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and Microfilament Cytasters of the Leech Zygote

Viviana Cantillana, Milena Urrutia, Andrea Ubilla, and Juan Fernandez*
Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile

The organization of the cytoskeleton in the early first interphase zygote and its involvement in organelle redistribution were
studied in the glossiphoniid leech Theromyzon trizonare by confocal and electron microscopy, immunofluorescence, and
time-lapse video imaging after microinjection of labeled tubulin and/or actin and loading with a mitotracker. The
cytoskeleton consists of an inner or endoplasmic and an outer or ectoplasmic domain. The inner domain consists of a
monaster whose fibers retract from the zygote periphery by the end of the early first interphase. The outer domain is built
upon a network of microtubules and microfilaments cytasters. Short pulses of microinjected labeled actin or tubulin and
Taxol treatment demonstrate that cytasters are centers of microtubule and microfilament nucleation. Immunostaining
with anti-centrophilin, anti-BX-63, and anti-AH-6 indicates that the network of cytasters includes centrosomal antigens.
Cytasters move in an orderly fashion at speeds of 0.5-2 um/min, in an energy-dependent process retarded and finally blocked
by the ATP analogue AMP-PNP and high concentrations of Taxol. Colliding cytasters fuse and form larger cytoskeletal
nucleation centers. The leech zygote is a highly compartmentalized cell whose cytasters function as articulated components
of a very dynamic cytoskeletal system engaged in bulk transportation of organelles during ooplasmic segregation.
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INTRODUCTION

Maternal factors, such as mRNA and proteins, are accu-
mulated in the developing oocyte cytoplasm during oogen-
esis and play an important role during subsequent develop-
ment in the control of gene expression (St. Johnston and
Nusslein-Volhard, 1992; Grunert and St. Johnston, 1996;
King, 1996). The oocyte also accumulates ribosomes and
organelles and in many cases pigment granules and nutri-
ents such as yolk. In most animal species the source of
maternal factors and organelles is the oocyte itself that
builds up an inventory of these materials during a long
maturation period. In some species, however, such as in-
sects and leeches, maternal factors and organelles are
mostly produced by nurse cells connected to the maturating
oocyte by cytoplasmic bridges (Fernandez et al., 1992;
Mahajan-Miklos and Cooley, 1994). Maternal factors, or-
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ganelles, and pigment granules may be scattered across the
cytoplasm or congregated in certain regions of the oocyte to
form well-defined, specialized cytoplasmic domains. How-
ever, the prezygotic distribution pattern of such domains is
often dramatically modified in the zygote by ooplasmic
segregation. That is the case, for example, in ascidian
(Reverberi, 1971; Satoh, 1999), nematode (Bowerman, 1999),
and annelid zygotes (Fernandez and Olea, 1982; Shimizu,
1982). The new emerging localization pattern of cytoplas-
mic domains is of great importance for the selective distri-
bution of cytoplasmic domains during cleavage.

The cytoskeleton plays an important role in the transpor-
tation, localization, and anchorage of maternal factors and
organelles in the zygote of several phyla (reviewed by King,
1996; Glotzer and Ephrussi, 1996; Kemphues and Strome,
1997; Fernandez et al., 1998b. see also Astrow et al., 1989;
Abraham et al., 1993; Shimizu, 1995; Fernandez et al.,
1998a). The association of mMRNA, ribosomes, and transla-
tion factors with the cytoskeleton may lead to the forma-
tion of translation complexes that regulate the synthesis of
proteins in development (see Bassell et al., 1994a,b; Hamill
et al., 1994; Glotzer and Ephrussi, 1996).
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Cytasters of the Leech Zygote

