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Abstract  

The advent of next-generation (or high-throughput) sequencing (NGS/HTS) has 

revolutionised biology, with much impact on the field of molecular 

phylogenetics.  Traditional debates of taxa versus characters are now somewhat 

defunct in the phylogenomics era.  In this thesis I focus on one particular HTS 

approach, ‘genome skimming’ as a phylogenomics and genomics method.  I 

extend the scope of genome skimming to encompass more of the data present 

from low-coverage genome sequencing, using a novel method to analyse 

genomic repeat abundances as phylogenetic characters in addition to the 

assembly of high-copy organellar and nuclear DNA (plastomes and the nuclear 

ribosomal DNA cistron).  The methodology for using nuclear repeats is initially 

developed, and then genome skimming is used to explore the phylogenetic 

relationships within a recent radiation – Nicotiana section Suaveolentes 

(Solanaceae).  These data provide a significant improvement in our phylogenetic 

understanding of the group, despite low levels of genetic divergence between the 

core Australian species of Nicotiana section Suaveolentes and significant 

incomplete lineage sorting.  Support is garnered for the whole genome 

duplication (WGD) radiation lag-time model in section Suaveolentes, with a 

significant increase in diversification in the last 2 million years following a lag of 

approximately 4 million years after the origin of the section at ~6.8 mya 

(allopolyploidisation event).  Associated with this diversification are various 

processes of diploidisation including chromosome number reduction and 

genome downsizing.  In addition to genomic patterns, there are ecological ones 

associated with diversification, including a general switch from perennial to 

annual life history strategy (with some notable reversals).   These results paint 

Nicotiana section Suaveolentes as a recent and ongoing radiation, and are placed in 

the broad context of angiosperm diversification post-polyploidisation. 
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Molecular phylogenetics and molecular markers 

Key advances in the late 1980s and early 1990s led to a surge in the development 

of molecular phylogenetics methods and data in modern systematics.  The 

advent of the polymerase chain reaction (PCR) coupled with advances in Sanger 

sequencing made it possible to sequence coding and non-coding regions of 

genomic DNA (gDNA) with relative ease (Mullis et al., 1986; Smith et al., 1986; 

Saiki et al., 1988); the former enabled specific amplification of genes and regions 

of interest and the latter, in particular once automated detection of fluorophores 

became the norm, enabled sequencing of up to ~800 bp of DNA in each reaction.  

These generic advances in molecular biology coupled with ones more specific to 

plants, e.g. the use of silica gel to preserve material for later DNA studies (Chase 

and Hills, 1991), further widened the scope of molecular phylogenetics to 

include many and rare taxa from across the globe.   

 

Due to the ease of amplification with relatively little modification to PCR 

protocols, the focus of much early work was DNA present in high-copy number 

– either in the genome or cell.  Specifically, this included the nuclear internal 

transcribed spacer of ribosomal DNA (ITS) and organellar DNA (mitochondrial 

and plastid genomes).  In animals this quickly led to a surge in the use of 

cytochrome oxidase subunit I (cox1) from the mitochondrial genome 

(mitogenome) as the marker of choice for systematic studies (e.g. Hunt et al., 

2007).  In plants, mitogenomes are much larger (typically 400 kb or larger, 

compared to 15-18 kb in animals), evolve slower, and contain many and more 

frequent genome rearrangements (Palmer 1992).  These facets of plant 

mitogenomes together made their use in plant systematics less feasible on the 

whole, although they may have use in deeper level systematics (Turmel et al., 

2002; Knoop 2004).  Instead the plastid genome (plastome) became the focus of 

plant molecular systematics.  By contrast the plastome is typically around 150 

kb, harbouring fewer rearrangements, and yet approximately a four-fold 

increase in the rate of nucleotide substitution compared to the mitogenome.  The 
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coding genes rbcL (ribulose bisphosphate carboxylase large subunit) and matK 

(maturase K) became the markers of choice, frequently supplemented by 

various non-coding intergenic spacer regions.   

 

In time these regions became so widely used, and indeed so useful, that they 

represent the animal and plant DNA barcode regions (Hebert et al., 2003, Chase 

et al., 2007; CBOL Plant Working Group, 2009) – regions of DNA that can be 

targeted with universal primers for most taxa, amplified and sequenced with 

ease.  These barcodes are then built into large databases enabling amongst 

others, huge community phylogenetics projects and molecular ecological studies 

that would otherwise be untenable. 

 

In the field of molecular phylogenetics, researchers moved away from the use of 

these markers, in part due to features of the markers’ evolution and specific 

ones occurring in their groups of interest (most commonly a lack of adequate 

variation).  The concerted evolution of ITS is still relatively poorly understood, 

and partial gene conversion can lead to confusing phylogenetic patterns due to 

the inheritance of different ancestral alleles amongst related taxa of interest.  

Plastome regions are usually maternally inherited in plants, and at least 

uniparentally inherited, thereby only revealing aspects of maternal inheritance.  

The propensity for plants to form polyploids and hybrids meant that 

investigations of groups containing such species would gain only limited 

information from these data sources.  Introgression of plastids and 

incongruence between plastid and ITS markers are also issues.  As such a move 

towards low-copy nuclear genes occurred, these being biparentally inherited 

with the potential to reveal the origins of both parental lineages of 

hybrids/polyploids, whilst at the same time often (but not always) containing 

higher amounts of variation compared to plastid markers (Zhang et al., 2012).  

Complications occur with low-copy nuclear markers, usually due to the 

difficulty in assigning paralogues or phenomena such as incomplete lineage 
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sorting (where ancestral polymorphisms were not fixed and this confuses extant 

patterns of allelic inheritance).  The resulting consensus in plant systematics into 

the 21st century involved a combination of nrITS, plastid and low-copy nuclear 

genes.   

 

 

Next-generation sequencing – a plethora of new approaches 

With the rise of next-generation sequencing (NGS) or high-throughput 

sequencing (HTS) techniques, the world of molecular phylogenetics has rapidly 

begun to change.  The first significant change came with the advent of Roche’s 

454 pyrosequencing, the output of which was several orders of magnitude more 

data and modest read lengths averaging at best 450 bp.  However, the output 

from 454 sequencing (and the relative cost) ultimately became its downfall, 

being replaced by Illumina, which is the current world leader in HTS 

technologies.  At the time of writing, Illumina machines can output up to 1 Tb of 

sequence data (8 billion paired-end reads of 2 x 125 bp) running dual flow cells 

on a HiSeq with V4 chemistry in 6 days.  Whilst this is an enormous leap 

forward in the amount of sequence data that can be acquired, and a huge 

reduction in the cost per base, it is still relatively expensive to sequence entire 

genomes for most species with modest to large genome sizes.  It is perhaps 

always unnecessary to sequence entire genomes for systematics applications but 

at some point in the near future with the advances in sequencing and assembly 

of genome sequences, this must be an inevitable endpoint.  

 

Notwithstanding the aims and experiments of the broader genomics 

community, systematists’ goals with HTS are somewhat different: the aim is to 

sequence many taxa whilst retaining as much sequence data per taxon as is 

currently feasible.  This inevitably led to the appropriation of the term ‘reduced 

representation sequencing’ to encompass a whole host of strategies to reduce 

the complexity of the genome (Figure 1.1), and thereby the amount of data 
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generated for each sample of interest.  The most popular approaches are 

restriction-site associated sequencing, RADseq (Baird et al., 2008; Peterson et al., 

2012; Wagner et al., 2013), and target enrichment (baiting) methods (Cronn et al., 

2012; Guschanski et al., 2013).  The former utilises restriction enzymes (REs) to 

sequence small regions flanking restriction sites, and by choosing/testing 

different REs it is possible to change the depth of sequencing per taxon/sample.  

Target enrichment methods work by first developing bait sequences, usually 

from other HTS data such as transcriptomes, and choice of the genes/sequences 

of interest requires much prior thought.  Small RNA baits (typically 80-100 

nucleotides, tiled at various densities) are then used to essentially fish for DNA 

of interest, and enrich it using biotin/streptavidin selection and this enriched 

DNA can then be used for the sequencing run.  Both of these methods have 

shown a great deal of promise in new approaches to molecular systematics, for 

example RADseq in the Lake Victoria cichlid fish radiation (Wagner et al., 2013) 

and baits in primates (Guschanski et al., 2013).  However, both of these methods 

require extensive lab procedures and optimisation, unless outsourced to a 

commercial company, which of course increases the cost; the cost for 

development of the baits required for target enrichment is also prohibitively 

expensive for the average systematics or evolution lab.  

 

 

Genome skimming 

The term ‘genome skimming’ was coined by Straub et al., (2012) as a method by 

which to ‘navigate the tip of the genomic iceberg’.  This is, by comparison to 

other methods, very simple, requiring less lab work and optimisation and in fact 

no a priori knowledge is necessarily needed regarding the organism or indeed its 

genome size.  Genomic DNA is simply extracted and sequenced at low-coverage 

(perhaps up to 5% of the genome, or 0.05x coverage).   
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Figure 1.1 A summary of current high-throughput sequencing methods as 

applied to evolutionary, ecological and systematic studies.  Abbreviations: 

gDNA, genomic DNA; cDNA, complementary DNA.  Figure adapted from 

(Dodsworth, 2015).  
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Data present in ‘genome skims’ consists of that which is in high-copy in either 

the genome or cell, i.e. organellar DNA, high-copy genes, and nuclear genomic 

repeats (satellites, DNA transposons, retroelements).  This method has been 

widely used to sequence the entire plastome quickly and efficiently, given its 

usefulness in phylogenetics, at a fraction of the cost (and time) required to do it 

via conventional Sanger sequencing (e.g. Kane et al., 2012; McPherson et al., 

2013; Malé et al., 2014).  At the same time as isolating the plastome sequence it is 

possible to assemble the full rDNA cistron (~7 kb), partial mitogenome 

sequences, and de novo analyse the nuclear repeats in the genome.  Full plastome 

sequences generated by this method have been used to understand the 

phylogeny of a pantropical tree family (Malé et al., 2014), for phylogeography 

(McPherson et al., 2013; van der Merwe et al., 2014) and even suggested as a 

suitable super-barcode to supersede traditional DNA barcodes in plants (Li et 

al., 2015).   The use of whole plastome sequences and the full rDNA cistron 

represent a natural progression of traditional ITS and plastid markers into the 

genomic era.   

 

Nuclear genomic repeats in genome skims 

An untapped data source in genome skims are the nuclear repeats present in 

high-copy number in the genomes of most plant species.  Repetitive elements 

consist of tandem repeats (satellites) and transposable elements, of which there 

are class I (DNA) transposons and class II transposons (LTR and non-LTR 

retrotransposons).  In plants these nuclear repeats can constitute a majority of 

genomic DNA.  The most abundant repeats found in plants are the LTR 

retroelements of Ty-1/Copia and Ty-3/Gypsy superfamilies (Hansen and Heslop-

Harrison, 2004).  Copy number of these repeats is highly variable and as such 

they contribute a large effect on genome size change.  From a systematics 

standpoint the distribution and occurrence of these repeat types can be 

phylogenetically informative and provide information about species’ 

evolutionary histories.  Traditionally this has been viewed in a cytogenetic 
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context, via the localisation of repeat types on chromosomes with fluorescence 

in-situ hybridisation (FISH), whereby parsimonious explanations of repeat 

distributions do reflect the phylogeny of the species (e.g. Lim et al., 2006).   

 

Of course such repetitive elements are present in low-coverage genome skims, 

along with tandemly duplicated ribosomal DNA.  Until recently methods of 

analysing nuclear repeats were inadequate, with genomics researchers often 

discarding them in genome assembly projects.  A recent pipeline developed to 

analyse repeats in high-throughput sequencing data has been used successfully 

to analyse repeats in several groups of plants, including legumes, Solanaceae 

and Orobanchaceae (Macas et al., 2007; Renny-Byfield et al., 2011; Piednoël et al., 

2012).  This pipeline utilises graph-based clustering of HTS reads, based on all-

to-all BLAST comparisons, and resulting clusters represent de novo repeat classes 

or ‘families’ (Novak et al., 2010; 2013).  In different groups it became apparent 

that the abundance and distribution of these repeat clusters reflected 

phylogenetic patterns (Piednoël et al., 2012; Renny-Byfield et al., 2013) and as 

such represent an underused source of phylogenetic data present in genome 

skimming datasets.  

 

 

The genus Nicotiana 

Nicotiana L. contains approximately 76 species to date (Knapp et al., 2004), about 

a third of which are allopolyploids, with several recent homoploid (diploid) 

hybrids also reported (Clarkson et al., 2010; Kelly et al., 2010; Kelly et al., 2013).  

Allotetraploids have formed several times in Nicotiana over varying timescales, 

often between the same parental lineages, which sets the genus up as a natural 

system to unpick the effects of polyploidy over different timeframes (Chase et 

al., 2003; Clarkson et al., 2004; 2005; Leitch et al., 2008; Table 1.1; and see Chapter 

4).  This therefore makes Nicotiana as excellent genus for studying polyploidy in 

relation to diversification and adaptation.   Polyploids have formed in Nicotiana 
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from as recent as 200,000 years ago (Nicotiana tabacum and N. rustica) to 

potentially as old as 10 million years (Nicotiana section Suaveolentes).   

 

Table 1.1 Comparison of polyploid sections in Nicotiana  

Section Age (my) Paternal parent Maternal Parent Taxa 

Nicotiana ~<0.2 N. tomentosiformis N. sylvestris 1 

Rusticae ~<0.2 N. undulata  N. paniculata 1 

Polydicliae ~1 N. attenuata N. obtusifolia 2 

Repandae ~5 N. obtusifolia N. sylvestris 4 

Suaveolentes ~10 N. sylvestris hybrid ~26 

 

 

 

Nicotiana section Suaveolentes  

Compared to the rest of Nicotiana, section Suaveolentes has been the subject of 

comparatively little study.  This is probably due to the remote nature of many of 

the species in section Suaveolentes, most of which are distributed throughout the 

arid zone of central Australia (Figure 1.2).  There have been a smattering of 

studies focussing on molecular biology, artificial hybridisation and self-

incompatibility – and indeed the putative first study of intraspecific variation in 

plants was conducted in Nicotiana forsteri (under the synonym N. debneyi) 

looking at plastid DNA variation (Scowcroft, 1979).  Despite this interesting 

legacy of previous work, the section has since received only a modest amount of 

effort in terms of molecular phylogenetics, though a doctoral thesis focussing on 

morphology and species relationships published in 2010 was the most 

comprehensive piece of work on the section to date (Marks, 2010).   
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Figure 1.2 Distribution of Nicotiana section Suaveolentes within Australia.  

Occurrences are coloured by taxon; all data for identified taxa were downloaded 

from the Australian Virtual Herbarium. 

 

Section Suaveolentes contains approximately 26 taxa, which form a monophyletic 

group in all previous molecular phylogenetic analyses – based on nrITS, plastid 

markers, and several low-copy nuclear genes (Chase et al., 2003; Clarkson et al., 

2004; 2010; Kelly et al., 2013).  The species within section Suaveolentes are 

notoriously homogeneous morphologically, compared with some other clades 

of Nicotiana – and this, in part, may explain why the taxonomy of the group has 

been considered difficult relative to other sections of Nicotiana.  However, Marks 

(2010) following a detailed morphological study of most species in the section, 

considered the current taxonomy to be stable at the species level and gave 

detailed descriptions of characters and an updated key to the species of section 

Suaveolentes.  For a list of current taxa in the section see Table 1.2 and for 

examples of morphology see Figure 1.3. 
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Figure 1.3 Examples of floral and vegetative morphology in Nicotiana 

section Suaveolentes.  Column A: Nicotiana simulans on the Gibber Plains; column 

B: Nicotiana truncata at Fishhole Creek, off the Coober Pedy-Oodnadatta Road. 
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Figure 1.3 cont. Column C: N. velutina near Oodnadatta; column D: N. burbidgeae 

at Dalhousie Springs, South Australia.  
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The ancestor of section Suaveolentes was an allotetraploid with n = 24, that 

probably originated within South America ~10 mya (Clarkson et al., 2004; 

Clarkson, 2007; Leitch et al., 2008; Clarkson et al., 2010; Kelly et al., 2013).  This 

makes section Suaveolentes the oldest and most diverse of the polyploid clades 

within the genus by a long way (for comparison, see Table 1.1).  Section 

Suaveolentes has arguably the most complex evolutionary history of Nicotiana 

allopolyploid sections, as the maternal parent of the section is thought to be a 

homoploid hybrid itself (Kelly et al., 2013).  The section also contains a vast 

range of chromosome numbers from n = 24 down to n = 15 (with n = 14 

previously reported for one species, N. wuttkei) and only one number never 

reported in this dysploid series, n = 17 pairs.  This heterogeneity in chromosome 

number post-allopolyploidisation is not found in any other polyploid section, 

despite in some cases a reasonably large amount of genome size change (e.g. in 

section Repandae with a genome size range of 3.6–5.4 pg despite all species being 

n = 24).   

 

Nicotiana section Suaveolentes represents a recent radiation, and this fact is 

compounded by previous confusion over its taxonomic circumscription and 

potentially widespread misidentification of many species in botanic gardens 

and seedbanks.  Up to ~25% of accessions analysed by Marks, (2010) were 

mislabelled or misidentified.  It therefore becomes clear that wild-collected and 

verified material is essential in order to make inroads into the evolutionary 

relationships of this group.  The intergrading of morphology to some extent, 

and the phenotypic plasticity of some species (particularly those that are 

widespread) also add to the difficulty, noted by several authors (Horton, 1981; 

Marks, 2010).  Thus it is also clear that population-level data are needed for as 

many species as possible, in order to understand the nature of chromosome 

number change and the phylogenetic relationships of recently diverged lineages 

within section Suaveolentes. 
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Table 1.2 Currently accepted taxa within Nicotiana section Suaveolentes, 

with chromosome number and geographical distribution. 

Species n= Distribution 

N. africana Merxm. 23 Namibia 

N. amplexicaulis N.T.Burb. 18 QLD 

N. benthamiana Domin 19 WA, NT, QLD 

N. burbidgeae Symon 21 SA – Dalhousie Springs 

N. cavicola N.T.Burb. 20, 23 WA 

N. excelsior (J.M.Black) J.M.Black 19 SA, NT 

N. fatuhivensis F.Br. 24/? Marquesas Islands (South Pacific) 

N. forsteri Roem. & Schult. 24 New Caledonia, Lord Howe, NSW, 
QLD 

N. fragrans Hook. 24/? New Caledonia, Tonga 

N. goodspeedii H.Wheeler 16 WA, SA, VIC, NSW 

N. gossei Domin 18 NT, SA 

N. heterantha Symon & Kenneally 24 WA 

N. maritima H.Wheeler 15 SA, VIC 
N. megalosiphon Van Heurck & Mull.Arg. 
subsp. megalosiphon  20 QLD, NSW 

N. megalosiphon Van Heurck & Mull.Arg. 
subsp. sessilifolia P.Horton 20? NT, QLD 

N. monoschizocarpa (P.Horton) Symon & 
Lepschi 24 NT 

N. occidentalis H.Wheeler subsp. hesperis 
(N.T.Burb.) P.Horton 21 WA 

N. occidentalis H.Wheeler subsp. obliqua 
N.T.Burb. 21 WA, NT, SA, NSW, QLD 

N. occidentalis H.Wheeler subsp. occidentalis 21 WA 
N. rosulata (S.Moore) Domin subsp. ingulba 
(J.M.Black) P.Horton 20 NT, WA 

N. rosulata (S.Moore) Domin subsp. rosulata 20 WA, SA 

N. rotundifolia Lindl. 16 WA 

N. simulans N.T.Burb. 20 WA, NSW, QLD, NT, SA 

N. suaveolens Lehm. 15 NSW, VIC 

N. truncata Symon 18 SA 

N. umbratica N.T.Burb. 23 WA 

N. velutina H.Wheeler 16 NT, SA, QLD, NSW, VIC 

N. wuttkei J.R.Clarkson & Symon 16 QLD 
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Previous molecular phylogenetic studies have included species of section 

Suaveolentes, however they have been limited in their taxonomic sampling (e.g. 

13 species in Clarkson et al., 2004; 18 species in Clarkson et al., 2010; 10 species in 

Kelly et al., 2013).  Additionally, aside from low taxon sampling within the 

section, these studies also analysed a limited amount of variation for these 

species (Figures 1.4 and 1.5), with phylogenetic analyses typically presenting 

large polytomies and a lack of a backbone to the tree for section Suaveolentes.  

The phylogenetic hypothesis of Marks (2010) based on a combination of 

morphology and ITS/glutamine synthase is also largely unresolved (Figure 1.4),  

but portrays a potential for descending dysploidy as speciation occurred within 

the section.    

 

Aims and scope of the thesis 

High-throughput sequencing and genome skimming have been used for 

phylogenomics in plants; however, genome skimming has not been tested at 

shallower phylogenetic depths nor with comprehensive taxon sampling, and 

most studies have focussed on the use of only a subset of the data present in 

‘genome skims’ – namely organellar DNA.  Here I test the usefulness of genome 

skimming at a low phylogenetic level for phylogenomics of a recent radiation in 

Nicotiana, and develop a means to utilise more of the data – including 

phylogenetic reconstruction from nuclear genomic repeats, which have been 

hitherto ignored or discarded by most researchers.   
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Figure 1.4 Phylogenetic relationships in section Suaveolentes based on a re-

analysis of the plastid DNA barcode gene, matK (sequences taken from Clarkson 

et al., 2004).  Maximum likelihood analysis performed with RAxML under 

GTR+GAMMA model with 1000 bootstrap replicates, rooted with N. sylvestris 

as the outgroup.  Bipartition frequencies are shown on the best scoring ML tree 

(those >50%).  
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Figure 1.5 Phylogenetic hypothesis for section Suaveolentes, adapted from 

(Marks et al., 2011a).  Strict consensus of three equally most parsimonious trees 

based on a combined dataset of morphology and nuclear-DNA sequences (ITS – 

Chase et al., 2003; ncpGS long and short copies – Clarkson et al., 2010).  Bootstrap 

values >50% are shown.  Chromosome numbers are shown for each taxon at the 

ends of each terminal branch.   

 



	 27 

 

In this thesis I aim to survey the scope of genome skimming in plant 

phylogenomics, with a focus on utilising nuclear genomic repeats and 

assembled plastome sequences.  This theme runs throughout the thesis.  

Chapters two and three focus specifically on the development of nuclear repeats 

for phylogenomics, using graph-based clustering of high-throughput 

sequencing reads to estimate the abundance of different repeat types, and then 

using these estimates as continuous characters for phylogenetic inference.  The 

phylogenetic signal in different types of repeats is further explored along with 

the use of genome skimming data at various phylogenetic levels (chapter 2 

focussing more on the intraspecific level).   

