- 1 Investigating photoreceptor densities, potential visual acuity, and cone mosaics of shallow water,
- 2 temperate fish species
- 3
- 4 D. E. Hunt*¹
- 5 N. J. F. Rawlinson¹
- G G. A. Thomas²
- 7 J. M. Cobcroft^{3,4}

- 9 ¹ Northern Hub, Institute for Marine and Antarctic Studies, University of Tasmania, Locked Bag
- 10 1370, Launceston, TAS 7250, Australia
- ¹¹ ²University College London, Torrington Place, London, WC1E 7JE
- ³ Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of
- 13 Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
- ⁴ University of the Sunshine Coast, Locked Bag 4, Maroochydore DC, Queensland 4558, Australia
- 15 *Corresponding author: Tel.: +61431 834 287; email address: darcieh@amc.edu.au

16

¹ Contact: (03) 6324 3801; email: darcieh@amc.edu.au

ABSTRACT

19	The eye is an important sense organ for teleost species but can vary greatly depending on the
20	adaption to the habitat, environment during ontogeny and developmental stage of the fish. The eye
21	and retinal morphology of eight commonly caught trawl bycatch species were described:
22	Lepidotrigla mulhalli; Lophonectes gallus; Platycephalus bassensis; Sillago flindersi;
23	Neoplatycephalus richardsoni; Thamnaconus degeni; Parequula melbournensis; and Trachurus
24	declivis. The cone densities ranged from 38 cones per 0.01 mm ² for S. flindersi to 235 cones per
25	0.01 mm ² for <i>P. melbournensis</i> . The rod densities ranged from 22 800 cells per 0.01 mm ² for <i>L</i> .
26	mulhalli to 76 634 cells per 0.01 mm ² for T. declivis and potential visual acuity (based on
27	anatomical measures) ranged from 0.08 in L. gallus to 0.31 in P. melbournensis. Higher rod
28	densities were correlated with maximum habitat depths. Six species had the regular pattern of four
29	double cones arranged around a single cone in the photoreceptor mosaic, while T. declivis had only
30	rows of double cones. P. melbournensis had the greatest potential ability for detecting fine detail
31	based on eye anatomy. The potential visual acuity estimates and rod densities can be applied to
32	suggest the relative detection ability of different species in a commercial fishing context, since
33	vision is a critical sense in an illuminated environment for perceiving an oncoming trawl.
34	Keywords: potential visual acuity; rod density; cone density; cone mosaic; minimum separable
35	angle.

36

1. INTRODUCTION

The eye is an essential tool for fish and is utilised for capture of prey, detection of predators,
schooling, and the courtship involved in reproduction (Gurthrie & Muntz, 1993). The structure of
the eye can vary depending on the adaptation to the habitat, environmental conditions during
ontogeny (e.g. temperature, nutrition, light intensity), and developmental stage (Powers & Raymond
,1990). Although the teleost eye is very similar to that of terrestrial vertebrates, common variations
between species occur within the retina, particularly in the abundance of the different photoreceptor

cells and potential visual acuity (VA) (Wagner, 1990). There are also various morphological
specialisations of the teleost eye in different species, such as having more than one lens, oblong
eyeballs, degeneration (no cornea or lens), and even the use of adipose eyelids (Gailliet, et al.,

1996). These adaptions of the teleost eye are suited to optimise visual ability underwater.

46

Most fish that inhabit shallow waters can detect colours and patterns with well-developed eyes 47 48 (Gurthrie & Muntz, 1993). Pigments (rhodopsin and porphyropsin) in the photoreceptors absorb 49 different light wavelengths and are stimulated at different light intensities (Fernald, 1988). This 50 means that fish can have both photopic vision (well-lit, colour) that is mediated by cones, and 51 scotopic vision (low-light) that is mediated by rods (Fernald, 1988). The arrangement of single, 52 double and sometimes triple cones in the retina is known as the mosaic, and is adapted to the 53 habitats and behaviour of a species (Evans & Browman, 2004, Lyall, 1957, Raymond, et al., 1995). 54 Likewise, the amount of rod and cone photoreceptor cell types in the retina is related to the habitat and of the particular species. It has been well documented, for example, that those species living in 55 56 shallow waters often have a greater selection of cones than deep-water species that are 57 predominantly in the dark (Mas-Riera, 1991, Pankhurst, 1987).

58 In addition to the detection of certain wavelengths and light intensities, fish also need to be able to 59 resolve an image. The photoreceptor cells are also involved in potential visual acuity whereby the 60 resolving power of the eye is a function of photoreceptor cell spacing (in particular the cones) and 61 the lens size (Tamura, 1957). Lens size is important because the lens is not covered by the iris in 62 fish and the aperture is the lens diameter (Fernald and Wright, 1985). Potential visual acuity is used 63 to describe the fish's ability to detect fine detail and is important for shape discrimination (Douglas 64 & Hawryshyn, 1990). Some species require greater potential visual acuity to be able to discriminate between a range of visual stimuli. This includes objects in the surrounding habitat and places to 65 66 hide or the shapes of other species that are considered predators (Lythgoe, 1968). Potential visual 67 acuity is a useful measure to compare the visual capabilities of fish, especially in response to human 68 activities such as aquaculture and fisheries. The behaviour of fish in response to light is used for 69 sampling and ecological observations (Catalan, et al., 2014). Likewise, it has been hypothesised that fish with higher potential visual acuity and/or sensitivity to light could be attracted to, or stimulated 70 71 to avoid, illuminated trawl fishing gear. However, it is critical to describe the visual function of 72 species that may interact with fishing gear, in order to interpret or predict their behavioural response. Other studies have compared theoretical and behavioural visual acuity in fish (e.g. 73 Douglas & Hawryshyn, 1990; Temple et al., 2013). Theoretical visual acuity is generally an 74 75 overestimate of behavioural visual acuity, and the disparity is thought to be caused by neural 76 processing and muscle function (Douglas & Hawryshyn, 1990). However, in the absence of 77 behavioural measures an assessment of theoretical acuity is valuable in comparative studies as an 78 indicator of visually mediated responses.

79 A selection of shallow water teleost species in North-eastern Tasmanian coastal waters were chosen to investigate eye and retinal morphology. These species are commonly taken as unwanted by catch 80 81 in commercial fisheries (Knuckey, 2006). Lights on trawl gear offer the potential to reduce bycatch 82 since light increases the visual stimulus in front of the trawl allowing fish to perceive the gear. However, additional characteristics of fish are likely to impact on escape response, for example 83 84 other sensory input (Bond 1996; Pankhurst, 1989), retinal convergence, and higher order neural processing (Douglas & Hawryshyn, 1990). For all but one of the selected bycatch species, 85 86 Trachurus declivis, there is no literature that quantifies the photoreceptor cells and potential visual 87 acuity: provides the cone mosaic patterns; nor makes comparisons of the lens diameter, cone 88 diameter and total fish length. The eight teleost species were chosen because of their varying morphologies. The aim of the study was to quantify the photoreceptor cell densities and potential 89 90 visual acuity as well as describe the cone mosaic and general eye dimensions. This information will 91 further enhance the interpretation of the response of fish to bycatch reduction devices, specifically 92 those using lights.