Previous work using the glossiphoniid leech Theromyzon
rude has shown that its egg and zygote are convenient
materials for the study of the role of the cytoskeleton in the
establishment of cytoplasmic domains. By the end of the
first interphase the egg presents three prominent cytoplas-
mic domains, rich in organelles and deficient in yolk
platelets, along the animal/vegetal axis. One is the centrally
located perinuclear plasm that forms in the meiotic egg as
result of a microtubule-based transport that leads to or-
ganelle accumulation around the sperm-derived centro-
some (Fernandez et al., 1994). The other two are the polar
domains, the animal and vegetal teloplasms, that form in
the zygote during the first interphase. The cytoskeleton and
organelles first congregate in two polar rings and about a
dozen meridional bands. Poleward displacement of the
contracting rings and shortening of the meridional bands
lead to concentration of the cytoskeleton and organelles at
the zygote poles (Fernandez and Olea, 1995). This is a
three-step segregation process, in which ectoplasmic micro-
tubules and microfilaments are involved (Fernandez et al.,
1998a). The animal and vegetal teloplasms may be deposi-
tory of morphogenetic factors engaged in cell fate determi-
nation (see Weisblat et al., 1999).

At each cleavage division the perinuclear plasm splits
into equal parts that are inherited by the daughter blas-
tomeres. The teloplasms, instead, are funneled along the D
blastomere lineage to be finally sequestered into five paired
large stem cells called “teloblasts.” These cells use the
teloplasm in the manufacture of blast cell descendants
destined to form ecto- and mesoderm (Fernandez, 1980;
Fernandez and Stent, 1980; Ferndndez and Olea, 1982).

In this paper we show that the early first interphase leech
zygote has a complex cytoskeleton that consists of inner
and outer domains. The inner domain, or endoplasmic
cytoskeleton, consists of a monaster whose fibers withdraw
from the zygote surface toward the end of the early first
interphase. The outer domain, or ectoplasmic cytoskeleton,
is formed by numerous cytoplasmic asters or cytasters that
function as centers of microtubule and microfilament
assembly/disassembly. Cytasters exhibit ATP-dependent
movements that confer the ectoplasmic cytoskeleton a
highly dynamic nature. They accumulate and transport
mitochondria, as well as other organelles, across the egg
periphery, accomplishing an important role in ooplasmic
segregation.

MATERIALS AND METHODS

Eggs or zygotes of the duck leech Theromyzon trizonare (for-
merly confused with T. rude, see Davies and Oosthuizen, 1993)
were used. Gravid leeches were collected in the ponds of the
Golden Gate Park, San Francisco, California, and maintained in the
laboratory at room temperature. To delay egg laying, gravid speci-
mens were stored in a climate chamber at 12-14°C. To obtain
synchronously developing eggs the ovisacs containing mature eggs
were opened in filtered spring water and cultured in the same fluid.
Eggs were already fertilized and blocked at metaphase | (Fernandez
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and Olea, 1982). Meiosis concluded at 2:30-3:00 h of development
at 20°C, time at which the nascent zygote entered its first inter-
phase.

Preparation of Zygotes for Light and Transmission
Electron Microscopy

Zygotes were fixed at room temperature for about 2 h in 2%
glutaraldehyde in 0.1 M cacodylate buffer, pH 7.4. To improve
cytoskeleton preservation tannic acid (0.15%), Taxol (80 wM), and
phalloidin (0.7 puM) were added to the fixative mixture. This
procedure increased the number of microtubules and microfila-
ments detected under fluorescence and electron microscopy. Eggs
were rinsed, dehydrated, and embedded in Spurr resin according to
Fernandez et al. (1994).

Preparation of Zygotes for Immunocytochemistry

Staining of microtubules and microfilaments, as well as of
centrosomal antigens, was performed in permeabilized-fixed zy-
gotes. For permeabilization mechanically dechorionated eggs were
treated for 10 min in PHEM buffer (2 mM MgCl,, 60 mM Pipes, 25
mM Hepes, and 10 mM EGTA, see Schliwa, 1980; Schliwa and van
Blerkom, 1981) containing Triton X-100, antiproteases, Taxol (1
rg/ml), and phalloidin (1 pg/ml). After fixation in 4% paraformal-
dehyde in PBS, zygotes were rinsed and stained for microtubules
and microfilaments according to Fernandez and Olea (1995). Stain-
ing of centrosomal antigens was performed with the following
antibodies produced in mouse: anti-centrophilin serum 1:10 in PBS
solution (provided by Dr. M. Valdivia), BX-63 anti-centrosome
serum 1:2 in PBS solution (provided by Dr. D. Glover), and AH-6
anti-centrosome serum 1:2 in PBS solution (provided by Dr. Biess-
mann). Rhodamine- or fluorescein-labeled goat anti-mouse 1gG was
used as a second antibody.

