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Abstract

An important step in 17th-century research on quadratures involved the use of algebraic procedures. Pietro Men-
goli (1625-1686), probably the most original student of Bonaventura Cavalieri (1598-1647), was one of several
scholars who developed such procedures. Algebra and geometry are closely related in his works, particularly in
Geometriae Speciosae Elemeffidologna, 1659]. Mengoli considered curves determined by equations that are
now represented by = K - x - (r — x)". This paper analyzes the interrelation between algebra and geometry in
this work, showing the complementary nature of the two disciplines and how their combination allowed Mengoli
to calculate quadratures in a new way.

0 2005 Elsevier Inc. All rights reserved.

Résumeé

L'un des plus grands pas en avant, au XVlle siécle, dans la recherche de nouvelles méthodes de quadrature ft
I'introduction des procédures algébriques. Pietro Mengoli (1625-1686), probablement le plus intéressant des éléve:
de Bonaventura Cavalieri (1598-1647), fut 'un de ceux qui développa ce type de procédures dans ses travauw
mathématiques. Algébre et géométrie sont étroitement liées dans les ouvrages de Mengoli, en particulier dans le
Geometriae Speciosae ElemefBalogna, 1659]. Mengoli emploie des procédures algébriques pour résoudre des
problémes de quadrature de curves déterminées par des ordonnées que nous noterieris pdf - (t — x)". Le
but de cet article est d’analyser les rapports entre algebre et géométrie dans I'ouvrage ci-dessus, de montrer leL
complémentarité et d’'indiqguer comment celle-ci a permis a Mengoli de mettre en oeuvre une nouvelle méthode
dans le calcul des quadratures.

0 2005 Elsevier Inc. All rights reserved.

P An earlier version of this article was presented at the University Autonoma of Barcelona on June 26, 1998 for my doctoral
thesis in the history of science.
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Introduction

An important innovation in 17th-century mathematics was the introduction of algebraic procedures
to solve geometric problems. Two fundamental advances in mathematics during that century were the
invention of what is now called analytic geometry and the development of infinitesimal calculus. Both
achieved their exceptional power by establishing connections between algebraic expressions and curves
and between algebraic operations and geometrical construétions.

The publication in 1591 dh Artem Analyticen Isagodey Francois Viéte (1540-1603) drew attention
to these connections. Viete used symbols not only to represent unknown quantities but also to represent
known ones. In this way he was able to investigate equations in a completely general form. Viéte solved
equations geometrically using the Euclidean theory of proportions; he equated algebraic equations with
proportions by means of the product of the medians and extremes of a proportion, thus introducing
a new way of solving equatiorfsAs Viéte’s work became known during the early years of the 17th
century, mathematicians began to consider the utility of algebraic procedures in solving geometric prob-
lems. Among these scholars was Pierre de Fermat (1601-3@@Bpugh the most influential figure in
the research on the relationship between algebra and geometry was René Descartes (1596—1650), whe
published_a Géométrign 16374

In the 100 years following 1637 mathematics to a very considerable degree became algéirhiged.
process involved a change from a mainly geometrical way of thinking to a more algebraic or analytical
approach and was implemented in a slow and irregular m&net.all mathematicians in this period

1 In the early 17th century a tradition had already developed in ltaly of using algebra as an “art” to solve equations. The
connection between algebra and geometry is present in most Italian algebrists—Leonardo da Pisa (1180-1250), Luca Pacioli
(1445-1514), Niccolod Tartaglia (1500-1557), Girolamo Cardano (1501-1576), and Rafael Bombelli (1526—1573)—but these
algebrists of the “cinquecento” only produced geometric demonstrations to justify the solutions of algebraic equations.

2 On Viete sedviete [1970, 12] Freguglia [1999]andGiusti [1992]

3 Fermat did not publish during his lifetime and his works circulated in the form of letters and manuscripts. On Fermat
seeFermat [1891-1922, 65-71 and 286—29@hhoney [1973, 229-232However, parts of his work are explained in other
publications. For instance, Hérigone’s course contains an exposition of Fermat’s work on tangeésiggaee [1644, 59-69]
andCifoletti [1990, 129]

4 The interpretation of Descartes’ program gives rise to conflicting opinions even today. On the one hand Bos, Boyer, and
Lenoir state that, for Descartes, algebra is merely a labor-saving instrument. “For Descartes the equation of a curve was primarily
a tool and not a means of definition or representati®uy, 1981, 32B Besides, the equation is a tool that permits classification
of the curves. For these historians, Descartes’ purpose in wiignGéométriewas to find a method for solving geometric
problems, as was usual at that time, and the equation is not the last step on the way toward the solution. Giusti, on the other
hand, says that for Descartes the curve is the equation. Giusti emphasizes the algebraic compar@ébofétrieas the key
to Descartes’ program. Among the many studies of this program the following are particularly ugefutdsu, 1996, 62—84;

Bos, 2001, 225-412; Giusti, 1987, 40932

5 On this process of algebraization s [1998, 291-317Mancosu [1996, 84—86Pycior [1997, 135-166Panza [2004,
1-30]

6 A detailed analysis of this change in thought can be fourddamoney [1980, 141-155]
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adopted algebraic procedures. Some regarded these new techniques as an “art” and tried to justify ther
according to a more “classical” form of mathematics; others disregarded algebra because their researcl
evolved along other paths. Finally, a few accepted these new techniques as a complement to their mathe
matical procedures.

Pietro Mengoli (1625-1686)a mathematician from Bologna and a student of Bonaventura Cavalieri
(1598-1647), can be included in the last of these groups. In his @edmetriae Speciosae Elementa
[1659], algebra and geometry are used in complementary ways in the investigation of quadrature prob-
lems. At the beginning of this work he claimed that his geometry was a combination of those of Cavalieri
and Archimedes obtained using the tools that Viete’s “specious algebra” offered him:

Both geometries, the old form of Archimedes and the new form of indivisibles of my tutor, Bonaventura
Cavalieri, as well as Viéete's algebra, are regarded as pleasurable by the learned. Not through their confusion
nor through their mixture, but through their perfect conjunction, a somewhat new form [of geometry will
arise]—our own—which cannot displease anyéne.

The quadratures Mengoli wished to investigate were known from the method of indivisibles, but he
wanted to derive them using an algebraic approach. His principal aim was to square the circle, a goal he
achieved by means of his new method in a later w@ikgolo [1672]. This method was based on the
underlying ideas of the method of indivisibles and Archimedes’ method of exhaustion, combined using
algebraic tools suggested by a study of Viéte.

In Sectionl we examine the “specious” language in Mengoli’'s works and describe his notation and
algebraic tools. In Sectiobwe explore the relationship between algebra and geometry expressed in his
system of coordinates, the geometric figures or “forms,” the triangular tables of geometric figures, and
the calculation of their quadratures.

1. Mengoli's “specious” language

In 1655, Mengoli wrote a book in verse dedicated to Queen Christina of SwedenRegia ad Math-
ematicas per Arithmeticam, Algebram Speciosam, & Planimetriam, ornata Maiestatae Serenissimae D.
Christinae Reginae Suecoruin which he showed her a “royal road” to understanding mathematics. The
book is divided into three parts: arithmetic, in which he explains operations with numbers; “specious”
algebra, in which he shows how to use letters to solve equations; and planimetry, in which he deals with
plane figures and their properties. Itis clear that he assumed algebra to be a part of mathematics alongsic

7 On this subject selgyrup [1996, 3—4]Massa [2001, 708-710]

8 The name of Pietro Mengoli appears in the register of the University of Bologna in the period 1648-1686. He studied with
Bonaventura Cavalieri and ultimately succeeded him in the chair of mechanics. He graduated in philosophy in 1650 and three
years later in canon and civil law. He took holy orders in 1660 and was prior of the church of Santa Maria Madalena in Bologna
until his death. For more biographical information on Mengoli, Neéucci [1970-1991, 303Massa [1998, 9-26Baroncini
and Cavazza [1986, 1]

9 |psae satis amabiles litterarum cultoribus visae sunt utraque Geometria, Archimedis antiqua, & Indivisibilium nova Bonaven-
tura Cavallerij Praeceptoris mei, necnon & Viettae Algebra: quarum non ex confusione, aut mixione, sed coniuntis perfection-
ibus, nova quaedam, & propria laboris nostri species, nemini poterit displidemgpli, 1659, 2—B
10 This work for the queen was commissioned on the occasion of her visit to Bologna.
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arithmetic and geometry. In this work he did not define the terms arithmetic and planimetry, but he did
explain “specious algebra” and stressed its usefullessleed his attitude to algebra differed sharply
from that of his master Cavalieri, Torricelli, and others in whose works algebraic calculus was delib-
erately excluded? At the beginning of the second part Wfa Regia in the part devoted to “specious”
algebra, Mengoli describes it as an art in the following way:

About the utility of Specious3pecioshAlgebra

One alone among mathematics is called “speciosa algebra,” by which art nothing is hidden from the
questioner. If you ask “is it yes or no,” it gives the true answer; if you ask “how great is it,” this art does this
satisfactorily, as one would expect since by general numbers it constructs methods fit for making, for things
made, and for things said. Of course it is important that there should be both [these] general numbers: the
one that you seek, and the one that you can Hive.

At this stage in the development of his thinking, Mengoli considered algebra primarily as an art for
demonstrating results that were already known rather than as a method for obtaining new results. In his
later writings, as we shall see, he would come to view algebra more broadly, and would use it both to
devise new proofs and to obtain new results.

In the Via RegiaMengoli adopted Viete's algebraic symbols. He explained that numbers would be
represented by letters and algebra would be presented as a language. Metaphorically he compared lin-
guistic and algebraic expressions: consonants represented data; vowels, unknowns; syllables, algebrai
expressions of one letter; punctuation signs, rules of addition, subtraction; words, algebraic expressions
of several letters; text, equalities; and verses, equations. He did not give examples with letters or with
numbers to illustrate these compariséhslis originality lay in this explicit description rather than in
any new contribution to the formation of symbolic language.

Mengoli's aim in introducing these metaphorical comparisons was evidently didactic, to lay out a
“royal road” to mathematics for the Queen. His views on symbolic language would be better explained
in his later writings where he developed Viéte's algebra to obtain new results.