2. MATERIALS AND METHODS

93

94 2.1 EYE SAMPLE COLLECTION

Fish samples were collected with a demersal fish trawl in North-East Tasmania. The trawl net
measured 16 m in headline length and was designed to sweep an 11 – 13 m wide strip of the seabed,
was towed at 3 knots by a 35 m research vessel, the *FTV Bluefin*. The headline was 2.3 m above the
seabed. Trawling was conducted during the night at 30 m depth starting at the following
coordinates: 40°18"828'S and 148°32"646'E.
The left eyes of five fish were collected from each of eight species: roundsnout gurnard *Lepidotrigla mulhalli*; crested flounder *Lophonectes gallus*; sand flathead *Platycephalus bassensis*;

102 eastern school whiting *Sillago flindersi*; tiger flathead *Neoplatycephalus richardsoni*; Degen's

103 leatherjacket *Thamnaconus degeni*; silver biddy *Parequula melbournensis*; and jack mackerel

104 Trachurus declivis. Work was carried out in accordance with the EU Directive of 2010/63/EU and

105 the University of Tasmania Animal Ethics Committee approved the experimental procedures.

The fish length, eye and lens diameters were measured with callipers to the nearest 1 mm. Eyes were dissected and after inspection of eye quality (i.e. absence of corneal/lenticular opacity, pupil atrophy, and inflammation), a small incision was made to maximise infiltration of the fixative and to retain orientation. Samples were fixed for 24 h in 5% glutaraldehyde in a sucrose-phosphate buffer, then stored in 70% ethanol. The eye diameter was measured again post fixation, and the eyes were dissected to remove the retina prior to processing for histology.

112 2.2 HISTOLOGY AND RETINAL MORPHOLOGY

113 Retinal samples were manually dehydrated to 100% ethanol and embedded using a JB4 resin

114 histology kit (JB4, Agar Scientific Ltd, UK). Retinas were halved to form dorsal and ventral areas.

115 Ten random transverse sections (3 µm thickness) per retinal sample per area were cut with a

116 Microm microtome (Heidelberg HM340) and placed in water drops on a glass slide, allowed to dry

and sections were stained with Lee's Methylene Blue-Basic Fuchsin and mounted in TBS®
SHUR/mount toluene-based mounting media with a coverslip. Three 100 µm transects from five
sections were randomly chosen and images taken under a light microscope at 400x magnification.
The number of photoreceptor (PR) nuclei and cone ellipsoids were counted in each transect. For the
purpose of this study, both double and single cones were counted as one (Hajar, et al., 2008). Cells
that overlapped the transect were only counted on the left side. The following formula was used to
find the number of rods:

Rods = *PR nuclei* – *cone ellipsoids*

125 Cell counts were expressed as density: cells per 0.01 mm² (squared counts from 100 μ m transects). 126 The only differences between dorsal and ventral cell densities occurred in *L. mulhalli* (rods were 1.8 127 times higher in dorsal than ventral, t-test, df = 8, t = 2.86, *P* = 0.02; and cones were 1.6 times 128 greater in the dorsal than ventral, t-test, df = 8, t = 3.84, *P* = 0.004) and *P. bassensis* (cones were 2 129 times higher in dorsal than in ventral, t-test, df = 8, t-value = 4.39, *P* = 0.002). Consequently, the 130 cell counts were pooled by region for each of the eight species to enable further comparison based 131 on the average values for the whole eye.

Tangential sections (3 μ m) per species were cut and stained in a similar fashion. From them, the cone mosaic (the pattern of single and double cones) was observed. The tangential sections were also used to measure the diameter of the single and double cones (treated as one unit) 'en face' at the widest cross section using *Image J* (Version 1.46r, National Institute of Health, USA). To calculate the minimum separable angle (MSA) (α), the lens diameter and highest density of cones (per 0.01 mm²) were used in the following equation:

138
$$\tan\left(\frac{\alpha}{2}\right) = \frac{q(1+s)}{2F}$$

139 Where, *q* is the mean distance between two cones in mm ($q = 0.1/\sqrt{p}$); where *p* is density of cones 140 per unit area 0.01 mm²), *s* is the shrinkage factor and *F* is focal length ($F = m \ge r$; where *m* is

- 141 Matthiessen's ratio (2.55) and r is lens radius in mm). Since no shrinkage was measured in the
- 142 majority of individuals (75%, n=40) across all the species, the shrinkage factor was considered to
- 143 be zero and was omitted from the calculation of α . MSA (α) was used to find the potential visual
- 144 acuity (VA) according to (Tamura, 1957):

145
$$VA = \left(\alpha \times \frac{180}{\pi} \times 60\right)^{-1}$$

146 Retinal magnification (β) was calculated using the following:

147
$$\tan \beta = \frac{1 \, mm \, (1+s)}{F}$$

148 Whereby β is the angle subtended by a 1 mm projection on the retina.

149 2.3 DATA ANALYSIS

150 Pearson's correlation was used to measure the linear correlation between: eye diameter and total

151 fish length; and lens diameter and total fish length. A Student's t-test was used to compare cone and

152 rod densities in dorsal and ventral retinal areas within each species. An Analysis of Variance

153 (ANOVA) was used to detect statistical difference between species for the following: cone density,

rod density, minimum separable angle and potential visual acuity. Tukeys' post-hoc test was used to

155 find where the difference occurred. Data were accepted as significantly different when P < 0.05.

156

3. RESULTS

157 3.1 EYE AND RETINAL MORPHOLOGY

158 With the exception of the oval nature of the eyes of *P. bassensis* and *N. richardsoni*, all species had

159 round eyes. The species with laterally compressed body shape (including *T. degeni*, *T. declivis*, *L.*

160 mulhalli, P. melbournensis and S. flindersi) had eyes that are located on either side of the head

161 allowing for greater peripheral and binocular vision. In dorso-ventrally compressed fish, such as the

162 Platycephalus spp., eyes are orientated dorsally.

- 163 The fish eye sizes ranged from 6.2 ± 1.3 mm (mean \pm SD, here and throughout) in the smallest
- 164 species (L. gallus) to 18.4 ± 1.5 mm in the largest (P. bassensis) and the mean lens diameter ranged
- 165 between 2.1 mm \pm 0.2 (L. gallus) and 7.7 mm \pm 0.4 (P. bassensis) (
- 166 Table I).
- 167
- 168 Table I: Fish size (length), eye and lens diameters, and cone photoreceptor diameter for the eight species studied from
- 169 benthic trawls in North-East Tasmania. SC = single cones, DC = double cones.