Mitochondria Staining

To trace live mitochondria in first interphase zygotes and to
determine their relationships with the cytoskeleton, red (CMTRos)
or green mitotracker (Molecular Probes) was used. For this purpose
mechanically dechorionated zygotes were loaded for 10 min with
mitotracker at a concentration of 45 wg/ml in spring water. After
several rinses in spring water zygotes were whole mounted be-
tween two coverslips. For double labeling, mitotracker was loaded
in zygotes preinjected with either labeled tubulin or actin.

Fluorescence Video Microscopy and Image
Processing

Live eggs microinjected with labeled probes or loaded with
mitotracker were studied in an Axiovert 135 inverted Zeiss fluo-
rescence microscope equipped with either a Sony CCD video
camera (Model DXC-C1) or a Hamamatsu chilled CCD camera
(Model C5985 with a Photoshop plug-in module). Images captured
with the Sony camera were digitized by a LG-3 Scientific frame
grabber (PCI version, Scion Corporation, Frederick, MD). Image
analysis was performed on a Power Macintosh 8500 computer
using the public domain NIH program (written by W. Rasband at
the U.S. National Institutes of Health). Images were frame averaged
and contrast enhanced, the gray level was properly adjusted, and in
some cases pseudocolor was assigned. Images captured with the
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Hamamatsu camera were processed by either the Photoshop soft-
ware or the NIH program. Time-lapse images were captured every
2-30 min and the results were analyzed in animated sequences or
multiple montages.

Preparation of Labeled Tubulin

Tubulin was purified from a chicken brain homogenate accord-
ing to the method of Weisenberg et al. (1968) as modified by
Monasterio and Timasheff (1987). SDS-PAGE of the purified tubu-
lin showed a single band at 55 kDa. Optical density reading at 276
nm indicated a tubulin concentration of 30-40 mg/ml. Tubulin
was conjugated to the following fluorophores according to Hyman
et al. (1991): 5-(and 6)-Carboxyfluorescein succinimidyl ester and
5-(and 6)-carboxytetramethylrhodamine succinimidyl ester (Mo-
lecular Probes). Replacement of the conjugation buffer for the
injection buffer was achieved by centrifugation at 30 psi for 20 min.
The fluorophore/tubulin dimer ratio was 2:1. Labeled tubulin was
aliquoted and stored at —20°C.

Preparation of Labeled Actin

Actin was purified from acetone powder obtained from chicken
breast according to Pardee and Spudish (1982). SDS-PAGE of the
purified G-actin gave a single band at 45 kDa. Conjugation of
F-actin to the fluorophore was done according to Bearer (1992). Both
carboxyfluorescein and carboxytetramethylrhodamine succinimi-
dyl esters (Molecular Probes) were used. The fluorophore/actin
monomer ratio was 3:1. After centrifugation the actin conjugate
was stored at 4°C in depolymerizing buffer. Before use the depoly-
merizing buffer was replaced by the acetate injection buffer
through several centrifugations at 13,000 rpm using an Amicon
tube.

Microinjection. Labeled tubulin or labeled actin, Taxol (pacli-
taxel, Molecular Probes), and AMP-PNP (5'adenylimidodiphos-
phate, Calbiochem) were pressure injected under a dissecting
microscope. The egg is 700-750 um in diameter and its volume
was estimated to be approximately 200 nl. Single or double
injections were always placed at the equatorial region of the egg or
zygote and the amount of fluid microinjected varied between 0.5
and 4 nl.

