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The southeastern Madagascan endemic and monotypic genus Eligmocarpus is highly threatened due to a
combination of factors. Firstly, general human-induced habitat destruction and fragmentation has degraded
the environment in which it occurs, leading to an increased threat of extinction for itself and other
co-occurring species. Secondly, and more specifically to Eligmocarpus, the desirable properties of its timber,
which is an excellent construction material, has led to over-collection beyond levels of sustainability. Thirdly,
and with the highest relevance for this project, it is a combination of mode of dispersal, germination and
seedling establishment. For all these reasons, its range has contracted and the only remaining population
(21 trees) is located in Petriky, a future mining site. In this study we investigate the phylogeography and
population dynamics of Eligmocarpus based on molecular tools (not only conducted on extant individuals
but also using herbaria preserved DNA from individuals from neighbouring populations which are no longer
alive, to give a glimpse of the past). Prior to human colonisation, the species was successful in using the river
network to invade several biomes (most likely from the humid to subarid, where it is now constrained).
Hence, due to its location, Petriky is a mosaic of the genetic variability from populations higher up in the
river network, therefore, despite the low number of remaining individuals, all hope of restoration is not
lost. Within this project we hope that a more complete understanding of the evolution of the flora will
allow conservation, not only of current patterns of variation, but also the processes that gave rise to these
patterns.

© 2013 SAAB. Published by Elsevier B.V. All rights reserved.
1. Introduction

Madagascar is located in the south-western Indian Ocean and has
been recognized as a biodiversity hotspot by Myers et al. (2000)
(Fig. 1A). The island is home to 11220 species of vascular plants,
N80% of which are endemic (Callmander et al., 2011). Although
Madagascar is facing unprecedented rates of deforestation due to
human activities (b10% of primary vegetation remains; Moat and
Smith, 2007), botanical expeditions conducted in remote areas still
result in the discovery and description of new species (e.g. the Galoka
and Kalabenono massifs in North-West Madagascar; Callmander et
al., 2009). This is especially true for Leguminosae since the genus
studied here, Eligmocarpus Capuron, was discovered only 62 years
ago (but formally published by Capuron, 1968) and is now facing
extinction.

Leguminosae is the third most species-rich family of the Madagascan
flora (after the Orchidaceae, ca. 850 spp.; Rubiaceae, ca. 650 spp.;
by Elsevier B.V. All rights reserved
Callmander et al., 2011) with more than 600 species, 70% of which are
endemic (Du Puy et al., 2002). In addition, 23 of the 113 genera occurring
in Madagascar are restricted to the island (Buerki et al., 2013; Du Puy et
al., 2002). Although the family occurs mainly in the dry and subarid
biomes, representatives are also found in the humid biome (Du Puy et
al., 2002; see Buerki et al., 2013 for more information on the biome
distributions and their establishment through time). In this study we
focus on the threatened endemic and monotypic genus Eligmocarpus
(Caesalpinioideae), which is restricted to the south-east of Madagascar
(Fig. 1), and has been demonstrated by Bruneau et al. (2008) to be sister
to another Madagascan endemic genus, Baudouinia Baill. Eligmocarpus
cynometroides Capuron occurs in the transition zone between the
humid and subarid biomes, more specifically between the Andohahela
national park (NP) and Petriky (representing a distribution area of
b50 km2; Fig. 1A). Population sizes are always very small, with the
biggest population found in Petriky (a future mining site) with b30
trees (Randriatafika et al., 2007). As an example of the decline of this
species, 27 trees were recorded in Petriky in 2001 and only 23 trees
remained in 2004 (Randriatafika et al., 2007). Moreover, whenwe visited
this site in 2012 twomore trees had been felled and several trees are now
.
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Fig. 1. A. Distribution of Eligmocarpus cynometroides in Madagascar. B. Close-up of the distribution of individuals in the Southeast of Madagascar. C. Picture of the fruits of E.
cynometroides (Buerki et al. 272). [Photograph taken by F. Forest].
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surrounded by degraded forest and in the vicinity of villages (Fig. 1).
Collection trips, undertaken by the Service Forestier in the 1950s and
1960s, in the forests west of Ranopiso, identified further individuals, but
subsequent trips, undertaken by Ratovoson in 1999 were unable to find
any trees. This is further evidence that the only viable population today
is most likely to be found in Petriky (Ratovoson, pers. comm. 2013). In
addition to being threatened by anthropic factors (burning for charcoal,
fire, agriculture and construction; Moat and Smith, 2007), this species is
widely used by local communities as a timber since its wood is similar
to rosewood (Dalbergia spp.; Randriatafika et al., 2007). In addition,
with the exception of the population found in the Andohahela NP (that
might be reduced to only one tree; Ratovoson, pers. comm. 2013),
the other individuals occur outside of the national park network
and are therefore highly threatened. Outside of Petriky, no individ-
uals of E. cynometroides have been collected since 1999 (Table 1).
An ecological study conducted on the individuals in Petriky showed
that this species has a very low rate of seed production (ca. 1 seed/kg of
fruit) and, moreover, its seed germination was also shown to be limited
(b5%) (Randriatafika et al., 2007).