	Total leng	th (mm)	Eye diameter (mm)	Lens diameter (mm)	Cone diar	neter (µm)
Species	Mean (\pm SD)	min	max	Mean (± SD)	Mean (± SD)	Mean SC (± SD)	Mean DC (± SD)
L. gallus	116.0 (14.6)	100	137	6.2 (1.3)	2.1 (0.2)	6 (0)	11 (1.5)
L. mulhalli	171.2 (19.0)	140	190	13.2 (2.1)	5.6 (1.0)	6 (1.1)	16 (0.9)
N. richardsoni	326.4 (47.4)	251	371	16.6 (1.9)	7.2 (1.1)	N/A	N/A
P. bassensis	375.8 (125.6)	165	470	18.4 (1.5)	7.7 (0.4)	5 (0.6)	12 (1.2)
P. melbournensis	162.0 (20.4)	141	192	13.2 (1.9)	5.6 (1.0)	4 (0.5)	8 (0.6)
S. flindersi	251.0 (18.8)	235	280	14.4 (0.5)	6.3 (0.4)	11 (0.7)	16 (0.8)
T. declivis	211.8 (36.0)	162	262	13.4 (2.3)	5.9 (1.2)	N/A	14 (0.7)
T. degeni	131.4 (35.2)	139	170	11.6 (1.1)	4.4 (0.5)	2 (0.5)	8 (0.5)

170

- 171 The increase in eye diameter coincided with the increase in total fish length and was described with
- 172 linear trendlines (Figure 1). For five out of eight species there was a significant correlation between
- 173 the two variables (Table II). *Thamnaconus degeni* and *S. flindersi* had almost no correlation and *L*.
- 174 *mulhalli* could not be used as it only had two data points.

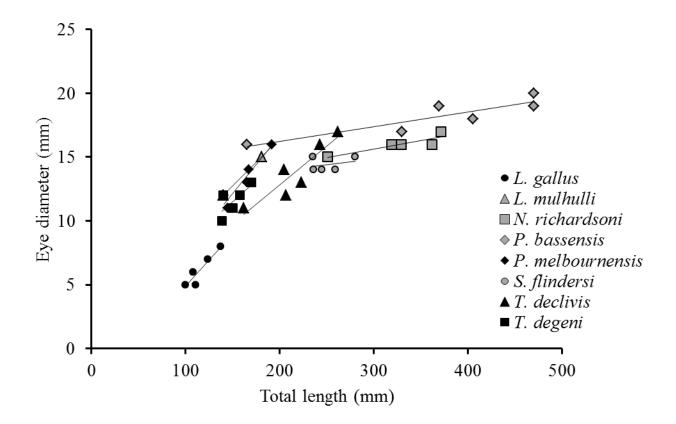
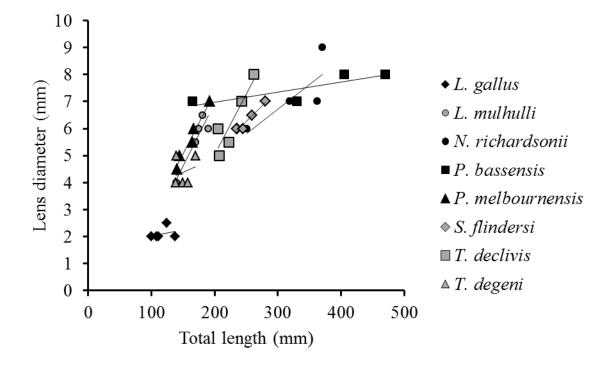


Figure 1: Eye diameter (mm) and total fish length (mm) of eight species studied from benthic trawls in North-East
Tasmania. *Single column fitting image*.

179

180 Table II: t-value, degrees of freedom (df), p-value and r^2 for Pearson's correlation between eye diameter (mm) and total

181	ish length (mm) of eight species studied from benthic trawls in North-East Tasmania.
-----	--


Species	t-value	df	p-value	r ²
L. gallus	4.52	3	0.020	0.93
L. mulhalli	N/A	1	N/A	N/A
N. richardsoni	3.46	3	0.041	0.89
S. flindersi	0.57	3	0.606	0.31
P. bassensis	4.03	4	0.016	0.89
P. melbournensis	5.63	3	0.011	0.95
T. declivis	4.43	4	0.011	0.91

	T. degeni	2.01	3	0.139	0.75		
182							
183							
184	Similarly, linear	correlations	s show the	trend betw	een lens di	ameter and total length (Figure 2). Lens	S
185	diameter had a st	trong positi	ve increase	with incre	asing lengt	h of the fish for six out of eight species	3

186 (

187 Table III). Only half of the species, *P. bassensis*, *P. melbournensis*, *L. mulhalli, and S. flindersi*,

188 were found to have a significant correlation.

189

190 Figure 2: Lens diameter (mm) and total fish length (mm) of eight species studied from benthic trawls in North-East

191 Tasmania. Single column fitting image.

192

194 Table III: t-value, degrees of freedom (df), p-value and r^2 for Pearson's correlation between lens diameter (mm) and

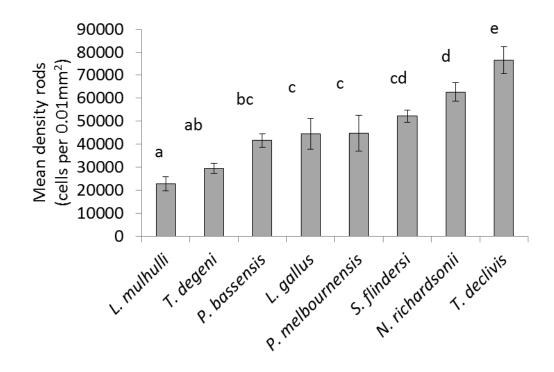
Species	t-value	df	p-value	r^2
L. gallus	0.56	3	0.616	0.31
L. mulhalli	4.40	3	0.022	0.93
N. richardsoni	2.24	3	0.110	0.79
P. bassensis	3.38	4	0.027	0.86
P. melbournensis	8.84	3	0.003	0.98
S. flindersi	8.19	3	0.004	0.98
T. declivis	3.30	4	0.298	0.85
T. degeni	0.45	3	0.681	0.25

195 total fish length (mm) of eight species studied from benthic trawls in North-East Tasmania.