Tubulin and actin. To determine the assembly dynamics of
the ectoplasmic cytoskeleton, chicken tubulin or actin, labeled
with rhodamine or fluorescein, was microinjected at meiosis |
(about 30 min of development), meiosis Il (about 2 h of develop-
ment), or during early first interphase (2:30-3:00 to 3:30-4:00 h of
development). Tagged tubulin (3.5 mg/ml) was dissolved in gluta-
mate injection buffer (0.5 mM glutamic acid, 50 mM potassium
glutamate, 0.5 mM MgCl,, pH 6.5; see Hyman et al., 1991),
whereas labeled actin (3.7 mg/ml) was dissolved in acetate buffer (2
mM Tris acetate, pH 7.0, 0.2 mM ATP, 0.05 mM MgCl,; see Hird,
1996). Microinjection of 0.5-1 nl of labeled tubulin or actin gave a
final intracellular concentration of 1.7-3.5 ng. Zygotes that were
microinjected with either of the probes, or coinjected with the two
probes, were studied by time-lapse video fluorescence. To deter-
mine whether fluorescence detected in zygotes was due to incor-
poration of the labeled probe into microtubules or microfilaments
or to the accumulation of labeled subunits, microinjected zygotes
were examined under the fluorescence microscope during and after
the permeabilization procedure.
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Taxol. The effect of Taxol on microtubule polymerization and
dynamics was assessed in zygotes preinjected with labeled tubulin.
Working solutions of 1, 2, 5, 15, 25, 35, and 50 mM Taxol, diluted
in DMSO, were used. Microinjection of 0.5 nl of the working
solution gave the following approximate intracellular concentra-
tions of Taxol: 2.5, 5, 12.5, 37.5, 62.5, 87.5, and 125 M, respec-
tively. In all cases the final intracellular concentration of DMSO
was about 0.25%.

AMP-PNP. To determine whether cytaster movement was an
ATP-dependent process, zygotes preinjected with labeled tubulin
or actin received a second microinjection of the ATP analog
AMP-PNP. Working solutions of 0.05, 0.24, and 0.47 M AMP-PNP
in glutamate injection buffer were prepared. Each zygote received 4
nl of the working solution to reach intracellular concentrations of
approximately 10, 50, and 100 mM.

RESULTS

The observations were made during early first interphase
that extends between completion of the second meiotic
division and initiation of major furrowing activity. Major
furrowing activity is marked by the appearance of the
animal polar ring. At 20°C the early first interphase is
completed in about 1 h (Fernandez et al., 1998a).