11 Mengoli thought that the queen already knew the significance of arithmetic and planimetry, but felt that “specious algebra”
was a new part of mathematics that required some supplementary explanation.

12 Also, in England, Thomas Hobbes (1588-1679), inthiaminatio et emendatio mathematicae hodierti60), emphati-

cally condemned the new algebra. In his opinion geometry and its subordinate arithmetic were sciences, whereas algebra, which
he essentially regarded as symbolic reasoning, was an art able to record the inventions of geometry efficiently and quickly, but
not a science. Isaac Barrow (1630-1677) who also opposed algebra, considered arithmetic as one part of geometry, geometry
being the only true science and algebra being only a tool of logic. On this subjeRysiee [1997, 135-166]

13 pe utilitate Algebrae Speciosae. Una, Mathematicas inter, Speciosa vocatur Algebra: quaerenti qua nihil arte latet. Sive
rogas, utrum sic, vel non, dicere verum est; sive rogas, quantum est: ars facit ista satis. Utpote quae numeris generalibus instruit
aptos, ad facere, ad facta, & dicta probare, modos. Scilicet intererit generalis uterque fuisse; Quem-quaeris numerus, quem-dare
cungue potesNlengoli, 1655, 19

14 For instance, Mengoli defined a word as an algebraic expression this way: “One word is composed of a certain number of
letters, the same number of exponents, only one sign and one multiple. So the character that is produced by the product of letters
| have pleasure in calling wordMengoli, 1655, 22 Finally, Mengoli made a classification of equations up to the third degree

in accordance with the degree and with the signs. Although Viéte’s classification was more complete there are some similarities
in the words usedantithesj which meant transposition of terms of one equatgmgradualeswhich referred to the terms

with a lesser degree than the equation, etc.
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Mengoli publishedseometriae Speciosae Elemerital659, a 472-page book on pure mathematics
with six Elementain which algebra became an essential part. The title already suggests this development
of “specious” algebra, which Mengoli named “Specious Geométrysing Viéte’s symbolic language,
he created new algebraic tools to determine the quadratures of geometric curves. Mengoli wanted tc
create a new field, a “specious geometry” modeled on Viéte’s “specious algebra.” In fact, he had unin-
tentionally created a new part of the new mathematical field that was beginning to emerge at that time,
inspired by the works of Descartes and Fermat.

Mengoli's main algebraic sources were texts by Viéte, Pierre Hérigone (1580-fé4R) Jean Beau-
grand (1595-1640Y, as is implied by comments at the beginning of the book:

On the other hand as Francois Viéte and other Analyst3o those symbols that Viete, Hgane, Beau-
grand...!®

In the second book of his six-volume textboGkirsus Mathematicugl644), Hérigone had included a
296-page treatise entitleflgebracomposed of 20 chapters. He dealt with equations and their solutions
using algebra that was clearly inspired by Viete but that employed a very different notation and presen-
tation1®

15 Geometriae Speciosae Eleme(t&59) has an introduction entitlégctori elementaripwhich provides an overview of the

six Elementaor individually titled chapters, that follow. In the firlementumDe potestatibus, a radice binomia, et residua

(pp. 1-19), Mengoli gives the first 10 powers of a binomial given with letters for both addition and subtraction, and says that it is
possible to extend his result to higher powers. The seddadinumerabilibus numerosis progressionilfpp. 20-94), contains
calculations of numerous summations of powers and products of powers in Mengoli’s own notation, as well as demonstrations
of certain identities. In the thirdDe quasi proportionibugpp. 95-147), he defines the ratios “quasi zero,” “quasi infinity,”
“quasi equality,” and “quasi a number.” With these definitions, he constructs a theory of quasi proportions on the basis of the
theory of proportions found in the fifth book of Euclid@ementsThe fourthElementumDe rationibus logarithmicigpp. 148—

200), provides a complete theory of logarithmical proportions. He constructed a theory of proportions between the ratios in the
same manner as Euclid did with magnitudes in the fifth booklefnents From this new theory in the fiftElementumbDe

propriis rationum logarithmigpp. 201-347) he found a method for calculation of the logarithm of a ratio and deduced many
useful properties of the ratios and their powers. Finally, the dstémentumDe innumerabilibus quadraturigpp. 348-392)
calculates the quadratures of curves determined by algebraic expressions now represggteki by” - (r — x)". A detailed

analysis of this work can be found Massa [1998, 1-300]

16 On Hérigone’s algebra sétérigone [1644, second and sixth boakid Cifoletti [1990, p. 129]

17 Beaugrand was also a mathematician; in 1635 he spent an entire year in Italy and visited Cavalieri in Bologna. He published
a version ofin Artem analyticem Isagog&hich was in fact the work of Viete extended with some “scolies” and a mathematical
compendium. More references appeaCifoletti [1990, pp. 114-128]

18 porrd cum Francisco Viettae, alijsque placuerit Analystis; Quibus characteribus & Vietta, Hgwhio, Beaugrand. ..
[Mengoli, 1659, 11-1p

19 Notice that Hérigone distinguished between vulgar algebra, which dealt with numbers, and specious algebra, which dealt
with species. He defined Algebra in this way: “La doctrine analytique ou I'Algebra est I'art de trouver la grandeur incognue,
en la prenant comme si elle estoit cognue, & trouvant I'egalité entre icelle & les grandeurs données.” He also defined specious
algebra: “Mais I'Algebre Specieuse n’est pas limitée par aucune genre de probleme, & n’est pas moins utile a inventer toutes
sortes de theoremes, qu’a trouver les solutions & demonstrations des problétéegdpe, 1644, 1L Also, in the sixth book

of his Cursus Hérigone wrote two parts about algebra, “supplement of algebra” (73 page) and “isagoge of algebra” (74-98). In
this supplement Hérigone published Fermat's method of maximum and miniiérigpne, 1644, 59-49
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Mengoli did not cite Descartes as a source, nor does the treatment of algebraic symbols through-
out his book suggest that he had read Rinfermat’s manuscripts and letters had circulated among
Parisian mathematicians and reached Italy through Beaugrand and Mets&mmpossible that Mengoli
knew Fermat’s results: Ricci, Torricelli, and Cavalieri certainly did. He may also have known Fermat's
method of maximum and minimum, which was published in$h¢h Bookof the Cursus Mathematicus
[Hérigone, 1644, 59—§9Although Mengoli did not cite Fermat as a source in@Gmsometriaethis work
could have been inspired by a reading of Fermat’s method in Hérigone or in Fermat’s manuscripts.

1.1. Mengoli’s notation

One of the main difficulties in understanding Mengoli’'s book concerns the notation; it is original and
becomes more complicated as the text progre€ses a separate page, under the tHeplicationes
guarundam notarumbefore the first Theorem in thelementum primumMengoli outlined the basic
notation that he would use throughout the book: addition, subtraction, the equals sign, and ratio. He also
named all the letters and algebraic expressions contained in his analysis.

There are certain differences between these signs and those of Viete, Descartes, and Hérigone. For
instance, equality was represented with two points, whereas Viéte used an abbreviation of the word
aequalis Descartes wrote the symbal, and Hérigone wrote 2/2. To multiply, Viete used the ward
whereas Mengoli, Descartes, and Hérigone wrote one letter next to the other. Mengoli used a semicolon
to express the ratio between two quantities; Viete used the expressiDescartes, and Hérigone the
symbols.

To represent quantities by symbols Mengoli did not distinguish between vowels and consonants, which
could represent data, unknowns or variables. He used both capitals and lower case letters; in general,
lower case represented data and capital letters variables. He invented names for the letters and expressior
he used. In some cases these names were the same as Viete’s, such as thdiw(it first power);
others, such asiprimam (a°r), unisextan{ar®), and so forth, are original creations. To represent powers,
Viete retained the wordé quadratus A cubus and so on. Descartes wrote the exponents as they are
written today, with one exception: he wrate: to represent the square. Mengoli wrote the exponents
on the right side of the lettex,2, as had Hérigon®. For instance, to represent one proportidangoli
[1659, 8]wrote

“a;r:a2;ar” fora r=d%:ar.
It should be noted that in the 17th century there were no standard criteria either for symbols or for
mathematical term&

20 According to Luigi Pepe, Descarte§éométriedid not reach a wide readership in Iltaly. Pepe claims to have found two
references, one in Giannantonio Rocca (1607-1659), a pupil of the Jesuit College of Parma, who possessed the translation of
DescartesGéométrigPepe, 1982, 2§3Mengoli wanted to square geometric figures as an answer to a question proposed by
Rocca Mengoli, 1659, 34B This is the only association with Descart€eométrighat we have found.

21 On the diffusion of Fermat's works in Italy sédahoney [1973, 56]

22 1n a letter to Collins, Isaac Barrow said that Mengoli's style was harder than ArG@bégpry, 1939, 40

23 On the same page Mengoli also explained how he represented a proportion, a composition of ratios and a power of a ratio.
He defined the composition of ratios as a ratio obtained by multiplying the antecedents and the consequents.

24 On the origins of algebraic language déalet and Paradis [1984, 169-179]
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1.2. Algebraic tools

As far as the definitions of thElementum primunare concerned, Mengoli defined the powers of a
guantity in continuous proportion to unity, as did Descarteld 979, 138] When Mengoli used these
definitions in demonstrations, he wrote

In the fourth definition, he introduced the “rationalis,” or umjt

4. Quantity, from which the progression of the continuously proportional is ordered to infinity, will be
called “Rationalis” and it will be represented by the symigP

Then in the fifth definition, Mengoli introduced the radixand in the sixth definition powers af?®

5. And the first quantity after “Rationalis” will be called Radix or first Power and it will be represented by
a letter of the alphabet.

6. And the following remainders will be called the second, third and so on powers, in accordance with their
order. And any [power] will be represented by the letter of its radix with the number of the order on the

right side. For example from radix:?” second power 42,” third “ 483" and so or?’