196

197 3.2 ROD DENSITY

198 The mean density of rods (cells per 0.01 mm²) was significantly different across the eight different


199 species (ANOVA, F_{7,72}= 12.72, P<0.001) (Figure 3 and 4). *Lepidotrigla mulhalli* had the smallest

number of rods with 22 800 \pm 2 980 per 0.01 mm². There was a central group, consisting of *P*.

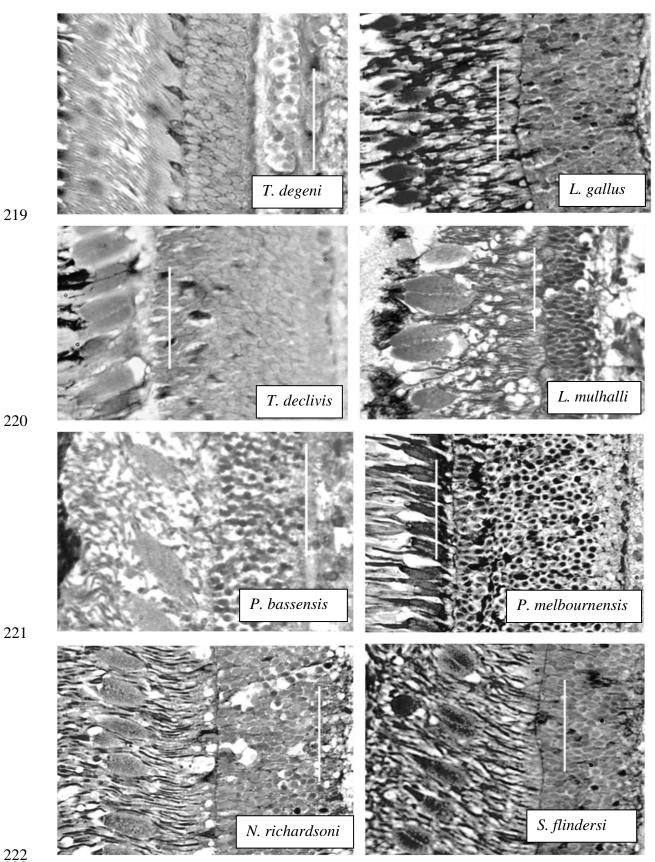
201 bassensis, L. gallus, P. melbournensis and S. flindersi, with rod densities that ranged from 41 670 to

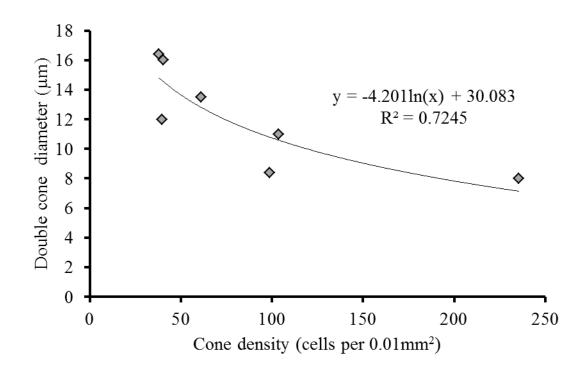
202 52 220 rods per 0.01 mm². The highest rod density of 76 630 \pm 5 876 cells per 0.01 mm² was in *T*.

203 declivis.

205	Figure 3: Mean number of rods (cells per 0.01 mm ²) \pm SE, in eight different teleost species studied from benthic trawls
206	in North-East Tasmania. Common letters represent values that are not significantly different. Double column fitting
207	image.
208	
209	
210	
211	
212	
213	
214	
215	
216	
217	

218 3.3 CONE DENSITY AND DIAMETER

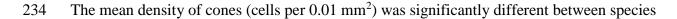



Figure 4: Transverse section of the retinas, showing the photoreceptors, of eight different fish species studied from

benthic trawls in North-East Tasmania. The scale bars are all 40 µm. *Double column fitting image*.

A logarithmic decay function described the relationship between double cone size, measured as
cone diameter, and cone density (Figure 5). 72% of the decrease in double cone size was predicted
to be a function of cone density.

229


225

230

Figure 5: Relationship between mean diameter (µm) of double cones and the cone density in each species studied from
benthic trawls in North-East Tasmania, with logarithmic equation. *Single column fitting image*.

233

235 (ANOVA, F_{7,72}= 32.564, P<0.001). Post-hoc analysis showed that species were in three main

236 groups (Figure 6). Sillago flindersi, N. richardsoni, P. bassensis, L. mulhalli and T. declivis all had

- 237 38-60 cones per 0.01 mm². *Thamnaconus degeni* and *L. gallus* had almost double this density, with
- 238 ~100 cones per 0.01 mm². *Parequula melbournensis* had over four times the density of the first
- group with 235 ± 29 cones per 0.01 mm².

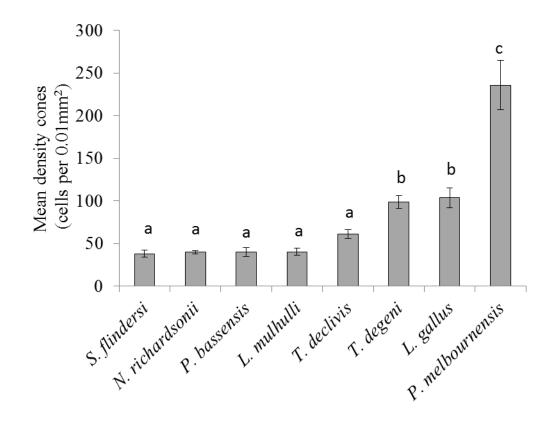
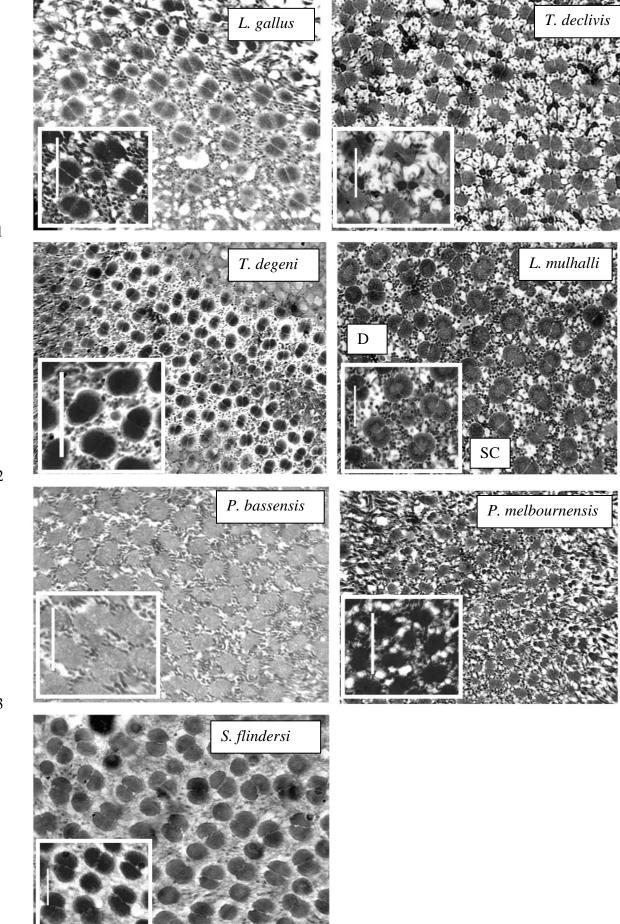