The Cytoskeleton of the Late Meiotic Egg and
Early First Interphase Zygote

Examination of sectioned late meiotic eggs or early first
interphase zygotes stained for a-tubulin reveal that their
cytoskeleton consists of internal and external microtubule
domains. The internal, or endoplasmic, domain corre-
sponds to a monaster that consists of a centrally located
microtubule nucleation center and numerous bundles of
microtubules that extend radially to the zygote periphery
(Figs. 1A and 1B). The monaster fibers enter into the
ectoplasm but it is not clear how far their microtubules
extend. The external, or ectoplasmic, microtubule domain
appears as a thick scalloped layer, 7-10 um thick, formed by
rounded bundles of microtubules often arranged into semi-
circular bodies (Fig. 1C). Toward the end of the early first
interphase, the distal segment of the monaster fibers loses
contact with the zygote periphery and becomes highly
distorted and a nonfluorescent zone appears beneath the
ectoplasm. Concomitantly the ectoplasmic microtubule
domain becomes thinner (about 5 um thick) and adopts a
beaded appearance (Figs. 1D and 1E) similar to that seen in
the early meiotic egg (Fig. 1F), at a time before it has formed
a monaster (see Discussion). As shown in Fig. 1G, the
beaded appearance of the zygote ectoplasm is due to numer-
ous foci of microtubules that can be visualized across the
surface of whole-mounted zygotes stained for tubulin. Simi-
lar foci of actin filaments are seen in whole-mounted or
sectioned zygotes stained with labeled phalloidin (Fig. 1H).
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FIG. 1. Organization of the endoplasmic and ectoplasmic cytoskeleton domains in early first interphase zygotes studied by immunoflu-
orescence (A-H) and after microinjection of labeled tubulin or actin (I-N). (A) Cross-section of a zygote embedded in glycol methacrylate
and stained for a-tubulin that shows the monaster (mo) and the ectoplasmic domain of microtubules (ec). (B) Periphery of a similar zygote
showing monaster fibers (arrowheads) entering the ectoplasm (ec). (C) Periphery of the same zygote showing thick bundles of microtubules,
presumably monaster fibers, scattered across the ectoplasm (ec). Notice that microtubule bundles tend to be arranged in semicircular
structures (arrows). (D) Cross-section of a zygote embedded in plastic and stained for g-tubulin that shows the center of the monaster (mo)
and its fibers that have lost connection with the ectoplasm (ec). Interrupted monaster fibers become highly distorted (arrowheads). (E)
Periphery of the same zygote showing the interrupted monaster fibers (arrowheads) and the beaded appearance (arrows) of the ectoplasmic
microtubule domain. Notice the microtubule-free zone underlying the ectoplasm. (F) Section across the periphery of an early meiotic egg
embedded in plastic and stained for a-tubulin. Notice the beaded appearance (arrows) of its ectoplasmic domain of microtubules. (G) Animal
pole view of a whole-mounted zygote stained for a-tubulin that shows foci of microtubules (arrow) scattered throughout the ectoplasm. (H)
Surface view of a whole-mounted zygote stained with rhodamine—phalloidin that shows several foci of actin filaments (arrows). (I) Lateral
view of a live zygote microinjected with rhodamine—tubulin during the meiotic period that shows accumulation of the probe in a peripheral
network of fluorescent foci. (J) Similar view of another live zygote microinjected with rhodamine-actin that shows accumulation of the
probe in a similar network of fluorescent foci. (K and L) Confocal sections of a live rhodamine—tubulin microinjected egg taken at 3 and 5
wm of depth, respectively, that show tiny star-shaped fluorescent foci (arrows), some with a nonfluorescent center (arrow heads), whose
processes interdigitate with one another. (M) Surface view of a live zygote microinjected with rhodamine-tubulin. This electronically
shadowed image shows irregularly shaped fluorescent foci (arrows) whose processes interdigitate and form thick fibers (arrowheads). (N)
Permeabilized zygote previously microinjected with rhodamine-tubulin. Notice that fluorescence persists in ectoplasmic foci (arrows) as
well as in the animal polar ring (asterisk). Hence these regions incorporated microinjected tubulin into microtubules. Bars, 100 um (G, H,
I, and N); 80 um (J); 30 um (A and D); 10 um (B, L, and M); 6 um (C, E, and F).
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FIG. 2. Whole-mounted live first interphase zygote microinjected
with a mixture of rhodamine—tubulin and fluorescein-actin during
the meiotic period. Notice colocalization of microtubules (A) and
actin filaments (B). Arrows point to cytasters. The fuzzy appearance
of the actin network is due to the zygote autofluorescence. Bar, 100
mm.

We are not yet certain, however, whether an endoplasmic
actin cytoskeleton also exists.

Accumulation of Microinjected Labeled Tubulin
and Actin in Discrete Bodies Distributed across
the Ectoplasm

Eggs or zygotes that were microinjected with either
labeled tubulin or labeled actin, during the meiotic or
interphase period, and examined toward the end of early
first interphase reveal the presence of numerous irregularly
shaped fluorescent bodies throughout the egg periphery
(Figs. 11 and 1)). The size and brightness of these bodies
increase during early interphase, in part due to their fusion.
When first seen they are 5-20 um in diameter reaching up
to 70 um by the end of the early first interphase. Optical
sections of tubulin-labeled zygotes examined under the
confocal microscope show that the fluorescent bodies are
star-shaped structures that can include a central unlabeled
region (Figs. 1K and 1L). Fine filaments radiating out from
the fluorescent bodies interdigitate with one another form-
ing thicker filaments. These are well shown in electroni-
cally shadowed images like the one in Fig. 1M. Examination
of permeabilized zygotes microinjected with either marked
tubulin or actin show that the fluorescent bodies remain in
place after a procedure that is intended to extract soluble
components such as monomeric tubulin and actin. The fact
that permeabilized fluorescence bodies lose brightness in-
dicates that both polymerized and unpolymerized probes
are sequestered in their interior (Fig. 1N).