In this study we use molecular techniques [DNA sequencing of the
Internal Transcribed Spacer (ITS) region and Amplified Fragment
Length Polymorphism (AFLP)] to investigate the phylogeography of
the species and to assess the genetic variability of the Petriky popula-
tion (presumably the only remaining population of this species).
Results are discussed in light of morphological characters, past
climate change and landscape uses. We also extrapolate from our
findings to propose a rigorous conservation programme for this
species and hopefully to ensure its long-term survival. Finally, we
would like to use E. cynometroides as a flagship species in order to
seek additional funding to protect the unique vegetation found in
this area of Madagascar (a rare environment where the humid, dry
and subarid biomes meet; see Buerki et al., 2013).

2. Material and methods

2.1. Sampling and DNA extraction

A list of specimens of E. cynometroides was established based on
specimens deposited at G, K, MO and P (Table 1). To infer the spatial
distribution of these specimens a map was constructed using the
R packages ‘RgoogleMaps’ and ‘rworldmap’ (R Development Core
Team, 2010). We have evidence suggesting that populations outside
of Petriky are limited to very few individuals or even totally extinct
due to anthropogenic habitat destruction and wood exploitation (see
Section 2.2). In this study, we first investigate the phylogeography of
E. cynometroides by sequencing the nuclear ITS region from herbarium
specimens taken from individuals that are now extinct as well as
recent collections, both extant and extinct (see introduction),
obtained by the authors in Petriky. Subsequently, a DNA fingerprinting
method (AFLP) is applied to assess the genetic variability of individ-
uals in Petriky and to propose a conservation strategy. Herbarium
specimens were not included in this latter analysis because their
DNAs were too degraded for the AFLP technique to be suitable.
Field-collected specimens were dried in silica-gel prior to DNA
extraction, following the recommendations of Chase and Hills
(1991), though some accessions were extracted from herbarium
collections of varying ages. Extraction of genomic DNA followed the
2 × CTAB protocol (Doyle and Doyle, 1987), with the following



Table 1
List of specimens of Eligmocarpus cynometroides included in this study and GenBank accession numbers.

Voucher Year Location Longitude Latitude Altitude (m) Herbarium ITS EMBL no. ITS haplotype

Herbarium specimens
Dumetz 1102 1989 Petriky 46.867 −25.083 0–10 MO
Dumetz 652 1989 Petriky 46.850 −25.067 0–10 K HF937274 H1
Rabenantoandro 1610 2004 Petriky 46.896 −25.051 6 K HF937275 H1
Rajoharison 18 – Petriky 46.893 −25.058 10 MO
Rajoharison 19 – Petriky 46.893 −25.058 10 MO
Randriatafika 325 2001 Petriky 46.850 −25.067 0–10 MO
Ratovoson 102 1999 Andohahela NP (parcel 3) 46.621 −25.004 180 MO
Service Forestier 20501 1961 Ranopiso 46.650 −25.033 – K HF937276 H2
Service Forestier 28325 1968 Mahatsinjo 46.650 −25.033 – K HF937277 H1
Service Forestier 3498 1951 Ranopiso 46.692 −25.050 0–100 P
Service Forestier 8213 1953 Mahatsinjo 46.650 −25.033 – P
Service Forestier 8496 1953 Between Bevilany and Ranopiso 46.650 −25.033 – P
Service Forestier 9918 1952 Mahatsinjo 46.650 −25.033 – P

Collections done for this study
Buerki et al. 272.1 2012 Petriky 46.89529 −25.05223 17 K HF937260 H3
Buerki et al. 272.2 2012 Petriky 46.8932 −25.05162 16 –

