
 

  

 

 

 

 

 

 

 

 
 
 
 

 
 
 
Introduction 
 

Helicases are motor proteins that utilize the energy derived from 
nucleotide hydrolysis to disrupt double- or multi-stranded nucleic 
acids during the process of DNA replication, repair, and 
recombination, as well as RNA transcription, maturation, and 
translation.  Helicases are recognized by the presence of conserved 
signature sequence motifs; all helicases possess sequences homologous 
to the Walker A and B boxes that are characteristic of NTP binding 

and/or hydrolyzing enzymes [ ]. They do not display sequence 

specificity for unwinding, but instead exhibit preference for the type 
and structure of the nucleic acid substrate.  DNA helicases facilitate 
unwinding either passively by binding and trapping single strand 
DNA, or they actively destabilize paired DNA in addition to binding 

the released single stranded DNA [ ]. Unwinding is directional, either 

3’-5’ or 5’-3’ with respect to the strand on which the helicase 
translocates. 

 
RecQ Helicase Family 

 
The RecQ family represents one of the most highly conserved 

groups of 3’-5’ DNA helicases, and is named after the prototype 
Escherichia coli RecQ [2-5].  A single RecQ homolog exists in 
bacteria and yeast whereas higher eukaryotes possess multiple 

markedly conserved representatives (Figure ).   

 
 
 
 
 
 

 

The RecQ helicase family has 5 known homologs in the human 

genome: RECQ , WRN, BLM, RecQ4, and RecQ5β.  Mutations in 

three human RecQ helicase homologs WRN, BLM and RecQ4 are 
related to rare genetic disorders of Werner Syndrome, Bloom 
Syndrome, and Rothmund-Thomson/ RAPADILINO/Baller-
Gerold Syndrome, respectively, all characterized by chromosomal 
instability and predisposition to cancer [6-7].  The fact that these 
disorders are rare attests to the critical importance of these helicases in 
cellular DNA metabolism.  The fact that the deficiency of individual 
RecQ helicases is manifested as clinically distinct syndromes supports 
the notion that human RecQ homologs function in distinct cellular 
processes.  A systematic analysis of the molecular interactions and 
cellular functions of each RecQ homolog, and the comparison of 
similarities and differences among them, is likely to reveal aspects of 
RecQ functions that are important for genome maintenance. 

 
RECQ  Helicase 

 

The RECQ  (also known as RECQL or RECQL ) gene resides 

on chromosome 2p 2 and encodes a 649 amino acid protein with a 

molecular mass of 73 kDa [8- 0].  RECQ  protein is smallest of the 

human RecQ homologs, and shares maximum homology to the 

prototype E. coli RecQ.  RECQ  is a DNA-stimulated ATPase and 

helicase [ 0- ].  Phylogenetic analysis of RECQ  with closely 

related proteins reveals structural divergence (Figure 2).   

A further insight into the anticipated biological roles of RECQ  

emanates from reviewing its structure-function relationship and 
molecular interactions.   
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Abstract: The RecQ helicases are a highly conserved family of DNA-unwinding enzymes that play key roles in protecting the 

genome stability in all kingdoms of life.  Human RecQ homologs include RECQ , BLM, WRN, RECQ4, and RECQ5β.  

Although the individual RecQ-related diseases are characterized by a variety of clinical features encompassing growth defects 
(Bloom Syndrome and Rothmund Thomson Syndrome) to premature aging (Werner Syndrome), all these patients have a high risk 
of cancer predisposition.  Here, we present an overview of recent progress towards elucidating functions of RECQ  helicase, the 

most abundant but poorly characterized RecQ homolog in humans.  Consistent with a conserved role in genome stability 
maintenance, deficiency of RECQ  results in elevated frequency of spontaneous sister chromatid exchanges, chromosomal 

instability, increased DNA damage and greater sensitivity to certain genotoxic stress.  Delineating what aspects of RECQ  catalytic 

functions contribute to the observed cellular phenotypes, and how this is regulated is critical to establish its biological functions in 

DNA metabolism.  Recent studies have identified functional specialization of RECQ  in DNA repair; however, identification of 

fundamental similarities will be just as critical in developing a unifying theme for RecQ actions, allowing the functions revealed 
from studying one homolog to be extrapolated and generalized to other RecQ homologs.   
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Figure 1. Schematic representation of selected members of the RecQ-Like DNA helicases across species.  Members of the RecQ family have many structural 
motifs that are conserved from bacteria through humans.  Besides the core helicase domain, most members possess RecQ C-terminal (RQC) and Helicase and 
RNase D C-terminal (HRDC) domains that mediate interactions with nucleic acids and proteins.  A few RecQ proteins have acidic regions that are responsible for 
protein-protein interactions.  WRN and FFA-1 proteins are unique in that they also contain an exonuclease domain.  Total number of amino acids in each 
protein is indicated on the right and the full color scheme is indicated.  Sequence of each protein in FASTA format was used as input to an online server called 
MyHits (http://myhits.isb-sib.ch/) for the mapping of various motifs in each protein. 
 