The sizes, structure, and distribution of the fluorescent
bodies are similar to those of the fluorescent foci detected
by immunocytochemistry. Furthermore, coinjection of la-
beled tubulin and actin shows colocalization of both probes
(Figs. 2A and 2B). These results indicate that the fluorescent
foci and the fluorescent bodies are the same thing: centers
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of microtubule and microfilament accumulation. These
centers have similarities with cytoplasmic asters described
in other cells (see Discussion), and for this reason they are
called cytasters.

Time-Lapse Video Microscopy of Moving Cytasters

Time-lapse video tracing of cytasters labeled with either
fluorescent tubulin or/and actin show that they could move
in an orderly manner at speeds of 0.5-2.5 um/min (Figs.
3A-3G). This speed was estimated by computing time vs
distance between neighboring cytasters. As shown in Figs.
4A-4D, cytaster movement begins to be affected by intra-
cellular concentrations of 10 mM AMP-PNP. At this con-
centration cytaster movement is slowed down or inter-
rupted. At higher concentrations the zygotes die. Colliding
cytasters fuse and form larger cytoskeletal bodies (Figs.
4E-4F).

FIG. 3. Movement of microtubule and microfilament cytasters
determined by time-lapse video imaging of microinjected early first
interphase zygotes. (A-D) Montage of a rhodamine-tubulin-
microinjected zygote that shows movement of microtubule cytast-
ers during a period of 9 min. To facilitate tracing of the cytasters
some of them are marked with white dots of different size linked by
black bars (Compare 3A with 3D). Notice that marked cytasters are
moving away from one another. (E-G) Montage of a rhodamine-
actin-microinjected zygote that shows movement of actin cytasters
during a period of 16 min. Cytasters converging (arrows) into a
labeled region of the zygote (asterisk) or diverging from it (arrow-
heads) are shown. Bars, 50 um (D); 30 um (G).
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FIG. 4. Detention of cytaster movement and variation of their fluorescence in early first interphase zygotes microinjected with labeled
tubulin. (A-D) Montage that shows the effect of different concentrations of AMP-PNP on cytasters that are moving away from one another
(arrows). A5 mM intracellular concentration of the analog does not affect cytaster movement (A and B, time 18 min), whereas a 10 mM
intracellular concentration stops cytaster movement (C and D, time 30 min). (E-H) Montage that shows the effect of different
concentrations of Taxol on cytasters that are approaching to one another (arrows). A 37.5 uM intracellular concentration of the drug does
not affect cytaster movement (E and F, time 20 min). Notice that cytasters fuse with one another to form larger cytoskeletal bodies. A 125
uM intracellular concentration of Taxol stops cytaster movement (G and H, time 30 min). (I and J) Montage that shows fluctuations in
cytaster brightness (compare arrowheads) with time (9 min). Most cytasters are seen moving away from one another (compare open arrows)
and in some regions (asterisks) they seem to be forming de novo (arrows). Bars, 30 um (B); 20 um (D); 10 um (H, J).

Figures 4E-4H show the effect of microinjected Taxol on
cytaster movement. Low intracellular concentrations of the
drug (2.5-37.5 uM) do not affect or slow down (20-50%0)
cytaster movement, whereas higher intracellular concen-
trations (starting with 62.5 uM) block their movement.

In some regions cytasters display synchronized divergent
or convergent movements. Furthermore, time-lapse tracing
of individual microtubule cytasters shows that their move-
ment may be accompanied by changes in fluorescence

emission. In some cases cytasters seem to disappear from
scene and reappear after a few minutes (Figs. 41 and 4J).

Cytasters Are Centers of Microtubule and
Microfilament Nucleation during Early First
Interphase

To investigate the possibility that cytasters are centers of
microtubule and microfilament nucleation we carried out
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FIG. 5. Whole-mounted live early first interphase zygotes that
show incorporation of labeled actin (A) and labeled tubulin (B) in a
cytaster network (nt) after short pulses of the microinjected probe,
and the colocalization (arrows) of a network of microtubule cytast-
ers (C) with a network of furrows (D) sculptured on the zygote
surface. The latter zygote was viewed with the fluorescein filter.
Bars, 100 um (D). 50 um (A, B).