Buerki et al. 272.3 2012 Petriky 46.89324 −25.05136 13 – HF937261 H3
Buerki et al. 272.4 2012 Petriky 46.89338 −25.05113 13 – HF937262 H5
Buerki et al. 272.5 2012 Petriky 46.89427 −25.04975 10 – HF937263 H3
Buerki et al. 272.6 2012 Petriky 46.89434 −25.0522 20 – HF937264 H3
Buerki et al. 272.7 2012 Petriky 46.89562 −25.05263 20 – HF937265 H3
Buerki et al. 272.8 2012 Petriky 46.89669 −25.05265 20 – HF937266 H3
Buerki et al. 272.9 2012 Petriky 46.89728 −25.05309 11 – HF937267 H3
Buerki et al. 272.10 2012 Petriky 46.89639 −25.05366 16 – HF937268 H3
Buerki et al. 272.11 2012 Petriky 46.89639 −25.05349 17 – HF937269 H3
Buerki et al. 272.12 2012 Petriky 46.89585 −25.05295 18 – HF937270 H4
Buerki et al. 272.13 2012 Petriky 46.8947 −25.05392 15 –

Buerki et al. 272.14 2012 Petriky 46.89478 −25.05393 16 – HF937271 H3
Buerki et al. 272.15 2012 Petriky 46.89494 −25.0542 16 – HF937272 H3
Buerki et al. 272.16 2012 Petriky 46.89197 −25.05402 30 – HF937273 H3
Buerki et al. 272.17 2012 Petriky 46.89313 −25.05614 15 –

Buerki et al. 272.18 2012 Petriky 46.89079 −25.05705 16 –

Buerki et al. 272.19 2012 Petriky 46.88844 −25.05997 12 –

Buerki et al. 272.20 2012 Petriky 46.88324 −25.05805 20 – HF937278 H3
Buerki et al. 272.21 2012 Petriky 46.86184 −25.05034 20 –
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modifications: after precipitation with isopropanol and subsequent
centrifugation, the DNA pellet was washed with 70% ethanol, dried
at 37 °C, then re-suspended in TE buffer (20 mm Tris–HCl, 0.1 mm
EDTA).

2.2. Determination of the environmental niche of E. cynometroides

To characterize the niche of E. cynometroides, worldclim data (here
the bioclimatic variables BIO1, 5, and 12 and the elevation; available
at http://www.worldclim.org/) were downloaded. In addition, infor-
mation on geology and vegetation types was retrieved from Moat
and Smith (2007). These data were extracted for each record using
the R package ‘raster’ (R Development Core Team, 2010). A principal
component analysis (PCA) was built based on these data (information
on the geology and vegetation types were not included in the analysis
since they are not quantitative, but will be discussed) using the
R package ‘vegan’ (R Development Core Team, 2010).

2.3. DNA sequencing and network analysis

The amplification of the ITS region was carried out in two parts,
using the primer pairs ITS5 and ITS2, and ITS3 and ITS4 (White et
al., 1990). Both amplifications were performed in 25 μL reactions,
containing 22.5 μL PCR Abgene mastermix (1.5 mM mg), 1 μL bovine
serum albumin (0.04%), 33 ng of each ITS primer and 40 ng of DNA
template. The PCR profile was as follows: initial denaturation of
94 °C for 2 min, followed by 28 cycles of denaturation at 94 °C for
1 min, annealing at 52 °C for 1 min, extension at 72 °C for 3 min,
followed by a final extension of 7 min at 72 °C. All PCR products
were purified using Nucleospin DNA purification columns according
to the manufacturers' protocols (QIAquick; Qiagen Ltd, Crawley,
UK). Dideoxy cycle sequencing was then performed using the chain
termination method and ABI Prism Big Dye version 3.1 reaction
kit, following the manufacturers' protocols (Applied Biosystems
Inc., Warrington, UK). The products were run on an ABI 3730
Genetic Analyser, also according to the manufacturers' protocols.
The programme Sequencher v. 4.1 (Gene Codes Corp., Ann Arbor,
Michigan, USA) was used to assemble complementary strands and
verify software base-calling. Sequences were then aligned by eye,
following the guidelines of Kelchner (2000). A maximum parsimony
network was inferred based on the ITS dataset using TCS v.1.21
(Clement et al., 2000). The haplotypes defined by TCS were
finally plotted on a map using the R package ‘RgoogleMaps’
(R Development Core Team, 2010).

