A New Sesquiterpene Lactones Glucoside from Notoseris psilolepis

Xiao Xia YE ${ }^{2}$, Ji Shuang CHEN ${ }^{3}$, Ming Kui WANG^{1}, Ke Xin HUANG ${ }^{2}$, Li Sheng DING ${ }^{1 *}$
${ }^{1}$ Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041
${ }^{2}$ Department of Chemistry, Wenzhou Medical College, Wenzhou 325003
${ }^{3}$ College of Life Science, Zhejiang University, Hangzhou 310005

Abstract

A new sesquiterpene lactone glucoside, notoserolide C (1), was isolated from the whole plant of Notoseris psilolepis Shih. By means of spectral analysis including MS, NMR (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, $\mathrm{HMQC}, \mathrm{HMBC}$) and X-ray diffraction, the structure of notoserolide C was established as cichorioside B angelate.

Keywords: Notoseris psilolepis, asteraceae, notoserolide C.

As a part of an investigation on plant of the genus Notoseris (Asteraceae), an endemic genus of seed plants of China ${ }^{1}$, we studied the chemical constituents of N. psololepis Shih. A new sesquiterpene lactone glucoside, named notoserolide C (1) was isolated from the methanolic extract of the whole plant of N. psilolepis by repeated column chromatography (MCI GEL, normal and reversed phase silica gel). This compound showed antibacterial activity against Bacillu cereus.

Figure 1. The key HMBC correlations for 1

Notoserolide C (1), was obtained from methanol as colorless crystals, mp $156 \sim 8^{\circ} \mathrm{C}$ (dec.), $\left[{ }^{\alpha}\right]_{D}{ }^{25}-55^{\circ}$ (c $0.07, \mathrm{MeOH}$). Its molecular formula was assigned as $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{11}$ by HRFABMS ([M-H] m / z 521.1992, Calcd. 521.1964). The IR spectrum of $\mathbf{1}$ showed the presence of hydroxyl ($3413 \mathrm{~cm}^{-1}$) and carbonyl ($1765,1717,1686 \mathrm{~cm}^{-1}$) groups. On acid hydrolysis, glucose was detected by TLC. Since the signal of the anomeric proton of the glucose appeared at $\delta_{\text {H }} 4.40$ with coupling constant 8 Hz , this sugar moiety should be β-orientated. Besides the glucosyl moiety, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum exhibited a methyl
doublet at $\delta 1.19(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz})$, a vinyl methyl signal at $\delta 2.44(3 \mathrm{H}, \mathrm{s})$, an olefinic proton signal at $\delta 6.61(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and angeloyl signals at $\delta 6.23(1 \mathrm{H}, \mathrm{q}, \mathrm{J}=7 \mathrm{~Hz}), 2.01$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7 \mathrm{~Hz})$ and $1.92(3 \mathrm{H}, \mathrm{s})$. The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum was similar to that of cichorioside B^{2} except for five signals due to the angeloyl moiety ${ }^{3}$. The long-range heteronuclear correlations (Figure 1) between $\mathrm{H}-15$ and the anomeric carbon of the glucose, between H-8 and carbonyl carbon of the ester moiety revealed that the glucose moiety is located at C-15 and angeloyl at C-8. Analysis of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY, HMQC and HMBC spectra allowed proton and carbon signals of $\mathbf{1}$ to be assigned as Table 1. Accordingly, 1 can be represented as cichoroside B angelate. The structure was unambiguously confirmed by X-ray analysis ${ }^{3}$.

Table 1. ${ }^{1} \mathrm{H}-(500 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}-(125 \mathrm{MHz})$ NMR spectral data for $\mathbf{1}\left(\mathrm{CD}_{3} \mathrm{OD}\right)$

C	δ_{C}	δ_{H}	C	δ_{C}	δ_{H}
1	$134.0(\mathrm{~s})$		ester moiety		
2	$197.1(\mathrm{~s})$		16	$167.8(\mathrm{~s})$	
3	$134.9(\mathrm{~d})$	$6.61, \mathrm{br} \mathrm{s}$	17	$128.5(\mathrm{~s})$	
4	$171.7(\mathrm{~s})$		18	$140.8(\mathrm{~d})$	$6.23, \mathrm{q}, 7 \mathrm{~Hz}$
5	$49.7(\mathrm{~d})$	$3.87, \mathrm{~d}, 8 \mathrm{~Hz}$	19	$16.1(\mathrm{q})$	$2.01, \mathrm{~d}, 7 \mathrm{~Hz}$
6	$82.2(\mathrm{~d})$	$3.84, \mathrm{~m}$	20	$2.7(\mathrm{q})$	$1.92, \mathrm{~s}$
7	$59.4(\mathrm{~d})$	$2.55, \mathrm{~m}$	sugar moiety		
8	$71.5(\mathrm{~d})$	$5.00, \mathrm{~m}$	1,	$104.1(\mathrm{~d})$	$4.40, \mathrm{~d} .8 \mathrm{~Hz}$
9	$45.6(\mathrm{t})$	$2.90, \mathrm{~m}$	2,	$75.1(\mathrm{~d})$	
10	$148.6(\mathrm{~s})$		3,	$78.0(\mathrm{~d})$	
11	$41.7(\mathrm{~d})$	$2.67, \mathrm{~m}$	$4,5(\mathrm{~d})$		
12	$179.1(\mathrm{~s})$		5,	$62.7(\mathrm{~d})$	$3.67, \mathrm{dd}, 11,7 \mathrm{~Hz}$
13	$15.2(\mathrm{q})$	$1.19, \mathrm{~d}, 7 \mathrm{~Hz}$	6		$3.88, \mathrm{~d}, 11 \mathrm{~Hz}$
14	$21.5(\mathrm{q})$	$2.44, \mathrm{~s}$			
15	$69.6(\mathrm{t})$	$4.80,4.87, \mathrm{~d}, 17 \mathrm{~Hz}$			

Acknowledgments

This work was financially supported by the Special Project of Biological Science and Technology of the Chinese Academy of Sciences (STZ-97-3-08).

References and Notes

[^0]Received 8 May 2000

[^0]: 1. T. S. Ying, Y. L. Zhang, D. E. Boufford, The Endemic Genera of Seed Plants of China, Science press, Beijing 1993, 194.
 2. M. Seto, T.Miyase, K. Umehara, A. Ueno, Y. Hirano, N. Otani. Chem Pharm Bull., 1988. 36, 2423
 3. Crystallographic parameter of $\mathbf{1}$ have been deposited in the editorial office of CCL.