Mengoli put these quantities in a triangular table, the table “of proportionglsortionaliuni, to make
their identification easi€f The table presents numbers expressed by letters so that in every row the first
two elements always have the same ratio-, a andr both being integers. They also have the same ratio
in the diagonals 1a and 1: r, respectively, because the letieplaced in the vertex represents unity or
one (sed-ig. 1).
Throughout the book triangular tables served as useful algebraic tools for calculationsElartten-
tum primum the terms of the triangular tables are numbers and they are used to obtain the development
of any binomial power. In th&lementum secundyrthe terms are summations used to obtain the sum
of the pth powers of the first — 1 integers. Finally, in th&lementum sextunthe terms are geomet-

25 4. Quantitas, unde progressio continué proportionalium, ordinatur in infinitum, dicetur, Rationalis.& significabitur charactere
u [Mengoli, 1659, 4.

26 Curiously, though Mengoli never mentioned zero, either as a power or as a number, he defined the:omd@msf unit less

than the first powerlengoli, 1659, 4

27 5. Et prima consequens a rationali, dicetur, Radix, vel Potestas prima.& significabitur, charactere cuiusq; litterae alphabeti.
6. Et reliquae consequentes, dicentur Potestates radicis, Secunda, Tertia, & deinceps, iuxta suum cuiusque ordinem. Et signif
cabitur unaquaeque, eidem litterae suae radicis, adscriptoque ordinis numero. Utraglicisnda potesta®, tertiaa3, & sic
deincepsengoli, 1659, 4

28 Mengoli noted its similarity to a table said to be found in Euclid VII.2. We have not found this table in EtElaisents

but there is a reference to a similar table in a 13th-century Latin edition dEldgraentgpublished by Johan Ludvig Heiberg

and H. Menge irBosmans [1924, 22]

29 He composed this table “of proportionals” with the table of binomial coefficients to obtain a new triangular table. Its elements
are the development of the powers of the binoraial r or a — r, adding the corresponding signs depending on whether the
binomial contains an addition or subtraction. He demonstrated these developments in Theorems 8 and 10 &l¢hnesfirstm
[Mengoli, 1659, 1k
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ric figures or forms and they are used to obtain the quadratures of these figures. Mengoli’s originality
stemmed not from the presentation of these tables but rather from his treatment of them. On the one
hand, he used them and Viéte's algebra to create other tables with algebraic expressions, stating clearly
their laws of formation; on the other hand, he employed the relations between these expressions and the
binomial coefficients of the arithmetic triangle to prove results. It is significant that he used the symmetry
of triangular tables and the regularity of their rows in order to generalize the proofs. Mengoli took it for
granted that if a result was true for one row of the table, this result was also true for all rows and there
was no need to prove it in the remaining rows. For instance, he proved the development of the powers of
the binomiala + r, for the second row,

u:a:a:azzr:ar:a—i-r:az—i-ar,
e _ .2
u.:r=r.r°=a.ar=a-+r:.r°+ar,
. _ .2 2
u:a+r=a-+r:a°+2ar+r°,

a® + 2ar + r? is the second power af+ r.

Note that here Mengoli is using propositions in the theory of proportions from the fifth book of Euclid’s
ElementdMengoli, 1659, 18 It is evident that the derivation can be easily adapted to obtain the third,
fourth, etc. powers aof + r.

The arithmetic manipulation of algebraic expressions helped Mengoli to obtain new results and new
procedures. IiElementum secunduhe invented a manner of writing and calculating finite summations
of powers and products of powers. He did not give them values or write them using the- sigd
suspension points (.), but rather represented the numbers by letters. In this way he created an innovative
and useful symbolic construction that would allow him to calculate these summations, which he assumed
as new algebraic expressions. He considered an arbitrary numtada,aepresented by the letterand
divided it into two partsg (abscissa) and=r — a (residua)® In his words,

The parts oftota will be called the separated padlscisshand the remaining partg¢sidug and the
separated part will be represented by the lettand the remainder by.3!

u

a a’r ar r

Fig. 1. Tabula Proportionaliuﬁ"ﬁ

30 Mengoli referred to an “arbitrary number” [quantitas utcunque] although here he only gave examples with integers. As we
will show later, in the quadratures he divided the unit inmarts of side 1r; that is to sayq = 1/¢, andr =1 — 1/¢.
31 Et partes totae, dicentur, Abscissa, & Residua: & significabitur abscissa, chargderesidua,r [Mengoli, 1659, 21
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O.u
O.a O.r
0.a° O.ar 0.F

0.a° 0.28°r 0.ar* 0.

Fig. 2. Tabula Speciosa.

He then tookotaequal to 2, 3, ..., and gave examples up to 10. Thatis to saig #,a is 1, andr is 1.

If ¢ is 3,amay be 1 or 2 and is then 2 or 1, respectively. He also calculated the squares and cubes of
the products of: andr, of the squares af andr, and so on. He then proceeded to add all the numbers
that he separated from the same numbéor instance, if is 3, the summation will be 3, because it is
the sum of 1 and 2; if is 4, the summation will be 6, because it is the sum of 1, 2, and 3, and so on. He
wrote O.a%2 to express this sum from=1toa =1 — 1,

Mengoli put all these summations of powers and products of powers in a triangular table which he called
the “table of symbols” $peciosh(seeFig. 2).
The terms or “species” of this table are summations of the type

Ou=(t-1),

0.a=14+2+3+---+(@ -1,
Or=0-1D+@-2+¢—3+---+1,
0.8°=P+2+F+.. + (1>
O.ar=1(-1)+2(-2+3.( -3+ -+ -1.1

Mengoli combined his table of symbols with the table of binomial coefficients to obtain a new table.
He then used new relations between the terms of these tables to calculate the summations of positive
integers and summations of products of powers indefintteSpecifically, in Theorem 22 d&lementum

32 Obviously “0.” meantOmnesand originated with Cavalieri and hmnes lineae

33 The summation formula for powers was, in fact, not new. The first recognition of it as a general rule was apparently made
in 1636 by Fermat, who announced that he had solved “what is perhaps the most beautiful problem of all aritReretiat, [
1891-1922, 6P namely, given an arithmetic progression, to find the sum of any power of the elements of the progression.
Fermat stated the rules but gave neither the formula nor the demonstration. Later, Bernoulli (1654—1708jsi@trgectandi

(1713), deduced and wrote the general formula on the basis of rules for polygonal numbers. See the third v@ameufii[

1975, 164-16B
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Secundurnhe proved that

a=t—1
m-+n
1). . "t —a)" =" p () 3
(m+n+)<n);a< a) (")

Here P(¢*) is a polynomial inv of degree less than or equal#o+ n, with coefficients of the same type
as the “Bernoulli numbers,” depending on the binomial coefficients.

Mengoli, likePascal [1954, 166—-17&hdFermat [1891-1922, 65—7Xpund a rule in which the value
of the sum of thepth powers is given in terms of the sum of thye— 1)th powers(p — 2)th powers, etc.:

a=t—1 a=t—1

=" <i)a”_l+~-+ > (i)ao—i-lf’.
a=1

a=1

Mengoli based the demonstration of this rule on earlier theorems. In Theorem 1, he established the
symmetry of the table of summations, for examplkea® = 0.r3, 0.ar?> = 0.4°r. In Theorem 2, he
found two differences which he callégcrementaHe proved that

a=t a=t—1
a=1 a=1
and also showed that

Zoes o [Seo (20O [0

a=1 a= a=1

Since by Theorem 1 the twacrementaare equal, the rule is demonstrated.
To get a sense of this result, consider the examples

a=t—1 a=t—1 a=t—1 a=t—1 a=t—1
=32+ Y a+1 =) 3"+ ) 3+ )y a+1
a=1 a=1 a=1 a=1 a=1
In addition to stating and demonstrating the rule Mengoli, in Theorem 22, performed 36 calculations.
Using the preceding expressions, he obtained
- a=t—1

a=t—1
ZZa:tz—t; 26a2=2t3—3t2+t.
a=1 a=1

He ended with the statement

34 Actually Mengoli did not write a general formula with andn. Instead he performed 36 summations. On this subject see
[Massa, 1997, 266258
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And in infinity, it can be demonstrated, with the method shown above, that every summation is equal to
sometota.3°

He took advantage of the properties of the binomial coefficients to find and verify the value of the sum
of the pth powers of the first — 1 integers. Mengoli reached this result using Viéte’s algebra to express
the summations, a method that allowed him to achieve a certain level of generalization.

Another of Mengoli’s original contributions was the justification and use of the notion of variable in
the Elementum tertiumHis idea was that letters could represent not only given numbers or unknown
guantities, but variables as well: that is, determinable [but] indeterminate quantities. For example, sum-
mations were indeterminate quantities but they were determinate when the valweasfknown. To
clarify this idea, Mengoli stated that

When | write 0.4, ...you have the summatiompssaof all the abscissae: but what value this summation
is you do not yet know if | do not write what number the summation is. But if | aséignto the summation

of the number, you do not know either how much it is if at the same time | do not assign the value of
the letters. But when | allow you to fix a value for the lettey and you, using this licence, say thais
equal to 5, immediately you will accurately assigna equal to 1042 equal to 2543 equal to 125, and

O.r equal to 10, and if the lettersare determinate, the quantiti®sa, O.r, 2, 1, [are] determinable [but]
indeterminate quantitie¥.

Mengoli applied his idea of variable to calculate the “quasi ratios” of these summations. The ratio be-
tween summations is also indeterminate but is determinable by increasing the valiéefratio does
not really reach this limiting value, which can be interpreted as its actual value; instead, it tends toward
it asr increases. It is in this sense that Mengoli understood the expression “determinable indeterminate
ratio.”

Mengoli proceeded to give examples and to clarify his notion of “ratio quasi a number.” From this idea
he constructed the theory of quasi proportions, which would prove important in his study of quadratures.

2. Algebraic treatment of geometric figures

Mengoli developed his algebraic analysis of geometric figures irfEtementum sextumf Geome-
triae.3” This chapter, entitle®e innumerabilibus quadraturigmvolves calculating quadratures of plane
curves in the intervalO, r) determined by equations now representeg asK x™ - (t — x)".