 

Chapter four then focuses on Nicotiana section Suaveolentes: timing of the origin 

of the section, intrasectional phylogenetic relationships, and the roles of 

ecological and character evolution in speciation of this group.  In this chapter 

the phylogenetic relationships of section Suaveolentes are elucidated with 

complete taxon sampling and two orders of magnitude more sequence data 

than previous standard phylogenetic analyses including novel analyses based 

on repetitive DNA abundances.  Additionally, the context of chromosome 

number change (descending dysploidy) and the nature of genomic and 

ecological evolution in this recent radiation are investigated using this new 

phylogenetic framework.  The final chapter provides an overview of the results 

in section Suaveolentes, the significance of these for plant and angiosperm 

evolution in general, and the prospect of genome skimming for plant 

phylogenomics. 
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Chapter 2 Genome skimming and nuclear 

gDNA: Genomic repeat abundances contain 

phylogenetic signal 

 

 

 

 

 

 

 

 

 

 

 

Publication information 

This chapter is based on the following article, published in Systematic Biology, 

for which I was the lead author.  Co-authors contributed high-throughput 

sequencing data as follows: Mathieu Piednoël/Susanne Renner 

(Orobanchaceae); Jiří Macas (Fabaceae); Laura Kelly/Ilia Leitch (Fritillaria).  All 

co-authors read, edited and approved the final manuscript.  

 

Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, Novák P, Piednoël M, 

Weiss-Schneeweiss H, Leitch AR. (2015) Genomic Repeat Abundances Contain 

Phylogenetic Signal.  Systematic Biology, 64: 112-126.  
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Summary 

A large proportion of genomic information, particularly repetitive elements, is 

usually ignored when researchers are using next-generation sequencing. Here I 

demonstrate the usefulness of this repetitive fraction in phylogenetic analyses, 

utilizing comparative graph-based clustering of next-generation sequence reads, 

which results in abundance estimates of different classes of genomic repeats. 

Phylogenetic trees are then inferred based on the genome-wide abundance of 

different repeat types treated as continuously varying characters; such repeats 

are scattered across chromosomes and in angiosperms can constitute a majority 

of nuclear genomic DNA. In six diverse examples, five angiosperms and one 

insect, this method provides generally well-supported relationships at 

interspecific and intergeneric levels that agree with results from more standard 

phylogenetic analyses of commonly used markers. This methodology may 

prove especially useful in groups where there is little genetic differentiation in 

standard phylogenetic markers. At the same time as providing data for 

phylogenetic inference, this method additionally yields a wealth of data for 

comparative studies of genome evolution. 
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Introduction 

 

Understanding aspects of comparative evolution, including at its simplest 

relationships between taxa at varying levels of classification, is being 

revolutionized by the advent of next-generation sequencing (NGS) technologies. 

All recent methods in this area are based on multiplexing samples from diverse 

taxa, thereby maximizing the number of taxa that can be sequenced in one lane 

or one plate of an NGS run (e.g., Illumina). NGS approaches have enabled a 

quantum leap in the amount of data available while becoming increasingly cost-

effective (Glenn 2011). Approaches include amplicon sequencing (sequencing of 

specific genes or regions of interest) using barcoded primers (Meyer et al., 2007; 

Bybee et al., 2011), full mitochondrial and plastid genome sequencing 

(Timmermans et al., 2010; Barrett et al., 2013; Straub et al., 2012; Kayal et al., 

2013), and phylogenomics based on the full complement of protein-coding 

genes (Zhou et al., 2012; Yoder et al., 2013). Many recent approaches are based on 

reduced-representation libraries (i.e., reducing genomic complexity/increasing 

recovery of homologous regions across taxa); in this arena RAD-sequencing 

based on restriction-site associated DNA fragments scattered across the genome 

(Rubin et al., 2012; Wagner et al., 2013) and hybridization methods of targeted 

capture, so-called “pull-down” approaches (Cronn et al., 2012; Carpenter et al., 

2013; Guschanski et al., 2013), are two of the most common methodologies. 

 

However, in such phylogenetic/phylogenomics studies, and indeed in broader 

studies of comparative evolution, the repetitive portion of the genome is often 

discarded without consideration of any potential use. Repetitive elements in 

genomes consist of both tandem repeats and interspersed mobile elements (e.g., 

DNA transposons and retrotransposons). In angiosperms (flowering plants), 

such repeats are diverse and numerous, contributing up to 70%–80% of nuclear 

genomic DNA (gDNA), thus making flowering plants an excellent group in 
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which to study the dynamics of repetitive element evolution (Hansen and 

Heslop-Harrison 2004; Wicker et al., 2007; Leitch and Leitch 2008; Kelly et al., 

2012). Genome sizes vary 2400-fold in angiosperms alone (Pellicer et al., 2010; 

Kelly and Leitch 2011); aside from cases involving whole genome duplication, 

much of this variability can be explained by differing amounts of repetitive 

DNA. 

 

NGS of a small, random sample of the genome (0.5–5% genome proportion 

[GP], i.e., genome coverage as a percentage) results in data consisting mainly of 

repetitive sequences; genic regions will not be adequately covered in such a 

dataset, but repeats present in thousands of copies will be well represented. 

Previous analyses have shown that low-coverage sequencing of gDNA, 

followed by graph-based clustering of sequence reads, is sufficient to provide 

characterization of many hundreds or thousands of well-represented repeats 

(Macas et al., 2007; Novak et al., 2010; Renny-Byfield et al., 2011); these studies 

also provide detailed insights into patterns of genome evolution (Renny-Byfield 

et al., 2011; Leitch and Leitch 2012; Piednoël et al., 2012; Renny-Byfield et al., 

2013). Low-coverage gDNA sequencing (i.e., “genome skimming”; Straub et al., 

2012) and repeat clustering are now both cost-effective and easy to implement 

(Novak et al., 2013). The proportion of sequence reads representing a particular 

repetitive element cluster has also been shown to accurately reflect genomic 

abundance (Macas et al., 2007; Novak et al., 2010; Renny-Byfield et al., 2011; 

2012). Repetitive elements are scattered across the genome and provide much of 

the characteristic differences between chromosomes and chromosomal 

subregions, including those in which the majority of genes are embedded 

(Brookfield 2005). Thus, relative abundance of well-represented repeats is 

reflective of broad-scale genome composition. Localization of repeats on 

chromosomes and use of repeats as markers for fluorescence in-situ 

hybridization (FISH) in some groups has shown that often the most-
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parsimonious explanation for these localizations and rearrangements reflect 

hypotheses of the species tree derived from other data types, usually DNA 

sequence data (e.g., Lim et al., 2000; 2006). In structure and chromosomal 

position, repeats in closely related species are nearly identical, whereas more 

distantly related species diverge in repeat structure and location as genetic 

similarity decreases. 

 

Here I test the usefulness of a novel phylogenetic methodology based on the 

abundance of different repetitive elements, estimated through bioinformatic 

analysis of NGS reads from a small proportion of the genome (Fig. 2.1). 

Previously similar studies have found that genomic signatures present in the 

frequency of short sequence repeats can be used to reconstruct phylogenetic 

relationships, i.e., tetranucleotide frequencies in microbial genomes (Pride et al., 

2003) and 2- to 5-nt repeats in birds (Edwards et al., 2002). Here different criteria 

are used with a clustering method in order to identify homologous repeat 

classes. This method can essentially be viewed as a hybrid between molecular 

systematics and morphometric cladistics, as abundances of repetitive DNAs are 

used as continuously varying characters for phylogenetic inference. I utilize in 

combination graph-based clustering estimation of repeats (Novak et al., 2010) 

and the computational methodology of Goloboff et al. (2006) in particular, which 

allows for analysis of continuous characters without assignment (coding) of 

arbitrarily circumscribed characters, implemented in the software “tree analysis 

using new technology,” TNT (Goloboff et al., 2003a, 2008). Such a combined 

approach has been utilized successfully with eigenshape-based geometric 

morphometrics and continuous character phylogenetics in TNT (Smith and 

Hendricks, 2013).  The method is investigated in six diverse groups – five orders 

of angiosperms and one insect group, with differing genome sizes and amounts 

of repetitive DNA, and shows a high (but not always identical) level of 

congruence with previously hypothesized species trees (i.e., current knowledge 
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from gene trees and morphological circumscriptions) at a variety of taxonomic 

levels. 
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Figure 2.1 Schematic illustrating the workflow for building trees from 

repetitive DNA abundances.  A, low-coverage genomic DNA sequencing using 

next-generation sequencing methods (NGS; e.g. Illumina).  B, clustering of NGS 

reads using RepeatExplorer pipeline, resulting in abundance estimates of 

different repeat families.  C, phylogenetic analysis in TNT using cluster 

abundances as continuous phylogenetic characters.  
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Materials and Methods 

Tissue Sources and High-throughput Sequencing of gDNA  

Nicotiana—Plant materials (accession numbers), DNA extraction and Illumina 

sequencing details (including NCBI Short Read Archive [SRA] accession 

numbers) can be found in Renny-Byfield et al. (2012) and Renny-Byfield et al, 

(2013). 

 

Orobanchaceae—Plant materials (including voucher specimen details), DNA 

extraction and 454 sequencing details (including SRA accession numbers) for 

this dataset can be found in Piednoël et al. (2012). Orobanchaceae is the largest 

family of parasitic flowering plants. Four genera were included in this dataset, 

representing a variety of life history strategies: Lindenbergia, autotrophic, 

nonparasitic; Schwalbea, parasitic but still photosynthetic; four species of 

Orobanche, nonphotosynthetic, parasitic, including one tetraploid species (O. 

gracilis); and three species of Phelipanche, nonphotosynthetic, parasitic. 

 

Fabeae—Seeds of Vicia tetrasperma (VIC726), V. hirsuta (VIC728), V. sylvatica 

(VIC63), and V. ervilia (ERV52) were obtained from the seed bank of the Leibniz 

Institute of Plant Genetics and Crop Plant Research (IPK), Germany. Seeds of 

Lathyrus sativus and L. latifolius were purchased from Fratelli Ingegnoli S.p.A., 

Milano, Italy (cat.no. 455) and SEMO Smrzice, Czech Republic (acc.no. 1-0040-

68867-01), respectively. Lathyrus vernus was collected from a wild population at 

Vidov, Czech Republic (GPS 48◦55’17.401"N, 14◦29’44.158"E). Pisum fulvum 

(accession ICARDA IG64207) was provided by Petr Smykal, Palacky University, 

Olomouc, Czech Republic. In all species, genomic DNA was extracted from 

isolated leaf nuclei (Macas et al., 2007) and sequenced on the Illumina platform 

(paired-end 100 nt reads) at Elim Biopharmaceuticals, Hayward, USA (P. 

fulvum) or GATC Biotech, Konstanz, Germany (all other species). Illumina 

sequencing of P. sativum was described in Neumann et al. (2012). Voucher 
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specimens are available for all material sequenced at IPMB, CZ. All read data 

are available at the SRA with the following accession numbers: V. hirsuta—

ERR413114; V. ervilia—ERR413112; V. sylvatica—ERR413113; V. tetrasperma—

ERR413111; Lathyrus sativus—ERR413118 & ERR413119; L. vernus—ERR413116 

& ERR413117; L. latifolius—ERR413120; Pisum sativum—ERR063464; P. fulvum—

ERR413083. Tribe Fabeae Rchb. is a group of five genera and ∼380 species, 

containing several important crop species including pea (Pisum sativum). In this 

analysis species from three genera were included, although this includes species 

proposed to be members of a further two new genera (Schaefer et al., 2012). 

 

Fritillaria—DNA extractions were sourced from the Royal Botanic Gardens, Kew 

DNA Bank (http://apps.kew.org/dnabank.homepage.html). At the University 

of Liverpool, 454 sequencing was performed by the Centre for Genomic 

Research; reads were trimmed to 100 bp prior to clustering, and any reads of 

<100bp were discarded. All read data are available at the SRA with the 

following accession numbers: F. affinis—ERR571997; F. alfredae subsp. 

glaucoviridis—ERR571998; F. davidii—ERR571999; F. imperialis—ERR572000; F. 

koidzumiana—ERR572001; F. maximowiczii—ERR572002; F. pluriflora—

ERR572003; F. sewerzowii—ERR572004; F. tubiformis—ERR572005; Lilium 

pyrenaicum—ERR572006.  Fritillaria is a genus of bulb-bearing petaloid monocots 

with species possessing some of the largest recorded genome sizes (Ambrozova 

et al., 2011; Kelly and Leitch, 2011). It comprises approximately 140 species (Rix, 

2001) and is closely related to the genus Lilium. In this analysis are nine 

representatives of the genus from each of the two main clades—the North 

American and the Eurasian clades (Rønsted et al., 2005; Kelly and Leitch 2011). 

 

Drosophila—Illumina reads for the following species were downloaded from the 

SRA: Drosophila bipectinata—SRR345542; Drosophila suzukii—SRR1002946; 
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Drosophila biarmipes—SRR345536; Drosophila ananassae—SRR491410; Drosophila 

melanogaster—SRR1005465; Drosophila sechellia—SRR869587; Drosophila 

simulans—SRR580369. 

 

Asclepias—Illumina reads for species from the Sonoran Desert clade of Asclepias 

were downloaded from the SRA: A. macrotis 149—SRX384308; A. albicans x 

subulata 282—SRX384307; A. cutleri 382—SRX384306; A. subulata 423—

SRX384305; A. macrotis 150—SRX384304; A. albicans 422—SRX384303; A. subulata 

411—SRX384302; A. masonii 154—SRX384301; A. leptopus 137—SRX384300; A. 

cutleri 421—SRX384299; A. coulteri 45—SRX384298; A. subaphylla 272—

SRX384297; A. subaphylla 271—SRX384296; A. albicans 003—SRX384295; A. 

syriaca 4885—SRX040889.  

 

Further details of raw data, quality filtering and resultant read datasets for all 

examples are provided in Online Appendix 1 (http://dx.doi.org/ 

10.5061/dryad.vn0gc). 

 

Genome Size Estimation 

In order to calculate the number of reads for each comparative clustering an 

accurate genome size should ideally be available for each species. For most 

datasets genome sizes were available from the Plant DNA C-Values database 

(http://data.kew.org/cvalues/) or were estimated using flow cytometry. For 

Drosophila, genome sizes were taken from the Animal Genome Size database 

(http://www.genomesize.com). For Asclepias genome sizes were assumed to be 

equal (423 Mb, as for A. syriaca; Bai et al., 2012), as data were unavailable for 

each species. Without accounting for genome size (e.g., taking the same number 

of reads), the abundance of each cluster is more likely to reflect genome size 

rather than the proportion of that repeat in the genome.  Genome size ranges 

(1C) in each dataset are as follows: Nicotiana (1.51–5.32 Gb); Orobanchaceae 
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(0.45–4.32 Gb); Fabeae (3.05–9.98 Gb); Fritillaria (30.1–75.7 Gb); Asclepias (n/a); 

Drosophila (0.16–0.20 Gb). 

 

Clustering of Repetitive DNA 

Graph-based clustering of NGS reads was performed as described in Novak et 

al. (2010) using the latest Galaxy based web server implementation of the 

pipeline, RepeatExplorer (Novak et al., 2013). In brief, all sequence reads 

(sequence data) are subjected to pair-wise (BLAST) comparison, and similarities 

are represented by a graph structure in which nodes represent sequence reads 

and overlapping reads are connected by edges. Edge weights represent the 

amount of sequence similarity (similarity scores). Clusters of nodes more 

frequently connected to one another than to outside nodes in the graph 

represent families of genomic repeats or their parts. Families would be likely to 

include sequences of the same length (or portions thereof) in which sequence 

variation is low, 90% similarity over at least 55% of their length. 

 

Combined datasets of reads (sequence data) were compiled as follows: (1) 5% 

genome proportion (GP) each of four diploid species of Nicotiana L. (N. sylvestris 

Spreng., N. tomentosiformis Goodsp., N. attenuata Torr., N. obtusifolia M.Martens 

& Galeotti); (2) 5% GP each of the four diploid species of Nicotiana in (1) and two 

species of allopolyploid section Repandae (N. repanda Sims and N. nudicaulis 

S.Watson); (3) 5% GP each of the four diploid species of Nicotiana in (1) and two 

types of N. tabacum L. (N. tabacum SR1A and N. tabacum TR1A synthetic); (4) 

2.08% GP each of nine species of Orobanchaceae (Lindenbergia philippensis 

(Cham. and Schltd.) Benth., Schwalbea americana L., Phelipanche ramosa (L.) 

Pomel, Phelipanche purpurea (Jacq.) Soják, Phelipanche lavandulacea Pomel, 

Orobanche pancicii Beck, Orobanche gracilis Beck, Orobanche cumana Wallr., 

Orobanche crenata Forssk.); (5) 1% GP each of nine species of tribe Fabeae (Vicia 

sylvatica L., Vicia ervilia Willd., Vicia hirsuta (L.) Gray, Vicia tetrasperma (L.) 
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Schreb., Pisum sativum L., Pisum fulvum Sibth. & Sm., Lathyrus sativus L., Lathyrus 

vernus (L.) Bernh., Lathyrus latifolius L.); (6) 0.01% GP each of nine species of 

Fritillaria L. and one of Lilium L. (Fritillaria affinis (Schult. & Schult.f.) Sealy, F. 

alfredae subsp. glaucoviridis (Turrill) Rix, F. davidii Franch., F. imperialis L., F. 

koidzumiana Ohwi, F. maximowiczii Freyn, F. pluriflora Torr. ex Benth., F. 

sewerzowii Regel, F. tubiformis Gren. & Godr., Lilium pyrenaicum Gouan); (7) 2% 

GP each of 15 Asclepias L. (Asclepias syriaca L. 4885, A. albicans S.Watson 003, A. 

albicans 422, A. coulteri A. Gray 45, A. cutleri Woodson 382, A. cutleri 421, A. 

leptopus I. M. Johnst. 137, A. macrotis Torr. 149, A. macrotis 150, A. masonii 

Woodson 154, A. subaphylla Woodson 271, A. subaphylla 272, A. subulata Decne. 

411, A. subulata 423, A. albicans x subulata 282; (8) 5% GP each of 7 Drosophila 

species (D. ananassae, D. bipectinata, D. suzukii, D. biarmipes, D. melanogaster, D. 

sechellia, D. simulans). Different GP values were used across datasets due to 

genome size differences and the amount of sequencing data available or that 

could be clustered with the available computing power. 

 

Separate comparative analyses (i.e., simultaneous clustering of reads from all 

species in the dataset) were run for each dataset on RepeatExplorer (Novak et 

al., 2013), using default settings (i.e., similarity threshold of 90% over 55% of the 

read length). Reads were prefixed with codes specific to the taxon in question, 

enabling comparative analysis of repetitive element abundances in different 

taxa. Comparative counts of the number of reads in each cluster (which is 

proportional to their genomic abundance) were used for phylogenetic analyses. 

Plastid and mitochondrial reads were either filtered out prior to clustering 

(using BLAST and custom scripts) or were identified after clustering (BLAST to 

most closely related plastome currently available) and plastid clusters removed 

prior to phylogenetic inference. 
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Homology of Repetitive DNA Clusters 

The extent to which clusters represent homologous entities is dictated by the 

similarity parameters specified. The default settings of RepeatExplorer were 

used, with a threshold similarity of 90% over 55% of the read length to be 

exceeded in order for a hit to be recorded. Clusters are then produced using a 

graph-based algorithm and a principle of maximum modularity, which results 

in clusters where most reads have a high similarity to one another within 

clusters and a low similarity between clusters (see Novak et al., [2010] for further 

details on the clustering process). Different repeats will form different clusters 

in the output of RepeatExplorer and are treated here as separate evolutionary 

entities (characters). The abundance of a repeat in a species, its genome 

proportion, depends on repeat copy number and genome size. Tandem repeats 

have variable monomer sizes up to 180 bp; those with monomer sizes shorter 

than the read length (typically 100 bp) will form a spherical graph, and those 

with monomer sizes greater than the read length will form a ring graph 

structure. 

 

Plant genomes in particular contain a large abundance of LTR retroelements 

(LTR-REs), which are typically several kb, up to 5kb. These repetitive elements 

are complex, often dispersed across the genome, and there may be a spectrum of 

related (or degraded products) of similar LTR retroelements. Based on the 

RepeatExplorer threshold and graphical algorithm, LTR-REs are often split into 

different clusters, as parts of these elements are less conserved (e.g., around the 

LTR) than others (e.g., the protein-coding domains). Sequence divergence 

within the protein-coding domains is insufficient for phylogenetic analysis, 

although the number of elements is variable and putatively indicative of 

evolutionary history. Although LTR-REs may be split over several clusters, they 

will be split in the same way for every species included in the same clustering 

run, thereby preserving phylogenetic signal, and each piece of LTR RE would be 

expected to contain a uniform phylogenetic pattern. 
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Assembly of High-copy DNA Sequences 

High-copy DNA sequences were assembled directly from short read data using 

the program MIRA (http://www.chevreux.org/projects_mira.html). The 

general settings used in the manifest file are provided in Online Appendix 1. 

The following assemblies were performed: (2) Nicotiana—large subunit rDNA 

and whole plastomes were assembled by mapping to Nicotiana tabacum 

sequences as a reference, using raw Illumina reads; (2) Fritillaria—whole 

plastome sequences were assembled directly from plastid 454 reads only 

(filtered using a custom perl script and BLAST), using the Lilium longiflorum 

plastid genome as a reference; (3) Orobanchaceae—whole plastomes for O. 

cumana, O. pancicii, O. crenata were assembled from raw 454 reads using the O. 

gracilis plastome as a reference and P. lavandulacea was assembled using P. 

ramosa as a reference. 

 

Phylogenetic Analyses 

Maximum parsimony analysis 

Data matrices consisting of the 1000 most abundant clusters, each representing a 

repetitive element family, were converted to legal TNT format (modified 

Hennig86). All abundances were transformed by a constant factor dependent 

upon the largest cluster abundance in the matrix. Each abundance was divided 

by this factor (factor = largest abundance/65) in order to make all numbers in 

the matrices ≤65, the maximal value for continuous character implementation in 

TNT tree searches (Goloboff et al., 2003a; 2006; 2008). This factorial 

transformation does not affect the normal distribution of abundance for each 

cluster and is only necessary for efficient implementation in the TNT program, 

as described below.  
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Trees were inferred using maximum parsimony (MP), utilizing the 

implementation of Farris’ algorithm for the down-pass and Goloboff’s algorithm 

for the up pass, as described in Goloboff et al. (2006). In such an approach, 

continuous characters are not arbitrarily recoded but are simply used as 

additive characters (i.e., count changes can be of noninteger differences). 

