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Let {Zt} be an increasing Markov process on hi" and Icr(k)Y the corresponding sequence of 
jump times. Let the increments of Z~ be i.i.d, with finite expectation and covariances, and let 

Z - l  
E(cr(k + 1 ) -  cr(k)lZo, Z,~,I),. . . ,  Z , ~ k ) ) = ( h ( ~ f ( l ~ , k , ] )  ~ , . , h ,  Z \ \l/,,(k)ll / ' 

Z " where h and f are sufficiently smooth positive functions and I ,I=~j=~Z,(J), Zt = 
(Zr(l)  . . . . .  Z~(n)). While a linear f results in asymptofcally exponential growth, a suitable class 
of sublinear f leads to a growth asymptotically at most that of a power. Covering both case.~, we 
obtain analoga of the strong LLN, the CLT and the LIL. 

AMS (1970) Subject Class.: Primary 60J25; Secondary 60F05, 60F15 

birth process * almost sure convergence * multitype process * central limit theorem 
• cooperation * law of iterated logarithm * exponen.'ial growth * subexponential growth 

1. Introduction 

We prove limit theorems for a Markovian multi-type birth process with identically 
distributed offsprings in which the occurrence of births is in a general way state- 
dep~ndent, admitting cooperation of particles in the production of new particles as 
well as nonexponential asymptotic growth. Both these features appear to be more 
realistic than the independent branching ano asymptotically exponential growth in 
ordinary branching models. The problem of cooperation in Markovian multi-type 
processes, in case of discrete time has beeo treated by Kesten [6, 7, 8]. He has 
given stability results for the type, distribution and strong laws for asymptotic 
behaviour (cf. his references for further deternainistiic or stochastic models consider- 
ing sex interaction). Limit theorems for Markovian birth and death processes with 
state-dependent transition probabilities, admitting nonexponential growth, have 
been studied by Barbour [5] whose proofs are based essentially on the property of 
'skip free upwards'. Our starting point has been the two-type model with exponential 
growth studied by Asmussen [3]. The methods of pr:-,ofs correspond to those of 
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ordinary one-dimensional Markov branching processes (Athreya and Karlin [4]). 
We obtain the statements about asTmptotic growth of the Markov process by 
studying the limiting behaviour of the embedded Markov chain and the split time 
process. 

2. Definition of the model 

Let {Z, t ~ R +} be an increasing Markov process on N" with jump times or(k) < 
o'(k + 1 ), rk e N, such that the increments 

ak = Z,.~k,-- Z,.,k--i, 

are i.i.d, with expectation # # 0 and finite covariance matrix C. Then the conditional 
distribution of 

8k = or(k+ 1 ) - o r ( k )  

given Zo,  Z,,.,,~ . . . .  , Z,,~k~ is exponential  with parameter  ~k, 

a~' = E(SkIZ,,, Z,,,,, . . . . .  Z.,,k~), 

and the {'~k'~k } are independent .  In the case of independent  branching with intensities 
a ( j ) ,  j = 1 . . . . .  n, we simply have 

tl 

ak = Z A( j )Zo-~k , ( j ) ,  
l=l  

Z, = (Z,(1) . . . . .  Z,(n)) .  Here  we admit cooperation of ?articles in the production 
of new particles by assuming 

~ = h(Z, , ,k~)f(JZ, ,(k)[) ,  

where 

2 ,= l ,  llZ,,I, Ixl = ,~ xIi), x = ( x ( l ) , . . . ,  x(,1))~R", 
i = 1  

h and f positive functions. More precisely, we assume throughout  that 

h , lx )>0 ,  . ~ ( 0 , 1 ) " .  

and for some c < oo and 0 < p -<- 1 

I l h ( x ) - h ( y ) ] l < ~ c l l x - y l l  p, x, y ~ ( O ,  1)" 

where [1" II denotes  the usual norm in 12. Note that txt, x e •", as defined above is 
not a norm, lxl c R. 
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Concerning f we distinguish two cases: 

315 

Model 1" f(x)  = x. 

Examples 

(a) Ak = A min Z,,,k)(i), A > O, 

12 

(b) Ak = ~'. A(i)Z~tk)(i), A(i)~>0. 
i=1  

l~I tl 
(c) Ak=A Z,,,k)(i) t~"~, A>0, /3 ( i )~>0 ,  ~ /3 ( i )=1 .  

i=1  i=1  

Model  1 is a direct extension of Asmussen [3] who t reated the case n = 2, [Ak[ = 1; 
the case n = 2 being the one of most importance for model l ing the growth of two-sex 
populations. On the o ther  hand, it is useful to regard the case of n > 2 -  e.g., one 
can imagine different types of females and males (fertilities) who influence the 

growth rate of the process. Certainly, this is not a model  for populations whose 
characteristics are hereditary as we have assumed identical offspring distributions. 