Figure 2. Phylogenetic tree for the RecQ-Like proteins of DExH-Box helicase family.  Phylogenetic analysis of the selected RecQ DNA helicases was performed 
using clustalX 2.0 and the image was generated using FigTree version 1.4.0.  The branches of the tree are abbreviated with codes and detailed with genus and 
species name on the right.   
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Figure 3.  Structural insight to the conserved helicase and RQC domains of human RECQ1 helicase (PDB ID: 2v1x).  Cartoon representation of a single RECQ1 
molecule bound to ADP; color coding of conserved structural domains is consistent with the color scheme in Figure 1.  Two RecA-like domains are denoted as 
RecA1 and RecA2.  A. The nucleotide-binding pocket.  ADP forms extensive contacts with RecA1 and less with RecA2; residues in contact with ADP are shown as 
sticks in pink color.  B. RecQ-specific Zinc-binding module in RECQ1.  A single Zn2+ ion is coordinated by four Cys residues positioned on two antiparallel α-
helices.  C. The winged-helix (WH) domain of RECQ1.  β-hairpin is shown in the upper-left corner and the important aromatic residue Tyr 564 is highlighted in 
red color.  The figure was generated using PyMOL (http://www.pymol.org/). 
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RECQ  unwinds DNA with a 3’-5’ polarity [ 2] and needs a 3′-

single strand DNA tail to unwind the substrate [ ].  RECQ  

unwinds standard duplex DNA substrates such as forked duplex, 3’-
overhang or 3’-flap, 5’-flap, and synthetic replication fork structures; 
these substrates signify model replication and repair intermediates 
lacking single strand character in the 3’, 5’, or both arms adjacent to 

the DNA duplex [ , 3- 6].  Apart from conventional helicase 

activity, RECQ , like BLM and WRN, also promotes branch 

migration of Holliday junction (HJ) and D-loops in an ATP-

dependent fashion [ 4- 6].  RECQ  unwinds three-stranded D-loop 

with either a distended single stranded 3’- or 5’-tail by releasing the 
invading third strand from D-loop structures although a D-loop with 
protruding single stranded 3’-tail is a preferred substrate for 

unwinding [ 4].  In contrast to BLM helicase, RECQ  is unable to 

unwind a DNA-RNA hybrid, catalyze fork regression, or displace 
plasmid D-loops lacking a 3’-tail but can unwind four-armed 

synthetic HJ structures that lacked a homologous core [ 4- 6].  

Unlike other known branch migration proteins such as BLM helicase 
and RAD54 both of which show no significant preference in 

directionality of branch migration, RECQ  specifically catalyzes 

unidirectional branch migration, which may be instrumental in 
specific disruption of toxic, nonproductive intermediates of 
homologous recombination (HR) during DNA double strand break 

(DSB) repair in vivo [ 7].  However, RECQ  is unable to use its 

motor ATPase to strip RAD5  from DNA during HR repair [ 8].  

RECQ  is also incapable of displacing streptavidin from a 

biotinylated oligonucleotide [ 9].  Consistent with a 3’-5’ 

directionality of RECQ  translocation on DNA, RECQ  helicase 

activity is inhibited in a strand-specific manner by an alkyl 
phosphotriester modification to the sugar-phosphate backbone in the 
predicted translocating strand [20].  Moreover, the inability of 

RECQ  to unwind G-quadruplex substrates differentiates this 

protein from other RecQ helicases including WRN, BLM, Sgs , or 

E. coli RecQ [ 5,2 ].  Specific functions of RECQ  in DNA 

metabolism are not yet clearly understood but the reported disparity 
in helicase substrate preference suggests functional specialization.  

In addition to DNA unwinding, RECQ  promotes annealing of 

complementary single strand DNA in an ATP-independent manner 

[ 4].  ATP binding induces a conformational change in RECQ  

switching it from a strand-annealing protein to a DNA unwinding 

activity [ 4].  Further studies have suggested that distinct biochemical 

activities of RECQ  are dictated by different oligomeric states  

modulated by single strand DNA and ATP binding [22]. Overall, 
strand-annealing appears to be an intrinsic property of the human 
RecQ family since it is conserved in WRN, BLM, RecQ4 and 

RecQ5β [23-25].  
 