two types of experiment. First, zygotes were examined
shortly after receiving brief pulses of labeled tubulin and/or
labeled actin during different periods of the early and mid
first interphase. It was found that cytasters always incorpo-
rate the probes, indicating that during those periods they
are constantly functioning as microtubule and microfila-
ment organization centers (Figs. 5A and 5B). Second, double
injection of labeled tubulin and Taxol increases cytaster
fluorescence because more microtubules are being as-
sembled. It might be argued that expansion of the tubulin
and/or actin pool in microinjected zygotes induces cytaster
formation. However, there is an important reason for reject-
ing this possibility: microtubule and actin cytasters are
seen in immunostained eggs and zygotes that have not been
exposed to additional exogenous tubulin or actin.

Toward the end of the early first interphase, the position
of cytasters is marked by depressions of the zygote surface
(Figs. 5C and 5D). These depressions are probably already
present at an earlier stage, but due to their small size
remain undetected under the fluorescence microscope. This
conjecture is supported by light and electron microscopic
studies presented below.
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Immunocytochemical Demonstration That the
Network of Cytasters Contains Centrosomal
Antigens

Since cytasters function as microtubule-organizing cen-
ters it was important to determine whether they contained
centrosomal antigens. To this end zygotes that have com-
pleted the early first interphase, marked by the formation of
the animal polar ring, were immunostained for centrosomal
proteins. Due to the moderate signal emitted by the stained
centrosomes and the strong zygote autofluorescence it was
not possible to double stain cytasters to show colocaliza-
tion of centrosomal proteins and microtubules. To test the
antibodies specificity, zygotes that have already assembled
the cleavage spindle were also immunostained for centro-
somal antigens. Observations show that the network of
cytasters, together with the animal polar ring (Figs. 6A-6C),
and the cleavage spindle poles (Figs. 6D, 6E, and 6G) stain
with the following antisera: anti-centrophilin, anti-BX-63,
and anti-AH-6. The position and large size of the cleavage
spindle centrosomes can be appreciated in Fig. 6F that
corresponds to a dividing zygote stained for B-tubulin
(compare with Fig. 6D).

Cytasters as Sites of Organelle Accumulation

Fluorescent bodies, similar in size and motility to the
cytasters detected after injection of labeled tubulin or actin,
are also seen throughout the ectoplasm of early first inter-
phase zygotes previously loaded with mitotracker (Fig. 7A).
Furthermore, the clusters of mitochondria become inter-
connected forming a network (Fig. 7B), whose size and
brightness gradually increase (Figs. 7C-7G). Eggs microin-
jected with fluorescein-labeled tubulin, and then loaded
with red mitotracker, show that marked mitochondria
colocalize with microtubule cytasters and move together
(Figs. 7H and 7I).

To corroborate these results and to determine whether
other organelles also accumulate in cytasters during early
first interphase, zygotes were examined under light and
electron microscopy. Early cytasters are identified as
slightly depressed regions of the zygote surface having
thickened ectoplasm (Figs. 8A and 8B). The ectoplasm has
an outer microfilament-rich cortex and an inner subcortex
with microtubules, granular material, and diverse or-
ganelles in moderate amounts. Microtubules are found near
the cortex and close to mitochondria, which constitute the
most common organelle of the cytaster. Microfilaments
could not be unambiguously identified in the subcortex
(Figs. 8C and 8D). Comparison of cytasters throughout the
first interphase shows that their development is marked by
deeper depressions of the zygote surface and increased
thickness of their ectoplasm (Fig. 9A). The cytaster cortex
does not seem to change, but its subcortex shows greater
accumulation of granules and organelles (Figs. 9B-9D).
Accumulation of mitochondria is particularly striking.
They appear as rounded, elongated, or figure-of-eight bod-
ies, suggesting that the organelle is actively proliferating
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FIG. 6. Immunofluorescence detection of centrosomal antigens
in the network of cytasters of whole-mounted early first interphase
zygotes (A-C) and in the centrosomes of sectioned first cleavage
spindles (D, E, and G). (A) Zygote stained for the AH-6 antigen that
is present in the animal polar ring (asterisk) and in cytasters
(arrows). (B) Similar zygote stained for centrophilin showing a
similar distribution of the antigen in the polar ring (asterisk) and
cytasters (arrows). (C) Higher magnification of the network of
cytasters (arrows) stained for the AH-6 antigen. (D) The centro-
somes (ce) of the cleavage spindle are strongly stained for centro-
philin, while the spindle fibers are lightly stained. (E) Only the
spindle centrosomes (ce) are seen stained with the AH-6 antibody.
(F) Whole-mounted mitotic zygote showing the first cleavage
spindle stained for a-tubulin. Notice the large size of the centro-
somes (ce). (G) Cleaving zygote that shows the centrosomes (ce) of
the first two blastomeres stained for centrophilin. Bars, 30 um (A,
B, D, and F); 10 um (C, E, and G).