Model 2: f(x) is positive for all x >  0 and, for x >1 x,, sufficiently large, f (x)  is 
increasing in such a way that, for some c ~ 1~ + and all y > 0, 

1 <~ f (x  + y ) / f ( x )  <~ (x + cy) /x  

and g(x) f (x ) /x  is uniformly bounded,  where  

g(x) =A-1 f(~')-1 dr, ,~ = h ( ~ / l ~ l ) l ~ l ,  
I 

Examples.  Replace Z,,,k,(i) in (a) and (b) by z-~ Z,,ck,(i), ,~c(0,  1]. Assume in (c) 
V!' ,-.,=l fl(i)< I. 

Next we shall prove a sufficient conditio~ for the second assumption on f. 

Proposition. I f f ( x )  > 0, and there is c ~ [0, 1) such that for y > 0, x 1> xo 

1 <~f(x+ y ) / f ( x )  <~ (x + cy) /x  

then g(x ) f (x ) /x  is uniformly bounded. 
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Proof.  For y > 0, x I> xo, 

g(x + y)f(x + y)/(x + y) <~ g(x)f(x)x-~(x + cy)(x + y)-l 

• (1 +g(x)-nA -t f ( r )  -u 

<~ g(x)f(x)x-~(x + cy)(x + y)-~ + y/ ,~x. 

Hence, g(x)f(x) /x  is a decreasing function once it is above l / A ( 1 - c ) .  As c < 1 it 
must be a bounded function. 

Pure birth processes Z, with increasing functions f ( j ) =  E(~j) -l, f ( j ) ~ ,  have 
been treated by Waugh [10]. {~5i,/'c r~} were allowed to be dependent. He distin- 
guished three cases: see Table 1. 

Table 1 

f(j)-~ ~ (Si-/(j) -~ 
i=1 j = l  

/q convergent convergent (a.s.) 
H~ divergent convergent (a.s.) 
Ha divergent divergent (a.s.) 

Processes of class H,., Ha have no explosive growth. Our models contain pure 
birth processes as special cases. They belong to H,., Ha as f(x) = O(x)./.~ and h(x) 
bounded establishes non-explosive growth also in the general case, i.e.. or(n)--* c~ 
a.s. While in case He Waugh has proved a general connection between the growth 
of ,.,j~l f(J)-i and Z, he obtained some results for asymptotic behaviour of Z, in 

rl 

H,j only if a law of iterated logarithm for Y-j=l ~Si-f(J) -~ was valid. Waugh [11] 
and Lenz [9] have confined themselves to type He when they proved strong laws 
of large numbers for some special Markov processes with denumerable state space 
and nonlinear intensity function f(~) = Aj '~, ½ < a <- 1. 

For Model 1 and 2 we shall prove strong laws of large numbers. While the first 
will result in asymptotically exponential g rowth-as  did ordinary independent 
branching-  the assumption of the second model will lead to a growth asymptotically 
at most that of a power of t. If the function f(x) is only slightly different from a 
power of x we obtain analoga of the central limit theorem and the law of iterated 
logarithm. 

3. Almost  sure limiting behaviour 

Since the only difference between Model 1 and the multitype Markov branching 
processes (which have the same offspring distributions for all types) is the dependence 
of ,5~ on a more general function h(Z,,~kd one would expect the type distribution 
to stabilize and the population size to grow exponentially. The situation in Model 
2 should be similar except for slower growth. 
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Theorem 1. Under the conditions of Model 1, Zo # O, there exists a random variable 
W such that 0 < W < oo and, as t -~ oo, 

Z , :  z+o(1)  a.s., 

]Z,I = W e ^ t + o ( e  ~') a.s., 

where z = ~/1~1 a n d  ~ = h ( z ) l t ,  I, white under the conditions of Model 2 

Z, = z + o ( 1 )  a.s., 

Iz, I-- w(t)(l+o(1)) a.s. 

where w( t) is the inverse function of 

g(t)  =,~ -1 f(r)  -~ dr. 
I 

Proof.  Let M = I~1. As .:,,,k~ =/,,+Ejk=, aj is a sum of i.i.d, random variables we 
can use the law of i terated logarithm and obtain 

]Z, . (kd=Mk+o(k' /2~') ,  Z , .k )=z+o(k-~/2*~) ,  (3.1) 

and thus Z~ = z + o(1). 