RecQ helicases share a centrally located helicase domain that 
couples nucleotide hydrolysis to DNA unwinding and defines the 

RecQ family (Figure ).  Other conserved domains include RQC 

(RecQ C-terminal) and HRDC ((helicase and RNaseD C-terminal), 

missing in RECQ ) domains, which are implicated in protein 

interactions and DNA binding [26-28].  The N- and C-terminal 
extensions in eukaryotic RecQ helicases are poorly conserved but are 
shown to mediate protein-protein interactions [29-30].  Crystal 

structure of human RECQ  protein lacking the first 48 and the last 

33 amino acid residues (RECQ 49-6 6) was recently reported by 

Gileadi’s group (Figure 3) [3 ].  Previously it was shown that the 

higher oligomeric structures formed by means of N-terminus region 

are responsible for DNA annealing activity of RECQ  [ 5,22]; 

consequently, truncated RECQ 49-6 6 failed to promote strand-

annealing despite exhibiting unwinding of a forked-duplex 

comparable to the full-length RECQ  [3 ].  Moreover, the N-

terminal region of RECQ , either direct or through the formation of 

higher order oligomers, also appears to be critical for the dissolution 

of HJs [ 5,3 ].  Importantly, WRN protein was also shown to bind 

HJ and replication fork structures as an oligomer although whether 
this requires the N-terminal of WRN is not reported [32].  
 
RECQ  Signature Helicase Domain:  

Core helicase domain of RECQ  (amino acid residues 63-4 8) 

contains the seven signature motifs of superfamily 2 (SF2) helicases 
and harbors the ATP-binding pocket surrounded by highly conserved 
residues [3,33].  Mutational analyses in RecQ homologs and other 
SF2 helicases have revealed the necessity of these amino acids for 
nucleotide binding as well as for functions related to nucleotide 
binding activity [34-36].  We and others have shown that ATP 
binding regulates the helicase and strand-annealing activities of 

RECQ  [ 4,22].  The overall fold of X-ray structure of RECQ  

bound to ADP and Mg2+ in  the absence of nucleic acid was found to 
be comparable to other SF2 helicases having signature structure of 
two RecA-like domains containing the seven motifs, and retaining the 

general helicase fold (Figure 3) [3 ]. The relative orientation of the 

two RecA-like domains in multiple crystal forms of RECQ  was 

found to be changed significantly suggesting a higher degree of 

flexibility between these two domains [3 ]. Previous studies have 

reported that E. coli RecQ shows slight relative rotation of the 
helicase domain in nucleotide-bound form compared to the unbound 
state and as a result of this rotation, motif I acquires an open 
conformation that allows the nucleotide to enter into its designated 

cavity [36]. Motif 0 in human RECQ , located at the N-terminus of 

motif I is a RecQ-specific variant of the conserved Q motif in 
DEAD-box helicases and is implicated in ATP binding and 

hydrolysis [37]. The crystal structure of nucleotide-bound RECQ  

showed that the adenine moiety of ADP is hydrogen bonded to 

Gln96 within the motif 0 (Figure 3) [3 ].  Notably, amino acid 

substitution of Gln in Motif 0 of RecQ5β and BLM has been 
reported to reduce the ATPase and ATPase/helicase function, 
respectively [30,34].   
 
RQC Domain of RECQ :  

RQC domain in RECQ  is composed of a Zn-binding module 

and a helix-turn-helix fold called winged-helix (WH) domain.  The 
Zn-binding module of RQC domain is practically identical between 

bacterial and human enzymes; in RQC domain of human RECQ , a 

Zn2+ ion is coordinated by four Cys residues positioned on two 

antiparallel α-helices (Figure 3) [3 ].  The Zn-binding domain of E. 
coli RecQ [38] and human BLM [39] are important in 
protein/DNA binding and protein folding.  Missense mutations 
affecting the Cys residues of the Zn-binding pocket of BLM are 
found in Bloom syndrome patients [39].  The WH domain, also 

present in transcription factors such as CAP and hRFX , and the 

human DNA repair protein AGT, acts as a DNA-binding motif 

[3 ,33,40].  Superimposition of the WH domains from E. coli 

RecQ, RECQ  and WRN show an extraordinarily conserved fold 

[3 ].  Yet, the WH of RECQ  interacts with significantly different 

regions of its core helicase and Zn-binding domains as compared to 
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those of E. coli RecQ and the human WRN protein [3 ].  

