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     Abstract 

   Among Mediterranean marine life, benthic communities are possibly the most peculiar in 
terms of richness and endemic species. The distribution and structure of benthic fauna (ses-
sile and vagile) is driven by environmental gradients that change with season, depth, the 
type of substrate and the interaction between organisms. The combined action of these 
multiple factors results in a high variety of assemblages and communities. This chapter 
focuses on the benthic fauna, with the aim to provide a broad description of the hard and 
soft bottom communities and the general trends of their characteristics and variability. 
Special emphasis is given to the ecological strategies of the fauna that inhabit in complex 
benthic ecosystems. The pressures and impacts on these benthic fauna and ecosystems, 
from alien species invasions, warming effects, ocean acidifi cation and other direct and indi-
rect human perturbations are also illustrated.  
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    Introduction 

 The Mediterranean marine environment is characterized by a 
set of environmental factors that defi ne its biota, especially 
in shallow communities. Extreme reduction of tides, trans-
parent and blue waters, relatively high salinity and mean 
water temperature together with an evident seasonality 
with four recognizable seasons are the identity signals of 

this temperate sea. These particular features renders the 
Mediterranean a very singular environment, and given the 
small extension of the Mediterranean (0.82 % of world 
oceans), with a very high marine biodiversity (between the 4 
and 18 % of all marine species known) (Bianchi and Morri 
 2000 ). Among Mediterranean marine life, benthic communi-
ties are possibly the most peculiar in terms of richness and 
originality.  

    Environmental Gradients 

 In marine Mediterranean benthic environments, the distri-
bution of fauna is ruled by environmental gradients defi ned 
as: humidity (increasing from the atmosphere to the water); 
action-wave related factors (maximal at level zero and 
decreasing in both shoreward and seawater direction); water 
temperature and light intensity (decreasing with depth); etc. 
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(Ros et al.  1985 ) (Fig.  12.1 ). Environmental changes are 
generally sharper along the vertical axis than along the hori-
zontal plane especially in shallow areas. Other factors that 
change with depth such as the light spectrum, the water 
movement, the grain size of soft sediment (decreasing with 
depth), and the amount of hard substrates that are higher in 
shallow and shelf zones (Riedl  1971 ), play also an important 
role infl uencing the biota distribution.

   The gradient on the vertical axis is often combined with a 
patchy heterogeneity in the horizontal plane caused mainly 
by the inclination, exposure to light, texture, type of sub-
strate, orientation to predominant currents, etc. Concurrently, 
along these vertical gradients in shallow environments the 
plant-animal relationship changes with decreasing light. 
The macro-algae negatively impact on most of the sessile 
invertebrates by overgrowing in the shallower areas, or 
generating a canopy effect. These algae create a habitat for 
small and mobile fauna that fi nds shelter and food. All these 
factors generate diversity, which is enhanced by the increasing 
structural role of the organisms themselves, as plants and 
algae in the photic zone, the sessile animals in the aphotic 
zone. The variety of assemblages and communities results 
from the combined action of these multiple factors. 

 Mediterranean hard and soft-bottom communities were 
described from a qualitative and quantitative point of view 
on the studies of French pioneers in this fi eld (Laborel 
 1961 ; Pérès and Picard  1964 ; Picard  1965 ; Laubier  1966 ; 
Bellan- Santini  1969 ; Guille  1971 ; Pérès  1982 ) and more 
recent reviewers (Ros et al.  1984 ,  1985 ;    Fredj and Laubier 
 1985 ; Pérès  1985 ; Bellan-Santini et al.  1994 ; Bianchi et al. 
 2004 ; Ballesteros  2006 ). These classical papers identify the 
main coastal and shelf communities found in the western 
Mediterranean. Different assemblages are described by the 

presence of key species following two main environmental 
parameters, bathymetry and substrate or sediment granulom-
etry. In shallower areas the overlap of both para meters often 
occurs due to the presence of mixed sediments. In deeper 
habitats, bathymetry and granulometry are correlated due to 
a general decrease of hydrodynamism with depth, and com-
munities generally extend over wider areas. No similar detailed 
community descriptions exist for the eastern Medi terranean 
and most papers (Karakassis and Eleftheriou  1997 ; Simboura 
et al.  2000 ,  2005 ; Simboura and Zenetos  2002 ; Chintiroglou 
et al.  2005 ) follow the previous mentioned classical works. 
A detailed and actual lists of the Mediterranean benthic com-
munities for the establishment of national inventories of 
natural sites of conservation interest can be found in the syn-
thesis of RAC/SPA ( 2006 ), a revised list is given by Fraschetti 
et al. ( 2008 ).  

    Spatial Trends and Variability 

    Zoobenthic Assemblages and Communities 
on Hard Substrata 

    Supralittoral 
 The supralittoral zone is never, or only very rarely, immersed. 
This habitat requires a relatively high degree of humidity that 
is supplied by the wave spray. Immersions occur mainly 
 during heavy storms, though under certain conditions may 
be irregular because of the small tidal range. The upper part 
of this zone is only wetted very few times a year, whereas the 
lower part is almost continually splashed. The living commu-
nity of this zone is homogeneous on a wide scale and has a very 
simple composition. The severe environmental conditions 

  Fig. 12.1    Main benthic zonation of the Mediterranean Sea (Modifi ed from Pérès  1982 )       

 

J.-M. Gili et al.

s.goffredo@unibo.it



215

have selected a few successful animal strategies. In the 
upper part of vertical rocky zones are common the herbi-
vore littorinid gastropods ( Melaraphe neritoides ), cirripeds 
( Chtamalus depressus ) and some detritivore mobile isopods 
( Ligia italica ) (Pérès and Picard  1964 ; Ros et al.  1984 ).  

    Mediolittoral 
 The mediolittoral assemblages require or tolerate immer-
sion and are adapted to the periodic ebb and fl ow of the 
intertidal zone. In the upper part of this zone humectation is 
due to the wave action and immersion is rare. In the lower 
part submersions are more frequent. The upper part is colo-
nized by species of the supralittoral zone such as the very 
common molluscs strongly adhered to the rocks  Patella 
rustica  and decapoda ( Pachygrapsus marmoratus ) in 
 crevices and sheltered areas. In the lower part animals can 
dominate the space (e.g. mussel belts,  Mytillus edulis ). On 
the rocky coast, cirripeds occupy the upper zone, often closely 
packed. On the lower region of rocky coasts live less tolerant 
animals, mussels and gastropods that cling to the wave-
battered algal belts or hide into the crevices of encrusting 
algae belts. In areas with rich and dense communities of 
encrusting seaweeds many sessile species resist the wave 
action such as foraminifera ( Miniacina miniacea ),  cnidarians 
( Actinia equina ), sponges ( Hallichondria  spp.), hydrozoans 
 (Paracoryne huvei ) and many briozoans, polychaetes, crus-
taceans (amphipods, isopods and some decapoda such as 
 Eriphia spinifrons ) and molluscs (Pérès  1967 ; Bouillon 
 1975 ; Ros et al.  1985 ; Morri et al.  1990 ).  

    Infralittoral 
 The infralittoral zone is characterized by an upper limit 
where species cannot endure emergence and by a lower limit 
marked by the disappearance of photophilic algae and marine 
phanerogams. The extension of this zone is highly variable, 
depending on substrate exposure, light penetration and 
turbidity. On rocky substrata the dominant species of fauna 
are associated to photophilic algal talus and phanerogams 
plants. Between the bases of the algal talus there is an 
encrusting animal community composed of skeletal material 
of polychaete worms, bryozoans and gastropods. Other 
encrusting species, sponges ( Myxilla rosacea ,  Hymedesmia  
spp,  Phorbas topsenti ) and colonial ascidians, compete with 
the algae for the substrata. Sedentary species strongly attached 
to the rocky substrate such as molluscs ( Acanthochiton fas-
cicularis ) are common, although crustaceans and members 
of others groups also occur (Bellan-Santini  1969 ; Ros 
et al.  1984 ). 

 A wide variety of species spend part of their life inside the 
rock crevices or in the interstices left or formed by others 
species. Examples of these include many polychaetes ( Nereis  
spp,  Lepidonotus  spp,  Spirobranchus  sp, etc.), crustaceans 
(amphipods and isopods), molluscs ( Jujubinus gravinae , etc.), 

ophiurids ( Ophiotrix fragilis  and  Amphipholis squamata ) 
and also species that cling to the under face of boulders 
( Coscinasterias tenuispina  or  Asterina gibbosa ). The com-
plexity of this animal community increases with the endobiont 
species on sponges and ascidians. 

 There are other groups of species that move from one algal 
turf to another or adhering to the fronds or to sessile animals. 
The most common are amphipods ( Dexamine  spp,  Hyale  
spp, etc.), but also isopods ( Cymodoce truncta ) together with 
picnogonids, molluscs, prosobranchs and opistobranchs 
gastropods and free-living polychaetes (e.g.  Platinereis 
dumerilii).  The algal fronds have also an important epiphytic 
community of sessile organisms such as hydrozoans with 
caprellids amphipods associated, bryozoans and encrusting 
tunicates. 