To get the rate of growth write 

k ,t: 

o - ( k + l ) =  Y. ( ~ , - A } - ' ) +  V ,~)-, (3.2) 
j = o  j - o  

In case of Model 1 we can argue similarly to [3] and obtain 

a(k  + 1) -- logl/ , .k~[-log W + o ( 1 )  (3.3) 

which implies the first s tatement of the theorem. 

Only the conditional means Ak I are different in Model  2, and they affect only 
the split times or(k). By (3.1) and the properties of f 

f(IZ,,(j,I)/f(Mj) = 1 + o (  j - '  2+~), 

and 

Thus, 

and as 

,~;' = ( h ( z ) / ( M j ) ) - '  +, , ( j - ' " '1"  .... ' ) / f (Mj ) .  

( A-[' ~ h ( z ) ( f ( M k ) + m a x { f ( x ) l x < ~ x o I ) k - ' ( l + o ( l ) ) ,  
j = l  

.X5 3(; 

Y~ ( ~ j - A T ' ) f ( M j ) j - ' =  Y. ( S jA j -1 ) j - ' ( h ( z ) - '+o (1 ) )  
j=l j=l 

(3.4) 
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converges, Kronecker's lemma implies that 

,=~,~- ' )  ~ , ~ , 8 , - A ~ - ' - - * 0  a.s. 

Combining this with (3.2) and (3.4), 

or(k+ 1)= ( ~ .  h ( z ) f ( M j ) - ' ) ( l + o ( 1 ) ) ,  
j =0  

where we can replace the summation by integration because g is a divergent function. 
Hence, 

or(k+ 1) =g(Mk) (1  +o(1))  =g(lZ,,tk~[(1 +o(1)))(1 + o(1)), 

and, by or(k + I ) - or(k) = 8k = o( f (Mk)  -j log k), 

t = g(IZ, l(l + o( 1 )))(t  ÷ oil )). 

Therefore, the theorem will be proved if we can show that for every zero convergent 
function y(t) = o(1) the function ~(t) with g(t)(1 + y(t)) = g(t(1 + 33(0)) converges 
to zero, too. y(t) 1> 0 is equivalent to "~(t) i> 0 and by monotonicity 

~'ltt~(t)/f(t)a II, ~(t)  ~ 0, 
[Ig(t(l + ~,(t)))-g(t)ll >~ [t~(t) / f ( t )(1 +c~(t))A, ~(t)~>0. 

As gl t ) f ( t ) / t  is bounded the inequalities imply "~(t)= o(1). Hence, we can write 

t=g(IZ,  l(1 +o(1))) .  (3.5) 

We get the last statement of the theorem by inversion. 

4. Finer limit t~eorems 

To get more precise results on the limiting behaviour of Z, - z and IZ, I -  w(t) we 
need more regularity for h and f. We assume in addition that h is differentiable at 
z and can be expanded in the form 

hix) = h(z) + (x - z ) .  grad h(z)  + O ( l l x -  z II-'). 

Furthermore, let f be a positive function with second derivative suc[1 that, for some 
a t ( O .  ~], ,~>0, A > O ,  

f ( t } = A t " i I  +o(t ~)), [ ' ( t )=O( t"  ~/'- ~), [" ( t )=O(t"  , ,s). 

Theorem 2. Let the abot:e assumption be satisfied attd Zo ~s O. Then 

Z ,= z+ w ( t -  l ( a  = I )F)-1/2A,, 

" '~ 1 = w I t - l ( a > ~ ) l ' ) + w ( t - I ( o t = l ) l ' )  "B,, a ~ 2 ,  
• 1 ~ _ _ 1  tZ, I w ( t t+(w( t ) l og  w(t)) -B,, tr ., 
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where F is a random variable, I ( .  ) the indicator function and w( t) the inverse function 
of g(t). The limiting distribution of (At, B,) exists and is the (n+ l )-dimensional 
normal distribution with mean zero and covariance matrix D. With the notation 

B=(bo) l~ . /~  ., b ~ j = l ( i = j ) - z ( i ) ,  z = ( z ( l ) ,  . . . .  z(n)) ,  

e=(1, 1 , . . . ,  1) e R" h = oth(g)  -1 grad h(z),  

matrix D is given by 

( = I- '  BCB T, 

(d,.._~,),.,~,, = I~ l - ' ( - l ( ,~  ~ ~)hBCB" + l (a  < ~)(l - o~)- '(e + hB)CB'),  

d.+,.,,+, = It.l(1(o, =~)+ l ( a  # ~)12a-  II -'/2) 

+ I~1 '((I(~, = I) + t(,~ # ½)12a - 1 l-'/~')( e + hB)C(e + hB) '  

+ l (a  # ~)hBCBTh T -  l ( a  < ~)2( 1 -  a)-J /2hBC(e  + hB) l ) ,  

where C is the covariance matrix of a 1. Superscript T denotes the transposed of a matrix. 