Furthermore, a unique tyrosine residue (Tyr564) at the tip of a β-

hairpin structure within the WH domain of RECQ  is suggested to 

control helicase activity to unwind a simple fork duplex independent 

of its DNA-dependent ATPase activity (Figure 3) [3 ].  Vindigni’s 

group has reported that the β-hairpin in the WH domain of RECQ  

is essential for DNA unwinding and oligomer formation [4 ]. 

 

Table  enlists the known protein interactions of RECQ  that 

are either unique or overlapping with those exhibited by other RecQ 

helicases.  First identified protein interactions of RECQ  were with 

the importin α homologs Rch  and Qip  [42]; Qip  binds to the 

nuclear localization signal of RECQ  (Figure ) [43] and thus likely 

mediates its import to the nucleus where RECQ  is primarily 

localized [44]. 
One of the conserved physical and functional interactions of 

human RecQ helicases is with the single strand DNA binding protein, 
RPA [3].  Stimulation of WRN or BLM catalyzed DNA unwinding 
by RPA requires physical interaction with the helicase [66].  RPA 

interacts with RECQ  and stimulates its DNA unwinding activity 

[ 3] while inhibiting strand-annealing [ 4].  Physical interaction of 

RPA heterotrimer with RECQ  is mediated through the RPA70 

subunit [ 3] which was also shown to be sufficient for physical and 

functional interaction with WRN [66].  Interaction site of RPA on 

RECQ  has not yet been mapped, but RECQ  does contain an 

acidic region similar to that in WRN which is reported to mediate 

interaction of WRN with RPA (Figure ) [66].  RECQ  also 

associates with Topoisomerase 3α [67] and RAD5  [44]; but the 

functional implication of these interactions remains to be elucidated 

[24]. Both BLM [68] and RecQ5β [5 ] dissociate RAD5  from 

DNA in vitro serving as anti-recombinase activities; whereas BLM-

Topoisomerase 3α complex is exclusively important in dissolution of 

double HJs [69].  RECQ  interacts physically and functionally with 

mismatch repair proteins (MLH  /PMS2, MSH2/MSH6, and 

EXO- ) which are also involved in regulation of genetic 

recombination [54].  The mismatch recognition complex 

MSH2/MSH6 stimulates RECQ  helicase activity whereas RECQ  

stimulates the incision activity of human EXO-  [54].  Thus an anti-

recombination function of RECQ  may involve suppression of 

homeologous recombination in conjunction with mismatch repair 
factors that specifically bind base pair mismatches [24-25].  In recent 

years, EXO-  has emerged to be critical in helping cells deal with 

stalled replication forks [70-72] and interaction of RECQ  with 

EXO-  may also be important in this capacity.  Another key protein 

partner of RECQ  appears to be PARP-  [57,65].  We first 

identified a direct protein interaction of RECQ  with PARP-  and 

demonstrated that RECQ -PARP- -RPA associate in a common 

protein complex [57].  A conceivable biological function of this 

complex might be to regulate opposing activities of RECQ  that are 

known to be regulated by RPA and ATP [ 4].  Given the ability of 

PARP-  to modulate cellular ATP pools [73], interaction with 

PARP-  may be important in providing an appropriate 

microenvironment to regulate dual activities of RECQ  as necessary 

for the given cellular context. Moreover, RECQ  and PARP-  are 

also capable of interacting with the common components of mismatch 
repair system [54,74] indicating a possible role in the suppression of 
homeologous recombination between diverged sequences.  Molecular 

basis for the elevated sister chromatid exchanges (SCEs) in RECQ  

deficiency is not yet understood, but its interactions with mismatch 

repair proteins (MLH /PMS2, MSH2/MSH6, and EXO- ) and 

PARP-  may be relevant in this regard.  Vindigni’s lab has recently 

identified an exclusive role of RECQ -PARP-  interaction in the 

process of replication restart following Topoisomerase  (TOP ) 

inhibition [65]. They have demonstrated that RECQ  preferentially 

catalyzes fork reversal and promotes resetting of replication forks in 
vitro.  Following TOP  inhibition by Camptothecin (CPT) 