 On the algal talus there are other animals that compete 
for the space and develop large sizes such as cnidarians 
( Aiptasia diaphana ,  Anemonia sulcata ,  Balanophyllia regia ) 
many hydrozoans and bryozoans ( Pentapora ottomulleriana , 
 Turbicellepora magnicostata ). These species are chiefl y 
substrate- occupiers, which compete strongly for the space. 
A second group of species, sessile molluscs ( Spondylus 
gaederopus ,  Ostrea edulis ) and tunicates ( Microcosmus 
sabatieri ,  Pyura dura , etc.), are mainly substrate-suppliers 
that contribute to the spatial structuring of infralittoral 
communities. A fi nal important group is the vagile fauna 
with species of different sizes that are highly mobile and 
linked in varying ways to the photophilic algae talus. Most 
of them are predators and include decapods (e.g.  Pilummus 
hirtellus ,  Alpheus dentipes ), molluscs ( Octopus vulgaris  
and many gastropods), echinoderms (e.g.  Paracentrotus 
lividus ,  Echinaster sepositus ) and many fi shes of the families 
Gobiidae and Bleniidae (Ros et al.  1985 ).  

    Circalittoral 
 The circalittoral zone extends from the lower level of photo-
philic algae and sea-grasses to the end of the continental 
shelf. Fixed and colonial animals (sponges, cnidarians, bryo-
zoans, tunicates) and red calcareous algae predominate 
on hard bottoms. The algae growing on coarse gravelly 
substrates coalesce the calcareous sediments to form a con-
tinuous, organogenous substrate on which the coralligenous 
community develops. This assemblage is the most structured 
and species-rich in the Mediterranean benthos. In general, 
the currents in the circalittoral zone are steady, though occa-
sionally strong, and water is constantly cool. The plants are 
no longer the main contributors to the biomass, although its 
role is important as builders of the coralligenous (Ros et al. 
 1984 ; Uriz et al.  1993 ; Ballesteros  2006 ). The main variables 
delimitating these communities are changes in the relief, 
slope and substrata features in rocky habitats, grain size of 
the sediments, inter-specifi c competition and the alternation 
between hard and soft bottoms. 
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 Three structural levels can be found in the circalittoral 
communities. The basal habitat with many species intermixes 
with algae in a reciprocal encrusting process. These species 
contribute to the community in two ways, as builders and bio-
eroders. One example (as a bioeroder) are the sponge species 
of the genus  Cliona , which penetrate carbonate based organ-
isms (Rosell et al.  1999 ; Cerrano et al.  2001 ; Rosell and Uriz 
 2002 ). The lower level is dominated by a high diversity of 
massive, erect and reptant species, such as sponges, cnidari-
ans, bryozoans and tunicates, while the higher level contain 
the most visible and representative species. Their abundance 
in each habitat characterizes the so- called  facies , being the 
contributors to the three-dimensional structure of these bot-
toms. Gorgonians (e.g.  Paramuricea clavata, Corallium 
rubrum  or  Eunicella singularis ), antipatharians ( Antipathella 
subpinnata ) (Bo et al.  2008 ,  2009 ), stylasterids ( Errina aspera ) 
(Salvati et al.  2010 ) and sponges (e.g.  Axinella polypoides ) are 
examples of this higher structural level (Fig.  12.2a, b, c ). Other 
important components of the circalittoral communities are 
those species that move around the lower and higher levels 
(crustaceans, echinoderms or polychaetes). There is also a 
fauna specialized in occupying the higher levels as sessile 
 epibionts or temporary residents. The coralligenous commu-
nity is the more emblematic and developed of the circalittoral 
habitats, being a hot spot diversity habitat in the Mediterranean 
Sea (Laubier  1966 ; Fredj and Laubier  1985 ; Gili and Ros 
 1985a ; Ballesteros et al.  1993 ; Ballesteros  2006 ).

   Another very peculiar community in the Mediterranean 
circalittoral bottoms are the submarines caves. The fauna 
inhabiting in caves have a clear connection with the coral-
ligenous but also with communities from deep waters (Riedl 
 1966 ; Uriz et al.  1992 ,  1993 ; Bianchi and Morri  1994 ; Bianchi 
et al.  1996 ). In this dark and cool habitats there is a continuously 
impoverishment of the particle concentration and the benthic 
cover from the open section to the darker parts of the caves 
(Gili et al.  1986 ; Martí et al.  2004 ) (Fig.  12.3 ). The walls 
are dominated by suspension feeders (sponges, cnidarians 
and bryozoans) and vagile fauna characterized by very spe-
cialized species of crustaceans and fi shes (Bibiloni et al. 
 1989 ; Gili and Ballesteros  1991 ) (Fig.  12.2d ).

   Coralligenous assemblages are also found on soft iso-
lated rocks or other rocky substrata (Fig.  12.2e ). These lat-
ter assemblages can reach deeper areas, predominantly 
between 100 and 200 m depth. This particular community 
represents one of the most diverse assemblages in the 
Mediterranean shelf and slope even though these habitats 
have been destroyed by bottom trawling during decades. 
These rocky substrates are often covered with a silty 
 sediment layer, and the sessile species have to penetrate 
through this sediment layer to attach to the hard substrate. 
The predominant species are suspension feeders such as 
gorgonians, alcyonarians, black corals, sponges and mol-
luscs (True  1970 ; Gili and Ros  1985b ; Uriz et al.  1992 , 
 1993 ; Ballesteros  2006 ; Bo et al.  2011a ,  b ).  

    Bathyal 
 Hard bottom communities in the bathyal domain are rep-
resented mainly by the cold-water coral community (Pérès 
 1985 ; Zibrowius and Taviani  2005 ; Bo et al.  2012 ). The 
deep-sea or cold-water coral community is found on hard 
substrates of the bathyal zone, between 200 and 1,000 m 
depth (Fig.  12.2f ). These cold-water corals are only found 
when the slope is steep enough to expose hard substrates as 
vertical cliffs. The dominant species are the reef forming 
corals  Lophelia pertusa  and  Madrepora oculata , which 
appear as scattered clumps along the slope. There is a rich 
associated fauna, the permanent species that live around or 
above the big boulders and rocks, and the temporal inhabitants 
such fi shes and crustaceans that use this habitat as food source 
and nursery (Freiwald and Roberts  2005 ; Costello et al.  2005 ; 
Orejas et al.  2009 ; D’Onghia et al.  2010 ).   

    Zoobenthic Assemblages and Communities 
on Soft-Bottoms 

    Infralittoral 
 Infralittoral exposed soft-bottoms habitats are mostly sandy, 
with average grain sands depending on whether they are 
located in moderate or highly exposed areas. The predomi-
nant community,  the Beach sandy community , usually covers 
bottoms from 5 to 7 m depth being colonized by several spe-
cies of bivalves of the genus  Donax ,  Tellina  and  Lentidium.  
Following the  Beach sandy community , the so-called  Fine 
well-sorted sand community  (Pérès and Picard  1964 ) is the 
predominant one. This community has been recently named 
 Littoral Fine sands community  (Colombini et al.  2003 ; 
Labrune et al.  2007 ). Where high currents occur, fi ne sands 
are replaced by coarse sands and fi ne gravels, and the com-
munity changes to the  Littoral Coarse sands community . 
This community contains a large diversity of bivalve species 
being  Spisula subtruncata  the most abundant one followed 
by polychaetes ( Ditrupa arietina ,  Owenia fusiformis , and 
small spionids and paraonids). Under certain circum-
stances, these communities are densely colonized by sea-
grasses (mainly  Cymodocea nodosa  and  Posidonia oceanica ) 
increasing spatial heterogeneity and therefore microhabitat 
availability. This process leads to an increase in diversity and 
abundance that causes a clear differentiation in the commu-
nity structure. Finally, the  Littoral sandy mud community  is 
found in the deeper part of the infralittoral. In this zone a 
change in species composition is observed due to low current 
waters, which relates with more fi ne granulometry in the 
composition of sediment. Bivalves such as  Loripes lacteus  
and  Tapes  spp. and crustaceans like  Pestarella tyrrhena  are 
among the characteristic species. 

 Infralittoral non-exposed soft-bottom habitats, on the 
other hand, are mostly dominated by silty sands and clays. 
This type of environments are generally found near river 
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mouths and/or in deltas and coastal lagoon environments. 
The distribution of the species, assemblages and communi-
ties refl ects the environmental gradients (i.e. granulometry, 
salinity and anoxic conditions) that can be found inside the 

lagoon, and are mostly related with their communication 
with the open sea. Bivalve species such as  Cerastoderma 
edule  and  Scrobiculari plana , polychates such as  Streblospio 
shrubsolii  and  Hediste diversicolor  and crustaceans such as 

  Fig. 12.2    Several examples of rocky bottom communities dominated 
by sessile organisms in the western Mediterranean: ( a ) circalittoral com-
munity dominated by the alcyonarian  Alcyonium acaule  at 20 m depth in 
the Medes Islands (NW Mediterranean) (foto by J.M. Gili); 
( b ) circalittoral community dominated by the black coral  Antipathella 
subpinnata  at 120 m depth in Son Bou Canyon in Menorca Channel 
(NW Mediterranean); ( c ) coralligenous community dominated by the 
gorgonian  Paramuricea clavata  at 45 m depth in the Cap de Creus (NW 
Mediterranean) (Photo by Aldo Ferrucci); ( d ) circalittoral community 

located in the entrance of submarine caves in the NE Mallorca Island 
(NW Mediterranean) at 15 m depth dominated by the bryozoans  Smittina 
cervicorn is and  Retepora  sp. And the sponge  Spirastrella cuntatrix  
(Photo by J.M. Gili); ( e ) community of deep rocky habitats at the end 
of the continental shelf of the Cap de Creus (NW Mediterranean) at 
110 m depth, dominated by the sponge  Desmacidon fruticosum ; 
( f ) community of depth cold-water corals dominated by  Madrepora ocu-
lata  at 200 m depth located at the Cap de Creus submarine canyon
(NW Mediterranean) (Photographs  b ,  e  and  f  by JAGO-ICM-GEOMAR)       

 

12 Zoobenthos

s.goffredo@unibo.it



218

 Cyathura carinata  and  Microdeutopus gryllotalpa  are some 
of the most important species. 