Figure 6: Mean density of cones (cells per 0.01 mm^2) ± SE, in eight different teleost species studied from benthic

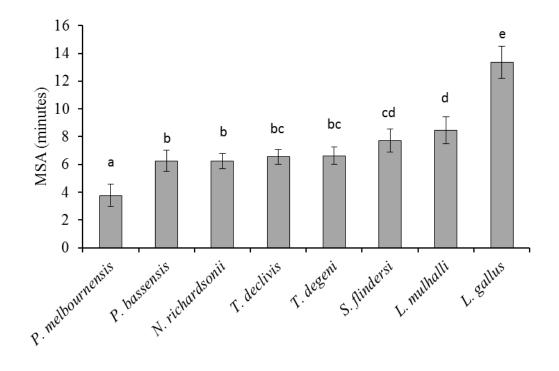

trawls in North-East Tasmania. Common letters represent values that are not significantly different. *Double column*

fitting image.

244

245 3.4 CONE MOSAICS

- 246 Double cones were present in the mosaics of all species. With the exception of *T. declivis*, the
- double cones were arranged as a set of four around a single cone (Figure 7). This arrangement
- 248 varied slightly for each species with respect to the size of the cone cells (
- 249 Table I). *Trachurus declivis* had only rows of double cones.


- Figure 7: Tangential sections revealing the cone mosaic patterns in seven different fish species studied from
- 256 benthic trawls in North-East Tasmania. The scale bars in insets are all 40 μ m. DC = double cone; SC = single

257 cone. *Double column fitting image*.

258

259 3.5 MINIMUM SEPARABLE ANGLE AND POTENTIAL VISUAL ACUITY

- 260 Mean MSA and VA were significantly different between the eight species studied (ANOVA,
- 261 F_{7,32}= 28.93, P<0.001, and F_{7,32}=15.15, P<0.001, respectively) (

262

Figure 8, Table IV). *Lophonectes gallus* had the lowest value of VA, 0.078, while *L. mulhalli*, *S. flindersi*, *T. degeni*, *T. declivis*, *N. richardsoni* and *P. bassensis* had from 0.125 to 0.171.

265 *Parequula melbournensis* had the highest value of 0.310. Retinal magnification (RM) was

also significantly different between the eight species (ANOVA, $F_{7,32}$ = 65.37, P<0.001), Table

267 **IV**).



Figure 8: Mean MSA ± SE (points), in eight different temperate fish species studied from benthic trawls in
 North-East Tasmania. Common letters represent values that are not significantly different. *Double column fitting image*.

Table IV: Visual acuity (VA) and retinal magnification (degrees) in eight different temperate fish species

273 indicating the subsets from post-hoc analyses. Common letters represent values that are not significantly

274 different. Note: species are listed in order of highest to lowest VA and retinal magnification for ease of

interpreting subsets.

Species	Subset	VA	Species	Subset	Retinal
					magnification (°)
P. melbournensis	a	0.3104	L. gallus	a	20.61
P. bassensis	b	0.1713	T. degeni	b	10.40
N. richardsonii	b	0.1658	L. mulhalli	c	8.49
T. declivis	b	0.1573	P. melbournensis	c	8.26
T. degeni	b	0.1576	T. declivis	с	8.15
S. flindersi	b	0.1359	S. flindersi	cd	7.31

L. mulhalli	bc	0.1248	N. richardsonii	d	6.32
L. gallus	с	0.0774	P. bassensis	d	5.93
276					
277					
278					

4. DISCUSSION

280 4.1 DIMENSIONS OF THE EYE

281 An increase in both eye diameter and lens diameter occurred with an increase in total fish 282 length in five of the species assessed, based on a linear relationship. This increase was in 283 agreement with other studies (Fishelson, et al., 2004, Hajar, et al., 2008, Miyazaki, et al., 284 2000). For those species that did not show a strong correlation in this study, this was likely 285 due to the limited range of lengths of the specimens collected. In contrast, the correlation 286 does not apply to deeper water species, where it is hypothesized that there is a limit on the 287 space in the retina for accommodating photoreceptor cells, and in this environment larger 288 eyes are observed relative to fish size (Kirschfeld, 1976). This study found that with 289 increasing cone densities there was a decrease in the diameter of each double cone which 290 agrees with the findings of Boehlert (1978). It is also recognised that, relative to fish size, eye 291 size is generally larger in carnivores than herbivores (Pankhurst, 1989). This was not the case 292 in this study as it was found that the two species with the largest eyes, P. bassensis and N. 293 richardsonii, had the smallest eye diameter to total length ratios. These two carnivorous 294 flathead species had the smallest ratios, followed by T. degeni which was the only herbivore 295 of the eight species. The largest eye sizes in relation to fish length were L. muhulli and P. 296 melbournensis.

297 4.2 RODS

298 Trachurus declivis had only 7.6 x 10⁶ rod cells per mm² of retina, which was similar to the 299 previously reported value of 1 x 10⁷ rods per mm² in a closely related species, yellowtail 300 horse mackerel (*Trachurus novaezealandiae*), from shallow waters of North-eastern New 301 Zealand (Pankhurst, 1989). Normally, the slight difference seen between the *Trachurus* 302 species could be attributed to the species inhabiting different ranges of depths (Edgar, 2008),

