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Abstract 

 

Despite their huge diversity, abundance and ecological importance, very little is still 

known about sex determining mechanisms within Crustacea. Sex determination in 

crustaceans is known to be influenced by environmental factors, via parasitic 

infection and genetically, however, it is possible that all three mechanisms can be 

involved in a single species. The gonochoristic marine amphipod Echinogammarus 

marinus (Leach, 1815) is currently being used for the development of biomarkers to 

measure the influence of environmental contamination on crustacean sex 

determination and differentiation pathways. To truly understand whether 

anthropogenic disruption of sex determination is currently an issue, it is critical that 

all the mechanisms governing the process in E. marinus are fully evaluated. 

Therefore, the aim of this project was to fill gaps in our knowledge of the general 

population dynamics of E. marinus, with a particular focus on elucidating the 

mechanisms of sex determination in this ubiquitous amphipod. Sex determination in 

E. marinus has been linked with feminising parasites, however, to date, no such 

studies have linked this species with environmental sex determination (ESD) or 

genetic sex determination (GSD). 

 

This project investigated two E. marinus populations that differed in population 

structure. The Langstone Harbour E. marinus population (Southern England, UK) 

revealed no presence of parasitic sex determination (PSD). However, this study has 

shown that the population has a seasonal breeding pattern, with population growth 

and decline closely related to environmental parameters (temperature) and parasites 

(trematodes) respectively. The population data also revealed seasonally altered sex 

ratios, ranging from 36% to 71% males. ESD was recorded for the first time in an E. 

marinus population by revealing that photoperiod was the cue for sex determination. 

This finding was validated by a laboratory study that showed a male bias in broods 

that developed in long day light regimes (16h light: 8h dark) and a female bias in 

broods that developed in a short day light regime (8h light: 16h dark). The laboratory 

data and the seasonally altered sex ratios found in the field showed significant 

correlation with each other supporting these findings. A new species of trematode 
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parasite belonging to the Microphallidae family has been identified that encysts in 

the amphipod brain and demonstrates clear capacity for behavioural changes in its 

host. Individuals infected with the trematode parasite displayed distinct positive 

phototaxic and negative geotaxic behavioural alterations that could potentially 

increase susceptilbility to predation. These behavioural alterations have been linked 

to changes at the level of gene expression suggesting modulation of neuronal genes 

in the infected individuals. Putative serotonin receptor 1A, inebratied 

neurotransmitter, tryptophan hydroxylase and amino acid decarboxylase like genes 

displayed the most dramatic change in their gene expression. This represents the first 

study to record such changes in the neuronal pathways of parasite infected 

amphipods. 

 

 Another E. marinus population investigated from Invertkeithing (Scotland, UK) 

displayed a high female bias and high levels of intersexuality. The project has 

strengthened the evidence that PSD is present in this population with 40.4 % of the 

population being infected by either Paramyxea or microsporidia parasites. From the 

infected individuals 75% of that infection were female bias and 88.5% of intersexes, 

also presented an infection. The investigation explored the transmission pathways 

and efficiency of the parasites involved. Vertical transmission of a Paramyxean sp. 

was shown for the first time in an amphipod host and also showed the highest 

transmission efficiency from the mother to the eggs (96.8%). This has lead to the 

question of whether the microsporidian D. duebenum is a feminiser and has 

highlighted another parasite candidate for E. marinus sex distortion.   

 

Despite the range of genomic techniques employed, the attempt to determine 

genomic sexual determination in E. marinus did not reveal any sex specific genomic 

regions. However, considering the preliminary nature of the work, this study has 

provided insight for future directions. Several key genes involved in sexual 

differentiation that presented sex exclusive expression were identified. In addition, 

crucial method development was performed that will allow future investigations of 

genetic variation in E. marinus.  The transcriptome of the E. marinus has now been 

sequenced and along with population models enabling a greater understanding of the 
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links between genome and population ecology. With such a large investment in E. 

marinus as an ecological model species, it is crucial that basic biological questions 

and gaps in the field are addressed. Consequently, the data presented within this 

thesis will aid in the study of E. marinus and other crustaceans from the level of 

genetics to population effects. 
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Abbreviations 

 

°C                                             degrees Celsius  

Acrylamide                         acrylamide/bisacrylamide 

APS                                          Ammonium Persulfate 

BSA                                          Bovineserum albumin 

cDNA                                       complementary-deoxyribonucleicacid  

cm                                            centimeter  

dH2O                                       distilled water 

DNA                                         deoxyribonucleic acid  

EDTA                                       Ethylenedinitrilotetraacetic acid 

ESD     Environmental sex determination 

EST                                           expressed sequence tag  

ETS                                           external transcribed spacer 

g                                                gravitational force  

GSD     genetic sex determination 

hrs                                            hours 

kV                                             kilovolts 

M                                              molar 

Milliliters                            ml 

Minute                                 min 

ml                                            milliliter 

mm                                          millimeters 

mM                                          millimolar 

nm                                           nanometers 

NTC     no template control 

PBS                                          phosphate buffered saline  

PCR                                         polymerase chain reaction  

pH                                            percentage hydrogen 

PST     parasite sex determination 

RNA                                          ribonucleic acid  

RTqPCR                                  real time quantitative polymerase chain reaction  

SDS                                          sodiumdodecyl sulphate  

SE                                             standard error 

SSH     selective subtractive hybridisation 

TBE                                          trisborate ethylenediaminetetraacetic acid  

TEMED                                    Tetramethylethylenediamine 

TRIS                                         tris(hydroxymethyl)aminomethane 

U                                               unit 

UK                                            United Kingdom 

V                                               volts 

VT     vertically transmitting 

μL                                             microliters 

μL                                             microliters 

μm                                            micrometers 

μm                                            micrometers 
  

 



 P a g e  |  1 7   

1. General introduction 
 

Crustacean species display a wide diversity of life history patterns and a variety of 

sexual strategies: parthenogenic, gonochoristic, and hemphroditic (Legrand and 

Legrand, 1987). In most species that sexually reproduce, the individual will 

differentiate during development into separate sexes. The gonochoristic marine 

amphipod Echinogammarus marinus (Leach, 1815) (see Figure 1) is currently being 

used for the development of biomarkers to measure the influence of environmental 

contamination on crustacean sex determination and differentiation pathways. 

However, to truly understand whether anthropogenic disruption of sex determination 

is currently an issue, it is critical that all the mechanisms governing the process in E. 

marinus are fully evaluated.  

 

Sex determination in E. marinus appears to show a degree of plasticity, possibly 

being influenced by multiple factors. Sex could be determined environmentally, via 

parasitic infection, or genetically. However, it is possible that all three factors are 

involved. This project will attempt to elucidate how these factors can affect sex 

determination in E. marinus as well as population dynamics and structure of 

populations in the UK. The E. marinus transcriptome is currently being sequenced 

opening new possibilities to investigate molecular mechanisms involving sex 

determination and factors that affect population dynamics. The findings from these 

studies will greatly facilitate the use of E. marinus as a model for insight into 

crustacean sexual differentiation and determination and gives us a better 

understanding of the potential viability of E. marinus as a model species for 

monitoring environmental contamination. 
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1.1 Echinogammarus marinus 

 

Echinogammarus marinus is an intertidal amphipod (Crustacea: Amphipoda) that is 

highly abundant and has a wide distribution, ranging from Polar Regions down to 

southern Portugal (Dick et al., 2005). E. marinus plays an important role in 

ecosystem dynamics and is a food reserve for upper trophic levels largely for bird 

species (Múrias et al., 1996). It is an omnivorous species that grazes on algae. They 

tend to reside under on sheltered beaches with muddy sediments and hard substrates 

(Lincoln, 1979). This species is well adapted to long emersion periods as well as 

estuarine conditions (Maranhao et al., 2001) and is a fairly hardy species that is 

tolerant to a wide range of salinities (7-34
0
/00) (Bettison and Davenport, 1976). As a 

result it is common in estuaries and other areas subject to freshwater influence 

(Maranhao et al., 2001). There are two phenotype colourations within the species; 

olive green and a less common dark red (Sexton and Spooner, 1940). In common 

with many amphipod species (Costa and Costa, 1999, Covi and Kneib 1995, Drave 

and Arias, 1995, Moore and Wong, 1996), sexual activity is partly seasonal but 

occurs throughout the year (Maranhao et al., 2001). Continuous reproductive output 

allows for no limitation when studying reproductive processes. 

 

Figure 1: Female Echinogammarus marinus (Photo - Amaia Etxabe). 

1mm 
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E. marinus has sexual dimorphism and males tend to grow larger than females, with 

females and males growing up to 20mm and 25mm, respectively (Sexton and 

Spooner, 1940). The gnathopods are also larger in male individuals, allowing males 

to compete for females and guard the females in pre-copula (Conlan, 1991). 

Therefore, the smaller males have reduced reproductive fitness and reduced mating 

success.  Males possess genital papillae, while females possess brood plates 

(oostegites) that hold eggs within the brood chamber. Mature females also retain a 

pore-like structure on the carapace behind the head which has been observed to aid 

male attachment during pre-copula (Ford, 2004). A further characteristic that 

differentiates the two genders are the setae located on the uropods. The male setae 

can be described as hair-like, whereas female setae are spine-like structures (Sexton 

and Spooner, 1940). 

 

Female fecundity strongly correlates with size in amphipods species, with larger 

females producing larger brood sizes (Beare and Moore, 1996, Costa and Costa, 

1999, Dauvin, 1988, Ford et al., 2004, Lafrance and Ruber, 1985, Persson, 1999, 

Vandolah and Bird, 1980, Maranhao and Marques, 2003, Maranhao et al., 2001). 

However, smaller females can be more easily guarded by males and larger females 

can have reduced mating success as they cannot be held in pre-copula  (Hatcher and 

Dunn, 1997). Gammarids go into a pre-copula position before egg-laying, the female 

moults and the eggs drop from the oviducts to be stored in the brood pouch. The 

male then externally fertilises the eggs from the female’s brood chamber. E. marinus 

produces on average 21 eggs per brood (Cheng, 1942). These eggs are visible within 

the female as the female tends to be pale after the moult and the eggs have dark 

pigmentation during early development, becoming lighter as the embryos develop 

(Sheader and Chia, 1970, Ford et al., 2003). The female carries the brood to an early 

juvenile stage, extending their reproductive cycle beyond spawning. Reproduction, 

growth and moulting are interlinked and subsequent to hatching, the juveniles go 

through a period of growth stages shown through each moult (Sheader and Chia, 

1970). After the sex is differentiated, the sexual characteristics develop after each 

moult. The inter-moult periods are short in early growth stages and become 



 P a g e  |  2 0   

progressively longer as the individual becomes mature. For female amphipods, the 

synchronisation of their ovarian cycle and the moulting of their chitin set exoskeleton 

aids in the movement of newly ovulated oocytes/embryos through the oviducts into 

the brood chamber (Bettison and Davenport, 1976, Borowsky, 1988). 
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1.2 Intersexuality 

 

In natural and laboratory populations of amphipods a low frequency of individuals 

have been observed to possess both male and female characteristics (Ford and 

Fernandes, 2005), a condition termed intersexuality. Consequently this tends to result 

in reduced fecundity than that found for the true sexes (Dunn et al., 1990, Ford et al., 

2003, 2004). Intersexuality has been reported across the animal kingdom (Reinboth, 

1975), and is found  in a wide range of crustaceans (Dunn et al., 1990, Jungmann et 

al., 2004, Olmstead and LeBlanc, 2007, Sagi et al., 2002, Ford, 2012). 

 

The term intersexuality or intersex has often been confused within the literature with 

other sex phenotype conditions such as hermaphroditism and gynandromorphism 

(Narita et al., 2010). Compared with plants and some animal groups, hermaphrodites 

encompass male and female forms as their normal life history and are extremely rare 

within crustaceans (Narita et al., 2010). In contrast, intersexuality is thought to be a 

consequence of some form of disruption in the sex differential pathway (Ford et al. 

2003). Another term often used interchangeably with intersex is gynandromorphy 

and are described as sexual mosaics in which male and female tissue occurs on the 

same individual (Olmstead and Leblanc, 2007). These genetic chimeric individuals 

occur when genes that govern sex determination/differentiation pathways are altered 

during the development of the zygote resulting in some regions forming as one 

gender and the other areas forming as the other (Narita et al., 2010).  Once the 

gynandromorph individual develops the male and female tissue can be seen in clear 

borders distributed bilaterally, patchily or uniformly mixed. Therefore, a 

gynandromorph is a genetically chimeric individual whilst intersexes are genetically 

uniform (functioning as a singular sex) (Narita et al., 2010). There is no evidence, to 

our knowledge that E. marinus or other gammarids are hermaphrodites or contain 

gynandromorphs within their populations. Within this study, intersex is termed as an 

individual that possesses characteristics from both genders, but reproductively 

functions as one gender. 
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Intersexes are associated with the endocrine regulated sex differentiation process in 

crustaceans (Sagi and Khalaila, 2001) and is believed to occur due to multiple 

factors; disruption of the androgenic gland (AG) (Charniaux-Cotton, 1958), sex 

distorting parasites (Rodgers-Gray et al., 2004), environmental sex determination 

(ESD) (Dunn et al., 1996) and possibly chemical/anthropogenic pollution (Ford et 

al., 2006, Olmstead and LeBlanc, 2007, Short et al., 2012b).  

 

Intersex E. marinus individuals tend to be of larger size than normal sex phenotypes 

(Ford et al., 2003). Intersex males can be either external intersex, in appearance look 

male and possess rudimentary brood plates, or be internal intersex, possessing 

gonadal abnormalities such as, the development of oviduct like structures (See Figure 

2b; Ford et al., 2008). External intersex males can sometimes possess an oviduct 

structure internally, although internal intersex males never display external 

characteristics such as brood plates. Intersex females in appearance look female, 

however, they possess one or two genital papillae (See Figure 2a). It is unclear 

whether different phenotypes of intersexuality occur via different mechanisms or 

whether it is the same mechanism acting with varying degrees of severity to cause 

the multiple variations of intersexuality (Ford et al., 2003, Short et al., 2012b).   
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Figure 2:  Intersexuality in amphipods (a) externally intersex Gammarus minus displaying 

brood plates (star) and genital papillae (arrows) and (b) internally intersex Echinogammarus 

marinus displaying testes with an oviduct (arrow) taken from  Ford et al., (2008). 
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There are a number of reported costs associated with the intersex phenotype. It is 

suggested that intersexes mature at a larger size due to energy shift towards somatic 

growth rather than reproductive development (Ford et al., 2004).  Large size along 

side with morphological abnormalities and possible pheromone dysfunction can 

severely reduce pairing success (Ford et al., 2004, Kelly et al., 2004).  Reduced 

fecundity, fertility, embryo survival and delayed maturation have been documented 

with E. marinus intersexes (Ford et al., 2003, 2004). Intersex E. marinus females 

produce ~20% less eggs than normal females and 10% fewer eggs from intersex 

females produce fully developed embryos compared to normal females (Ford et al., 

2004).  Yang et al., (2008) revealed that intersex males have reduced sperm counts 

(~15%) compared with normal individuals and that E. marinus populations situated 

in polluted sites had 30% more intersexes. Ford et al., (2006) showed significantly 

higher prevalence of intersexuality in the polluted sites compared with reference sites 

and that the intersexes were more likely to be infected with microsporidia. However 

the lack of microsporidian infection within the intersex population at the reference 

site indicated that parasitism is not the sole cause of intersexuality within the 

populations studied (Ford et al., 2006, Yang et al., 2011, Short et al., 2012b). A direct 

effect has not been proven however there is a strong relationship with pollution and 

intersexuality. The reasoning for this could be increased host susceptibility when 

under polluted conditions. 

 

Using simulations of varying sex ratios, fecundity, intersex levels and mortality rates 

it was concluded that intersexes can have dramatic effects on populations (Ford et al., 

2007). This work was theoretical however recent work by Martins et al. (2009) has 

been performed using field data from populations of E. marinus. This study 

demonstrated intersexuality incidence, sex ratio fluctuations and intersex 

reproductive output. Establishing how these factors affect population dynamics of a 

species gives us a better understanding of the consequences of intersexes have within 

natural populations (Martins et al., 2009). The research revealed that female biased 

populations were less sensitive to intersexes and reduction in reproductive output.  

Yet there are thresholds and, if sex ratios become too unbalanced the population can 

face extinction or collapse (Hatcher et al., 1999). Martins et al. (2009) demonstrated 

through modelling that the impact that intersexes have upon a population are 
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contributed to many factors such as sex ratio fluctuations, intersex reproductive 

output and intersexuality incidence and highlights how intersexuality can affect E. 

marinus population dyanmics. 

 

The causes and mechanisms behind intersexuality are not fully understood. Past 

studies have shown that costs are high with intersexuality with individuals having 

reduced reproductive output compared with normal individuals. In spite of this, 

intersexes are present and persist within natural populations (Ford et al., 2008). 

Despite past work, such as the sex allocation theory, that suggests intersexes would 

be selected out due to their lack of reproductive fitness (Charnov, 1982). Their 

persistence in population implies that there are a mixture of processes and factors 

that are involved with intersexuality and in the broader scale sex determination that 

are not fully understood. A better knowledge of sex determination and differentiation 

especially in genetic mechanisms would greatly facilitate the study of intersexuality. 

This may provide some insight into the causes of intersexuality, the genetic 

manipulation needed to become an intersex individual, as well as why E. marinus 

appears to have various phenotypes of intersexuality. 
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1.3 Sex determination in Crustacea 

 

Sex determination in animals is diverse and can vary dramatically over short 

phylogenetic distances (Bull, 1983). The archaic group, Crustacea, comprises of a 

large portion of the arthropods and consists of approximately 50,000 species that 

inhabit the majority of ecological niches. This ecologically relevant group can 

demonstrate high sexual plasticity making the study of sex determination somewhat 

problematic in some species. There are multiple factors believed to trigger or 

influence sex determination in Crustacea and sex can be determined by 

environmental (Bulnheim, 1978), parasitic (Mautner et al., 2007), as well as genetic 

factors (Legrand & Legrand, 1987).  

 

Sex determining mechanisms drive a population’s sex ratio, which in turn affects the 

size of the reproducing population. Fisher’s principle of equal investment states that 

natural selection favours equal frequency of males and females (Fisher, 1958). This 

evolutionary theory of a stable 1:1 sex ratio model has been generally favoured when 

producing males or females has similar costs (Fisher, 1958, MacArthur, 1965, May, 

1983). In crustaceans, however, it is rare to find a species with an unbiased sex ratio 

(Saher and Qureshi, 2011, Prato et al., 2009, Doi et al., 2008, Castiglioni and 

Buckup, 2008, Litulo, 2005, Maly, 1970, Lasker et al., 1970, Ford and Glazier, 

2008). This can be a consequence of a gender bias in the production of offspring, or 

mortality rates could be sexually differentiated, such as, cases of sex biased predation 

(Appadoo and Myers, 2004). Molecular mechanisms of sex determination in 

crustaceans are still largely unknown with the only well characterised arthropod sex 

determination pathway being that of the highly divergent insect, Drosophila 

melanogaster (Sanchez & Lucus, 2008).  

 

In the fruit fly Drosophilia, each cell determines its sex independently at a very early 

embryonic stage and continues during later development through a gene cascade 

comprising of Sex-lethal (Sxl), transformer (tra), doublesex (dsx) and several other 

regulatory genes, in which differential splicing of mRNAs of these genes perform a 
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crucial role in (see Figure 3) (Nothiger and Steinmannzwicky, 1985, Schutt and 

Nothiger, 2000). Sex determining mechanisms in other arthropods are still unclear, in 

insects it is suggested that that there is a single model consisting of a master 

regulatory gene at the top of the cascade and a highly conserved (dsx) gene at the 

bottom (Narita et al., 2010). Kato et al. (2011) recently revealed the role played by 

the highly conserved Doublesex gene in the parthenogenic crustacean, Daphnia 

magna. Instead of sex being regulated at the level of pre-mRNA splicing in the 

coding region, the Daphnia Dsx gene sexually differentiates through the transcript 

number. Increased expression was found only in male individuals during 

embryogenesis and the knock-down of the Daphnia Dsx gene in male embryos lead 

to the production of female traits (Kato et al., 2011). This study has shown that the 

Daphnia Dsx gene is a crucial component of regulating the male phenotype and has 

linked a genetic element with a species that utilises ESD. 
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Figure 3: Sex determination pathway in Drosophilia that consists of a splicing cascade, in 

which each pathway regulates the other. The male default pathway yields male offspring 

with the splicing of sex lethal (sxl) being non functional. The female splicing pathway of sex 

lethal (sxl) produces the x chromosome/autosome ratio (1:1) and initiates positive feedback 

loop by inhibiting the male default splicing pathway, similarly to the transformer (tra) gene. 

The proteins tra and tra-2 control the insertion of exon 4 to produce the doublesex (dsx) 

variant that denotes the female phenotype. Splicing out exon 4 in the default pathway 

produces the male phenotype. Taken from Herbert and Rich (1999). 
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1.3.1 Sex chromosomes 

 

In the majority of arthropods, sex is genetically determined. Chromosomes that 

determine an individual’s gender are often termed ‘sex chromosomes’, in which one 

of the two chromosomes are commonly degenerate (Bull, 1983, Charlesworth and 

Charlesworth, 2000).  The X and Y (or Z and W) are morphologically 

distinguishable with high amounts of repetitive DNA (Bull, 1983). Within the XY 

system, females are the homogametic sex (XX) and males are the heterogametic sex 

(XY). In the ZW system, males are the homogametic sex (ZZ), while females are 

heterogametic sex (ZW) (Legrand et al., 1987). Genetic sex determination in 

Crustacea is diverse among species with male heterogamety being present in 

Amphipoda, Decapoda and Ostracoda, and female heterogamety in Branchiopoda 

(Legrand et al., 1987). Heterogamety is exhibited in both males and females in 

Copepoda and Isopoda (Lecher et al., 1995).  However, the absence of cytological 

detection of sex chromosomes within studies does not signify that heterogametic sex 

determination is absent (Legrand et al., 1987). This lack of knowledge has created 

difficulties in understanding sex determining mechanisms and its evolution within 

crustaceans.  

 

Cytogenetic parameters such as chromosome number and structure aid in taxonomy 

and to identify phylogenetic relationships as well as giving an insight into the genetic 

structure of the species or population in question (Thiriot-quievreux and Cuzinroudy, 

1995). Karyological studies in Crustacea have been problematic due to lack of 

methodologies for adequate preparations to produce high quality metaphase plates. 

The main obstacle preventing accurate counting of crustacean chromosomes is the 

high diploid numbers, small chromosome size and generally the small size of the 

species making retrieving tissue difficult (Coleman, 1994). However, despite this 

reliable karyotype research has been obtained in many crustacean groups such as 

Euphausiacea (Thiriotquievreux and Cuzinroudy, 1995), Copepoda (Lazzaretto et al., 

1989, Standiford, 1989), Decapoda (Deiana et al., 1996) and Isopoda (Dicastro et al., 

1989, Dicastro et al., 1977, Dicastro et al., 1979).  

 

http://en.wikipedia.org/wiki/Homogametic_sex
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Chromosome number has been found in 90 amphipod species and has been proved to 

be highly variability (Coleman, 1994). Chromosome size varies from 2 to 5 µm and 

diploid number from 18 to 68 (Lecher et al., 1995). However 26 are considered as the 

modal haploid number found in many of the Gammaridae (see Figure 4). E. marinus 

displayed chromosomal polymorphism with haploid chromosome numbers of 25 and 

26 (Orian, 1957). There are several possible explanations for this karyological 

difference; increase or decrease of chromosome number  during evolution via fission 

or fusion, extreme increase in chromosome number due to polyploidy (Salemaa, 

1984), and restricted increase due to supernumerary chromosomes (B-chromosomes). 

However, polyploidy has been ruled out in gammarids evolution (Orian, 1957). 

Supernumerary chromosomes are add-ons to the chromosome set that have no 

apparent positive or negative effect for the species. This generates intra specific 

variation which sometimes can be geographically restricted  (Orian, 1957). 
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Figure 4: Taken from Libertini and Rampin (2009), an extensive study into 

Gammaridae karyotyping. 5a. Echinogammarus obtusatus 5b. E. obtusatus embryo 

(45S rDNA FISH) 5c. Echinogammarus finmarchicus spermatocyte (C-banding) 5d. 

E. finmarchicus spermatocyte (45S rDNA FISH) 5e. E. finmarchicus spermatogonial 

(45S rDNA FISH) 5f. Gammarus oceanicus spermatocyte (45S rDNA FISH).  
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The most reliable methodology to produce good plates for karyotyping is aceto-

carmine-staining to create squash preparations of the testes.  This can also be done 

with squash preparations of oocytes prior to oviposition. Ovaries are fragile, adhesive 

to each other and difficult to free from wall tissue. The most informative stage of the 

eggs and testes for karyological study is the first meiotic metaphase. Unfortunately, 

preparations are technically difficult as this stage is short in duration (Orian, 1957). 

An alternative technique for obtaining mitotic chromosome metaphase in marine 

amphipod species has been using embryos (fertilised eggs) for sample tissue 

(Campos-Ramos, 1997). Although, this technique could not be adopted for 

identifying sex chromosomes as the gender of embryos would not be known. 

 

Despite the volume of crustacean karyological studies, the knowledge is still limited 

due to technical details discussed. Sex chromosomes are not well differentiated 

within amphipods, with the exception of a single account of Ansiogammarus 

annandalei, in which it was noted that males obtain heteromorphic bivalent (XY-XX 

type) which condense during early division I (Niiyama, 1950). However, no other 

karylogical studies have validated these findings or shown evidence of sex 

chromosomes in other amphipod species, to our knowledge. Due to the technical 

difficulties in obtaining good quality metaphase plates and the presence of B-

chromosomes contributing to the uncertainty of sex chromosome identification, other 

avenues have been explored to identify genetic sex determination in crustacean 

species. Female heterogamety can be demonstrated by crossing two genetic females 

with one being experimentally sexually reversed to ensue as a functioning neo-male 

if such crosses produce all female viable broods, it indicates polychromatism.  

 

Suzuki (1999) ran cross breeding experiments using the ispod A. vulgare. Normal 

males vs. androgenic gland (AG) ablated males (neofemales) and normal females vs. 

AG implanted females (neomales) demonstrated influential effects on sex ratios of 

the broods, proving that to a certain extent, genetic or chromosomal sex 

determination mechanisms are in place within this species (Suzuki, 1999). Parnes et 

al. (2003) conducted cross breeding with the Australian red-claw crayfish, Cherax 

quadricarinatus in which they cross bred varying combinations of intersex 
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individuals (See Figure 5). This showed that the control group of normal males and 

females yielded 1:1, whereas crosses of females with an intersex male produced 1:3 

(male:female) sex ratio, demonstrating that intersex functioning males are genetically 

female (WZ) and that the male is the homogametic (ZZ) sex.  The study further went 

on to breed normal males with females from the progeny of the intersex father. This 

yielded nearly 100% females supporting the initial finding of the suggested sex 

determination model (Parnes et al., 2003). To date, cross breeding experiments have 

been the best technique for understanding genetic sex determination within 

Crustacea. 

  



 P a g e  |  3 4   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Sex heritability model of Cherax quadricarinatus taken from Parnes et al. (2003).  



 P a g e  |  3 5   

1.3.2 Sex hormones 

 

In the past, the existence of sex hormones within insects has been debated (De Loof 

and Huybrechts, 1998). Insect sex determination is believed to be a strictly genetic 

process without the use of hormones (Maas and Dorn, 2005). In crustaceans the 

fundamental mechanisms that regulate sex differentiation are through the male 

androgenic gland (AG). Charniaux-Cotton (1954) first discovered that sex 

determination in Crustacea was under hormonal control.  The source responsible for 

male determination and the inhibition of female differentiation is the hormones 

secreted by the AG (Charniaux-Cotton, 1954). Without the presence of the AG 

individuals are female by default.  The AG synthesises and secretes the AG hormone 

which can control primary (spermatogenesis) and secondary (external morphology) 

sex characteristics (Nagamine et al., 1980a). Manipulation of the AG hormone by 

either removal or implantation of the AG has shown to affect many physiological and 

morphological processes which seem to vary among species (Sagi et al., 1990). In the 

majority of Crustacea studies, the AG is close to the sub terminal region of the vas 

deferens between the muscles of the last thoracic leg within the coxopodite 

(Charniaux-Cotton, 1958, Charniaux-Cotton, 1960).  The AG cells have common 

characteristics across different species; well developed granular endoplasmic 

reticulum and golgi apparatus, mitochondria with flat and transverse cristae and 

numerous lysosomes (Hasegawa et al., 1991).   