 An extreme environment in shallow waters is the hydro-
thermal vents. In the Mediterranean they occur in shallow 
depths of up to 115 m. The dominant sediment, called ooze, 
is mud with a high percentage of organic remains. These 
areas rely on primary production and benthic fauna is not 
distinct from the surrounding areas (De Biasi et al.  2004 ) 
except for the abundant gastropod  Cyclope neritea  in the 
bacterial mat areas (Dando et al.  1995 ).  

    Circalittoral 
 Circalittoral soft-bottom environments present a more 
complex situation (Somaschini et al.  1998 ). Pérès and 
Picard ( 1964 ) and Picard ( 1965 ) reported the presence of 
different circalittoral assemblages. On the other hand, 
Pérès ( 1967 ) and Salen Picard ( 1981 ,  1982 ) described 
many degradation detritic facies. And fi nally Guille ( 1971 ) 

observed many transition zones among these assemblages, 
identifying only one circalittoral soft-bottom community 
with many sub-communities or facies. Other transitional 
zones, mostly between sandy and muddy bottoms, have 
been observed by other authors (Fèbvre-Chevalier  1969 ; 
Gambi and Fresi  1981 ; Falciai et al.  1983 ; Fresi et al. 
 1983 ; Zavodnik et al.  1985 ; Gravina  1986 ). All these 
aforementioned classifi cations were obtained basically 
with the help of dredges and box corers devices. Recent 
observations made with remote operated vehicles (ROV’s) 
or small submarines have allowed to make direct observa-
tions on these soft-bottoms environments and discern also 
the fragile epifaunal species, which are usually observed in 
patches. Thus, by visual inspection of these habitats we 
can now classify all the communities found in circalittoral 
shelf environments, into four main large communities with 
many different assemblages and/or facies inhabiting them 
(Sardá et al.  2012 ). 

  Fig. 12.3    Schematic representation of four Mediterranean circalitto-
ral communities distributed from a vertical wall outside a cave to a 
horizontal one inside the cave. The number at the  top  of each repre-
sentation is the community biomass in dry weight. The width and 

direction of  arrows  roughly indicate the direction and intensity 
of water fl ow. The numbers on the side of each bar indicate the 
number of species within each group (Figure modifi ed from Gili and 
Coma  1998 )       
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 In the upper part of the circalittoral domain, the  Littoral 
sandy mud community  can also be found, although with a 
higher number of deeper species in the faunistic composi-
tion.  Continental shelf detritic communities     are the second 
large group of assemblages that can be found. The relative 
fraction of muds in their sediment composition determine 
different assemblages, from sandy detritic environments to 
more muddy. The presence of epifaunal species such as 
gorgonians, pennatulaceans ( Pennatula rubra ,  Pteroides 
spinosum),  alcionaria ( Alcyonium palmatum),  ceriantharia 
 (Cerianthus membranaceus),  crinoidea  (Leptometra phalan-
gium ), ofi uroidea ( Ophiothrix quinquemaculata),  and even 
terebelid polychaetes, determines the different facies of 
the same community (Fig.  12.4a, b ). On continental shelf 
bottoms that meet the continental slope or submarine can-
yons, the proportion of mud decreases, dominating the gravel 
and rock substrata. In this zone, the present epifauna is 
more diverse with the presence of sponges and echinoderms. 
Finally, the  Platform mud community  is the largest 

community that can be found occupying most part of the 
circalittoral environment. The composition is mainly silty 
sand sediments and clay, which vary between the terrigenous 
coastal mud in the upper part to the deep muds in the 
deeper part. The fauna is characterized by the endofaunal 
components with a large fraction being small polychaete 
species of genus such as  Tharyx ,  Monticellina ,  Prionospio  
and  Lumbrineris  (Guille  1965 ; Desbruyères et al.  1972 ; Gili 
et al.  1987 ).

   A very specifi c community that normally colonizes detri-
tic environments in the upper part of the circalittoral is the 
well-known  Maërl bed community  (Fig.  12.4c ). Maërl beds 
are mainly composed of free-living non-geniculate coralline 
algae (Corallinacea: Rhodophyta) that have an algal core and 
sandy granules or shells with a more or less regular and con-
centric growth around them. These structures develop and 
accumulate on soft-bottoms, infl uenced by laminar currents 
and gives a rich and diverse benthic community (Ballesteros 
 1994 ; Peña and Bárbara  2008 ).  

  Fig. 12.4    Characteristic assemblages and zoobenthic communities 
on soft-bottoms: continental shelf detritic communities in the Cap the 
Creus (NW Mediterranean) at 120 m depth ( a ) facies with  Leptometra 
phalangium  at; ( b ) facies dominated by gorgonians  Eunicella  sp. and 
sponges (photographs a and b by NEMO-ICM-Gavin Newman); 

( c ) Maërl bed community at 52 m depth from Cabrera Island (NW 
Mediterranean) (photo by David Diaz); ( d ) communities of bathyal 
muds, facies with  Funiculina quadrangularis  in the Menorca 
channel (NW Mediterranean) at 140 m depth (Photo by JAGO-ICM-
GEOMAR)       
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    Deep-Sea 
   Bathyal and Abyssal 
 Our knowledge on bathyal and abyssal soft-bottom commu-
nities is still scarce and few papers dare to work at a com-
munity level. The prevalent division presented by Pérès 
( 1985 ) divides the slope communities into three horizons, 
the upper slope horizon extending to 400–500 m, the mid-
dle slope horizon that can extend until 1,200–1,400 m, 
characterized by compact muds and a high diversity, and 
the lower slope horizon that goes into the abyssal plains. 
Despite the reviews by Pérès  1985 ; Fredj and Laubier 
( 1985 ) and Laubier and Emig ( 1993 ) quantitative data on 
faunal composition and ecological knowledge are generally 
scarce, although new studies on deep-sea habitats have lead 
to valuable new knowledge on deep Mediterranean benthos 
(   Boury-Esnault et al.  1994 ; Uriz and Rosell  1990 ; 
Tselepides et al.  2000 ; Kröncke et al.  2003 ; Cartes et al. 
 2004 ; Ramirez-Llodra et al.  2008 ). Although it is accepted 
that Mediterranean deep-sea biodiversity should be high as 
shown by com prehensive biodiversity studies (Bianchi and 
Morri  2000 ; Coll et al.  2010 ; Danovaro et al.  2010 ), there is 
still few data to describe the different deep-sea communi-
ties. To present, bathyal facies are defi ned according to the 
compaction of the sediment. Sandy muds are quite frequent 
in the upper horizon whereas bathyal and abyssal muds 
constitute the largest bottom environments in the 
Mediterranean. Some of the characteristic species giving 
name to those facies include the cnidarians  Isidella elon-
gata  and  Funicula quandrangularis  (Fig.  12.4d ), the 
echinoderm  Bryopsis lyrifera , the gasterop  Apporhais 
seressianus  and the sponges  Thenea muricata and 
Pheronema grayi.  Fishes and crustaceans (mainly decapods 
and peracarids) are particularly abundant (Cartes et al. 
 2004 ; Sardà et al.  2004 ; Galil  2004 ). The communities 
inhabiting these bottoms can be different to those found in 
world oceans due to a shallower average depth, high deep-
water turnover rates, higher temperature and extreme oli-
gotrophy with low nutrient concentrations, especially in the 
eastern part. All these key issues together are forecasting 
also a unique large percentage of endemic species. 

 From the continental shelf to the abyssal plain, soft bot-
toms environments are located on the continental slopes and/
or submarine canyons. Organic matter originating in the 
water column and on the continental shelf fl ows along the 
canyon axis and sinks together with inorganic particulate 
matter. As a consequence, organic and inorganic debris, and 
large accumulations of sediments can be observed on the 
fl oor of submarine canyons (Canals et al.  2006 ). These depos-
its are responsible for distinct species assemblages and higher 
faunal densities and biomass in comparison to nearby non-
canyon. In addition, canyons can hold littoral species carried 
down by the adventive inputs, be responsible for local upwell-
ing and occasionally the presence of benthic species in the 

water column, acting as a source and reservoir of endemic 
species (Gili et al.  1998 ,  2000 ; Sardá et al.  2010 ). The envi-
ronmental conditions in sub marine canyons may vary greatly 
from one location to another. Physical conditions such as 
strong bottom currents are responsible of resuspension, and 
seasonal changes in the particle rain may result in a habitat 
heterogeneity that could be comparable to that of tropical for-
ests or rocky coasts (Grassle  1989 ).  