303	however in this case the maximum depth of both species is 500m (Gomon, et al., 2008).
304	Alternatively, it could be due to environmental conditions during larval development
305	(Fishelson, et al., 2012, Shand, 1997). T. declivis are more commonly found in deeper waters
306	and the juveniles are more likely to be found offshore than T. novaezealandiae. As such, it
307	would be expected that <i>T. declivis</i> have greater rod density but this is not the case here. Thus,
308	the difference seen could be due to natural interspecies variation. This could be tested by
309	estimating the rod densities of other Trachurus species for further comparison. No other
310	studies on photoreceptor cell densities exist for L. mulhalli, S. flindersi, N. richardsoni, P.
311	melbournensis, P.bassensis, L. gallus and T degeni or other closely related species.
312	A high density of rods is normally attributed to deeper habitat ranges (Eastman, 1988, Mas-
312 313	A high density of rods is normally attributed to deeper habitat ranges (Eastman, 1988, Mas- Riera, 1991). In this case, <i>T. declivis</i> is known to inhabit a maximum range of 500 m
313	Riera, 1991). In this case, <i>T. declivis</i> is known to inhabit a maximum range of 500 m
313 314	Riera, 1991). In this case, <i>T. declivis</i> is known to inhabit a maximum range of 500 m (Gomon, et al., 2008), which is much deeper than the seven other species examined in this
313314315	Riera, 1991). In this case, <i>T. declivis</i> is known to inhabit a maximum range of 500 m (Gomon, et al., 2008), which is much deeper than the seven other species examined in this paper, all with lower rod densities. It is evident that the mean number of rods per mm^2
313314315316	Riera, 1991). In this case, <i>T. declivis</i> is known to inhabit a maximum range of 500 m (Gomon, et al., 2008), which is much deeper than the seven other species examined in this paper, all with lower rod densities. It is evident that the mean number of rods per mm^2 increases with the expected maximum habitat depth of the species, see Figure 9. While <i>T</i> .
 313 314 315 316 317 	Riera, 1991). In this case, <i>T. declivis</i> is known to inhabit a maximum range of 500 m (Gomon, et al., 2008), which is much deeper than the seven other species examined in this paper, all with lower rod densities. It is evident that the mean number of rods per mm ² increases with the expected maximum habitat depth of the species, see Figure 9. While <i>T. declivis</i> had the greatest number of rods, <i>N. richardsoni, S. flindersi</i> and <i>L. gallus</i> had the

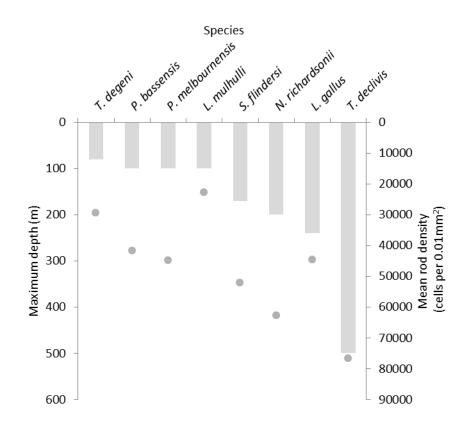


Figure 9: Maximum habitat depth profile (m) (bars) of eight bycatch species with mean rod density (cells per
0.01mm²) (dots). Depth data from Edgar (2012). *Double column fitting image*.

321

325 On the other end of the scale, P. melbournensis, T. degeni, and P. bassensis all had the lowest 326 rod densities and inhabit waters up to 80-100 m deep. Even in closely related species this was 327 the case, for example, *N. richardsoni* have more rods than *P. bassensis* probably because they 328 are found up to 60 m deeper. This is because rods are adapted for detecting dim light, and 329 therefore are more valuable for fish to perceive visual cues in low light intensity conditions 330 associated with deep water (Fernald, 1988). For T. declivis, having the highest density of rods 331 would likely result in this species responding quickly to lights, since rods are sensitive to the 332 shift from dark to light (Bond, 1996). The only species that did not follow this trend was L. 333 *mulhalli*. This species is usually located at depths up to 100 m but had the lowest estimate of 334 rod density. However, of the eight species, this species has the largest eye diameter to total

length ratio, and an intermediate retinal magnification. This could be an adaption that allows

336 for increased light capture and a larger depth range of the species. Alternatively, it could

337 simply be a reflection of the time actually spent at its maximum range.

338 4.3 CONES

339 The densities of cones were found to be less variable among species in this study than rod 340 densities. While foveae, specialized regions of high cone density, do occur in some fish 341 species (Wagner, 1990; Douglas & Hawryshyn, 1990), this feature was not assessed in this 342 study and average cone densities in dorsal and ventral regions were used for ease of species 343 comparisons. Foveae may contribute to differences in functional visual ability among species. 344 Parequula melbournensis had the greatest density of cones which suggests that they are 345 adapted to shallow habitats, but they are found in depths of greater than 100 m (Fishelson, et 346 al., 2012). This species is apparently diurnal (mostly active during the day), as are most of the 347 other species' in this study (Edgar, 2008), suggesting they would be less reliant on rods. The 348 high cone density of P. melbournensis could be due to the fact that this is a schooling species 349 (Edgar, 2008), requiring visual cues to maintain orientation in a group. However, T. declivis 350 also exhibits schooling (Gomon, et al., 2008), and had a much lower cone density. While it 351 has been shown that certain species have vision dependent schooling behaviours (Kowalko, 352 et al., 2013), most fish use the lateral line as the dominant mechanism for schooling (Larsson, 353 2012).

Conversely, *S. flindersi*, *N. richardsoni*, *P. bassensis*, *L. mulhalli* and *T. declivis*, all had the lowest density of cones. It could be assumed that in the relatively shallow depth that light can penetrate (to ~100 m), the absolute densities of cones are not as important as the types of cones available. It has been demonstrated that single cones and double cones (and perhaps also triple cones, that were not observed in this study) are sensitive to different wavelengths

of light (Loew & Lythgoe, 1978, Marc & Sperling, 1976, Tamura, 1957, Ullmann, et al.,

360 2011). The eyes of certain species may be adapted to their underwater visual environment

361 niche, for specific light intensities, light spectra, plankton colours, and dissolved and

362 particulate materials (McFarland & Munz, 1975).

363 4.4 CONE MOSAICS

364 The cone mosaic for six of the eight species had a similar arrangement of four double cones 365 around a center single cone, which is a common arrangement, especially in shallow water 366 species (Boehlert, 1978, Mas-Riera, 1991, Wagner, 1990). Trachurus declivis was different, 367 with rows of double cones, which is a known pattern for species in deeper water habitats and 368 shoaling species (Boehlert, 1978). This is contrary to a similar species, Trachurus 369 mediterraneus ponticus, which has a regular structural organization of four double cones 370 around a single cone (Podugolnikova, 1985). This difference is unexpected since both species 371 are deeper-water shoaling species. There are no studies in species similar to L. mulhalli, S. 372 flindersi, P. melbournensis, P.bassensis, L. gallus and T degeni. The shallow water species 373 would have increased visual capacity via colour sensitivity compared to the deeper water 374 species, since this is conferred by the complex cone mosaic that can allow for detection of 375 different light spectra (Boehlert, 1978, Losey, et al., 1999).