 

In the amphipod, Orchestia gammarellus implantation of the testis or genital tract 

without the AG caused no effect within the female. The implantation of the AG into 

a juvenile female caused the female to revert to a male, while implantation in a 

mature female caused masculinisation of primary and secondary sex characteristics 

(Charniaux-Cotton, 1954). After implantation, the first consequence observed was 

inhibition of yolk formation. Subsequently, the female’s appendages developed 

progressively during intermolt period’s equivalent to a normal male.  Ovary gonia 

formed secondary gonia that split into functional testis producing spermatozoa, 

spermatids and spermatocytes  (Charniaux-Cotton, 1962).   In addition the removal 

of the AG from a male caused the male to become sexually undifferentiated.  For 

example, removal of the gnathopod caused the regenerated limb to be characterised 
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neither male nor female. Within the gonads spermatogenesis diminished. If an ovary 

was implanted into a normal male the ovary would typically be transformed into a 

testis. However with individuals that had the AG removed the ovary was maintained 

within the male unaffected.  (Charniaux-Cotton, 1962). The research by Charniaux-

Cotton demonstrated that the AG was the lone source of the hormone that was 

responsible for male characteristics and development. 

 

The AG has been manipulated in many species mainly isopods (Suzuki, 1999), 

amphipods (Charniaux-Cotton, 1954) and decapods (Malecha et al., 1992).  These 

physiological manipulations have generally had higher impact on juveniles and 

success rates have correlated with the subjects age (Sagi and Khalaila, 2001). The 

prawn, Macrobrachium rosenbergii has displayed complete sex reversal by removal 

or implantation of the AG in early juvenile stages and had the ability to mate with 

normal individuals and produce offspring. (Malecha et al., 1992, Nagamine et al., 

1980ab, Sagi et al., 1990). 

 

Purification, identification, DNA sequencing and cloning of the gene encoding the 

AG hormone of A. vulgare has been accomplished (Okuno et al., 1999, Okuno et al., 

1997, Martin and Juchault, 1999, Martin et al., 1999, Nagasawa et al., 1995).  The 

structure of the AG hormone of A. vulgare has been revealed to be unstable 

thermodynamically and is considerably less favourable as more energy is required 

for synthesis and maintaining its form. The basis for this less stable form is thought 

to be intended for faster degradation giving a greater control of the proteolytic 

pathway which in turn allows the organism to have strict control of sex determination 

(Katayama et al., 2010).  The hormone shows similarity to the pro-insulin 

superfamily of peptides (Martin et al., 1999). Another two species of isopods, 

Porcellio scaber and Porcellio dilatatus have had their AG hormone identified and 

sequenced. It  appears that the AG hormone is highly conserved among the three 

isopod species (Ohira et al., 2003).   
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Hormones from the insulin family are generally not linked as gender specific, 

however, increasing evidence is suggesting a possible association of insulin 

pathways in sexual differentiation (Manor et al., 2007, Manor et al., 2009, Ventura et 

al., 2009a, Ventura et al., 2009b, Nef et al., 2003). Manor et al. (2007) first 

constructed a decapod AG cDNA subtractive library revealing insulin like gene 

expressed exclusively in the AG of male C. quadricarinatus. However its 

resemblance to the three isopod AG hormones previously sequenced was low 

(between 16 and 19% identity) (Ohira et al., 2003, Okuno et al., 1999). Recently 

silencing of an insulin-like gene expressed specifically in the AG library of M. 

rosenbergii (Mr-IAG) was the first functional sex reversal via this method (Ventura 

et al., 2009b). The neo-females produced all male progeny demonstrating that 

manipulating this key sex determining gene can be extremely useful for further GSD 

studies (Ventura et al., 2012). These studies support the concept that insulin may 

have evolved from a sex differentiation background within isopods and decapods. 

However no amphipod AG hormone to date has been identified. From examining 

studies of the crustacean AG we can conclude that it can exert distinct effects within 

the animal’s morphology, physiology and behaviour. The pivotal role of the AG in 

sex determination has been demonstrated by implantation and ablation experiments 

within many crustacean species. However, it still remains unknown on which 

pathways are influenced by the AG and how the hormone controls sex differentiation 

mechanisms. 
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1.3.3 Sex distorting parasites  

 

Parasitism is a highly influential factor in the reproductive output of a population 

(Forbes, 1993). Parasites can be categorised by their mode of transmission; vertical 

(from infected parent to offspring) or horizontal (through contact from either an 

infected individual or a free living parasitic stage). Horizontally transmitted parasites 

are generally pathogenic and tend to decrease the reproductive success of the host 

due to host resources being reallocated to the parasite. Vertically transmitted 

parasites are associated with low pathogenicity due to host and parasite fitness being 

closely linked (Dunn and Smith, 2001).  Within crustacean species, extreme female 

biased populations have been linked with parasitic influences (Terry et al., 2004). 

These sex biased ratios have been associated with either infestations of transovarially 

transferred parasites, which have a feminising effect on host offspring, or with male 

killing (Kageyama and Traut, 2004, Ironside et al., 2003).  This sex ratio distortion 

gives for a highly effective evolved strategy as a male host is as a dead end due to 

their modes of transmission thereby female broods are favoured as the transmitting 

gender (see Figure 6) (Bandi et al., 2001).  

 

 

Figure 6: A strategy in which feminising the brood increases transmission, a male host is 

seen as a “dead-end”, thereby female broods are favoured as the transmitting gender. 
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Rather than feminisation of host broods, Wolbachia in the moth species, Ostrinia 

scapulalis induces sex distortion by male killing (Kageyama and Traut, 2004). This 

was discovered when exploring the presence or absence of sex chromatin in larvae at 

the hatching stage. Unhatched larvae displayed significant biased towards genetic 

males producing overall females only. Male killing is thought to be due to the 

intolerance of feminisation within the host, which is related to genetic backgrounds 

or differences (Kageyama and Traut, 2004). This allows the reallocation of resources 

back to females’ thus increasing transmission. Male killing mechanisms are 

widespread within insect species with no known cases of male killing mechanisms 

within amphipods. However, male killing should not be ruled as a possible 

mechanism when looking at sex distorting parasites.  

 

The knowledge of the mechanisms that result in parasitic feminisation and 

intersexuality in amphipods is only starting to be established.  Rodgers-Gray et al. 

(2004) was one of the first studies to link parasite induced intersexuality and 

feminisation in amphipods with the inhibition of AG development and hormone 

production. Following on from this study, Ford et al. (2005) looked at the four 

different sexual phenotypes within E. marinus (normal and intersex male, normal and 

intersex female) to compare androgenic gland (AG) activity quantified via MALDI-

TOFF spectrometry. It showed reduced androgenic gland activity in the infected 

intersex male compared with the normal male indicating that intersex is a result of 

disturbance within the androgenic gland (Ford et al., 2005).  

 

Host genes that are targeted by Wolbachia are different between insects and 

crustaceans. For example, within insects the master regulator genes that influence 

somatic sex determination (sex lethal and double sex genes) are hypothesised to 

interact with the bacteria. This is thought to be due to the lack of sex hormones in 

insects (Negri et al., 2006). Whereas in crustaceans it has been proposed that 

Wolbachia feminise isopods in a similar approach to microsporidia with AG 

disruption (Bouchon et al., 2008) .   
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It is thought that, with the exception of determination of offspring sex, vertically 

transmitting parasites have little or no detrimental effect on the host (Ironside et al., 

2003). This would fit the prediction that vertically transmitting parasites will only 

inflict either a positive or neutral effects on the host as parasite and host fitness are 

entwined. Although it has been reported in a few cases that transovarially transmitted 

microsporidian parasites can cause reductions in egg production, hatching (Andreadis 

and Hall, 1979) and survival (Raina et al., 1995). Haine et al. (2004) highlighted a 

positive effect on host reproduction in two species of microsporidia (Nosema 

granulosis and Dictyocoela muelleri) infecting the amphipod Gammarus roeseli. 

Infected females were observed in the field and laboratory to breed earlier in the 

reproductive season compared to the uninfected females, giving earlier host 

reproduction and thus increasing number of host broods (Haine et al., 2004). Later 

breeding experiments with infected G. duebeni with N. granulosis found that brood 

survival increased compared with broods from uninfected mothers (Haine et al., 

2007). Conversely, another study looking into sperm allocation revealed that G. 

duebeni infected with microsporidia would receive less sperm from a male than an 

uninfected female (Dunn et al., 2006a). This leaves the hypothesis that vertically 

transmitting parasites either maintain or improve host fitness open to question. 
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1.3.4 Environmental sex determination 

 

Environmental sex determination (ESD) occurs when sex is established through non-

genetic cues (abiotic factors) through a period after egg fertilisation (Korpelainen, 

1990). ESD is widespread and has been documented in diverse groups of organisms 

including Echiura, reptiles, fish, nematodes and crustaceans (Adams et al., 1987, 

Korpelainen, 1990, Ciofi and Swingland, 1995, Conover and Kynard, 1981, Bull, 

1980, Petersen, 1972). Sex determination can be influenced by a variety of cues such 

as temperature, day length, salinity, pH, population density and nutrient availability 

(Barón et al., 2002, Dunn et al., 2005, Voordouw and Anholt, 2002, Zupo, 2000). 

ESD generally occurs in early development where the epigenetic factors influence 

gene expression within the zygote. However, in some cases the epigenetic factors fix 

the sex by acting on gametogenesis of a female (Bulnheim, 1978, Bull, 1983). Not all 

populations within a species necessarily possess ESD and it is more prevalent in 

populations that have a limited breeding season (Watt and Adams, 1994). This 

variation in ESD indicates the adaptive response of reproductive strategies under 

varying environmental conditions, allowing an individual to develop into the gender 

that provides the best ecological fitness at the time, given the environment they 

encounter  (Naylor et al., 1988b, Watt and Adams, 1994). It has been suggested that 

selective forces drove the transition from GSD to ESD in populations (Bull, 1981) 

and temperature sensitive mutations artificially produced in Drosophila 

melanogaster and Caenorhabditis elegans have demonstrated how GSD has the 

capacity to rapidly evolve into ESD resulting from a control gene mutation (Epper 

and Bryant, 1983, Hodgkin, 2002). The ability to skew sex ratios via environmental 

parameters promotes reproductive fitness and has ensured the evolution of ESD 

mechanisms in many reproductive systems. 

 

A well documented case of ESD in vertebrate species is temperature sex 

determination (TSD), one of the most prominent types of ESD, it is found in reptiles, 

including all crocodilians, some lizards, and many turtle species (Bull, 1980). The 

sex of individuals is permanently determined by thermal conditions during egg 

incubation in the middle trimester of their embryonic development (Janzen and 
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Paukis, 1991).  The red eared slider turtle produces female egg clutches at 31
o
C and 

male egg clutches at 26
 o

C, the intermediate temperature (29.2
 o

C) produces a 50:50 

sex ratio (Weibbels et al., 1991). The small temperature range between all male and 

all female clutches means that local temperature shift and global warming can 

drastically skew population sex ratios having great ecological impact. 

 

The crustacean Daphnia magna is known to switch from parthenogenic to sexual 

reproduction when environemental quality declines (Hebert, 1978). Broods of female 

offspring are increased under favourable conditions. The daphnid population then 

increases through asexual reproduction. When environmental cues occur, such as 

reduced light period and reduction of diet, the population produces male biased 

offspring and undergoes sexual reproduction (Hebert, 1978). D. magna has been 

observed to have significantly different sex ratios in four different geographical 

locations in the same breeding season revealing how varied sex ratios can be within 

populations that possess ESD (Barker and Hebert, 1986). 

 

Diet has been seen to influence sex ratios in copepods and shrimp (Irigoien et al., 

1999, Zupo, 2000, Zupo and Messina, 2007). The protandric shrimp, Hippolyte 

inermis has been observed to reverse sex when influenced by a diatom diet. Through 

histological study it was seen that the diatom species, Cocconeis caused disruption of 

the testes and AG, which lead to the production of an ovary and subsequent 

development of beta females. This has been observed in the laboratory and the field 

(Zupo, 2001). The disruption of the male gonads was suggested to be due to 

apoptosis (Zupo and Messina, 2007) occurring during the post larvae stage in early 

sex maturation (Zupo, 2000).  However the mechanisms that trigger this programmed 

cell death are unknown.  

 

G. duebeni is a well documented example of ESD within amphipods with it being 

shown that photoperiod and temperature influences sex ratios (Naylor and Adams, 

1987, Naylor et al. 1988ab, Watt and Adams, 1993, 1994, Dunn et al. 1996, 2005) 

(See chapter 4 for further details). Although descriptions of ESD mechanism in other 
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species within this crustacean group are somewhat lacking. Further investigation is 

required to determine whether environmental cues can influence sex determination in 

a variety of amphipods or if G. duebeni is an isolated case. This could possible 

answer interesting evolutionary questions regarding sex determining mechanisms in 

Crustacea and gain a better understanding of how the environment can influence 

population dynamics and the physiology of amphipod species. 
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1.4 Aims and objectives 

 

The majority of the literature describing E. marinus is aimed at developing a better 

understanding of intersexuality and the factors that induce it, as well as 

ecotoxicology studies that focus on how anthropogenic pollution can affect 

gammarids. The aim of the studies described within this thesis is to fill gaps in our 

knowledge of the general population dynamics of E. marinus, with a particular focus 

of attempting to elucidate the mechanisms of sex determination in this ubiquitous 

marine amphipod. Sex determination in E. marinus, has been linked with feminising 

parasites. To date, however, no such studies have linked this species with 

environmental sex determination (ESD) or genetic sex determination (GSD). 

 

Specific objectives to be addressed in this thesis include: 

 To determine the population dynamics of a natural population of E. marinus 

from Langstone Harbour (Portsmouth, UK) and establish the population sex 

ratios and seasonality of breeding. 

 To establish parasite groups infecting the Langstone Harbour E. marinus 

population and then determine temporal changes in these parasite groups, 

some of which are associated with sex ratio distortion or a potential of great 

influence over host population abundance. 

 To determine whether E. marinus possesses environmental sex determination 

(ESD) through laboratory study and whether this links with sex ratios 

observed in the field. 

 To determine the role of feminising parasites in sex determination by 

studying an E. marinus population presenting high female bias.  

 Use various techniques to establish whether heterogametic sex determination 

is present and attempt to identify sex specific genomic regions that could act 

as a genomic sex marker for E. marinus. 
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2. The population dynamics of 

Echinogammarus marinus at 

Langstone harbour 

 

2.1 Introduction 

 

The biology and ecology of Echinogammarus marinus have been studied at  various 

latitudinal locations (Maranhao et al., 2001, Maranhao and Marques, 2003, 

Skadsheim, 1982, Skadsheim, 1984, Van Maren, 1975a, Van Maren, 1975b, 

Vlasblom, 1969, Pinkster and Broodbakker, 1980). General observations from the E. 

marinus populations studied shows seasonal change in E. marinus density, with 

peaks in spring and summer months and continuous recruitment throughout the year. 

Some E. marinus populations do display a univoltine life cycle in cold temperate to 

sub-polar regions (Denmark), in which they breed during April to June (Skadsheim, 

1982) and other populations found in maritime temperate climates (Normandy, 

France) display a multivoltine breeding season from May to June (Pinkster and 

Broodbakker, 1980). 

 

The study of parasites is now a shared common interest of both ecologists and 

parasitologists due to their pivotal role in community structure and ecosystem 

dynamics (Lefevre et al., 2009, Poulin and Mouritsen, 2006). Parasites are highly 

abundant organisms and can account for a substantial portion of total biomass in 

ecosystems (Kuris et al., 2008). However their functional importance in terms of 

population dynamics and ecology has only become realised in recent years (Holmes, 

1996, Horwitz and Wilcox, 2005, Hudson et al., 2006, Lefevre et al., 2009, Wood et 

al., 2007). Therefore, population studies that focus on abundance of a species should 

include the prevalence of certain parasites as a determining factor. It has been shown 

that trematodes infecting gammarids can affect mate choice (Thomas et al. 2005).  

Acanthocephala and trematoda parasites can affect the location of amphipods in the 

water coloumn and other swimming behaviour altering their chances of being 
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predated (Bethel and Holmes, 1977, Thomas et al. 1995), sex distorting parasites, 

such as microsporidia (Dunn and Hatcher, 1997b, Terry et al.,2004), Wolbachia 

(Kondo et al. 2005) and Paramarteilia (Ginsberg-Vogel, 1991) can dramatically 

affect population structure, in particular sex ratios and levels of intersexuality (Terry 

et al., 2004). For these reasons these parasite groups will be screened to see whether 

they are present within the E. marinus population at Langstone Harbour. 

 

Extensive population studies have been conducted on E. marinus, mainly at the 

northern  and southern latitudes (Maranhao et al., 2001, Maranhao and Marques, 

2003, Skadsheim, 1982, Skadsheim, 1984, Van Maren, 1975a, Van Maren, 1975b, 

Vlasblom, 1969, Pinkster and Broodbakker, 1980). This study will gain a better 

understanding of the population dynamics within the E. marinus Langstone Harbour 

(England, UK) population, a mid-latitude population. This was achieved by 

observing seasonal fluctuations in abundance of E. marinus, collecting 

length/frequency data to determine size at maturity and establishing the population’s 

breeding seasons. In addition, a number of key parasite groups to have the potential 

to influence population structure were determined and their seasonal prevalence 

established.  Field data collected within this chapter will provide baseline 

information on the test population for other chapters within this thesis.  
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2.2 Materials and Methods 

 

2.2.1 Population Study 

 

To assess the population dynamics a field study was undertaken over a two year 

period. E. marinus were collected between December 2009 to December 2011 from 

Langstone Harbour (50º47’23.13N 1º02’37.25W) situated in Portsmouth, UK (See 

Figure 7).  Samples were taken during low tide by selecting five 1m
2
 quadrats (total 

area = 5m
2
) in the intertidal zone during low tide. All algae and surface sediment 

(approximately 2cm in depth) was retrieved and stored in polythene bags. In the 

laboratory, samples were washed and decanted through a 0.7 mm sieve and all algae 

were scraped to ensure no individuals were left. 

 

All amphipods were collected and stored in 70% ethanol and E. marinus specimens 

were separated into males, females and juveniles. Generally sex could be determined 

within individuals that were approximately over 10mm in length. E. marinus males 

were distinguished by the presence of enlarged gnathopods and genital papillae. 

Females were distinguished by much smaller gnathopods and oostegites (brood 

plates) (see Figure 8). Individuals not presenting any of these features were grouped 

as juveniles. External intersex specimens were also recorded. To record seasonal 

reproductive levels any females carrying embryos or juveniles in their brood pouch 

were also noted. Lengths were measured from anterior end of head to distal end of 

telson (see Figure 9) via photomicrographs (Leica 560, JBCKL-F1030U and 

UTHSCSA Image tool). 
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Figure 7: Illustration of the sample site for the collection of Echinogammarus marinus. (A) 

shows Langstone harbour with (B) illustrating the precise sample site (50º47’23.13N 

1º02’37.25W), (C) photograph of sample site appearance. Image (A,B) was produced by 

Google Earth Software (2011).  

 

 

 

A 

B C 
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Figure 8: Echinogammarus marinus males and females are distinguished by the presence of 

genital papillae (A) and brood plates (B), respectively.  

 

 

 

 

Figure 9: Photomicrograph of a male Echinogammarus marinus. Lengths were measured 

from the anterior end of the head to distal end of the telson (white dashed line). 
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2.2.2 Parasite prevalence and screening 

 

A parasite prevalence study occurred over an 18 month period between the months of 

January 2010 to June 2011. To assess parasite prevalence and seasonality, 20 adults 

from each sex were selected from each monthly sample and stored in 70% ethanol at 

-80
o
C.  When samples were processed, the gonads and all muscle tissue was 

dissected and removed from the animal and washed with distilled water. The tissue 

was then placed in a 200µl of 5% Chelex solution (Sigma-Aldrich, UK) and 

homogenised using a disposable pestle (Fischer, UK). The solution had 3.75µl of 

proteinase K added, subsequently vortexed and incubated at 52
o
C for a minimum of 

4 hrs. The samples were then centrifuged at high speed (14000 g) and all supernatant 

was aspirated and the tissue homogenate discarded. The supernatant was incubated at 

99
o
C for 15 minutes to heat deactivate the proteinase K. A phenol/chloroform clean 

up step was then performed. Each sample was made up to 200 µl with dH2O and 200 

µl of a phenol solution consisting of 1 ml of phenol and 45 µl of  buffer (Sigma-

Aldrich, UK)  was added and vortexed. Samples were then centrifuged at high speed 

(14000 g) for 2 minutes and the top layer (roughly 200 µl) was kept 200 µl of 

chloroform (sigma) was added, vortexed and centrifuged at 14000 g for 2 minutes 

and again the top layer was retrieved. To precipitate the DNA 500 µl of 100% 

ethanol and 20 µl of 3M sodium acetate at pH 7.2 were added to the sample, 

vortexed and frozen at -80
 o
C for 20 minutes. Samples were the centrifuged at 14,000 

g for 15 minutes. All liquid was then removed and the pellet was air dried for 30 

minutes to remove remaining ethanol and resuspended in 50 µl of distilled water. 

The DNA quantity was then measure using a spectrophotometer (Nano-drop 

ND1000) and sub-samples were diluted to 10 ng/µl for all future polymerase chain 

reaction (PCR) experiments. All DNA samples were stored at -80
o
C. 

 

Samples were then pooled using 250 males and 250 females (20ng from each 

individual) from sampling months July 2010 to July 2011. These DNA pools were 

then used to verify presence of different parasite groups. The parasite groups chosen 

for study were known to infect E. marinus or other amphipods and prioritised by 

parasites known to be highly influential in the population dynamics of other 

invertebrate species. Parasite groups screened via PCR were microsporidia (VIF and 

1342), acanthocephalan (537F and 1133R), trematode (18SF and Trem18SR1), 



 P a g e  |  5 1   

Wolbachia (Wol16SF and Wol16SR), and Paramyxea (Par18sf and Par18sr) (see 

Table 1). 

 

All PCR reactions were performed in 25 μl reactions containing 2.5 mM MgCl
2
, 0.25 

mM each deoxynucleotide, 0.5 mM each primer, 1 unit Taq DNA polymerase, 1 x 

buffer and 1µl (10ng) of template DNA. To check the quality of all DNA samples, 

amplification of the GAPDH gene was used as a control. PCR product size was 

visualised under a UV transilluminator using 1.2% agrose gel electrophoresis at 150 

V for 20 mins with ethidium bromide using DNA size standards. Thermal cycling 

conditions for all PCR reactions detailed in Table 1. All PCR reactions were control 

verified using a no template control (NTC) and a positive control for all parasite 

groups. From this initial general screen we could isolate parasites infecting the 

Portsmouth population. The amplified rDNA regions were purified using the 

QIAquick PCR Purification Kit (Qiagen) and sequenced using the Sanger method 

(Souce Bioscience) before a BLAST analysis was performed against sequences 

stored in GenBank (NCBI, www.ncbi.nlm.nlh.gov). Subsequently, individual 

infection of up to 20 males and 20 females was then considered over the months to 

measure prevalence and seasonality of the parasites present over an 18 month period 

(Jan 10 to Jun 11).  

 

  

http://www.ncbi.nlm.nlh.gov/
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Table 1: Primer name, the target gene, source of primer, the primer sequence and PCR 

thermal cycle conditions for the parasite identification screening for the Langstone Harbour, 

E. marinus population.  

 

 

  

Gene Primer Primer Source Sequence 5' end to 3'  Thermal cycle

GapdhF
ATAGTGTCCAACGCCTCCTG

GapdhR
CCAGTGGAGGATGGAATGAT

18SF Near et al (1998) AGATTAAGCCATGCATGCGTAAG

Trem18SR1 Guler GCCAACGGATGAACCATCGGCA

537F GCCGCGGTAATTCCAGCTC

1133R CTGGTGTGCCCCTCCGTC

Wol16SF CATACCTATTCGAAGGGATAG

Wol16SR AGCTTCGAGTGAAACCAATTC

VIF Weis et al (1994) CACCAGGTTGATTCTGCCTGAC

1342 Adapted from McClymont et al. (2005) ACGGGCGGTGTGTACAAGGTACAG

D. duebenum  16S DMR GATTTCTCTTCCGCAATACCAAT

D. berrilonum  16S BMR GATTTCTCTTCCGCAATACAGA

Par18SF CCAAACCAAACGATCGAAGT

Par18SR GGGCGGTGTGTACAAAG

94°C (5 min), 42 cycles of 94°C (45s), 

63°C (45s), and 72°C (45s), a f inal 

incubation of 5 min (72°C).

Paramartelia  18S

Near et al (1998)

Yang et al (2010)

Pourali et al (2009)

Yang et al (2010)

Short et al (2012)

Wolbachia 16S

94°C (5 min), 38 cycles of 94°C (45s), 

55°C (45s), and 72°C (45s), a f inal 

incubation of 5 min (72°C).

Microsporidia  16S

94°C (5 min), 42 cycles of 94°C (45s), 

62°C (45s), and 72°C (1.45min), a f inal 

incubation of 5 min (72°C).

94°C (5 min), 42 cycles of 94°C (45s), 

60°C (45s), and 72°C (45s), a f inal 

incubation of 5 min (72°C).

E. marinus  Gapdh

94°C (4 min), 35 cycles of 94°C (30s), 

60°C (30s), and 72°C (45s), a f inal 

incubation of 5 min (72°C).

Trematode 18S

94°C (4 min), 35 cycles of 94°C (30s), 

61°C (30s), and 72°C (45s ), a f inal 

incubation of 5 min (72°C).

Acanthocephala 

18S

94°C (4 min), 35 cycles of 94°C (30s), 

59°C (30s), and 72°C (45s), a f inal 

incubation of 5 min (72°C).
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2.2.3 Statistical analysis 

 

Relationships between biological parameters (E. marinus abundance, reproductive 

output etc) and environmental data (temperature and salinity) were investigated using 

multiple regression analysis. Relationships between two biological parameters such 

as host abundance and parasite prevalence were statistically analysed using Pearson’s 

correlation coefficients. Proportional analysis of parasite prevalence was conducted 

using a chi-square test. All analyses were conducted using the statistical software 

package (SPSS17).  
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2.3 Results 

 

2.3.1 Population study 

 

Monthly average densities of E. marinus ranged from 5.8 to 97.0 individuals per m
2
 

with a mean annual density + standard error of 38.6 + 5.6 individuals per m
2 

(see 

Figure 10). The highest densities were observed during the summer months with 

peaks in the first and second year of study in June 2010 (74.6 individuals m
2
) and in 

July 2011 (97.0 individuals m
2
), respectively. Lowest densities were observed in the 

winter months, in particular January 2010 (5.8 individuals m
2
) and February 2011 

(10.2 individuals m
2
). Regression analysis indicated over the two year period there 

was a significant relationship between the monthly densities of E. marinus and the 

mean monthly sea temperature (P = 0.008; R = 0.591; df = 1; F = 10.278; Figure 11). 