   Cold Seeps 
 Cold seep biological communities relying on chemosynthesis 
and associated to mud volcanoes and faults have been rela-
tively recently discovered in the southeastern Mediterranean 
Sea, south of Crete and Turkey (in the Mediterranean ridge 
and Anaximander mountains) and north of Egypt at the Nile 
Seep-Sea Fan at depths ranging from 500 to 2,000 m. Cold 
seep habitats are extremely heterogeneous in structure and 
composition, linked to the different reduced microhabitats 
and substrate types in carbonate crusts and sediments. Faunal 
assemblages associated with Mediterranean cold seeps are 
still relatively unknown. Bivalves and tubeworms associated 
with endosymbiotic and chemoautotrophic bacteria charac-
terize the structure of the faunal assemblages of cold seeps, 
as well as numerous gastropods. Described symbiont-bearing 
species include the polychaetes  Lamellibrachia anaxi-
mandri, Siboglinidae monilifera , the bivalves  Myrtea 
amorpha, Lucinoma kazani ,  Idas modiolaeformis ,  Thyasira 
striata  and  Isorropodon perplexum  (Salas and Woodside 
 2002 ; Olu-Le Roy et al.  2004 ; Werne et al.  2004 ; Duperron 
et al.  2008 ; Ritt et al.  2010 ). Other megafaunal species of 
exceptional size compared with their background counter-
parts include the sponges ( Rhizaxinella pyrifera ) and crabs 
( Chaceon mediterraneus ) (Olu-Le Roy et al.  2004 ). 

 The benthic cartography of the Mediterranean benthic habi-
tats according to EUNIS (European Nature Information 
System) habitat classifi cation can be found at   http://jncc.
defra.gov.uk/page-5020     (Fig.  12.5 ).

          Ecological Strategies 

 Most benthic Mediterranean bottoms are considered complex 
habitats and thus with many ecological niches. Due to sub-
strata features, environmental factors and the role of the 
organisms themselves, the structural and dynamic complex-
ity of sea bottoms enables the presence of many different 
habitats and organisms with diverse ecological strategies. 
Besides its precise role in the community, species fall into a 
bionomic or ecological continuum among the so-called  r  and 
 K  strategies (Pianka  1970 ; Margalef  1974 ). According to 
Hiscock and Mitchell ( 1980 ) any species may be summa-
rized into the following four strategies: long-lived species 
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(moderate to big size, which stabilize and characterize 
the community; e.g. the bio-constructors); seasonal species 
(appear only at certain times of the year but have an impor-
tant impact or role in the communities); opportunistic 
species (high reproductive potential, they can temporally 
monopolize the space); and species that respond to small 
alterations in the environmental conditions (usually with a 
known and variable temporally structural signifi cance). 

 In general, both ecological strategies  r  and  k,  follow clear 
trends and are very representative of Mediterranean zoo-
benthos.  R -strategist represents the opportunistic, fugitive, 
pioneer and generalist species. They exploit the lack of orga-
nization and environmental stability, with a high offspring 
production; the vast majority inevitably disappear. They are 
highly adaptable and frequent in unstable and stressed envi-
ronments. On the other hand, the  k -strategist exemplifi es the 
specialists or strategists. They can stabilize their populations in 
a given environment, and produce few very protected offspring 
that are well adapted to ecological stable environments. 
In sessile modular species they also can reproduce asexually. 

 In the Mediterranean zoobenthos the ecological strategies 
can be summarized in the following trends: 

 It the upper littoral levels, the benthic strategies favoured 
are those that tend to counteract the mechanical stress associ-
ated with these shallow habitats. The balance between high 
illumination rates results in productive and dense algae 
communities that support a diverse and rich fauna. Because 
of the seasonal variations in algal cover, and the high envi-
ronmental stress, most species have high reproduction rates, 
production and fast turnover. There are also diverse animal 
strategies colonizing the hard substrates, the algae or plant 
talus, especially by the vagile species. 

 At intermediate levels such as the circalittoral, the current 
stress is not mechanical but refers to light availability. Light 
decline reduces plant capacity to occupy the space, and there-
fore the competition with animals, especially sessile fauna, is 
maximal. The supply of food is adequate because of the con-
tinuous hydrodynamic regime and the oversupply of plankton 
and benthic production from the upper layer communities. 
The degree of organization is high. Many species are builders, 

  Fig. 12.5    Benthic cartography (EUSeaMap) from the Northwestern Mediterranean following EUNIS classifi cation (Adapted from   http://jncc.
defra.gov.uk/page-5020    )       

 

12 Zoobenthos

s.goffredo@unibo.it

http://jncc.defra.gov.uk/page-5020
http://jncc.defra.gov.uk/page-5020


222

having high production rates and investing in three-dimensional 
structures. They have moderate to slow growth rates and a 
slow turnover. At deeper levels (e.g. the deep circalittoral, 
dark caves or shelf-break communities) the stress is greater 
due to high sedimentation and the scarce food supply. In these 
environments only animal assemblages can survive, mainly 
 k -strategists, and their adaptation is often determined by the 
acquisition of far-reaching specializations (Fig.  12.6 ).

   In shallow and deep benthic communities there is a con-
vergent trend among the different groups towards a few 
adaptive options, which are themselves diverse according 
each particular community (Zabala and Ballesteros  1989 ). 
The most suitable strategy for spatial competition is the most 
common trophic guild, the fi lter feeding. This strategy may 
be found through solitary or colonial sessile organization, 
with or without a skeleton, and ultimate growth to a maximal 
size, being most of them  k -strategists. They have long life 
cycles, effi cient capabilities for fi ltering and defence, and a 
large capacity for covering the ground. At this ecological 
model the advantages of colonial vs. solitary strategies must 
be also considered, as an alternative and complementary 
way for successional colonization and population stability 
(Jackson  1977 ). At the other extreme are the individual 

organisms, vagile and of limited growth, with short life 
cycles, high reproductive capacities, with planktonic and 
long-lived larvae, clearly  r -strategists. They are minor com-
petitors and prefer unstable surface levels. They opportunis-
tically cover any area that is left open or, when occupying 
more stable substrates, show strong spatial and temporal 
fl uctuations (Ros et al.  1985 ; Gili et al.  1989 ).  

    Temporal Variability 

 Seasonal variations are common phenomena in all marine 
ecosystems. In the Mediterranean, these changes are con-
trolled by climate driven processes and anthropogenic forc-
ing (Duarte et al.  1999 ). Life cycles of marine organisms 
show marked seasonal patterns in growth, reproduction and 
abundance. In the water column, these seasonal cycles are 
directed by factors, such as photoperiod, light intensity, food 
availability, oxygen, salinity and temperature. All these factors 
infl uence the energy expenditure in marine organisms both 
planktonic and benthonic. It is therefore a challenge to integrate 
the effects of multiple factors, as well as their interactive effects, 
to determine seasonality in the life cycles of marine organisms. 

  Fig. 12.6    Two examples    of ecological strategies present in the different 
communities from an extensive survey in the Medes Islands ( a ) and along 
the Catalan coast ( b ) (NW Mediterranean). The 104 benthic cnidarian 
species considered have been ordered by means of a Principal Component 
Analysis (Figure modifi ed from Gili et al.  1989 , see this paper for 
more information and species list). ( a )  A  mediolittoral community and 
assemblages of photophilic algae;  B  circalittoral community mainly 

coralligenous assemblages;  C  assemblages of species growing on algae 
and phanerogams communities;  D  species of wide distribution in rocky 
shallow communities. ( b )  A  mediolittoral community;  B  same assemblage 
but species forming dense populations;  C  circalittoral communities, 
coralligenous and submarine caves assemblages;  D  mediolittoral com-
munity mainly phanerogams medows;  E  supralittoral and mediolittoral 
shallow communities dominated by species with photophilic algae       
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    Plankton and Benthic-Pelagic Coupling 

 The composition and dynamics of plankton communities 
display strong seasonal changes (Longhurst  1998 ). In the 
Mediterranean, periods of water stratifi cation and lower levels 
of water motion that reduce the biological activity follow 
high productive seasons. In temperate seas, spring season is 
considered a key period because it concentrates the majority 
of the total annual primary and secondary production 
(Margalef  1985 ). In autumn or early winter a second short 
productive period also occurs, although the primary produc-
tivity drops (Ribera d’Alcalá et al.  2004 ) and the seston 
becomes highly refractory (Grémare et al.  1997 ; Rossi et al. 
 2003 ), having a very low availability for a wide range of 
organisms. From the end of winter and beginning of spring 
the primary production is high (Estrada  1996 ) and many zoo-
planktonic groups display their maximal peaks of abundance 
(Sabatés et al.  1989 ; Calbet et al.  2001 ). This general ten-
dency throughout the water column has also been observed 
in close bottom planktonic communities (Ribes et al.  1999 ; 
Rossi and Gili  2005 ). Planktonic communities receive a 
major input of detrital and dissolved organic matter from 
river run-off and from benthic debris coming from macro-
algae and phanerogams, which infl uence the biological 
production (Thomsen and van Weering  1998 ). Besides the 
organic input, the near-bottom water layer is also subject to 
highly variable turbulence that infl uences the plankton and 
seston dynamics (Wainright  1990 ; Rossi and Gili  2009 ). 
Recent data on suspension feeders from benthic communities 
corroborate this seasonal patterns for planktonic communi-
ties (Coma et al.  2000 ). 