2.4. AFLP amplification, scoring and analyses

A primer trial was conducted using 12 primer combinations to
identify pairs of selective primers that would be most appropriate
for this study. The 2C genome size was measured at 0.98 pg (follow-
ing the guidelines of Pellicer et al., 2010), which is a larger genome
than those for which the AFLP kit is optimized, therefore EcoR1
primers with four-base tails, rather than the usual three have been
used to reduce the number of peaks produced to manageable levels.
The rationale behind this is described in Devey et al. (2008). Primer
combinations Mse1–AGG + EcoRI–CTAC and Mse1–ACA + EcoRI–
CTAT (both 5 μm) were used following the manufacturers' instruc-
tions to produce AFLP profiles across all analysed accessions, since
these combinations yielded suitable numbers of clearly identifiable
bands and levels of variation among loci. Generated fragments were

http://www.worldclim.org/
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mixed with a 500 ROX size ladder and analyzed with an ABI 3730
Genetic Analyser. In order to detect and calculate the size of AFLP
bands, raw electropherograms were analysed using PeakScanner
(ABI) with default parameters except a light peak smoothing. A
binary matrix of AFLP band presence (1) and absence (0) was
built using the automated scoring implemented in the R package
‘RawGeno’ (Arrigo et al., 2009) with the following parameters:
scoring range, 50–500 bp; minimum intensity, 100 rfu; minimum
bin width, 0 bp; and maximum bin width, 2 bp. Closely sized and
overlapping bins were eliminated. Individuals were randomly distrib-
uted in the plates to produce a reliable AFLP dataset. Blank controls
and duplicates were also included to ensure the reproducibility of
the profiles (see Arrigo et al., 2010). Bands that were clearly not
reproducible were discarded from the final dataset.

A principal coordinate analysis (PCoA) was inferred from the AFLP
binary matrix using the R package ‘vegan’ (R Development Core
Team, 2010) based on a Jaccard distance matrix. To confirm the
grouping obtained by the PCoA analysis the Jaccard distance matrix
was also investigated using a clustering approach by building a
ward tree and defining four groups. These groups were displayed on
the PCoA as well as the ward topology using the ‘vegan’ function
ordicluster. A Mantel test was calculated between genetic and
geographic distances among individuals using R packages ‘stats’ and
‘vegan’ as done in Arrigo et al. (2010). Finally, the groups were
plotted on a map using the R package ‘RgoogleMaps’ (R Development
Core Team, 2010).

3. Results

3.1. Environmental niche of E. cynometroides

Based on the available herbarium specimens (13 collections) and
our collections (21 collections from Petriky), we can recognize four
populations of E. cynometroides (from North-West to South-East):
Fig. 2. Principal component analysis of the environmental variable
Andohahela NP (parcel 3), Mahatsinjo, Ranopiso and Petriky
(Fig. 1). The only remaining population of Eligmocarpus (defined fol-
lowing IUCN conventions) occurs in the eastern part of the Petriky
site and is composed of 21 adult trees that are concentrated on the
edge of the forest in the vicinity of villages (Fig. 1). The PCA shows
that i) Petriky receives more precipitation than the other sites, ii)
Mahatsinjo is at higher elevation than the other sites (180 m vs.
0–20 m) and iii) Andohahela NP and Ranopiso have higher annual
temperatures than the rest of the sites (Fig. 2). However, although
Petriky receives more rainfall, its sandy soil (vs. limestone at the other
sites) makes its ecological characteristics very similar to the other
sites (due to the rapid drainage of water from the soil). Finally,
Andohahela NP (parcel 3 of Andohahela is covered by dry forest, but
it is at the edge, with the humid forest found at higher elevation)
and Mahatsinjo harbour a dry to spiny forest, whereas Ranopiso is
covered by spiny forest. The vegetation found in Petriky is unique for
Madagascar, because it sits at the boundary of the humid and subarid
biomes (Figs. 1–2).

