test was performed to determine if female frequency was independent of population and sampling year.  

Pearson correlations were used to detect relationships among latitude, longitude, mean temperature and mean 

precipitation (May to July), population size, female frequency, female density, hermaphrodite density, reproductive 
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output (i.e. fruit set, seed number per fruit, seed biomass) and fitness (i.e. percent seed germination) measurements 

and female advantage in reproduction.  

 

RESULTS 

 

Geographic Location and Abiotic Conditions - There was a 1.78° difference in latitude between the northernmost 

(Falling Down Prairie Site 2) and southernmost (Paxton Railroad Prairie) Lobelia spicata populations surveyed 

(Table 4.1).  In May to June, mean temperature ranged from 18.37 to 21.02°C and from 18.09 to 20.74°C in 2008 

and 2009, respectively, while mean precipitation ranged from 8.70 to 16.48 and from 9.29 to 15.72 centimeters in 

2008 and 2009, respectively.  Latitude had a strong negative correlation with temperature in both 2008 and 2009 (r = 

-0.822 and -0.896, respectively, P < 0.01), but was not correlated with precipitation in 2008 or 2009 (r = -0.453 and -

0.456, respectively, P > 0.10).  Longitude was not significantly correlated with temperature or precipitation in 2008 

and 2009 (Pearson, P > 0.10).  Temperature and precipitation exhibited a marginally significant positive correlation 

in 2008 (r = 0.573, P < 0.10), but not in 2009 (r = 0.382, P > 0.10). 

 

Female Frequency and Gender Morph Density - The frequency of female plants in L. spicata populations ranged 

from 12.8 to 63.4% and from 12.2 to 72.8% in 2008 and 2009, respectively (Table 4.2).  No significant change in 

female frequency within populations was found from 2008 to 2009 (χ2 = 13.21, df = 10, P > 0.05).  The correlation 

coefficients between latitude, longitude, temperature or precipitation and female frequency, female density and 

hermaphrodite density are summarized in Table 4.3.  Latitude was negatively correlated with female frequency in 

both 2008 and 2009 (r = -0.764 and -0.781, respectively, P < 0.01), such that relatively higher proportions of 

females are found in southern as opposed to northern sites.  Longitude had a marginally significant, negative 

correlation with female frequency in 2008 and 2009 (r = -0.556 and -0.559, respectively, P < 0.10).  Female 

frequency was positively correlated with temperature in both 2008 and 2009 (r = 0.832 and 0.791, respectively, P < 

0.01), but was not correlated to precipitation in either year.  Female and hermaphrodite densities were not related to 

any of the geographic location or abiotic condition variables in 2008 or 2009. 

 

Impact of Geographic Location and Abiotic conditions on Reproductive Output and Fitness – Geographic 

location (i.e. latitude and longitude) and abiotic conditions (i.e. temperature and precipitation) were not correlated 

with L. spicata hermaphrodite and female reproductive output with a few exceptions (Table 4.4).  In 2008 and 2009, 

hermaphrodite seed biomass was negatively correlated with latitude (r = -0.682 and -0.693, P < 0.05) and positively 

correlated with temperature (r = 0.755 and 0.738, P < 0.01, respectively).  Further, hermaphrodite percent seed 

germination was negatively correlated with latitude (r = -0.770, P < 0.01) and positively correlated with temperature 

(r = 0.868, P < 0.01) in 2009, but only marginally so in 2008 (r = -0.575, P < 0.10 and r = 0.488, P > 0.10, 

respectively).   

 Female seed biomass had a marginally significant, negative correlation with latitude in 2009 (r = -0.579, P < 

0.10) as well as a marginally significant, positive correlation with temperature in 2008 and 2009 (r = 0.592 and 
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0.549, respectively, P < 0.10).  In both 2008 and 2009 female percent seed germination was negatively correlated 

with latitude (r = -0.780 and -0.722, respectively, P < 0.05) and positively correlated with temperature (r = 0.895 and 

0.766, respectively, P < 0.01).  Additionally, female percent seed germination was positively correlated with 

precipitation in 2008 (r = 0.664, P < 0.05), and marginally so in 2009 (r = 0.529, P < 0.10).  

 Female advantage in the reproductive output and fitness measurements was not significantly correlated to 

latitude, longitude, temperature or precipitation in 2008 and 2009 with one exception (Table 4.4).  Female advantage 

in number of seeds per fruit was positively correlated with longitude in 2009 (r = 0.762, P < 0.01), such that there 

was an increase in female advantage in number of seeds per fruit moving from east to west. 