 Boero et al. ( 1996 ) and Marcus and Boero ( 1998 ) trans-
ferred to ecology a host of biological research on the life 
cycles of many planktonic species with benthic resting 
stages. Marine systems function based on pulses of pro-
duction during which some species become very abundant 
for short periods. Phytoplankton blooms, followed by 
zooplankton blooms are the engine of all marine systems. 
Especially in coastal waters, many planktonic species spend 
the adverse season in the benthos, as resting stages. The 
pulses, thus, are based on the hatching of the resting stages 
and on its match with favorable conditions (Boero  1994 ). 
The resting stage banks of the benthos are the real potential 
for the expression of biodiversity in the plankton. Pati et al. 
( 1999 ) suggested that the predation of the meiofauna on the 
benthic resting stages of plankton might play a keystone role 
in regulating the diversity of plankton pulses. The role of 
resting stages in benthic-pelagic coupling might well be 
enhanced by the down- and upwelling currents generated 
by marine canyons (Della Tommasa et al.  2000 ). Many 
gelatinous plankters do have benthic stages and the dyna-
mics of their populations rely on benthic processes (Boero 
et al.  2008 ). These crucial aspects of benthic pelagic 

coupling are still vastly unexplored and represent a new 
frontier in marine ecology. 

 In shallow waters, it is proved that the seasonal environ-
mental variability both in the water column and near-bottom 
are closely linked and determine biological processes. 
Sedimentation, re-suspension, vertical mixing and nutrient 
fl uxes conduct the coupling between plankton and benthic 
systems. At the same time, benthic organisms have a great 
infl uence on the dynamics of water column providing 
nutrients coming from regeneration processes in shallow and 
estuarine areas (Valiela  1995 ). However, in deeper commu-
nities the benthic-pelagic coupling is seasonally asymmetrical 
with surface events, although ecological processes are still 
linked with the biological production in surface layers (Gori 
et al.  2012 ). 

 Seasonality in the deep-sea may be less pronounced, 
but can be easily evidenced by the increased seasonal infl ux 
of detritus into these areas. With the exception of some 
extreme environments such as the cold seeps, found in the 
eastern Mediterranean region, most deep ecosystems in the 
Mediterranean depend completely on alloctonous organic 
and inorganic inputs (Cartes et al.  2004 ). Danovaro et al. 
( 1999 ) reported mass fl uxes at equal depths being up to two 
orders of magnitude higher in the Western Mediterranean 
(Gulf of Lions) than in the Eastern Mediterranean (Cretan 
sea). The 10 % of the carbon in surface waters is exported to 
1,000 m depth in the Western Mediterranean, but only 2–3 % 
in the Eastern Mediterranean, and the bacterial densities are 
four times higher in the former than in the latter. The same 
authors also reported different effi ciencies in the transfer of 
organic matter to the deep-sea between the west and the east, 
10 % and 1 % respectively. This has deep implications in 
terms of benthic-pelagic coupling. The general conclusion 
from the research carried out in these environments, mainly 
in the NW Mediterranean deep waters (Cartes et al.  2001 , 
 2008 ; Fanelli and Cartes  2004 ; ), indicates that seasonal 
peaks in primary production or particulate organic matter 
translate into seasonal peaks of secondary production in the 
deep-sea.  

    Algae Dominated Communities 
and Sea-Grass Communities 

 Most habitats in temperate regions exhibit seasonal peaks in 
the standing stock of algae in late spring throughout summer 
and with minima in winter (Murray and Littler  1984 ). In most 
communities, these seasonal patterns involve changes in 
community structure (Mann and Lazier  2006 ), and strongly 
infl uence functional processes (Bouduresque  1971 ). There is 
also a shift in the time of production and biomass peaks, 
which take place in spring in shallow sublittoral algal com-
munities, and in summer in the deeper assemblages. However 
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this scenario changes when the communities suffer the effect 
of fi sh and urchin predation, which modify benthic commu-
nities and affect the composition, abundance and dynamics 
of shallow sublittoral algal communities. At high densities and 
during the production phase of the algae, sea urchins display 
an overgrazing activity that reduce the algal biomass because 
of the patchy distribution and denudation by the urchin, 
especially on erect talus. In extreme cases of predation, graz-
ers reduce totally the erect stratum of fl eshy algae, resulting 
in a monotonous assemblage of encrusting algae and in a 
reduction of algal communities seasonality (Velarque  1987 ; 
   Sala et al.  1998a ,  b ). In the Mediterranean fi shes are not the 
dominant predators and have less effect on algal abundance 
and seasonal variability than sea urchins (Velarque  1990 ). 
However, overgrazing the populations of fleshy erect 
macroalgae by fi shes facilitates the increase in biomass of 
 chemically defended or less competitive species assem-
blages, which disguise the natural community patterns 
(Sala and Boudouresque  1997 ). In seagrasses, the seasonal 
changes in meadow structure, shoot density or leaf surface 
and biomass, have an infl uence on the species composition and 
abundances of associated vagile fauna like polychaetes and 
fi sh, which are in turn infl uences by the ecology and life 
cycle of single species like recruitment and migrations 
(Francour  1997 ; Gambi et al.  1998 ).  

    Vagile Fauna 

 The sessile components of benthic communities are associated 
with the morphological and physical characteristics of the 
seabed. These features determine seasonal periods of growth 
alternated with periods of inactivity and dormancy (Coma 
et al.  2000 ). In contrast, much of the fauna that lives close 
to the bottom exhibits varying degrees of mobility, from 
crawling gastropod molluscs, starfi shes and sea urchins to 
highly mobile mysidacea and fi sh. These organisms perform 
seasonal migrations through a vertical gradient, avoiding 
high temperatures in summer and looking for food during 
winter in shallower habitats (San Vicente and Sorbe  2003 ; 
Bellan-Santini et al.  1994 ). Another group that moves sea-
sonally are the bottom dwelling fi shes and their migrations 
are linked to certain habitat types, and even to different 
regional areas (García-Rubies and Macpherson  1995 ). Such 
variation in habitat use can be attributed to different life 
history stages. Juveniles burrow into the substratum to evade 
predation, but the adults use a wider range of habitats such as 
big boulders or caves (Planes et al.  2000 ; Macpherson and 
Raventos  2005 ). 

 On the other hand, larval stages of many invertebrate 
and fi sh species use transitory habitats as an area for shelter 
and feeding. Many of these habitats occur in hard bottom 
communities associated to the sessile species that cover 

temporally the substrata. The most common types of habitats 
are macro-algal and sea-grass beds where species fi nd also 
refuge (Bruno and Bertness  2001 ). Occasionally, commu-
nities dominated by animals as bryozoans, gorgonians, cor-
als and polychaetes play a similar role and have a great 
strategic importance for species that inhabit them (Bellan-
Santini et al.  1994 ; Pederson and Peterson  2002 ). During 
periods of high growth of the foliage and thalli, meadows 
of macro- algae provide shelter and protection to different 
stages of many marine species that are most vulnerable to 
predation. Such habitats are essential in explaining the life 
cycles of species and also the seasonal and inter-annual 
variations in populations that synchronize their larval stages 
with the factors affecting the opportunities to colonize 
ephemeral habitats. 

 In deeper soft-bottoms environments of the continental 
shelves, there is a clear lack of knowledge in the temporal 
dynamics One of the few studies that have been carried out 
in the Mediterranean on this topic (de Juan and Cartes  2011 ) 
showed a marked seasonal variability linked to the high phyto-
plankton production in spring. The springtime production 
supplies organic matter to the benthos, inducing a higher 
infaunal abundance. There was also a reduction in the infaunal 
crustacean abundance and species richness in late summer. 
These changes were attributed to two factors, the establish-
ment of the thermocline (which could limit the availability 
of organic matter to the seabed), and the high water tem-
peratures (which caused the production of phytoplankton 
exudates and accumulation of mucilaginous aggregates over 
the seabed). 

 The low food input into the deep-sea results in scarce 
food resources, high food partitioning, highly diversifi ed 
diets, and very complex trophic webs. It can also be observed 
a trend towards a decrease of feeding intensity with depth for 
decapods and fi sh, which suggests a reduction on the meta-
bolic activity with increasing depth (Carrasón and Cartes 
 2002 ; Fanelli and Cartes  2004 ).  