35 Et in infinitum, eadem methodo supra tradita, potest demonstrari, qualiter acceptis totis, quaeque massa est aequali:
[Mengoli, 1659, 44

36 cum scripsera).a. .. habes massam ex omnibus abscissi: sed quota sic haec massa, hondum habes, nisi scripsero cuiu:
numeri sit massa. Quod si assignavéra, numeri massam esse; neque sic habes, quota sit, nisi simul assignavero, quotus
est numerus, valor litterae.. Cum vero licentiam dedero, ut quotum quemque littergedorem taxes; tuque huiusmodi usus
licentia dixeris,t valere quinario: statim profecto assignabis@a, valere 10; &2, valere 25; &3, valere 125; &O.r,

valere 10; & determinatae litteragdeterminatas esse quantitates:, O.r, 2, t3. Quare data licentia antequam usus fueris,
habebas profect®.a, O.r, 12,3, quantitates indeterminatas determinabiMstigoli, 1659, 61

37 This sixth Elementumwith the title De innumerabilibus quadraturigpp. 348-392), contains (besides a letter to Cassini)
three triangular tables, 36 definitions, 11 propositions (4 of them he named problems), and last, two pages on barycenters.
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In a preliminary calculation, in the dedicatory letter to Giandomenico Ca¥sMingoli derived
values for the quadratures of these curves using Cavalieri's method of indivi§ibesoutlined that
he had determined these values 12 years before (1647) and he enunciated 25°Esuksample, he
derived (in modern notation)

1 13 13 13 t t

6./x.(t—x)dx=/t2d.x; 12./x.(t—x)2dx=/t3dx; 20/x.(t—x)3dx:/t4dx.
0 0

0 0 0 0

Afterward, Mengoli wondered if by adding these results he could obtain a new quadrature:

Having demonstrated these [quadratures by indivisibles], | thought whether I could calculate some other
guadrature which would be obtained from those known, so that | could solve some significant quadratures
in the same manner that Archimedes solved the parabolas with tridfgles.

For instance, he indicated the quadrature obtained by adding the preceding quadratures,

1 1 1 1

/xdx+/x.(1—x)dx+/x.(l—x)2dx+/x.(1—x)3dx+---
0 0 0 0
—1/24+1/6+1/12+1/20+--- = 1.

He stated that he derived the value of this summation from the results obtained by indivisibles and
from Proposition 17§engoli, 1650, 2)of his work Novae Quadraturae Arithmeticae seu de Additione
Fractorum“? In Proposition 17 he had proved that

1
=1/2+1 1/124 ... =1
Zo(n—l-l)(n—i-Z) /2+1/6+1/12+

38 Giandomenico Cassini (1625-1712) was a professor of astronomy at the University of Bologna from 1650 to 1669, before
moving in the latter year to Paris. On the relation between Cassini and Meng8&aseecini and Cavazza [1986, 37]

39 cavalieri's method of indivisibles is largely set forth in two workseometria indivisibilibus continuorum nova quadam

ratione promota(1635) andExercitationes geometricae sE647]. The derivation of the quadratures of the parabolas

x™ for m any positive integer was published by Cavalieri in this last book. On Cavalieri’s indivisibleSaedieri [1966]

Andersen [1984/1985(Giusti [1980] Malet [1996] andMassa [1994]

40 Mengoli proved three of these results as examples. Interestingly, he did this using a lemma and three quasi-algebraic proposi-
tions of Jean Beaugrand, stating that he would use this algebraic technique with indivisibles because the procedure was shorter.
These Beaugrand’s propositions are found in CavaliEsilsrcitatione quartaln the introduction to this part Cavalieri explained

that when he was working on quadratures he told father Nicerone of his discoveries; during a subsequent visit to Paris, Nicerone
then passed on this information to Beaugrand. Later Cavalieri learned of Beaugrand’s death, from Mersenne; Mersenne also
told him of the solutions that Beaugrand had found to the proposed quadratures. Cavalieri incorporated these solutions so that
they would not be lostQavalieri, 1647, 243-245

41 His demonstratis, cogitabam si possent aliae quadraturae inveniri ex inventis compositae, in quas insignis aliqua resolvatur,
guaemadmodum in triangula, parabolam Archimedes restanfoli, 1659, 36B

42 Mengoli had already published this work, in which he worked with infinite series, adding them together and giving them
suitable properties. On this subject $&esti [1991, 195-213]
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He presented two more examples but he did not find any new quadrature, only relations between
quadratures that were already known by means of indivisiBléte therefore proceeded to develop a
new and more fruitful method. He acknowledged that he did not publish this research on account of the
attacks often leveled against quadrature methods:

Meanwhile | left aside this addition that | had made to the Geometry of Indivisibles, because | was afraid
of the authority of those who think false the hypothesis that the infinity of all the lines of a plane figure is
the same as the plane figure. | did not publish it not because | agreed with them, but because | was doubtful
ofit, and I tried . .. to establish new and secure foundations for the same method of indivisibles or for other
methods, which were equivalefit.

Mengoli believed that the basis of Cavalieri's method of indivisibles was not sufficiently sound. He
wanted to provide a solid foundation for the application of this method to square the given figures, new
figures, and, especially, the circle. He sought to make his procedure for introducing algebra into geometry
clear from the beginning. First, using his own system of coordinates, he expressed geometric figures by
algebraic expressions. Second, to classify these algebraic expressions he placed them in a triangule
table. Third, he used these algebraic expressions as part of a method for the geometrical constructiot
of ordinates of these figures, and finally, he used triangular tables and quasi proportions to find new
guadratures and to produce general demonstrations of quadrature results.

2.1. Mengoli's system of coordinates

In the first definitions oElementum Sextuiengoli described his own system of coordinates. He
proposed a line segment, which he named “Rationalis,” whose measure is any quantity. He then put this
segment in a straight line and named it “Tota.”

1. One of the line segments will be taken, of any quantity, which will be called Rationalis. 2. And [one]
will be put in a straight line equal to Rationali, which will be called Téta.

Next Mengoli defined a base as a straight-line segment the length of which ane. He used the word
absciss¥ for our x, but in a segment measuring the umior . Mengoli always worked within a finite
base in which the abscissa was represented by the leftemtl the remainder was represented by the
letter “r =t —a” or "1 — a,” depending on whether the base was a given valuethe unitu.

43 We can suppose that this “insignis” quadrature which he looked for was the quadrature of the circle. In fact, at the beginning
of his later workCircolo [1672] he stated that he had found the quadrature of the circle in 1660.

44 |psam interim accessionem, quam Geometriae Indivisibilium feceram, praeterivi: veritus eorum authoritatem, qui falsum
putant suppositum, omnes rectas figurae planae infinitas, ipsam esse figuram planam: non quasi hanc sequens partem; s
illam quasi non prorsus indubiam debitans: tentandi animo, si possem demum eandem indivisibilium methodum, aut aliam
equivalentem novis, & indubijs prorsus constituere fundamektenpoli, 1659, 36}

45 1. Assumatur inter lineas, una quaelibet quantitas; quae, Rationalis, dicetur. 2. Et exponatur quaedam recta linea, rational
aequalis; quae dicetur, Tot&lgngoli, 1659, 36%

46 The word abscissa appearsHarmat [1891-1922, 195 Torricelli [1919, IIl, 366} in Cavalieri [1966, 858—859hnd in

Angeli [1659, 175-179]Another word used with the same meaning was “diameter.”
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3. And a position is given, which will be called Base. 4. And one of the ends [of the base] will be called
the end of the abscissae. 5. And the other one the end of the remainders. 6. And the quantity [that goes]
from any point of the base to the end of the abscissae, as far as the same base is extended, will be called
abscissd’

He considered a base AR:

A B R.

Ais the end of the abscissae, R is the end of the remainders, AB is the abscissa, and BR is the remainder.
As for the word “ordinate® Mengoli first defined the ordinates of known figures, such as the square

(or rectangle) and the triangle, from his construction on every point of the base. For instance, in the

square (or rectangle) he stressed how to draw these lines:

10. Over a base is described a square, and | suppose that from any of the points of the base a straight line
will be drawn to the opposite side, maintaining itself parallel at all times to the sides of the square; this will
be calledordinate in[the] square*®

He defined the ordinates traced in a triangle consisting of half of a square:

15. The diagonal of the square, traced from the end of the abscissae, makes a half-square triangle. [In]
which | suppose that from any of the points of the base a straight line will be drawn to the aforementioned
diagonal, once again parallel to the sides [of the square]; this [line] will be cailtidate in triangle®°

Mengoli did not define the ordinates in the case of “mixed-line” or curved figures through his construc-
tions, but he explained that they are equal to abscissae or powers of abscissae and named them “ordinat:
in form.” The equality between ordinates and the powers of abscissae was expressed by means of pro-
portions as follows:

l:y=(1:x)".

47 3. Sitque data positione; quae dicetur, Basis. 4. Eiusque alterum extremorum punctorum, dicetur, Finis abscissarum. 5. Al-
terum, Finis residuarum. 6. Et ab unoquoque puncto in basi sumpto, usque ad finem abscissarum, quatenus ipsa basis extenditu
guantitas dicetur AbscissMengoli, 1659, 36}

48 Mengoli used the word “ordinata” instead of the word “applicata,” which was commonly used at the time. Descartes defined
the ordinates as “celles qui s’appliquent par ordi@&s$cartes, 1954, §7In the 1954 edition there is the following editorial

note: “The equivalent of ‘ordination application’ was used in the 15th century on translating Apollonius.” The note also states
that Hutton’sMathematical Dictionaryof 1796 gave “applicata” as the word corresponding to the ordinate and explained that
the expression “ordinata applicata” was also used. In fact Fermat and Cavalieri used “applicata.” Me@goblm[1672]

named them “ordinatamente applicat®gngoli, 1672,

49 10. Super basi describatur quadratum: & ab uno quolibet puncto in basi sumpto, recta ducatur, usque ad oppositum latus,
reliquis lateribus quadrati parallela: quae dicetur, Ordinata in quadviodoli, 1659, 368

50 15. Afine abscissarum ducta diameter quadrati, facit semiguadratum triangulum: cuius ab unoquolibet puncto in basi sumpto
recta ducatur, usque ad praedictam diametrum, alteri lateri parallela, quae dicetur, Ordinata in tridaggtmi[ 1659, 368
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2.2. Geometric figures as algebraic expressions

Mengoli described the figures that he wanted to square as “extended by their ordinates.” He called
them “forms” and expressed them by an algebraic expression beginning with FO. He never mentioned the
word “curve”—only the word figure oforma, which dates from the previous century and was identified
by measuring the intensity of a given quality. The word appears in the work of Oresme (1323-1382)
Tractatus de latitudinibus formarum (134&nong other8® A form was any quality that was variable in
nature. The intensity or latitude was measured vertically over a base that measured the longitude, and th
area of the described figure measured the quantity.