 

 

DISCUSSION  

 

Female Frequency and Gender Morph Density - The results of this study support the assertion that female 

frequency in the gynodioecious prairie species Lobelia spicata varies along a latitudinal gradient.  More specifically, 

female frequency in L. spicata populations was lower at northern as opposed to southern latitudes, and thus followed 

a similar pattern as a related species, Lobelia siphilitica L. (Caruso and Case 2007).  Though only a small latitudinal 

range was examined in this study (1.78°), the observed patterns were very strong.  Further, Miller and Stanton-

Geddes (2007) found female frequency to be low in two Massachusetts L. spicata populations (12.3 and 12.4% 

females).  Thus, it is expected that if the latitudinal range of this study were expanded, a negative correlation 

between latitude and female frequency would still be found.  Female frequency also displayed a marginally 

significant, negative correlation with longitude across sampling years.  This pattern is likely a byproduct of the 

uneven sampling of populations longitudinally across Illinois; the majority of L. spicata populations surveyed were 

located in central to eastern Illinois, while the two most northern populations (FD1 and FD2) were on the western 

side of the state. 

 Two abiotic factors that generally vary with latitude, namely temperature and precipitation, were put forth as 

possible explanatory factors for the observed gender ratio variation across latitudes.  Mean precipitation from May 

to July did not decrease in the predicted fashion moving from north to south, however temperature varied such that 

southern sites experienced warmer temperatures during the growing season of L. spicata (May through July).  In 

both 2008 and 2009 the percent of females in L. spicata populations displayed a strong positive correlation with 

temperature, indicating that the warmer temperatures of southern sites might promote the success and increase the 

relative amount of female plants in populations through increased photosynthate production.  Of the two abiotic 

climate factors examined, temperature is likely driving the negative relationship between percent females and 

latitude since it had a strong positive relationship with gender ratio across sampling years, while precipitation did 

not.  A number of other gynodioecious species display this trend including Lobelia siphilitica (Caruso and Case 

2007), Daphne laureola L. (Alonso and Herrera 2001) and Wurmbea biglandulosa (R.Br.) T.D. Macfarl. (Vaughton 

and Ramsey 2004).  Less precipitation in southern populations during intermittent years may also account for some 

of the latitudinal variation in female frequency within Lobelia spicata populations.  Though the negative trends with 



57 
 

precipitation were not strong, the periodic stress caused by lack of precipitation may be enough to either promote 

female plant success or be detrimental to hermaphrodite survival and reproduction.   

 Female and hermaphrodite densities did not vary with geographic location, temperature or precipitation in L. 

spicata populations, suggesting that both gender morphs are not limited by these resources or are tolerant of some 

intraspecific competition.  However, it must be noted that calculation of gender morph density at the population 

level may not provide an accurate representation of density conditions in L. spicata populations due to their patchy 

plant distribution.  Further, female L. spicata plants have often been observed to grow in unisexual patches, whereas 

hermaphrodites will co-occur in patches with scattered female plants (Ruffatto, per. obs.).  In this case microhabitat 

conditions (i.e. soil nutrients and moisture) within plant patches in addition to seed dispersal patterns may be more 

influential in determining gender morph density. 

 

Impact of Geographic Location and Abiotic Conditions on Reproduction – In L. spicata, the relationships between 

geographical location, abiotic conditions and reproduction measurements of the two genders were almost non-

existent except for seed biomass and percent seed germination.  Further, the level of female advantage in the 

reproduction measurements also did not show a trend with geographic location or abiotic conditions with one 

exception.  Female advantage in number of seeds per fruit did increase moving from east to west, possibly due to 

differences in resource availability or pollinator behavior.  Overall though, mean temperature and mean precipitation 

during the growing season are not affecting reproductive output in L. spicata.  The gender morphs may not be 

resource limited under these abiotic conditions or they could be able to withstand some intraspecific competition for 

resources without showing significant reductions in reproductive success. 

 However, hermaphrodite seed biomass was negatively correlated with latitude and positively correlated with 

temperature across sampling years, such that seed biomass increased moving from cooler, northern latitudes to 

warmer, southern latitudes.  Female seed biomass also exhibited a negative trend with latitude and a marginally 

significant, positive correlation with temperature.  These relationships are consistent with other studies (e.g. Dainese 

2011) including a meta-analysis on latitude and seed biomass, where seed biomass was found to increase closer to 

the tropics (Moles and Westoby 2003).  It may be that higher temperatures incur greater metabolic costs, 

necessitating larger, better provisioned seeds to ensure successful germination (Lord et al. 1997).  Alternatively, 

higher temperatures may result in the production of more photosynthates by hermaphrodites and females, resulting 

in increased resource availability for the production of larger seeds (Murray et al. 2004).  Hermaphrodite percent 

seed germination increased with decreasing latitude and increasing temperature in only 2008.  Alternatively, female 

percent seed germination was negatively correlated with latitude and positively correlated with temperature in both 

sampling years.  It is probable that latitude and temperature have an indirect effect on hermaphrodite and female 

seed germination through their impact on seed biomass, as heavier seeds often exhibit greater germination in Lobelia 

spicata (see Chapter 3) and other species (e.g. Festuca hallii (Vasey) Piper [Qiu et al. 2010]). 

