
EDITORIAL

Apolipoprotein AI and amyloidosis: A genetic model for aging

Less than ten years have passed since apolipoprotein AI
(ApoAI) joined the ranks of acknowledged amyloid forming
proteins [1, 2]. Certainly ApoAI has had a long history in medical
science attesting its central role in normal lipid metabolism and
metabolic perturbations that lead to prominent diseases such as
atherosclerosis. The discovery that a variant form of ApoAI could
form amyloid fibrils and cause a unique type of protein deposition
disease opened an entirely new career for this protein, which was
always assigned the role of a facilitator but never that of the lead
actor in a disease. This is the unique feature of the amyloid
diseases. The protein defines the disease, and it is the protein, we
believe, that is central to the process that leads to fibrillogenesis,
fibril deposition, organ dysfunction, and finally death.

The evolution of knowledge of ApoAI in this area has been very
interesting and thought provoking. Five mutations in the ApoAI
gene have now been found to result in autosomal dominant
amyloidosis. Three of these are the result of single nucleotide
changes giving amino acid substitutions in the amino terminal
portion of the protein [3–6]. Two, as exemplified by the article by
Persey et al, in this issue of the journal, are the result of deletions
in the gene for AI [7, 8]. In most cases the mutations lead to
nephropathic amyloidosis with varying degrees of hepatic, splenic,
and neural pathology.

ApoAI is not the sole cause of hereditary renal amyloidosis. It
shares this distinction with fibrinogen Aa-chain, lysozyme, and in
some families, transthyretin, cystatin c, and gelsolin [9]. Indeed,
ApoAI is not the only apolipoprotein associated with amyloidosis.
Serum amyloid A (SAA) in most mammalian species and ApoAII
in mice are also amyloid forming apolipoproteins. ApoAI does,
however, offer interesting parallels to other diseases and raises
questions about normal physiology.

It is now known that the pulmonary amyloid deposits in aging
dogs are formed from ApoAI [10], and amyloid deposits in the
aortae of aged humans is a product of ApoAI [11]. In both cases
the fibrils appear to be synthesized from the normal protein. The
same phenomenon appears to be true with transthyretin, which
can give senile cardiac amyloidosis without the presence of a
mutated form of the protein. Also, it has been recognized for
many years that amyloid deposits found in aging members of
many mammalian species is formed from normal SAA, and of
course, most cases of Alzheimer disease are associated with
amyloid plaques formed from normal amyloid b-peptide. These
examples all support the hypothesis that certain normal proteins
are destined to form amyloid with time, and mutations in these
proteins only accelerate the process. The implication for a species

which increasingly is of the mind set that life expectency should
continue to increase indefinately is daunting.

The association of amyloid with aging is becoming an increas-
ingly important subject for scientific investigation. Areas of re-
search that have not been explored in detail include age-associ-
ated protein repair mechanisms and age associated changes in the
catabolism of proteins. One plausible basis for amyloid formation
from a physiologically normal protein is that time dependent
post-translational changes in the protein are not metabolically
corrected and resultant structure changes lead to fibrillogenesis.
Another possibility is that catabolic mechanisms change with age
and these lead to persistence of incompletely proteolyzed pep-
tides that have an innate propensity for fibril formation. Support
for the latter possibility is the finding of increased plasma turnover
of the Gly26Arg variant of ApoAI, which is associated with
amyloidosis [12]. Also, metabolic differences between normal and
amyloid associated variants of transthyretin support the hypothe-
sis that catabolism of these proteins is important to amyloid
pathogenesis [13]. If we can define these changes in metabolism of
amyloid forming proteins, we may start to understand the basis of
aging.
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