Mengoli began with known figures such as the square and the triangle and then progressed to mixed-
line figures. He expressed the square and the triangle algebraically:

12. And the square, extended by its ordinates, is called “Form of all rationals,” and “Form of all totals,”
and it will be represented by the characte®u andFO.r.52

17. And in the same manner the triangle [made] by its ordinates extended will be called “Gomes
abscissa&[Form of all abscissae] and it will be represented by the chardwen.>3

The first mixed-line figure that he defined was determined by one branch of the pasabotd, and the
base.

20. If over the base a [geometric] figure is constructed, not extended more than by ordinates within the
square but in which any ordinate is the “second” abscig®g it will be called “Form of all second abscis-

sae,” and it will be represented by the chara&®@ra?.>*

When he used this definition in demonstrations he explained:
The ratio of the base AR/| to the ordinate by B¥] is “the double” of the ratio AR§] to AB [x].%°

(In modern notation 1y = (1: x)2.) In the same way, he also defined the “Form of all products of
the abscissa and the remainder” and the “Form of all second remainders,” representing them by the
character§0.ar. andFO.r2. The ordinates of the curves corresponding to these figures are given by the
proportions - y = (1:x).(1: (1—x)) and 1: y = (1: (1—x))?, respectively. More generally, he defined

the geometric figure extended by any ordimite.

51 On Oresme se€lagett [1968, 91-92], Lindberg [1978, 231-244ihdCrombie [1980, 82-95]

52 12. Et quadratum, per suas ordinatas extensum, dicetur, Forma omnes rationales, & Forma omnes totae. & significabitur
characteribu§O.u, & FO.r [Mengoli, 1659, 368

53 17. Ipsumque triangulum per suas ordinatas extensum, dicetur, Forma omnes abscissae. & significabitur ch@ractere,
[Mengoli, 1659, 368

54 20. Si super basi concipiatur figura extensa non nisi per ordinatas in quadrato: sed in qua, unaquaelibet ordinata est absciss
secunda, dicetur, Forma omnes abscissae secundae. & significabitur char@ci@eMengoli, 1659, 369

55 Basis AR, ad ordinatam per B, duplicata habet rationem eius, quam habet adehBdgli, 1659, 37P

56 |n his later work Circolo [1672], Mengoli defined the same ordinates as powers of abscissae by means of other proportions
and named them “ordinatamente applicate.” “Et altresi sopra la Rationale s’intendano descritte tre figure, una nella quale le
ordinatamente applicate alla base sono le terze proportionali della tota, e dell'abscissa, ch’io chiamo Abscisse seconde: I'altra
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23. And generalizing, if over the base a figure is constructed, not extended more than by ordinates within
the square, in which any ordinate is considered as some element of the proportional tallig.[dge

[This figure] is called “Form of all possible proportionals” and an appropriate character will represent it.
For instance, “Form of all third abscissa€0.a3, “Form of all products of the second abscissae and the
remaindersbiprimag FO.a?r, “Form of all products of the abscissa and second remainderisgcundage
FO.ar?, “Form of all third remainders,FO.r2, and so or?/

2.3. Triangular tables of geometric figures

After defining the given geometric figures and assigning algebraic expressions to them, Mengoli pro-
ceeded to work with these new algebraic objects. His approach here was deeply original. He used these
new symbols, such d80.a., which he had associated with geometric figures, in algebraic calculations.
Mengoli explained that when these figures [forms] constructed over a base are put in a triangular table as
he had done before, they become a new table which he CElada Formosaor table of “forms” (see
Fig. 3.

The figure at the vertex represented a square of side 1. The two figures of the first row represented two
triangles. The firstFO.a” is determined by the diagonal of the first quadrant x, the axis of abscissae
and the straight line = 1, and the second triangl&O.r” is determined by the straight= 1 — x traced
from the point(1, 0) to the point(0, 1) and the axis of abscissae. The three figures of the third row are
determined by the ordinates of a parabola, the axis of abscissae and the straighkt lin€he first figure,
“FO.a?" is determined by the ordinatgs= x2, the second,FO.ar,” by the ordinatey = x.(1— x), the

FO.u.
FO.a. FO.r.
FO.a’>. FO.ar. FO.r.

FO.a®>. FO.a’r. FO.ar’. FO.r.

Fig. 3. Tabula Formosa.

nella quale le ordinatamente applicate alla base sono le quarte proportionali della tota dell’abscissa, e della residua, ch’io chiamo
Uniprime: la terza nella quale le ordinatamente applicate alla base sono le terze proportionali della tota e della residua, ch’io
chiamo Residue Seconde, ” [Mengoli, 1672, 5 Mengoli also defined the ordinates named “third abscissae” as the fourth
proportional of the “tota,” the abscissa, and the second abscissa. Afterwards, he defined the ordinates called “the products of
the second abscissae and the remainders” again as the third proportional, and in this case he stressed that all the ordinates, “ir
infinity,” could be defined in this way.

57 23. Etgeneraliter, si super basi concipiatur figura, extensa non nisi per ordinatas in quadrato; & in qua, unaquaelibet ordinata,
est assumpta quaedam in tabula proportionalium: dicetur, Forma omnes tales proportionales aptoque significabitur charactere.
Vt Forma omnes abscissae tertig€.a3: Forma omnes biprima€&0.a2r: Forma omnes unisecundd.ar2: Forma omnes

residuae tertiag;O.r3. & sic deincepsi§lengoli, 1659, 36P Note that Mengoli wrote the exponent without a superscript on

the right side of the letter.
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FO. u

FO. a FO. r

FO. a° FO. ar FO. r?

Fig. 4. My own sketches of geometric figures.

third, “FO.r?,” by the ordinatesy = (1 — x)?, and so on in the other row8Below are my sketches of
these geometric figures arranged as a triangular tabld=(ged).

From this table of forms Mengoli derived a second table by multiplying the elements of each row,
term by term, by the corresponding binomial coefficients. He called thi$ahala subquadraturarum
or “Table of subquadratures” (séég. 5).

Mengoli called the first row “of order one,” the second “of order two,” and so on. He then formed
a third table by multiplying each of the rows of the second table by the order of the row plus one: he

58 |n his Circolo Mengoli defined these figureBO.q2 and FO.r2 in this way: “E sono le dud=0.a2, eFO.r2, avanzi
di due semiparabole dal quadrato della Rationale, del quale un lato € l'asse, e l'altro & la semibase della semiparabola
[Mengoli, 1672, .
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1 FO.u.
1 1 FO.a. FO.r.
1 2 1 FO.a*>. FO.2ar. FO.r.

1 3 3 1 FO.a%. FO.3a°r. FO.3ar. FO.P.

Fig. 5. Tabula subquadraturarum.

FO.u.
First base FO.2a. FO.2r.
Second base FO.38°>. FO.6ar. FO.3r

Third base FO.4a®. FO.12a°r. FO.12ar*. FO.4r.

Fig. 6. Tabula quadraturarum.

multiplied the first row by two, the second one by three and so on. He called this new tafkebtiia
quadraturarum or “Table of quadratures” (sd€g. 6).

Mengoli put the forms for the given curves in triangular tables in order to classify them and to work
with them as a group. These expressions could be infinite in number; it is only necessary to increase
the degree and to calculate the coefficients through the laws of formation of the table. The symmetry
of the table and the regularity of its rows allowed Mengoli to generalize the proofs occurring in his
theory.

2.4. Representation and geometrical construction of geometric figures

In the graphical representation of these geometric figures, Mengoli introduced a horizontal axis as a
base, which he called rational. He did not use a vertical axis, and always drew the ordinates as lines per-
pendicular to the base. However, it should be emphasized that there are only three drawings of geometric
figures inGeometriae Speciosae Elemepta

In Mengoli's work the graphical representation of a geometric figure was not so much a sketch as
an accurate description of the curve corresponding to the figure that was informative enough to allow
a sketch to be made. Mengoli did not draw these figures but made clear that their drawings could be
deduced from their definitions and their positions in the triangular table. He considered three groups of
geometric figures: the first, in the outside left diagonal offtabula FormosaFO.a™, the second, in the
opposite diagonal of the tablEQ.r", and the third, in the middle of the tableQ.a™r". For each group
he demonstrated its characteristics for only one specific entry, although he took this demonstration as
true for all the entries on account of the table’s symmetry and the regularity of its rows.

59 In his later work Circolo [1672], in which he calculated the quadrature of the circle, he did not include any drawings.
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In the First Theorem oElementum Sexturhe demonstrated that in all the curves corresponding to
the outside left diagonal of the tabfermosa FO.a™ (determined by = x™; seeFig. 5), the ordinates
increase withu and the maximum ordinate is found at the end of the base and is equal to it.

The demonstration is based on the definition of the ordinates: that is to say=f@r he established
the proportion 1 y = (1: x)2. In the proof, he started from the inequality of the abscissae and from
there he obtained the inequality of the ordinates, through this same proportion. He also showed that all
the curves corresponding to the entries in the opposite diagonal of theR&blé, were determined by
ordinates that were always decreasing.

As for the entries in the middle of the table, in the Second Theorem he demonstrated that in the
curves corresponding ©0.a™r", determined by = x™ - (1 — x)", the ordinates first increase and then
decrease, reaching their maximum value in an abscissa that divides the base AR in the ratibhe
demonstration is given for the curve corresponding@a?r3, where the abscissa B with ABBR =
2 : 3 has the maximum ordinate, A is the end of the abscissae, R is the end of the remainders and D is
any division of the base AR:

A D-----B R.

He proved that the ordinates of the curve increased to this maximum value and then decreased to the
ordinate of the end of the base. We present only an outline of the demonstration. We knaw-that

a = x = abscissar = 1 — x = residua, and we denote by OrdBy the ordinate of the abscissa B,

AR = 1 = base. The following proportions are thus established:

AR:AB=1:x; AR:BR=1:1—x;
AR:OrdB=1:0rdB=(1:y)=(1:x)2(L1: (1 —x))°.