Multicollinearity analysis was conducted and indicated a low association in temporal 

monthly samples (Tolerance = 0.867; VIF = 1.157) and a slight serial correlation was 

observed (Durbin-Watson = 1.341) indicating the presence of temporal 

autocorrelation and that samples may not be fully independent. Seawater temperature 

slightly varied seasonally between the two years, however, both years presented a 

similar pattern. No significant relationship was observed between monthly densities 

of E. marinus and mean monthly salinity (P = 0.212; R = 0.300; df = 1; F = 1.685).  
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Figure 10: Seasonal variation in the density of Echinogammarus marinus (bar) and average 

monthly sea temperature (line) provided by CHIMET weather station. Error bars to one 

standard error. 
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Figure 11: Linear relationship between monthly mean temperature and Echinogammarus 

marinus density from Langstone Harbour, Portsmouth (UK).  Amphipod density from field 

data 2009-2011 and temperature data (CHIMET). 
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Figure 12: Population structure of juvenile, female and male Echinogammarus marinus in 

the Langstone Harbour, Portsmouth population during Dec 09 to Nov 11. 
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During the two year field study 3111 E. marinus were collected, measured and if the 

individual’s gender could be morphologically distinguished, sexed. The total number 

of juveniles collected was 1301 and total adults collected were 1810, of which 910 

were males and 900 were female. The population exhibited a 1:1 overall sex ratio, 

however, seasonal sex bias was present (see chapter three for further details). The 

juvenile population peaked in the early summer months (June 2010 and May 2011) 

(see Figure 12). Size-frequency distributions were examined to interpret the 

population structure at Langstone Harbour (see Figure 13). Amphipods taken from 

the population showed a mean length of 1.17 + 0.01 cm ranging from 0.24 to 2.88 

cm. Juveniles (small individuals) constituted 42% of the total population. Females 

could be morphologically identified at smaller lengths than males, and males grew 

larger than females. Males constituted higher size classes, whereas females were 

identified in the lower size classes.  Female and male mean lengths were 1.53 + 0.01 

cm and 1.74 + 0.01 cm, and the size range was 0.72 to 2.74 cm and 0.91 to 2.88 cm, 

respectively. Juvenile length ranged from 0.24 to 1.14 cm with a mean length of 0.52 

cm (see Figure 13). Individuals showed sexual dimorphism over 1 cm (see Figure 8) 

and sexual maturity was reached by 0.92 + 0.03 cm. External intersexuality was 

relatively low within the population the overall mean percentage of intersex in the 

sample population was 2.8 + 0.6 %, over the two year sampling period this ranged 

from 0 to 9.7%. Although, intersex levels fluctuated, no obvious trends were 

observed. 
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Figure 13: Length/frequency data of juvenile, female and male Echinogammarus marinus in 

the Langstone Harbour, Portsmouth population during December 2009 to November 2011. 
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E. marinus females were found to be ovigerous throughout the year, however, 

reproductive output fluctuated quite considerably (see Figure 14). For example, the 

mean percentage of ovigerous females was 40.0 + 5.0 % and ranged from 5.7% 

(August 2010) to 88% (May 2010). Seasonal patterns were not mirrored over the two 

year period with peaks in the percentage of ovigerous females being observed 

throughout the year, in particular May 2010, January to March 2011 and October 

2011 which correlated with peaks in the number of juveniles observed a couple of 

months later (see Figure 12). The data also reveals a reduction in reproductive output 

in August 2010 and July 2011.  Regression analysis revealed a relationship between 

percentage of ovigerous females in the population and temperature, although this was 

not significant (P = 0.060 R = 0.440, df = 1, F = 4.073). No relationship was 

observed with salinity (P = 0.839 R = 0.050, df = 1, F = 0.043).  
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Figure 14: Frequency of ovigerous females and percentage of ovigerous female within the 

female population (number of ovigerous females/the total number of females in the monthly 

sample)*100, categorised by either egg bearing or juvenile bearing, from Langstone Harbour 

(Portsmouth, UK) between December 2009 and November 2011. 
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2.3.2 Parasite prevalence and screening 

 

From the initial general parasite screen from the pool of 500 E. marinus individuals, 

microsporidian and trematode parasite species were identified from the Langstone 

Harbour, Portsmouth population. No infection from Paramyxea, Wolbachia or 

Acanthocephala species was observed. From past work, two microsporidia species 

have already been connected with E. marinus (Yang et al., 2011, Short et al. 2012b).  

Therefore, the Langstone Harbour was subsequently screened for Dictyocoela 

berillonum and Dictyocoela duebenum to establish if these were the species infecting 

the population. The microsporidia species was identified as, D. berillonum and no 

infection of D. duebenum was observed. BLAST search analysis (NCBI) of 

trematode sequences indicated the trematode belonged to the Microphallidae family, 

although the exact species could not be identified (see chapter three for further 

phylogentic analysis). From the sequencing reads generated, there was no indication 

of mixed signal, suggesting an isolated trematode dominates the Langstone Harbour 

population.  

 

Further to establishing which parasites infected Langstone Harbour E. marinus 

Population, individual infection rates of D. berillonum and the trematode were then 

recorded over an 18 month period during January 2010 to June 2011. The overall 

mean infection prevalence of D. berillonum over the study period was 14.43+1.49 % 

and ranged from 5.13 to 29.41 %. There was no significant difference in infection 

prevalence between males and females. Infection of the population peaked in both 

February (2010) and May (2011) with a crash in infection rates in March 2010 and 

2011 and in January 2011 (see Figure 15). There was no correlation (Pearson’s 

correlation coefficient) seen between the microsporidia prevalence and abundance of 

host (R = -0.258, P = 0.301), host intersexuality (R = 0.057, P = 0.821), or 

percentage of ovigerous females (R = 0.267, P = 0.271). Regression analysis failed to 

detect a significant relationship between microsporidia prevalence and sea 

temperature (P = 0.510 R = 0.166, df = 1, F = 0.454) or salinity (P = 0.174 R = 0.335, 

df = 1, F = 2.023).  
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The overall mean infection prevalence of the trematode over the study period was 

40.2 + 3.6 % and ranged from 17.5 to 70.0 %. There was no difference between 

infection prevalence in males and females. Infection within the population peaks in 

February and July for both 2010 and 2011, with a crash in infection rates in October 

2010 (Figure 16). There was no correlation observed between the trematode 

prevalence and abundance of host when directly comparing the months (Pearson’s 

correlation coefficient; R= -0.330, P = 0.168). Trematode prevalence can have a 

delayed effect on host abundance, trematode prevalence was aligned with host 

abundance +1 month under these conditions a significant relationship was observed 

(Pearson’s correlation coefficient; R= -.461, P = 0.047) (see Figure 17). Regression 

analysis failed to detect a relationship between trematode prevalence and sea 

temperature (P = 0.135 R = 0.582, df = 1, F = 0.315) or salinity (P = 0.282, R = 

0.260, df = 1, F = 1.236). 
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Figure 15: Linear relationship between host (Echinogammarus marinus) and parasite, 

Dictyocoela berillonum (Microsporidia) from Langstone Harbour, Portsmouth (UK) 

from January 2010 to July 2011.   
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Figure 16: Seasonal prevalence of trematode parasites within Echinogammarus marinus 

population from Langstone Harbour, Portsmouth (UK) from January 2010 to June 2011.   
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Figure 17: Linear relationship between Echinogammarus marinus density from Langstone 

Harbour, Portsmouth (UK) and prevalence of a trematode parasite.  Data obtained from field 

study during 2009-2011. 
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Trematode metacercariae could be clearly seen within E. marinus, this is due to the 

immune  response (melanisation) that encapsulates the metacercariae, making the 

cyst appears dark brown (See Figure 18A). While amphipod individuals were being 

dissected for DNA extraction, it was observed that some metacercariae do not 

develop this immune capsule (See Figure 18B). Records of individuals with visual 

cysts were recorded in this study. The animals that were visually infected matched up 

with a positive PCR result for the presence of trematode. However, the molecular 

screening also gave positive results for individuals that had no visual metacercariae. 

The PCR method suggested an infection prevalence of 40.2 + 3.6 %, whereas visual 

identification infection through cyst prevalence was 28.63 + 3.8%.  

 

 

 

 

 

 

 

 

 

 

Figure 18: Echinogammarus marinus 

hepatopancreas with trematode metacarceriae 

cysts attached with an immune response that 

visually appear brown (A) and cysts that have 

not developed an immune response that have a 

white, opaque appearance (B). 

B 

A 
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There was no observed interaction between the infection ratios of the microsporidian 

and trematode parasites. Peaks and crashes in the infection prevalence of the two 

parasites did not correlate with each other (R = -0.181, P = 0.564) (see Figure 19). 

The screen for microsporidia and trematode within the population recorded an 

overall 10.5% and 28% infection prevalence, respectively. Statistical analysis 

indicated a significant difference between the two parasite species infection 

prevalence in E. marinus (X
2 

= 76.0494 ; df = 1 ; P = < 0.0001). There was no 

statistical significance (X
2
 = 0.7802 ; df = 1 ; P = 0.3771) between the prevalence of 

microsporidian in the total population (10.5%) than those also infected with the 

trematode (12.9%). Equally there was no statistical significance (X
2
 = 0.7802 ; df = 1 

; P = 0.3771) between the prevalence of trematode in the total population (28.7%) 

than those also infected with the microsporidia (34%) suggesting that neither parasite 

influence the prevalence of the other. 
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Figure 19: Overall infections rates of trematode and microsporidia parasites in 

Echinogammarus marinus. 
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Microsporidia 

only infected 

 

Trematode 

only 

infected 

Co-

infection 

 

Total 

infected 

 

Uninfected 

 

3 9 2 14 12 

4 14 3 21 27 

1 10 1 12 37 

3 12 1 16 26 

5 6 2 13 26 

4 11 1 16 35 

1 24 4 28 35 

2 13 4 19 34 

5 12 1 18 34 

1 2 1 4 33 

2 11 1 14 29 

2 4 0 6 17 

1 12 1 14 23 

3 16 3 21 25 

1 13 2 16 28 

3 5 0 8 12 

8 7 0 15 32 

4 7 1 12 35 

53 188 28 267 500 
 

Table 2: Infection rates of trematode and microsporidian parasites in Echinogammarus 

marinus Langstone Harbour population with single and co- infection rates revealing low 

association between the two parasite groups. 
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2.4 Discussion 

 

The E. marinus population density at Langstone Harbour showed clear seasonal 

variation, a result consistent with other E. marinus populations (Maranhao et al., 

2001, Vlasblom 1969). The highest densities were observed during the summer 

months with the lowest densities being observed in the winter months. There was a 

significant correlation between the monthly densities of E. marinus and the mean 

monthly sea temperature. In addition, despite not being significant, a relationship 

between the percentage of ovigerous females and temperature was also observed. 

Environmental parameters, such as temperature, are highly influential factors in the 

reproductive processes of amphipods (Bettison and Davenport, 1976, Maranhao et 

al., 2001, Maranhao and Marques, 2003). E. marinus field studies have also 

demonstrated that the percentage of egg bearing females, population density, sex 

ratio, egg volume and fecundity are all influenced by salinity and temperature 

(Maranhão et al., 2001). The findings in this study confirm that E. marinus, like 

many amphipod species, are sensitive to environmental parameters. 

 

Sexual activity and recruitment occurs throughout the year at the Langstone Harbour 

population which supports previous studies of E. marinus (Maranhao et al., 2001) as 

well as, other amphipod populations (Costa and Costa, 1999, Covi and Kneib 1995, 

Drave and Arias, 1995, Moore and Wong, 1996). It was therefore consistent to find 

no obvious cohorts in the Langstone Harbour population. Peaks in the juvenile 

population were observed in the early summer months, but decreased in the winter 

months. This appears to correspond with other E. marinus population studies in 

different regions (Maranhao et al., 2001, Vlasblom, 1969).  The seasonal patterns of 

ovigerous females fluctuated over the two year period with peaks that were not 

seasonally distributed, with the exception of the late summer months in which a 

reduction in reproductive output was observed in both years. The population 

exhibited a 1:1 overall sex ratio; however, a seasonal sex bias was present, which 

will be discussed in detail in chapter four.  
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Generally in amphipod species, males have larger size ranges because they reach a 

larger maximal size (Borowsky, 1984). Sexual size dimorphism is ubiquitous among 

gammarids and is linked with fitness and fecundity (McCabe and Dunn, 1997). In 

this study, the female and male size range was 0.72 to 2.74 cm and 0.91 to 2.88 cm 

respectively. Females could be morphologically recognised at a smaller size than the 

males and the maximum length of the amphipods did not differ greatly between 

genders. Therefore, the larger size range observed in females was probably due to 

early stage brood plates being more noticeable than early stage genital papillae. 

Another sampling bias that may have occurred relates to the collection of juveniles in 

mud and seaweed, which can often be difficult due to their small size. Juvenile 

numbers could have been underestimated, despite that samples were sieved and 

collection was thorough.  

 

Little interaction between environmental parameters and E. marinus data was 

observed, with the exception of some interaction between sea temperature and the 

percentage of ovigerous females in the population, as well as temperature and E. 

marinus abundance. Intertidal animals are well adapted to swings in environmental 

conditions due to the nature of their habitat. Environmental conditions are not as 

varied in the south of England compared with locations hosting other E. marinus 

populations (Maranhao et. al., 2001). Further investigation into other parameters that 

are known to affect E. marinus or amphipod species such as food availability (green 

macro algae biomass) (Drake and Arias, 1995, Maranhao et al., 2001, Pardal et al., 

2000), and predator abundance (seasonal bird abundance) would possibly elucidate 

further population effects on the Langstone Harbour population.  

 

The study of the two parasites identified to infect the Langstone Harbour population 

revealed that while the trematode fluctuates greatly throughout the study period, the 

microsporidia presented a more consistent infection prevalence. These parasite 

groups have very different transmission strategies and life cycles which could 

account for the differences in the temporal infection prevalence. Trematodes are 

horizontally transmitting parasites that have multi host life cycles and are known to 
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alter their amphipod host’s behaviour to increase their likelihood of being predated 

on by birds or fish, thereby reaching their definitive host (Poulin and Cribb, 2002). 

Parasite and host fitness are conflicting and often the parasite has pathogenic or 

detrimental effects upon the host. Microsporidia are obligate intracellular parasites 

that use vertical and horizontal transmission (Dunn and Smith, 2001, Terry et al., 

2004). D. berillonum is a vertically transmitting parasite (Yang et al., 2011), 

although, as there is no extreme female bias or female biased infection, data from this 

study suggests that this is not a feminiser. This supports previous studies that 

examined D. berillonum infection in amphipods (Terry et al., 2004, Yang et al., 

2011).  

 

Since vertically transmitted parasites are highly invested in host health because of 

their requirement for successful host reproduction, they can be in direct conflict with 

horizontally transmitted parasites. This study revealed no obvious interactions 

between the trematode and microsporidian species infecting the Langstone harbour 

population. Haine et al. (2005) investigated how horizontal parasites, such as 

acanthocephalans, can affect vertically transmitting microsporidian parasites and 

how or if, coexistence can occur despite their different modes of transmission. It was 

suggested that two conflicting parasites competing for the same host might adopt 

either a strategy of avoidance or sabotage. However, co-infection levels in this study 

were as expected given the individual infection prevalence of the two parasite 

species. High co-infection prevalence of the two parasites infecting the E. marinus 

population at Langstone Harbour would be detrimental for one or possibly both 

parasite species as they would be directly competing for opposite strategies. 

Therefore, further investigation into whether the co-prevalence of the two species in 

a single individual reduces parasite fitness or lessens their effects could reveal 

possible parasite competition interactions 

 

Seasonal variation of the trematode parasite was more dramatic compared with the 

relatively consistent infection rates of the microsporidian. Meissner (2001) recorded 

seasonal patterns of trematode prevalence in the amphipod Corophium volutator that 

showed relatively low variation in seasonal prevalence, with lowest prevalence being 

observed in spring and early summer, when juvenile numbers are at their highest. 



 P a g e  |  7 4   

Infection prevalence was observed to steadily increase during the summer and 

peaked in the late summer and autumn months (Meissner, 2001). This study revealed 

trematode fluctuations correlated with host abundance, rather than temperature.  No 

relationships were observed between trematode abundance and any environmental 

parameters studied, which is consistent with other trematode studies that also have 

shown no environmental influences (Lagrue and Poulin, 2008). Understanding 

parasite influences upon their hosts and the effects on population dynamics can be 

problematic due to the numerous influencing factors at play. This complexity can 

increase if the parasite has multiple hosts. Mud snails (Hydrobia) were abundant at 

the sample site and it is extremely likely to be the first intermediate host within the 

trematode infecting E. marinus, as they represent frequent intermediate hosts 

(Bordalo et al., 2011, Zander et al., 2000). In addition, multiple bird species inhabit 

the area and are a good candidate for the definitive host of the trematode found in E. 

marinus. It is probable that the trematode prevalence within E. marinus is strongly 

dependent upon the other hosts necessary for its lifecycle as well. 

 

Trematode parasites are well documented to impact the population dynamics of 

various hosts due to their behaviour altering capacity (Damsgaard et al., 2005). 

Increased surface activity has been observed in a population of C. volutator that was 

infected with several microphallid trematode species, an activity linked with the local 

extinction of the population (Damsgaard et al., 2005). In this study, a significant 

correlation between host abundance and trematode prevalence was observed. Great 

fluctuations in the trematode infection prevalence could be evidence of a build up of 

infected individuals that then go through mass mortality over time, resulting in the 

appearance of reduction in infection prevalence within the population. Further 

investigation is needed to determine whether the mass mortality is through 

behavioural manipulation causing predation or pathogenic induced mortality. 

However, data suggests this microphallid parasite has the capacity of having great 

influence on this E. marinus population. This also emphasises how important the 

awareness of parasite prevalence and abundance is to understanding population 

dynamics of any species. (Poulin and Mouritsen, 2006). 
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The prevalence of microsporidia fluctuated far less than the trematode; however the 

microsporidia prevalence does dip during certain months. The level of infection 

within G. duebeni is closely associated with parasite burden and efficiency of 

transmission (Dunn and Hatcher, 1997b).  In amphipod species abiotic factors such 

as temperature and salinity can highly influence the parasite transmission (Dunn and 

Hatcher, 1997a, Dunn et al., 2006b). Although, this study observed no relationship in 

the microsporidia prevalence with mean monthly sea temperature or salinity. The 

fluctuations observed could be particular temperature ranges and salinities restricting 

transmission rates at certain points of the year. This is probably due to temperature 

and salinity ranging between levels within the parasite can replicate and transmit 

which reflects the some what consistant prevalence. Microsporidia transmission is 

passed on to the next generation constantly as the E. marinus population reproduces 

throughout the year.  

 

Trematode metacercariae could be visually seen within E. marinus, due to the 

immune response that encapsulates the metacercariae. It was observed that some 

metacercariae do not develop this immune capsule. This could either be due to the 

metacercariae recently entering the amphipod host, therefore, not giving a sufficient 

amount of time for the development of a response, or that more substantial well 

developed metacercariae have a greater tolerance to the host immune system than the 

smaller sized cysts that have larger surface to volume ratio, perhaps making a host 

immune system response to be successful. Consistent with this was the observation 

that, generally, the metacaceriae cysts that had not developed an immune response 

were larger.  Visual identification of infection is how many trematode studies 

measure prevalence in the field (Lagrue and Poulin, 2008). The animals that were 

visually infected matched up with a positive PCR result for the presence of 

trematode. However, the molecular screening also gave positive results for 11% 

more individuals that had no visual metacercariae. The most probable explanation is 

that these individuals possess metacercariae that have recently entered the host and 

have not yet induced a sufficient immune response making them less visually 
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obvious. PCR methods are a more accurate way of establishing prevalence within 

this parasite for future work as a result of its increased sensitivity.  

 

This study has given insight into the Langstone Harbour population highlighting 

multivoltine life cycle, in which breeding is not seasonally restricted and recruitment 

occurs throughout the year. E. marinus abundance and reproductive output was 

influenced by temperature, although no other correlations with the environmental 

parameters investigated were observed. The population was found to be infected by 

the microsporidian, D. berillonum and an undescribed trematode belonging to the 

Microphallidae family out of the parasite groups that were investigated. This study 

did observe large seasonal variability in trematode abundance, whereas D. 

berillonum showed a more consistent infection rate. The trematode prevalence 

showed a significant correlation with host abundance. Although neither parasite 

species showed any effects on infection prevalence of the other parasite, or showed 

any sex bias in their infection rates. This study has highlighted several new paths of 

research within this widespread amphipod species, as well as providing a basic 

understanding of the population dynamics at Langstone Harbour, Portsmouth. In 

particular the work has shown the importance of parasitology work in population 

dynamics research. 
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3. The identification and effects of 

digenean trematode parasites that 

infect Echinogammarus marinus 

3.1 Introduction 

 

The first known example of a trematode parasite infecting Echinogammarus marinus 

was revealed during a screen to identifying parasite groups thought capable of greatly 

influencing host population dynamics (Chapter 2). The screen revealed a high 

prevalence of metacercariae in the body cavity and brain. The main focus of this 

chapter is to determine the trematode species that infects E. marinus populations and 

the possible effects that they may induce. 

                                                                                                                                                                                                                                                                                                                                                                      

Among intertidal animals, trematodes are the most common parasite and consist of 

an estimated 25000 species, many of which have yet be described (Mouritsen and 

Poulin, 2002). The class Trematoda comprises of two subclasses, Digenea and 

Aspidogastrea, that forms part of the Neodermata clade (platyhelminthes) 

(Littlewood et al., 1999).  Trematodes are obligatorily parasites that have complex 

life cycles, infecting up to four hosts, taking many distinct forms and can infect their 

hosts in a variety of ways (Esch et al., 2002). Their life cycle comprises both free 

living and parasitic stages and can incorporate asexual and sexual reproduction (see 

Figure 20), with gammarids generally acting as intermediate hosts within the 

trematode life cycles. The complexity of a multi host life is a risky strategy as any 

interruption in life cycle steps would result in incompletion to the final goal, sexual 

reproduction within the final host. This has resulted in various adaptations to 

maximise success and to counteract the risks (Poulin and Cribb, 2002). For example, 

some species have truncated their life cycle by removing hosts thus reducing the 

number of transmitting events between hosts (Poulin and Cribb, 2002, Rauch et al., 

2005). Reducing the number of hosts seems like the obvious answer to decreasing the 

risk of life cycle incompletion, many species still possess three hosts in their life 

cycle. 



 P a g e  |  7 8   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The complex life cycle of microphallid trematodes infecting amphipods (from 

Gates 2006). 
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Utilising multiple hosts facilitates an increase in life stages, this can increase the 

potential for higher growth and fecundity (Parker et al., 2003), increase probability of 

locating a mate (Brown et al., 2001), higher transmission rates, longer life span 

(Choisy et al., 2003, Parker et al., 2003), as well as increasing clone intermixture, 

thus decreasing the risk of mating between genetically identical individuals (Keeney 

et al., 2007).  Another strategy adopted is to produce high numbers through life 

stages via asexual production and high adult fecundity. For example, sporocysts can 

produce 500000 cercariae within a host per day (Poulin and Cribb, 2002; Haas, 

2003). Within the micracidium stage the larvae have evolved to utilise chemotaxis 

and chemokinesis to detect the intermediate host (Haas, 2003). Lastly, the presence 

of metacercariae can manipulate the intermediate host activity (behaviour) such that 

it increases the chance of trophic transmission to the definitive host (Bethel and 

Holmes, 1973, Camp and Huizinga, 1979, Combes, 1991).  

 

Behaviour alterations observed in parasite infected animals can be through a side 

effect of infection or pathologically induced behaviour modification due to the 

presence of the parasite (Poulin, 1995). Debilitating parasites can induce multiple 

alterations that can substantially modify the biology of the host leading to population 

level effects (Thomas et al., 1995). The volume of metacercariae can increase 40-fold 

during microphallid development causing a massive shift in the allocation of host 

resources  which, in turn, can cause malnutrition due to increased food requirements, 

increased oxygen demand and obstruction of locomotory apparatus (Benjamin and 

James, 1987, Galaktionov et al., 1996). Although not a direct manipulation in host 

behaviour an increased food demand could cause host relocation, thereby changing 

‘normal’ behaviour (Damsgaard et al., 2005), which consequently could increase 

chances of predation or could have no adaptive strategy and simply be an arbitrary 

side effect.   

 

Behavioural alterations induced by some trematode species do not always exhibit the 

same effects on different hosts. The trematode Maritrema novaezealandensis is 

known to cause reduced activity in the amphipod Paracalliope novizealandiae, 

which is thought to be induced by the pathology of the parasites presence (Leung and 

Poulin, 2006). However, the shore crab, Macrophtalmus hirtipes infected with the 
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same parasite showed no altered behaviour (Martorelli et al., 2004). This could be 

due to another parasite masking effects, or differences in the biology between 

amphipods and crabs, possibly amphipods are more susceptible to manipulation in 

their biology or behaviour manipulation is easier to observe in amphipods due to 

their greater mobility. Similarly, the trematode, Microphallus papillorobustus, infects 

two sympatric amphipod species, Gammarus insensibilis and Gammarus aequicauda 

(Helluy, 1983a). However, while infected G. insensibilis shows behaviour 

manipulation increasing the likelihood of avian predation, G. aequicauda only 

exhibits this behaviour when infected during juvenile stages and infection as an adult 

shows no behaviour modification (Helluy, 1983a, Helluy, 1984, Helluy and Thomas, 

2003). 

 

The trematode, Maritrema subdolum is known to have close association with 

gammarids that are also infected with M. papillorobustus, a microphallid that encysts 

within the head (Helluy, 1982).  M. subdolum remain within the abdomen region, and 

are believed not to be involved in the behaviour manipulation associated with M. 

pabillorobustus (Kostadinova and Mavrodieva, 2005). These closely related species, 

infecting similar hosts, do not share the same manipulating effects, although their co-

presence within gammarids does indicate a possible hitch-hiking strategy (Thomas et 

al., 1997). Cercariae of M. subdolum have greater mobility within the water column 

than those of M. papillorobustus, therefore can access gammarids already infected 

with a behaviour manipulating trematode and can increase their chance of 

transmission (Thomas et al., 1997; Thomas and Helluy, 2002).  This indicates that 

even closely related species can differ in adaptive strategy. 

 

Research into cerebral encysting trematodes that cause manipulation via neurological 

pathways has now been established (Helluy and Thomas, 2010, Shaw et al., 2009, 

Ponton et al., 2006). A well documented example are gammarids infected by M. 

papillorobustus, that cause a positive phototaxic and negative geotactic response, an 

abnormal behaviour pattern, considering the usual evasive manner observed in 

amphipods (Helluy, 1983a, Helluy, 1983b). Injection of serotonin in the hemocoel of 

gammarids also induces similar effects (Helluy and Holmes, 1989, Tain et al., 2006)., 

while other neurotransmitters investigated (GABA, noradrenaline, dopamine and 
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octamine) at similar concentrations, failed to induce an comparable response (Helluy 

and Holmes, 1989).  

 

M. papillorobustus metacercariae migrate to their host’s brain and encyst in the 

cerebral ganglia, specifically within the protocerebrum, the very front section of the 

brain responsible for all visual sensory input (Kostadinova and Mavrodieva, 2005; 

Thomas et al., 2000; Helluy and Thomas, 2003).  Once inside the brain, serotonin 

levels become altered in specific regions, but most significantly a decrease of 62% 

was observed in the optic neuropils. The degeneration of discrete sets of serotonergic 

neurons in parasitised individuals was suggested to be the cause of the serotonin 

imbalance, which is thought to result in the aberrant photic behaviour (Helluy and 

Thomas, 2003). Mechanical displacement within the host brain can cause some 

alteration as well, with large cysts affecting important neuronal architecture in the 

small brain, particularly the adjacently located optic tracts (Helluy and Thomas, 

2003). Recently, a study by Helluy and Thomas (2010) has shown that M. 

papillorobustus also induces a specific immune response, with neuro-inflammation 

being indicated by elevated levels of nitric oxide synthase and astrocyte-like glia 

being present at the host-parasite interface within the brain. The neuro-inflammation 

response in the host brain is suggested to play a role in the neuro-modulation and 

consequent behaviour alteration observed in previous studies.  