Implicit enumeration (branch and bound) tree searches were used for datasets 

in this study owing to the small number of taxa in each dataset. Resampling was 

performed using 100 000 replicates and symmetrical resampling, a modification 

of the standard bootstrap (Goloboff et al., 2003b). Sequence trees were inferred 

using the same method for comparison, with gaps coded as missing data. The 

same phylogenetic reconstruction methodology was employed to enable direct 

comparison to the repeat trees. 

 

The following datasets were used: (1) full plastomes and 18S-5.8S-26S rDNA for 

Nicotiana diploids and section Repandae (assembled); (2) full plastomes for 

Fritillaria (assembled); (3) combined matrix of 17 mitochondrial and nuclear 

genes for Drosophila (28S, adh, amy, amr, cdc6, COI, COII, ddc, esc, gpd, h2s, hb, ITS, 

ND1, ND4, nup and ptc – see Yang et al., (2012) for GenBank accession numbers); 

(4) whole plastomes and complete 26S to 18S rDNA cistron for Asclepias—

alignments taken from Straub et al., (2012); (5) whole plastomes for 

Orobanchaceae (assembled); and (6) nuclear ITS rDNA and plastid trnL from 

Schaefer et al., (2012) for tribe Fabeae. 

 

Maximum likelihood analysis 

Maximum likelihood (ML) trees were computed using gene frequency/ 

continuous character implementation in Contml, part of the Phylip package 

(Felsenstein 1989; 2005). This method assumes that each character evolves 

independently and only in accordance with random genetic drift, using a 

Brownian motion model of likelihood. Matrices were transformed such that 
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cluster abundances represented allele frequencies (0–1) by dividing all clusters 

by the largest cluster size; this is required for resampling prior to ML tree 

computation. Resampling from the matrix with replacement (bootstrapping) 

was first carried out using Seqboot for 1000 replicate datasets. ML analyses were 

then performed on all 1000 datasets using Contml, and bootstrap percentages 

mapped onto the strict consensus tree for each dataset computed using 

Consense. 

 

All trees were viewed in FigTree (http://tree.bio.ed.ac.uk/software/figtree/) 

and further edited in iDraw (Indeeo, Inc.). All ML trees are shown in Online 

Appendix 2. Reticulation in the Nicotiana tabacum dataset was explored using 

SplitsTree4 (Huson and Bryant 2006), using 10 000 bootstrap trees from the MP 

analysis as input for filtered supernetwork analysis (filtering performed at 10% 

of all input trees). Nicotiana tabacum is a relatively recently formed 

allotetraploid; its two parents have been determined to be N. tomentosiformis and 

N. sylvestris (Chase et al., 2003). 

 

Testing Method Performance 

To test performance of the method several parameters were analyzed with the 

smallest clustering dataset (four diploid species of Nicotiana) and in TNT as 

above, but with modifications described below. In each case, the resultant tree 

was compared with the expected tree topology (Fig. 2.2a) and the symmetric 

bootstrap percentage recorded. 

 

Reproducibility and relationship with genome proportion 

To find the minimal GP necessary to resolve relationships, several sequence 

datasets were produced at 11 levels of GP from 0.005% to 5.120% (doubling of 

GP at each step). Three replicate clustering runs were computed for each GP. 

The mean support and standard error were calculated and used, in addition to 

tree support and topology, to observe how reproducibility varies with GP. 
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Relationship between phylogenetic signal and cluster number 

To evaluate the number of characters (clusters) sufficient to resolve the tree, 

trees were built with different numbers of clusters, varying from 5 to 1000 for 25 

datasets, and the tree inferred each time, comparing the topology and support 

percentages.  

 

Variance in phylogenetic signal across the matrix 

Variance in phylogenetic signal across the cluster abundance matrix was tested 

by partitioning it into sets of 150 cluster abundances (this number chosen from 

the cluster number analysis above). Trees were then inferred from each set, and 

the resulting resolution and symmetric bootstrap support of the unrooted tree 

were then estimated. Three GPs were tested (2.00%, 0.32%, and 0.07%) in order 

to show how different partitions respond at different GPs (chosen to represent 

difference of three orders of magnitude). 

 

Effect of sampling – range analysis 

To evaluate the effect of sampling sequence data on tree building, trees were 

inferred from clustering of three random samplings of read data. The mean and 

its standard error were calculated for abundance of each cluster. A phylogenetic 

analysis based on the range of the mean ±1 standard error of the mean was 

conducted, as ranges may more accurately reflect the phylogenetic signal in 

continuous characters (Goloboff et al., 2006), thereby reducing the artefact of two 

taxa appearing as distinct when they are not. Clusters (repetitive element 

abundances) that have overlapping normal distributions result in a step count of 

0, i.e., no change. Range analysis was tested with a GP of 0.32%. 
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Phylogenetic informativeness of repeat types 

The relative informativeness of different repeat types was analysed by creating 

subsets of the original matrix based on different repeat annotations. Annotations 

were assigned to the following categories based on BLAST hits to repbase, 

custom-protein domain database in the RepeatExplorer pipeline and graph 

structure: DNA transposon, Ty1/Copia LTR retrotransposon, Ty3/Gypsy LTR 

retrotransposon, rDNA, satellite, and other (e.g., non-LTR retrotransposon) 

including unclassified repeats. Matrices were created based on each repeat type, 

for each example taxon dataset, and trees were inferred as above. The mean 

bootstrap (as a proxy for tree resolution) was computed for each analysis (Fig. 

2.6). 

 

Results 

Example 1—Nicotiana (Solanaceae; Solanales) 

The unrooted tree presented in Figure 2.2a contains four diploid species of 

Nicotiana and mirrors gene trees based on other nuclear DNA regions (Chase et 

al., 2003; Clarkson et al., 2004; 2010; Kelly et al., 2013), including rDNA sequences 

reconstructed from the NGS data (Fig. 2.2). There is a different relationship for 

these four using the plastome tree constructed from these NGS data (Fig. 2.2a), 

in line with plastid gene trees published previously (Clarkson et al., 2004). 
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Figure 2.2 Phylogenetic relationships in Nicotiana (Solanaceae). a) Unrooted 

most parsimonious trees for repeats, large rDNA subunit sequences, and 

plastome sequences for four diploid Nicotiana taxa. b) Repeat and plastome trees 

including diploids from a) and Nicotiana section Repandae (N. nudicaulis and N. 

repanda). Repeat trees are based on 1000 cluster abundances from 5% genome 

proportion clustering. Maximum parsimony analysis with 10 000 symmetric 

bootstrap replications and bootstrap percentages plotted onto the single most 

parsimonious tree in each case. Numbers on nodes represent BPs ≥50; branch 

lengths are shown from the single MPT and scale bars at the bottom left and 

right show relative numbers of step changes. 

 

 

 



	 47 

In a further analysis of Nicotiana, tree resolution and topology were investigated 

using data from diploid species and allotetraploid species from two sections of 

Nicotiana (Nicotiana sections Repandae and Nicotiana). Nicotiana section Repandae 

is a group of four allopolyploids derived from a single allopolyploid formation 

event approximately 5 Ma (Clarkson et al., 2005; Parisod et al., 2012; Renny-

Byfield et al., 2013). Genomes of sect. Repandae have experienced extensive 

genome turnover subsequent to their formation, and the genomes retain more 

similarity to the extant relative of their maternal progenitor, N. sylvestris, rather 

than the extant relative of their paternal progenitor, N. obtusifolia (Chase et al., 

2003; Clarkson et al., 2004; 2005; 2010; Parisod et al., 2012; Kelly et al., 2013; 

Renny-Byfield et al., 2013). This striking bias is supported here (Fig. 2.2b), where 

N. repanda and N. nudicaulis together (100 bp) are strongly supported as sister 

(89 bp) to N. sylvestris.  Previous analyses of repetitive DNA and genomic in situ 

hybridization (GISH) have shown that the genomes of sect. Repandae have 

diverged extensively since their formation, despite being each other’s closest 

relatives, through loss of middle and lower-abundance repetitive elements 

(Renny-Byfield et al., 2013). This is particularly evident in N. repanda (Fig. 2.2b). 

 

To contrast this example, the method performance was investigated with a 

different allopolyploid section of much more recent origin—Nicotiana sect. 

Nicotiana, which contains the familiar allotetraploid Nicotiana tabacum, the most 

common tobacco species in commerce. Nicotiana tabacum is estimated to have 

originated 200 000 years ago or less, and its formation involved entities closely 

related to extant N. tomentosiformis and N. sylvestris, its paternal and maternal 

progenitors, respectively (Chase et al., 2003; Clarkson et al., 2004). GISH is able to 

distinguish the progenitor genomes (Chase et al., 2003), the T-genome from N. 

tomentosiformis and the S-genome from N. sylvestris. Analyses of repetitive DNA 

show the genome of N. tabacum has preferentially lost paternal repeats and is 

much more similar to N. sylvestris (Renny-Byfield et al., 2011; 2012), although its 



	 48 

nrITS and IGS sequences of ribosomal DNA are identical to its paternal 

progenitor, N. tomentosiformis (Chase et al., 2003; Kovarik et al., 2012). In repeat 

phylogenetic analyses the tree with all four diploid species and N. tabacum 

shows that N. tabacum is more closely related to N. sylvestris than to N. 

tomentosiformis (Fig. 2.3a), reflecting that abundances of repetitive DNA in N. 

tabacum are in general more similar to those in the maternal parent, N. sylvestris 

(Fig. 2.3a). This result was previously found based on analyses of the GP in 

different clusters of repetitive DNA, which showed a preferential loss of 

paternal (i.e., N. tomentosiformis) repeats in N. tabacum (Renny-Byfield et al., 2011; 

2012). Nevertheless, the supernetwork (Fig. 2.3b) illustrates the presence of 

splits that group N. tabacum with N. tomentosiformis in addition to placing it with 

N. sylvestris, indicating that some repeats inherited from the paternal progenitor 

are still present. Analysis of 10 000 bootstrap trees reveals that N. tabacum 

groups with N. tomentosiformis in 17% of the trees; in the remaining 83% of trees 

it is sister to N. sylvestris. Additionally, the relatively long branch length 

separating the N. tabacum samples from that of N. sylvestris highlights the 

retention of characters conflicting with its position as sister to N. sylvestris (i.e., 

presence of paternal-type repeats). 
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Figure 2.3 Phylogenetic relationships in a young allopolyploid, Nicotiana 

section Nicotiana (N. tabacum) and related diploid progenitor taxa (Solanaceae). 

a) Unrooted most parsimonious tree for repeats based on 1000 cluster 

abundances from 5% genome proportion clustering, maximum parsimony 

analysis with 10 000 symmetric bootstrap replications and bootstrap percentages 

plotted onto the single MPT. b) Filtered supernetwork showing relationships 

present in 10% of the bootstrap trees from a). Numbers on nodes represent BPs≥ 

50; branch lengths are shown from the single MPT. The supernetwork is 

presented in order to present conflicting splits present due to recent reticulation. 
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Example 2—Fritillaria (Liliaceae; Liliales) 

Lilium is the designated outgroup, following Rønsted et al. (2005), and the 

analysis presented here generally places species into their expected clades (Fig. 

2.4a). Other than the placement of F. maximowiczii, the repeat tree is in 

agreement with trees based on plastid/plastome data (Fig. 2.4a; Rønsted et al., 

2005; Day et al., 2014). The ML tree is partially resolved (Online Appendix 2). 

Owing to the huge genome sizes in this genus the analysis presented was based 

on a very low GP of 0.01%, and this may have had an impact on the tree 

building method—this level of GP should be sufficient, although it is on the 

cusp of being too low to be representative of repeat diversity and composition 

(Fig. 2.5a; see discussion below). However, it still reproduces species 

relationships in a similar manner to previous results, indicating that this 

number of reads still contains phylogenetic signal despite their low GP. 

 

Example 3—Drosophila (Drosophilidae; Diptera) 

Analyses for the diverse fly genus Drosophila focused on seven species from the 

melanogaster subgroup. Drosophila simulans and D. sechellia are strongly 

supported as sister species, to which D. melanogaster is then sister (Fig. 2.4b). 

Drosophila suzukii and D. biarmipes form a clade, which is sister to the D. 

melanogaster clade. Drosophila ananassae is sister to the rest, with rooting on D. 

bipectinata. These results (Fig. 2.4b) mirror those found in many recent 

phylogenetic studies based on large amounts of sequence data including 

mtDNA and nuclear markers (Obbard et al., 2012; Yang et al., 2012; Seetharam 

and Stuart 2013). The ML analysis mirrors these results with reasonably high 

levels of support (Online Appendix 2). 

 

Example 4—Asclepias (Apocynaceae; Gentianales) 

To test the method on a difficult phylogenetic problem the Sonoran Desert clade 

(SDC) of Asclepias was investigated, and presented alongside the rDNA and 



	 51 

plastome results of Straub et al. (2012), with A. syriaca as the outgroup. In the 

repeat tree, A. macrotis, A. coulteri and A. leptopus are supported as separate from 

the core SDC, which includes A. albicans, A. subulata, A. subaphylla, A. masonii 

and A. cutleri; in plastid and nrDNA analyses a strongly supported core SDC 

excludes A. cutleri (Fig. 2.4c). Otherwise the results are different from both 

rDNA and plastomes, which are in turn different from one another and that 

from mtDNA (Straub et al., 2012). Note that species are not monophyletic (as 

with the plastome tree), and a putative homoploid hybrid was included (A. 

albicans, A. subulata). Thus this method provides yet another novel hypothesis of 

relationships between species for this difficult phylogenetic problem, although 

these relationships are weakly supported. It should be noted however that the 

results presented may be compromised by a lack of genome size data with 

which to calibrate the number of input reads. If there are large GS differences 

between species, then the GP analysed will be significantly different between 

species, which may influence the topology of the trees produced. 

 

Example 5—Orobanchaceae (Lamiales) 

The tree is rooted with Lindenbergia philippensis based on the analyses of Park et 

al. (2008) and Piednoël et al. (2012). Orobanche and Phelipanche are each 

monophyletic (Fig. 2.4d), and Schwalbea americana is then sister to them, 

generally exhibiting similar to greater levels of divergence than analyses based 

on DNA sequence data (Fig. 2.4d). Such high levels of divergence are only 

apparent in this dataset.  Internal relationships in Orobanche and Phelipanche are 

entirely congruent with previous analyses based on nrITS and plastid rps2 

sequence data, in all cases with similar or better support in this analysis (Fig. 

2.4d; Schneeweiss et al., 2004; Park et al., 2008; Piednoël et al., 2012). The position 

of O. gracilis/O. cumana is switched, however, relative to the tree generated from 

full plastome sequences (Fig. 2.4d). The high support for the position of O. 

gracilis and the fact that there is no evidence of reticulation (result not shown) 
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are congruent with an autopolyploid origin for this taxon. This could, however, 

reflect processes of diploidization and genome downsizing in an older 

allotetraploid, as shown in Nicotiana allopolyploids (Example 1); this result 

could also be affected by low taxon sampling within Orobanche (i.e., only one 

parent present). This might explain the difference between the placement in the 

repeat analysis and the one based on plastomes. 

 

Example 6—Tribe Fabeae (Fabaceae; Fabales) 

Following the tree of Schaefer et al. (2012), the tree presented, with section 

Ervilia, now proposed to be genus Ervilia (Vicia hirsuta, V. sylvatica, and V. 

ervilia) as the outgroup, shows a closer relationship between V. ervilia and V. 

sylvatica. Vicia tetrasperma is the sole representative of section Ervum (proposed 

genus Ervum), which is sister to both Pisum and Lathyrus (Fig. 2.4e). The type 

section of Vicia is not included in this analysis. Pisum and Lathyrus are sister 

taxa, and L. sativus is sister to L. vernus and L. latifolius, a grouping that is 

incongruent with the weakly supported results of the DNA sequence data, in 

which L. sativus and L. latifolius are more closely related (Fig. 2.4e; Schaefer et al., 

2012). 
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Figure 2.4 Phylogenetic relationships in: a) Fritillaria (Liliaceae). Trees for 

repeats and plastome sequences are shown; repeat tree based on 1000 cluster 

abundances from 0.01% genome proportion clustering. b) Drosophila, the 

melanogaster species group (Drosophilidae). Trees for repeats and combined 

matrix of 17 nuclear and mitochondrial genes (see methods for full details); 

repeat tree based on 1000 cluster abundances from 5% genome proportion 

clustering. c) The Sonoran Desert clade of Asclepias (Apocynaceae). Trees for 

repeats, 26S to 18S complete rDNA cistron sequences and plastome sequences 

are shown; repeat tree based on 1000 cluster abundances from 2% genome 

proportion clustering (assuming the same genome size of 420MBp in each—see 

methods). d) Orobanchaceae. Repeat tree and plastome tree shown; repeat tree 
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based on 290 cluster abundances from 2% genome proportion clustering. e) 

Fabeae (Fabaceae). Repeat tree and tree based on combined plastid trnL/nuclear 

ITS shown; repeat tree based on 1000 cluster abundances from 1% genome 

proportion clustering. Maximum parsimony analysis with 10 000 symmetric 

bootstrap replications and bootstrap percentages plotted onto the single most 

parsimonious tree in each case. Numbers on nodes represent BPs≥50; branch 

lengths are shown from the single MPT and scale bars at the bottom left and 

right show relative numbers of changes. Dashed lines show instances of 

incongruence between repeat trees and DNA sequence trees. 
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The MP analysis generally has lower support than in other examples, but this 

broadly mirrors levels of support found in results based on nuclear nrITS and 

plastid markers (Schaefer et al., 2012). The ML analysis recovers some of the 

main groupings; however, many nodes collapse, and overall the ML tree is 

unresolved (Online Appendix 2). An alternative explanation for the lower levels 

of support found in this example is that perhaps in this case we are looking at a 

group of more distantly related taxa (comprising several relatively distant 

related genera), which may be approaching the limits of phylogenetic utility for 

repetitive DNA. The other examples may well be more closely related, but this 

is an area in which more investigation is needed to clarify the issues. Compared 

to the DNA sequence tree, the repeat tree has shorter internal branches and 

longer external branches, indicating that clustering information may be limited. 

However deep coalescence and/or extensive reticulation combined with many 

unsampled taxa may be the underlying problem in this complicated group of 

legumes. This may explain the poor resolution in Schaefer et al. (2012) as well as 

difficulties in the repeat analyses. 

 

Evaluating Method Performance 

Based on resampling the diploid Nicotiana data, several aspects of method 

performance were evaluated. At low GPs, 0.005–0.040%, trees lack resolution, 

and groupings are often inconsistent with those inferred from sequence data 

(Fig. 2.5a). Additionally, variance is greater at lower levels of GP, making the 

method less reliable. Above a GP of 0.1%, clustering and phylogenetic inference 

appear to be consistent and robust in comparison to trees derived from DNA 

sequence data. With these GPs, the number of clusters necessary to resolve the 

tree with high support is approximately 150 (Fig. 2.5b). With lower numbers of 

clusters (e.g., 5–45), the tree is either topologically inconsistent with trees 

inferred from sequence data or simply unresolved. 
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The matrices were then explored using partitions of 150 clusters to test how the 

phylogenetic signal varied across a large range of cluster abundances, with CL1 

being the most abundant (Fig. 2.5c). There is no or little variance in phylogenetic 

signal across partitions when a suitably high GP has been used (e.g., 2%; Fig. 

2.5c). However, when lower GPs are used, the signal degrades rapidly and 

randomly, particularly with low-abundance	elements below cluster number 

2000 (Fig. 2.5c). At a GP of 0.07% the trees produced become highly stochastic, 

either unresolved or showing inconsistent relationships with low support. At a 

lower GP the signal degrades more quickly as the data essentially become more 

quickly “coded” into presence/absence characters—the phylogenetic signal in 

the actual abundance of repetitive elements is entirely lost. 

 

Range analysis showed remarkable similarity between trees produced from 

three independent samplings of 0.32% (as shown in the GP analysis above). The 

tree produced from the range of the mean cluster abundance 

±1SE of the mean had a topology identical to the three samples as expected, and 

there are only minor branch length differences between all trees. Thus, there 

seems to be no significant advantage to undertaking such an analysis, although 

it may be advisable to do so given the ease of effort and proposed advantage of 

avoiding spurious groupings where species are not actually statistically 

different (i.e., they have overlapping normal distributions of cluster abundance).  
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Figure 2.5 Performance measures using the four-taxon diploid Nicotiana 

dataset. a) Analysis of genome proportion (GP%) vs. tree support as the 

symmetric bootstrap of the unrooted tree. b) Analysis of total number of clusters 

used vs. tree support as the symmetric bootstrap. c) Partition analysis of 150-

cluster segments of the dataset at three levels of GP: 2%, 0.32%, and 0.07%. 

Asterisks in c) represent trees that contain inconsistent species groupings. 
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Repeat types differed in their relative informativeness between datasets, but not 

in a consistent manner. Overall DNA transposons appeared to have less 

consistent phylogenetic signal than other types of repeats (Fig. 2.6). The relative 

informativeness of retrotransposons seems to be more taxon-specific, e.g., in 

some datasets Ty1/Copia were more informative than Ty3/Gypsy, whereas in 

others the opposite is true. The importance of including unclassified repeats is 

also highlighted by the informativeness of this category in all datasets 

examined. 

 

Discussion 

Resolving Species Relationships using Repeat Abundances 

Using one insect and five angiosperm examples that vary in genome size by 

∼400-fold (from 1C = 0.2Gb in Drosophila to 75.7 Gb in Fritillaria), it was shown 

that using relative abundance of repetitive elements as continuous characters 

successfully resolves species relationships in a manner similar to that obtained 

by using DNA sequences from plastid and nuclear ribosomal regions. Using low 

coverage sequencing of genomic DNA (>0.1%GP) and ≥150 cluster abundances, 

the repetitive DNA-based phylogeny reconstruction method is consistent in 

resolving expected relationships (i.e., those produced with other, more 

standard, methods, and data). The method can be seen as an additional source 

of phylogenetic information from the repetitive, noncoding portion of the 

genome, which will be a useful comparison to results based on DNA sequences. 

Gene trees represent the ancestry of particular sequences, and because allele 

histories may have differences from the species trees plus have coalescent times 

that differ from each other and species divergence times (Pillon et al., 2013) they 

often present conflicting topologies (Nichols, 2001). Thus, there has been a 

recent focus on multiple sequence datasets, which aim to give a genome-wide 

assessment of species divergence. 
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Figure 2.6 Impact of repeat type on tree resolution and method 

performance. Informativeness of each repeat type was estimated by creating 

subsets of the original matrices based on repeat annotation; in each case the 

mean bootstrap was calculated for each repeat type and each taxon dataset, 

error bars represent the standard error. a) DNA transposons. b) Ty1/Copia LTR 

retrotransposons. c) Ty3/Gypsy LTR retrotransposons. d) rDNA. e) Satellites. f) 

Other repeats including unclassified repeats and non-LTR retrotransposons. 
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Here, the repeat method provides data widespread across the genome, and each 

repeat abundance (cluster) is a marker; a matrix of such abundances likely 

represents many independently evolving characters. Furthermore at an 

appropriate level of GP there is little variance in phylogenetic signal across the 

dataset, showing remarkably consistency, although this requires further testing 

with additional datasets that include a larger number of taxa. 