 In conclusion, this study has shown that the percent of females in Lobelia spicata populations increases with 

decreasing latitude, presumably due to temperature.  Further, though female advantage in reproduction does not vary 
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with latitude, production of larger seeds (particularly by hermaphroditic plants) does appear to be common among 

populations located in more southern, warmer latitudes. 
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TABLES AND FIGURES 
 
 
TABLE 4.1  Site code and geographic location (i.e. latitude and longitude) of the 11 Lobelia spicata populations used in this 

study.  Arranged in order of decreasing latitude. 
 

Site Code Site Latitude Longitude 
FD2 Falling Down Prairie Site #2 42.2017 -90.2063 
FD1 Falling Down Prairie Site #1 42.2004 -90.2072 
SOM Somme Prairie 42.1403 -87.8297 
FUL Fulton Prairie 41.8460 -90.1010 
BEL Belmont Prairie 41.7990 -88.0470 
MID Midewin National Tallgrass Prairie 41.3550 -88.1574 
BEA Beaverville Prairie 40.9875 -87.5706 
LOD Loda Cemetery Prairie 40.5272 -88.0759 
PEL Pelville Railroad Prairie 40.4611 -87.9246 
PRO Prospect Cemetery Prairie 40.4447 -88.0973 
PAX Paxton Cemetery Prairie 40.4179 -88.1137 
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TABLE 4.2  Female frequency, female density (plants per m2) and hermaphrodite density (plants per m2) in 2008 and 2009 for 
11 Lobelia spicata populations. Arranged in order of decreasing latitude. 

 

Site 
Code 

Female frequency  Female density  Hermaphrodite density 

2008 2009  2008 2009  2008 2009 

FD2 12.8 12.2  0.17 0.21  1.18 1.54 
FD1 26.6 28.7  0.71 1.05  1.96 2.59 
SOM 44.1 38.3  0.02 0.03  0.02 0.04 
FUL 31.6 33.8  0.04 0.04  0.09 0.07 
BEL 36.0 40.2  0.01 0.02  0.02 0.03 
MID 35.1 38.3  0.01 0.01  0.02 0.02 
BEA 25.5 25.7  0.07 0.09  0.20 0.27 
LOD 51.2 60.9  0.01 0.01  0.01 0.01 
PEL 50.3 52.9  0.28 0.15  0.27 0.13 
PRO 63.2 72.8  0.02 0.05  0.01 0.02 
PAX 63.4 53.6  0.36 0.62  0.21 0.54 
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TABLE 4.3  Pearson correlation coefficients between latitude, longitude, temperature or precipitation and female frequency, 
female density or hermaphrodite density of Lobelia spicata populations during summer 2008 and 2009.  P < 0.10 
designated by *, P < 0.05 by ** and P < 0.01 by ***. 

 
 Latitude  Longitude  Temperature  Precipitation 

 2008 2009  2008 2009  2008 2009  2008 2009 
Female frequency -0.764*** -0.781***  -0.556* -0.559*  0.832*** 0.791***  0.306 0.353 
Female density 0.139 0.167  0.023 -0.002  -0.018 -0.029  0.390 -0.135 
Herm. density 0.489 0.486  0.424 0.411  -0.346 -0.321  0.309 -0.231 
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TABLE 4.4  Pearson correlation coefficients among latitude, longitude, temperature or precipitation and the eight gender-
specific (F = Female; H = Hermaphrodite) reproductive output (i.e. fruit set, seed number per fruit, seed biomass) 
and fitness (i.e. percent seed germination) measurements of Lobelia spicata populations during summer 2008 and 
2009.  P < 0.10 designated by *, P < 0.05 by ** and P < 0.01 by ***. 

 
 Latitude  Longitude  Temperature  Precipitation 

 2008 2009  2008 2009  2008 2009  2008 2009 
F Fruit set 0.317 0.380  0.564* 0.373  -0.391 -0.487  0.383 -0.251 
H Fruit set 0.397 0.260    0.741*** 0.217  -0.464 -0.408  0.187 -0.264 
F Seeds/fruit 0.332 0.711**  0.497 0.149  -0.238 -0.580  0.102 -0.305 
H Seeds/fruit 0.235 0.242  0.176 -0.563*  -0.096 -0.283  -0.069 0.318 
F Seed biomass -0.397 -0.579*  -0.144 0.120  0.592* 0.549*  0.009 0.579* 
H Seed biomass -0.682** -0.693**  0.151 0.138  0.755*** 0.738***  0.377 0.531* 
F Per. seed germ. -0.780*** -0.722**  -0.133 -0.076  0.895*** 0.766***    0.664** 0.529* 
H Per. seed germ. -0.575* -0.770***  -0.238 -0.190  0.488 0.868***  0.259 0.258 
 
 
 
 