 

The aims of this chapter are to identify the trematode species infecting E. marinus 

populations via molecular characterisation of the 18S, 28S and the ITS regions of the 

trematodes rDNA gene. Three E. marinus populations will be studied Langstone 

Harbour, Portsmouth; Inverkeithing, Scotland; and Loch fleet, Scotland, UK. The 

rDNA sequences of any trematode species infecting E. marinus can then be 

compared with published digenean parasite sequences and allow phylogentic 

analysis. The application of molecular tools to phylogenetically analyse trematodes 

has become widespread in recent years (Littlewood et al., 1999, Olson et al., 2003b, 

Tkach et al., 2003). However, relatively well studied trematode parasites still lack 

molecular data (e.g. M. pabillorobustus). M. pabillorobustus metacercariae rDNA 

will be sequenced due to its similarities with the trematode infecting the Langstone 

Harbour population. Both species have similar geographical range, utilise gammarids 
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as intermediate hosts, are morphologically alike, and encyst within the brain or attach 

to nerves in the thorax or abdomen. This study also aims to elucidate the adaptive 

strategy of the trematode infecting the Langstone Harbour population by conducting 

geo- and phototaxic behavioural assays to establish whether they induce behavioural 

alteration within E. marinus. On the basis of the findings of the behavioural assays, a 

molecular study will be performed to reveal whether there is any altered regulation of 

genes in infected animals to reveal possible mechanisms being affected in the hosts 

biology. 
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3.2 Methods 

3.21 Trematode Identification 

 

E. marinus were collected from beneath seaweed and rocks in the intertidal zone 

during low tide. Infected E. marinus individuals were taken from three different 

populations: Langstone harbour, Portsmouth (see Figure 7), Inverkeithing, Fife, 

Scotland (56
o
1’38”N 3

o
23’37”W) (see Figure 21) and Loch Fleet, Scotland (56° 05’ 

35.7”N 3° 09’ 29.0”W) (see Figure 22). Samples from Loch Fleet were obtained from 

Dr Alex Ford (2006). G. insensibilis infected by M. pabillorobustus were collected in 

the south of France (Etang de Thau, 43°25'N, 3°35'E) and were kindly donated by Dr 

Frederic Thomas (University of Montreal). The parasite cysts from each population 

were dissected from their host. 20 individuals per host population were used to obtain 

enough parasite tissue and stored in 70% ethanol at -80
o
C. DNA extracted using the 

DNAeasy kit (Qiagen, UK) following the manufacturers protocol.  
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Figure 21: Illustration of the sample site for the collection of E. marinus at Inverkeithing, 

Fife, Scotland (56
o
1’38”N 3

o
23’37”W).  Image was produced by Google Earth Software 

(2012).  

 

 

Figure 22: Illustration of the sample site (red triangle) for the collection of Echinogammarus 

marinus at Loch Fleet, Scotland (56° 05’ 35.7”N 3° 09’ 29.0”W). Image was produced by 

Google Earth Software (2012).  
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The trematode DNA was amplified using general acanthocephalan primers of the 18s 

ribosomal gene (Near et al., 1998). (Initially the parasite cysts were morphologically 

identified as an acanthocephalan species.) Primers used to amplify the 18S gene were 

537F and 1133R, 1073F and 18SR, 18SF and 549R to the conditions in accordance 

with Near et al. 1998 (see Table 3). To gain the complete 18S sequence primers were 

designed after initial sequencing (Trem18SR1 and 2).  18SF and Trem18SR1 were 

used in the amplification and the sequencing was conducting using the Trem18SR1 

and 2 (see Table 3). Primers T28SF and T28SR were used to amplify the 28S region 

(Olson et al., 2003). To sequence the ITS region primers were designed specifically 

from the 3’ end of the trematode 18S region (PITSF) and the 5’ end of the 28S region 

(PITSR). Parasite and host sequences were aligned (ClustalW2) (www.ebi.ac.uk) and 

ITS primers were designed against parasite specific sequences to ensure no host 

template was amplified. 

 

All primers were synthesised by Eurofins MWG Operon and all PCR product sizes 

were verified by electrophoresis on a 2% agarose gel using DNA size standards. 

DNA products was purified and eluted with the QIAquick Gel Extraction Kit 

(Qiagen, UK) gel purification kit following the manufacturer’s protocol. The purified 

PCR products were subsequently sequenced using the Sanger method (Source 

Bioscience) and BLAST analysis on the newly generated sequences were performed 

against the NCBI (National Centre for Biotechnology Information, 

www.ncbi.nlm.nlh.gov) database to confirm the closest sequence annotation. Other 

trematode sequences were gathered from this database for phylogenetic comparison, 

which were then aligned (ClustalW2) and trimmed, a phylogenetic tree was 

constructed using the maximum likelihood method implemented by the PhyML 

(v3.0, www.phylogeny.fr) program, with the reliability of the branching being 

assessed using the bootstrap method (n = 100) (Dereeper et al., 2008). 

  

http://www.ebi.ac.uk/
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Primer Sequence 5' end to 3'   
PCR Reactions- (25-μl) 

(Promega GoTaq®)  
Thermal cycle 

18SF AGATTAAGCCATGCATGCGTAAG  2.5 mM MgCl2, (x1) 

Buffer, 0.2 mM each 

dNTP's, 0.25 mM each 

primer,  1 units Taq DNA 

polymerase, 10ng gDNA 

94°C (4 min), 35 cycles 

of 94°C (30s), 60°C 

(30s), and 72°C (45s), a 

final incubation of 5 min 

(72°C). 549R GAATTACCGCGGCTGCTGG 

537F GCCGCGGTAATTCCAGCTC  2.5 mM MgCl2, (1x) 

Buffer, 0.2 mM each 

dNTP's, 0.25 mM each 

primer, 1U Taq DNA 

polymerase, 10ng gDNA 

94°C (4 min), 35 cycles 

of 94°C (30s), 60°C 

(30s), and 72°C (45s), a 

final incubation of 5 min 

(72°C). 1133R CTGGTGTGCCCCTCCGTC 

1073F CGGGGGGAGTATGGTTGC  2.5 mM MgCl2, (1x) 

Buffer, 0.2 mM each 

dNTP's, 0.25 mM each 

primer, 1U Taq DNA 

polymerase, 10ng gDNA 

94°C (4 min), 35 cycles 

of 94°C (30s), 60°C 

(30s), and 72°C (45s), a 

final incubation of 5 min 

(72°C). 18SR TGATCCTTCTGCAGGTTCACCTAC 

Trem18SR1 GCCAACGGATGAACCATCGGCA  2.5 mM MgCl2, (1x) 

Buffer, 0.2 mM each 

dNTP's, 0.25 mM each 

primer, 1U Taq DNA 

polymerase, 10ng gDNA 

94°C (4 min), 35 cycles 

of 94°C (30s), 60°C 

(30s), and 72°C (45s ), a 

final incubation of 5 min 

(72°C). Trem18SR2 TGGAGTTACCGCGGCTGCT 

T28SF TAGGTCGACCCGCTGAAYTTAAGCA  2.5 mM MgCl2, (1x) 

Buffer, 0.2 mM each 

dNTP's, 0.25 mM each 

primer, 1U Taq DNA 

polymerase, 10ng gDNA 

94°C for 4 min, 40 cycles 

of 94°C (30s), 56°C 

(30s), and 72°C (45s),a 

final incubation of 5 min 

(72°C). T28SR GCTATCCTGAGGGAAACTTCG 

PITSF GTTTCGACTGCTCGAGTGGTG  1.25 mM MgCl2, (1x) 

Buffer, 0.2 mM each 

dNTP's, 0.25 mM each 

primer, 1U Taq DNA 

polymerase, 5ng gDNA 

94°C for 4 min, 32 cycles 

of 94°C (45s), 59°C 

(45s), and 72°C (1.5 min), 

a final incubation of 5 

min (72°C) PITSR AACAACCTGAACACCACATTG 

 

Table 3: Primer name, sequences and PCR conditions for trematode rDNA phylogeny 

analysis.  
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3.22 Behavioural effects 

 

E. marinus were collected in Langstone Harbour, Portsmouth, UK at low tide from 

beneath seaweeds (mainly fucoids) and rocks. Individuals were then sexed and 

separated according to infection. Only male individuals were used, specimens were 

considered infected if they visually heavily infected with trematode cysts.  All 

individuals were kept in a set photoperiod (12:12 light:dark) temperature-controlled 

room (10 ± 1 °C). A 7-day period was allowed for the animals to acclimate to their 

adjusted environment. Behavioural experiments were adapted from those of Tain et 

al. (2006). After 7 days of acclimatisation, behavioural assays were conducted to test 

whether geotaxis and phototaxis are altered between uninfected and infected groups. 

This was achieved by placing specimens in light/dark and vertical choice chambers 

where every 30 seconds for a 10 minute period the position of the test organism were 

recorded. Phototaxis of an organism is light-mediated behaviour towards or away 

from the stimulus: either positive (attracted to light) or negative (attracted to dark). 

Geotaxis of an organism is gravity-mediated behaviour: either positive (towards 

gravity i.e. lower regions of the water column) or negative (against gravity i.e. 

surface of the water column). Phototaxis scoring was measured by issuing a score of 

1 in the light side and 0 at the dark every 30 seconds. Therefore a score of 20 was 

highly photopositive and 0 highly photonegative. The vertical choice chambers were 

1000 ml measuring cylinders with dark tiles above and below to produce non-direct 

uniform light. Geotaxis scores consist of every 30 seconds measuring the height 

within the measuring cylinder and taking the average over the 10 min period. 

Therefore high geotaxis score (1000) signifies negative geotaxis behaviour and low 

geotaxis score (0) is positive geotaxis behaviour. 

http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib50
http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib50
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Figure 23: Phototaxic behavioural assay: Dark and light choice chambers at 10ºC.  

 

Initial studies were conducted by comparing the phototactic and geotactic behaviour 

of E. marinus infected (n = 20) and uninfected (n = 20) with the trematode parasites. 

As a behaviour effect was observed, E. marinus were also exposed to the 

neurotransmitter serotonin (Sigma). To see whether infected individuals induced a 

similar effect to those individuals exposed to serotonin, as the manipulation of the 

serotonin pathway has been linked to some trematode species and other parasite 

groups (Helluy and Thomas 2003, Tain et al. 2006). E. marinus individuals were 

kept in 100 ml plastic containers using a static renewal system where solutions were 

changed every 3 days (n=20 for each concentration group). Serotonin solutions were 

made up to nominal concentrations of 0.01, 0.1, 1, 10 μg/L and a solvent control 

(0.025% ethanol). Behavioural assays were subsequently performed every 7 days for 

3 weeks. Data were compared using non-parametric statistics (either Mann–Whitney 

or Kruskal–Wallis). Bonferroni corrections were carried out on all pair-wise 

comparisons of Kruskal–Wallis tests.  

http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib50
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3.23 Gene expression study 

 

The behavioural assay findings suggested behaviour modification in infected 

individuals and consequently the aim of this study was to develop gene biomarkers to 

elucidate possible neurological mechanisms that may be affected due to the 

trematode infecting the Langstone Harbour, Portsmouth population. The selection of 

genes was based on the assumption that the cerebral encysting trematode is 

modulating the serotonin pathway, although other genes were investigated. Initially, 

analyses were conducted using flybase (flybase.org) to identify genes involved in the 

serotonin pathway in Drospholia. The sequences retrieved from flybase were then 

used to perform a local BLAST search against the E. marinus transcriptome database 

to find possible contig matches. Sequences sharing high levels of sequence identifty 

(≤ e-5) were then taken and an additional BLAST analysis (blastn) was performed 

against sequences in Genbank (NCBI) to confirm the annotation. Gene candidates 

were selected on the basis of their direct involvement in the serotonin pathway or 

within processes that may affect behavioural responses (see Table 4). The only 

exception to this was a predicted Arginine Kinase gene, which was chosen due to its 

involvement as a regulating factor of nitric oxide, a specific immune response 

induced by M. pabillorobustus, another behaviour manipulating trematode (Helluy 

and Thomas, 2010, Ponton et al., 2006).  Primers were designed using Primer-3 

software (Rozen and Skaletsky, 1999) and synthesised by Eurofins MWG Operon.  

All PCR reactions had a  thermal cycling of 95ºC (4min) followed by 35 cycles of 

95ºC (30s), 60ºC (45s), 72ºC (45s) with a final incubation of 5 min (72°C). All 

reactions had a 25 μl volume containing 1.5 mM MgCl2, 1x buffer, 0.25 mM each 

dNTP's, 1 unit Taq DNA polymerase, 10ng cDNA (Promega GoTaq®). Using PCR 

and gel electrophoresis primer concentrations were adjusted, 10mM primer 

concentration for all primers except ine and 5HT1 primers were reduced to 0.5mM 

(see Figure 24). 
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Table 4: Serotonin drosopholia genes were BLAST searched on the Echinogammarus 

marinus transcriptome database to identify possible serotonin related contigs. These contigs 

were then selected and a BLAST analysis was performed on the NCBI database to confirm 

possible function.  Primers were then designed using Primer-3 software (Rozen and 

Skaletsky, 1999) and synthesised by Eurofins MWG Operon 

 

 

 

Figure 24: Gel electrophoresis analysis examining the suitability of the primers using pooled 

control (uninfected) and infected E. marinus head cDNA. 1, Inebriated like gene 

neurotransmitter 1; 2, Inebriated like gene neurotransmitter 2; 3, Putative Rhodopsin gene 1; 

4, Putative Rhodopsin gene 2; 5, Putative Serotonin transporter candidate / Amino acid 

transporter; 6, Putative Tryptophan  5-monooxygenase activation protein; 7, Putative 

Serotonin receptor – 5HT1; 8, Putative Tryptophan hydroxylase gene; 9, Putative Amino 

acid decarboxylase gene; 10, Predicted Arginine kinase gene 
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Six individuals from an uninfected control group and an infected group were 

dissected as shown in Figure 24. The heads were removed from the body before the 

first pereon and the antenni were amputated. The six heads were then pooled together 

and snap frozen using liquid nitrogen, before total RNA was extracted using TRI 

Reagent
® 

(Ambion) according to manufactures instructions. Briefly, Samples were 

thawed and left at room temperature for 5 minutes, then centrifuged at 12000g for 10 

minutes at 4ºC (ALC, PK121R centrifuge). Supernatant was removed and 600μl of 

BCP (1-Bromo-3-Chloro-propane) (Sigma) was added to the solution. This was left 

for 15 minutes at room temperature and samples were then centrifuged at 12000g for 

15 minutes at 4ºC. The colourless top layer was removed and placed into a clean 

microcentrifuge tube, to which 350μl of isopropanol (Sigma, molecular grade) was 

added. The sample was then vortexed and left at room temperature for 8 minutes, 

before being centrifuged at 12000g, at 4ºC for 8 minutes and the supernatant 

removed. The remaining pellet was then washed using 600μl of 75% ethanol (Sigma, 

molecular grade) and then centrifuged at 7500g, at 4ºC for 5 minutes. The ethanol 

was removed and the pellet was re-suspended in 50μl molecular grade dH20 by 

vortexing gently. The amount of RNA extracted was then quantified using a 

spectrometer (Thermo Scientific, Nanodrop 1000). # 

 

 

Figure 25: Female Echinogammarus marinus, dashed black lines demonstrating the section 

of tissue dissected for qPCR analysis. The head was removed before the first pereon and the 

antenni were amputated.  
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RNA Clean and Concentrator™-5 columns (Zymo Research Corp, Cat no. R1016) 

were used to prepare RT-PCR ready RNA, using the manufacturer’s guidelines. The 

RNA was then quantified using a Spectrometer (Thermo Scientific, Nanodrop 1000 

Spectrometer), before RNA quality was assessed using gel electrophoresis. From the 

extracted RNA 250ng was reverse transcribed into cDNA using reverse transcriptase 

(Promega). Briefly, random hexamers (1µg) were added to the RNA samples, before 

the samples were heated at 70ºC for 5 minutes, chilled at 4ºC for 5 minutes, spun 

down and 30µl of transcriptase mix containing DNAse I (3U) with reaction buffer 

(New England Biolabs) was added (in accordance with manufacturers’ guidelines). 

The samples were then incubated at 25ºC for 5 minutes, 42ºC for 60 minutes and 

70ºC for 15 minutes. The resulting cDNA produced was tested to amplify the 

constitutively expressed GAPDH genes (see Yang et al., 2011 for PCR conditions). 

To ensure no gDNA remained in the RNA samples, a minus RT control reactions 

were performed. Real-time PCR using SYBR green based detection was completed 

using a Real-Time PCR machine (Illumina Eco) and results were generated using 

ECO software (version 3.0). The cDNA underwent PCR (95ºC for 2minutes, 

followed by 40 cycles of 95ºC for 15 minutes and 60ºC for 60 seconds, completed 

with 1 cycle of 60ºC for 95 seconds) with Rox normalisation. For each variant three 

repeats were completed. The fold-change was calculated using the ΔΔC
T 

Method 

(Biosystems, 2008) using GAPDH as the reference gene and the uninfected group as 

the reference sample.  
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3.2 Results 

 

3.31 Trematode Identification 

 

The results of the phylogentic analysis based on the 18s, 28S and the ITS regions of 

the unknown trematode found within E. marinus and closely related species revealed 

all the trematode species in the E. marinus populations surveyed belong to the 

Digenea subclass and the order Plagiorchiida. Inverkeithing trematode belongs to the 

family Opecoelidae. From the phylogenetic tree based on the 18S we can conclude 

the trematode species found within the Inverkeithing population are closely related to 

Gaevskajatrema halosauropsi (AJ287514.1) (see Figure 26) with a base pair match 

of 1878/1902 (99%) across the sequenced region. In addition, the analysis of the 28S 

sequence, showed G. halosauropsi was the closest related (see Figure 27) with a base 

pair match of 1195/1245 (96%). There was no ITS sequence for G. halosauropsi 

currently available on Genbank, however, the blast analysis on the ITS sequences 

showed the closest related species to the Inverkeithing trematode were two 

Opecoelidae spp., an un-described Opecoelidae sp. (AJ241813.1) and Nicolla 

Elongata (AJ241792.1) (see Figure 28), which is found to parasitise the marine fish, 

Phycis physis. From the analysis of the sequences, the trematode infecting the 

Inverkeithing population can be confidently categorised within the Opecoelidae 

family. 

 

The Portsmouth and Loch Fleet E. marinus populations appears to be infected by the 

same species or two closely related, with the 18S showing a 99.2% base pair identity. 

Therefore, no further sequencing was conducted in the trematode found in the Loch 

Fleet population. The trematode infecting the Portsmouth population appears to 

belong to the family Microplalloidea on the basis of all rDNA sequence (Figure 26-

28). However, phylogenetic analysis reveals no consensus as to which species is 

most closely related. Generally, the ITS region presents the most variability and is 

thought to be a good species marker for digeneans. It is highly probable the 

trematode isolated from E. marinus at Portsmouth and Loch fleet is a new species of 

trematode that belongs to the Microphallus genus. 

http://www.ncbi.nlm.nih.gov/nucleotide/13508586?report=genbank&log$=nucltop&blast_rank=2&RID=YSD7F7FA016
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Figure 26: Identification of unknown trematode species infecting E. marinus at Portsmouth, 

Inverkeithing, and Loch Fleet, UK. A phylogenetic tree was generated using available rDNA 

sequences of digenean trematodes from NCBI and within this study. Sequences were aligned 

using MUSCLE and a phylogenetic tree was constructed using the maximum likelihood 

method implemented by the PhyML program. All branches are drawn to scale as indicated 

by the scale bar representing sequence divergence. Bootstrap values (n = 100) for branches 

are shown as percentages highlighted in red. The phylogenetic tree was generated as 

described above using trematode small subunit rDNA sequences (18S); scale bar represents 

20% sequence divergence. Outgroups are highlighted in blue.]# 
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Figure 27:  Identification of unknown trematode species infecting E. marinus at Portsmouth, 

and Inverkeithing, UK. A phylogenetic tree was generated using available rDNA sequences 

of digenean trematodes from NCBI and within this study. Sequences were aligned using 

MUSCLE and a phylogenetic tree was constructed using the maximum likelihood method 

implemented by the PhyML program. All branches are drawn to scale as indicated by the 

scale bar representing sequence divergence. Bootstrap values (n = 100) for branches are 

shown as percentages highlighted in red. The phylogenetic tree was generated as described 

above using trematode large subunit rDNA sequences (28S); scale bar represents 7% 

sequence divergence. Outgroups are highlighted in blue.  
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Figure 28: Identification of unknown trematode species infecting E. marinus at Portsmouth, 

and Inverkeithing, UK. A phylogenetic tree was generated using available rDNA sequences 

of digenean trematodes from NCBI and within this study. Sequences were aligned using 

MUSCLE and a phylogenetic tree was constructed using the maximum likelihood method 

implemented by the PhyML program. All branches are drawn to scale as indicated by the 

scale bar representing sequence divergence. Bootstrap values (n = 100) for branches are 

shown as percentages highlighted in red. The phylogenetic tree was generated as described 

above using ITS rDNA region (ITS1, 5.8S and ITS2) sequences, scale bar represents 10% 

sequence divergence. Outgroups are highlighted in blue.  
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3.32 Behavioural Study 

 

E. marinus infected with trematode parasites had both significantly higher (p < 

0.001) phototaxis and geotaxis scores than those of uninfected specimens. Infected 

specimens spent, on average, approximately 8 times more time in the light and 

occurred approximately 4 times higher in the water column than uninfected 

individuals. Phototaxis and geotaxis scores increased with greater concentrations of 

serotonin for all weeks (1–3) although significant differences were only observed 

after week 2 (p = 0.001) and week 3 (p = 0.001) for phototaxis and week 1 (p = 

0.009) and week 2 (p = 0.006) for Geotaxis scores. Mortality was low during all 

exposure experiments (Table 5), with no mortality within the controls. 
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Figure 29: Mean average phototaxis and geotaxis score of E. marinus with acanthocephalan 

infection and a non-infected control group (n = 20 per treatment). Error bars to one standard 

error. *Significance compared with control (p < 0.05). 

 

 

 

 

 

Figure 30: Mean average phototaxis and geotaxis score of E. marinus exposed to varied 

concentrations of serotonin (n = 20 per treatment) over a 3-week period. Error bars to one 

standard error. *Significance compared with control determined by Mann–Whitney and 

Bonferroni correction p < 0.0125 
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Behaviour tests  

Kruskal-wallis 

Chi-

square DoF 

p-

value 

Serotonin phototaxis 

week1 8.507 4 0.075 

Serotonin phototaxis 

week2 17.806 4 0.001* 

Serotonin phototaxis 

week3 19.891 4 0.001* 

Serotonin geotaxis week1 13.6 4 0.009* 

Serotonin geotaxis week2 14.533 4 0.006* 

Serotonin geotaxis week3 5.397 4 0.249 

 

 

 

 

 

Concentration Mortality 

0µg/L 0 

0.01µg/L 2 

0.1µg/L 4 

1µg/L 1 

10µg/L 3 

Table 6: Statistical analyses (Kruskal Wallis) of 

phototaxis and geotaxis responses in male 

Echinogammarus marinus following 7, 14 and 

21 days exposure to Serotonin (* = < 0.05). DoF 

= Degrees of Freedom 

 

Table 5: Total number of 

mortalities of E. marinus 

per treatment over the 3 

weeks serotonin exposure 
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 3.33 Gene expression changes 

 

Analysis of gene expression in infected and uninfected animals indicates several 

genes that could be influenced by trematode activity (see Figure 31). Results indicate 

that the putative Tryptophan 5-monooxygenase activation protein gene (Ty3), 

Putative Rhodopsin gene (Rhod 1 and Rhod 2), and the putative amino acid nutrient 

transporter gene (AT) are not influenced by the microphallid trematode found in the 

Langstone Harbour population. The putative serotonin receptor gene (5HT1) shows 

the highest mean fold change and the putative tryptophan hydroxylase gene (PH) also 

showed a consistent increased expression in all three trials. The putative Arginine 

Kinase gene (AK) showed a slight decrease in expression. The inebriated like 

neurotransmitter genes (Ine 1 and 2) showed a reduced gene expression, with Ine 2 

showing a greater reduction than Ine 1 in all three trials. The putative amino acid 

decarboxylase gene (AD) presented a slight reduction in gene expression overall. 

Generally, trial 1 showed the greatest alteration in gene expression induced by the 

trematode infection (see Table 7). 
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Figure 31: Mean gene expression changes in E. marinus induced by trematode infection in 

three independent trials. qPCR analysis of possible serotonin related genes using E. marinus 

head cDNA pooled (n=6) control (uninfected) and infected trematode for each trial. Bars 

represent mean fold change and Error bars to one standard error. 

 

 

Primer Trial 1 Trial 2 Trial 3 Mean  S.E. 

5HT1 7.202 1.645 2.280 3.709 1.756 

PH 1.987 2.958 1.845 2.263 0.350 

Ty3 1.763 -1.078 0.924 0.536 0.843 

Rhod2 -1.577 1.277 0.866 0.189 0.891 

AT -1.469 1.683 0.195 0.136 0.910 

Rhod1 -2.233 -1.094 0.590 -0.912 0.820 

AK -1.064 -1.157 -1.895 -1.372 0.263 

Ine1 -1.418 -1.611 -1.953 -1.661 0.157 

AD -3.325 -2.163 -1.182 -2.223 0.619 

Ine 2 -6.711 -2.410 -1.750 -3.624 1.556 
 

Table 7: Gene expression changes in E. marinus induced by trematode infection in three 

independent trials. qPCR analysis of possible serotonin related genes using Echinogammarus 

marinus head cDNA pooled (n=6) control (uninfected) and infected trematode for each trial. 

The experiment was repeated three times (trial 1, 2 and 3) to verify findings.  
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3.4 Discussion 

 

All E. marinus populations surveyed were found to be infected by trematodes that 

belong to the Xiphidiata clade within the Plagiorchiida superorder (see Figure 32). 

This is not surprising, as there are only two clades within digenea that are common 

parasites of arthropods, Hemiuroidea and Xiphidiata (Cribb et al., 2003). The 

Xiphidiate clade displays similar cercarial behaviour among the species, in which 

cercaria emerges from a gastropod or bivalve and penetrates an arthropod (Stunkard, 

1968, Prevot et al., 1976), the second intermediate host. A metacercariae forms 

within the amphipod and completes its lifecycle when the amphipod is eaten by the 

vertebrate definitive host, usually fish or bird. This lifecycle is the most ubiquitous 

within the Digeneans, in terms of abundance among species and prevalence within 

families. 

 

Inverkeithing trematode belongs to the family Opecoelidae, within the 

Plagiorchioidea superfamily, with the closest association to Gaevskajatrema 

halosauropsi. In addition, sequences with closest identity to the Inverkeithing 

trematode were found in marine fish and a marine gastropod, G. halosauropsi infects 

the deep sea fish Halosauropsis macrochir (Bray and Campbell, 1996), N. elongate 

infects the marine fish, Phycis phycis and the unidentified Opecoelidae sp. 

(AJ24183.1) infects the sea snail, Columbella rustica. Therefore the probable life 

cycle of the trematode infecting Inverkeithing E. marinus population consists of a 

gastropod as the first host, E. marinus as the intermediate host and a fish species as 

the final host. Whether the Inverkeithing trematode belongs to the Genus 

Gaevskajatrema is debateable, it is indeed very closely related to G. halosauropsi, 

however, other species within that genus, Gaevskajatrema perezi, shows reduced 

association. This discrepancy is most like to be within the grouping of trematode 

classification and more Opecoelidae sequences on Genbank would elucidate the 

grouping of this trematode. Although, from the analysis of the sequences, the 

trematode infecting the Inverkeithing population can be confidently categorised 

within the Opecoelidae family. 
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Figure 32: Relationships and higher classification of the superfamilies of the Digenea taken 

from Cribes et al (2003) analysis. Inverkeithing, Loch Fleet and Langstone harbour 

(Portsmouth) E. marinus population infected by trematode belonging to the Plagiorchioidea 

(Opecoelidae) and Microplalloidea family, respectively. 
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The Portsmouth and Loch Fleet E. marinus population appears to be infected by the 

same species or closely related species that belong to one of the most derived taxa 

within dienean trematodes, the superfamily, Microplalloidea. These sample sites are 

geographically hundreds of miles apart, yet seemed to be infected by possibly the 

same species. This could possibly be due to sharing the same final host, which within 

microphallids is usually a bird or fish. Some bird populations, due to their mobility 

could theoretically infect geographically distant host populations with the same 

parasite species.  The trematode species infecting the Portsmouth and Loch fleet 

populations did not reveal a consensus among the phylogentic analysis of which 

species was closely related. The ITS region has been suggested to offer the best 

marker for species differentiation (Nolan and Cribb, 2005). Therefore, we conclude 

the digenean found in E. marinus at Loch fleet and Portsmouth population is most 

likely to belong to the Microphallus genus and is probably a new species.  Due to the 

clear signal reading within the sequencing data, there was no evidence that any of the 

populations are infected by multiple trematode species. Although, as only 20 infected 

individuals were pooled to obtain trematode DNA, it is possible there are less 

prevalent species within the population.  