 

ML results on the whole agree with maximum parsimony results, although for 

many groups the tree is only partially resolved, e.g., Fritillaria and tribe Fabeae 

(Online Appendix 2).  ML does not perform as well as MP here, which may be 

due to the large state space of the character coding might provide insufficient 

information to accurately inform site likelihoods. Further likelihood and 

Bayesian models for inferring trees from repeat abundances are being 

developed, but these approaches are limited by our understanding of repeat 

evolution, which is in its infancy. It is possible that horizontal transfer occurs for 

several repeats, but the overall impact of this on the results is believed to be low, 

due to the large proportion of the genome covered by these analyses. Additional 

work is needed to further model the evolution of repeat populations, but these 

results and others (e.g., Jurka et al., 2011; 2012) provide evidence that repeats 

evolve primarily in accordance with random genetic drift; they therefore contain 

useful phylogenetic signal. 

 

For reliable estimates of species relationships, it is recommended to use 

>0.1%GP for clustering and subsequent phylogenetic analysis based on at least 

150 cluster abundances. If a lower GP is used it is suggested to use 1000 cluster 

abundances in the analysis for reliable detection of the phylogenetic signal 

present. With larger (and more repetitive genomes) it is possible to resolve 

relationships with lower levels of GP as read depth will likely still be sufficient 

at GP<0.1%, as observed here for Fritillaria. 
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Why use Repeat Abundances for Phylogenetics? 

There is an extensive literature on the evolution of repeats, see e.g., recent 

reviews by Kelly et al. (2012), Leitch and Leitch (2012), Kejnovsky et al. (2009), 

and Fedoroff (2012). All genomes contain tandem repeats and transposable 

elements, predominantly retrotransposons and derivative repeats—in plants 

these are typically long-terminal repeat (LTR) Ty1/Copia and Ty3/Gypsy 

elements (Hansen and Heslop-Harrison 2004). Copy number of these elements 

is highly variable and can change rapidly, contributing a large effect on genome 

size and architecture (Kelly and Leitch 2011). Genome content of these repeats, 

as a whole is the result of mechanisms of repeat expansion (e.g., 

retrotransposition, repeat recombination) and contraction (e.g., recombination-

based deletion). In this study it is shown that the variable abundance of 

different repetitive elements contains phylogenetic signal, i.e., one reflecting the 

evolutionary history of these species, which would be expected, given the 

premise that repeats are an inherent structural feature of the genome and in fact 

underlie much of the evolution of large, complex eukaryotic genomes (Fedoroff 

2012). 

 

Previously, it has been shown that the frequency of short sequence repeats 

provides genomic signatures that can be used to reconstruct phylogenetic 

relationships (e.g., Edwards et al., 2002; Pride et al., 2003). This approach builds 

on this insight to show that a genomic signature containing phylogenetic 

information extends to many larger repeat classes (Fig. 2.6), based on sequence 

similarity and graphical clustering. Potentially therefore it is likely to be robust 

to particular features of individual genomes being analysed, which may or may 

not be rich in certain categories of repeat. Researchers using genome skimming 

approaches to assemble high-copy DNA features (plastomes, rDNA cistron) 

already have these repeat data available (e.g., Bock et al., 2014), and it provides 
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another data source of noncoding nuclear DNA from which to infer 

phylogenetic hypotheses. 

 

This method is genome-wide, and there is no need to attempt to distinguish 

paralogues, as essentially each cluster represents a homologous family of 

repeats (as determined by their highly conserved sequence, which is how they 

are clustered in the first place), the genomic abundance of which is used as 

phylogenetic data. In contrast, using low-copy nuclear markers requires 

paralogues to be distinguished accurately from one another. Low-copy nuclear 

genes are becoming increasingly popular (Zhang et al., 2012) due to often-higher 

variability when compared with plastid or mitochondrial markers (but not 

always, Turner et al., 2013), particularly for recent radiations and population 

studies. High variability can be seen as a consequence of having long coalescent 

times (compared to plastid or mitochondrial markers), but this in fact confounds 

their use, as when two or more young taxa share ancient alleles only due to the 

absence of fixation in ancestral populations rather than unique descent (Pillon et 

al., 2013). This means that many such markers are needed to provide evidence 

for which ones are providing spurious or conflicting results. The repeat method, 

however, shows particular promise for these cases, as repeats evolve rapidly, 

and there is neither the added complication of comparing markers with 

different coalescent times nor effect of longer coalescent times and incomplete 

lineage sorting. 

 

This method proved useful for inferring parents of some allopolyploid taxa in 

which extensive diploidization has occurred (i.e., replacement of repeats typical 

of one parent with those of the other) and repeat abundance is much more 

similar to one of the parents (here observed in groups of Nicotiana 

allopolyploids). In other groups, in which homoploid and polyploid 

hybridization occurs, further conflict will occur in construction of strictly 
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bifurcating trees, but this can be analysed more thoroughly using networks or 

pruning of putative parental or hybrid taxa. Using each cluster abundance (a 

single character) to make a separate estimate and then building a network based 

on these input trees, it may be possible to extract in the repeat data further 

evidence of reticulation. 

 

Nonetheless, in these analyses repeat abundances have proven useful for 

determining one of the putative parents of allopolyploid taxa (Renny-Byfield et 

al., 2013), but perhaps with some refinement in methods it could be expected to 

demonstrate clear evidence for both parents, especially in recently synthesized 

hybrids (as in the N. tabacum analyses when investigating the individual trees 

from the bootstrap replicates). Additionally, this method has not yet been tested 

in a species or species complex of wide geographical range, which would be a 

useful further test for how this method performs at the intraspecific level. If 

homogenization of repeats occurs as a result of gene flow, which holds back 

formation of sequence variants, the prediction is that divergence occurs quickly 

once gene flow ceases, as might occur for isolated populations of a widespread 

species. 

 

There is an additional caveat that should be mentioned; in order for the method 

to work reliably it is best that genome size is first estimated (via flow 

cytometry). If genome size is not used to standardize repeat abundances, then 

the resultant trees may reflect genome size differences more than shared 

evolutionary history, as repeat estimates reflect sampling bias rather than true 

abundance. It should be noted that the Asclepias example did not include 

genome size standardization as these data were not available. Additionally, lack 

of genome size information was simulated in the Fritillaria example, using the 

same number of reads (40 000) for each sample, despite >2-fold genome size 

differences (30–75 Gb), but results from this analysis closely mirror those 
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presented in the results section, again with high levels of support (Online 

Appendix 3). Thus when genome sizes are unknown, the method still has the 

potential to produce a reliable phylogenetic result. It should therefore be 

possible to include data from various genomic sources, including available 

genome sequence data, although this may vary relative to sequencing 

effort/coverage used in the clustering. 

 

Further Applications and Development of this Method 

The proposed method may also prove useful for sequencing DNA from 

herbarium specimens, where genomic DNA is often degraded to a greater 

extent (Särkiinen et al., 2012). Highly degraded DNA will be expected to contain 

intact copies of high-copy regions (i.e., particularly shorter repeats) even when 

other regions are largely eliminated. Herbarium specimens provide an 

invaluable source of plant material, often collected from remote regions and for 

taxa that may have since become rare or even extinct. Utilizing this resource will 

be a continued focus of research in plant systematics, and bridging the gap from 

Sanger sequencing of short markers to NGS of genome-wide markers is one 

current focus of research. Here, one possible solution to this problem is 

provided, as short NGS reads of low-coverage gDNA give us an invaluable 

insight into repetitive DNA proportions, a method that is advantageous because 

repeats are present in high-copy number and distributed across the genome. 

Unlocking and mining data from museum collections will understandably be a 

future focus of systematic studies (e.g., Guschanski et al., 2013). 

 

The clustering pipeline utilized here has been shown to be effective in 

characterizing repetitive elements across various groups of eukaryotes 

including, for instance, bats (Pagan et al., 2012). Phylogenetic trees based on 

repeat abundances estimated with RepeatExplorer could be produced in other 

groups of animals, including mammals, and fungi. This makes the methodology 
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particularly useful for those carrying out genome evolutionary studies in 

various types of organisms. 

 

Concluding Remarks 

In conclusion, this methodology is quick and easy to implement from the initial 

stage of DNA extraction and Illumina sequencing through to clustering of reads 

and tree building, utilizing the RepeatExplorer pipeline and TNT program (both 

freely available). As the cost of NGS continues to decrease in coming years 

(currently the major cost is in the library preparation), the overall cost of using 

this method will also decrease. 

 

This method has proven successful in resolving species relationships as 

previously hypothesized by analyses of DNA sequence data (plastid and 

nuclear trees) and morphological circumscription in five diverse groups of 

angiosperms and one insect. There were only a few instances where the results 

are incongruent with trees derived from DNA sequences, for which evidence 

about cause should be sought; there are good reasons why in some cases plastid 

DNA and rDNA could be misleading, so these discrepancies should not be 

ignored or be thought of as a fault of using repeats as phylogenetic characters. 

This method does provide an important extension of molecular systematics 

methods and should be useful for comparative phylogenomics. At the same 

time as providing data for robust phylogenetic reconstruction in diploid species, 

this method provides abundant information for understanding genome 

evolution in the context of repetitive DNA. Indeed, this has already been done 

for a number of the datasets/partial datasets used in this study (e.g., Piednoël et 

al., 2012, 2013; Renny-Byfield et al., 2013). 
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Chapter 3 Using genomic repeats for 

phylogenomics: A case study at the 

intraspecific level 

 

 

 

 

 

 

 

 

 

Publication information 

This chapter is based on the following article, published in the Biological Journal 

of the Linnean Society, for which I was the lead and corresponding author.  All 

co-authors read, edited and approved the final manuscript.  

 

Dodsworth S, Chase MW, Särkinen T, Knapp S, Leitch AR. (2015) Using 

genomic repeats for phylogenomics: A case study in wild tomatoes (Solanum 

section Lycopersicon; Solanaceae).  Biological Journal of the Linnean Society, DOI: 

10.1111/bij.12612 



	 67 

Summary 

High-throughput sequencing data have transformed molecular phylogenetics 

and a plethora of phylogenomic approaches are now readily available. Shotgun 

sequencing at low genome coverage is a common approach for isolating high-

copy DNA, such as the plastid or mitochondrial genomes, and ribosomal DNA. 

These sequence data, however, are also rich in repetitive elements that are often 

discarded. Such data include a variety of repeats present throughout the nuclear 

genome in high copy number. It has recently been shown that the abundance of 

repetitive elements has phylogenetic signal and can be used as a continuous 

character to infer tree topologies. In the present study, repetitive DNA data in 

tomatoes (Solanum section Lycopersicon) is evaluated in order to explore how 

they perform at the inter- and intraspecific levels, utilizing the available data 

from the 100 Tomato Genome Sequencing Consortium. The results add to 

previous examples from angiosperms where genomic repeats have been used to 

resolve phylogenetic relationships at varying taxonomic levels. Future prospects 

now include the use of genomic repeats for population-level analyses and 

phylogeography, as well as potentially for DNA barcoding. 
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Introduction 

One of the simplest approaches to using high-throughput sequencing for 

phylogenetics is to randomly sequence a small proportion of total genomic 

DNA. The sequences of reads present in these datasets are biased towards 

sequences with the greatest numbers of copies in the genome (Straub et al., 

2012); this includes not only high-copy organellar DNA, such as the plastid and 

mitochondrial genomes, but also ribosomal DNA and the many kinds of 

repeats, particularly retrotransposon sequences (Dodsworth et al., 2015a). 

Molecular systematics relies on the alignment of homologous DNA sequences, 

whether coding or noncoding, and subsequent phylogenetic trees are inferred 

based on patterns of differences in these alignments. Repetitive elements are not 

suitable for such analyses in exactly the same way. For example, although 

retrotransposons have homologous protein domains involved in element 

mobility, the sequence divergence of these domains between taxa is not 

sufficient to resolve phylogenetic relationships. What does vary, and in many 

cases drastically, is the abundance of particular retrotransposons and other 

repeat types. This abundance of homologous repeats can then be used as a 

quantitative character for phylogenetic reconstruction. 

 

Recent tools have been developed that allow us to analyse, quickly and 

efficiently, the repetitive portion of the genome from low-coverage genome 

sequencing data, and then to use these data for phylogenetic inference (Novak, 

et al., 2010; Novak et al., 2013; Dodsworth et al., 2015a). This methodology has 

been shown to be effective for inferring phylogenetic relationships in well-

studied groups of angiosperms in several different families (Apocynaceae, 

Fabaceae, Liliaceae, Orobanchaceae, and Solanaceae). Typically, the method 

does not work well above the level of genus because there are often no repeats 

in common (and therefore no shared characters on which to infer phylogenetic 

relationships). Understanding how repetitive elements could be used in 
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phylogeographical and population genetic studies, as well as in resolving 

difficult phylogenetic problems at the species-level, is now a focus for future 

research. 

 

In the present study, the usefulness and power of nuclear repeat regions is 

tested at inter- and intraspecific levels. This is performed using wild and 

cultivated tomato species, including multiple cultivars as a case study to explore 

intraspecific variation in genomic repeats and the subsequent performance of 

these datasets in phylogenetic inference. The wild tomatoes present an excellent 

case study as a result of the availability of genomic and genetic data, and 

extensive previous analyses of phylogenetic relationships using plastid markers, 

low-copy nuclear markers, nuclear ribosomal internal transcribed spacers, and 

amplified fragment length polymorphisms (Peralta et al., 2008; Grandillo et al., 

2011).  Four informal groups are recognized within the section: (1) 

‘Lycopersicon group’ with Solanum lycopersicum, Solanum cheesmaniae, Solanum 

galapagense, and Solanum pimpinellifolium (the ‘red/orange fruit’ clade); (2) 

‘Arcanum group’ with Solanum arcanum, Solanum chmielewskii, and Solanum 

neorickii (the ‘green fruit’ clade); (3) ‘Eriopersicon group’ with Solanum 

huaylasense, Solanum chilense, Solanum corneliomulleri, Solanum peruvianum, and 

Solanum habrochaites; and (4) ‘Neolycopersicon group’ containing only Solanum 

pennellii, which was considered to be sister to the rest of the section by (Peralta et 

al., 2008) based on its lack of the sterile anther appendage that occurs as a 

morphological synapomorphy in S. habrochaites and the rest of the core 

tomatoes.  

 

More recent studies using conserved orthologous sequence markers (COSII; 

Rodriguez et al., 2009) and genome-wide single nucleotide polymorphisms 

(SNPs) (Aflitos et al., 2014; Lin et al., 2014) have largely supported previous 

hypotheses with respect to major clades within the tomatoes, although 
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individual species relationships are less clear cut for some taxa. The extent to 

which multiple evolutionary histories can be recovered through the analysis of 

different genomic fractions has been explored in tomatoes, and concordance 

analysis revealed significant discordance possibly as a result of biological 

processes such as hybridization or incomplete lineage sorting (Rodriguez et al., 

2009). There are no reported polyploids in this clade, and there is not much 

variation in genome size, although macro- and microgenome rearrangements 

are reported (Tang et al., 2008; Szinay et al., 2010, 2012; Verlaan et al., 2011). 

 

Materials and Methods 

Taxa sampled 

Sampled material from 20 accessions included all currently recognized species 

of the core tomato clade (section Lycopersicon) and Solanum tuberosum L. (potato) 

as the outgroup. Representatives of Solanum sect. Lycopersicon (Table 1) (Peralta, 

Knapp & Spooner, 2005; Peralta et al., 2008) included in the analyses were: S. 

lycopersicum L., S. arcanum Peralta, S. corneliomulleri J.F. Macbr., S. cheesmaniae 

(L.Riley) Fosberg, S. chilense (Dunal) Reiche, S. chmielewskii (C.M.Rick, Kesicki, 

Fobes & M.Holle) D.M.Spooner, G.J.Anderson & R.K.Jansen, S. galapagense 

S.C.Darwin & Peralta, S. habrochaites S.Knapp & D.M.Spooner, S. huaylasense 

Peralta, S. neorickii D.M.Spooner, G.J.Anderson & R.K.Jansen, S. pennellii Correll, 

S. peruvianum L., and S. pimpinellifolium L. Seven accessions representing 

different cultivars of S. lycopersicum were also included. 

 

High-throughput sequence data acquisition  

Illumina sequence data from the 100 Tomato Genome Sequencing Consortium 

(Aflitos et al., 2014) were downloaded from the NCBI Short Read Archive (SRA), 

with the accession numbers: ERR418040 – S. lycopersicum ‘Alisa Craig’ LA2838A; 

ERR418039 – S. lycopersicum ‘Moneymaker’ LA2706; ERR418048 – S. lycopersicum 

‘Sonata’ LYC1969; ERR418055 – S. lycopersicum ‘Large Pink’ EA01049; 
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ERR418056 – S. lycopersicum LYC3153; ERR418058 – S. lycopersicum PI129097; 

ERR418078 – S. lycopersicum LYC2962; ERR418093 – S. arcanum LA2172; 

ERR418061 – S. corneliomulleri LA0118; ERR418087 – S. cheesmaniae LA0483; 

ERR418098 – S. chilense CGN15530; ERR418085 – S. chmielewskii LA2663; 

ERR418121 – S. galapagense LA1044; ERR410244 – S. habrochaites LYC4; 

ERR418096 – S. huaylasense LA1365; ERR418091 – S. neorickii LA0735; ERR410253 

– S. pennellii LA716; ERR418084 – S. peruvianum LA1278; and ERR418082 – S. 

pimpinellifolium LA1584. 454 sequence data for the outgroup Solanum tuberosum 

(ERR023045) were also downloaded from the SRA because appropriate Illumina 

data were unavailable. There are different sequencing biases based on 454 or 

Illumina technologies (and library preparation protocols) and, ideally, they 

should not be mixed; however, the outgroup has been clearly defined based on 

extensive literature and therefore any difference in this one taxon should not 

have any impact upon the ingroup taxa results. 

 

Dataset preparation and subsampling of read data 

SRA files were unpacked into FASTQ using the FASTQ-DUMP executable from 

the SRA Toolkit. FASTQ files were then filtered with a minimum quality of 10 

and converted to FASTA files. For the 454 data, reads were trimmed to 100 bp 

and filtered. All samples were assumed to have a genome size of approximately 

1 Gb based on data available on the Plant C-values Database that shows little 

variation in genome size between species within section Lycopersicon (831–1198 

Mbp) (Table 1) (http://data.kew.org/cvalues). Each accession was then 

sampled for 0.2% of the genome by randomly subsampling each Illumina/454 

dataset. This resulted in 20 000 reads of 100 bp per sample from all Solanum 

accessions. The reads in each sample were labelled with a unique nine-character 

prefix, making a total combined dataset of 400 000 reads. In addition, a further 

dataset was compiled to test the above assumption that genome size is 

comparable between species of section Lycopersicon. The 20 taxa were randomly 
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shuffled and half were down-sampled to 14 000 reads, representing 0.7 of the 

original sample. This proportion was chosen because it reflects the genome size 

variation currently found within the section (approximately 831/1198). 

 

 

 

 

 

Table 3.1 Taxa sampled including accession details, short read archive 

accession number for genomic data, and genome size 

(http://data.kew.org/cvalues) 

 

 

 

 

 

 

 

 

 

 

*Values assumed based on previous intraspecific status within other taxa.  NA, 

not available.  
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Clustering analysis using RepeatExplorer (RE)  

Clustering of Illumina/454 reads was performed using the RE pipeline, 

implemented in a Galaxy server environment (http://www.repeatexplorer.org) 

as described in Dodsworth et al. (2015a). RE clustering was used to identify 

genomic repeat clusters within each dataset, with default settings (minimum 

overlap = 55 and cluster size threshold = 0.01%). Briefly, using a BLAST 

threshold of 90% similarity over 55% of the read length, RE identifies 

similarities between all sequence reads and then identifies clusters based on a 

principle of maximum modularity. To identify and discard any potential plastid 

repeat clusters, the S. lycopersicum plastid genome (HG975525.1) was used as a 

custom repeat database. Plastid repeats are not considered informative in a 

phylogenetic context because their high abundance is likely linked to the 

dynamics of photosynthesis in different tissue types and species, and therefore 

is not indicative of evolutionary history. Hence, plastid regions need to be 

identified prior to using genomic repeat data in phylogenetic analyses. In this 

study, none of the clusters were identified as belonging to the plastid genome 

and hence no regions were removed. Finally, RE was used to identify the 1000 

most abundant repeats for phylogenetic analyses, as measured by read numbers 

per cluster. 

 

Phylogenetic analysis using cluster abundances  

The top 1000 most abundant clusters were used to create a matrix for 

phylogenetic inference. Cluster abundances were used as input characters. To 

make the cluster abundance values smaller based on requirements of input data 

for TNT, all abundances were divided by a factor of 18.5 (= largest cluster 

abundance/65) so that all data would fall within the range 0–65 (as required by 

the TNT software). Tree topologies were inferred using maximum parsimony as 

implemented in the TNT software with continuous character states enabled 

(Goloboff et al., 2006; Goloboff, Farris & Nixon, 2008) following settings in 
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Dodsworth et al. (2015a). Continuous characters are not recoded in any way and 

are used as ‘normal’ additive characters, except that count changes can now be 

non-integer differences (i.e. numerical). Tree searches were performed using 

implicit enumeration (branch- and bound) with 10 000 symmetric bootstrap (BS) 

replicates. To explore reticulation in the dataset, a network approach was 

employed. SPLITSTREE4 (Huson and Bryant, 2006) was used to create a filtered 

supernetwork from the 10 000 bootstrap trees from the maximum parsimony 

analysis, with filtering set at 10% of all input trees (i.e. 1000 trees). 

 

 

Results 

Phylogenetic relationships in Solanum sect. Lycopersicon  

The single most parsimonious tree from the analysis of genomic repeats 

recovers S. habrochaites and S. pennellii as the first branching taxa within section 

Lycopersicon (Fig. 3.1). The ‘Eriopersicon group’ (sensu Peralta et al., 2008; S. 

corneliomulleri, S. peruvianum, S. huaylasense, and S. chilense) is recovered with 

high branch support (100 BS). Solanum neorickii (‘Arcanum group’) is recovered 

as sister to all remaining species (99 BS) (Fig. 3.1). Members of the ‘Arcanum 

group’ (S. chmielewskii and S. arcanum) are found to be nested within the clade 

consisting of all the members of the ‘Lycopersicon group’ (Fig. 3.1). The results 

do not recover a red–orange fruited clade but do find three of the species 

bearing red or orange coloured fruits in a strongly supported clade (S. 

lycopersicum LA2838A, S. pimpinellifolium and S. galapagense; 86 BS) within a 

polytomy including all other red- and orange-fruited accessions. 
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Figure 3.1 Phylogenetic relationships in Solanum section Lycopersicon. A, the 

single most parsimonious tree topology is shown based on abundance values of 

the 1000 most abundant repeats identified in Illumina/454 next-generation 

sequencing runs. A total of 0.2% of the genome for each accession was used. 