Moreover, taking the abscissa= AD as any division of the base smaller thejand using the lettey;
as the ordinate of this abscissa, we find that

OrdD: AR =0rdD: 1= (y1: 1) = (x: 1)%- (1 — xp) : 1)°,
By operating on and composing the two proportions, it follows that

(OrdD) : (OrdB) = (y1) : (y) = ((x1)? - (1 — x1)*) : ()% (1 — x)°).

Mengoli proved that the antecedent—Ord D—is smaller than the consequent—Ord B—for any ab-
scissa D, and he was thus able to affirm that the ordinate of the abscissa B is a m&imum.

60 For this demonstration he needed to use some results froEiehgentum quinturm which he constructed the logarithm of

aratio. Through the property of the logarithm that the product of the power of a ratio and its logarithm is equal to the logarithm
of the ratio raised to this exponent, he obtained a relation between the ratios and their powers under certain specific conditions
The proposition that Mengoli used is “Given four quantities, disposed arithmetically, if it is verified that the first to the last

is as one number to one number, then the first to the second raised to the number homologous to the first will be bigger than
the third to the fourth raised to the number homologous to the fourth. If it is verified that the second to the third is as one
number to one number, then the first to the second raised to the number homologous to the second will be smaller than the
third to the fourth raised to the number homologous to the thiké&rgoli, 1659, 338 Mengoli applied this theorem to four
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Although some of the underlying ideas of this demonstration involve results about continuous magni-
tudes that we would today regard as part of differential calculus, Mengoli himself understood that he was
using only algebraic procedures, Euclidean proportion theory, and properties of logarithms. We should
also stress that his descriptions of curves belonging to geometric figures depended only on the type of
the corresponding algebraic expressions in accordance with their positions in the triangul®r table.

According toBos [2001, 3—6]in the 17th century a curve was “known” or “given” when one could
construct it starting from given elemertfésMengoli had to ensure that each of the expressions in the
triangular table, which were new algebraic objects, could be associated with a definite geometric curve.
He enunciated this Proposition Three as a Problem and demonstrated how to construct the ordinate to the
curve corresponding to a geometric figure at a given pdint

Probl. I. Prop. 3.
Find the ordinate of a proposed [geometric] figure, at a given point and from a givef’base.

Hypothesis
That is, givenFO.1042r3, over a given base AR, in which is given a point B. It is necessary to find the
ordinate of B%®

Constructiorf®

Given AR, and given AB, BR, the recta BC will be found, to which AR is a ratio composed of given
ratios AR to AB squared, AR to BR cubed, and of the ratio one tenth: and BC will be put perpendicular to
AR. | say BC is the ordinate of B, iFO.10a%3.%7

Demonstration
The ratio AR to BC will be composed of ratios AR to AB squared, AR to BR cubed, and of one tenth;
but AR isu; AB, is a; BR, isr. So the ratio AR to BC will be composed of ratias to a,” squared, # to

guantities [segments], which have the same differences and of which two are in a specific ratio to each other. Mengoli named
them arithmetical ordinates. He considered AD, AB, BR, and RD and proved that they were arithmetically ordinate quantities
since AB—AD =x —x1 =RD—-BR=(1—x1) — (1 —x) =BD, and besides, ABBR = 2: 3. He could then apply the
theorem and set up the inequaliD : AB)2 = (x1: x)% < [(1—x) : (1 — x1)]® = (BR: RD)3. Multiplying the antecedent of

the first ratio by the consequent of the second ratio and vice versa, Mengoli demonstrated that the ordinate by D is smaller than
the ordinate by B.

61 Mengoli defined the curves like Roberval, Fermat, and others by means of a proportion between ordinates and abscissae, but
he could use the same demonstration for any curve of the same type. Information on Roberval may be fougelrjrip62,

18-21; Walker, 1986, 41-44

62 Today the geometrical construction of algebraic expressions of curves presents no difficulty, but in Mengoli's time the
geometrical construction was a very important subject. On this poirBee§l981; 2001]

63 Mengoli here drew one horizontal axis AR and a perpendicular line (not in the middle) with the letter B over the base and
the letter C at the top of the perpendicular line.

64 Formae propositae, in data basi, per datum punctum, ordinatam invistangpli, 1659, 37}

65 Esto proposit&0.10a2r3, super data basi AR, in qua datum punctum B. Oportet per B ordinatam invieigngpli, 1659,

371.

66 Throughout the book Mengoli presented Theorems and Problems. In this case he wrote the word Construction, as Euclid
did, before the demonstration and explained the construction used in it.

67 Data AR, datisque AB, BR, inveniatur recta BC, ad quam AR, rationem habet compositam ex datis rationibus, AR ad AB
duplicata, AR ad BR triplicata, & ex ratione subdecupla: & collocetur BC perpendiculariter ad AR. Dico BC, esse ordinatam
per B, inFO.10az2r3 [Mengoli, 1659, 37}
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r,” cubed, and of one tenth. Butto 10z%-3 will be composed of these: then AR to BC is liketo 10z%3.
But AR isu, so BC is 1@2r3: then BC is the ordinate of B, iRO.10a%r3.68

Note here that Mengoli not only worked with proportions of segments but also equated segments with the
letters of the triangular table. He equated the product of segments with the composition of ratios because
he was familiar with the Euclidean theory of proportions. However, unlike Descartes, he did not define
an algebra of segments. Rather, he demonstrated, for a given measure, how to construct the ordinate frol
the algebraic form corresponding to a curve using the composition of ratios. In this way, he established
an isomorphic relation between algebraic objects and geometric figures that allowed him to study these
geometric figures by their algebraic expressions.

2.5. Calculation of quadratures

Mengoli was able to compute quadratures using Cavalieri's method of indivisibles, but he was keen
to find another way to verify the values so obtained. Using Viéte's symbolic language he created new
algebraic expressions and constructed triangular tables and a theory of “quasi proportions.” Notice that
the Euclidean theory of proportions is very important in ElementaMengoli considered EuclidEl-
ementsas the book of mathematigar excellencend developed his own theories, the theory of “quasi
proportions” and the theory of logarithmic ratios, using as a model the Euclidean theory of propor-
tions 59

In order to understand how Mengoli proved the given quadrature results, we consider the basic ideas of
the theory of “quasi proportions.” He set up this theory on the notion of “ratio quasi a number,” which he
clarified thoroughly. He considered values up to 10 in the r@tie to 2; for instance, ift = 3, then the
ratio O.a tor?is 3to 9; ifr = 4, then the ratio is 6 to 16; if=5, then the ratio is 10 to 25; ... if= 10,
then the ratio is 45 to 100. He argued that the ratio takes different values as the valinerebseg’®
Moreover, these values are eventually nearer/than is any other given ratio. Mengoli called it “ratio
quasi ¥2.” The difference between/2 and the ratio, which is determined when the valueiotreases
indefinitely, is smaller than the difference betweet2 and any other given ratio. The “limit” of this
succession of ratios, as far as it is thus determinable/dsdnd Mengoli uses the term “ratio quagkl
to denote this limit. The idea of “ratio quasi a number” suggests, though in a somewhat imprecise way,
the modern concept of limit:

This notion, together with the idea of determinable indeterminate ratio previously explained, was used
in the definitions of ratio “quasi infinite,” “quasi null,” “quasi equality,” and “quasi a number” in the
Elementum tertium

68 Ratio AR ad BC, componitur ex rationibus AR ad AB duplicata, AR ad BR triplicata, & ex subdecupla: sed ARASst

esta; BR estr: Ergo AR ad BC ratio, componitur ex rationibusad a duplicata,u adr triplicata, & ex subdecupla: sed ex

ijsdem componitur ad 1&2r3: ergo AR ad BC est ut ad 1&:2r3: sed AR esk:: ergo BC est 1682r3: ergo BC est ordinata

per B, inFO.10a2r3. Quod&c Mengoli, 1659, 378

69 A knowledge of algebraic language enabled Mengoli to extend the Euclidean theory of proportions and create new theories.
On the importance of Mengoli’s work on the Euclidean theory of proportionsMasda, 2003, 472-474

70 On these explanations sdddssa, 1997, 269—2F0

1 In his Circolo of [1672], Mengoli again uses quasi ratios and explains: “Dissi quasi, e volsi dire, che vadino accostandosi ad
essere precisamente talMgngoli, 1672, 4R
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1. A determinable indeterminate ratio, which, when determined, can be greater than any given ratio, as far
as is thus determinable, will be called quasi infirfte.

2. And one that can be smaller than any given ratio, as far as it is thus determinable, will be called quasi
null.

3. And one that can be smaller than any given ratio greater than equality, and greater than any given ratio
smaller than equality, as far as it is thus determinable, will be called quasi equality. Or otherwise, that

which can be nearer to equality than any given ratio not equal to equality, as far as it is thus determinable,
will be called quasi equality.

4. And one that can be smaller than any ratio larger than a given ratio, and larger than any ratio smaller
than the same given ratio, as far as it is thus determinable, will be called quasi equal to this given ratio. Or
otherwise one that can be nearer to any given ratio than any other ratio not equal to it, as far as it is thus
determinable, will be called quasi equal to the same (given) ratio.

5. And the terms of ratios quasi equal between them will be called quasi proportional.

6. And (the terms) of quasi equality ratios will be called quasi e§tial.

The sixth definition in light of the third definition can be read as follows: “And the terms of ratios that are
nearer to equality than any other given ratio other than equality, as far as these ratios are determinable,
will be called quasi equal.” In calculating quadratures Mengoli used this interpretation of the definition
of quasi equality ratio. In fact, he considered a “maior inaequalitas™fadiod proved that he could find
a number that allowed him to set up a ratio smaller than the given “maior inaequalitas” ratio.