 

There are many trematode phylogenies based on morphological and molecular data 

(Cribb et al., 2003, Littlewood et al., 1999, Olson et al., 2001). However, many are 

incongruent and a general consensus has not been made within the field. 

Morphological variation is found in the form and positioning of the suckers, the 

digestive tract and reproductive system. Within sexual adults well defined taxa can 

often look morphologically highly similar, despite having obvious life cycle stage 

differences, such as, Allocreadiidae and Opecoelidae, or, Heterophyidae and 

Microphallidae  (Cribb et al., 2003). Interestingly, based on the 18S region 

Schistogonimus rarus and Prosthogonimus ovatus, were the closest related to the 

trematode infecting Portsmouth and Loch fleet populations, these species are 

believed not to belong to Microphalliodea (Tkach et al., 2003). In addition, S. rarus 

and P. ovatus, despite belonging to separate genus, molecularly are well associated 

and the only morphological character that separates the two species is the position of 

the male and female genital pores.  There is a definite need for trematode 
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phylogenetics to be revised, improved and combined, as these two methods for 

understanding phylogeny are not incompatible (Littlewood et al., 1999). This has 

been attempted with several datasets, the superfamily Microphalloidea, where 

morphological and molecular data have been revised and combined to gain a better 

understanding of the phylogentic relationships (Tkach et al., 2003). However, there 

are still few well resolved clades within trematode that reflect independent datasets 

(Littlewood et al., 1999). 

 

Significant changes in the phototaxis and geotaxis behaviour was observed in E. 

marinus infected with trematode parasites from the Portsmouth population.  Infected 

specimens spent more time in the light and higher within the water column which is 

in agreement with past work  M. pabillorbustus infection of the amphipod G. 

insensibilis, which have also shown to affect  phototaxis and geotaxis (Helluy, 

1983a, Helluy, 1983b).  Several studies have associated parasite infection with 

changes in the serotonergic activity both through in-situ hybridisation techniques 

(Helluy and Thomas, 2003) and in-vitro injections of serotonin (Tain et al., 2006, 

2007). In this study, phototaxis and geotaxis behaviour increased in a dose-dependent 

manner following exposure to serotonin from 0.01-10μg/L. Whilst former studies 

had used 5μg/μl
-1

 Serotonin (Tain et al., 2006, 2007) injected into the heomoceol of 

amphipods to induce behavioural changes, this study found significant phototaxis 

and geotaxis responses at 100ng/L within the seawater medium indicating changes 

could be induced at relatively low concentrations over a chronic emersion period. In 

conclusion, chronic serotonin exposure mimics the behavioural alterations found in 

the infected individuals, indicating that this trematode parasite induces some form of 

adjustment to the serotonin pathway within E. marinus. 

 

Perrot-Minnot et al. (2007) studied the predation vulnerability of G. pulex infected by 

the fish acanthocephalan, Pomphorhynchus tereticollis, both in laboratory and field 

conditions. In field studies, the final host predator (Bullhead fish) had 10 times 

higher proportions of infected G. pulex it its gut than uninfected individuals sampled 

within the same river. In addition, microcosm experiments showed that uninfected 

amphipods increased the use of refuges in the presence of bullhead predators (Perrot-

Minnot et al., 2007). Further study used a Y-maze olfactometer to compare levels of 

http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib45
http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib45
http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib45


 P a g e  |  1 0 6   

repulsion to the bullhead in uninfected and infected individuals and demonstrated 

that gammarids infected by a serotonin modulating parasite are more susceptible to 

predation than uninfected individuals (Perrot-Minnot et al., 2007). Therefore, 

increased levels of certain trematode species could have massive impact on 

population and community structure. The amphipod, Corophium volutator, is a 

second intermediate host to several trematode species that have shown to increase 

mortality rates in their host under laboratory conditions (Jensen et al., 1998, 

McCurdy et al., 1999, Meissner and Bick, 1999), in the field this can range from 

reductions in host abundance to population extinction in relation to trematode 

infection levels. (Jensen and Mouritsen, 1992, Meissner and Bick, 1997).  

 

Intensity dependent mortality is observed as a result of infection by some 

microphallid species within the laboratory and field, this can be determined by 

studying the mean parasite load in the larger size classes, if mean decreases in larger 

animals it shows heavily infected individuals are removed from the population 

(Fredensborg et al., 2004). Therefore, a positive linear relationship between E. 

marinus size and the microphallid parasite abundance (Sherhood, 2011, unpublished) 

suggests the parasite does not induce mortality of host by infection as the parasite can 

accumulate within the host over time (Dobson and Hudson, 1995). This evidence 

further supports that the microphallid infecting the E. marinus population does not 

induce a pathogenic effects. In addition, a correlation was found between trematode 

prevalence and host abundance in Chapter 2. The findings of the behavioural assay 

and gene expression data strongly suggest specific behavioural alteration capable of 

increasing the likelihood of transmission. 

 

Serotonin is a monoamine neurotransmitter found ubiquitously among bilateral 

organisms and is biochemically synthesised from L-tryptophan through two short 

metabolic pathways using two enzymes; tryptophan hydroxylase (TPH) and amino 

acid decarboxylase (see Figure 33) (Walther and Bader, 2003).   

 

 

http://www.sciencedirect.com/science/article/pii/S0166445X10002122#ref_bib45
http://en.wikipedia.org/wiki/Tryptophan_hydroxylase
http://en.wikipedia.org/wiki/Aromatic_L-amino_acid_decarboxylase
http://en.wikipedia.org/wiki/Aromatic_L-amino_acid_decarboxylase
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Figure 33: Mechanisms in serotonin synthesis pathway involving tryptophan hydroxylase the 

rate limiting enzyme and aromatic amino acid decarboxylase. Taken from Walther and Bader 

(2003).  

 

  

http://www.sciencedirect.com/science/article/pii/S0006295203005562
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Within the gene expression study we attempted to link the behaviour alterations 

observed in the photo and geo-taxic assays with potential neurological gene 

biomarkers. Several serotonin related genes were highlighted to be affected by the 

microphallid trematode. The most dramatic fold change in gene expression was 

found in trial 1 where the putative serotonin receptor 1A like gene showed a 7.2 fold 

upregulation and the inebriated 2 neurotransmitter like gene presented a 6.7 fold 

down regulation.  The variation observed between the gene expression trials, as well 

as behavioural assays, can be due to several factors. Parasitology studies have shown 

that parasite load (Thomas and Poulin, 1998), age and size of parasite (Benesh et al., 

2008), age of host (Poulin, 1993), multiple species infections (Cezilly et al., 2000, 

Haine et al., 2005), seasonality (Brodeur and McNeil, 1989) can all affect 

manipulation intensity of parasites. In addition, serotonin is involved in many 

processes and variation in the results was probable. Generally, the trials show similar 

gene expression patterns, however, increasing the number of individuals used would 

strengthen findings.  

 

The serotonin (5-HT)1A receptor is an transmembrane, G-protein coupled, 

somatodendritic autoreceptor within the dorsal raphe nuerons and mediates inhibitory 

neurotransmission (Hall and Wedel, 1985). The activation of serotonin 1A receptors 

blocks subsequent serotonin release at the axon terminal, therefore significantly 

influences serotonin regulation in the brain. Interestingly, the 5HT1A receptor is 

believed to play a pivotal role in the desensitisation affects following chronic 

administration of selective serotonin reuptake inhibitor (SSRI) pharmaceuticals in the 

restraint of 5-HT elevation (Hjorth et al., 2000). The increase expression in this gene 

could be attempts by the host to counter balance the elevated serotonin levels 

induced by parasite infection. It would be interesting to investigate the gene 

expression patterns of the different 5-HT receptor subtypes due to their differential 

function in modulating serotonin levels. 

 

The inebriated (ine) gene, found in drospholia, is a neurotransmitter (Soehnge et al., 

1996). Studies in Drosophila found ine gene mutants demonstrate increased 

excitability of the motor neurons. This gene resembles members of the Na
+
/Cl

−
-
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dependent neurotransmitter transporter family, such as serotonin, dopamine, 

norepinephrine, and catalyses rapid reuptake release of neurotransmitters into the 

synapse and therefore performs a influential function in neuronal processes (Soehnge 

et al., 1996). Despite their importance in neuronal function, their role at the 

molecular level in controlling target neurons is not completely understood. Although, 

E. marinus may not have the ine gene, it is most likely that this is a neurotransmitter 

of a similar function. Defective reuptake of the substrate neurotransmitter of an 

transporter can cause overstimulation of motor neurons (Huang et al., 2002) and 

reduces reuptake of neurotransmitters (Soehnge et al., 1996). The down regulation of 

this gene could be associated with elevated serotonin levels that could conceivably be 

associated with the behavioural traits present in infected individuals due to the build 

up of 5HT1 at the synapse. 

 

Tryptophan hydroxylase is a rate-limiting enzyme that catalyses serotonin 

biosynthesis in the serotonergic nerves (Hufton et al. 1995). The putative tryptophan 

hydroxylase gene (PH) was up regulated in the infected E. marinus in all trials within 

the study. The up regulation in this gene, therefore, could have the potential of 

increasing the biosynthesis of serotonin within the host brain. Studies have shown 

up-regulation of a tryptophan hydroxylase gene following SSRI drug administration 

that specifically aims to elevate serotonin levels (Kim et al., 2002, Shishkina et al., 

2007). Whether this up regulation is significant enough to induce the behavioural 

traits shown cannot be certain, however, further study linking serotonin levels found 

in the brain with the elevated expression of tryptophan hydroxylase would facilitate 

the validation of these findings. This has been achieved in other parasitology studies 

via immunocytochemical staining of serotonin levels in uninfected and infected 

gammarid brains (Helluy and Thomas, 2003, Tain et al., 2007).  

 

Amino acid decarboxylases (AD) are also involved in the synthesis of serotonin and 

within the study exhibited slight down regulation in all trials with an average fold 

change of 2.2. This was unexpected, as past work on gammarids infected with 

behaviour manipulating parasites have shown a higher expression of aromatic L-

amino acid decarboxylase proteins (Ponton et al., 2006). Whether the findings within 
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this study are significant enough to cause serotonin level imbalance is questionable, 

especially when we are unsure how the parasite induces the behavioural traits 

observed. It should also be noted that differential expression of aromatic L-amino 

acid decarboxylase was only shown in gammarid species that display phototaxis 

alterations (Ponton et al., 2006). 

 

Research in serotonin pathways have been extensively conducted in rats due to 

pharmacological developments (Ellison, 1977, Steinbusch 1985, Lauder 2006). 

However, little work has been conducted in marine invertebrates, leaving analysis of 

results problematic. Gene annotation was assigned from various arthropods 

sequenced on Genbank (NCBI) (see Table 4) and although the specific function in E. 

marinus cannot be definite, depending on the gene divergence, it is still highly 

probably that these gene biomarkers have neurologically function. Further study 

investigating gene function of these possible serotonin candidates would be ideal in 

piecing together how this parasite manipulates or induces behavioural change on its 

host. Serotonin level alterations could also result from secretion by the parasite, a 

response from the host to infection or a specific manipulation of the parasite to the 

gene pathway. The exact mechanisms that are being alter and how they are being 

altered cannot be certain, however, behavioural affects appear to be induced by this 

microphallid species and data suggests that there is neuronal manipulation. 

 

The findings presented here add to the mounting evidence that parasites alter their 

host’s behaviour in ways that promotes transmission. This study has hopefully 

produced a solid foundation in our understanding of the trematode parasites that 

infect E. marinus, the effects they have upon the host and how they induce these 

effects.  
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4. Environmental sex determination in 

Echinogammarus marinus 

 

4.1 Introduction 

 

Environmental sex determination (ESD) is defined as the determination of gender by 

environmental cues or stimuli during development (Korpelainen, 1990). ESD 

upholds adaptive control of population sex ratios to promote fitness of an individual 

at a given time. The adaptive benefit for ESD in most species tends to be size related, 

as it is an important factor in reproductive success in males and females (Naylor and 

Adams, 1987). Therefore, ESD mechanisms will favour the sex that benefits most 

from enhanced growth. In amphipods, increased female fecundity correlates with an 

increase in size. However, as males guard the females in pre-copulatory behaviour, 

they need to be larger than the females. To ensure a larger size, a longer period of 

growth is needed and employing an ESD system, where males are produced earlier in 

the year, giving a longer period for growth, maximises reproductive success (Watt 

and Adams, 1994, Naylor et al., 1988a).   

 

The brackish water amphipod, Gammarus duebeni, exhibits seasonal sex biased 

ratios, favouring males in the summer and shifting to a female bias in the autumn 

(Naylor et al. 1988b). Sex determination can be highly influenced by photoperiod 

showing responses to light intensity as low as 1 lux (Bulnheim, 1978). At 15
o
C a 

long day (>13-14h light) photoperiod regime favours males, whereas, short days 

(<13-14h light) shifts the ratio to produce more females. However, the ESD response 

by G. duebeni in the laboratory did not correlate with what was occurring in the 

natural populations (Watt and Adams 1994).  This indicated that photoperiod could 

possibly not be the sole environmental cue accountable for ESD and that a secondary 

cue was likely to be involved in the sex determination of this species (Watt and 

Adams, 1993).  Temperature was then examined by Dunn et al. (2005) as a potential 

secondary cue by comparison of four geographically different G. duebeni 

populations. The results showed significant variance between the different 
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populations demonstrating adaptive variation within the species. Two northern sites 

had male biased broods under long day warm conditions and female biased broods 

under short day warm conditions however under cold conditions the sex ratios were 

reversed.  The two southern sites showed no significant affect by temperature, 

however, produced male biased broods under long day conditions (Dunn et al., 

2005). Other evidence of dual ESD comes from the fish species, Poecilia sphenops, 

that uses salinity and temperature as environmental cues (Barón et al., 2002).  

Utilising photoperiod and temperature as environmental cues can allow for greater 

accuracy in timing, ensuring gender specific production during its most suitable 

period for male and female growth (Dunn et al., 2005). The study also demonstrates 

the degree of ESD varies among populations geographically. This could be due to the 

fact that some temperature and photoperiod combinations do not occur in the 

environments of some populations during their breeding season and they have thus 

have adapted to different ESD conditions. In conclusion, Dunn et al (2005) 

demonstrated an interaction of temperature and day length as cues for ESD as well as 

variation in the degrees of ESD between the different populations, thus 

demonstrating adaptive variation within the species. 

 

It is well-documented that Echinogammarus marinus presents a range of sexual 

phenotypes (Ford et al. 2005). Intersexuality and female bias has been linked with 

vertically transmitting parasites that are believed to feminise male embryo hosts as a 

reproductive strategy to facilitate parasite transmission to the next generation (Kelly 

et al., 2004, Yang et al., 2011). However, other factors known to influence crustacean 

sex determination pathways, such as ESD, have yet to be explored in E. marinus. 

Past studies have reported E. marinus populations showing temporal and 

geographical variability in their sex ratios (Martins et al., 2009, Vlasblom, 1969., 

Yang et al., 2011), however, no current published data has shown whether ESD is 

present within this species. To address this issue, this study investigated the effect of 

photoperiod on the sex ratio of broods in E. marinus.  In addition, these results were 

compared with sex ratios from a two-year field study from a population of E. 

marinus at Langstone Harbour, Portsmouth, a population uninfected by known 

feminising parasites (Yang et al., 2011). 
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4.2 Methods 

 

4.21 Laboratory study 

 

Animals were collected from Langstone harbour, situated in Portsmouth, southern 

England, U.K. site (50º47’23.13N 1º02’37.25W) and a total of 60 pre-copular pairs 

were placed in 150-ml pots that contained filtered seawater with fucoid seaweed 

(Ascophyllum nodosum) for food. Both food and seawater were changed 

approximately every 4-5 days. In other gammarid species, ESD is influenced 3-4 

weeks after release from the mother’s brood pouch (Bulnheim, 1978, Naylor et al., 

1988b). However, no assumption was made at what point environmental cues might 

influence sex determination (either as a zygote or juvenile stage). Therefore pre-

copular pairs were assigned at random to one of the photoperiod regimes: 16 hours 

light and 8 hours dark or 8 hours light and 16 hours dark (30 broods per light regime 

at 15
o
C) to mimic the extremes of long day and short day conditions in the field. This 

ensured that the broods were exposed to the chosen photoperiod at all developmental 

stages, although confounded maternal effects cannot be ruled out. Once juveniles left 

the female brood pouch (approximately 30 days after egg release) all adults were 

removed to avoid cannibalism. Despite the microsporidia infecting this population, 

D. berillonum, being a non feminiser, all brooding females were screened for 

microsporidian parasites using PCR (Yang et al., 2011) and broods were eliminated 

if the mother tested positive (n = 11/60). E. marinus sex ratios were determined when 

sex could be distinguished morphologically after approximately five months.  
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4.22 Field Study 

 

To assess sex ratios in the field, E. marinus were collected over a two year period 

between December 2009 to December 2011 from Langstone Harbour (Portsmouth, 

UK). Hours of daylight at this latitude vary between approximately 8-16 hours 

throughout the year. Samples were taken by selecting five 1m
2
 quadrats (total area = 

5m
2
) in the intertidal zone during low tide. All algae and surface sediment 

(approximately 2cm in depth) was retrieved and stored in polythene bags. In the 

laboratory, samples were washed and decanted through a 0.7 mm sieve and all algae 

were scraped to ensure no individuals were left. All amphipods were collected and 

stored in 70% ethanol where E. marinus specimens were separated into males, 

females and juveniles. Generally sex could be determined within individuals that 

were approximately over 10mm in length. E. marinus males were distinguished by 

the presence of enlarged gnathopods and genital papillae, whereas, females were 

distinguished by much smaller gnathopods and oostegites (brood plates). Individuals 

not presenting any of these features were grouped as juveniles.  
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4.3 Results 

 

4.31 Laboratory study 

 

A significant difference in the sex ratios between the two light regimes’ was 

observed (Mann-Whitney test; p<0.001) in the laboratory breeding experiments with 

a male bias recorded over a long day photo regime (mean = 61.5+0.84% male 

broods; n = 16) and a female biased over a short day photoperiod regime (mean = 

43.5+0.94% male broods; n = 12). In addition, using negative binomial regression a 

significant relationship was shown in sex ratio proportions comparing the long and 

short light regimes (Wald = 18.607; DF = 1; p<0.001). No significant difference in 

the mean number of juveniles produced per female was observed for short and long 

day regimes, (27.5 
+ 

0.9 and 26.6 
+ 

0.8 respectively), when normalised to size 

(ANCOVA; P = 0.0476, F = 0.522, DF = 1). Furthermore, there was no significant 

difference (Chi-square X
2
 = 0.02; DF = 1 ; P = 0. 823) in the brood survival between 

the long (67%) and short day regimes (69%).  
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Figure 34: Sex ratio of Echininogammarus marinus broods from Langstone harbour 

(Portsmouth, UK) under different day lengths conditions and kept at 15±1
o
C. 16 hour light 

regimes (n=16) and 8 hour light regimes (n=12). Error bars to one standard error. 
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4.32 Field Study 

 

 During the two year field study 1810 adult E. marinus were collected and sexed, of 

which 910 were males and 900 were female.  Examination of the monthly sex ratios 

revealed a general male bias over the late summer and early winter months (Aug-

Dec) and a female bias during late winter and early summer months (Jan-Jul) for 

both years (Figure 35). Average day length hours and temperature were plotted 

against sex ratios to determine any relationship. In addition, environmental 

parameters were offset by four months forward to allow for the ~4 month 

developmental period between when the eggs were fertilised and the point at which 

the sex could first be determined (Figure 35). The monthly sex ratios were 

statistically analysed against the daylight hours and environmental parameters (+4 

months) using multiple linear regression and photoperiod proved to be significant (P 

< 0.001, R = 0.564, df = 2, F = 15.704; Figure 37) indicating that photoperiod 

correlates with sex ratios in the field (P = 0.044; t = 2.017; Beta = 0.113). However, 

temperature failed to show any correlation (P = 7.25; t = 0.352; Beta = 0.020) (see 

Figure 36). When directly comparing the field data with the laboratory findings the 

brood sex ratios correlate and fit within confidence bands associated with the field 

data (see Figure 37). Multicollinearity analysis was conducted and indicated a low 

association in temporal monthly samples (Tolerance = 0.846; VIF = 1.182). 

However, temperature showed high collinearity with sex (Tolerance = 0.115; VIF = 

6.434) and therefore a possible interaction between temperature, photoperiod and sex 

cannot be ruled out. No presence of temporal autocorrelation was observed (Durbin-

Watson = 1.828) indicating independence of temporal data. 
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Figure 35: Sex ratio of Echinogammarus marinus adults from Langstone harbour 

(Portsmouth, UK) collected between December 2009 and November 2011. Red dotted line 

represents monthly average hours of day light. Black dashed line represents monthly average 

hours of day light (+ 4 months) 

 

 

Figure 36: Sex ratio of Echinogammarus marinus adults from Langstone harbour 

(Portsmouth, UK) collected between December 2009 and November 2011. Red dotted line 

represents monthly average temperatures. Black dashed line represents monthly average 

temperatures (+ 4 months). 
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Figure 37: Linear relationship between photoperiod and percentage male Echinogammarus 

marinus from Langstone Harbour, Portsmouth (UK).  Field data 2009-2011 (circles) and 

laboratory data (triangles).  
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4.4 Discussion 

 

Sex determination and other reproductive processes still remain largely unknown in 

many aquatic invertebrate species. Amphipods are extensively used in ecotoxicology 

studies, with an increasing emphasis on reproductive endpoints (Hyne, 2011). 

However, to truly understand whether anthropogenic influence is currently an issue, 

it is critical that all the mechanisms governing reproductive processes are fully 

evaluated. Ecologists have criticised the lack of basic knowledge in the biology of 

well-studied fauna, as well as highlighted an extreme bias in our knowledge towards 

vertebrates (Tyler et al., 2012).  Environmental conditions can be influential factors 

in reproduction and development, and a better understanding of how these altered 

conditions affect reproductive biology in organisms is required. Such an 

understanding will be crucial in our ability to model and predict population levels in 

a changeable environment (Visser et al., 2004). 

 

The aim of this study was to demonstrate whether E. marinus displays ESD under 

laboratory conditions and whether this correlates with sex ratios detected in the field. 

Photoperiod was shown to be an influential factor in sex determination and a 

significant correlation was observed between sex ratios detected in the laboratory and 

field. Despite this, the regression model only accounted for 56% of the variation in 

the data set, which suggests that other environmental factors (e.g. temperature) and 

inter-individual variation may also be involved. The range of sex ratios from the field 

study displayed large variation, with extremes of 36% males (Mar 2011) and 71% 

males (Oct 2010), strongly suggesting adaptive sex ratio variation over the 1:1 

Mendelian sex ratio. These swings in sex ratio were mirrored over the two-year 

study, with the October months possessing the highest proportions of males and 

January through to March having the lowest. Interestingly, when comparing the total 

number of males and females over the two-year study, the Portsmouth population 

displayed an overall 1:1 sex ratio (50.3% males). So, while the two-year field study 

does highlight a seasonal gender bias, the population overall does not produce more 

of one gender over the course of two years. The laboratory experiments resulted in a 

male bias over long day and female bias over the short day photoperiod. These 

findings are consistent with those of the estuarine temperate amphipod species, 
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Gammarus duebeni, that showed females (taken from in southern sites within the 

UK) produced male biased broods under long day laboratory conditions (Dunn et al., 

2005). Although laboratory and field data correlate well and support photoperiod as 

an ESD cue, a second cue (e.g. temperature) for ESD has been inferred in other 

aquatic species (Dunn et al., 2005, Baron et al., 2002) and should also be considered 

for E. marinus due to high collinearity between sex and temperature indicating a 

possible interation. In addition, due to experimental constraints, a consistent 

temperature was required for both photo regimes to identify whether photoperiod 

was an influencing factor. However, in the field under short day regimes (8hrs of 

light) the population would normally endure between 4.05-5.82
o
C. Therefore, it 

should be noted that the population would not normally encounter these conditions 

and is biologically unrealistic.  

 

The E. marinus population used in this study has a continuous reproductive output 

and breeds throughout the year, producing male and female bias seasonally. This is 

despite the prediction that if a breeding season is unrestricted and there is a 

generations overlap, ESD is no longer advantageous and will revert to a genetic 

system where males and females are produced simultaneously (Naylor et al., 1988b). 

Given the apparent costs of using ESD, such as intersexuality and inconsistent 

environmental conditions, the benefits for this population are not obvious. This could 

suggest that ESD in this population is ancestral and, whether advantageous or not, 

has been retained. 

 

The E. marinus population used in this study enabled the reliable detection of ESD 

because it is uninfluenced by known feminising parasites (Yang et al 2011). 

However, the variable presence of such parasites makes direct comparisons of sex 

ratios between populations difficult. Among E. marinus populations so far studied, 

female bias is common. Vlasbloom (1969) observed female bias in E. marinus 

populations from the Netherlands, with an approximate average of 40% males. In 

addition, although a female bias was mainly present, sex ratio fluctuations appeared 

similar to those seen in this study were observed but with male increase occurring 

two months earlier. In comparison, southern latitudinal populations (Mondego 
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estuary, Portugal) have shown female bias in autumn and winter, with a reversal in 

the spring and summer months. However, further south in the estuary, male bias was 

observed during winter, with female bias occurring during part of the summer and 

autumn (Maranhao et al., 2001), a result similar to that found in this study. The cause 

of this variation is unknown but could be due to environmental conditions specific to 

the latitudinal positions, as well as other sex determining factors, such as the already 

mentioned feminising parasites. Within the UK, well-documented E. marinus 

populations have high female bias that is clearly correlated to parasite infection (Ford 

et al., 2006; Short et al., 2012b), and although these populations also present 

fluctuating sex ratios, it is problematic to separate the influence of photoperiod and 

parasites. Although it is clear that E. marinus sex ratios can vary considerably, 

reasonable comparisons of environmentally induced sex ratio fluctuations in E. 

marinus will require detailed surveys of other populations not influenced by 

feminising parasites. 

 

Within certain crustacean species environmental parameters can be key variables in 

sex determination. In spite of research into the ways that these cues affect sex ratios, 

the precise way these cues act upon and manipulate gender, as well as, the genetic 

control of ESD is largely unknown. In addition to being linked to parasite infection, 

amphipod intersexuality has been associated with populations that possess ESD 

(Dunn et al., 1996). E. marinus populations consistently present a small fraction of 

intersex individuals that are not infected with feminising parasites (Yang et al., 

2011). Indeed, the population used for this study has no known parasitic feminiser, 

yet presents notable levels of intersex (Yang et al., 2011). Populations that possess 

high levels of ESD have been linked with a high frequency of intersexuality. It has 

been suggested that this is caused by ESD occurring post conception. Therefore, the 

delayed genetic control of sexual development being the cause of individuals not 

fully sexually differentiating (intersex) (Dunn et al., 1990). However, at which 

developmental stage ESD occurs and how the cues act upon the sex differentiation 

processes is largely unexplored in most species. Alternatively, the non-parasite 

induced intersex phenotypes could be the result of an underlying ESD mechanism 

that has been disrupted due to intermediate environmental signals (Dunn et al., 

1993). The mechanism of ESD could also increase the susceptibility of the host to 
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parasite-induced feminisation. Feminising parasites have been shown to have higher 

prevalence in populations with high levels of ESD. It has been suggested that the 

delay in sex determination resulting from the ESD pathway causes host vulnerability 

to the manipulation by feminising parasites, as the parasites are more easily able to 

override an ESD pathway than they are a genetic based system (Dunn et al., 1995). 

 

E. marinus has a large geographical range from approximately 39
o
N, where average 

daylight hours can range from 9-15hrs throughout the year, up to 65
 o

N, where 24 

hours of daylight occur at certain times of the year. This is important when 

considering the potential implications of climate change. There is evidence 

suggesting that species distribution shifts occur as a result of a changing climate 

(Parmesan and Yohe, 2003). Species that have a sex determination pathway 

influenced by photoperiod and more prominently temperature may well be 

latitudinally constrained. As a result, E. marinus populations may be forced to adapt 

to increased temperatures or altered photoperiods. Given the ecological importance 

of the species, a better knowledge of sex determining factors, in particular ESD, will 

be required if we are to fully understand the impact of a changing environment. 
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5. Parasite prevalence and 

transmission in Echinogammarus 

marinus 

 

5.1 Introduction 

 

The study of sex distorting parasites is of great importance due to the impact they can 

have upon population dynamics and the selective pressures they exert on the 

evolution of host sex determining mechanisms. Female biased Echinogammarus 

marinus populations have previously been linked with infection by microsporidia 

(Yang et al., 2011). However, other parasites groups known to influence crustacean 

sex determination or differentiation, such as Wolbachia and Paramyxea, have yet to 

be fully explored. Therefore, identification of these parasite groups in female biased 

populations and investigations into their mechanisms of transmission will hopefully 

elucidate how parasites might be influencing E.  marinus population dynamics. 