    Animal-Dominated Communities 

 There are great differences in the temporal changes in the 
structure and dynamics between algal-dominated and 
animal- dominated communities. Shallow algal communities 
show the largest temporal changes, though it is diffi cult to 
establish a clear seasonal pattern. When the cover area is 
partitioned between algae and animals, they both fi nd favour-
able conditions for growing in the spring to summer period 
for algae, and autumn to winter for animals (Garrabou et al. 
 2002 ). In deeper communities, dominated by animals, few 
structural seasonal changes have been observed and these 
might be detected only in the physiological parameters of 
animal populations such as reproduction periods or slowly 
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growth patterns (Turon and Becerro  1992 ; Garrabou et al. 
 2002 ; Blanquer and Agell  2008 ; De Caralt et al.  2008 ). 
In these animal-dominated communities the abundance of 
ephemeral organisms and the trophic ecology of perennial 
ones are closely related, in response to summer and late 
autumn food shortages of the water column (Rossi et al. 
 2006a ). Ingesta and assimilation may vary seasonally with 
seston concentration and quality, depending on the feeding 
strategy (Coma et al.  2000 ; Jordana et al.  2001 ; Rossi and 
Gili  2005 ). 

 In the Mediterranean, the seasonal variation of environ-
mental factors such as temperature, food availability and 
photoperiod can cause shifts in the resource allocation of 
benthic organisms (Caswell  1989 ). From an energetic point 
of view, organisms change the seasonal pattern of energy 
invested in reproduction, growth and maintenance infl uencing 
the food storage (Rossi et al.  2006a ) (Fig.  12.7 ). In general, 
the main energy output coincides with the reproductive 
period at the end of the most successful feeding period, 
especially spring and early autumn (Coma et al.  1998 ). The 
seasonal variation in the biochemical composition of the tissue 
of an organism may be interpreted as a record of the water 
column productivity fl uctuations in the benthic community. 
It has been shown in gorgonians that the effect of seasonal 
fl uctuations in seston quantity and quality were apparent in 
the protein, carbohydrate, and lipid tissue concentration val-
ues (Rossi et al.  2006a ; Gori et al.  2007 ; Rossi and Tsounis 
 2007 ). Other approaches include the shift of the resource 
allocation into defensive mechanisms by species that grow in 
high competitive communities. In sponges, higher competi-
tive pressure in the shaded environment results in increased 
investment in defensive/supportive (mineral and organic) 

structures and a lower investment in somatic growth and 
reproductive output of larvae (Uriz et al.  1995 ).

   Another seasonal strategy related to the energetic con-
straints is a predictable pattern of temporal dormancy. In the 
Mediterranean, summer dormancy predominates, in contrast 
to cold temperate seas, which are characterized by winter 
dormancy (Sardá et al.  1999 ; Garrabou  1999 ; Coma et al. 
 2000 ; Betti et al.  2012 ; Di Camillo et al.  2012 ). The physio-
logical changes related with this resting state help the 
organisms to survive in adverse weather conditions and food 
scarcity. The plasticity of many sessile invertebrates allows 
them to withstand net energy defi cits by digesting them-
selves until additional food becomes available (Gili and 
Coma  1998 ). Biochemical composition in Mediterranean 
gorgonians (Rossi et al.  2006a ; Rossi and Tsounis  2007 ) 
shows periodic summer minimum energy storage of lipids 
and proteins, as well as a drop in late autumn-early winter. 
These observations agree with the expected physiological 
changes associated to summer and late autumn energy short-
age (Grémare et al.  1997 ; Rossi et al.  2003 ), and with an 
annual pattern of investment in growth and reproduction of 
gorgonian species. Seasonal dormancy phenomena have 
been related not only with energetic constraints but also with 
physiological adaptations to exceptional changes in water 
temperature ranges (Sulak et al.  2007 ). The presence of rest-
ing stages is a common mechanism in marine organisms, 
which can remain inactive for long periods, acting as bio-
diversity reservoirs. The importance of life cycle dynamics 
in structuring marine communities contributes to explain 
seasonal fl uctuations not only in benthic but also in phyto- and 
zooplanktonic communities (Boero et al.  1996 ).   

    Tendencies 

 The Mediterranean Sea is one of the most important bio-
diversity hotspots of the world with many different species 
and natural resources (Bianchi and Morri  2000 ; Coll et al. 
 2010 ). However, it is increasingly compromised by human 
activities, something that is accentuated by its semi-
enclosed confi guration, which restricts its communication 
with the open ocean. Human pressures on this environment 
are increasing habitat and species destruction to become a 
priority issue for policy-makers. In fact, Mediterranean 
Sea has been identifi ed as a hotspot of sea warming effects, 
ocean acidifi cation, alien species invasion and other direct 
and indirect human perturbations, being considerably 
more impacted than other places of the world (Durrieu de 
Madron et al.  2011 ). Increasing demographic and eco-
nomic developments make the general panorama of the 
Mediterranean benthic communities complex, since sev-
eral factors are synergically acting at population and com-
munity levels. 

  Fig. 12.7    Three years cycle of the lipid contents in the gorgonian 
 Paramuricea clavata . Shadow areas indicate reproduction period 
(Figure modifi ed from Rossi et al.  2006a ). The marked seasonality of 
food quality and availability is refl ected in the energy storage of 
mediterranean benthic suspension feeders. Food constraints and repro-
ductive traits are refl ected in summer (reproduction and aestivation 
process), and in autumn (low quality seston). Reproduction success is 
tightly related with the energy storage capability       
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    Directly Man-Induced Pressures 

   Fishing Activity 
 The fi shing activity in the Mediterranean is characterized by 
the multi-specifi city of catches and the absence of large single 
stocks, especially in the demersal regime (Farrugio et al. 
 1993 ). Although artisanal fl eets and gears constitute the most 
important fi sheries in the Mediterranean, nowadays there is a 
tendency in the development of semi-industrial fl eets, mainly 
of trawl fi shing. Five thousand two hundred and seventy four 
trawlers operate in Mediterranean waters, fully exploiting 
the continental shelves and upper slopes of the basin (FAO 
 2011 ). Bottom trawling shows the least degree of selectivity 
with the widest-range impact on different organisms of 
the ecosystem due to habitat destruction and modifi cation 
(Demestre et al.  2000 ), and displays the largest impacts on 
some demersal target species and non-target groups (i.e. small 
organisms discarded and juveniles of vulnerable species 
such as rays and demersal sharks). At present, trawl fi sheries 
constitute probably the most acute direct problem for soft-
bottom and detritic habitats, but was an evident source of 
destruction in other communities like  Posidonia oceanica  
or  Cymodocea nodosa . Together with species like hake 
( Merluccius merluccius ) or the anglerfi sh ( Lophius piscato-
rius)  and other demersal fi shes, the most common catches of 
bottom trawlers are crustaceans. Except for the Norwegian 
lobster ( Nephrops norvegicus ) ,  the  s cientifi c assessments 
carried out on the red shrimp ( Aristeus antennatus ) ,  the giant 
red shrimp ( Aristeomorpha foliacea ) and the pink shrimp 
( Parapenaeus longirostris ) are giving alarms for overexploi-
tation and the highly damaging effect on the accompanying 
fauna and surrounding environments (   General Fisheries 
Commission of the Mediterranean  2012 ). 

 Common illegal practices in Mediterranean trawling 
include using nets with a smaller mesh opening than the 
permitted, fi shing in prohibited zones and seabeds and 
using engines with a higher power than offi cially declared. 
Their catches also include abundant by-catch and discards. 
Though theoretically it would be simple to analyze the 
 intensity of trawling in the Mediterranean using the track of 
the fl eet with positioning systems, the reality is that data does 
not exist or it is not available. Studies in the North Sea 
showed that the area trawled by these vessels each year is 
equivalent to the size of the entire sea (Leth and Kuijpers 
 1996 ), and this fi gure could be similar for the continental 
shelves in the Mediterranean. The impact of trawling on the 
ecosystem can be categorized into two basic factors: (a) the 
selectivity of fi shing techniques, with regard to the target 
species and to catching young fi sh and other sea animals that 
do not correspond to the target species, and (b) the habitat 
destruction, physical and biological consequences of the 
fi shing arts on the bottom (Fig.  12.8a, b ).

   The selectivity depends on the mesh size used and its 
shape. The larger the size of the mesh opening of the net, the 

greater the selectivity, whereas diamond shapes generally 
tend to result in poorer selectivity than square shaped ones. 
However, other reports have demonstrated that the selectivity 
of fi shing techniques depends more on the target species 
(behavior, life cycle, etc.) than on the size of mesh used 
(e.g. young mullet, Tokaç and Tosunoglu  1996 ). Although 
selectivity depends on the shape of the species caught, it is 
also highly affected by the large amounts of rubbish taken in 
the catch. A survey conducted on a Norway lobster trawler 
fishery in the Mediterranean showed that one piece of 
rubbish was brought up per six Norway lobsters (Ragonese 
et al.  1994 ). Rubbish is becoming an alarming problem in 
fi sheries. 

 The physical impact of bottom trawling on ecosystems is 
also very high, reducing the complexity of benthic communi-
ties (Auster  1998 ). All the components involved in trawling 
have the capability to affect the seabed, the net, the chains, 
the weights and, especially, the doors. These can go various 
centimeters into the seabed (up to 30 cm depth) depending 
on the sediment and the technique used, damaging benthic 
ecosystems (Collie et al.  2000 ; de Juan et al.  2007 ,  2011 ). All 
trawl components show a huge impact on soft-bottom envi-
ronments yielding less species selectivity than other fi shing 
techniques, damaging the substrate and its sessile species, 
and increasing its slow recuperation. The reduction of 
invertebrates (echinoderms, polychaetes and molluscs) in 
trawled zones reach up to 65 % when compared with areas 
where this kind of fi shing has not taken place (Bergman and 
Hup  1992 ). 