3.2. DNA sequencing and network analysis

Sadly, the amplification of the ITS regions failed for most of the
herbarium specimens, probably due to severe degradation caused
by the use of an ethanol-based preservation methodology; however
it was successful for two individuals from the Mahatsinjo population
and collections from the Petriky population. From Petriky, we have
also been able to sequence individuals that were felled by local
communities in the last 5–10 years (Fig. 3). Based on the ITS matrix,
five different haplotypes (based on single substitutions, rather than
insertions/deletions) have been recognized: H1–5 (Fig. 3). The
haplotype H1 is shared between Mahatsinjo and Petriky, whereas
the other haplotypes are restricted either to Mahatsinjo (H2), or
Petriky (H3–5) (Fig. 3). It is worth mentioning that the haplotype
H1 is currently not found in Petriky, since these trees were recently
s for the four sites where Eligmocarpus cynometroides occurs.
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felled (Fig. 3; Table 1). The tree was unrooted for several reasons; the
lack of available ITS sequences for a suitable outgroup, the focus of the
study being on population genetics rather than phylogenetics and the
prior establishment of Baudouinia as a sister group to Eligmocarpus
(Bruneau et al., 2008).

3.3. AFLP analyses

The AFLP data produced a total of 113 bands with an average of
66.7 bands per individual. The measured error rate was 3.54%. The
approach combining the PCoA and clustering analysis allowed the
definition of four groups of individuals within the Petriky population
(Fig. 4). This showed that although there are very few trees
remaining, the genetic diversity within the population is still relative-
ly high. The Mantel test was not significant and therefore suggested
that there is no correlation between the genetic and geographic
distances. Finally, the AFLP groups are displayed on the map of the
Petriky area and show that almost all the remaining trees are found
on the edge of the forest on a dune (Fig. 5).

4. Discussion

4.1. Why is Eligmocarpus doing so badly?

A survey performed on Eligmocarpus in 2001 counted 27 trees and
noted that seedlings were present near only three trees (b10 seedlings
were still alive one year later; Randriatafika et al., 2007). In February
2012, only 21 trees remained and there was almost no sign of
Andohahela NP

Ranopiso
Mahatsinjo

H4H4

H2H2

H3H3H1H1

H5H5

A

B

Fig. 3. A. Maximum parsimony network of Eligmocarpus cynometroides based on ITS data and
river system and sea current.
regeneration. Local communities felled the seven missing trees
(decreasing the population by N22% in eleven years and also reducing
the number of haplotypes, i.e. haplotype H1 is not represented in the
population anymore; Fig. 3), despite the fact that this species has been
established as critically endangered and protection/conservation plan-
ning was proposed by the mining company in 2007 (Randriatafika et
al., 2007). In addition to being threatened by the activities of local com-
munities, the remaining trees are located on the proposedmining path-
way (Randriatafika et al., 2007). At this rate of felling, the whole
population might be extinct even before the mining activity takes
place at Petriky. This statement is especially true since most of the
remaining trees occur in the vicinity of the villages and are found in
open, degraded habitats (Fig. 5). This species is also of high concern be-
cause of poor seed production (ca. 1 seed/kg of fruits) and displays very
low germination rates (b5% if not treated with an increase to 43%when
soaked in cold water for 48 h) (Randriatafika et al., 2007). Interestingly,
the individual belonging to the group 4 is themost successful in produc-
ing seeds (Landry pers. comm. 2012; Figs. 4–5). More attention should
therefore be focused on this individual in order to understand the
breeding system and pollination syndrome of this species, and to try
to improve seed production.
4.2. Origin and genetic diversity of the Petriky population

The sequencing of herbarium specimens from populations outside
of Petriky allowed the establishment of past genetic connectivity
between populations (haplotype H1) as well as haplotypes specific to
each of the sites (Fig. 3). This strongly suggests that gene flow was
Petriky

Haplotype 1
Haplotype 2
Haplotype 3
Haplotype 4
Haplotype 5
Not sampled

5 km

inferred using TCS. B. Spatial distribution of the haplotypes. The arrows symbolise the
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Fig. 4. Principal coordinate analysis based on the AFLP data of Eligmocarpus cynometroides. The result of the clustering analysis is also plotted (see groups) as well as the ward
topology.
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effective prior to human settlements (ca. 1500–500 years ago; see
below). The AFLP data showed that although there is a core of individ-
uals in Petriky that are genetically similar (group 1), the population is
still genetically diverse, but that this diversity is not correlated to
geography (the groups are intermixed, making conservation practices
even more challenging; Figs. 4–5). If we take fruit morphology into
Fig. 5. Spatial distribution of the AFLP groups (
account (Fig. 1C), we can hypothesize that the river network has played
an important role in dispersing Eligmocarpus (Fig. 3). In this hypothesis,
the originwould have been close to the populations currently located in
the Andohahela area and the individuals used the river network to
colonize the area and finally reach Petriky (Fig. 3). Interestingly,
Ranopiso is at the intersection between two river basins and we
500 m