As we have assumed f ( t )  = At'~(1 + o ( t  -~)) we can describe w(t) in a more explicit 
form, 

exp( l tAt ( l  +o ( t  " ) ) ) ,  as a = 1, 
w( t )=  ( A A ( 1 - a ) t )  l/~j "~ ( l+o ( t -~ ) ) ,  a s 0 < a < l .  

If i$ > ½ we can omit the terms o(t -")  (see (4.4)). In case of f ( t )  = t the t ime-lag 1" 
corresponds to the factor W in Theorem 1, W = e -hr. 

Proof.  For the more precise results in Theorem 2 we need sharper estimates for 
the remainder  terms in (3.3), respectively (3.5). The notat ion used will indicate that 
I ]  are finite random variables adding up to F, a'k are normed sums of i.i.d, random 
variables. As 

( ) Iz,,,k,l-'=(Mk)-' l + ( M k ) - "  Y. la,- l - l zo l (Mk)  2(1+o(1))  
j = l  

= (Mk)- ~(1 - ( M k )  ~' 

we can write 

k 

2,,,k,==+(Mk) ' Z 
j = l  

Hence,  

Z I , a , -~ l+o (k  - '+ ' )  
j= !  

( j j - ~ ) - z  A / -~ l+o ( k  "*'). (4.1) 

h ( Z , ~ j ~ ) = h ( z ) + ( M k V  I ( A i - # ) - - z ] A ~ - # t  " g r a d h ( z I + o ( k  ~ ' )  
j i 
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and by Taylor's theorem and conditions on the derivatives of f, (3.4) can be replaced 
by 

J d h A;' =(h(z)f(Mj))-' +k=, y I A ~ - t ' l ~  ( (z)f(Mj))- '  

-h(z)-2(Mff(M]))-'(k~= ' (Ak--tz)--zlAk--.I)" grad h(z) 

k 
"4- ~ o ( j - ' l / 2 - a - ~ + ¢ ) ,  

i=! 

Summing up, we get 

k k k k d 
A, ~=  ~ (h(z)f(M]))- '+ ~ I a j - ~ l h ( z )  - '  ~ d(Ml)f(Ml)-~ 

j :~ j  i~-! / = t  I=j 

) kE= (Ak--~)--zlA~--~I -grad h(z) 

k 
+ Y. o ( ]  ,/2-,,--at,.). (4.2) 

i=l 

Using f ix )= Ax"(l  + ( x  a)) we can replace the summation by integration, 

k d 
d(Ml)f(Ml)--' = M - ' ( f ( M k  )-' - f (Mj)-")+O(j  -'/2-" -a), 

l=i 

k 

Y ( Mlf(Ml) ) 
I=1 

'=--a 'M-t(f(Mk) ' - f (Mj)" )+O(j  "~), 

and 

k 
~, (h(z)f(Mj))-'=g(Mk)+d+O(f(Mk) '), 

where 

d=  lim (h(z)f(M])) 1-A i 
k * ~  l I " I 

f( r) -i dr )  

exists. By the sltrong law of large numbers for independent random variables 

k ( v ( A , - ~ ) O ( j  ~,-s)= °( kl/; "), a s a < ~ ,  
,:, [0(1) .  a s a = [ .  

~.~ ( a , - ~ ) o I j  " ~ )=o(k  'r-" "), a s , ~ > [ .  
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Use Lemma 2 in [2] to get the rate of convergence of tail sums. Combining these 
relations with (4.2) it follows after some easy calculations that 

k (g(Mk)+(Mk)'/2(Af(Mk))-'(A~ +A~ +o(1) ) ,  a < ~ ,  

E a-f ~ = J g ( M k ) + ( M k l o g M k ) ' / 2 ( a f ( M k ) ) - ' ( a ~  +o(1)), a=~, 
~=~ (g(Mk)+FI+(Mk)I/2(Af(Mk))-~(A~ +A2 +o(1)), a>~, 

(4.3) 

where 

k 
A~ =(Mk) -1/2 ~, (Aj-i.L)(e+hB) T, 

j= l  

k 

- f (Mk) (Mk)  -'/2 ~ f(M])- '(  A , -  tz)(e + hB) T, a < ~, 
j= l  

,I k 
A~='-f (Mk)(MklogMk) --'/2 ~., f(Mj)-'(A,-p,)(e+hB) v, a=~, 

j=l 

f (Mk)(Mk)  ' '/2 y. f ( M ] ) - ' ( z ~ j - ~ ) ( e + h B )  T, a > ~ ,  
/=k+!  