treatment, the poly(ADP)ribosylation activity of PARP-  inhibits 

fork reversal by RECQ  in vivo [65].  Thus, RECQ -PARP-  

complex stabilizes regressed forks until repair of the TOP  cleavage 

complex is complete thus preventing premature restart of regressed 

forks [65].  PARP activity is not required in RECQ -depleted cells 

as they cannot promote fork restoration in the absence of RECQ  

[65]; these cells likely employ HR for restart of replication following 

CPT treatment.  Other known members of RECQ  complex with 

RPA and PARP-  are Ku70/80 [63,65] along with certain 

nucleosomal histones [65].  Interestingly, RECQ  was also found to 

be present with PARP-  and Ku80 in a multi-protein complex of 

APLF (APTX-PNK-Like Factor) which is implicated in recruitment 
of non-homologous end joining (NHEJ) proteins at DSBs [75-78].  

Subsequently, we have shown that RECQ  exhibits a direct physical 

interaction with the Ku70/80 subunit of DNA-PK complex and 
modulates in vitro end joining of DSBs [63].  Collectively, these 
studies have provided a framework for understanding the biological 

roles of RECQ  though it is still premature to propose a 

comprehensive model for RECQ  in the context of its catalytic 

functions and protein interactions.  Identification of additional 

constituents of the RECQ -containing protein complexes and 

elucidation of how they modulate its biochemical activities will be 

critical to establish precise roles of RECQ  in pathways of replication 

restart and DNA strand break repair.   

 

Reported cellular phenotypes of RECQ -deficiency in mouse and 

humans implicate unique requirement of RECQ  in genome stability 

maintenance [24,44,79].  Despite the lack of a phenotypic defect in 

unstressed RECQ  knockout mice, primary embryonic fibroblasts 

from RECQ  knockout mice display chromosomal instability [79]; 

and increased chromosomal instability is also observed upon depletion 

of RECQ  in human cells [44].  Cellular deficiency of RECQ  is 

characterized by spontaneously elevated SCEs [24] which are 
reminiscent of recombinogenic structures proposed to arise during 

replication restart following fork collapse [80].  Indeed, RECQ -

deficient cells accumulate DNA damage and display increased 
sensitivity to DNA damaging agents that induce stalled and collapsed 

replication forks [44,65,8 -82].  Furthermore, RECQ -deficiency in 

mice [79] or human cells [44] results in heightened sensitivity to 
ionizing radiation, which also causes oxidative DNA damage.  

Our recent findings provide preliminary evidence for a unique role 

of RECQ  in repair of oxidative DNA damage [57].  When cells are 

exposed to hydrogen peroxide (H2O2), RECQ  is among the first 

RecQ proteins to arrive on chromatin and remains associated for the 
period of time required for the repair of strand breaks [57].  

Remarkably, the chromatin localization of RECQ  is more robust 

and rapid than that of WRN helicase which has been shown to 
function in oxidative DNA damage repair [57].  It is plausible that 
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the activities of these RecQ proteins are assigned to dedicated 
pathways or sub-pathways of oxidative DNA damage repair [83-84].  

RECQ  and its protein partners may be part of the DNA damage 

response by localizing to sites of oxidative lesions where they execute 
catalytic functions, alone or in concert.  Consistent with this notion, 

purified recombinant RECQ  catalyzes unwinding of duplex DNA 

containing oxidative base lesion such as thymine glycol, and the 

presence of RPA stimulates DNA unwinding by RECQ  when the 

thymine glycol is positioned in the nontranslocating strand for the 

helicase [85].  RECQ -depleted cells rely on PARP activity for the 

repair of H2O2-induced DNA damage and when RECQ  is deficient, 

these lesions are possibly repaired by an alternative mechanism that 
involves increased activation of PARP [57].  In contrast, WRN-
deficient cells fail to activate PARP in response to oxidative damage 
[57].  These observations suggest a novel and non-overlapping role of 

RECQ  in exogenously induced-oxidative DNA damage repair via 

modulation of PARP- ; but a direct role of RECQ  in specific 

pathway of oxidative DNA damage repair remains to be elucidated.  

PARP-  is known to bind to DNA strand breaks and 

subsequently synthesizes and transfers poly(ADP-ribose) polymers to 
itself and various nuclear proteins [86]. BLM or WRN-depleted cells 
exhibit constitutively hyperactivated PARP, hypersensitivity to PARP 
inhibitors, and are defective in HR [87].  In contrast, depletion of 

RECQ  by itself does not lead to PARP hyperactivation or enhanced 

sensitivity to PARP inhibitor [57].  Moreover, RECQ -depleted cells 

are not compromised in their ability to repair I-SceI-induced DSB by 
homology directed repair [57].  In addition to HR, DSBs are repaired 
by NHEJ mediated by Ku70/80, the DNA-PKcs protein kinase, and 
the complex consisting of DNA ligase IV, XRCC4 and XLF [88].  