see Fig. 4) of Eligmocarpus cynometroides.
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might expect that Eligmocarpus previously occurred in the whole area
prior to human deforestation (ca. 1150 years ago; Virah-Sawmy et al.,
2009). This hypothesis is even more likely based on a fruit morphology
that is indicative of an aquatic mode of dispersal and the evidence of
increasing levels of seed germination when seeds were soaked in cold
water (Fig. 1C; Randriatafika et al., 2007). Whilst some variation from
this model may be possible, such as the occasional dispersal of seed by
lemur activity and sporadic times when backwash, initiated by high
tides etc., could transport seed back upriver, this hypothesis assumes
that seed has travelled predominantly downstream from Andohahela.
This hypothesis would also explain the large ecological niche of
E. cynometroides, which had the ability to shift between biomes by
using the river network to establish new populations on riverbanks
and seacoasts. As the individuals in Petriky are currently restricted to
the dune (10 m) and do not have direct contact with either rivers or
the sea (Fig. 5), further investigation into previous climatic conditions
was necessary to validate the aquatic-dispersal hypothesis. During the
Holocene (more specifically 6500 years ago), the sea level in this region
was 10–15 m higher due to a combination of the tilt of the planet and
effects due to the last glaciations (Virah-Sawmy et al., 2009; Roberts
et al., 2012). At this point in time, the individuals of Eligmocarpus
would have been in close proximity to water, thereby allowing the
fruit to float and act as a diaspore, and thus, seem to have subsequently
been able to reach the riverbanks and shore again, but were felled by
local communities in the last ten years (Figs. 1, 5). The relatively high
genetic richness of the population in Petriky (supported by both ITS
sequences and AFLP data) might suggest that it results from several
independent dispersal events.

4.3. A brief summary; history, protection and restoration

In this section we will discuss the implications of our study for
understanding the dynamics of this species through time and propose
some lines of investigations to ensure the future prosperity of this
taxon.

At a geographic level, the disruption of gene flow between
populations of Eligmocarpus is likely to be primarily the result of
habitat fragmentation, but compounded by the specialised dispersal
mode utilised by Eligmocarpus. The habitat fragmentation is positively
correlated with the intensity of agriculture, charcoal production and
need for wood to build houses in the south-east that took place ca.
500 years ago, as attested by archaeological evidence (Virah-Sawmy
et al., 2009 and references therein). Human settlement in this area
started ca. 1150 years ago, but populations were small and patchy
and their effect on the vegetation was rather limited (Virah-Sawmy
et al., 2009 and references therein).

In many respects, the actions of the mining company are admira-
ble, in that an attempt is being made to provide a net positive impact,
by providing protected offset areas into which seedlings can be
transplanted. However, the results of this study clearly demonstrate
that without a thorough understanding of the ecology and evolution-
ary history of the flora and fauna of an area, this approach, on its own,
is insufficient. In this case, protecting an offset area of forest with a
different ecotype and no geographical connection to Petriky would
do nothing to aid Eligmocarpus.

One simple but effective way to improve seedling survival and
increase the chance of future successful germination would be to
transplant seedlings onto riverbanks or shores in protected areas. In
addition, tests will also be conducted at the Millennium Seed Bank
at the Royal Botanic Gardens, Kew, in order to determine the optimal
conditions for germination. Now that we have a much wider under-
standing of the biology of this species, further fieldwork is required
in the area, to look for individuals along the river network from
which seed could be collected (it is unlikely that trees will be found
on the shore since most of the villages are located there). Finally, a
study should be conducted focusing on the breeding system and
pollination syndrome to improve seed production for restoration
ecology purposes.

The case of E. cynometroides can be viewed as a proxy study for
little-understood taxa in complex environments with high levels of
endemism. This genus was first discovered in 1951, formally named
in 1968 and, at the present rate of destruction, will probably be
extinct before it reaches its hundredth birthday. However, we are
confident that if the conservation and scientific communities, as
well as local communities actively work together we will be still be
able to secure the future of this unique lineage of Legume.
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