Fl 
j = t  j ~ t  

with e, h, B as deSned in Theorem 2. We have used the relation 

( 4~-I.L)(e+hB)r=iAi-#l+ah(z) ~(Aj--/z-zlaj-#!) .grad h(z). 

-.1 To find an expression for ~ = ,  ( ~ j - A j )  define 

k 
Mf(Mk)(Mk) -'/2 ~. f(Mj) "(~,Zj--1), a < ~, 

]=1 

k 
Mf(Mk)(Mk IogMk) -'/2 ~ f ( g j ) l ( ~ i A j  - 1),  cx = ~ ,  

i=1 

--Mf(Mk)(Mk) -'/2 
i~k+l  

f (  M j ) -  '( ~,'b - 1 ), ,~ > ..~. 

As  Af  ~ =M(Af(Mj)) ~ + O ( j  " ~")  we can write 

[(Zf(M,~))  I(Mk)l/~'(ds +o(1)) ,  a ~: k 2, k 
V ( S i - - A j l ) = J / ( A f ( M k ) )  I ( M k  t ° g M k ) ) l / 2 ( A ~  * ° ( I ) ) '  ~=1, ,  

j::;i 
[ F2+(Af(Mk))-J(Mk)~/2(A~ + o ( l ) ) ,  a > ~, 

where 

x 

j " l  
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Thus, putting F = !'~ + !'2, 

a~ +,,(l)), ,,<~, ( g(Mk)+(Af(Mk))-'(Mk)'/2(A~k + ~ +, _, 

, , (k+ I ) = i g ( M k ) + ( a f ( M k ) ) ' ( M k  logMk)'/-(az+A~ +o(1)), - - 2 ,  (4.4) 
[g(Mk)+l .+(Af(Mk))  ,(Mk),/2(A[ +A.~ +A~ te>~. 

Obviously, or (k+l)  may be replaced by or(k). Now put F - - 0  for a < ~ ,  and by 
Taylor's formula, use w'(x)= Af(w(x)), there is a random variable Ok in [0, l] with 

Mk = w(g(Mk))= w(or(k)- 1") 

+ (g(Mk) - tr(k) +/') A f(w(g(Mk)  + Ok (or(k) - l ' -  g(Mk)))) 

= w(¢r(k) -F)+(g(Mk)-or(k)+F)af (Mk)( !  +o(1)). (4.5) 

Note that f(x) and, for a < 1, w(x) are almost powers of x. Such functions satisfy 

f (x(I  +o( l)))  = f (x) ( l  +o(1)). 

For u = !, w is almost exponential function satisfying 

w ( x  + o( I )) = w ( x ) (  1 + o( ! )).  

Considering (4.4), (4.5) and 

w(tr( k ) - 1") = w(tr( k ) ) -  i'Af( w(tr(k))(I +o(1))) 

for a ~ I one ()blains 

Mk = w( t r (k ) - l ' )+o(k  ' ' :~ ' )  = w(or(k)- l (a = I)F)(I  +o(k ')). 

Now replace the I.h.s. of (4.5) by 

IZ,,~,l = M k  +(Mk~"~-..l~, 

k k 
A~ =(Mk)  '/" ~ IA j -# I=(Mk)  ' / "  ~. ( A i - # ) e  -v 

l=l i = I  

Using the above relations, we then obtain 

wl~rlk))+(w(o(k)llog w(~r(k)))l'"(-Ai -,.lk +o( l ) l ,  a = ~, 
tZ,,,~,I= / w ( t r l k ) _ / . ) + w ( ~ r ( k ) _ l l a = _ l ) l , l ~ . 2 ( _ A [ _ A ~ . _ A ~ + A ~ + o ( l ) ) ,  

~ ~"~ ~. 

By (4.1). 