Following the presentation of these six definitions Mengoli obtained ratios between all sorts of sum-
mations and the number (Recall that these are all constructed usirand that these summations have
t — 1 addends with different exponents.) He calculated what these ratios tend towardig/kery large,
obtaining in this way all possible quasi ratios. Specifically, in Theorem 42, Mengoli demonstrated that

a=t—1

m+n m AN
(m+n+l).< . ).Za (t—a)

a=1

2 To clarify the notion of “ratio quasi infinite” Mengoli considered values up to 10 in the Ktioto ¢; for instance, ift = 4,

then the ratio is 6 to 4; if = 7 then the ratio is 21 to 7; f= 10 then the ratio is 45 to 10. He argued that the ratio takes greater

and greater values as the value d@ficreases, so the ratio is quasi infinite. For the ratio quasi null he considered values up to 10

in the ratio0.a to 3 [Mengoli, 1659, 64—6p

73 1. Ratio indeterminata determinabilis, quae in determinari, potest esse maior, quam data, quaelibet, quatenus ita deter-
minabilis, dicetur, Quasi infinita. 2. Et quae potest esse minor, quam data quaelibet, quatenus ita determinabilis, dicetur, Quasi
nulla. 3. Et quae potest esse minor, quam data quaelibet minor inaequalitas; & maior, quam data quaelibet minor inaequalitas,
quatenus ita determinabilis, dicetur, Quasi aequalitas. Vel aliter, quae potest esse propior aequalitati, quam data quaelibet non
aequalitas, quatenus talis, dicetur, Quasi aequalitas. 4. Et quae potest esse minor, quam data quaelibet non maior, proposit:
guadam ratione; & maior, quam data quaelibet minor, proposita eddem ratione, quatenus ita determinabilis, dicetur, Quasi ea-
dem ratio. Vel aliter, quae potest esse propior cuidam propositae rationi, quam data quaelibet alia non eadem, quatenus talis,
dicetur, Quasi eadem. 5. Et rationum quasi earundem inter se, termini dicentur, Quasi proportionales. 6. Et quasi aequalitatum,
dicentur, Quasi aequalel!gngoli, 1659, 9Y.

74 The inaequalitasof a ratio denotes a number other than unity, and so ratio®r inaequalitasand maior inaequalitas
correspond to numbers smaller and larger than unity, respectively.
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FO.u.
FO.2a. FO.2r.
FO.3a>. FO.6ar. FO.37
FO.4a°. FO.12a°r. FO.12ar*. FO.4r

Fig. 7. Tabula quadraturarum.

tends tor”+"+1 whent tends to infinity, in the sense that their ratio can be made arbitrarily close to
equality by making sufficiently large’® He based this demonstration on Theorem 22 and on another
theorem that he had previously demonstrated, which established that smaller powers could be ignored a
t increases. In Theorem 22 Bfementum Secundune had proved that

m+n ‘& m n __ m+n+1 K
(m+n+D< n).g;a(hm)—t — P(r).

Then, in Theorem 41 dElementum Tertiurhe demonstrated the quasi equality ratio
"1 s quasi equal to”" "t — P ().

It follows that the left side of the equation given in Theorem 22 is quasi equal to the first term of Theo-
rem 41:

a=t—1

) Y a".(t—a)" isquasiequal to" "t

a=1

[m+n+u<m+”
n
This result is used in the calculation of the quadratures, as we explain further below.
We return now to Mengoli’s treatment of the quadratures of the curves defined by the equations
x™ . (1—x)". These quadratures are given in terms of the entries ifiahala quadraturarungFig. 7).
In this table the quadrature of=x" - (1 — x)" is multiplied by the productm + n + 1).("+").”

n

Mengoli knew by the method of indivisibles that the quadrature is equal to the inverse of this product:

1

/xm.(l—x)" dx =

0

1
e t D)

75 On this subject sellassa [1997, 271-275]

76 Mengoli knew that one factor, the binomial coefficient, corresponded to the coefficient of the binomial development of
[x 4+ (1 —x)"*t" = [1]"+" and the other factor could be found through the relation between the summation of powers and the
degree. For instance, if we wish to calculate the quadrature of Eve? - (1 — x)30, it will be necessary to multiply by 56

and by the binomial coefficier(3).
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Fig. 8. Mengoli’s figure in Proposition 4.

Hence each entry in the table of quadratures has the value one. Thus, all that remained was to prove that
each entry is equal in area to a square of side 1 (in the limitesds to infinity). In modern notation,

1
(m+n+1).(m+n)./x’".(1—x)”dx =1
n
0

To demonstrate this result Mengoli used the theory of quasi proportions. He considered two ratios:
the first one, between a new figure (the “ascribed” figure) and the figure or form which he wanted to
square, and a second one, involving this “ascribed” figure and a square of itke Ehowed that these
two ratios are quasi equality ratios and then used a theorem that he had previously demonstrated, which
showed that in quasi equality ratios with the same antecedents, the consequents of the ratios are alsc
equal.

For the first quasi equality ratio he used Archimedes’ definitions of inscribed and circumscribed fig-
ures. The inscribed figure is determined by all the greater rectangles included in the figure and the
circumscribed figure is determined by all the smaller rectangles containing the fgline. ascribed
figure is determined by all the rectangles built over the ordinates of the divisions of the base. So, the
ascribed figure is determined by- 1 rectangles when one divides the base [rarts.

33. The figures composed of just as many rectangles, as there are ordinates through the points of division
and adjacent lines to these ordinates, will be called “ascribed” of the fdrm.

To get a sense of this, consider the geometric figures of the outside left diagonal of thEotabbsa
FO.a™ (seeFig. 8).

The inscribed figure is determined by the rectangles DE and BF; the circumscribed figure is determined
by the rectangles AE, CF, and DG, and finally, the ascribed figure is determined by AE and CF or by DE
and BF. In this case Mengoli demonstrated that the circumscribed figure is larger than the ascribed or
inscribed figure by a rectangular quantity determined by the maximum ordinate and one of the equal
parts of the base (Proposition 4).

77 For these demonstrations Mengoli used the definitions fElementum tertiunof quasi equality.

78 The circumscribed and inscribed figures were already known and used for instance by Luca Valerio, James\Ga&sgory [
1996, 83, Fermat, and later by Newton and others.

79 33, Figura vero ex tot parallelogrammis, quot sunt ordinatae per puncta divisionum, & ad ipsas ordinatas iacentibus com-
posita, dicetur, Adscripta forma#lgngoli, 1659, 371
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Fig. 9. Mengoli’s figure in Proposition 5.

In the preceding example the inscribed and ascribed figures are identical. This will be true for any
curve that is monotonically increasing. In general, the composite rectangles that make up the ascribec
figure are sometimes smaller and sometimes larger than the associated curvilinear area elements of tt
figure. Hence in general the ascribed figure is larger than the inscribed figure. Such is the case for the
entries in the middle of the tabormosa FO.a™r" (seeFig. 9).

The inscribed figure is determined by the rectangles HD, IE, and EM; the circumscribed figure is de-
termined by the rectangles AH, Cl, DK, ELF, and MB; the ascribed figure is determined by the rectangles
AH, CI, DK, and EM or by the rectangles HD, IE, KF, and MB.

In this second example Mengoli demonstrated that the circumscribed figure is larger than the ascribed
figure by a rectangular quantity (the area of the rectangle determined by the maximum ordinate and
one of the equal parts of the base). He also proved that the ascribed figure is larger than the inscribec
figure, but the difference in size is not greater than this rectangular quantity (Proposition 5). Immediately,
using the theory of quasi proportions (Proposition 6), Mengoli proved for any figures in the table that the
circumscribed and inscribed figures are “quasi equal.” That is to say, he demonstrated that it is possible
to find a number of divisions of the base so that the ratio between the circumscribed and the inscribed
figures is nearer to equality than is any other given ratio (not equal to equality). With this result he
was able to affirm that the ascribed figure, determined by rectangles, and the geometric figure or form,
determined by ordinates, were quasi equal (Propositiéf Rptice that Mengoli's ascribed, inscribed,
and circumscribed figures are explicitly determined by a finite number of rectangles.

This demonstration follows Archimedes but uses the quasi-ratio method ratheethatio ad ab-
surdam Another difference is that in Archimedes the figure between the inscribed and circumscribed
figures is used directly, whereas Mengoli introduced a new figure, the ascribed figure, determined by a
finite number of rectangles. The number of rectangles making up the ascribed figure will increase indefi-
nitely. The rectangles of the ascribed figure never actually become the ordinates of the curved figure, anc
the geometric figure exists independently of the existence of the successive ascribed figures. Mengol
needed the ascribed figure, determined byl rectangles, to establish the proportion involving the ratio
of the square of side 1 to the ascribed figure and the ratio of one poweload summation of — 1
powers.

In fact, like Newton in Lemma Il of th€rincipia [Newton, 1972, 73—-74Mengoli might have stated
that the ratios between the curvilinear, the inscribed and the circumscribed figures are ratios of equal-
ity. But it is evident that he needed the ascribed figure to be able to establish ratios with finite terms.
For Mengoli the ascribed figure is a tool to clarify the nature of the curved figure, and furthermore to
demonstrate in a general way results about the quasi ratio and the value of the quadrature.

80 He used Proposition 67 &lementum quintupwhich established ratios of quasi equality between two magnitudes that are
situated between two quasi equals.
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Fig. 10. Mengoli’s figure in Proposition 8.

For the second quasi equality ratio involving the ascribed figure and the square of side 1, Mengoli
used the ascribed figure that corresponds to the equatief™™).(m + n + 1).x".(1 — x)". He first
established a proportion involving the ratio of the square of side 1 and the ascribed figure, and the ratio
of a power ofr to a summation of powers:

Square(Side ) ¢ttt
Ascribed figure” (") (n+n+1) Y= tam.(t —a)r

a=1

He then applied the theory of quasi proportions to this proportion. He supposed implicitly that the pro-
portion continues to hold when the number of rectangles on the left side is infinite and the number of
addends on the right side is infinite. Since he knew from the theory of quasi proportions that the second
ratio is a quasi equality ratio, it follows that the first ratio involving the square and the ascribed figure is
also a quasi equality ratio.