Bootstrap values are shown for each node (10 000 symmetric bootstrap 

replicates). Branch lengths are proportional to numerical step changes in repeat 

abundances (scale bar). Accession numbers are given for each sample. Current 

taxonomic grouping is indicated according to informal groups sensu Peralta et 

al. (2008). B, summarized phylogenetic hypotheses from Rodriguez et al. (2009) 

and Aflitos et al. (2014); low support is indicated by asterisks. 
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The additional analysis testing the effect of genome size variation on tree 

inference produced the same overall phylogenetic results consistent with those 

based on equal sampling of 20 000 reads (data not shown), although there are 

some differences in the large clade containing all S. lycopersicum accessions. 

However, this clade is still largely unresolved. Network analyses show evidence 

of reticulation in this clade, as indicated by the presence of splits present in the 

filtered supernetwork (Fig. 3.2). 

 

Each accession had a unique combination of repeat percentages, as reflected in 

the difference in terminal branch lengths. Some accessions also had unique 

repeat types not found in any other accession (Fig. 3.3); the largest numbers of 

unique repeats were found in S. habrochaites and S. pennellii, with 239 and 301 

clusters, respectively, out of the 1000 most abundant clusters. One accession of 

cultivated Solanum lycopersicum (EA01049) had one unique repeat type (Fig. 3.3). 

 

 

Discussion 

Relationships in Solanum section Lycopersicon 

The taxonomy and estimates of phylogenetic relationships within the core 

tomato clade (Solanum section Lycopersicon s.s.) have begun to be stabilized in 

recent years (Peralta et al., 2005; 2008) using a variety of different markers from 

both the plastid and nuclear genomes. Rodriguez et al. (2009) used a suite of 

COSII nuclear markers to identify five strongly supported clades within the 

broader tomato group (incl. sections Juglandifolia and Lycopersicoides). Their 

results supported monophyly of section Lycopersicon as treated in the present 

study, and did not resolve either the position of their strongly supported S. 

arcanum+S. chmielewskii+S. neorickii or the relationships of these species with 

each other.  The data presented here show a similar lack of resolution regarding 
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these three taxa and, additionally, place them within a large polytomy including 

all the red- and orange-fruited taxa. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Relationships in Solanum section Lycopersicon shown as a filtered 

supernetwork. Splits present in 10% of all bootstrap trees are displayed. Conflict 

in the network, particularly within the ‘Lycopersicon’ group clade, suggests the 

occurrence of reticulation in the dataset and incongruence between genomic 

repeat clusters. 
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Figure 3.3 Number of unique repeat types (clusters) for the seven accessions 

that included them. Note Solanum lycopersicum, Solanum corneliomulleri, and 

Solanum chilense each have a single unique repeat type. 
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The latest rounds of genome sequencing are likely to add to the robust 

placement of some species (Aflitos et al., 2014), and the current informal 

grouping within the section as defined by Peralta et al. (2008) does appear to 

reflect what is otherwise known about these taxa/accessions. All recent studies 

have broadly recovered the four informal groups as defined by Peralta et al. 

(2008): (1) ‘Lycopersicon group’ with S. lycopersicum, S. cheesmaniae, S. 

galapagense, and S. pimpinellifolium; (2) ‘Arcanum group’ with S. arcanum, S. 

chmielewskii, and S. neorickii; (3) ‘Eriopersicon group’ with S. huaylasense, S. 

chilense, S. corneliomulleri, S. peruvianum, and S. habrochaites; and (4) 

‘Neolycopersicon group’ consisting of S. pennellii. 

 

Rodriguez et al. (2009) also recovered these groups, although S. huaylasense was 

sister to the ‘Arcanum group’, rather than being a member of the ‘Eriopersicon 

group’, and S. pennellii and S. habrochaites were sister taxa. The groups of Peralta 

et al. (2008) were found to be clades based on genome-wide SNP data (Aflitos et 

al., 2014), except that, similar to Rodriguez et al. (2009), they found S. pennellii 

and S. habrochaites to be sister taxa, thus restricting the concept of the 

‘Eriopersicon group’ to S. huaylasense, S. chilense, S. corneliomulleri, and S. 

peruvianum. This could represent a loss of the anther appendage in S. pennellii or 

a parallel gain of the appendage in S. habrochaites and the rest of the core 

tomatoes. It is clear that further studies on the development of these characters 

are necessary to examine this result. 

 

In the repeat analyses, most of these major groups were also identified. There 

were three notable differences: (1) Solanum habrochaites was recovered as sister 

to the rest of the section not as sister to S. pennellii; (2) two species of the 

‘Arcanum group’, S. chmielewskii, and S. arcanum, were nested within the 
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‘Lycopersicon group’; and (3) Solanum neorickii was recovered as sister to the 

‘Lycopersicon group’ (including S. arcanum and S. chmielewskii). 

 

The recovery here of S. habrochaites as sister to the rest of the core tomatoes 

differs from the results based on genome-wide SNPs (Aflitos et al., 2014; Lin et 

al., 2014), although it is perhaps not unexpected given the relatively unstable 

position of S. habrochaites and S. pennellii in previous analyses (Peralta et al., 

2008). It highlights the need for further developmental analysis of the sterile 

anther appendage long considered to be the synapomorphy of the core tomatoes 

(Peralta et al., 2008). 

 

The nesting of S. chmielewskii and S. arcanum within the ‘Lycopersicon group’ 

and the sister relationship of S. neorickii to this larger group are more 

unexpected results that require further investigation. The analyses of Aflitos et 

al. (2014) provided strong support for the ‘Arcanum group’, including S. 

arcanum, S. chmielewskii, and S. neorickii and for its sister relationship with the 

‘Eriopersicon group’ (minus S. habrochaites), as reported by Rodriguez et al. 

(2009). The unusual placement of S. arcanum and S. chmielewskii in the 

phylogenetic analysis of repeats may be the result of the repetitive portion of the 

genome evolving under non-neutral processes, such as targeted repeat 

amplification/deletion or potentially horizontal gene transfer. Further 

characterization of repeat dynamics and additional taxon sampling could help 

to clarify this. The polytomy involving these taxa and the cultivated tomatoes 

could also be the result of extensive use of wild species in tomato breeding in 

the past, where gene regions from wild species have been introgressed in 

different cultivars of S. lycopersicum (Grandillo et al., 2011). The filtered 

supernetwork based on 10% of all bootstrap trees (Fig. 3.2) shows clear evidence 

of potential reticulation and non-treelike evolution in this clade. Thus, the 
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placement of S. arcanum and S. chmielewskii could reflect the use of these wild 

species in previous tomato breeding. 

 

The reference tomato genome (‘Heinz 1706’; Tomato Genome Consortium, 2012) 

contains multiple introgressions from S. pimpinellifolium. Lin et al. (2014) found 

exotic fragments containing resistance genes in inbreeding lines, processing 

tomatoes, and fresh market hybrids that remained intact after several 

generations of backcrossing.  This prospect of introgression, as with 

hybridization, would affect the analyses of genomic repeats, with some repeats 

specific to one parental lineage and some to the other parental lineage (or 

introgressed species). Network approaches do indeed provide some evidence 

for the involvement of introgression and/or hybridization in such scenarios, as 

indicated in the present study. However, this is complex and variable 

depending on the timeframe within which these processes occurred (e.g. 

polyploids of Nicotiana; Dodsworth et al., 2015a). 

 

Genome skimming for molecular systematics  

The ‘genome skimming’ approach (sensu Straub et al., 2012) involves low-

coverage sequencing of genomic DNA using high-throughput technologies such 

as Illumina. The resulting data represents random sequences distributed 

throughout the genome but, because the coverage is low, the data will only 

represent the fraction of the genome that is in relatively high copy number. 

Notably, this includes ribosomal DNA from the nuclear genome (present in 

typically hundreds or thousands of copies) and organellar DNA (the plastid and 

mitochondrial genomes). 

 

A current surge in using genome skimming approaches focuses on the plastid 

and mitochondrial sequences that can be assembled from low-coverage Illumina 

sequence data (Kane et al., 2012; Steele et al., 2012; Haran, Timmermans & 
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Vogler, 2013; Njuguna et al., 2013; Gillett et al., 2014) and this approach is 

proving successful in both animals and plants. It has advantages over other 

methods of high-throughput sequencing for phylogenetics because it requires 

no prior enrichment or complicated laboratory procedures; the downside is that 

it is currently limited by the cost of library preparation kits (unless custom 

protocols are developed). Reduced representation sequencing such as RADseq 

(Wagner et al., 2013) and hybridization/pull-down methods (Guschanski et al., 

2013) both require extensive optimization and/or molecular laboratory work 

prior to the actual sequencing. A further advantage to genome skimming 

approaches is that they produce several datasets in one run: plastid, 

mitochondrial, and nuclear, which provide separate forms of evidence from 3 

genomes that complement one another. In terms of nuclear markers, repetitive 

elements can be easily quantified using the RE pipeline and used in phylogeny 

reconstruction as shown in the present study. This provides additional evidence 

that may complement organellar and nuclear ribosomal cistron analyses. 

 

Genome skimming, and in particular utilizing genomic repeats, may be useful 

for tapping into the genomic resources held in museum collections. Such DNA 

is often highly degraded, either simply because of age or a combination of age 

and the method by which specimens were initially dried. Collections have also 

been subject to various chemical treatments which impact upon DNA quality. 

These factors have previously hindered polymerase chain reaction success and 

still limit the availability of some high-throughput sequencing methodologies 

(such as amplicon sequencing or pull-down approaches). However, because 

genomic repeats are the most abundant sequences in genomic DNA samples, 

present in many copies, these will likely be adequately represented even in the 

most degraded of museum samples. 
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Conclusions: Future prospects for genomic repeats 

In the Solanum example reported, S. lycopersicum samples formed a strongly 

supported group that included S. cheesmaniae, S. galapagense, and S. 

pimpinellifolium (‘red/orange’ fruited clade), as found in all previous studies 

(Peralta et al., 2008; Aflitos et al., 2014; Lin et al., 2014), which indicates the utility 

of these data as phylogenetic markers at the intraspecific level. Despite this 

result, there were two unexpected placements within the Lycopersicon clade that 

require further investigation. Nonetheless, this is an important first result 

presenting the use of these data for low-level phylogenetic studies, such as 

phylogeography and investigations of widespread species and species 

complexes. 

 

Genomic repeats could also serve as markers for DNA barcoding, although a 

crucial first step will be to determine whether there is a ‘barcoding gap’ (Meyer 

& Paulay, 2005; Meier, Zhang & Ali, 2008) in further datasets that include many 

samples of each species. Future developments including model-based inference 

in a custom Bayesian framework will add rigour to the analysis of these 

quantitative characters; this method can then be fully extended to some of the 

applications proposed in the present study at the intraspecific and interspecific 

levels. 
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Chapter 4 Phylogenomics of Nicotiana 

section Suaveolentes using genome skimming
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Summary 

Nicotiana section Suaveolentes currently represents approximately 26 species, 

most of which are endemic to Australia, with two species endemic to islands in 

the South Pacific and one species native to Namibia.  Here I present 

phylogenomic results based on genome skimming, with complete taxon 

sampling and population-level sampling for several taxa.  These represent the 

first phylogenetic results for the section that include all recognised taxa. The two 

species found exclusively in the South Pacific are not sister species, one 

representing an early-branching lineage with section Suaveolentes and the other 

a secondary dispersal as far as Tonga.  The diversification of section Suaveolentes 

has occurred after the group arrived in Australia approximately 7 million years 

ago (mya), following a significant lag phase post-polyploidisation.  Descending 

dysploidy is linked with the process of diploidisation in section Suaveolentes, 

which also includes significant genome downsizing.  It is apparent that 

chromosome number continued to drop several times independently, ultimately 

from an ancestral n = 24 to as low as n = 15.  A switch to annual life history 

strategy (with multiple reversals) seems to have played a role in adaptation and 

diversification in response to aridity, with most species diversity found in the 

central Australian deserts, the Eremaean Zone.  There is little divergence in 

standard phylogenetic markers, and incongruence between organellar and 

nuclear DNA, with notable non-monophyly of population sequences in the 

plastome dataset.  Coupled with the absence of clear morphological hybrids, 

this suggests evidence of the retention of ancestral polymorphism in plastid 

haplotypes.  These data taken together paint a picture of section Suaveolentes as a 

recent and rapid radiation in Australia, still undergoing a putatively adaptive 

radiation in the Eremaean Zone.   
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Introduction 

Nicotiana section Suaveolentes represents the largest section within the genus 

Nicotiana, containing approximately 26 Australasian and African species with a 

single allotetraploid origin in South America (Knapp, et al., 2004; Marks, 2010a; 

Marks et al., 2011a; Ladiges et al., 2011).  The genus Nicotiana is rife with 

hybridisation at both the homoploid and polyploid levels (Chase et al., 2003; 

Leitch et al., 2008; Kelly et al., 2010), and allopolyploidisation has occurred over 

various timescales.  This makes the genus an excellent model for studying the 

genomic and ecological effects of polyploidy in angiosperms (e.g. Renny-Byfield 

et al., 2011; Renny-Byfield et al., 2013; McCarthy et al., 2015).  Despite its size, 

section Suaveolentes is comparatively much less studied than the other polyploid 

sections.  This section, by contrast to all of the other polyploid sections, has 

undergone significant diversification post-polyploidisation and thus can in itself 

be a model for angiosperm diversification following polyploidy and subsequent 

diploidisation.  Section Suaveolentes species appear to have diversified within 

the last ~1-2 million years since a common origin for the section ~10 million 

years ago (Clarkson, 2007; Leitch et al., 2008).  Most of the species are endemic to 

Australia, with species diversity at its highest in the central Australian deserts 

(at least seven species occur in the immediate vicinity of Alice Springs).   

 

Previous phylogenetic studies in Nicotiana have confirmed the monophyly of 

section Suaveolentes based on plastid and nuclear regions (Aoki and Ito, 2000; 

Chase et al., 2003; Clarkson et al., 2004; 2010; Kelly et al., 2013), thereby likely 

rejecting Goodspeed’s original hypotheses for at least three separate origins of 

section Suaveolentes taxa (Goodspeed, 1954).  Goodspeed’s hypotheses 

concerning the parental lineages involved in the origin of section Suaveolentes 

were perhaps disturbingly on point, indicating the involvement of N. sylvestris 

along with sections Petunioides, Noctiflorae and Alatae, that is consistent with 
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current genetic evidence (Kelly et al., 2013; unpublished data).  Despite this his 

necessary invocation of hybridisation in order to produce the various 

chromosome numbers in Suaveolentes is something that can be rejected based on 

the published phylogenetic studies.  Prior phylogenetic results also show a 

general paucity of genetic variation in many of the standard phylogenetic 

markers – nrITS (Chase et al., 2003), plastid genes rbcL and matK plus other non-

coding spacer regions (Clarkson et al., 2004), nuclear glutamine synthase 

(Clarkson et al., 2010), WAXY and MADS1 (Kelly et al., 2013).  This lack of 

variation is highly suggestive of a recent and ongoing diversification within 

Nicotiana section Suaveolentes.  

 

Morphologically, one of the most useful characters for species identification has 

been shown to be corolla length, followed by other aspects of floral anatomy 

(Marks, 2010a; Marks et al., 2011a), although to the casual observer floral 

morphology is similar amongst species (Figure 4.1).  Vegetative differences are 

sometimes clearly marked between species, but I have found there is a great 

amount of plasticity that depends mostly on light levels and other 

environmental conditions.  This therefore makes these characters less useful for 

identification purposes (e.g. the basal rosette character as defined by Marks 

(2010) is in fact very labile for many taxa in nature and the glasshouse).   

 

In this chapter I aim to produce the most robust phylogenetic framework for 

Nicotiana section Suaveolentes to date, by utilising complete taxon sampling and 

a genome skimming approach, thereby vastly increasing both taxon and 

character sampling relative to previous studies.  In addition to elucidating 

species relationships I will infer ancestral states for various characters that are 

related to the biology of these taxa. 
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Figure 4.1 Examples of floral morphology in Australian species of Nicotiana 

section Suaveolentes.  A – N. maritima; B-C – N. velutina; D – N. truncata; E – N. 

forsteri; F – N. symonii. 

 

A B 
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Materials and Methods 

Plant materials 

As far as was possible, wild-collected or wild-sourced plant material was used.  

Three sets of field collections were made over the course of 2013-15 in South 

Australia and Western Australia.  Accessions were also provided by Steve Wylie 

(Murdoch University), stemming from Claire Marks’ studies of morphology and 

chromosome numbers in N. section Suaveolentes (Marks, 2010a; Marks et al., 

2011a; Marks et al., 2011b).  These collections were included in genetic analyses 

as a priority if material was available.  Additional material was received from 

seedbanks, botanical gardens and institutes including the Department of 

Genebank, Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 

Gatersleben (IPK); the Botanical and Experimental Garden, Radboud, University 

of Nijmegen, The Netherlands (Radboud); United States Department of 

Agriculture, North Carolina State University, NC (USDA); the Tropical Crops & 

Forages Collection of the Australian Plant Genetic Resource Information Service 

(AusPGRIS); the DNA Bank of the Royal Botanic Gardens, Kew (Kew); 

herbarium specimens from the Natural History Museum, London (BM).  

Further unidentified taxa were included in the study, which includes both 

potentially new species from field collections (N. symonii, N. faucicola etc.) and 

other taxa of unclear origin (N. eastii, N. exigua).  Details of the number of 

accessions used and sources are given in Table 4.1.   

 

 

 

 

 

 



	 90 

 

Table 4.1 Summary of the number of accessions for each taxon including in 

Nicotiana section Suaveolentes and sources of plant material. CM = Claire Marks 

Species Accessions Chromosome #(n) Source(s)* 

N. africana 1 23 USDA 
N. amplexicaulis 2 18 AusPGRIS; CM 
N. benthamiana 3 19 USDA; AusPGRIS 
N. burbidgeae 4 21 Field; CM 
N. cavicola 3 20, 23? Field; CM 
N. eastii 2 ? Radboud; IPK 
N. excelsior 2 19 IPK; CM 
N. exigua 3 ? Radboud; IPK 
N. fatuhivensis 1 24 Kew 
N. faucicola 4 ? Field 
N. forsteri 3 24 AusPGRIS; CM 
N. fragrans 1 ? BM 
N. goodspeedii 6 16 Field 
N. gossei 2 18 CM 
N. heterantha 2 24 Field; CM 
N. maritima 5 15 Field 
N. megalosiphon subsp. megalosiphon 3 20 AusPGRIS; CM 
N. megalosiphon subsp. sessilifolia  1 20 AusPGRIS 
N. monoschizocarpa 1 24 CM 
N. occidentalis subsp. hesperis 2 21 Field 
N. occidentalis subsp. obliqua 3 21 Field 
N. occidentalis subsp. occidentalis 3 21 Field 
N. rosulata subsp. ingulba 2 20 Field; CM 
N. rosulata subsp. rosulata 2 20 Field; AusPGRIS 
N. rotundifolia 2 16 Field 
N. simulans SA 11 20 Field 
N. simulans WA 2 20 Field 
N. sp. 68178 1 ? Field 
N. sp. 68253 1 ? Field 
N. sp. 68273 1 ? Field 
N. suaveolens 1 15 CM 
N. symonii 4 16 Field; CM 
N. truncata 3 18 Field 
N. umbratica 3 23 Field; Radboud; Kew 
N. velutina 8 16 Field 
N. wuttkei 1 16 Radboud 

*For full names see Methods.  Voucher specimens are held at K, AD, and Queen Mary 

University of London. 
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Dating the origin of section Suaveolentes  

A Bayesian approach was used to infer the date of divergence of the 

allopolyploid section Suaveolentes.  A combined plastid data matrix (trnL-F, trnS-

G, matK, ndhF) for diploid and polyploid Nicotiana was first reconstructed from 

the Kelly et al. (2013) plastid matrix, based on data from Clarkson et al. (2004), 

with outgroup taxa from Anthocercidae.  This simplification of available data 

was chosen to avoid the complications of multiple copies in low-copy nuclear 

genes for polyploids, plus the known conversion of nrITS to (often) the paternal 

parental lineage, which introduces obvious discordance with the plastid data 

(and this topological incongruence prevents the direct use of dates from 

Särkinen et al., 2013).   

 

Time-calibrated phylogenetic trees were reconstructed using BEAST2 

(Bouckaert et al., 2014) on the CIPRES web server (Miller et al., 2010), using an 

uncorrelated lognormal relaxed clock model (Drummond et al., 2006; Heled and 

Drummond, 2012).  A secondary calibration was used to date the split between 

Symonanthus and Nicotiana at ~15 Mya, following a study of all Solanaceae (1000 

tips) that used carefully re-evaluated fossil data (Särkinen et al., 2013).  A normal 

distribution for the node age prior was used (mean of 15, standard deviation of 

1.5), thereby encompassing the values and error associated with the original 

dating (95% HPD interval of ~11-20 MYA).  Analyses were run for 10,000,000 

generations, storing every 1000 generations.   

 

Genome size estimation by flow cytometry  

Genome sizes (1C-values) were estimated by flow cytometry, as described in 

Pellicer & Leitch (2014), using a Partec CyFlow Space fitted with a Cobalt Samba 

green (532 nm, 100 mW) laser. Approximately 20 mg of each leaf sample was 

finely chopped using a razor blade along with the internal standard in Galbraith 

buffer.  The standard used was parsley, Petroselinum crispum “Champion Moss 
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Curled” (1C=2.22 pg).  For each species, full estimates were made with leaves 

from three individual plants of the same accession, where possible (i.e. each 

sample was run three times, measuring the C-value of 5000 (combined) nuclei 

per run). To screen for intraspecific variation, tissue from at least one individual 

from every lab-grown accession/population was co-chopped with the internal 

standard and run on the flow cytometer to measure 1000 or more nuclei.  See 

Table 4.2 for a summary of C-values and coefficients of variation for each 

species.  

 

Genomic DNA extraction and gDNA quality control 

Approximately 100 mg of leaf tissue was used to extract genomic DNA (gDNA), 

using mostly the modified CTAB protocol of Wang et al. (2012), but in some 

cases using a Qiagen DNEasy Plant Mini Kit (Qiagen, Santa Clarita, CA).  Fresh 

or silica-dried leaf tissue were used for the bulk of gDNA extractions.  