  

The bacterium, Wolbachia, is a well documented feminising parasite found to infect 

terrestrial isopods (Bouchon et al., 1998). In one such isopod, Armadillidium vulgare, 

the bacteria can convert genetic males into neo females (Legrand and Juchault, 

1970). It was initially thought that Wolbachia was restricted to the isopod group 

within crustaceans (Bouchon et al., 1998). However, closely related Wolbachia 

strains have now been identified in amphipods, ostracods and cirripeds suggesting 

their prevalence in non-isopod crustaceans has been underestimated (Baltanas et al., 

2007, Cordaux et al., 2001, 2012). To date, three marine amphipod species 

(Orchestia gammarella, Talitrus saltator and Talorchestia deshayesii) has shown 

Wolbachia infections (Cordaux et al., 2001, 2012). However, studies have not linked 

Wolbachia infection as a feminising agent within amphipods. 

 

Microsporidia are obligate eukaryotic intracellular parasites that are widespread and 

infect a diverse range of vertebrates and invertebrates (Wittner, 1999).  In amphipod 
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populations, microsporidia infections appear ubiquitous. Terry et al., (2004) screened 

12 amphipod species and found all species exhibited infection and a total of 16 

different microsporidia species were detected.  The high occurrence and diversity of 

these parasites suggests they are well adapted to utilising amphipods as hosts. In 

addition, the majority of amphipod groups studied had female biased populations and 

female bias within their infection rates indicating sex ratio distortion (Terry et al., 

2004). The amphipod, Gammarus duebeni has been reported to be a host to at least 

four fully feminising microsporidia (Bulnheim, 1978, Dunn et al., 1993, Terry et al., 

1999). Nosema granulosis has been observed to infect up to 46% of females in 

several natural G. duebeni populations (Terry et al., 1998). Breeding experiments 

have demonstrated N. granulosis possessing feminising effects with 86% of the 

offspring of infected mothers developing as females (Ironside et al., 2003). Level of 

infection within G. duebeni populations is closely associated with parasite burden 

and efficiency of transmission (Dunn and Hatcher, 1997b). This can vary among 

populations and burden is thought to be related to what tissue is initially targeted e.g. 

gonadal tissue (Dunn et al., 1995).  Dunn et al. (2006) studied transmission 

efficiency of two microsporidia N. granulosis and D. duebenum on the host G. 

duebeni. N. granulosis was reported to vertically transmit up to 82% of the host 

brood and D. duebenum transmitted up to 72% of the host brood.  Both species 

showed high transmission, however, differed in their replication. As host developed, 

burden increased in N. granulosis and decreased in D. duebenum (Dunn et al., 2006). 

These microsporidian studies demonstrate the great influence that these parasites can 

have over amphipod sex determining mechanisms. Within E. marinus there is still a 

lack of knowledge regarding microsporidia transmission and their effects. 

Understanding transmission (number of infected eggs in host brood) in E. marinus 

will hopefully reveal reproductive strategies and affects these parasites could 

possible induce. 

 

Paramyxeans are parasitic protists that are known for causing sexual dysfunction and 

mass mortalities within molluscs (Villalba et al., 1993). In the amphipod, O. 

gammarella a correlation between paramyxean infection and female biased broods, 

as well as intersexuality has been observed (Ginsburger-Vogel, 1991, Ginsburger-

Vogel and Desportes, 1979). Paramyxid taxonomy is still open to debate, 
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parasitologists have often placed this group in the phylum Cercozoa (Cavalier-Smith 

and Chao, 2003). Although, a phylogenetic anaylsis based on molecular data 

suggests that this is incorrect and indicated that the Paramyxeans belong to a separate 

phyla (Freeman, 2009).  The phylum Paramyxea consists of three genera: Marteilia, 

Paramarteilia, and Paramyxa in which species have been grouped in accordance 

with their life cycle (Feist et al., 2009). Paramyxeans have an unusual cell division in 

which it undergoes a series of internal cleavages where the daughter cells are found 

within the mother (stem) cell and has only been observed to infect crustacean and 

mollusc tissue (Audemard et al., 2002, Feist et al., 2009, Ginsburger-Vogel and 

Desportes, 1979).  Although, limited work has been conducted on Paramyxea within 

amphipod hosts these marine parasites have the potential to manipulate sex 

determining mechanisms within E. marinus and findings would provide some insight 

in this relatively new area of study. 

 

Transmission efficiency and artificial infection experiments have not yet been 

explored in E. marinus. The aim for this study was to investigate the role of parasite 

sex determination (PSD) using a population (Inverkeithing, Scotland) known to have 

female biased sex ratios and high intersex numbers. The Inverkeithing, E. marinus 

population has extreme female bias which has previously been linked with 

microsporidia parasites (Ford et al., 2006, 2007) and recently an un-described 

Paramyxean closely related to Marteilia refringens and Marteilioides chungmuensis 

was identified within the population (Short et al., 2012a). Identification of further 

parasite species that have the potential to influence crustacean sex determination will 

be achieved by conducting a screen of known sex distorting parasites that infect 

amphipod species (microsporidia, Wolbachia and Paramyxea). Prevalence rates will 

be conducted within the population sexual phenotypes to indicate any sexual bias 

with infection. Furthermore, a verification of whether the parasites are vertically 

transmitted and their transmission efficiency (proportion of eggs from brood 

infected) will be conducted. Artificial infection experiments will be attempted to see 

whether vertically transmitting parasites can horizontally transmit within E. marinus.  

 

To our knowledge the E. marinus Langstone harbour, Portsmouth population has no 

feminising parasites. In chapter two, we established that there are low levels of 
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intersex, no overall female bias and no evidence of sex distorting parasites within the 

population. The only microsporidia species present is Dictyocoela berillonum, which 

presents infection patterns inconsistent with possessing any sex distorting effects 

(Terry et al., 2004). Therefore, in the artificial infection experiment individuals from 

the Portsmouth population were horizontally infected with possible sex distorting 

parasites contained in the tissue of infected individuals from the Inverkeithing 

population. This will ensure the test population were not already infected with any 

sex distorting parasites prior to the experiment. Verification of whether D. 

berillonum vertically transmits and examine the parasites transmission efficiency to 

compare microsporidia species in a female and non female bias population will also 

be conducted.  
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5.2 Materials and Methods 

5.21 Parasite Identification 

 

E. marinus were collected from beneath seaweed and rocks in the intertidal zone 

during low tide in Inverkeithing Scotland (56
o
1’38”N 3

o
23’37”W) in March 2012 

(see Figure 21). The parasite screening of Microsporidia, Wolbachia and Paramyxea 

in the Inverkeithing population was conducted as in chapter two (as below section 

2.22). Animals were anaesthetised in clove oil (0.4µl/ml) and the sexual phenotype 

was determined. DNA from each individual was extracted using the DNAeasy kit 

(Qiagen, UK) following the manufacturers protocol. 40 males and 64 females were 

pooled; this pool was subsequently screened for Microsporidia, Paramyxea and 

Wolbachia (see chapter two for PCR conditions). Once the parasite groups infecting 

the population were identified individual screenings were conducted to determine 

infection rates within the various sexual phenotypes. 

 

5.22 Transmission 

 

Ovigerous females from the Langstone Harbour Portsmouth population that were 

infected by D. berillonum and  Inverkeithing females that showed infection with any 

potentially sex distorting parasites had their broods removed and DNA was extracted 

using DNAeasy kit (Qiagen, UK) following the manufacturers protocol. The pooled 

brood DNA enabled verification of whether the parasites present were vertically 

transmitting (see chapter two for PCR conditions). E. marinus broods were selected 

to represent each parasite group that showed VT and an uninfected control and the 

DNA of each egg or embryo was extracted individually, as described above but with 

an additional 10 minute RNAse step. The broods then were screened for the presence 

of the parasite groups to establish their transmission efficiency (see chapter two for 

PCR conditions). In addition, sex ratio data of broods taken from D. berillonum 

infected mothers which was conducted in chapter four will be analysed and presented 

(see section 4.2 for methodologies).  
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5.23 Artificial infection  

 

Following anaesthetising in clove oil (0.4µl/ml), the specimens from Inverkeithing 

had their head, gut, and hepatopancrease removed. The body tissue was cut laterally 

in halve. One half was stored in a 1.5 ml ependorf containing 1 ml of seawater at 

4
o
C.  The gonadal and muscle tissue in the other half was used for DNA extraction 

using the Phire
®
 Animal Tissue Direct PCR Kit (using the manufacturer’s guidelines) 

in which the DNA extracted from the muscle and gonadal tissue was incubated (in 

20µl of dilution buffer and 0.5 µl DNA release additive) for 5 minutes at room 

temperature and then 2 minutes at 98
o
C. The solution can then directly go into the 

PCR reaction and was used to screen the samples for parasite infection (as described 

previously). This method reduced time in DNA extraction and PCR screen, so that 

the tissue stored in seawater is as fresh as possible and reduces the likelihood of 

parasite mortality for subsequent artificial infection.  

 

The Inverkeithing animals that screened positive for vertically transmitting parasites 

were used to artificially infect the Portsmouth sample population either by feeding or 

infecting. The fed group were starved for 7 days and then the infected tissue was 

placed in the tank. The injected group was inoculated using a Hamilton
®
 Syringe, 

700 Series, Removable Needle (Sigma). Muscle and gonadal tissue was homogenised 

and injected between the 4
th

 and 5
th

 pereon of the amphipods. Animals in the control 

groups were fed and injected tissue from the Portsmouth E. marinus population to 

ensure no feminising parasites were infected in the control groups. Ten males and ten 

females from the Portsmouth E. marinus population were infected per group and 

were previously checked to ensure no intersex individuals were used.  After four 

months, the animals that had survived were anesthetised in clove oil (0.4µl/ml), 

checked for any signs of intersexuality and then had muscle and gonadal tissue 

dissected and DNA was extracted using the DNeasy kit (Qiagen, UK) following the 

manufacturers protocol and subsequently tested for infection. 
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5.3 Results 

 

5.31 Parasite Identification 

 

PCR analysis from Inverkeithing (Scotland) revealed an unidentified paramyxean 

and the microsporidian, Dictyocoela duebenum, to be infecting the population. No 

Wolbachia infection or any other species of microsporidia or Paramyxea was present. 

In total, 64 females and 27 males were individually tested for the paramyxean and D. 

duebenum (see Table 8). Overall, 59.6% of the sample population was uninfected, 

26.0% presented co-infection, whereas the paramyxean and D. duebenum only 

infections were 12.5% and 1.9%, respectively. Overall infection prevalence of D. 

duebenum (28%) and paramyxean (39%) showed no significant difference between 

them (X
2
 = 2.6241 ; df = 1 ; P = 0.1053). Co-prevalence was high with 68% of the 

paramyxean infected population presenting co-infection with D. duebenum and 93% 

of the D. duebenum infected population presenting co-infection with the paramyxean. 

Statistical analysis indicated that these two parasite groups have an significant 

association to each other that this co-infection prevalence is greater than expected 

(X
2
 = 7.5591 ; df = 1 ; P = 0.0060). Infection rates were female biased, with 50% of 

all females presenting infection by at least one of the parasites, whereas, within the 

male population only 25% showed infection. Infection rates also were extremely high 

in both intersex phenotypes with 90% and 87% of male and female intersexes 

presenting infection, respectively.     

 

 

Table 8: Parasitic infection in E. marinus animals from Inverkeithing presenting a range of 

sexual phenotypes. Individual screen of infection rates in D. duebenum and Paramyxean 

parasites using the rDNA, 16S and 18S, respectively. 

 

Sexual 

phenotype

Co-

infection

Paramyxean 

only infection

Microsporidian 

only infection
Uninfected Total

Female Normal 10 8 1 30 49

Female Intersex 8 4 1 2 15

Male Normal 1 0 0 29 30

Male intersex 8 1 0 1 10
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5.32 Transmission 

 

PCR screening of pooled broods isolated from infected mothers revealed that 

Paramarteilia, D. duebenum and D. berillonum transmit their infection vertically to 

their offspring. The control broods in both individual and pooled screenings showed 

no infection. Seven broods from each infection group were screened. The parasite 

with the highest transmission efficiency was the paramyxean only infections, in 

which a mean of 96.8+2.1% of broods were infected from the mothers infection. The 

infection rate of the paramyxean slightly reduced in the co-infection group in which 

93.7+2.5% of broods displayed infection, although, this was not significant (T-Value 

= 1.03  P-Value = 0.327  DF = 10). 

 

Comparing the two microsporidian species, D. duebenum transmitted a higher 

percentage of infection (80.2+3.5%) than D. berillonum (64.5+2.6%) (see Table 9) 

which was statistically significant (T-Value = -3.347  P-Value = 0.012  DF = 7). The 

two females that did show D. duebenum only infections had 0% infection in their 

broods, indicating that the D. duebenum only accounts may not be a ‘true’ infection 

and possibly a contamination from the gut.  

 

Brood sex ratio data from infected D. berillonum mothers gathered in chapter four 

showed a mean percentage of females in each brood being 41.5% and 55.0% for long 

(n=4) and short (n=2) day regimes, respectively. Comparing these values to the mean 

sex ratio of uninfected broods 38.47% (long day regime) and 56.89% (short day 

regime) showed no strong indication of feminisation. Infected broods showed an 

increase of females in long day regimes by 3.03% and an decrease in females in the 

the short day regimes of 1.89% which was equivalent to the range of sex ratios found 

in the uninfected groups within the experiment. Statisitical analysis failed to observe 

a significant difference between normal and infected broods (T-Value = 0.627; P-

Value = 0.531; T = 662).  
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Brood infection % rates (n/total number of eggs or juveniles) 

Paramyxean only 

infection 
D. berillonum 

infection 

Co-infection 

D. duebenum Paramarteilia 

100.0 (6/6) 73.9 (17/23) 66.7 (4/6) 83.3 (5/6) 

100.0 (5/5) 66.7 (12/18) 91.3 (21/23) 100.0 (23/23) 

100.0 (22/22) 64.3 (9/14) 72.7 (16/22) 100.0 (22/22) 

94.1 (16/17) 68.2 (15/22) 76.7 (23/30) 96.7 (29/30) 

100.0 (15/15) 57.1 (12/21) 83.3 (15/18) 94.4 (17/18) 

94.7 (18/19) 66.7 (10/15) 92.0 (23/25) 96.0 (24/25) 

89.0 (17/20) 54.6 (16/29) 78.6 (11/14) 85.7 (12/14) 

96.8 64.5 80.2 93.7 
 

Table 9: Brood infection rates of VT parasites found in the Langstone Harbour (D. 

berillonum) and Inverkeithing (Paramarteilia and D. duebenun) E. marinus population. 

Broods were tested via PCR methods to determine the transmission efficiency of parasite 

infection from mother to oocytes. Number of broods tested per infection group (n=7) and 

mean infection rate highlighted in bold. 
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5.33 Artificial infection 

 

Individuals (ten males and ten females) from the Portsmouth population were 

infected by either feeding or injected of infection tissue dissected out of individuals 

from the Inverkeithing population. The control groups were infected with tissue from 

individuals in the Portsmouth population as sex distorting parasites are not present 

within this population. All experiment groups included were control fed, control 

injected, paramarteilia only injected, paramarteilia only fed, co-infection fed and co-

infection injected. Horizontal transmission was only observed in the co-infection 

injected group (see Figure 38) following the four month incubation period, where the 

paramyxean was seen in 4 out of the 5 animals remaining (MI 1-5). In addition, one 

of the females (MI 2) was carrying late stage embryos, these were also screened and 

showed Paramarteila infection (MI 6). The paramyxean burden was higher in the 

females (MI1,2,4) than the males (MI3,5). D. duebenum showed no horizontal 

transmission in any of infection groups. 
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Figure 38: Screen for the presence of Paramartielia 18s rDNA gene in Langstone Harbour, 

Portsmouth sample population that were artificially infected either by feeding (F) or injecting 

(I) of various E. marinus tissue. Target product size is 905bp indicated by arrow. Control fed 

(CF) (n=7) and control injected (CI) (n=4) represents the pool of E. marinus that were 

artificially infected using tissue from other Portsmouth individuals (uninfected tissue). 

Paramarteilia only fed (PF) (n=7) and Paramarteilia only infected (PI) (n=4) represents the 

pool of E. marinus that were artificially infected with infected Paramyxean tissue from the 

Inverkeithing population. Co-infection fed (MF) (n=11) pool of mixed infection of D. 

duebenum and paramartielia tissue from the Inverkeithing population. MI 1-5 represents the 

individual screening of E. marinus that were artificially infected via injection of co-infected 

tissue. MI6 represents the brood that was harvested from the ovigerous female (MI2). 
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5.4 Discussion 

 

To understand parasitic influences on crustacean sex determination and 

differentiation this study has highlighted two potential sex distorting parasites, the 

microsporidia D. duebenum, and an undescribed paramyxean that infects the E. 

marinus Inverkeithing population. Overall, 43% and 31% of the population were 

infected by the paramyxean and D. duebenum, respectively. Both parasites showed 

infection bias in the females and intersex phenotypes with 50% of females and 92% 

of intersexes being infected by at least one of the parasites. This indicates that one or 

both of the parasites are the cause of intersexuality and that some of the infected 

females were converted from genetic males which are reflected in the female bias 

infection prevalence. The brood infection prevalence (number of eggs that were in 

infected out of the total number of eggs in the brood) of infected females showed that 

females infected only by the paramyxid to have the highest transmission to the eggs 

(96.8%). This was reduced (93.7%) when the individual presented a co-infection 

with the microsporidia although was not statistically significant. E. marinus 

ovigerous females infected with D. duebenum transmitted the infection to 80.2% of 

the brood, a better transmission rate than the closely related D. berillonum which 

64.5% of the host brood showed infection. Individuals that were infected with D. 

duebenum also showed a Paramyxean infection. The two accounts of D. duebenum 

only infections were possibly not ‘true’ infections due to its extremely weak signal in 

the PCR analysis, the lack of infection transferred to the broods and the prevalence of 

D. duebenum only infections within samples being rare. The weak infection of D. 

duebenum could possibly been due to contamination of the gut from ingested spores. 

Attempts to artificially infect E. marinus individuals from Langstone Harbour, 

Portsmouth population with the paramyxean parasite via injections, resulted in 4 out 

of the 5 surviving animals showing infection, with a greater infection burden 

observed in the females after 3 months post procedure. The infection also passed 

onto the broods of one of the females that were ovigerous. D. duebenum showed no 

signs of horizontal transmission in this experiment. 

 

Microsporidia are a well documented group of parasites in which some species are 

thought to be sex distorters (Terry et al., 1999, Ironside et al. 2003). It has been 
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suggested that microsporidian infection causes intersexuality, as well as leading to 

complete sex reversal in male hosts. Within amphipods, the microsporidian D. 

duebenum has been classified as feminising parasites (Ironside et al. 2003, Terry et 

al., 2004).  In this study we have found that an E. marinus population that has a high 

female bias and intersexuality (Ford et al., 2008, 2007) associated with D. duebenum 

infection has an additional species infecting this population that has been linked with 

sexual dysfunction in Crustacea, known as paramyxean. Paramyxean studies are 

mainly focused on the commercial economically important bivalves. The only non-

mollusc reported to host  paramyxean parasites are the amphipod, O. gammarella 

(Ginsburger-Vogel, 1991), the copepod, Paracartia grani (Carrasco et al., 2007) and 

the European edible crab, Cancer pagurus (Feist et al., 2009). This study to our 

knowledge is the second account of a paramyxean infecting an amphipod host. This 

is possibly due to a bias towards researching of more commercially viable species, 

rather than infection bias among Crustacean species. 

 

The paramyxean parasite that is infecting the Inverkeithing population, in a manner 

similar to that seen for D. duebenum infection displays higher infection rates in the 

females and intersex phenotypes. This presents the question which is the feminiser or 

is it possibly both? The microsporidian and the Paramarteilia are vertically 

transmitting parasites and every individual found to be infected by D. duebenum also 

presented a co-infection with the Paramyxean. These two taxonomically divergent 

eukaryotic parasites with similar transmission strategy have extremely close 

association with each other suggesting a hitch hiking strategy might be at play. This 

co-infection between a Paramyxean and microsporidians have also been observed via 

light microscopy in the amphipod, O. gammarella  (Ginsburger-Vogel, 1991). The 

stable co-occurrence of sex ratio distorters was thought to be rare phenomena due to 

theoretical predictions that the element with the highest basic reproductive rate 

should exclude other competitors (Bull, 1983). Several vertically transmitting 

microsporidian species, Dictyocoela mulleri, Dictyocoela sp., and Nosema granulosis 

infecting the same host population (Gammarus roseli) has shown extremely low co-

infection in individuals (Haine et al., 2004). In addition, Hogg et al. (2002) found 

two vertically transmitting microsporidia species in a G. duebenum population which 

presented no co-infection within the study. However, multiple sex ratio distorters 
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with different evolutionary origins have been observed within their host (Ironside et 

al., 2003, Majerus et al., 2000). 

 

In the artificial infection experiment, successful horizontal transfer was only 

observed following injection with co-infected tissue. Only the paramyxean 

horizontally transmitted into the injected E. marinus individuals, the parasite screen 

showed no evidence of infection from D. duebenum. This was also found when co-

infected tissue was grafted in Orchestia which induced male intersexuality. However, 

the host tissue was examined and only Paramarteila cells could be found 

(Ginsburger-Vogel, 1991). This study found no signs of intersexuality or 

feminisation in the artificially infected individuals after the four month period. This 

could be due to insufficient time to develop characteristics or adult E. marinus cannot 

feminise and it is only through juvenile (earlier) stages that intersexuality can be 

developed. It should be noted there has been no accounts to our knowledge where E. 

marinus has sexually reversed or developed intersex features in laboratory 

conditions.  However, both studies do suggest that the microsporidian might be a 

hitch hiking parasite within these amphipod species. In addition, paramyxeans can 

induce intersexuality in the amphipod host and therefore could have the capacity to 

feminise fully their host. The mechanisms that allow the paramyxean can 

horizontally transmit within E. marinus and D. duebenum cannot, remains uncertain. 

Previous studies of artificial infecting microsporidian Noesma sp. into an amphipod 

host has been successful with 3 out of the surviving 10 animals showed signs of 

infection (Dunn and Rigaud, 1998). Vertically transmitting Wolbachia have also 

shown the capacity of horizontal transmission (Rousset and de Stordeur, 1994). 

Whether vertically transmitting parasites horizontally transmit in natural populations 

is also open for debate. These studies indicate that sex distorting parasites do have 

the capability to transmit horizontally under laboratory conditions, although some 

species, such as D. duebenum, may have lost the capacity through their evolution.  

 

Numerous attempts to infect organisms artificially with paramyxeans by co-

inhabitation, feeding or injection have shown negative results (Balouet, 1979, Bethe 

et al., 1998, Van banning, 1979) with very few exceptions (Audemard et al., 2002, 
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Comps and Joly, 1980, Ginsburger-Vogel, 1991). Van Banning (1979) attempted 

feeding experiments of tissue infected with M. refringens to an E. marinus 

population in the Netherlands (described in the literature as Marinogammarus 

marinus) which showed no positive results, similar to this study. Horizontal transfer 

of Paramyxean appears to be not viable through ingestion; this could be simply that 

the spores pass through the gut without taking hold to host tissue or the period that 

the spores are in seawater before ingestion could cause spores to be ineffective. 

Audemard et al. (2002) successfully transmitted M. refringens from the oyster, 

Ostrea edulis to the copepod, P. grani, by simple co-inhabitation, this transmission 

was detected after 7 days of exposure to the infected oysters, although, the overall 

transmission was low and the attempts to reverse the transmission from copepod to 

oyster failed (Audemard et al., 2002, Carrasco et al., 2008). Another possibility is 

that the E. marinus individuals did not eat the tissue, although the starvation period 

of seven days alongside the cannibalistic tendencies of amphipods (Dick et al. 2005) 

makes this seem unlikely. G. duebeni was fed tissue infected with the 

microsporidian, Pleistophora mulleri which showed a 23% transmission efficiency 

when uninfected individuals were fed infected tissue (MacNeil et al., 2003). The 

same study also observed parasitised individuals were more likely to be cannibalised 

by both unparasitised and parasitised individuals.  This further supports that 

transmission of parasites by feeding is possible in an amphipod host, although within 

this study we cannot be certain of why transmission this was not successful. 

 

The paramyxean, M. refringens targets ovarian tissue in its copepod host P. grani, in 

which infected male copepods were never detected (Audemard et al., 2002). 

However, in mussels M. refringes infection rates and susceptibility showed no sex 

bias (Villalba et al., 1993). It would be interesting to determine whether M. refingens 

can sex distort its copepod hosts, or females are more susceptible to infection in 

horizontal transmission. Either scenario would support findings within this study. 

Interestingly, infection of ovaries by microsporidian parasites are also found in 

copepod hosts (Andreasis 1988, Micieli et al., 2000), although, co-infection of the 

two parasite groups have yet to be explored. Other paramyxeans to target gonads are 

found in Orchestia gammarella infected with Paramarteilia orchestiae and 

Crassostrea gigas infected with Marteiliodes chungmuensis. The only other 
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association between paramyxids and microsporidians that was identified in the 

literature was the microsporidia, Noesma ormieresi being described as a hyper-

parasite of M. refringens (Comps et al., 1979 cited in Bethe et al., 2004). The 

microsporidian was observed to cause necrotic changes, such as, primary cell and 

sporangia degeneration, membrane alteration, cytoplasm condensation and reduction 

in number of spores. The microsporidian was suggested to be a possible biological 

control of marteiliosis sp., however, it has never been investigated further (Bethe et 

al. 2004). A histological or in situ florescence study into the spatial distribution of D. 

dubenum and the paramyxean in E. marinus adults and embryos would determine 

whether this is a simple co-infection occurrence or that the microsporidian acts as a 

hyper-parasite.  

 

It is highly probable given that both the paramyxean and D. duebenum are vertically 

transmitting parasites that they have the same transmission strategy and therefore are 

not in direct conflict, in terms of host reproduction being of importance. Vertically 

transmitting parasites have to regulate their host exploitation due to their dependence 

on reproductive success. However, due to space and resource requirements from their 

host some form of compromise could be expected with the presence of both 

parasites. It has been observed D. duebenum can reduce other parasite species 

affects, such as, behavioural manipulation (Haine et al., 2005). In this study, a slight 

reduction in transmission efficiency (3.1%) was observed in the paramyxean species 

in the co-infected group compared with the paramyxean only infection group. In 

cases of co-infection in vertically transmitting Wolbachia strains it has been shown 

that infection intensities are reduced (Kondo et al., 2005). However, within this study 

there were no obvious differences in the strength of band between infection groups or 

parasite species. Although this finding was not statistically significant, it would be 

interesting to investigate the parasite burden within embryos of co-infected broods 

vs. paramyxean only broods via qPCR or immunoflourescent methods to see whether 

this slight reduction is due to reduced burden.  

 

The findings in this study have indicated that D. berillonum is not a feminising agent 

which correlates with other studies (Terry et al. 2004). D. berillonum brood sex ratios 
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collect from the study in chapter 4 showed the mean percentage of females in each 

brood was 41.5% and 55.0% for long (n=4) and short (n=2) day regimes, 

respectively. Although, brood numbers are low, these findings do correlate with 

findings in chapter two that show no sex bias within the infection rates. This 

indicates this microsporidian species is not a feminiser and generally is a weaker 

vertical transmitter in E. marinus compared with the closely related, D. duebenum. 