We now look in more detail at this demonstration, which Mengoli gave in Proposition 8 for the curve
corresponding to the expressif®.10q°3 from the fifth row of the table of subquadratures, or, alter-
natively the expressioRO.6 - 102?73 from the fifth row of the table of quadratures (3&ig. 10. (As
we noted above, the proof can be generalized to any entry in these tables.) He divided the base of the
square iry parts and on these constructed the ordinates of the curved figure and of the square. He also
constructed the rectangles of the ascribed figure and of the square of side 1. First, he established a pro-
portion for each rectangle of the ascribed figure and of the square. Notice that as each rectangle has the
same base, for each division the ratio of rectangles is the same as the ratio of ordinates. That is,

Rectangle of the square (AQ): rectangle of the ascribed fighike = DQ : DK
DQ = ordinate of the squareDK = ordinate of the figure

But the ordinate of the square is equal to the base of the square. He could then apply the proportion
between the base of the square, that is, one, and the ordinate of the geometric figure.
In the case of the first element of the division we have

DQ:DK = (1:10)- (1: (1/0)*- (1: A —1/0))>=1:[10- 1% (¢ — 1)?]/15=1°:10- 1% (1 — 1)°.
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But rectangle (square} AQ and rectangle (ascribee) AK, so that
AQ:AK =DQ:DK =7°:10-1?- (+ — 1),
AQ:AK =°:10-1%- (t — 1)3.
In the case of the second element of the division we have rectangle (squear@ngle (ascribeds 1:
[10-22. (t — 2)%]/t5=15:10- 22(r — 2)3, or
DR:DL =7°:10-2%(r — 2)3,

and so on.

On the one side, Mengoli added all the rectangles in the antecedectangles to obtain the square,
and added all the — 1 rectangles in the consequent to obtain the ascribed figure. On the other side, in
the antecedent, adding he obtained®, and in the consequent he obtained a finite sum. This yielded

FO.u B 1
AscribedFO.10a2r3 ~ 10,397\ 1 42.(t — a)3’

Mengoli then, in Proposition 10, stated that “All quadratures on the same base are equal to eath other”
and used in the demonstration the preceding proportion with both consequents multiplied by 6; that is,

FO.u 18

AscribedFO.6- 10.a%r3 6-10. szl—laz'(t —a)?

Because the second ratio is a quasi equality (Theorem 42), the first ratio, involving the square of side 1
and the ascribed figure, is also a quasi equality ratio. Notice that the justification of this proportion is
based on the identification of the algebraic expression and the geometric figure by means of a proportior
between segments and quantities.

Following Antoni Malet’s interpretationMalet, 1996, 68—7]1 the proportion derived by Mengoli
may be regarded as an attempt to justify the result obtained by Cavalieri’s method of indivisibles. This
proportion can be interpreted as equating a ratio between finite sums of ordinates to a ratio betweer
figures. Mengoli could then apply the quasi proportions, and thus did not have to establish proportions
between infinity as Cavalieri did, because he established finite ratios which “tend” to other ratios, that is
to say, quasi ratios.

One of the weak points of this demonstration is the step from a ratio of quasi equality between sum-
mation of powers and powers (numbers) to a ratio between figures. But Mengoli had based the theory of
guasi proportions on the Euclidean theory of proportions, so for him the former theory was valid for any
magnitude, figure, or number. It should be emphasized that this demonstration does not depend on th
degree and can be used in all cases where the quasi ratio of the summation of powers is known.

As we have noted above, after 1650 through the influence of Viete and above all Descartes, alge-
braic methods became increasingly accepted in geometry. Other mathematicians of the period—such a

81 Theor. 6. Prop. 10. Omnes quadraturae super eadem basi constitutae, sunt inter se Aéegddis 1659, 38
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Fermat, Gilles Personne de Roberval (1602-1675), John Wallis (1616—1703), and Blaise Pascal (1623—
1662)—also used these methods, in various different ways. They aimed, among other things, to calculate
the result that today would be written lif=F" = ﬁ for ¢ tending to infinity. This would have al-

tp+1
lowed them to square the parabolas: x?, for p any positive integef? It is obvious that Mengoli, like
Roberval and Wallis, knew the result to bé;l But the latter authors carried out the summations of
powers and verified the resulting values only in a few cases. From these results they inferred the general
rule and then applied it directly to the quadrature problem by taking limits of ratios between sums of
ordinates and areas under curves. Mengoli, on the other hand, constructed the theory of quasi proportions
to handle these limits, and moreover to provide a demonstration for the results that were so obtained.
He did not apply the theory directly to mixed-line figures but made an intermediate step and used the
ascribed figure, which is determined by a finite humber of rectangles. Another difference is that Men-
goli’'s contemporaries determined the areas under the curves case by case whereas he obtained countles
qguadratures at once.

3. Concluding remarks

Mengoli, like Viéte, considered his algebra as a technique in which symbols are used to represent
abstract magnitudes. He dealt with species, forms, triangular tables, quasi ratios, and logarithmic ratios.
But the most innovative aspect of his work was his use of letters to work directly with the algebraic
expression of the geometric figure. On the one hand, he expressed a figure by an algebraic expression
in which the ordinate of the curve that determines the figure is related to the abscissa by means of a
proportion, thus establishing the Euclidean theory of proportions as a link between algebra and geometry.
On the other hand, he showed how the algebraic expression could be used to construct geometrically the
ordinate at any given point. This allowed him to study geometric figures via their algebraic expressions
and to derive the known values for the areas of a large class of curves at once.

The triangular table of quadratures that Mengoli constructdgléementum sextugould be extended
indefinitely. He knew the values of these quadratures and looked for a rule that allowed him to associate
any geometric figure to an algebraic expression. Putting these expressions in the table with the appro-
priate coefficients, the quadratures of the new curves were given. He classified the figures by the curves
that determine them in three types and studied the properties of each group, again using the theory of
proportions. When he demonstrated a given quadrature result, the proof was independent of the graph-
ical representation of the geometric figure and could be used in all cases where the quasi ratio of the
summation of powers was known.

It seems unlikely that Mengoli was familiar with Descart€@2ométrie In terms of both aims and
methods the differences between the two were substantial. Mengoli introduced algebra into geometry to
solve problems of quadratures; Descartes wanted to solve and classify geometrical problems and he usec
algebra as a tool. Mengoli did not produce an algebra of segments, as Descartes did; that is to say, he
did not give a geometrical interpretation of each of the algebraic operations that he defined. Furthermore,
when he demonstrated an algebraic identity suctuas b)? = a? + 2ab + b, he developed the proof

82 |nformation on these subject may be found in the following sources: on Fermatiasemey [1973, 230Jon Roberval see
Auger [1962, 18—-21hndWalker [1986, 41-44]on Wallis [1972, 365—-392]and on Pascal sdgoyer [1943, 240pndPascal
[1954, 171]
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using the properties of proportions. His introduction of algebra into geometry bore more similarities with
Viete’s procedures. Viéte also used the theory of proportions as a link, but he produced diagrams without
using coordinates systems and he verified the constructions of the solutions of second-degree equatior
without assuming any connection between the ordinates and the abscissae.

When the relation between the ordinates and abscissae in a geometric curve is mentioned, we immedi
ately think of Fermat and hiitroduction to plane and solid lo@f early 1636. Although Mengoli may
have drawn his inspiration from Fermat, he only established this relation for certain geometric curves
such asy =k -x™ - (t — x)"; he did not claim to have found a general principle, as Fermat did in his
Isagoge[Fermat, 1891-1922, Book 1 PMengoli did not deal with solid problems, nor with problems
of geometric loci, as had Fermat; what is more, his algebraic method cannot be applied to solve these
other geometric problems.

Although Mengoli’'s contributions were a step forward in the process of algebraization of mathematics,
his principal aim was not to demonstrate the equivalence of algebraic expressions and geometric figures
but rather to develop a new and fruitful algebraic method for solving quadrature problems. One should
not forget that Mengoli wished to square the circle by interpolating these tables of quadratures. This
investigation appeared in his later publicati@incolo [1672]in which he studied quadratures of curves
determined by equations today representegfas- k - x™ - (1 — x)". Mengoli emphasized that these
guadratures had never been found before. Indeed, any attempt to calculate quadratures geometricall
would have to be done case by case.

Our study of Mengoli’'s work reveals that the basis of his new method of quadratures was not Cava-
lieri's method of indivisibles, but the triangular tables and the theory of quasi proportions, set out as a
development of Viete's algebra. In this way he created a numerical theory of summations of powers and
products of powers anliinits of these summations which was unrelated to Cavali@iisnes lineaelt
is not clear why Mengoli did not follow his master's path; perhaps it was because Cavalieri’s method
had received a great deal of criticism, a fact that Mengoli could not ignore. After showing that he was
familiar with the method of indivisibles and could apply this method, Mengoli claimed that his purpose
was to give solid foundations for a new method of calculating quadratures. To this end he constructed the
triangular tables of geometric figures and applied the theory of quasi proportions. Unlike Cavalieri, he
never compared two figures through the comparison of lines, nor did he superimpose figures; rather, he
established quasi ratios between geometric figures. But what does it mean to say that a geometric figur
is quasi equal to another? Mengoli defined the ascribed, inscribed and circumscribed figures determinec
by rectangles built on the divisions of the base. He worked at all times with a finite number of divisions.
He demonstrated that for any given ratio it is always possible to find a number of divisions of the base
so that the ratio between the circumscribed and inscribed figures is nearer to equality than is the given
ratio. He also demonstrated that as the number of divisions increases the ascribed figure is quasi equal t
the mixed-line figure determined by the ordinates; that is to say, a geometric figure determined by rec-
tangles approximates to a mixed-line figure arbitrarily closely when the number of rectangles increases
indefinitely. To an extent, this first quasi equality recalls Archimedes’ method.

Mengoli also established a second quasi equality using algebraic procedures. He established a propoil
tion in which the first ratio is between a summation of powers and a power and the second between a uni
square and the ascribed figure. The step from the geometric figure to its algebraic expression is essentic
in his demonstration. The Euclidean theory of proportions is once again the link between figure and ex-
pression. It allowed him to operate with segments and to establish ratios and quasi ratios to determine the
guadratures of these curves.
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The use of the two quasi equalities (the ascribed figure and the square as well as the ascribed and
the mixed-line figure) allows us to understand better Mengoli’s words when he states that his geometry
is a “perfect conjunction” of the geometry of indivisibles, the geometry of Archimedes (method of ex-
haustion) and the algebra of Viéte. Algebraic and geometric methods complement each other, allowing
one to obtain new and better results. Mengoli developed Viete's symbolic language using his triangular
tables and quasi proportions, thereby arriving at an original theory to investigate geometric figures and to
determine their quadratures.
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