Herbarium extractions were performed with a DNEasy Plant Mini Kit (Qiagen) 

as this has been shown to be one of the most effective methods for extractions 

from herbarium specimens (Särkinen et al., 2012; Staats et al., 2013).  In all cases, 

leaf samples were first frozen in liquid nitrogen and ground using either a 

pestle and mortar or a Qiagen TissueLyzer (Qiagen) with one or two 3 mm steel 

beads for sample homogenisation.  Genomic DNA extractions were analysed on 

a 1% agarose gel and subsequently fluorometrically with a Qubit analyser (Life 

Technologies Ltd, UK) to assess both quality (integrity) and concentration.  

Samples that had low concentrations were either re-extracted, concentrated 

using a speed-vac or used in subsequent whole-genome amplification using a 

Qiagen Repli-G Mini Kit (Qiagen).  Some samples, particularly from herbarium 

specimens, were run on an Agilent TapeStation (Agilent Technologies, Santa 

Clara, CA) with a Genomic DNA Analysis ScreenTape Assay, in order to assess 

fragment size distribution of the gDNA. 
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High-throughput sequencing – genome skimming 

Samples were multiplexed and sequenced in several runs during 2014 and 2015; 

the bulk of samples (88) were multiplexed and run on a single high-output 

NextSeq run as a set of 96 samples (V2 chemistry – 300 cycles; 151 bp paired-end 

reads).  Remaining samples were pooled in batches of 8-12 and run on a MiSeq 

in three separate runs (V2 chemistry – 300 cycles; 151 bp paired-end reads).  For 

the NextSeq samples a high-throughput TruSeq PCR-free library preparation kit 

(Illumina) was used, with 350 bp Covaris fragmentation.  For the MiSeq samples 

low-throughput TruSeq PCR-free library preparation kits were used, with 550 

bp Covaris fragmentation.  The difference in average insert size of the libraries 

was due to the suboptimal performance of the NextSeq machine with genomic 

libraries over 350 bp.  Covaris fragmentation was performed with a Covaris 

M220 Focused-ultrasonicator with microTUBE Snap-Cap AFA Fiber tubes.  

gDNA from fresh and silica-dried material was subject to Covaris fragmentation 

as described in the TruSeq protocol; herbarium gDNA was only fragmented in 

the case of large fragments being present in high concentration, and the 

sonication time was reduced appropriately.  Prepared libraries were checked for 

success in a qualitative manner using a Bioanalzyer with a High Sensitivity 

DNA Analysis Kit (Agilent).  Library concentration was then checked using 

Qubit and subsequently with qPCR, as the prepared libraries contain gDNA 

fragments that do not have adapters properly ligated that will be quantified 

with Qubit but non-sequencable; hence qPCR is the only reliable way to 

measure sequencable fragments.  qPCR was performed using a NEBNext 

Library Quant Kit for Illumina (New England Biolabs, UK), running libraries in 

triplicate at 10,000 and 20,000 dilutions as per the Illumina protocol.  Equal 

amounts of libraries were then pooled to get sets of 96 (dual-indexed), 8 or 12 

(single-indexed) pools. 
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Assembly of high-copy genomic regions  

Whole plastome sequences were assembled for each taxon/sample using MIRA 

Version 4.0.2 (Chevreux et al., 1999) by mapping reads in a reference-guided 

assembly to the N. tabacum plastid genome sequence (GenBank: NC_001879.2).  

This included coding and non-coding regions and the inverted repeat regions.  

Contigs were assessed visually by converting .caf files to .ace files and viewed in 

Tablet v. 1.15.09.01 (Milne et al., 2013) to check for chimeric or misassembled 

regions.  Other assemblers were tested, de novo and reference-guided but found 

to be inferior as they did not map large regions including the inverted repeats.  

Additionally, ribosomal DNA cistron sequences were assembled using 

Geneious v. 8.1.7 with a consensus reference from the alignment of N. tabacum 

26S (AF479172.1) and N. benthamiana ETS-18S-5.8S-26S-ETS (KP824745.1) rDNA 

sequences.  Reads from each sample were mapped to this reference in a batch 

assembly, using sensitivity set to Medium, a minimum mapping quality of 20 

and Fine tuning set to ‘up to 5 iterations’.  Assemblies were individually 

checked for read-depth and any other issues.  

 

Clustering of high-throughput reads and repeat abundance estimation 

Reads were quality filtered to include those above quality score 20 over 95% of 

the read length using the FASTX toolkit 

(http://hannonlab.cshl.edu/fastx_toolkit/).  In addition, base composition 

across the read length was assessed to check for any adapters post-filtering.  

Reads from each sample/taxon were prefixed with a unique 8-letter code.  Each 

set of reads was then down-sampled to 10,000 reads (assuming the same 

genome size for each species) and combined into one fasta file for input to the 

RepeatExplorer pipeline.  This initial combined dataset consisted of 109 taxa and 

1080909 reads (one sample had fewer reads, 9091).   
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A second dataset was created using a subset of taxa (37) with a greater number 

of reads (0.5% proportion of each genome).  Approximately one sample per 

species, chosen based on clades recovered in other phylogenetic analyses and 

the number of taxa in the species tree analyses, and with the number of reads 

proportional to genome size (where 1C-value data was unavailable, an assumed 

size of 1C = 3.2 Gb was used as this represents the mean for known taxa).  This 

dataset consisted of 37 taxa and 4,264,969 reads. 

 

Each dataset was run through the RepeatExplorer pipeline (on both the public 

webserver at http://www.repeatexplorer.org and QMUL’s own Galaxy server 

at http://galaxy.hpc.qmul.ac.uk, to check for reproducibility and account for 

computational demands) using default settings of 95% similarity over 55% of 

the read length (80 bp), read renaming but retaining taxon-specific 8-letter 

codes.   

 

 

Phylogenomic analyses  

Plastomes and rDNA 

The plastome dataset was aligned using MAFFT version 7 (Katoh and Standley, 

2013) with default settings (i.e. ‘Auto’ strategy) and manually curated by eye in 

Geneious v. 8.1.7 to discard poorly aligned or ambiguous regions due to low 

coverage in some taxa.  All gaps and ambiguities were coded as missing data.  

The final plastome alignment consisted of 107 taxa and 156,839 bp with 1.4% 

missing data; the final alignment for rDNA consisted of 116 taxa and 7,207 bp 

with 2.8% missing data. 

 

Maximum likelihood (ML) analyses were run using RAxML v. 8.2.4 (Stamatakis, 

2014) on the CIPRES Science Gateway (Miller et al., 2010).  The GTR+GAMMA 

model was used with 4 discrete rate categories to approximate the gamma 

distribution; 1000 bootstrap replicates were performed using the rapid 
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bootstrapping algorithm.  Bipartition frequencies were printed onto the best-

scoring ML tree.   

 

Bayesian analyses were conducted using PhyloBayes MPI v. 1.5a (Lartillot et al., 

2009) on the CIPRES server (Miller et al., 2010).  The CAT model was used for 

the profile mixture, which is an infinite mixture model that accounts for site-

specific base equilibria as each site is assigned a vector profile over the 4 bases 

according to a Dirichlet process (Lartillot and Philippe, 2004).  These are then 

combined with a global set of exchange rates defined by a GTR model with 8 

distinct rate categories for discretisation of the gamma distribution (CAT-GTR 

settings), thereby yielding site-specific substitution processes.  This method was 

chosen as it is the most complex of current models, effectively partitioning the 

data per site, and has been shown to account well for compositional 

heterogeneity, homoplasy and long-branch attraction artefacts.  Two 

independent runs were performed, each with 2 chains, and run until 

convergence was achieved (represented by maxdiff of <0.1 between chains).  A 

burn-in of 1000 cycles was used, and then trees subsampled every 10 in order to 

build the posterior majority-rule consensus tree.  For the plastome data, each 

run consisted of 17,268 and 24,302 cycles; for the rDNA data each run consisted 

of 6677 and 6645 cycles.  

 

Genomic repeats  

Clusters from the RepeatExplorer output were initially filtered to remove ones 

that contained plastid reads or Illumina control sequences (e.g. PhiX control 

DNA).  Post-filtering the top 1000 most abundant clusters were used 

downstream for phylogenetic analyses.  A square root transform of the raw 

abundances was performed in order to make the abundances in the range 0-65 

(required as input for TNT).  Previously factorial transformations were 

performed (Dodsworth et al., 2015a; 2015b), but these were noted to have the 

effect of overweighting clusters with large relative differences compared to 
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those with smaller differences between taxa.  This is due to the additive nature 

of the parsimony algorithms, and thus transformations that retain more of the 

additive difference between cluster abundances are preferred.  TNT was then 

used to reconstruct the phylogenetic tree using maximum parsimony and the 

repeat cluster abundances used as continuously varying characters for tree 

reconstruction in TNT (Goloboff et al., 2006; 2008).  Trees were inferred broadly 

as described in Dodsworth et al. (2015a), except that due to the number of taxa 

(109 for dataset 1 and 37 for dataset 2) implicit enumeration was not used and 

instead a heuristic search was performed using a new technology sectorial 

search with 3 rounds of tree fusing.  Additionally, a further subset of 15 taxa 

was created to check the heuristic parameters relative to an implicit (exact) 

search.  Resampling was performed using 100 symmetric bootstrap replicates 

and bootstrap percentages were displayed on the single most parsimonious 

topology.  

 

Species tree inference  

In an attempt to reconstruct the species tree for section Suaveolentes and 

summarise the information in the various genomic datasets (and their variable 

evolutionary histories) two methods of species tree estimation were used.  For 

both analyses obviously distinct taxa were coded as separate species (e.g. N. 

simulans from WA vs. SA; unidentified N. spp. from WA) in order to minimise 

the discordance represented by clearly distinct taxa unnecessarily named the 

same.  Firstly, a more simplistic parsimony analysis was conducted in Mesquite 

v. 3.04, using the maximum clade credibility gene trees for rDNA and plastomes 

(from the *BEAST analysis below) as input trees.  A heuristic search was 

performed to find the species tree that minimises deep coalescences for multiple 

loci (Maddison, 1997).  Parameters were set to auto-resolution of polytomies, 

using branch lengths of contained trees, and SPR rearrangement with MaxTrees 

set to 100.  Deep coalescences are summed for all gene trees thereby assuming 

that each locus is independent.  This method assumes that all gene tree 
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discordance is due to incomplete lineage sorting (i.e. deep coalescence, where 

gene trees coalesce more deeply than the speciation events). 

 

A second species tree analysis was conducted using a Bayesian species tree 

methodology (*BEAST) utilising the multispecies coalescent model in BEAST2 

(Bouckaert et al., 2014).  This method estimates the most probable species tree 

from multi-locus multi-individual data sequence data, by simultaneously co-

estimating the gene trees in a species tree (Heled and Drummond, 2010).  

*BEAST was run with two partitions (rDNA and plastomes) using the 

alignments from individual analyses, with a GTR+GAMMA substitution model 

with 4 rate categories for the discretisation of the gamma distribution.  A Yule 

process prior was specified for the species tree prior and piecewise linear with 

constant root prior for the population size model.  Ploidy for the plastome data 

was set to ‘mitochondrial’, as this mode of inheritance is taken into account for 

the effective population size.  A strict clock model was used, setting the 

plastome rate to 1.0 and estimating the rDNA substitution rate relative to the 

plastome.  

 

Poor mixing and convergence was initially observed with a particularly low 

effective sample size (ESS) of the clock rate parameter and associated 

substitution rate parameters, and a clear upwards trend in the trace.  This is 

probably due to low signal of timing information in the combined data, and 

therefore the extremely large upper bound (infinity) of the uniform prior 

dominates the rate estimate resulting in nonsensical estimates.  As such the 

upper bound for the clock rate uniform prior distribution was set to 1.01 instead 

of infinity (with initial value 1), which resulted in much better ESS values and 

mixing.  Five independent chains were run, each for between 20-25 million 

generations (sampling every 5000th generation), resulting in a total of 99.29 

million generations when traces were combined with LogCombiner after 

confirming convergence using Tracer and using a burn-in of 10%.  Trees were 
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combined from all 5 runs using LogCombiner and a burn-in of 10% from each, 

resulting in 19,862 trees.  TreeAnnotator was then used to produce a maximum 

clade credibility consensus tree from the 19,862 species trees with median node 

heights, which finds the tree that maximises the product of clade posterior 

probabilities in the post burn-in trees.  An alternative visualisation of the species 

tree was produced using DensiTree v. 2.2.2 (Bouckaert and Heled, 2014) using 

the 19,862 post burn-in trees from *BEAST analysis and setting the shuffle 

option to ‘closest outside first’ in order to rearrange tips to create the clearest 

picture of the entire tree set.  

 

Genealogical sorting index (GSI) analysis  

The genealogical sorting index (GSI) provides a measure of the relative 

exclusivity (i.e. exclusive ancestry) of a group of sequences on a phylogenetic 

tree, whether they are population or individual samples (Cummings et al., 2008).  

The maximum value of GSI is 1, which indicates monophyly, whereas a value of 

0 indicates dispersion over the entire tree topology.  Topology is used to 

quantify the coalescent events uniting a group and exclusivity of groups is 

continuously distributed.  Significance is tested statistically by permuting trees 

with stochastically rearranged terminals and computing the proportion that 

exceed the GSI in the original tree to provide a p-value for rejection of the null 

hypothesis (i.e. that the group is of mixed ancestry; the probability of observing 

a GSI value by chance alone that is equal to or exceeds the original GSI).  The 

GSI takes into account topological uncertainty and is a useful metric for 

assessing species boundaries, cryptic species and testing for monophyly of 

populations (e.g., Cranston et al., 2009; Sakalidis et al., 2011; Schmidt-Lebuhn et 

al., 2012).  GSI values were computed using GSI version 0.92 on the GSI web 

service (www.molecularevolution.org) through the Lattice Project (Bazinet and 

Cummings, 2008).  Permutation tests were run with 10,000 replicates, and GSI 

values calculated for both plastomes and rDNA, and together (ensemble 

statistics) by integrating the GSI values across an ensemble of topologies. 
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Ancestral state reconstructions  

The ancestral states for chromosome number, genome size, corolla length, and 

life history strategy were reconstructed using the phylogenomic framework 

generated.  Ancestral state reconstructions for life history strategies were 

conducted in Mesquite v. 3.04 using parsimony-based reconstruction, as the 

small number of changes and binary states meant more complicated model-

based methods were unwarranted.  

 

Genome size and corolla length were reconstructed using the program 

BayesTraits v. 2.0 (http://www.evolution.reading.ac.uk/BayesTraits.html; 

Pagel, 1999).  In order to account for both phylogenetic uncertainty and 

uncertainty in the model parameters, the post burn-in trees from the *BEAST 

analysis were used as input (19,862 trees).  The trees were converted with 

BayesTrees to ensure consistent rooting with N. noctiflora (outgroup).  Corolla 

tube lengths were taken from relevant descriptions for each species, using the 

middle value where a range was given (most cases).  For corolla length and 

genome size, continuous character reconstruction was implemented in 

BayesTraits with the continuous random walk model.  

Values were reconstructed at particular nodes that were well supported and 

represented the root of Suaveolentes and the origin of well-supported major 

subclades.  Means for reconstructed nodes and their standard deviations were 

plotted onto the DensiTree species tree.   

 

Chromosome number was reconstructed both with parsimony in Mesquite v. 

3.04 and maximum likelihood using chromEvol version 2.0 (Glick and Mayrose, 

2014).  The CONST_RATE model was selected with the lowest AIC value 

amongst 10 models tested, which includes parameters for rate of single 

chromosome increase, this rate being dependent on the current chromosome 
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number, and a rate of polyploidisation.  The outgroup was pruned, and the root 

node was fixed to n = 24, the maximum chromosome number set to 10 times the 

maximum found in the data.  Taxa without chromosome counts were defined as 

missing data.  Nicotiana cavicola was coded as n = 23 and n = 20 (0.5 probability 

of each count, owing to uncertainty – Marks, 2010a). 

 

 

Results 

Genome size  

Flow cytometry estimates of genome size (1C-values) for Nicotiana section 

Suaveolentes taxa are presented in Table 4.2.  Most species were found to have a 

genome size around 3.0-3.5 pg, with the mean genome size for Suaveolentes at 3.7 

pg.  Nicotiana forsteri and N. africana were found to have larger genome sizes, 4.9 

pg and 5.3 pg, respectively.  Nicotiana eastii had a large genome size of 6.6 pg.  
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Table 4.2 Genome sizes (1C-values) for Nicotiana section Suaveolentes taxa 

Species  Mean C-value (pg) Mean c.v. 

N. africana 5.28 2.06 

N. amplexicaulis 3.58 2.64 

N. benthamiana 3.53 3.47 

N. burbidgeae 3.17 2.92 

N. cavicola 2.72 2.88 

N. eastii 6.60 3.20 

N. excelsior 3.44 3.53 

N. exigua 3.48 3.29 

N. faucicola 3.58 3.60 

N. forsteri 4.86 2.19 

N. goodspeedii 3.47 2.87 

N. gossei 3.76 3.44 

N. maritima 3.41 2.42 

N. megalosiphon subsp. megalosiphon 3.30 3.22 

N. megalosiphon subsp. sessilifolia 3.73 3.10 

N. occidentalis subsp. obliqua 3.17 4.07 

N. rotundifolia 2.68 2.65 

N. simulans SA 2.92 3.13 

N. symonii 3.52 3.21 

N. truncata 3.61 2.20 

N. umbratica 3.83 1.92 

N. velutina 3.18 3.46 

N. wuttkei 3.42 1.69 
 

Dating of section Suaveolentes 

The phylogenetic analysis with calibration based on the Särkinen et al. (2013) 

date for the split between Symonanthus and Nicotiana resulted in a well-resolved 

tree (Figure 4.2) for Nicotiana.  The date for the split of section Suaveolentes from 

section Noctiflorae is ~6.75 mya (95% HPD of 4.40-9.19).  N. africana diverged 

from the rest of section Suaveolentes ~6 mya, and N. forsteri is the next diverging 
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lineage splitting from the remaining species of Suaveolentes ~5 mya.  The 

remaining speciation events within the section are dated from ~0.2-2.0 mya, 

with the majority around 2 mya. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Time-calibrated tree of Nicotiana based on the relaxed lognormal 

clock in BEAST, with secondary calibration of the split between Symonanthus 

and Nicotiana.  Numbers at nodes represent calibrated node ages; see inset for 

95% HPD intervals.  Maximum clade credibility tree based on 9,000 trees post 

burn-in. 
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Plastome tree 

Phylogenomic analyses of whole plastomes resulted in well-supported 

topologies in both ML and Bayesian analyses, with the Bayesian analysis shown 

in Figure 4.3.  With rooting on N. noctiflora as the outgroup, the sister to the rest 

of section Suaveolentes is N. africana – the sole African species of the section (and 

indeed Nicotiana).  The next diverging clade consists of N. fatuhivensis (0.91 PP), 

which is an isolated endemic to the Marquesas Islands in the South Pacific, 

followed by N. monoschizocarpa on a particularly long branch.  Nicotiana 

monoschizocarpa is a narrow endemic found from near Darwin, Northern 

Territory.  The next split consists of N. forsteri accessions, which form a strongly 

supported clade in themselves but weakly supported (0.51 PP) as the next 

diverging lineage sister to the rest of the section.  A long branch then splits N. 

forsteri from the rest of section Suaveolentes.  Nicotiana heterantha is then the first 

species in the main large clade representing all the Australian taxa (bar N. 

forsteri), sister to the rest of this clade (Figure 4.3).  Two other Western 

Australian species, N. cavicola and N. umbratica together form the next clade, 

sister to the remaining species.  The remaining taxa are then largely grouped 

into three major clades (Figure 4.3), with a few exceptions.  Clade I consists 

mainly of N. velutina, N. goodspeedii and N. faucicola accessions – these are 

seemingly all mixed up with regard to populations/accessions of each species 

not forming unique clusters in the tree.  This clade also includes the Australian 

N. gossei, N. suaveolens, N. symonii, N. rosulata subsp. rosulata, N. truncata and the 

South Pacific species N. fragrans.  

 

Clade II consists of a mix of Western and South Australian species, with N. 

rosulata subsp. ingulba, N. amplexicaulis, N. megalosiphon subsp. sessilifolia, N. 

exigua, N. wuttkei, and the southern coastal N. maritima.  There are also some 

accessions of N. velutina in this clade, one N. truncata, and one N. goodspeedii. 
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Clade III also consists of western, northern, and southern Australian taxa.  A 

potentially new species N. sp. 68253 is sister to the rest of the clade, the next 

clade then consists of N. occidentalis and N. simulans accessions, which is then 

sister to the rest of clade III.  This last clade is comprised of two subclades, the 

first consisting of all N. occidentalis accessions (this includes all three subspecies, 

N. occidentalis subsp. occidentalis, N. occidentalis subsp. hesperis and N. occidentalis 

subsp. obliqua) with no clear grouping of subspecies as exclusive entities.  The 

other subclade consists of a group of N. simulans accessions from South 

Australia.  A different accession (from that in clade I) of N. rosulata subsp. 

rosulata is then found as sister to a clade comprising N. excelsior and N. 

rotundifolia as sister taxa.  One accession of N. benthamiana (SL27) is then found 

as sister to the narrow endemic N. burbidgeae from Dalhousie Springs, South 

Australia (for which all accessions form an exclusive group).  Nicotiana 

megalosiphon subsp. megalosiphon is then sister to most of N. simulans accessions 

from South Australia.  A few N. velutina accessions are included in this clade 

with N. simulans, but these likely represent misidentifications (due to collection 

of dried and dead plants, from which plants were later grown).   
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ß  Figure 4.3 Plastome tree showing the posterior probability consensus from 

the PhyloBayes analysis.  Nodes show posterior probabilities >0.5; nodes 

without values have posterior probabilities of 1.00.  Clades with <0.5 PP are 

collapsed.  Note N. monoschizocarpa and N. noctiflora (outgroup) branches have 

been truncated: inset shows the full branch lengths. 

 

rDNA tree 

The rDNA trees exhibit resolution of terminal clades, although the backbone of 

the Australian clade is not fully resolved (Figure 4.4).  Polytomies also exist at a 

lower level, but this is due to the lack of variation in rDNA between 

populations.  The first diverging lineage in section Suaveolentes is found to be N. 

monoschizocarpa, followed by N. fatuhivensis and N. africana that form an 

unresolved clade with low support (PP 0.62).  There is high support (PP 0.99) for 

the rest of the Australian species as a clade.  The first diverging taxa within this 

Australian clade are the potentially new taxa N. sp. 68178 and N. sp. 68253 from 

Western Australia.  This is followed by a core clade of Australian taxa (PP 0.99) 

the backbone of which is largely unresolved.  Nicotiana faucicola 3405 is found by 

itself in this clade, and several small species-specific clades are found with high 

support but for which the relationships to one another are unknown: N. 

umbratica (PP 1.00); N. benthamiana (PP 1.00); N. burbidgeae (PP 1.00); N. 

occidentalis s.l. (PP 1.00).  A medium-sized clade is found to comprise all of the 

N. simulans populations, N. megalosiphon subsp. megalosiphon and a few difficult 

taxa, with N. cavicola being sister to the rest of this clade.  