Whereas, D. duebenum has been observed as a feminiser in past work (Ironside et al., 

2003, Terry et al., 2004), a screen for paramyxea parasites was not conducted in 

these studies, therefore we cannot conclude this microsporidian species as a 

feminiser either. Interestingly, if D. duebenum is a sex distorting parasite, D. 

berillonum may have lost or D. duebenum have gained in their lineage the 

feminisation capability.  However, due to its lack of transmission shown in the 

artificial infection experiment it could suggest that this species is well adapted in its 

vertical transmission; this is reflected in its high transmission to embryos, as well as, 

possible feminisation effects or hitchhiking strategy. This study has shown that the 

Paramyxean species infecting E. marinus has the capacity of horizontal and vertical 

transmission in laboratory conditions. We have not elucidated which parasite is the 

feminiser within the E. marinus population from Inverkeithing, we have identified 

two possible candidates, gained a better understanding of their transmission and 

demonstrated a successful artificial transmission model, so that further studies could 

be performed on a larger scale, in which an array of endpoints could be studied. 

 

Paramyxean parasites have been within scientific literature for 40 years (Herrbach 

1971). Despite this, there is a lack in knowledge of their taxonomy, pathology and 

life cycle, especially within less commercially important marine species. Although, 

some paramyxean species are well described in their basic morphology and cellular 

division, the literature still lacks comparisons among different species within this 

parasite group. The inconsistency within the taxonomy of the species has not assisted 

in this, for example, Paramyxea in the literature have often been incorrectly termed 

as Haplosporidians (Ironside et al. 2011). Further phylogenetic analysis based on 

DNA sequences will help the future taxonomy of this parasite group, more sequences 

need to be established in this phylum for greater comparisons among species. 
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Paramyxeans have been reported throughout the world (Bethe et al. 2004), yet very 

little information regarding the parasites ecological impact in the non-mollusc host 

has been established.  

 

Elucidating the parasites responsible for the sex distortion observed in the E. marinus 

Inverkeithing population should be prioritised for future work. Co-infection in the 

population is high; however, the best strategy for finding the feminising agent would 

be to study individuals that are infected by one of the parasites. By artificially 

infecting females with paramyxean parasites, as D. duebenum appears not to transmit 

horizontally, this would leave Paramyxea only infected females. These females could 

breed and the brood sex ratios could be examined. If the infected females produced 

female biased broods this would indicate the paramyxean as a feminiser. However, 

this does not rule out D. duebenum having the capacity to feminise as well. 

Alternatively, the scenario could be that the paramyxean does not produce female 

biased broods. This would indicate D. duebenum as the feminising agent within the 

population. The female bias infection rates of the paramyxean observed in this study 

could be partially through the co-infection rates with the feminising microsporidia 

and the capacity of the paramyxean to transmit horizontally, in which, within the 

artificial infection experiment females showed greater parasite burden which 

possibly could indicate greater susceptibility.  Either way, this is an interesting case 

of co-infection of two genetically and evolutionary divergent parasites in a female 

biased population, indicating that E. marinus is influenced by PSD. Further study, 

should include the identification of paramyxean parasites in other female biased 

populations, as well as, investigations into paramyxean-microsporidian interactions 

in other host populations. This will identify whether the Inverkeithing E. marinus 

population is an isolated case, provide further understanding of sex distorting 

parasites in an amphipod host, as well as, their role in sex determination and their 

influence over host population dynamics.  
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6. Identifying genetic sex 

determination in Echinogammarus 

marinus 

6.1 Introduction 

 

Sex differentiation is often caused by a sequence of gene expression events triggered 

by sex determination genes contained in sex chromosomes or autosomes (genotypic 

sex determination (GSD)).  The majority of the time, genotypic or gametic sex 

determination fixes zygotic sex at the point of conception and the organism is set as 

that sex for the rest of its adult life (Charnov and Bull, 1977, Korpelainen, 1990).  

Sex determination in species that are heterogametic can be established by using 

Mendelian backcross experiments thus sex ratios are unbiased if mortality is not sex 

differentiated (Fisher, 1930).  However, there can be factors that can overpower these 

genetic sex determining mechanisms.  The general consensus when studying sex 

determination within crustaceans is that there are many sex differentiating 

mechanisms at play (Legrand and Legrand, 1987). However, a full understanding of 

these mechanisms and which factors override others still remains elusive. The aim of 

this study is to attempt to isolate genomic differences between the E. marinus 

genders in the hope of identifying the hetero or homo-gametic sex in E. marinus. 

 

 There are several methods able to detect genomic differences and sex determining 

mechanisms in Crustacea. Cytogentic investigations have shown that gammarid 

chromosome squashes are difficult to analyse due to small chromosome size, high 

chromosome numbers, and the presence of B chromosomes which are common 

among gammarids, including E. marinus (Orian, 1957) (see chapter one). 

Karylogical studies of gammarid species have seen little evidence for sex 

chromosomes; however this could be due to the technical difficulties in obtaining 

good quality metaphase plates, rather than the absence of sex chromosomes (Lecher 

et al. 1995). To overcome problematic karylogical investigations in crustaceans, 

female heterogamety can be demonstrated by crossing two genetic females, one of 
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which has been experimentally sex reversed to the extent of functioning as a neo-

male. Genetic polychromatism is indicated when such a cross can produce all female 

viable broods. Experimental sex reversal has been accomplished by experimental 

removal or implantation of the androgenic gland (AG) in many crustacean species 

(Suzuki, 1999, Malecha et al., 1992) (see chapter 1) and has been achieved in the 

amphipod, Orchestia gammarella (Charniaux-Cotton, 1958, Charniaux-Cotton, 

1960).  Therefore, this study will not attempt to find sex chromosomes though 

karylogical methods, but attempt to ablate the AG from E. marinus male individuals 

and implant the AG in E. marinus females in hope of sexually reversing individuals 

for subsequent breeding experiments to determine the heterogametic sex. 

 

This study will also attempt to use molecular methods to identify genetic differences 

between males and females. Sex specific molecular markers in crustaceans have 

mainly been identified in the commercially important decapods species (Ventura et 

al. 2011, Staelens et al. 2008, Perez et al. 2004, Zhang et al., 2007). Microsatellite 

also known as inter-simple sequence repeats (ISSRs), randomly amplified 

polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLPs) 

analysis is typically used to study genetic variability within a population (Costa et al., 

2004, Xu et al. 2001). However, these techniques have also been adopted to identify 

successfully genetic variation among genders in a variety of organisms (Gandolfi et 

al. 2001, Younis et al. 2008, Ventura et al. 2011). These three techniques attempt to 

identify differences between populations by separate approaches.  RAPD is a type of 

PCR in which genomic DNA fragments are amplified completely at random and 

thereby able to differentiate genetically distinct individuals. Microsatellites are 

simple sequence repeats that occur in the coding and non-coding genomic regions. 

ISSR primers are designed to amplify the loci between two microsatellites. A 

common microsatellite is (CA)n repeat in which n differs between different alleles, 

this often reveals high levels of inter and intra specific variation and this can be 

observed by visualising different sized fragments on gel electrophoresis following a 

PCR reaction using the ISSR primers (Goldstein et al. 1995). The variability of 

microsatellites is due to the high mutation rate compared with other DNA regions. 

Therefore, if one gender has a unique genomic region, if may contain a distinctive 

microsatellite region that is detectable. The AFLP technique selectively amplifies 
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restriction enzyme digested genomic DNA. This usually consists of performing two 

enzyme digests using a rare and frequent cutter, followed by ligation of adapters for 

selective re-amplification which can then be visualised using high resolution gel 

electrophoresis (Vos et al., 1995). These three molecular marker techniques have 

been extended to many biological applications and can be extremely valuable as they 

do not require any prior knowledge of the genomic sequence of the target organism.   

 

This study will screen pooled male and female E. marinus genomes using RAPD, 

ISSRs, and AFLP analysis to attempt to identify genomic differences between 

genders. In addition, the transcriptome of E. marinus has been sequenced, in which 

gonadal libraries of different sex phenotypes of E. marinus (normal male, intersex 

male, normal female intersex) were mapped using high through-put sequencing 

platforms (Roche 454 GS FLX and ABI SOLID).  This has allowed the possibility of 

mining the transcriptome to identify genes presenting highly sex biased expression, 

which can be used as candidates for genes that might be genomically present in one 

sex.   

 

The discovery of a specific genetic marker, and subsequent rapid molecular sexing 

assays would be extremely valuable for assessing whether sex genotype and 

phenotype corresponds in E. marinus. This would be particularly interesting in 

populations in which sex determination is highly influenced by parasitic, 

environmental, or pollution effects. It could also open up the possibility of being able 

to sex individuals before they are morphologically distinguishable, reducing time 

when conducting breeding experiments investigating sex ratios. 
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6.2 Materials and Methods 

 

6.21 Androgenic gland sex reversal experiment 

 

E. marinus were collected from beneath seaweed and rocks in the intertidal zone 

during low tide from Langstone Harbour, Portsmouth (see Figure 7). Animals were 

sexed and no intersex individuals were used. Animals were kept in aerated tanks with 

a 12 hour light regime at 10
o
C. In gammarids the AG is located directly above the 

external genital papillae (see Figure 39).  For the ablation of the AG, two techniques 

were adopted, burning of the genital papillae using a hot pin, in our attempt to 

eliminate the AG tissue, and dissecting out the bottom area of the testis to remove the 

area in which the AG is located. 36 individuals were used per method with an 

addition control ablation group (control burning and control dissection) in which the 

burning or removal of tissue was conducted in an area slightly above the genital 

papillae, so not to affect any of the reproductive tissue. An implantation experiment 

was also conducted in which female E. marinus had a small incision and had testis 

tissue (containing the AG) implanted into the area where the AG normally resides in 

males. The control group had muscle tissue implanted into females in the same area. 

After ablation or implantation was conducted, animals were put in aerated water and 

kept in separate plastic pots to avoid cannibalism. After 3 moults animals were 

anaesthetised and checked for signs of feminisation (brood plates) or masculinisation 

(genital papillae). If signs of sex reversal were observed, individuals were left till 

subsequent breeding with the same sex could be achieved. Broods would be kept and 

sex ratios would be identified once juveniles could be sexually differentiated. These 

sex ratios can then indicate which gender is the heterogametic sex. 
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Figure 39: The androgenic gland (arrows) in Echinogammarus marinus. 
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6.22 Transcriptome mining for potential sex markers 

 

Recently the transcriptome of E. marinus has been sequenced (unpublished), in 

which gonadal libraries of different sex phenotypes of E. marinus (normal male, 

intersex male, normal female, intersex female) were mapped using high through-put 

sequencing platforms (Roche 454 GS FLX and ABI SOLID).  A total of 19 and 15 

genes presenting extreme female and male exclusive expression respectively were 

selected and primers designed using primer 3 (Primer BLAST, NCBI) (see Table 10).  

Ovary and testis were dissected from normal male and female E. marinus from the 

Langstone Harbour, Portsmouth population. The cDNA libraries were made in 

accordance with methodologies in Section 3.23. Initially, the primers were tested by 

performing PCR using the cDNA libraries as template and analysing the products by 

agrose gel electrophoresis. This validated the expression suggested by 454 and 

SOLID sequencing and established suitable PCR conditions. Genes that showed 

potential for being sex specific were then tested using pooled genomic DNA 

extracted from 250 males and 250 females pools obtained from the Langstone 

harbour, Portsmouth population (DNA was originally obtained for the parasite screen 

described in chapter 2) to examine if the gene was sex specific or present in both 

genders. All PCR reactions were in 25µl volumes containing 2.5 mM MgCl
2
, 0.25 

mM each deoxynucleotide, 0.5 mM each primer, 1 x PCR buffer 1U Taq DNA 

polymerase, 1µl (10ng) of template DNA (Promega). PCR conditions consisted of an 

initial denaturation at 94°C (4 minutes), 35 cycles of 94°C (30 seconds), 60°C (30 

seconds), and 72°C (45 seconds), a final incubation of 5 minutes at 72°C. The 

product was then resolved using a 1.2% agrose gel containing ethidium bromide 

(4%) that was run for 20 mins at 150V before being visualised under a UV 

transilluminator. 
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Female Biased Expressed Genes Product 

Size 

(bp) 

Male Biased Expressed Genes 
Product 

Size (bp) Primer Primer Sequence ('5-'3) Primer Primer Sequence ('5-'3) 

F3 
TCGTGGCGTTCACCGACCATG 

188 M4 
TGCTGAGGGCACCCTTTGTGT 

161 
GACCATGGGACCGCCATTGGC GTTGTGCGAGCGTCCTCCCC 

F4 
GCAGCGGCCACACACCATAGT 

165 M5 
CGCGCTCTAGGGTTGAAGCTC 

102 
AGCTGAGAAACTGCACGCGTC GCAAACCTGCTTCTGCTTTATATC 

F5 
GGAGCTCGTGTAGTGAGCCACG 

192 M6 
GAGGGACATCAATGTTCAAGTGTC 

102 
TGAGCAGCCCGCATGCGTAG CGTTGATCAAGCACCTGGTAGCG 

F6 
CGCAGCGGCGACTTGCTTATC 

200 M7 
GCACACAAGTCAGGGCCGCT 

190 
GCGTCTTGCATGCTGTCATGACC AGCGGCCCTGACTTGTGTGC 

F7 
AAAGAGCCGACAACCGGCAGC 

155 M8 
TGCGTGGGTGCAGTCCTCAC 

160 

TCGTGACCGCTTTTAACGGCC CACCGCGGCGACCTGTGTTA 

F8 
CGTCGGGCAGGCAAGGTCTG 

150 M9 
CCGATGCCCTTCGCATCCCAG 

150 

GGATTTTGGAGGATGGACCGCCG ACCAGCCACTTTCCCCCACGT 

F9 
CATCGGAAGGCATGTCACGCGT 

155 M10 
GCAGTTACGGCGCAGGAAGTT 

175 

CGCCCTCGCTGCTGTTTGCTA TGTGGCATGTGGCACCGTCTTG 

F10 
GCTCTCGACGACACCCCAGTT 

191 M11 
GCCAGTCGGTAAGTGGCGGC 

195 

ACGCGGATGCGCAAGATGGTAA CTTGCGGCGACTCCCTCTGC 

F11 
GGCCCAACCGAGGATGAGCC 

169 M12 
CTCGGCCATTGCAGCCCCA 

196 

GCGGTCGGTAGTACGGTTGGT GATCGCGCCGACACCGGTAT 

F12 
CGACTACCTCTTACCAGGGGCACC 

153 M13 
TCCGGCGAGGTTTTGGGTCG 

196 

GCACGGAAACCCCCGTCGAG TCTTCCGGCCAGGCTTTGGG 

F13 
TCAGAGTGGGTCATCGGGCGA 

157 M14 
GGCCGCCGTATTACTTCTCA 

171 

AGGCCCCGAGATGCCGCATA GTCGGTAACACCTGAAGCCA 

F14 
ACTGGCATCGCCACCCAAAC 

167 M15 
AGCGAAACGCGTCATGGATA 

229 

TTGAGCACACCACGTCGCGTT CACTTATTCGCGGCCACTTG 

F15 
TACCCTGGTCCCCATCGGCC 

160 M16 
GTTCCTAGTTGGGTGGACGG 

134 

GGAGCGCTGCACGCCGATAT TGCGACTATTCGGCCTGTTT 

F16 
AGCAAACACTCTGGAGTCCG 

170 M17 
GATCAGTTTGCAGCAAGGGC 

152 

CGAGTACGGCTGTCGCTATT ACCCCTGCAATAGAACGACG 

F17 
AGCCGTTCGTGACCTACAAG 

196 M18 
AGCTGAATCACGAGCGAGTT 

121 

TTGGCATCCTCTACCGCAAG TGCCTACCTTCGGTCTACCA 

F18 
TCGCTGGTAACCCACTTCAC 

148 M19 
CTCGACGAATGAGGTCTCGG 

151 

TGGAAGAGTTTTCCCTCGGC GTGGAAGTCTGTACTCGGGC 

F19 
GGTATGGAGCTGACGATGGG 

133 
   

TTCCCTTTCCAATCGCGTCA 

 

  

F20 
TTCGACCCGTCTACTTTGGC 

153 
   

GTTCCGCAGTTGGTACTGGA    

F21 
CCCAGCCTTGTTGAGGAAGT 

227 
   

ACGTAACCGAGTCCCCTGTA    

 

 

Table 10: Primers for contiguous 

sequences presenting sex exclusive 

expression: primer sequence and 

product size. 
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6.23 RAPD and ISSR PCR Techniques  

 

Male and female pooled gDNA, originally extracted for the parasite screening in the 

population study (chapter 2) was used (250 individuals per gender) from the 

Langstone Harbour population. 20 RAPD (OPE1-20, Eurofin MWG Operon’s RAPD 

10mer E Kit) (see Table 11) and 25 ISSRs (Eurogentec, UK) (See Table 12) were 

tested and amplification was performed in 25 µl volume containing, 0.2 mM dNTPs, 

2.0 mM MgCl2, 0.1 mM primer, 1 x PCR buffer, 1U Taq DNA polymerase 

(Promega) and 25 ng pooled genomic DNA. PCR conditions consisted of an initial 

denaturation at 94°C (5 minutes), 35 cycles of 94°C (30 seconds), 32°C (40 seconds), 

and 72°C (45 seconds), a final incubation of 10 minutes at 72°C. The ISSR primers 

had adjusted annealing temperature (38-64
o
C) to improve resolution (See Table 12). 

The product was then resolved using a 1.2% agrose gel containing ethidium bromide 

(4%) that was run for 40 mins at 150V before being visualised under a UV 

transilluminator. 
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RAPD  

Primer name Primer sequence (5’-3’ 

OPE-01 CCCAAGGTCC 

OPE-02 GGTGCGGGAA 

OPE-03 CCAGATGCAC 

OPE-04 GTGACATGCC 

OPE-05 TCAGGGAGGT 

OPE-06 AAGACCCCTC 

OPE-07 AGATGCAGCC 

OPE-08 TCACCACGGT 

OPE-09 CTTCACCCGA 

OPE-10 CACCAGGTGA 

OPE-11 GAGTCTCAGG 

OPE-12 TTATCGCCCC 

OPE-13 CCCGATTCGG 

OPE-14 TGCGGCTGAG 

OPE-15 ACGCACAACC 

OPE-16 GGTGACTGTG 

OPE-17 CTACTGCCGT 

OPE-18 GGACTGCAGA 

OPE-19 ACGGCGTATG 

OPE-20 AACGGTGACC 
 

Table 11: RAPD primers used in the attempt to identify genetic differences between male 

and female Echinogammarus marinus. 
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ISSR Annealing 

temperature 

(
o
C) 
 

Primer name Primer sequence ('5-'3) 

7 CTCTCTCTCTCTCTCTRG 58 

814 CTCTCTCTCTCTCTCTTG 54 

843 CTCTCTCTCTCTCTCTRA  56 

844 CTCTCTCTCTCTCTCTRC 58 

898 CACACACACACARY  42 

899 CACACACACACARG  46 

901 GTGTGTGTGTGTYR 42 

902 GTGTGTGTGTGTAY  44 

AW3 GTGTGTGTGTGTRG 46 

Becky CACACACACACACAYC 52 

Chris CACACACACACACAYG 52 

DAT CACACACACACACARG 52 

Goofy  GTGTGTGTGTGTGTYG 52 

John AGAGAGAGAGAGAGYC  52 

M1 CAAGAGAGAGAGA 38 

M2 GGGCGAGAGAGAGAGAGAGA 64 

Mao CTCCTCCTCCTCRC  50 

Manny CACCACCACCACRC  50 

OMAR GAGGAGGAGGAGRC 50 

Sas 1 GTGGTGGTGGTGC 44 

Sas 2 GAGGAGGAGGAGC 44 

Terry  GTGGTGGTGGGTGRC 50 

UBC809 AGAGAGAGAGAGAGAGG 52 

UBC811 GAGAGAGAGAGAGAGAC 52 

UBC827 ACACACACACACACAC8G 52 

 

Table 12: ISSR primers and their associated annealing temperatures used for microsatellite 

analysis between male and female Echinogammarus marinus. 
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6.24 Amplified Fragment Length Polymorphism (AFLP) 

  

An AFLP comparison was performed using male and female pooled DNA from the 

Langstone Harbour population (250 individuals per gender), originally extracted for 

the population parasite screening described chapter 2. AFLP markers were obtained 

using a one-step digestion–ligation procedure based on methodology detailed in Vos 

et al. (1995) with a few modifications. DNA (250 ng) was digested and ligated in the 

same reaction for 3 hours at 37
o
C in solution containing 4 pmol of EcoRI adaptor 

(Eco-F: 5'-CTC GTA GAC TGC GTA CC-3', Eco-R: 5'-AAT TGG TAC GCA GTC 

TAC-3'), 50 pmol of MseI adaptor (Mse-F: 5'-GAC GAT GAG TCC TGA G-3', 

Mse-R: 5'-TAC TCA GGA CTC AT-3') 10 mM of ATP, 1 U of T4 ligase (NEB), 5U 

of MseI (NEB), 5 U of EcoRI (NEB) and water to complete 10 µl per sample. After 

digestion–ligation, samples were diluted 1:10 with molecular grade distilled water. 

Pre- and selective PCR amplification was carried out with PCR reagents (Promega). 

The PCR reactions contained 1x PCR buffer (Promega), 1.5 mM MgCl2, 0.2 mM of 

dNTPs and 0.008 U/µl of Taq polymerase. Pre-amplification was carried out with 5 

µl of the ligated product and 0.2 µM of both EcoRI (5'-GACTGCGTACCAATTCA-

3') and MseI (5'-GATGAGTCCTGAGTAAC-3’) preselective primers in a total 

volume of 25 µl. Selective amplification consisted of performing PCR with the pre-

selective primers consisting of 3 or 4 randomly added nucleotides (See Table 13). In 

total, 36 primer combinations were used to analyse the gDNA. PCR conditions 

consisted of an initial denaturation at 94°C (2 minutes), 35 cycles of 94°C (30 

seconds), 54°C (60 seconds), and 72°C (60 seconds), a final incubation of 2 minutes 

at 72°C.  
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EcoR1 

selective 

Primer 

Added 

Nucleotides 

MSEI 

Selective 

Primer 

Added 

Nucleotides 

Eco 1 AGCC MSE 1 CCAA 

Eco 2 AGAC MSE 2 CCAC 

Eco 3 AATT MSE 3 CCCC 

Eco 4 GGC MSE 4 TCC 

Eco 5 CCA MSE 5 TGG 

Eco 6 GAC MSE 6 CCG 

 

Table 13: Selective amplification primers for AFLP analysis with 3 or 4 (xxx/x) nucleotides 

added to ensure reduced band profiles in analysis (ECOR1- 5'-GACTGCGTACCAATTCA-

XXX/X-3')(MSEI- 5'-GATGAGTCCTGAGTAAC-XXX/X-3’). 

 

 

Initially, the AFLP markers comparing male and female gDNA libraries (n=250) 

were tested and the product was then resolved using a 1.2% agrose gel containing 

ethidium bromide (4%) that was run for 40 mins at 150V before being visualised 

under a UV transilluminator (see Figure 40). Then, 15 primer combinations 

presenting various DNA fragments showing variation between genders were selected 

for further analysis using radioactive labelling and polyacrylamide gel 

electrophoresis for better resolution of the potentially sex specific DNA fragments.   

 

 

 

Figure 40: Representational sample of PCR analysis of selective primer combinations using 

male (M) and female (F) Echinogammarus marinus gDNA pools (n=250) to select primer 

combinations (1= eco2, mse5, 2= eco3, mse6, 3= eco2, mse3, 4= eco1, mse2, 5= eco3, mse4, 

6= eco1, mse3, 7= eco1, mse5) that produces a variety of different sized DNA fragments for 

further analysis using polyacrylamide denaturing gels and radioactive labelling. 
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The conditions for radiolabelled PCR were the same as described above except the 

PCR master mix was spiked with 1µl of α 32P dATP. The subsequent PCR products 

(12 µl per sample) were separated by vertical electrophoresis (Sequi-Gen GT 

electrophoresis system, Bio-Rad) in 1-mm thick denaturing gel containing 6% 

acrylamide/bisacrylamide mixture (16:1) (Sequagel 6, National Diagnostics) and 600 

µl 10% APS. The gel was pre-run at 65 W for 1 hour to heat gel up to running 

temperature before sample was loaded. The gel was then run for a further hour with 

the samples loaded. Gels were fixed in an 10% acetic acid bath for 10 mins, 

transferred onto Whatmann 3MM paper and covered with ‘Saran’ wrap, prior to 

being dried at 80
o
C for 1 hour under a vacuum. The radioactive labelled fragments 

were then visualised using a Fujifilm FLA 5000 phosporimager. Bands identified as 

being sex specific were cut out using a razor blade. The excised gel fragments were 

then heated up to 37
o
C, homogenised in TE buffer and left on a shaker over night. 

The solution was then centrifuged at high speed (14,000 rpm) for 5 minutes and 

supernatant was kept and used for re-amplification using the original PCR 

conditions. The re-amplified DNA was visualised using agrose gel containing Gel 

Green (Cambridge Bioscience, UK). The bands were then cut and eluted using 

QIAquick gel extraction kit (Qiagen, UK) and sequenced using the Sanger method 

(Source Bioscience, UK).  Sequences were analysed using BLAST (NCBI) for 

possible annotation and primers were designed based on the newly generated 

sequences using Primer 3 (Primer BLAST, NCBI). Primers were then tested on male 

and female gDNA to validate their use in detecting a genomic marker for sex. All 

PCR reactions were in a 25µl volumes containing, 0.25 mM dNTPs, 2.5 mM MgCl2, 

0.5 mM primer, 1 x PCR buffer, 1U Taq DNA polymerase (Promega) and 1µl (10ng) 

of template DNA. PCR conditions consisted of an initial denaturation at 94°C (4 

minutes), 35 cycles of 94°C (30 seconds), 60°C (30 seconds), and 72°C (45 seconds), 

a final incubation of 5 minutes at 72°C. The product was then resolved using a 1.2% 

agrose gel containing ethidium bromide (4%) that was run for 20 mins at 150V 

before being visualised under a UV transilluminator. 
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6.3 Results 

6.31 Androgenic gland sex reversal experiment 

 

All groups had high mortalities rates with the exception of the control group that 

showed 19% mortality over the three month period (see Table 14). The group that 

had their AG ablated via burning the area with a hot pin had the highest mortality. 

There was no difference in mortality between the control and test groups. Overall 

after three moults there was no sign of feminisation in the AG ablated groups or 

masculinisation in the AG implanted groups. Therefore no further breeding 

experiments were conducted to elucidate which gender was the heterogametic sex in 

E. marinus. 

 

Group 
Mortality 

(x/36) Mortality (%) 

Ablation (dissected) 29 81 

Control (dissected) 28 78 

Ablation (burnt) 33 92 

Control (burnt) 34 94 

Implanted 27 75 

Implanted control 28 78 

Control 7 19 

 

Table 14: Mortality rates of Echinogammarus marinus individuals in the androgenic gland 

sex reversal experiment  
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6.32 Transcriptome mining for potential sex markers 

 

The transcriptomic data generated using the both 454 and SOLID platforms 

identified 15 male and 19 female sex specific gene candidates on the basis of their 

sex exclusive expression. The high through-put sequencing performed using the 

Roche 454 (GSFLX) platform identified 13 female and 10 male gene candidates (see 

Table 15). Later on, more transcriptomic data was sequenced based on the SOLID 

ABI platform with greater reading depth (see Table 16), this allowed for the gene 

candidates chosen to be compared with the new sequencing data and a further 6 

female and  5 male exclusively expressed genes were designed using primer BLAST 

(NCBI) (see Table 10) and tested. Genes were selected with 0 number of reads 

indicating the potential for no expression in either normal males or females in hope 

to find a genomic marker present in a single gender.  