Z, , ,~=z+{w(o ' (k ) ) - l (o t=  l)l') i , z ( j ~ + o ( l ) )  

where 

k 

/ : .1 

k 

- # - z l J , - # J ) = ( M k )  ,,: v_. ( 3 , - I ~ ) B  v. 
l= . i  
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The proposed expressions for ]Z,[ and Z, follow by defining 

A,=/ t~  + o ( l )  

+ o ,  1), 
= I +o(l), 

for cr(k)<~t<o'(k+ l). 
It n,.,nains Io prove normality for the limiting d.f. of (A ,  B,). For this it suffices 

to show that Cr = a ( A ,  B,) is normally distributed with mean zero and variance 
aDa r for all a el~"+l\{0~. The A~ have similar structures, therefore we can find 
i.i.d, random variables ( Y], Y~), j e  N, such that 

C ,r( k ) 

k 

k ' '/2 ~. (Y}  + f ( M k ) f ( M ] )  ' Y , ) + o ( 1 ) ,  
i = 1  

k 

k '/~ ~ ( Y l + ( l o g M k ) ' / 2 f ( M k ) f ( M j ) a Y T ) + o ( I ) ,  c~=2, 
/ - I  

k '/" E Y } + f ( M k )  f ( M j ) I Y ,  +o(1),  ~:>~. 
\ i : : 1  j=k+ I 

As f ( M k ) = A ( M k ) " ( l + o ( k  ~)) and tile variance of Y~ exists we can replace 
f ( M k ) / f ( M j )  by (k/ j)" .  We can substitute (log M k ) i / 2  by (log k) -~/2 as 

k 

Var ( r~) j  ~(Iog j)~ 

is uniformly bounded. 
The central limit theorem for C, , :  , follows now easily by Lindeberg's criterion. 

Asymptotic normality still holds true: ior C, = (',,~,.,~, n(t) are random indices. If 
a < I, n( t ) /w(t)-~ l a.s. As 

P(sup{[]C,- C,,,][[(l-c)n <~ n' <~ (1 + c ) n } <  e ) > 1 - 71 

for all e, ~ > 0, n > n(e, 7/), c = c(e, ~) > 0 (use Levy's inequality) we can apply 
Anscombe's theorem [1]. If a = 1 n(t) e-'~A' _, W a.s. In this case we can prove the 

convergence in distribution of C, similar to Asmussen [3]. 
We obtain the proposed expression of the covariance matrix D of the limiting 

distribution of (A,, B,) by straightforward calculations using the definition of the 
{a;,}. 

Besides the central limit the~,rerr the random variables {()) also satisfy some 
kind of law of iterated logarithm. 

Theorem 3. Let the conditions of Theorem 2 be 

( a ( l )  . . . . .  a (n+ 1)) ~ R"~ 1\{0} define 

C, = (A,, B,)a n . t r  2 = aDa i, 

d ' : = ( a ( l )  . . . . .  a ( n ) , 0 ) D ( a ( l )  . . . . .  a ( n ) , 0 ) l ;  

satisfiea. For every a = 
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log ~ t = log~_ t log t, logo t = t deno te s  the i terates  o f  logar i thm.  T h e n  

lim sup C t ( 2 o  r2 Iogi t) - I / 2  = 1 a.s. ,  

lim inf Ct(2o "2 iogi t)  - t /2  = - 1  a.s . ,  

i = 1 a s  o~ = 1, i = 2 otherwise ,  

0; 

lim sup C, (2~  2 i0g2 t) -~/2 = 1 
/ "-* X" 

lim inf C,(2~" Iog2 t) - I /2=  - 1  
/ ~ 3 t "  

a.  s . ,  

a .  s . ,  

i/'a = ' ,  0 2 ¢ 0 ;  

l im s u p  Ct(2cr 2 log3 t ) i / 2 =  1 a.s. 

lim inf (7,(20 "2 log3 t)-1/2 = - 1  a.s. ,  
I + c J f  

~2 i[ =L = 0 .  

We omit the proof of Theorem 3 as it goes along the line of [3] with some natural 
modifications. For example, we have to change the { YI } into truncated variables 
ar.d have to use a special version of Berry Esseen's theorem for sums of centered 
variables with variance instead of theordinary theorem under third moment assump- 
tion. if u = ~ the limiting behaviour of {C, , , ,~}  splits into two cases because the sums 
of the { YJ } obey (for YJ ¢: 0) an ordinary law of iterated logarithm for i.i.d, random 
variables while the fluctuation of the sums with terms { Y~ } is (.for Y~' ¢: 0) of order 
log~ k. 
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