376 4.5 MINIMUM SEPARABLE ANGLE AND POTENTIAL VISUAL ACUITY

377 The MSA for T. degeni (6.6 minutes) was very similar to that of another Monocanthidae

378 species, *Cantherines modestus* which had a value of 6.4 minutes (Tamura, 1957). However,

379 the MSA of *L. mulhalli* (8.5 minutes) was higher than a related species *Chelidonichthys kumu*

380 (6.8 minutes) (Tamura, 1957). This difference was most likely due to the larger size of the

- 381 specimens examined, for example *C. kumu* grows to around 500 mm (Gomon, et al., 2008)
- 382 while the mean size of the L. mulhalli in this study was 172 mm. S. flindersi and T. declivis

383 from this study were not similar to their Japanese counterparts of the same size; the MSA for 384 S. flindersi (7.7 minutes) was less than that of the Sillago japonica (10.0 minutes), while in T. 385 declivis (6.6 minutes) MSA was less than Trachurus japonicus (7.7 minutes) (Hajar, et al., 386 2008). The two Sillago species have many similar characteristics such as habitat and 387 maximum length, however the difference in depth range (up to 170 m for S. flindersi and up 388 to 30 m for S. *japonicus*) may be the key factor to these differences in the values (Matsuura, 389 1985). Similarly, the maximum habitat depth of T. declivis (up to 500 m) is deeper than the 390 maximum depth for T. japonicus (275 m) (Matsuura, 1985). The Japanese species have 391 higher MSA (lower resolution) even though they occur in shallower water with higher light 392 intensity.

393 Potential visual acuity is dependent upon cone cell density in the calculation, and therefore 394 these results tended to reflect similar patterns among the eight species. For this reason, P. 395 melbournensis had the largest calculated potential visual acuity. However, lens size is also an 396 important factor to determine potential visual acuity, which contributed to L. gallus 397 possessing the lowest potential visual acuity of the eight species. The other six species (P. 398 bassensis, N. richardsoni, T. declivis, T. degeni, S. flindersi and L. mulhalli) were not 399 significantly different. Higher potential visual acuity and low retinal magnification are 400 beneficial to an individual as they allow better distinguishing of fine detail at a greater 401 distance. The benefits could range from finding food, to avoiding predation, or avoidance of 402 commercial fishing gear (Hajar, et al., 2008, Walsh & Hickey, 1993, Zhang & Arimoto, 1993) 403

404

405

5. CONCLUSION

406 By estimating the potential visual acuity of different bycatch species, calculating rod density,

407 and reviewing the implications of specific photoreceptor mosaic patterns, the potential

408 vulnerability of the species to fishing gear could be suggested. Importantly, visual ability 409 alone is not the only contributor to fish behaviour and other sensory input (mechanosensory 410 and chemosensory) may be critical especially for crepuscular or deep water species (Douglas 411 & Hawryshyn, 1990). Retinal convergence and higher order neural processing of visual 412 information will also impact available visual stimuli, and detection of a visual cue alone 413 cannot determine a fishes response to escape, swim towards or not respond to the stimulus. 414 However, for temperate shallow water species, including those in this study, the dominant 415 sensory modality is vision (Pankhurst, 1989; Douglas & Hawryshyn, 1990). In terms of the 416 commercial fishery, in particular trawling, where a mix of fish are caught but only a select 417 few species are kept, this retinal morphology data can inform mitigation techniques such as 418 the use of light to reduce fish bycatch. The use of light could aid in increasing the sensory 419 detection of fishing gear, resulting in a visual cue for fish to detect an oncoming trawl and 420 potentially elicit an escape response.

421

422 ACKNOWLEDGEMENTS

Many thanks to the crew of the *FTV* Bluefin for the collection of samples, Polly Hilder for
assistance with resin histology, and the Australian Maritime College for funding this project.
DH was supported by an APA Stipend from the University of Tasmania and JC was
supported by a University of the Sunshine Coast CRN Research Fellowship. All procedures
were carried out with the approval of the University of Tasmania Animal Ethics Committee
(approval number A0012574). The manuscript was improved with valuable comments from
two anonymous reviewers.

5. REFERENCES

- 431 Boehlert, G. (1978). Intraspecific evidence for the function of single and double cones in the
- 432 teleost retina. *Science*, 202 (4365), 309-311.
- 433 Bond, C.E. (1996). *Biology of fishes*. (750 pp.). Fort Worth, Texas: Saunders College Pub.
- 434 Catalan, I.A., Dunand, A., Álvarez, I., Alos, J., Colinas, N., & Nash, R.D.M. (2014). An
- 435 evaluation of sampling methodology for assessing settlement of temperate fish in seagrass
- 436 meadows. *Mediterranean Marine Science*, 15 (2), 338-349.
- 437 Douglas, R.H., & Hawryshyn, C.W. (1990). Behavioural studies of fish vision: an analysis of
- 438 visual capabilities. In: R.H. Douglas, & M.B.A. Djamagoz (Eds.), The Visual System of Fish
- 439 (544 pp.). London: Chapman and Hall.
- 440 Eastman, J.T. (1988). Ocular morphology in antarctic notothenioid fishes. Journal of
- 441 *Morphology*, *196* (3), 283-306.
- 442 Edgar, G.J. (2008). Australian Marine Life. (624 pp.). Sydney: Reed New Holland.
- 443 Evans, B.I., & Browman, H.I. (2004). Variation in the Development of the Fish Retina.
- 444 American Fisheries Society Symposia, 40, 145-166.
- 445 Fernald, R.D. (1988). Aquatic Adaptions in Fish Eyes. In: J. Atema, R.R. Fay, A.N. Popper,
- & W.N. Tavolga (Eds.), *Sensory Biology of Aquatic Animals*. (936 pp.). New York: SpringerVerlag.
- 448 Fernald, R.D., & Wright, S.E. (1985). Growth of the visual system in the African cichlid fish,
- 449 Haplochromis burtoni. Accommodation. Vision Res, 25 (2), 163-170.
- 450 Fishelson, L., Ayalon, G., Zverdling, A., & Holzman, R. (2004). Comparative morphology of
- 451 the eye (with particular attention to the retina) in various species of cardinal fish
- 452 (Apogonidae, Teleostei). The Anatomical Record Part A: Discoveries in Molecular, Cellular,
- 453 *and Evolutionary Biology, 277A* (2), 249-261.