 

From the transcriptomic data mapped 29538 genes showed bias expression in 

females and 2149 genes showed bias expression in males, of which 698 and 259 of 

those genes were annotated, respectively. Out of 34 gene candidates selected 11 were 

annotated, 9 of which were female biased and 2 were male biased in their expression 

(see Table 17). From ovary and testis cDNA libraries created PCR analysis showed 

good validation of the transcriptome data (see Figure 41). Although, when testing the 

primers using gDNA all PCR analysis showed presence of the gene in both genders 

(see Figure 42). 
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Primer  

Female Biased Genes 

Primer  

Male Biased Genes 

nf if nm im nf if nm im 

Number of reads Number of reads 

F3 44 41 0 0 M4 0 0 586 223 

F4 36 37 0 0 M5 0 0 261 130 

F5 26 30 0 0 M6 0 0 256 133 

F6 21 12 0 0 M7 0 0 185 175 

F7 16 20 0 0 M8 0 0 178 33 

F8 15 20 0 0 M9 0 0 29 23 

F9 36 37 0 0 M10 0 0 23 17 

F10 53 62 0 0 M11 0 0 19 17 

F11 52 196 0 0 M12 0 0 26 14 

F12 38 39 0 0 M13 0 0 169 112 

F13 9 8 0 0      
F14 6 11 0 0      
F15 11 11 0 0      

 

Table 15: Expression (reads in expressed sequence tags (ESTs)) of genes in gonads isolated 

from normal females (nf), intersex females (if), normal males (nm) and intersex males (im) 

generated by high throughput sequencing using the ROCHE 454 GSFLX platform. 

Sequences presenting extreme sex biased expression selected as candidate genomic markers. 

 

Primer  

Solid RNAseq 

IFIN NFIN NFUN IIMUN NMUN EIMIN 

No. reads 

F16 4890 2651 3299 0 0 3 

F17 1050 1181 1733 0 0 2 

F18 1150 562 1712 2 0 3 

F19 3045 2127 1699 1 0 0 

F20 2182 1884 1607 2 0 1 

F21 848 571 1438 0 0 0 

M14 4 1 0 708 571 554 

M15 0 1 0 117 480 339 

M16 2 2 0 520 461 593 

M17 2 2 0 859 408 552 

M18 2 2 0 382 387 344 

 

Table 16: Expression (reads in expressed sequence tags (ESTs)) of genes in gonads isolated 

from E. marinus categorised by sexual phenotypes and microsporidian infection. Normal 

females uninfected (NFUN), normal females infected (NFIN), intersex females infected 

(IFIN), normal males uninfected (NMUN), internal intersex males uninfected (IIMUN), 

external intersex males infected (EIMin). The data was generated by high throughput 

sequencing using the SOLID ABI platform. Sequences presenting extreme sex biased 

expression selected as candidate genomic markers. 
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Primer  Swissprot ID Description eValue 

F3 HSP7C_CHICK Heat shock cognate 71 kDa protein 1E-136 

F6 GOR_PANTR Exonuclease GOR 2E-15 

F7 GOR_HUMAN Exonuclease GOR 2E-20 

F8 PLMN_CANFA Plasminogen (Fragment) 5E-11 

F9 NDUAB_MOUSE NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11 5E-12 

F10 PNO1_NEMVE RNA-binding protein pno1 9E-63 

F13 NANOS_DROME Protein nanos 0.000000002 

F15 CISD2_DROPS CDGSH iron-sulfur domain-containing protein 2 homolog 4E-18 

F17 PGCP_MOUSE Plasma glutamate carboxypeptidase 6E-25 

M11 ATD1A_DANRE ATPase family AAA domain-containing protein 1-A 3E-59 

M12 POL2_DROME Retrovirus-related Pol polyprotein from transposon 297 4E-78 

 

Table 17: Annotated genes selected for possible sex specific biomarkers. 

 

 

Figure 41: Representation sample of PCR analysis and validation of primers (M4-10) to 

amplify genes presenting male bias expression using cDNA libraries of Echinogammarus 

marinus ovaries (O) and testis (T) alongside a 2 log ladder (NEB). 

 

 

Figure 42: Representation sample of PCR analysis of primers (M4-8, M12) to amplify genes 

presenting male bias expression using gDNA pools of Echinogammarus marinus females (F) 

and males (M) alongside a 2 log ladder (NEB).  
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6.33 RAPD and ISSR PCR techniques 

 

PCR analysis showed that no sex specific genomic regions were observed in either 

the RAPD (see Figure 43) or ISSR primers (see Figure 44) that were investigated. 

Therefore DNA fragments that were amplified by the primers showed no differences 

in the banding patterns between the gender pools tested. Analysis was originally 

conducted using pooled gDNA of 250 animals per gender library (see Figure 43 and 

43) and gDNA taken from individuals (see Figure 45). The individual analysis did 

show that animals from the Langstone Harbour population exhibited genetic 

variation although, this wasn’t associated with sex. 

 

 

Figure 43: PCR analysis using RAPD primers (OPE1-7) with pooled male and female 

Echinogammarus marinus libraries alongside a 2 log ladder (NEB). 
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Figure 44: PCR microsatellite analysis using ISSR primers (1= Becky, 2 = 901, 3 = 902, 4 = 

UBC 801, 5 = Terry, 6 = 814, 7 = 843) with pooled male and female Echinogammarus 

marinus libraries alongside a 2 log ladder (NEB). 

 

 

 

Figure 45: Representative sample of PCR analysis using RAPD primers (OPE1-7) with 

gDNA taken from Echinogammarus marinus individuals (3 males and 3 females) alongside a 

2 log ladder (NEB).  



 P a g e  |  1 6 1   

6.34 Amplified fragmented length polymorphism (AFLP) 

 

Following AFLP analysis, 15 primer combinations were selected for investigation. 

Sex specific bands were detected (see Figure 46) and sex specific genomic regions 

were cut out and sequenced using the Sanger method. The majority of the bands that 

were sequenced showed mixed signal within the reads, meaning that duplicate DNA 

fragments were within the sample and therefore a sequence could not be retrieved. In 

addition, several DNA fragments that were isolated from the lower regions of the gel 

could not be sequenced due to their small size. In total, 4 bands produced relatively 

clean sequences, two were male specific and two were female specific. BLAST 

search analysis against sequences stored in GenBank (NCBI) indicated no annotation 

was possible for the generated sequences. Primers were designed to verify whether 

the DNA fragments were sex specific by performing PCR analysis using individual 

E. marinus gDNA samples. However, none of the sequences tested showed sex 

specificity following the PCR validation (see Figure 47). 
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Figure 46: Polysacrylamide vertical gel electrophoresis with 32P labelled PCR product using 

male (M) and female (F) Echinogammarus marinus gDNA pools (n=250) following AFLP 

analysis. Sex specific bands highlighted by black boxes, primers used for PCR reactions 1= 

eco1, mse6, 2= eco1, mse3, 3= eco1, mse2, 4= eco2, mse3, 5= eco6, mse2, 6= eco5, mse4, 

7= eco5, mse3, 8= eco4, mse2, 9= eco4, mse6, 10= eco4, mse3, 11= eco4, mse2, 12= eco1, 

mse2, 13= eco3, mse1.  

 



 P a g e  |  1 6 3   

 

Figure 47: Validation of potential sex specific markers generated from the AFLP 

analysis (1-4), female specific (1 and 2) and male specific (3 and 4) showed no 

variation between Echinogammarus marinus genders (m = male, f = female) 

alongside a 2 log ladder (NEB).  

.  
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6.4 Discussion  

 

This study employed a variety of techniques in an attempt to isolate sex specific 

regions of DNA as well as trying to establish which gender was the heterogametic 

sex in E. marinus. However, none of the techniques employed achieved these aims. 

The absence of evidence in these investigations does not necessarily indicate that the 

evidence is absent; therefore we cannot currently make conclusive statements 

regarding GSD in E. marinus. However, extensive karylogical searches have found 

little evidence of sex chromosomes within amphipods (Libertini and Rampin, 2009, 

Orian, 1957) and in conjunction with the failure of this study, raise the question of 

whether E. marinus sex determination mechanism could be solely environmental or 

parasitic. Sexual phenotypes within E. marinus show great plasticity and 

intersexuality is common in some populations (Ford and Fernandes, 2005), with 

studies indicating it might be caused by a variety of parameters such as ESD, 

pollution and parasitic influences (Ford et al. 2006, Guler et al. 2012, Short et al., 

2012b).  

 

The AG manipulation experiments did not successfully result in sex reversal or any 

sign of intersexuality in the surviving individuals. In addition, mortality was high and 

ranged from 74-94 % over the three month experiment period. The group that had 

their AG ablated through burning the area with a hot pin had the highest mortality 

rates. This was likely due to difficulties in not damaging the surrounding area by this 

method as the hot pin occasionally would come in contact with non target tissue. 

Dissecting the tissue area was less harmful to the animal but still presented high 

mortality.  The failure of this experiment could have been due to the insufficient 

implantation or ablation of the AG possibly due to the small size of individuals, their 

ability to recover, or the assumed location of the AG within E. marinus being 

incorrect.  Alternatively, E. marinus may not have the capacity to induce 

intersexuality or sex reversal as an adult. Indeed, experimental sex reversal has not 

been achieved in this species to our knowledge. High levels of intersexuality and 

skewed sex ratios in natural populations of E. marinus do suggest that the species has 

great sexual plasticity (Ford et al., 2004). However, the flexibility in their sexual 
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differentiation may only be possible during early developmental stages and as an 

adult their sex is largely or completely fixed. The only successful AG manipulation 

experiments that have induced full sex reversal in adult amphipods have been 

conducted on Orchestia gammerella in the 1950’s (Chaniaux-cotton, 1958, 1960). 

However, this approach has also been successfully applied in many decapod and 

isopod species to show heterogamety (Malecha et al. 1992, Suzuki, 1999).  

 

Several PCR based techniques were attempted in this study to identify a genetic sex 

marker in E. marinus. RAPD and ISSR-PCR analysis showed no evidence of genetic 

variation between the sexes with a total of 45 primers tested on male and female 

pools. Costa et al. (2004) conducted RAPD analysis on three gammarid species, 

Gammarus locusta, Gammarus chevreuxi and Gammarus insensibilis, and found no 

sex specific markers within the study, although only ten RAPD primers were tested. 

One RAPD primer can only amplify several thousand base pairs of genomic 

sequence therefore, to identify small genomic differences between genders may 

require more RAPD primers than used within this study. Successful studies that have 

isolated sex specific markers have used a greater number of RAPD primers. For 

example, in the common carp, one male specific DNA fragment was identified after 

testing 220 RAPD primers using pooled DNA (Chen et al. 2009). Obtaining a target 

marker also relies on chance, as the sequences amplified by these random primers are 

not known. In addition, the size of the genomic region of interest, as well as the 

overall genome size, are all factors influencing the likelihood of success. Further 

testing would be required to comment on the usefulness of RAPD and ISSR analysis 

for determining genetic sex differences in E. marinus. However, non-sex specific 

individual variation was observed showing that these ISSR and RAPD analysis 

would be a useful tool in population genetic studies. 

 

 The AFLP analysis showed much more promise, with obvious genetic differences 

evident by the band patterns in the highly resolved polyacrylamide gels. Several 

studies have successfully used AFLP techniques to identify sex specific genomic 

differences in crustaceans (Ventura et al. 2011, Staelens et al. 2007, Zhang et al., 

2007). In this study, the majority of bands sequenced had mixed signal, indicating 
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more than one sequence was in the banding area. However, the large number of 

potential sex markers identified by this technique indicates that further development 

of methodology is required. One possible solution to prevent mixed signal when 

sequencing sex specific fragments would be to clone the DNA fragments generated. 

Alternatively, increasing the selective nucleotides to 5 or 6 on the amplifying primer 

would result in less DNA bands/fragments being generated, reducing the likelihood 

of overlapping DNA fragments being sequencing. Several sex specific fragments 

were too small for sequencing, genome walking to reveal sequences that fall outside 

the AFLP bands generated could be used (Brugmans et al. 2003). Although, this 

investigation did not identify a genetic sex marker, it did highlight possible genetic 

variations between sexes.  

 

Transcriptomic mining for genes that showed sex exclusive expression revealed a 

greater number of candidates in females than males. Although this is purely 

speculative, this may reflect a greater variation in types of cells found in the ovaries 

compared to the testis. The initial investigations using gonadal cDNA revealed the 

genes that showed male exclusive expression displayed greater potential, with more 

male marker candidates exhibiting no expression in the females in the PCR analysis. 

Testing the genes with gDNA showed the presence of all 34 genes selected in both 

genders. This indicates that the selected highly expressed sex bias genes are 

genomically present in both genders of E. marinus. However, further testing using a 

greater number of genes may reveal a sex specific gene. Despite the extensive 

differences in sex, in most species the male and female genomes may only have 

relatively few genes specific to one gender such as genes found on the Y 

chromosome in mammals. Therefore, phenotypic variation in sex could largely result 

from differences in patterns of gene expression rather than gene exclusivity 

(Connalion and Knowles, 2005, Rinn and Snyder, 2005). This investigation has 

highlighted a large amount of genes that are sexually dimorphic in their expression 

and several markers for sex specific gene expression, although identifying genomic 

markers was unsuccessful. 
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One explanation of why detecting a sex marker has been so challenging is that the 

genetic sex does not correlate with the sex phenotype presented. This is a potential 

scenario because experimental reversal breeding experiments have shown that a 

genetic female can become a fully functional phenotypic male in crustaceans 

(Malencha, 1992, Suzuki et al. 1999). Whether this occurs in natural populations of 

E. marinus is open to question, although genetic male isopods infected with 

Wolbachia function as neo-females (phenotypically are female but have a male 

genetic makeup). The consequence could be that the female and male libraries that 

were used in majority of these investigations could contain both male and female 

genetic material, despite the fact that DNA was extracted from a single gender on the 

basis of morphology. Although, a marker for the phenotypic sex may have been 

achieved by these methods, further analysis of E. marinus populations that are not 

influenced by sex distorting parasites or ESD should be considered.  

 

Ultimately, several molecular techniques were adopted and a number of genes that 

were expressed only in males were identified, although none were genomically sex 

specific. The study did identify AFLP analysis as the technique most likely to 

establish the presence of sex specific genomic regions in E. marinus and provided 

some insights into the future development of these methodologies. If GSD is present 

in E. marinus, then further investigations will be required to fully attempt to identify 

genomic differences. This would provide an opportunity to understand how 

environmental and parasitic factors can influence crustacean GSD, as well as explore 

the mechanisms behind sexual differentiation disruption observed in cases of E. 

marinus such as intersexuality. 
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7. General discussion 
 

The overall aim of this investigation was to increase our knowledge of the general 

population dynamics of E. marinus, with a particular focus on attempting to elucidate 

the mechanisms of sex determination in this ubiquitous marine amphipod. In 

crustaceans, sex can be determined environmentally, via parasitic infection, or 

genetically, however, it is possible that in any given species, that all three factors are 

involved. Sex determination in Echinogammarus marinus (Leach, 1815), has been 

previously linked with feminising parasites (Ford et al. 2006). Although, prior to this 

study little was known about the extent to which the other parameters that could be 

involved.   

 

Firstly, an E. marinus population was investigated over a two year period (2009-

2011) to assess the population dynamics (chapter 2). During this study two parasites 

with contrasting life histories were also monitored and their seasonal prevalence 

analysed into relation to their host population dynamics (chapter 2). One particular 

parasite, a trematode belonging to the Microphallidae family was revealed as a 

potential new species and its biology and phylogenetics were investigated in chapter 

3. The two E. marinus populations studied, Langstone Harbour, Portsmouth and 

Inverkeithing, Scotland appear to be governed by two different sex determining 

mechanisms. Seasonal sex ratio data from the field and subsequent laboratory 

findings presented in chapter 4 indicated that E. marinus possesses environmental 

sex determination (ESD) in a population that is not influenced by sex distorters 

(Langstone Harbour). The study reported in Chapter 5 investigated parasite 

transmission of two potential sex distorters in an E. marinus population with high 

female bias and intersexuality (Inverkeithing). Vertical transmission of a Paramyxean 

sp. was shown for the first time in an amphipod host. This has questioned D. 

dubenum as a feminiser and has highlighted another parasite candidate for E. 

marinus sex distortion. Despite extensive analysis (chapter 6), we still cannot 

determine the presence of genetic sex determination (GSD) in this species. This 

project’s findings have suggested several future avenues of research which will be 

discussed in this chapter. 
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A monthly field study was conducted over a two year period and established that 

although a natural population of E. marinus from Langstone Harbour (Portsmouth, 

UK) breeds throughout the year, it does display some seasonality in the reproduction, 

with peaks in the spring and summer. The study also found that although there was 

evidence for a seasonally altered sex ratio, with swings that ranged from 35.5 % to 

71.4 % males, the population had a 1:1 sex ratio over the entire sampling period. In 

addition, the field study confirmed that the Langstone harbour population had no sex 

distorting parasites, although, two parasite groups, one microsporidia (D. berillonum) 

and trematode (Microphallidae sp.), were found to infect the population.  Temporal 

changes in these parasite groups were recorded and provided an insight in their 

seasonal prevalences with D. berillonum showing a consistent prevalence level. This 

is in contrast to the levels observed for the trematode, which peaked and crashed in a 

more dramatic fashion, a pattern most likely associated with its life cycle strategy. D. 

berillonum has been verified as a vertical transmitter; although due to the non sex 

bias infection prevalence and the lack of any female bias in the broods of infected 

mothers indicates that the species is not a feminiser in E. marinus. This is in 

conjunction with Terry et al. (2004) that also found D. berillonum not to have sex 

bias infection prevalence in several host populations.  

 

The prevalence of the trematode parasite in E. marinus populations was found to be 

very high (70%) at certain times of the year and a clear correlation was observed 

between host abundance and parasites numbers. Trematodes have been known to be 

very influential in amphipod populations (Poulin and Mouritsen, 2006). For example, 

Damsgaard et al., (2005) found that a population of corophium amphipods infected 

with trematodes is prone to collapse. For this reason, the biology of the trematode 

was investigated (chapter 3) with respect to its effect on E. marinus and a 

phylogenetic analysis was conducted to determine the species of parasite. The 

sequencing of the gene for rDNA of the trematode found in the Langstone Harbour 

population revealed that the trematode belongs to the Microphallidae family and is 

most likely a new species. The same species of trematode was also found in the 

Scottish Loch Fleet E. marinus population, with the Inverkeithing population 
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presenting infection by a different trematode belonging to the Opecoelidae family. 

The trematode found in the Portsmouth population encysts within the brain and 

shows a similar capacity for host behavioural manipulation as that induced by the 

trematode Microphallus papillorobustus in the gammarid Gammarus insensibilis 

(Helluy, 1982, 1984). Phylogenetic analysis indicated that the two trematodes were 

not the same species, as other microphallids had closer identity. The behavioural 

manipulation induced by the parasite can lead to higher predation risk for the 

amphipod. The gene expression study highlighted possible neuro- modulatory genes 

being altered with a putative serotonin receptor 1A like gene showing up to a 7.2 fold 

upregulation and the inebriated 2 neurotransmitter like gene presented a 6.7 fold 

down regulation in the infected group.  The seasonal prevalence of the parasite 

showed significant correlation with host abundance. This, in combination indicates 

this trematode species has the capability to highly influence population dynamics of 

E. marinus. 

 

Previous studies have demonstrated that ESD exists in some populations of 

amphipods (Dunn et al. 2005). Chapter 4 details an investigation to determine if ESD 

occurs in E. marinus. Field study and laboratory breeding experiments were 

conducted to determine the influence of photoperiod on sex determination. This was 

achieved by re-analysing sex ratio data from chapter 2 and a series of laboratory 

breeding experiments under different light regimes. Over the 2 year field study, 

males dominated during August to November whilst female biased populations were 

observed during April to July. A significant linear relationship was observed between 

photoperiods and sex ratios from the field data.  Under laboratory conditions 

photoperiod was also shown to be an influential factor in sex determination, with a 

male bias over a long day photo regime (61.5% male broods) and a female bias over 

a short day photoperiod regime (43.5% male broods). These photoperiod influences 

in sex determination correlate with findings in the brackish water amphipod, 

Gammarus duebeni (Dunn et al. 2005). Findings suggest that there is some level of 

ESD present within E. marinus, suggesting considerable plasticity in the sex 

differentiation pathway.  
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The presence of ESD in other E. marinus populations remains uncertain; other 

studies of E. marinus populations have shown no indication in ESD, possibly due to 

geographical location (Maranhao et al., 2001) or other sex determining factors, such 

as sex distorting parasites, not being considered (Vlasbloom, 1969). The presence of 

ESD in other E. marinus populations should be considered but preferably examining 

populations in varied environments that have seasonal reproduction and are not 

infected by sex distorting parasites. The possibility of a second cue being present, 

such as temperature, should also be examined as Dunn et al. (2005) found that some 

G. duebenum populations were influenced by the interaction of temperature and 

light. Whether E. marinus populations that do suffer from parasite induced sex 

distortion still have an underlying ESD could be examined. The E. marinus 

population at Inverkeithing would be an obvious choice and could be performed by a 

field and laboratory sex ratio study of uninfected individuals.  

 

Previous studies have shown that feminising parasites can alter the sex ratios of 

amphipod populations (Ford et al., 2006, Ironside et al., 2003, Mautner et al., 2007, 

Terry et al., 2004, 2007). In E. marinus studies have found links between 

intersexuality and female biased sex ratios with parasites thought to be feminising 

(Ford et al., 2006). This study (chapter 5) investigated the transmission of these 

parasites, in particular the E. marinus population at Inverkeithing. Infection 

prevalence in the sexual phenotypes suggests that E. marinus is influenced by PSD 

and validates past work. The E. marinus Inverkeithing population has high female 

bias, high levels of intersexuality and is infected by two potential sex distorting 

parasites that have high infection rates in the female and intersex phenoptypes. 

Although the study did not determine whether the paramyxean or the microsporidian 

(D. duebenum) was responsible for this sex distortion, the study found significantly 

high co-infection prevalence, indicating a possible hitchhiking strategy by one of the 

parasites. The paramyxean only infections were more prominent and the parasite 

presented higher levels of vertical transmission compared with D. duebenum. The 

paramyxean showed a reduction in transmission efficiency when co-infected with D. 

duebenum, indicating possible regulatory effects when the two parasites infect one 

individual. A greater understanding of the association between microsporidia and 

Paramyxea is required. Past studies highlighting microsporidian influences on sex 
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determination need to be reconsidered and screens for paramyxeans performed. This 

would identify if the co-prevalence of these vertical transmitters in the Inverkeithing 

population is an isolated or common case. If paramyxean presence is not common it 

would substantiate the evidence from past studies on microsporidians, in particular 

D. duebenum being a feminising agent. 

 

Experimental horizontal transfer was carried out by infecting uninfected individuals 

with co-infected tissue. This showed the paramyxean can successfully transfer while 

D. duebenum showed no signs of transmission in E. marinus. This is either because 

D. duebenum is incapable of experimental horizontal transmission and only transmits 

vertically or insufficient conditions in the experimental design did not allow for D. 

duebenum transmission. For example, within the co-infected tissue used, the 

paramyxean spores could potentially be hardier and therefore transferred into the 

uninfected individual successfully, whereas D. duebenum spores may have not been 

viable when inoculated. Although, it is worth noting that similar experiments have 

been successful in artificially infecting amphipods with microsporidia (Dunn and 

Rigaud, 1998).  In addition, the paramyxean infection that was horizontally 

transmitted to an E. marinus female was then passed vertically to the brood, opening 

up possibilities for further investigation. Females showed greater infection burden 

than males following experimental horizontal infection, indicating a sex bias in their 

susceptibility, although further study is required to validate these findings. Future 

work could determine whether the paramyxean has feminising capacity by artificially 

infecting females and studying the brood sex ratios. Further investigations could also 

be conducted to verify whether D. duebenum and D. berillonum can horizontally 

transmit under laboratory conditions. This would give us a greater understanding of 

whether less successful vertical transmitters employ both transmission pathways and 

verify whether D. duebenum cannot be artificially transferred horizontally. In 

addition, the question of whether vertical transmitters can horizontally transmit 

naturally could be addressed by conducting co-inhabitation experiments, thereby 

mimicking field conditions.  
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A series of genomic techniques were employed to determine whether a sex specific 

region of DNA could be found in E. marinus and thus add weight to the evidence 

that amphipods, along with other crustaceans have genetic sex determination (chapter 

6). The attempt to determine if genetic sex determination (GSD) is present in E. 

marinus was not successful and the study did not identify a genomic sex marker. 

However, future examination for the presence of GSD in E. marinus is required 

before conclusive statements can be made. The study eliminated androgenic gland 

(AG) manipulation as a tool for determining the heterogametic sex in E. marinus, as 

it was problematic, time consuming and possibly not achievable. Animals that 

underwent the AG manipulation and the artificial parasite infection experiment 

showed no signs of intersexuality or sex reversal, suggesting that it may not be 

possible to experimentally sex reverse an E. marinus adult. Transcriptomic mining 

for sex exclusive genes also showed little promise with PCR analysis indicating the 

presence of all 34 genes selected in both genders. Phenotypic variation in sex could 

be a result of differences in patterns of gene expression rather than the exclusive 

presence of a sex determining DNA region in one gender.  Male and females of any 

species does not necessarily need distinct genomes to possess variation. It has been 

suggested that differences in gene expression is highly important in gonochoristic 

animals that possess non genetic sex determination such as ESD and PSD (Small et 

al. 2009). Therefore in E. marinus, rather than having large genome differences 

between sexes, sex may rely on sexual dimorphism at the level of transcriptomic 

variation. This would allow for greater sexual plasticity in the sex phenotypes as all 

genes required to be male or female would be present, whilst other sex determining 

mechanisms govern. 

 

AFLP analysis has been successfully applied to identify sex specific genomic regions 

in crustaceans (Ventura et al. 2011, Staelens et al. 2007, Zhang et al., 2007). The 

AFLP analysis appeared most likely to find genomic differences between E. marinus 

sex, with obvious differences in the band patterns seen in the highly resolved 

polyacrylamide gels. AFLP banding patterns indicated genetic variation among the 

sexes and with methodology adjustments described in chapter 5 a sex marker might 

possibly be isolated. The ISSR and RAPD analyses revealed non-sex specific 

individual variation, indicating these techniques could be useful tools in population 
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genetic studies, as well as investigating levels of genetic variation in populations that 

suffer from environmental contamination. Selective subtraction hybridisation (SSH) 

is an alternative technique that could be employed to isolate sex specific DNA 

regions in E. marinus. The fundamental aim of genomic subtractive hybridisation is 

to distinguish and isolate DNA sequences that are present in a tester sample (i.e. 

females), however, absent from the driver sample (i.e. males) and vice versa (Straus 

and Ausubel, 1990). This protocol in conjunction with high throughput sequencing of 

the gender specific library could be a powerful tool in highlighting genomic 

differences in E. marinus as well as indicating the heterogametic sex. Although, this 

is currently an expensive method, especially considering that the presence of genetic 

variation between the sexes is not certain. Overall, this study highlighted several 

genes exclusively expressed in males by mining transcriptomic data and provided 

some insight into the future development of AFLP analysis in E. marinus. 

 

During this study it has been determined that an E. marinus population at temperate 

latitudes has a seasonal breeding pattern, with population growth and decline closely 

related to environmental parameters (e.g. temperature) and parasites (e.g. 

trematodes), respectively. A new species of trematode parasite has been identified 

that demonstrates clear capacity for behavioural changes in its host. These 

behavioural changes have been linked to changes at the level of gene expression 

suggesting the modulation of neuronal genes in the infected individuals. This 

represents the first study to record such changes in the serotonin pathways of parasite 

infected amphipods. ESD has been shown in E. marinus for the first time and the role 

played by parasites in the sex determination of E. marinus is now better understood, 

with transmission pathways and efficiency having been established. Despite the 

range of genomic techniques employed, the attempt to determine genomic sexual 

determination in E. marinus was less successful. However, considering the 

preliminary nature of the work, this study has provided insight for future directions. 

Several key genes involved in sexual differentiation that presented sex exclusivity in 

their expression were identified. In addition, crucial method development was 

performed that will allow future investigations of genetic variation in E. marinus. 

The importance of E. marinus as a key ecological model species is growing (Dick et 

al. 2005, Egilsdottir et al., 2009, Ford et al. 2003, 2005, 2006, Guler and Ford, 2010,  
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Maranhao et al., 2001, Maranhao and Marques, 2003, Martins et al., 2009, 

Pastorinho et al., 2011, Yang et al., 2008, 2011, Short et al., 2012b). The 

transcriptome of the E. marinus has now been sequenced and along with population 

models, will enable links between genome and population ecology. With such large 

investments in E. marinus as a model it is crucial that basic biological questions and 

gaps in the field are addressed. Consequently, the data presented within this thesis 

will aid in the study of E. marinus and other crustaceans from genetic to population 

level effects. 
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