 

The final large clade has more resolution in the backbone of the tree.  The first 

diverging subclade consists of N. rosulata subsp. rosulata, N. rosulata subsp. 

ingulba, N. rotundifolia and N. excelsior, of which the last two species are sister.  

The next clade consists of N. forsteri and N. heterantha as sister taxa.  Nicotiana 

megalosiphon subsp. sessilifolia is found within a clade of N. amplexicaulis.  

Nicotiana faucicola 3621 is sister to a clade of N. velutina populations that also 
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includes N. suaveolens.  The next medium-sized clade contains N. gossei, two 

subclades consisting of N. velutina populations (each with high support), the 

secondary polyploid taxon N. eastii, and N. truncata and N. fragrans as sister 

species (N. truncata populations forming a clade with relatively low support – 

PP 0.58).  The final clade, sister to this medium-sized clade, puts N. wuttkei and 

N. exigua as sister species.  Nicotiana faucicola 3635 and 3625 populations are then 

successively sister to the remainder of the clade.  All N. maritima populations 

form a clade with reasonably high support (PP 0.89), which is then sister to a 

clade comprising N. symonii and N. goodspeedii populations.  Three of four N. 

symonii populations form lineages that are then sister to all N. goodspeedii 

populations; the fourth N. symonii population is found nested within N. 

goodspeedii populations.   
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ß  Figure 4.4 rDNA tree showing the posterior probability consensus tree from 

the PhyloBayes analysis.  Nodes show posterior probabilities >0.5; nodes 

without indicated values have posterior probabilities of 1.00.  Clades with <0.5 

PP are collapsed.   

 

 

Genomic repeats 

The tree reconstructed from genomic repeat abundances is shown in Figure 4.5.  

Overall this tree has little resolution, with most of the Australian taxa forming a 

large polytomy.   There is variation in the abundance of repeats between taxa, 

but almost all genomic repeats are shared in roughly similar amounts.   There is 

support for N. africana as an early branching lineage, distinct from the rest of 

section Suaveolentes, and this can be seen clearly in the raw cluster abundance 

data.   

 

Additionally, there are a few distinct groups in the repeat tree, which represent 

a small number of clade-specific repeats (and their abundances) in these groups.  

All three N. forsteri accessions form a clade (BP 80); two N. burbidgeae accessions 

form a clade (BP 60).  There is support for a clade consisting of N. truncata and 

N. fragrans accessions (BP 90), and within this a subclade consisting of two N. 

umbratica accessions (BP 100). 

 

The re-analysis of a subset of taxa with greater read numbers (i.e. one order of 

magnitude more data; genome proportion of 0.5% analysed instead of the initial 

~0.05%) resulted in a similar topology with no resolution amongst the 

Australian species of Nicotiana section Suaveolentes (the core clade) and as such is 

not presented here.   
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Figure 4.5 Phylogenetic tree based on repeat abundances.  The top 1000 

most abundant clusters were used with 100 symmetric bootstraps.  Bipartition 

frequencies are printed on the single most parsimonious tree.   
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Species tree 

The species tree analysis with *BEAST resulted in 19,820 trees post burn-in; the 

maximum clade credibility tree (maximising the product of clade posterior 

probabilities) is shown in Figure 4.6A.  Overall the backbone of this tree is 

relatively poorly supported, thereby depicting the uncertainty in the species tree 

inference (see Figure 4.7) and the incongruence found between the plastome and 

rDNA data.  However, there are some strongly support nodes, such as the 

Australian taxa minus N. monoschizocarpa (PP 0.99) and two nested clades of 

Australian taxa from N. sp. 68273 onwards (PP 0.74 and 0.90, respectively).   

 

Despite this, there are some moderately supported subclades that consist of 

tightly-knit groups of taxa, for instance the clade comprising N. goodspeedii, N. 

symonii, N. faucicola, N. suaveolens, N. velutina (PP 0.71) and the clade comprising 

N. occidentalis (all subspecies), N. simulans (WA and SA forms) and N. 

megalosiphon subsp. megalosiphon (PP 0.59).  There are also some moderately 

well-supported sister species relationships: N. goodspeedii and N. symonii (PP 

0.81); N. excelsior and N. rotundifolia (PP 0.55); N. simulans SA and N. occidentalis 

(PP 0.79); N. forsteri and N. heterantha (PP 0.62).  

 

The deep coalescence analysis in Mesquite identified 48 best trees with between 

200-204 deep coalescences per tree.  The strict consensus of these trees is 

presented in Figure 4.6B.  The topology of this tree is very similar to the *BEAST 

tree, but with some differences particularly at lower levels, e.g. the sister species 

relationship of N. fragrans and N. truncata for which there is some evidence in 

the plastomes, rDNA and repeat analyses. 
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ß  Figure 4.6 Species trees from (A) *BEAST multicoalescent analysis and (B) 

Mesquite minimising deep coalescences.  Numbers on nodes in (A) represent 

posterior probabilities on the maximum clade credibility tree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 Species tree from *BEAST analysis visualised with DensiTree, 

showing all 19,820 trees overlaid and therefore the inherent uncertainty in the 

Bayesian estimate of the species tree. 
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Genealogical Sorting Index (GSI) 

Results of the GSI analysis are presented in Table 4.3 for the plastome, rDNA 

and combined data.  Only a couple of taxa were found unable to reject the null 

hypothesis of mixed ancestry in all or most of the three datasets – these were N. 

occidentalis subsp. obliqua and N. rosulata subsp. rosulata.  This indicates that the 

populations/accessions of these taxa were not significantly different from 

random placement on the trees.  In addition to this, despite rejection of mixed 

ancestry with various levels of significance (p <0.05-0.001) many other species 

had low GSI values overall.  For example, N. goodspeedii and N. faucicola had 

particularly low GSI values across all three datasets.  Out of the widespread 

taxa, N. simulans populations had a much greater level of exclusivity across the 

datasets (GSI of 0.72-1) compared to N. velutina (GSI of 0.38-0.59). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 116 

Table 4.3 Genealogical sorting index (GSI) values and significance values 

for rejection of the null hypothesis (mixed ancestry);  n.s. indicates non-

significant results.  Note that species with only one representative could not be 

calculated and are therefore not shown.  

Species  Plastome rDNA Both 

N. africana 1** 1** 1** 

N. amplexicaulis 1** 0.496* 0.748** 

N. benthamiana 0.152 n.s. 0.661*** 0.406*** 

N. burbidgeae 1*** 1*** 1*** 

N. cavicola 1*** 1*** 1*** 

N. eastii 1** 1** 1** 

N. excelsior 1** 1** 1** 

N. exigua 1*** 0.210* 0.605*** 

N. faucicola 0.210* 0.179* 0.195** 

N. forsteri 1*** 1*** 1*** 

N. goodspeedii 0.209* 0.209** 0.209** 

N. gossei 1** 1** 1** 

N. heterantha 1** 1** 1** 

N. rosulata subsp. ingulba 0.160 n.s. 1** 0.580** 

N. maritima 1*** 1*** 1*** 

N. megalosiphon subsp. megalosiphon 0.128 n.s. 1*** 0.564*** 

N. occidentalis subsp. obliqua 0.075 n.s. 0.117 n.s. 0.096 n.s. 

N. occidentalis subsp. occidentalis 0.701*** 0.608*** 0.655*** 

N. rosulata subsp. rosulata 0.093 n.s. 0.244* 0.168 n.s. 

N. rotundifolia 1** 1** 1** 

N. simulans SA 0.721*** 1*** 0.861*** 

N. simulans WA 0.069 n.s. 0.328* 0.198* 

N. symonii 1*** 0.413*** 0.707*** 

N. truncata 0.128 n.s. 1*** 0.564*** 

N. umbratica 1*** 1*** 1*** 

N. velutina 0.382*** 0.590*** 0.486*** 

* p < 0.05; ** p < 0.01; *** p < 0.001 
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Ancestral state reconstructions 

Life history strategies 

The ancestral state reconstruction of life history strategy (annual vs. perennial) 

is shown in Figure 4.8.  In both maximum parsimony and maximum likelihood 

analyses the root of section Suaveolentes is reconstructed as perennial.  The early 

diverging lineages N. africana and N. fatuhivensis are long lived perennial species 

(indeed N. africana takes several years to reach flowering size, and N. fatuhivensis 

forms small tree-like shrubs).  Little is known about the narrow endemic N. 

monoschizocarpa so this taxon was coded as unknown.  Out of the likely early 

lineages within Australia, N. forsteri and N. heterantha are perennial, whereas N. 

cavicola and N. umbratica are annuals.   

 

Most of the remaining Australian taxa are annuals (and indeed in several cases 

short-lived ephemerals).  There are, however, several notable reversals to 

perennial life history in the Australian clade.  The narrow endemic N. burbidgeae 

was found to have long tap roots and regrowth on the previous year’s stems, 

thereby suggesting it is a long-lived perennial.  The southern coastal N. maritima 

has populations with huge plants that have persisted for many years.  The 

putative new species N. faucicola was found to have large plants with new 

growth on top of previous year’s stems.  Finally, N. fragrans, which is found in 

the South Pacific has a woody caudex and is therefore likely perennial. 
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Figure 4.8 Ancestral reconstruction of life history strategy (annual vs. 

perennial) for Nicotiana section Suaveolentes using maximum parsimony (A) and 

maximum likelihood with the Mk1 model (B) in Mesquite.  
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ß  Figure 4.9 Ancestral state reconstruction of genome size (A) and corolla 

length (B) using the DensiTree of 19,820 species trees from the *BEAST analysis 

and a continuous random walk model of continuous character evolution in 

BayesTraits.  Mean values at specific nodes are indicated with their standard 

deviation. 

 

 

Genome size 

The ancestral reconstruction of genome size suggests a value of ~4.17 pg for the 

root of Suaveolentes (Figure 4.9A).  Further nodes are reconstructed roughly 

around 3.50 pg in most cases, which is in line with the average genome size for 

section Suaveolentes (3.66 pg).  This indicates reasonable genome downsizing in 

the core Australia taxa of the section. 

  

 

Corolla tube length 

Corolla tube length is one of the most important morphological features for 

identifying the species of section Suaveolentes.  The ancestral node was 

reconstructed at 38 mm (Figure 4.9B), and further nodes were reconstructed as 

between 29 and 35 mm.   
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ß  Figure 4.10 Ancestral reconstruction of chromosome number in Nicotiana 

section Suaveolentes using maximum parsimony in Mesquite (A) and (B) 

maximum likelihood in chromEvol using the *BEAST maximum clade 

credibility species tree.  

 

Chromosome number 

Chromosome number in section Suaveolentes is remarkably labile, ranging from 

n = 24 to n = 15 with almost every number in between.  Ancestral reconstruction 

of chromosome number based on parsimony places the root of Suaveolentes as n 

= 24 (Figure 4.10A); the maximum likelihood analysis had the root fixed at n = 

24.  Descending dysploidy is a general pattern throughout the phylogenetic tree 

of section Suaveolentes, with a broad pattern of reduction from the root at n = 24 

to n = 15 at the most derived parts of the tree.  There is evidence for multiple 

independent drops in chromosome number, however, with at least two separate 

clades harbouring species with numbers n = 18 or lower (Figure 4.10).   
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Discussion  

The origin of section Suaveolentes: Diversification follows a lag phase post-

polypoidisation 

The origin of Nicotiana section Suaveolentes approximately 6.8 Mya makes it the 

oldest of the polyploid sections in Nicotiana, confirming the relative estimates 

reported previously (e.g. Clarkson, 2007; Leitch et al., 2008).  

Section Suaveolentes diversifies into the majority of its current species diversity 

(~30 species) in mainland Australia within the last 2 mya, following a lag of 

approximately 3 my following the split of N. forsteri from the majority of 

Australian species (Figure 4.2).  There is mixed support regarding the putative 

first lineage in Australia, as possibly N. monoschizocarpa or N. forsteri.  Nicotiana 

monoschizocarpa was previously considered a subspecies of N. forsteri under its 

former name (N. debneyi subsp. monoschizocarpa).  Although there is a 

morphological disparity between these taxa, there are similarities in habit and 

chromosome number (n = 24) and though N. monoschizocarpa is a narrow 

endemic from near Darwin (Northern Territory) it marginally overlaps with the 

range edge of N. forsteri.  

 

Genome size evolution  

The typical diploid genome size in Nicotiana (n = 12) is around 2.5 pg (Leitch et 

al., 2008; http://data.kew.org/cvalues/).  Although the exact parentage of 

section Suaveolentes is unclear due to the maternal progenitor being a putative 

homoploid hybrid (Kelly et al., 2013), the typical size of a newly formed 

allopolyploid in Nicotiana is around 5 pg (e.g. N. tabacum, N. rustica).  Nicotiana 

africana (n = 23) has a genome size of ~5.2 pg, which would be in line with the 

expected genome size of an initial polyploid lineage in Nicotiana.  Out of the 

Australian species N. forsteri (n = 24) has close to this value at 4.8 pg.  The rest of 

the section, and the Australian taxa, have undergone significant genome 

downsizing with most species having genome sizes of around 3.0-3.5 pg (Table 
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4.2).  Genome downsizing is a common phenomenon post-polyploidisation and 

is associated with the removal of both genes and non-genic (i.e. repetitive) 

DNA.  In Nicotiana relatively young allopolyploids have undergone less genome 

downsizing than older allopolyploids; e.g. N. tabacum (<0.2 My old) has a 

genome size of 5.18 pg compared to N. nudicaulis (~4.5 My old) with a genome 

size of 3.56 pg (Leitch et al., 2008; Renny-Byfield et al., 2011; Renny-Byfield et al., 

2013).  In both these cases there has been removal of high-copy repetitive DNA, 

but in the case of N. nudicaulis this has been more extensive representing 

genome downsizing from expectation of approximately 19.2% (Renny-Byfield et 

al., 2013).  Section Suaveolentes is older than section Repandae, to which N. 

nudicaulis belongs, and as such it is expected that significant genome 

downsizing may have occurred.  It is worthwhile noting that in early-branching 

clades downsizing is less extensive (or absent), and it appears that downsizing 

is associated with the later rapid diversification of Suaveolentes taxa within 

mainland Australia.   

 

Plastome tree 

The tree from plastome data is essentially fully resolved, with few nodes that 

have low support.  The divergence of early lineages of the section in this 

analysis, i.e. the split of N. africana, N. fatuhivensis and also N. forsteri, are 

consistent with biological interpretations of the origin of the section and 

biogeographical aspects of their distributions.  It has been hypothesised that the 

origin of the section in Australia is the result of long-distance dispersal 

(Clarkson et al., 2004; Clarkson et al., 2010; Marks, 2010; Kelly et al., 2013).  The 

ancestor of Suaveolentes could have evolved in South America (where the genus 

likely originated) and movement into Australia would likely have taken place 

across the southern Pacific.  Thus the fact that the isolated N. fatuhivensis from 

the Marquesas Islands in the heart of the South Pacific Ocean forms an early 

lineage in the section provides support for this hypothesis.  Nicotiana forsteri is 

distributed throughout eastern Australia, which would be the route into 
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Australia via the Pacific, and therefore support for N. forsteri as sister to the rest 

of the Australian species also provides evidence for this biogeographical origin 

of Australian Suaveolentes taxa.  However, if N. africana is sister to the rest of 

section Suaveolentes, it is equally possible that the section dispersed across the 

Atlantic, reaching Australia subsequently. The occurrence of a significant lag 

between these initial lineages of section Suaveolentes and most of the speciation 

events is also clear in the plastome tree.   

 

rDNA tree 

The rDNA phylogenetic tree has less support in the backbone of the tree but 

more support for the monophyly of populations within certain species (e.g. N. 

simulans, N. goodspeedii, some groups of N. velutina populations).   

 

Repeat tree 

The analysis of genomic repeats resulted in a completely unresolved topology 

for section Suaveolentes.  Despite some variation in genome size, it is clear that 

the differences in repeat abundance are not significant enough between species 

of Australian Suaveolentes to carry a phylogenetic signal.  Although repeat 

abundances have been shown to group closely related cultivars of Solanum 

lycopersicon (Dodsworth et al., 2015b) and resolve their relationship amongst 

other species of Solanum, the ability of this method to resolve recent, rapid 

radiations was until now unknown.  As there is potential for repeat abundance 

differences to be useful at the intraspecific level, it may be that the rapid rate of 

evolution (as opposed to the low phylogenetic level) is what causes the failure 

of repeat abundances to have phylogenetic signal in Nicotiana section 

Suaveolentes.  Thus incomplete lineage sorting would have resulted in ancestral 

polymorphism of repeats in the genomes of Suaveolentes taxa and as such these 

data are particularly deficient in phylogenetic signal. 
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Rampant non-monophyly of plastome haplotypes and incongruent datasets 

At shallower depths there is a reasonable degree of congruence between the 

plastome and rDNA trees for section Suaveolentes.  Despite this, the clear 

separation into mostly three main clades found in the plastome analysis was not 

found in the rDNA analysis.  Instead the backbone of the tree is largely 

different, and several largely confusing results from the plastome tree made 

much more sense in light of the rDNA data (e.g. the close relationships of N. 

goodspeedii and N. symonii with near-exclusivity of population samples of each; 

the exclusivity of N. truncata populations that were otherwise widely dispersed 

in the plastome tree; the grouping of all N. simulans from South Australia (where 

the type originates) into a single clade, with no direct link of some accessions to 

the N. occidentalis clade). 

 

In almost all cases, there is no evidence for hybrid taxa on morphological 

grounds, which would have potentially explained the rampant non-monophyly 

of populations in the plastome tree.  Some accessions are almost certainly 

misidentified, and further study of these plants may reveal that species limits 

are not violated by the results obtained here.  The lack of clustering of species 

based on the names provided could also be due to retention of ancestral 

polymorphism rather than hybridisation between species.  This seems to 

involve most species within the three clades of Australian taxa (Figure 4.3), but 

clade I (N. velutina, N. goodspeedii etc.) seems to have a higher propensity for 

non-exclusivity.  This might be because most of these species are reportedly n = 

16, and thereby intercrossing of populations is expected to be more likely (and 

hybrids more viable) than between species differing in chromosome number.  

Thus plastid introgression could be a cause of this incongruence.   

 

However, the species tree (Figure 4.7) also clearly displays uncertainty 

surrounding all of the Australian core clade, thereby invoking ancestral 

polymorphism and lineage sorting as a likely explanation for lack of resolution 
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in the data as a whole.  Indeed, reciprocal non-monophyly of haplotypes is an 

expected stage in the diversification of lineages (Avise and Ball, 1990; Maddison, 

1997; Schmidt-Lebuhn et al., 2012).  Over time genetic drift leads to lineage 

sorting and the extinction of haplotypes until haplotypes are reciprocally 

monophyletic.  Particularly problematic species (in terms of lack of unique 

clustering) are often the most widespread ones (e.g. N. velutina, N. goodspeedii) 

and thus logically could represent a widespread gene pool from which more 

localised taxa have recently been derived.  The GSI values (Table 4.3) are largely 

significant for these problematic taxa, which means that the null hypothesis of 

mixed ancestry could still be rejected despite overall low GSI values.  This 

suggests that these species form independent lineages and does not provide a 

strong role for introgression.  This would be consistent with insights from the 

field biology of these species, which suggests they are largely selfing and that 

populations are often isolated.  Nonetheless hybridisation at homoploid and 

polyploid levels is frequent in Nicotiana and thus intrasectional 

introgression/hybridisation cannot be ruled out. 

 

Origins and evolution of the Pacific taxa 

Taxonomic clarification of the taxa that occur in the South Pacific was provided 

by Marks (2010a; 2010b).  Nicotiana debneyi and N. forsteri are considered the 

same taxon, with the latter name having priority.  Nicotiana forsteri is found on 

New Caledonia, Lord Howe Island, and in the eastern coast of Australia.  The 

two remaining species found in the Pacific are N. fragrans and N. fatuhivensis, the 

latter elevated to species level (Marks, 2010b) from its placement as a variety of 

N. fragrans by Goodspeed (1954).  Nicotiana fragrans occurs on New Caledonia 

and Tonga; N. fatuhivensis is endemic to the Marquesas Islands.  

Morphologically these two species are similar in some respects – they both have 

relatively long corolla tubes (to over 70 mm), the presence of a woody caudex 

and perennial habit.  Previous confusion (Marks, 2010a) seems to have taken 

place over the provenance of the accession used in molecular phylogenetic 
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studies of Clarkson et al. (2004; 2010); however, this was clearly N. fatuhivensis 

from the Marquesas (labelled variously as N. fragrans/N. fragrans var. 

fatuhivensis) and not N. fragrans from New Caledonia/Tonga. 

 

The same accession of N. fatuhivensis (Wood 10529; Ua Huka – Marquesas 

Islands) was the only available material for this study, and the results presented 

here confirm its position as one of the earliest diverging taxa in section 

Suaveolentes.  Three specimens of N. fragrans were sampled for gDNA, from BM 

herbarium specimens collected on Tonga and southern New Caledonia (Iles de 

Pines) – indeed two of these specimens were those studied morphologically by 

Marks (2010a; 2010b).  One of these was successfully sequenced with Illumina 

technology, the other specimens were sequenced for nrITS and plastid markers 

to confirm the placement based on Illumina data (results not shown).  Despite 

previous hypotheses regarding N. fragrans (Goodspeed, 1954; Clarkson et al., 

2004; Marks, 2010a; 2010b), N. fragrans is clearly nested within the Australian 

clade and therefore represents a secondary dispersal from mainland Australia.  

This is an unexpected result, yet given the morphological findings it is now clear 

that genetically N. fragrans and N. fatuhivensis represent two different 

evolutionary entities within section Suaveolentes.  The chromosome count for N. 

fragrans of n = 24 (Marks, 2010a) has no provenance information, and thus is 

difficult to assign but is much more likely to belong to N. fatuhivensis.  

 

Recurrent dysploidy in section Suaveolentes  

The occurrence of dysploidy in section Suaveolentes has been long appreciated 

since initial studies of cytology and taxonomy in the genus that started almost a 

century ago, and it is one of the most enigmatic features of the section (Wheeler, 

1935; Goodspeed, 1954).  Nevertheless, the evolutionary context of dysploidy 

was hitherto unknown due to a lack of a reliable phylogenetic framework for 

the section.  The results presented in this chapter show that chromosome 

number likely decreased multiple, independent times, from an ancestral ~n = 
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20-24, down to n = 18 in several species/clades (Figure 4.10).  Goodspeed’s 

hypothesis (1954) for these chromosome numbers in Suaveolentes was that two 

or three ‘original’ members, with numbers of n = 24 and n = 16, were involved 

in recurrent hybridisation in order to form the bulk of remaining species.  