 Trawling can create also similar effects to eutrophication, 
increasing the presence of opportunist species in benthic 
environments. The reduction of biomass in these zones, 
when compared with an area where trawling has not taken 
place, can be ten times greater, especially with regard to 
fi sh species. Additionally, trawling discards can give rise to 
episodes of anoxia on the seabed, increasing the mortality of 
target species (Browder  1981 ) and causing changes in the 
structure and composition of these species (Chan and Liew 
 1986 ). The effect of discards can be noted on other taxonomic 
groups of fauna as marine birds. Discards may support a 
demographic explosion of the most opportunistic species to 
the detriment of other, more vulnerable ones (Garthe and 
Hüppop  1998 ), producing also changes in habitats, behavior 
and reproduction. Trawling also affects the water column and 
the ecosystem in general, by changes in biogeochemistry and 
the nutrient effl uents caused by the resuspension of sedi-
ments, nutrients and pollutants, as well as damage to the 
invertebrates that are responsible for irrigating, compacting 
and oxygenating the seabed (Schwinghamer et al.  1996 ). The 
increase in turbidity can also infl uence the photo synthetic 
capacity of plants, with the resultant decrease in their distri-
bution and productivity in the photic zone (Caddy  2000 ). 

 In general, trawling on soft-bottom habitats affects the 
most to long-living epibenthic species and less the infaunal 
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ones. Consequently the oldest and longest living species are 
the scarcest in trawled areas, while younger, more short- 
lived species are the most abundant (Tuck et al.  1998 ). The 
effects of trawling in the long-term could also favor small pas-
sive fi lter-feeders over larger active fi lter-feeder species. 
Effects of trawling are as important as those produced by 

strong natural perturbations (Pusceddu et al.  2005 ). Trawling 
may have a very high impact on important and unique habi-
tats of long-term formation, seagrass beds, maërl habitats, 
and deep coral reefs. In deep-sea, the impact of trawling on 
species assemblages could be even greater. Because these 
areas are not regularly subjected to natural changes, as 

  Fig. 12.8    Examples of perturbations: ( a ) trawl marks and ( b ) gosh 
net entangling adult lobsters  Palinurus elephas  (Photographs  a  and  b  
by NEMO-ICM-Gavin Newman) as examples of direct human per-
turbations by fi shing in the Cap de Creus continental shelf (NW 
Mediterranean) at 110 m depth; mass mortalities events affecting 
 Paramuricea clavata  at 20 m depth in Corsica (Central Mediterranean) 
( c ) healthy colony and ( d ) a colony showing almost complete loss of 

tissue, the denuded axis have been colonized by different epibiontic 
species (Photographs  c  and  d  by MedRecover Marine Conservation 
Research Group); ( e ) mucilage aggregations on gorgonian  Para-
muricea clavata  at 20 m depth, Montgrí Coast (NW Mediterranean); 
( f ) invasive species  Oculina patagonica,  colony found at 15 m depth 
in Medes Islands (NW Mediterranean) (Photographs  e  and  f  by Núria 
Teixidó)       
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frequently as in shallower waters, are more vulnerable to 
artifi cially induced changes (Langton and Auster  1999 ).  

   Nutrient Increase 
 Disease and mucilage formation are phenomena that are 
directly attributed to nutrient increase in the Mediterranean 
Sea. The mucilage phenomenon has been affecting different 
areas of the North-Western Mediterranean during the last 
decades (Mistri and Ceccherelli  1996a ; Giuliani et al.  2005 ) 
(Fig.  12.8e ). The fi rst record was in 1991 in the Tyrrhenian 
Sea (Innamorati et al.  1993 ), but it has been spreading in 
other areas during the last 20 years (Pusceddu et al.  2009 ). 
This phenomenon, in which different algae form a compact 
bloom that covers benthic communities (Giuliani et al. 
 2005 ), has a direct effect on suspension feeders, covering 
during a prolonged time their feeding structures. Entire 
populations can be affected, being the extent of the injuries 
negatively correlated with the size of the colonies (Mistri and 
Ceccherelli  1996a ). However, as in the previously described 
hot waves mass mortalities, the recovery of the colonies were 
also observed after 2 years of the event (Mistri and Ceccherelli 
 1996b ). An indirect effect of hypoxia (and even anoxia) is 
also observed because of the oxygen depletion by bacterial 
respiration (Schiaparelli et al.  2003 ). Is not clear which is the 
origin of the mucilage, neither if is related with local con-
tamination (high nutrient concentration), but it is certain that 
has effects on the pelagic and benthic functioning (Pusceddu 
et al.  2009 ). 

 Another phenomenon related with the microbiological or 
viral attack in hard bottom suspension feeders has been 
described in sponges (Gaino et al.  1992 ). The disease appar-
ently produced by bacteria, made profound alterations on the 
skeleton with bacterial damage fi bres (Cebrian et al.  2011 ). 
Commercial sponge beds were heavily damaged, especially 
in shallower areas, and because of its intensive harvesting, 
were locally depleted (Pronzato and Manconi  2008 ).  

   Harvesting 
 Commercial sponges and red coral are the most affected 
animal species by direct impact on hard bottom substrates 
(Pronzato and Manconi  2008 ; Tsounis et al.  2010 ).  Spongia, 
Hyppospongia , and  Corallium rubrum , have been exploited 
for thousands of years. However, the most intense harvesting 
period is centred in the last two centuries. Sponges also 
suffered a devastating disease that dropped dramatically 
the landings and the commercialization of these species 
(Pronzato and Manconi  2008 ). Other sponge species have 
been recently identifi ed as animals of pharmacological interest 
(like  Dysidea avara ), threatening the resource to extract the 
target metabolites (Pronzato et al.  2000 ). Red coral has also 
been harvested in a completely unsustainable manner 
(Tsounis et al.  2007 ), because no biological parameters are 
considered in the actual fi shery models. The intense harvesting 

and mass mortalities may collapse this resource at a local 
level in the fi rst 50 m depth, due to a synergic effect (Garrabou 
et al.  2001 ; Santangelo et al.  2007 ). Even if there is a real 
effort to recover both harvested suspension feeders organ-
isms (Pronzato et al.  2000 ; Bramanti et al.  2007 ; Linares 
et al.  2012 ; Benedetti et al.  2011 ), there is still a long way to 
manage properly these overharvested species. Other important 
harvesting activities that may cause severe direct or indirect 
impact on rocky benthic invertebrate assemblages and their 
habitat as in the case of the edible sea urchin  Paracentrotus 
lividus  (Sala et al.  1998a ,  b ; Pais et al.  2007 ) and the rock-
boring date mussel  Lithophaga lithophaga  (Fanelli et al. 
 1994 ; Guidetti et al.  2003 ).  

   Local Impacts 
 Local impacts on suspension feeders due to the direct action 
of humans have also important consequences. Sala et al. 
( 1996 ) found that the bryozoan  Pentapora fascialis  was more 
exposed to SCUBA diver’s action in frequented than in non- 
frequented areas. The same perturbation (dead or partially 
injured colonies) or the lack of populations recovery were 
found in a long term monitoring of the gorgonian  Paramuricea 
clavata  and red coral  Corallium rubrum  (Coma et al.  2004 ; 
Linares et al.  2012 ). SCUBA diving may be re-directed to a 
more respectful and appropriate diving behaviour (Bramanti 
et al.  2011 ). However, simple actions like bubbling near the 
colonies during the spawning period may cause the loss of 
sexual products before the fecundation process occurs, and 
therefore damaging the entire population (Tsounis et al.  2012 ). 

 Other not so evident damages in suspension feeders 
assemblages are caused by line fi shing, which may affect 
more than 30 % of the gorgonians in highly frequented areas 
by amateurs or professionals (Bavestrello et al.  1997 ; 
Bramanti et al.  2011 ). Lines denude the axis of the animals, 
which favours the development of epibiont aggregates. 
Mechanical stress has also been recorded, damaging colonies 
that can be partially or totally broken. These kind of injuries 
have an effect on the gonadal output and in the energy storage 
capability of gorgonians that may produce less potential 
recruits (Tsounis et al.  2012 ). Other negative local impacts 
are those performed on sea-grasses by the anchoring of boats 
from recreational boating that causes mechanical damage 
and habitat loss (Francour et al.  1999 ; Milazzo et al.  2004 ; 
Lloret et al.  2008 ).   

    Natural and/or Indirectly Man-Induced 
Pressures 

   Increasing Temperature 
 The temperature increase observed in recent decades in the 
ocean has also been observed in the Mediterranean Sea. Two 
signifi cant mass mortalities due to a heat wave (1999 and 
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2003) have been detected and their impact in hard bottom 
communities quantifi ed (Cerrano et al.  2000 ; Perez et al. 
 2000 ; Garrabou et al.  2009 ). In these mass mortality events, 
the so-called animal forest were affected in the fi rst 10–50 m 
depth in a wide range (more than 1,000 km of coast in the 
second heat wave), partially or totally killing gorgonians, 
corals, sponges or bryozoans. Affected colonies also 
recorded extensive attacks of microorganisms (protozoan 
and fungi) (Cerrano et al.  2000 ) (Fig.  12.8c,d ). The anomalous 
high temperatures, the energetic constrains associated with 
water column stability conditions and pathogens develop-
ments, were the most probable causes of mortality (Bally 
and Garrabou  2007 ; Coma et al.  2009 ; Vezzulli et al. 
 2010 ). Other mass mortality events have been reported in 
the Mediterranean (Bavestrello et al.  1994 ; Harmelin and 
Marinopoulos  1994 ; Maldonado et al.  2010 ; Cebrian et al. 
 2011 ), although in previous outbreaks the number of affected 
species and/or spatial scale concerned was lower than in the 
above-mentioned 1999 and 2003 mass mortalities. 