Our more recent data indicates that RECQ  and Ku70/80 co-bind a 

linear DNA and the DNA binding by Ku70/80 is modulated by the 

presence of RECQ  [63].  Recent models of DSB repair propose that 

Ku binds DNA ends first and is subsequently released through the 
DNA end processing activities contributed by MRN complex, CtIP, 

and EXO-  [89-90].  Ku70/80 inhibits EXO- -mediated DSB 

resection in vivo [9 ] and DNA end resection of the forked duplex 

substrate in vitro [92].  The ability of RECQ  to bind and unwind a 

Ku-bound forked DNA duplex relatively efficiently and its known 

interaction with EXO-  suggests that RECQ  may enable EXO-  to 

overcome Ku inhibition and thereby modulate the pathway choice for 
DSB repair [92].   

It is important to note that HR mechanisms involved in repairing 
classical two ended DSBs are distinct from those provoked by 

replication stress [93]. Notably, RECQ , along with RecQ4, is an 

integral component of replication complex in unperturbed dividing 

cells [94].  Association of RECQ  with replication origins during 

normal replication is significantly enhanced when cells encounter 

replication stress [82,94].  Consistent with this, recombinant RECQ  

binds and unwinds model replication forks [ 4], and promotes strand 

exchange on stalled replication forks in vitro [8 ].  RECQ -depletion 

results in increased sensitivity to aphidicolin, diminished checkpoint 
activation in response to replication stress, and chromosomal 
instability [82].  Chromatin immunoprecipitation experiments 

revealed that RECQ  is preferentially enriched at two major fragile 

sites, FRA3B and FRA 6D, where replication forks have stalled in 
vivo following aphidicolin treatment [82].  Common fragile sites are 
randomly distributed slow replicating genomic regions that are 
particularly vulnerable to replication stress and expressed as site-
specific gaps or breaks on metaphase chromosomes after partial 
inhibition of DNA synthesis [95].  Fragile sites often coincide with 

chromosomal breakpoints in tumors [95-96] and stalled replication 
forks at common fragile sites are believed to be a major cause of 
genomic instability [95,97].  Consistent with its demonstrated 

catalytic functions [65,8 ], recruitment of RECQ  at fragile sites 

indicates that RECQ  facilitates repair of stalled or collapsed 

replication forks and preserves genome integrity [82].  These results 

also implicate RECQ  in mechanisms underlying common fragile site 

instability in cancer.  Remarkably, RECQ  is overexpressed in 

transformed cells [98] and in many clinical cancer samples compared 
to matched normal samples indicating potential target for cancer 

therapy [82,99- 00].  Single nucleotide polymorphisms of RECQ  

have been associated with reduced survival in pancreatic cancer [ 0 -

02].  RECQ  expression is critical for the growth and proliferation 

of a variety of cancer cells [44, 03]; this has also been demonstrated 

using xenograft models [ 04].  It is conceivable that cancer cells are 

overtly dependent upon RECQ  activities to cope with replication-

induced DNA damage during rapid cell division; in normal cells, 

RECQ  can act as a tumor suppressor by facilitating DNA repair and 

preventing mutations.   

 
Summary and Outlook 

 
Recent advances in structural analyses and identification of novel 

molecular interactions has provided a valuable foundation to explore 

unique and overlapping functions of RECQ .  In particular, 

importance of RECQ  in repair of DNA damage in the context of 

replication stress has become increasingly more apparent.  DNA 
lesions induced by replication stress occur predominantly in early 

replicating and actively transcribed gene clusters [ 05].  Given the 

presence of RECQ  at replication origins, it will be insightful to 

investigate whether RECQ  has a role in preventing transcription-

associated genetic instability.  Molecular functions of RecQ and other 

DNA helicases in cancer are becoming more prominent [ 06].  

Reported overexpression of RECQ  in a variety of clinical cancer 

merits systematic investigation of clinicopathological correlation.  
While a disease association remains to be discovered, unique 

requirement of RECQ  in suppressing genomic instability proposes 

that a defect in RECQ  may be linked to cancer predisposition 

disorders that are distinct from known RecQ-diseases.  A greater 

understanding of the molecular and cellular functions of RECQ  is 

essential to establish its role in genome maintenance and explore its 
translational potential.  
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