- 454 Fishelson, L., Delarea, Y., & Goren, M. (2012). Comparative morphology and cytology of
- the eye, with particular reference to the retina, in lizardfishes (Synodontidae, Teleostei). *Acta Zoologica*, *93* (1), 68-79.
- 457 Gailliet, G.M., Love, M.S., & Ebeling, A.W. (1996). Fishes: A Field and Laboratory Manual
- 458 on their Structure, Identification, and Natural Question. (202 pp.). Illinois: Wavelan Press,
- 459 Inc.
- Gomon, M.F., Glover, J.C.M., & Kuiter, R.H. (2008). *The Fishes of Australia's South Coast*.
 (929 pp.). Adelaide: State Print.
- 462 Gurthrie, D.M., & Muntz, W.R.A. (1993). Role of vision in fish behaviour. In: T.J. Pitcher
- 463 (Ed.) Behaviour of Teleost Fishes (715 pp.). England: Chapman and Hall.
- 464 Hajar, M.A.I., Inada, H., Hasobe, M., & Arimoto, T. (2008). Visual acuity of Pacific Saury,
- 465 *Cololabis saira*, for understanding capture process. *Fisheries Science*, 74 (3), 461-468.
- 466 Kirschfeld, K. (1976). The resolution of lens and compound eyes. In: F. Zettler, & R. Weiler
- 467 (Eds.), *Neural Principles in Vision* (430 pp.). Berlin: Spinger-Verlag.
- 468 Knuckey, I.A. (2006). Southern and Eastern Scalefish and Shark Fishery- Bycatch Utilisation
- 469 Scoping Study. (p. 41). Victoria.
- 470 Kowalko, J.E., Rohner, N., Rompani, S.B., Peterson, B.K., Linden, T.A., Yoshizawa, M.,
- 471 Kay, E.H., Weber, J., Hoekstra, H.E., Jeffery, W.R., Borrowsky, R., & Tabin, C.J. (2013).
- 472 Loss of school behaviour in cavefish through sight-dependant and sight-independant
- 473 mechanisms. *Current Biology*, 23, 1874-1883.
- 474 Larsson, M. (2012). Why do fish school? *Current Zoology* 58 (1), 116-128.
- 475 Loew, E.R., & Lythgoe, J.N. (1978). The ecology of cone pigments in teleost fishes. *Vision*476 *Research*, 18, 715-722.
- 477 Losey, G.S., Cronin, T.W., Goldsmith, T.H., Hydes, D., Marshall, N.J., & McFarland, W.N.
- 478 (1999). The UV visual world of fishes: a review. *Journal of Fish Biology*, 54, 921-943.

- 479 Lyall, A.H. (1957). Cone arrangements in teleost retinae. *Quarterly Journal of Microscopical*480 *Science*, 98 (2), 189-201.
- 481 Lythgoe, J.N. (1968). Visual pigments and visual range underwater. *Vision Research*, 8 (8),
 482 997-1012.
- 483 Marc, R.E., & Sperling, H.G. (1976). The chromatic organisation of the goldfish cone
- 484 mosaic. Vision Research, 16, 1211-1224.
- 485 Mas-Riera, J. (1991). Changes during growth in the retinal structure of three hake species,
- 486 Merluccius spp. (Teleostei: Gadiformes), in relation to their depth distribution and feeding.
- 487 Journal of Experimental Marine Biology and Ecology, 152 (1), 91-104.
- 488 Matsuura, K. (1985). Carangidae. In: O. Okamura, & T. Kitajima (Eds.), Fishes of the
- 489 Okinawa through and the adjacent waters, II (680 pp.). Japan: Japan Fisheries Resource
- 490 Conservation Association.
- 491 McFarland, W.N., & Munz, F.W. (1975). Part III: The evolution of photopic visual pigments
- 492 in fishes. *Vision Research*, *15*, 1071-1080.
- 493 Miyazaki, T., Shiozawa, S., Kogane, T., Masuda, R., Maruyama, K., & Tsukamoto, K.
- 494 (2000). Developmental changes of the light intensity threshold for school formation in the
- 495 striped jack *Pseudocaranx dentex*. Marine Ecology Progress Series, 192, 267-275.
- 496 Pankhurst, N. (1987). Intra- and interspecific changes in retinal morphology among
- 497 mesopelagic and demersal teleosts from the slope waters of New Zealand. *Environmental*
- 498 *Biology of Fishes*, 19 (4), 269-280.
- 499 Pankhurst, N.W. (1989). The relationship of ocular morphology to feeding modes and
- 500 activity periods in shallow marine teleosts from New Zealand. Environmental Biology of
- 501 Fishes, 26 (3), 201-211.

- 502 Podugolnikova, T.A. (1985). Morphology of bipolar cells and their participation in spatial
- organization of the inner plexiform layer of jack mackerel retina. *Vision Research*, 25 (12),
 1843-1851.
- 505 Powers, M.K., & Raymond, P.A. (1990). Development of the Visual System. In: R.H.
- 506 Douglas, & M.B.A. Djamgoz (Eds.), *The Visual system of Fish* (pp. 419-442). London:
- 507 Chapman and Hall.
- Raymond, P.A., Barthel, L.K., & Curran, G.A. (1995). Developmental patterning of rod and
 cone photoreceptors in embryonic zebrafish. *J Comp Neurol*, *359* (4), 537-550.
- 510 Shand, J. (1997). Ontogenetic changes in retinal structure and visual acuity: a comparative
- 511 study of coral-reef teleosts with differing post-settlement lifestyles. Environmental Biology of
- 512 Fishes, 49, 307-322.
- Tamura, T. (1957). A Study of Visual Perception in Fish, Especially on Resolving Power and
 Accommodation. *Bulletin of the Japanese Society of Scientific Fisheries*, 22 (9), 536-557.
- 515 Temple, S.E., Manietta, D., & Collin, S.P. (2013). A comparison of behavioural (Landolt C)
- 516 and anatomical estimates of visual acuity in archerfish (*Toxotes chatareus*). Vision Res, 83, 1-
- 517 8.
- 518 Ullmann, J.F.P., Gallagher, T., Hart, N.S., Barnes, A.C., Smullen, R.P., Collin, S.P., &
- 519 Temple, S.E. (2011). Tank color increases growth, and alters color preference and spectral
- 520 sensitivity, in barramundi (*Lates calcarifer*). Aquaculture, 322-323, 235-240.
- 521 Wagner, H.-J. (1990). Retinal structure of fishes. In: R.H. Douglas, & M.B.A. Djamgoz
- 522 (Eds.), *The Visual System of Fish* (544 pp.). London: Chapman and Hall.
- 523 Walsh, S.J., & Hickey, W.M. (1993). Behavioural reactions of demersal fish to bottom trawls
- 524 at various light conditions. *ICES Marine Science Symposia*, 196, 68-76.

- 525 Zhang, X.M., & Arimoto, T. (1993). Visual Physiology of walleye pollock (*Theragra*
- 526 *chalcogramma*) in relation to capture by trawl nets. *ICES Marine Science Symposia*, 196,
- 527 113-116.