Multiple hybridisations can be ruled out as a route of origin for the different 

chromosome numbers within the section.  An important and complex role for 

intrasectional hybridisation seems unlikely given the fact that most species have 

a propensity for self-pollination.  The most apparent feature of the phylogenetic 

hypotheses presented is the lack of variation due to recent and rapid evolution. 

 

A second hypothesis was provided by Marks (2010a), suggesting that the 

phylogeny of the section in fact mirrors the drop in chromosome number, with 

ancestral species having much higher numbers than more derived ones.  This 

hypothesis has some support from these analyses, but it is too simplistic.  As 

shown by the phylogenetic analyses in this chapter, there are multiple 

independent instances of chromosome number reduction in Suaveolentes.  Thus 

chromosome number reduction appears to have a recurrent role in the recent 

diversification of this group in different parts of Australia at roughly the same 

time.  It may be that the process of chromosome reduction is related to local 

adaptation and formation of favourable linkage groups that are adaptive in the 

extreme environments in which these species grow.   

 

Evolution of life history strategy in section Suaveolentes 

In tandem with genome downsizing and chromosome number reduction there 

is a shift from a perennial habit to an annual one in section Suaveolentes (Figure 

4.8).  This likely reflects the adaptation of new taxa to the arid Eremaean zone of 

Australia, where the greatest species diversity is found today.  Rapid cycling 

taxa include for example N. simulans and N. truncata, the former of which is 

found across the stony plains of South Australia and the latter in specific 

habitats in the same general area.  What role these genomic factors have in the 
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ecological adaptation and rapid speciation of the group is currently unknown 

and a topic that requires much further investigation.    

 

Overall these results taken together present a picture of Nicotiana section 

Suaveolentes as an ongoing recent and rapid radiation that has occurred post-

polyploidisation.   
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Chapter 5 General Discussion  
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Diversification follows a lag phase in Nicotiana section Suaveolentes 

Nicotiana section Suaveolentes is a further example of the WGD radiation lag-time 

model, originally proposed by Schranz et al. (2012) and with recent statistical 

support garnered by Tank et al. (2015).  This postulates that after a WGD event 

takes place, lineages often undergo increases in diversification rates, but only 

after a significant period of time (i.e. a lag), of several millions of years.  In 

Nicotiana section Suaveolentes this lag phase appears to be in the order of ~4 

million years, during which there were only a few speciation events after the 

arrival of this lineage in Australia.  The section then rapidly diversifies within 

the last 2 million years, forming up to 30 species including new taxa, with clades 

independently undergoing dysploid chromosome reduction and adaptation to a 

wide variety of environmental conditions.   

 

In tandem with the speciation events themselves clearly involving 

morphological, ecological and genomic changes, all species in the core 

Australian clade (i.e. recently diversified species) have undergone significant 

genome downsizing, from a hypothetical ancestral 4.2 pg to between 2.8 and 3.6 

pg.  This is a complex result of diploidization processes that have 

simultaneously removed repetitive DNA and genes, whilst restructuring the 

chromosomes from an ancestral n = 24 down to n = 15 in some species.  Further 

research is needed to tackle which aspects of this diploidization process are key 

to the diversification and adaptation of the different clades within sect. 

Suaveolentes.   

  

The lag phase post-polyploidisation and pre-diversification observed in 

Nicotiana section Suaveolentes is a phenomenon that has been found across 

angiosperms at various phylogenetic levels, resulting in a series of nested 

radiations (Tank et al., 2015).  These findings reshape the recent debate on the 

importance of polyploidy in plants (see for example, Gorelick and Olson, 2013; 
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Mayrose et al., 2011; Soltis et al., 2014; Wood et al., 2009).  Given that the 

immediate effects of polyploidisation can often be detrimental due to ‘genomic 

shock’ (McClintock, 1984), along with reduced fertility and a bloated genome 

that is inefficient to selection with a potential ecological cost (Chester et al., 2012; 

Conant et al., 2014; Husband, 2000; Leitch and Leitch, 2008; Levin, 1975; 

Guignard et al., submitted; Neiman et al., 2013; Otto, 2007; Stebbins, 1971; 

Šmarda et al., 2013; Yant et al., 2012), it begs the question as to why angiosperms 

have experienced so many rounds of polyploidy in their ancestry (Bowers et al., 

2003; Blanc and Wolfe, 2004; Van de Peer et al., 2009; Jiao et al., 2011).  Polyploids 

are clearly not ‘evolutionary dead-ends’ (Stebbins, 1950) in the long term.  It is 

likely that the benefits of polyploidy, i.e. genetic and genomic variation (Soltis 

and Soltis, 2000; Leitch and Leitch, 2008; Flagel and Wendel, 2009), can only be 

harnessed after some of the negative effects have been eliminated through the 

process of diploidisation (Dodsworth et al., 2015d).  Australian soils are 

particularly low in phosphorus, which will be limiting (Vitousek et al., 2010) – 

however whether this can impose selection on a smaller genome at this scale of 

genome size is something that requires further study (Guignard et al., 

submitted; Greilhuber and Leitch, 2013). 

 

One of the unusual phylogenetic results was the finding that N. fragrans is 

nested within the Australian taxa and therefore represents a secondary dispersal 

to the South Pacific much later than the origin of the section.  What is also 

particularly surprising is the potential for a sister species relationship between 

N. fragrans and N. truncata, the latter being a narrow endemic found only near 

Oodnadatta in South Australia.  This potential relationship is supported by 

plastomes, rDNA and genomic repeats.  The ecological niche models (using 19 

Bioclim variables) and photographs of habit are provided in Figure 5.1 for 

comparison.  There may be some similarity in general habit between these 

species with basal rosettes and fairly fleshy leaves.   
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Figure 5.1 Comparison of N. fragrans and N. truncata. Photos of the general 

habit of each species.  Row A – N. truncata; B – N. fragrans.  
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Figure 5.1 cont. Comparison of N. fragrans (A) and N. truncata (B).  

Ecological niche models based on distribution data from the Australian Virtual 

Herbarium and 19 Bioclim variables in MaxEnt.  Note the narrow and disjunct 

distributions of these sister species.  Coloured according to probability of 

occurrence (legend). 
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Taxonomy of section Suaveolentes—new and cryptic species 

A potential new species initially collected by David Symon was identified in 

Claire Marks’ thesis (2010) as sp. nov. ‘Corunna’ from Corunna Station near Iron 

Knob in South Australia; in this thesis it is denoted as N. symonii ined.  The 

distinctive morphology of this species was confirmed by Marks (2010) in her 

morphological analyses of section Suaveolentes, suggesting that this taxon was 

worthy of recognition as a new species.  Several collections were made of this 

species during field trips in 2013 and 2014 from the (potential) type locality and 

surrounding areas of the Corunna Hills.  In the plastome tree all accessions of N. 

symonii form a highly supported clade, entirely separate from N. goodspeedii to 

which it has morphological similarities.  In the rDNA tree, there is a close 

relationship between N. symonii and N. goodspeedii, with at least one population 

of N. symonii nested within N. goodspeedii populations.  These data taken as a 

whole suggest the potential of a close relationship between these two taxa but 

that N. symonii does indeed represent a distinct lineage, perhaps derived by 

hybridisation between N. goodspeedii and N. rosulata. 

 

Several putatively new taxa were found during recent fieldwork in August 2015 

in northern Western Australia (M. Chase, M. Christenhusz, personal 

communication).  These are included in the trees as N. sp. 68178, N. sp. 68253 

and N. sp. 68273.  In plastome, rDNA and species tree analyses they were found 

in interesting positions distant from the species they would otherwise key out 

as, e.g. N. umbratica, N. rosulata subsp. rosulata and N. rotundifolia, respectively.  

These taxa clearly represent novelties in the section, and this could indeed be 

indicative of further new taxa that are yet to be discovered, also signifying the 

need for much more extensive population-level analyses to delimit genetic 

entities that can then be recognised as species.  
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Taxonomy of section Suaveolentes—intraspecific taxa 

The phylogenetic results presented in this thesis have several implications for 

intraspecific taxa within the section, some of which probably need to be elevated 

(back) to species level and others that can be considered as less useful 

intraspecific divisions of otherwise reasonable species.  Whilst broadly it may 

appear that the three subspecies of N. occidentalis (subsp. occidentalis, hesperis, 

obliqua) were found to comprise a clade, this N. occidentalis complex requires 

much further work.  The western Australian N. simulans is clearly nested within 

the N. occidentalis complex, which makes sense morphologically as it is very 

sticky and viscid (along with N. occidentalis subsp. occidentalis in particular).  N. 

occidentalis subsp. obliqua from SA is potentially a form of N. occidentalis subsp. 

occidentalis, whereas the more widespread N. occidentalis subsp. obliqua from WA 

represents a distinct lineage.  One N. simulans from WA is nested within this 

complex and could represent a misidentification of N. occidentalis subsp. 

occidentalis; the more typical collection of N. simulans from WA (68165) is clearly 

distantly related.  Further investigations are needed at the population level for 

these WA taxa in order to define whether some of these are taxa that should be 

elevated to species level, and in order to define the limits of the N. occidentalis 

subspecific taxa. 

 

The two subspecies of N. rosulata (subsp. rosulata and ingulba) are distinct 

morphologically, and N. ingulba was originally described as a species later sunk 

as a subspecies of N. rosulata.  In the plastome tree these two subspecies are 

distinct, and in both cases (for N. rosulata subsp. rosulata and N. subsp. ingulba) 

accessions occur separated in the tree.  Despite this, in the rDNA tree both 

subspecies are found close together in one clade, with the two accessions of N. 

rosulata subsp. ingulba forming a highly supported clade, and the two accessions 

of N. rosulata successively sister to the clade comprising N. rosulata subsp. 

ingulba amongst other taxa.  Given this body of evidence it seems best to 

recognise N. rosulata and N. ingulba at the species level. 
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The two subspecies of N. megalosiphon are a case that requires further 

investigation.  Nicotiana megalosiphon subsp. megalosiphon accessions form a 

highly supported clade in the rDNA tree, but in the plastome tree only two of 

the accessions are found together and one is found in a disparate clade.  In both 

plastome and rDNA analyses the single accession of N. megalosiphon subsp. 

sessilifolia is found separate from the N. megalosiphon subsp. megalosiphon 

accessions.  This indicates that N. megalosiphon subsp. sessilifolia is a different 

taxon, best given species-level recognition.  Indeed, the distributions of these 

two subspecies do not appreciably overlap.  This will require further sampling 

at the population level, together with further character sampling at the genomic 

level in order to definitively propose these subspecies as separate evolutionary 

lineages.   

 

Genome size and genomic repeat evolution in section Suaveolentes 

The phylogenetic tree based on genomic repeat abundances found no resolution 

amongst the species of Suaveolentes.  Rather than a failing of the method, this 

astonishing lack of clear phylogenetic signal hints at biological phenomena 

underlying the radiation of the section.  Despite this species are found on long 

branches of differing lengths, indicating some variation in repeat abundances; it 

may be that further investigation of different types of repeats (sensu Dodsworth 

et al., 2015a) may yield different (and potentially more useful) signals.  Most 

species have genome sizes of around ~3.5 pg, have undergone genome 

downsizing and experienced chromosome reorganisation via dysploid 

reduction to produce an array of lower chromosome numbers.  The majority of 

species in section Suaveolentes likely diversified from a common ancestor with a 

genome size of ~3.5 pg with a lower chromosome number, as supported by the 

ancestral state reconstructions.  Speciation then likely occurred rapidly, which 

led to a bewildering array of species that despite being morphologically and 

ecologically distinct entities, exhibit a similar genome size, broadly similar 
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repetitive element landscape of the genome and similarly low chromosome 

numbers.  As such the abundance (and type) of different genomic repeats is 

similar across the species of Suaveolentes. 

 

This apparent static nature of genome size and repeat profiles is particularly 

significant in the context of the chromosome number in Suaveolentes, as this 

could represent the formation of novel linkage groups that are involved in local 

adaptation and hence the speciation process (De Smet et al., 2013; Yeaman, 

2013).  One would expect that in many places the surrounding context of genes 

under selection (i.e. the repeats) would also have changed in these species, and 

these contextual changes could lead to expression differences in genes involved 

in adaptation, for example by cis modification to promoter regions of 

downstream genes (Dodsworth et al., 2015c; Grandbastien, 2015).  Although 

broad-scale repeat dynamics appear relatively stationary in the species of 

section Suaveolentes (indicated by comparable size clusters representing different 

repeat families), it could be that finer-scale element 

accumulation/degeneration/deletion has an impact on gene evolution.  The 

morphological and ecological differences of section Suaveolentes taxa could 

represent differences in expression, which would further add a role for fine-

scale repetitive element changes to influence gene space (Dodsworth et al., 

2015c).   

 

In order to explore this fully a well-assembled genome sequence is required, 

which can then be used to map the context of particular repetitive elements and 

genes under selection in order to explore further these processes of adaptation 

in section Suaveolentes.  Given the two draft genome sequences already available 

for N. benthamiana (Bombarely et al., 2012; Naim et al., 2012), the genome 

sequence availability of other Nicotiana species including N. sylvestris (the closest 

extant relative of one of the diploid progenitors of Suaveolentes), N. 
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tomentosiformis and N. tabacum (Sierro et al., 2013; 2014), it is likely that a better 

assembly of a Suaveolentes genome will be available in the near future.   

 

A link between dysploidy, diploidisation and diversification  

Genome downsizing is a common phenomenon post-polyploidisation in 

angiosperms (Leitch and Bennett, 2004; Meudt et al., 2015), largely as a result of 

a loss of genomic repeats (Leitch and Bennett, 2004; Lim et al., 2007; Renny-

Byfield et al., 2011; Renny-Byfield and Wendel, 2014) and can therefore be 

considered as part of the diploidisation process.  Genome sizes in angiosperms 

are skewed towards low values (Figure 5.2) and similarly so are chromosome 

numbers (Figure 5.3); neutral theories of the skew in genome sizes are 

inadequate (Oliver et al., 2007).  Thus despite the propensity for polyploidisation 

in angiosperms, the overall pattern is for genomes to return to a diploid-like 

state in terms of overall genome size, chromosome number (Dodsworth et al., 

2015d), and structural gene content (based on a huge body of literature on 

isozymes of ‘diploid’ species).  Extensive chromosomal rearrangements are part 

and parcel of this process (e.g. Franzke et al., 2011).  This is in stark contrast with 

the ferns, where such processes of diploidisation seem to not occur (Leitch and 

Leitch, 2012), and ferns include the highest chromosome count ever reported of 

2n = c. 1440 in Ophioglossum (Abraham and Ninan, 1954). Linking this with 

recent work concerning diversification rates in angiosperms (Tank et al., 2015), it 

becomes apparent that the lag phase post-polyploidisation and prior to 

diversification is one associated with diploidisation and reorganisation of 

polyploid genomes.  Polyploid genomes, as perhaps best exemplified by crop 

species, undergo a perplexing variety of reorganisation processes including 

fractionation, chromosome rearrangement and DNA loss (Wendel, 2015).    
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Figure 5.2 Genome size distribution in angiosperms based on 7542 C-values 

from the Plant DNA C-values database (www.data.kew.org/cvalues), adapted 

from (Dodsworth et al., 2015c).  

 

Nicotiana section Suaveolentes therefore represents an excellent case study for the 

link between diploidisation post-polyploidisation and lineage diversification in 

angiosperms, with both genome downsizing and chromosome number 

reduction readily apparent. 
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Figure 5.3 Chromosome count distributions for the five largest angiosperm 

families according to APG III (2009), Asteraceae; Orchidaceae; Fabaceae; 

Rubiaceae; Poaceae; plus Solanaceae.  Statistics downloaded from the 

Chromosome Counts Database (Rice et al., 2014; http://ccdb.tau.ac.il/). 
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Ecology of Nicotiana section Suaveolentes 

Further work is sorely needed on the ecology and pollination biology of 

Nicotiana section Suaveolentes.  Almost nothing is known about the pollinators of 

these plants, but most species appear to be selfing to a high degree.  

Investigating the mechanism of selfing would also be an important contribution 

to understanding the reproductive biology of these species, although it probably 

occurs simply through close proximity of anthers and stigma – as found in self-

compatible populations of N. benthamiana (Bally et al., 2015). 

 

For many species of Suaveolentes self-compatibility and self-fertilisation are 

clearly linked with a rapid (annual) life cycle, which is an adaptation to the 

Eremaean zone of central Australia.  During fieldwork it was noted that several 

species have particular ecological requirements, either in terms of substrate or 

relative shade.  Some of these details have been noted in the descriptions for 

species and particularly in the Flora of Australia (Purdie et al., 1982).  For 

example, N. velutina is mostly, but not exclusively found on red sand dunes; N. 

truncata is found only on gypseous friable cracking soils (Symon, 1981) off the 

gibber plain but not on the plain itself; N. burbidgeae occurs at the base of 

cutaway clay ridges and N. faucicola is found on the sides of deep gorges in the 

Flinders Ranges (Figure 5.4).  Thus in addition to distinct morphology amongst 

species, there are also distinct ecologies that are worthy of further research, 

particularly in order to find out what has driven the diversification of this 

group. 
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Figure 5.4 Habitat of Australian members of Nicotiana section Suaveolentes.  

A – N. truncata; B – N. burbidgeae; C – N. velutina; D – N. faucicola.  

 

 

A B 

C D 



	 145 

Tales of plastome-nuclear discordance  

Incongruence between plastid and ribosomal DNA is something that has 

pervaded the systematics literature for many years.  In the case of Nicotiana 

section Suaveolentes there is a large degree of congruence between plastomes 

and the rDNA cistron (Chapter 4).  However, there are some notable exceptions, 

and several cases in which the rDNA tree groups with strong support 

populations of a species that were otherwise widely dispersed in the plastome 

tree.  Out of the possible explanations for this, the two most likely are plastome 

introgression and incomplete lineage sorting (ILS)/retention of ancestral 

polymorphism.  The relative differences found in the trees suggest ILS as more 

likely than recent hybridisation.  This is most prominent in the clade that 

contains a number of species with the same chromosome number of n = 16, so a 

pattern of introgression could be possible via sexual means in this clade, though 

misidentification of some taxa is also possible.  The potential of plastid 

introgression via non-sexual means has been reported, for instance recently it 

has been shown to be possibly by vegetative grafting (Stegemann et al., 2012) in 

Nicotiana.  The problem with this is that it seems extremely unlikely to occur for 

annual, herbaceous species in nature, although it definitely highlights the 

potential for horizontal transfer of the plastome without interbreeding of 

species.   

 

In Suaveolentes the morphological and ecological boundaries between some of 

the taxa involved in these instances of plastid/nuclear tree discordance are 

clearly distinct.  Thus, it seems unlikely that rampant hybridisation and 

introgression are occurring as this would more often than not blur these 

boundaries between taxa.  For example, N. goodspeedii, N. velutina and N. 

faucicola are clearly different morphologically but entirely mixed up in the 

velutina clade of the plastome tree.  The narrow range endemic N. truncata is 

phenomenally distinct morphologically amongst Suaveolentes species, with 

succulent glabrous leaves in a rosette, glabrous inflorescences and stout but 



	 146 

substantial flowers with truncate calyces.  Despite this, it occurs in two entirely 

separate clades in the plastome tree, and yet forms a highly supported clade in 

the rDNA tree.  As a whole, these results strongly suggest that ancestral 

polymorphism and ILS are more likely than introgression between species of 

section Suaveolentes.  Clearly this discordance requires further investigation.   

 

Future prospects of genome skimming for phylogenomics 

Genome skimming is an attractive high-throughput sequencing approach due to 

its simplistic lab protocol and relative affordability (Dodsworth, 2015) and has 

been used increasingly in plants to answer phylogenetic questions at various 

levels (Bock et al., 2014; Kane et al., 2012; Malé et al., 2014; McPherson et al., 2013; 

Ruhsam et al., 2015) including those previously thought unanswerable without 

HTS technologies (Knapp, 2014).  Variability of plastid DNA in genome skims is 

something that requires further analysis and may be more related to the age and 

developmental stage of material (Rowan and Bendich, 2009) than genome size. 

Although it can be argued that the plastome represents only one locus (a non-

recombining region), and the associated issue of gene conversion in rDNA does 

the same for this region, the relative ease of genome skimming and the 

possibilities that the plastome alone provide are still arguably worth adopting 

this approach.  For systematists, this signifies orders of magnitude more 

sequence data (~150 kb relative to typically less than 10 kb in traditional Sanger 

sequencing studies), but it can be amazingly invariant in recently radiated 

groups of species (e.g. Diospyros on New Caledonia, for which complete 

plastome sequencing provided only 350 variable positions among 25 clearly 

morphologically and ecologically distinct species; Paun et al., 2015).  In this 

thesis I present the results of genome skimming in a recent radiation of 

Solanaceae, with over 100 samples and demonstrate the feasibility of this 

methodology and the insights it brings to a poorly known group within the 

genus Nicotiana.  
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Future directions for Nicotiana section Suaveolentes research 

Further insight could be gained from large-scale analyses of genes in section 

Suaveolentes, either through a transcriptomic or target enrichment approach, and 

indeed the latter are a popular focus of phylogenomics research groups at the 

current time of writing.  RADSeq is another approach currently under 

consideration, that has been shown to be extremely useful in resolving recent 

radiations.  Certain caveats should be mentioned regarding target enrichment 

because it involves the complex design of bait sequences and associated cost of 

producing the baits.  This is bioinformatically and economically still out of the 

reach of many systematics labs, and thus a more simplistic genome skimming 

approaches may be more appropriate.  

 

Nonetheless, a large gene dataset (perhaps obtained by using RADSeq) would 

certainly add to analyses of selection and adaptation, and would likely add 

support to the phylogenetic hypothesis for Nicotiana section Suaveolentes.  It 

should be noted that in spite of this prospect the lineage sorting issue found in 

the current study will probably be magnified in analyses of hundreds or 

thousands of genes – i.e. the proportion of loci that are incongruent and reflect 

ILS may remain relatively constant as the number of loci are increased.  The 

occurrence of rampant ILS is frequently becoming apparent as recent radiations 

are probed with ever-greater genomic sampling, (e.g. Carbone et al., 2014; 

Kutschera et al., 2014; Heyduk et al., 2015), and even with sophisticated 

coalescent methods the species tree is sometimes difficult to infer.  Speciation 

may involve only a handful of genes under strong selection, leaving the rest of 

the genome a hodgepodge of incongruent gene trees as a result of old ILS and 

recent introgression.  In these cases, the uncertainty in phylogenomic inference 

is a true reflection of the underlying biology of rapid speciation and therefore an 

interesting result in itself.  
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