 Several time series have examined the effects of the 
heat waves on different organisms especially in the 
coralli genous communities. Linares et al. ( 2008 ) 
showed the warming effect on the reproductive output of 
the gorgonian  Paramuricea clavata , being the most 
affected colonies those with less gonadal production. 
Bramanti et al. ( 2005 ) observed a drop in the recruitment 
of shallow red coral patches, probably a consequence of 
the partial or total mortality of the colonies (Garrabou 
et al.  2001 ). Alternatively, not all the areas recovered in 
the same way after the heat wave. Unlike in the Port Cros 
National Park (Linares et al.  2005 ),  Paramuricea clavata  
had high recruitment rates and tissue recover in the Eastern 
Ligurian Sea (Cupido et al.  2008 ,  2009 ), showing that 
population dynamics of gorgonians may differ with local 
environmental factors (Bramanti et al.  2009 ). Also the 
autoecology of the species is a key factor to understand 
the capacity to recover, being  Eunicella singularis  the spe-
cies that showed the best recovery in the above- mentioned 
area (Fava et al.  2010 ). Recently, genetic studies demon-
strated signifi cant genetic structure between populations at 
small spatial scales (tens and hundreds of meters), sug-
gesting that gene fl ow is highly restricted (Ledoux et al. 
 2010 ; Mokhtar-Jamaï et al.  2011 ). These results indicate 
that recovery of populations from large perturbations is 
very likely only based in local processes.  

   Ocean Acidifi cation 
 Another less understood but probable damage suffered by 
the benthic communities due to the climate change in the 
Mediterranean sea will be the ocean acidifi cation effects. 
Ocean acidifi cation is predicted to impact all areas of the 
oceans and affect a variety of marine organisms (Durrieu de 
Madron et al.  2011 ). The diversity of responses among 

species prevents clear predictions about the impact of 
acidifi cation at the ecosystem level (Hall-Spencer et al. 
 2008 ; Kroeker et al.  2011 ). 

 Organisms like polychaetes or amphipods seem to be 
non-affected by the future acidifi cation panorama, but deca-
pods or gastropods may suffer severe impacts on its cal-
careous structures (Kroeker et al.  2011 ). Other calcareous 
organisms may be extremely affected by future ocean acidi-
fi cation, as shown by Lombardi et al. ( 2011 ) in the bryozoan 
 Schizoporella errata . In this suspension feeder, the putative 
defensive polymorphs (avicularia) were signifi cantly fewer, 
and retarded growth of zooidal basal and lateral walls 
was evident at low pH. Other studies show the effects of 
the chemical balance alteration in micronutrients essential 
for the physiological needs of bryozoans. In  Myriapora 
truncata , prolonged low pH exposition increases the enrich-
ment of Mg in outer layers   , enhancing the skeleton vulnera-
bility to dissolution. Alternatively, the symbiotic anthozoan 
 Cladocora caespitosa  seems to be non-affected by pCO 2  
increase. So, the common belief that calcifi cation rates will 
be affected by ocean acidifi cation in all calcifi er organisms 
may not be the common rule (Rodolfo-Metalpa et al.  2010 ). 
In fact, much work is needed to better understand the poten-
tial impact of pCO 2  increase, not only in the physiology of 
organisms but also at the community and between organism 
interaction levels.  

   Easterly Wind-Storms 
 Easterly wind-storms occur frequently and have high inten-
sity in the Western Mediterranean Sea (Mendoza et al.  2011 ). 
The immediate effect of these storms is a direct mechanic 
perturbation on the benthic fauna and fl ora. Pluri-annual 
algal canopies like  Cystoseira zosteroides  may be heavily 
affected by autumn storms, but their recovery depends upon 
local population size structure, mortality and recruitment 
(Navarro et al.  2011 ). The changes produced in the algal 
and sessile animal composition, as well as in the abundance 
of vagile organism, may be crucial for the survivorship of 
higher trophic levels. 

 But there is also another less evident effect of easterly 
wind-storms that infl uences benthic communities. Storms 
affect resuspension modifying the composition of the organic 
fraction of settling particles, decreasing the labile fraction of 
particulate organic matter (Grémare et al.  1997 ; Rossi et al. 
 2003 ). The storm may result in a transitory increase of the 
abundance of fi ne particles at the water-sediment interface, 
coating these particles with highly refractory matter 
(Grémare et al.  2003 ). Even if in the deep coastal shelf and in 
submarine canyons such storms may mobilize particles 
suitable for benthic organisms (Puig et al.  2001 ; Sardà 
et al.  2009 ), in near coastal shallow areas can give rise to a 
shortage in food availability. The decrease in food availability 
because of high resuspension and heavy river runoff particle 
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transport rises the food stress level in passive suspension 
feeders (Rossi et al.  2006b ).  

   Biological Invasions 
 Biological invasions in marine habitats represent one of the 
main factors of human-induced global changes (Occhipinti- 
Ambrogi and Savini  2003 ). The Mediterranean Sea has been 
subjected to introductions of non-indigenous species by ship 
traffi c and aquaculture several centuries ago, but it has been 
during the last hundred years when these impacts have been 
accelerating (Galil  2000 ). Besides the Suez channel    opening 
in Egypt. Also, the proliferation of artifi cial hard structures 
has been a key factor for the spreading of many species 
(Bulleri and Airoldi  2005 ), as well as the transformation of 
benthic areas by different direct or indirect human intrusions 
(Coma et al.  2011 ). An updated checklist of marine alien 
species within each subregion of the Mediterranean Sea, 
along with their acclimatization status and origin has been 
recently provided by Zenetos et al. ( 2010 ). A total of 955 
alien species are known in the Mediterranean, the vast majority 
of them have been introduced in the Eastern Mediterranean 
(718), less in the Western Mediterranean (328) and Central 
Mediterranean (267), and least in the Adriatic (171), being 
this numbers underestimated. Excluding microalgae, for 
which knowledge is still insuffi cient, aliens have increased 
notably the total species richness of the Mediterranean Sea 
by 5.9 %. A total of 134 alien species are classifi ed as 
invasive or potentially invasive (108 are present in the 
Eastern Mediterranean, 75 in the Central Mediterranean, 53 
in the Adriatic and 64 in the Western Mediterranean). 
Invasive species presence indicates that they have spread, are 
spreading or have demonstrated their potential to spread 
elsewhere, and have an adverse effect on biological diver-
sity, ecosystem functioning, socio-economic values and/or 
human health in invaded regions. A large portion of these 
invasive species are benthic species. 

 One of the most studied invasions of hard bottom suspen-
sion feeders is the  Oculina patagonica  case (Fig.  12.8f ). This 
species is a new immigrant from the Southwest Atlantic to 
the Mediterranean Sea, which has now a widespread distri-
bution even in the eastern Mediterranean (Fine et al.  2001 ). 
Coma et al. ( 2011 ) observed a longterm series of expansion 
in this symbiotic anthozoan, as well as the abundance of 
 Paracentrotus lividus , the main grazer of macroalgae in hard 
bottom substrates. Their results show that part of the increas-
ing presence of  Oculina patagonica  may be explained by the 
increase of sea urchin abundance, which creates a barren 
rock suitable for the settling of the alien species (Coma 
et al.  2011 ). Sponges have also been reported to invade the 
Mediterranean. The calcareous sponge  Paraleucilla magna  
is proliferating in the western Mediterranean since 10 years 
ago (Guardiola et al.  2012 ) and its origin remains unknown. 
In general, the fi rst stages of colonization and the capacity to 

survive during the settling process have been observed as key 
factors to better understand alien species success on hard 
bottom substrates (Rius et al.  2009a ,  b ). 

 In summary, Mediterranean benthic communities have 
been perturbed and changed by human activities since the 
beginning of the civilization. With the progressive increase in 
human population in the coastal zone, the impact has increased 
especially on the coast but also along the continental shelf. 
Today, signs of disturbances caused by man activities can be 
seen in almost all regions of the Mediterranean Sea. Both 
trawling and pollution drastically affect the loss of diversity 
and benthic habitat reduction. The anthropogenic effects 
must be added to those produced by global warming that 
affect especially the shallow populations and may favor 
the proliferation of invasive species. The conservation of 
the Mediterranean requires urgent measures such as marine 
protected areas and a proper change in its management, 
based on rigorous scientifi c knowledge (Rield  1980 ; Sala 
 2004 ). Benthic communities, especially those dominated by 
animals, have been unfairly ignored in management plans 
and conservation all around the world (Arntz et al.  1999 ).       
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