(see also Fernandez et al., 1998a). There are numerous
membranous profiles that correspond to a combination of
vesicle and branched tubular structures, some studded with
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ribosomes, that undoubtedly correspond to a mixture of
smooth and rough endoplasmic reticulum. Microfilaments
could not be visualized across the subcortex.

FIG. 7. Whole-mounted live first interphase zygotes loaded with
red mitotracker. (A) Small bright spots (arrows) scattered across the
zygote surface correspond to sites of mitochondria accumulation
and closely resemble the size and distribution of cytasters. (B) Same
zygote 20 min later showing that mitochondrial clusters are larger
and brighter and form a network (nt). (C) As with cytasters,
mitochondrial clusters have fused into larger bodies arrows. The
two pole cells are shown (top arrow). (D-G) Montage that shows
formation of a network of mitochondrial clusters during a 15-min
period. The small white circles serve as reference points to follow
the mitochondrial clusters. (H and 1) Colocalization of mitocho-
drial clusters (H) and microtubule cytasters (l), assembled from
fluorescein-labeled tubulin. Arrows mark the same regions of the
zygote. Bars, 100 um (B, C); 50 um (1); 30 um (G).
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FIG. 8.

Light and electron micrographs showing the structure of the cytasters during the second half of the early first interphase. (A and

B) Cytasters (cy) appear as regions of slightly depressed and thickened ectoplasm that enclose a moderate number of organelles, particularly
mitochondria (mi). Yolk platelets (y) are abundant in the endoplasm. (C and D) At higher magnification one detects the cortical (co) and
subcortical (sc) regions of the cytaster. The microfilament (mf)-rich cortex surmounts a subcortex that has numerous microtubules (mt) and
a moderate number of granules and organelles such as mitochondria and endoplasmic reticulum (er). Microtubules are commonly seen near

mitochondria and the cortex. Bars, 7 um (A); 2 um (B); 0.2 um (C, D).

DISCUSSION

The Two Cytoskeletal Domains of the Early First
Interphase Zygote

A striking feature of the first interphase leech zygote is
the complexity of its cytoskeleton that comprises two
different domains. The endoplasmic or inner domain corre-
sponds to the first interphase monaster whose radially
running microtubules are nucleated by the sperm-derived
centrosome (Fernandez et al.,, 1994). The leech zygote
monaster is thus similar in origin and structure to the
monaster found in the zygote of other species, such as the
sea urchin (Harris, 1981) and the frog (Gard et al., 1995).

By contrast, the ectoplasmic or outer domain of microtu-
bules of the early first interphase leech zygote, being formed
by interconnected foci or cytasters, represent a peculiar case

encountered in the normal zygote of very few species.
Interestingly enough, the zygote network of microtubule
cytasters becomes visible by the time monaster fibers
interrupt their connections with the ectoplasm. However,
cytasters can be visualized before in the early meiotic egg,
whose monaster has not yet been assembled (see Fernandez
etal., 1994). These results suggest that the endoplasmic and
ectoplasmic microtubule domains are separate systems that
probably form independently. It is presumed that cytasters
arise from discrete sites of accumulation of centrosomal
antigens capable of nucleating microtubules across the
ectoplasm.

Both domains of microtubules in the leech egg and zygote
appear involved in organelle translocation. However, their
different organization suggests that they do similar tasks in
different ways. The endoplasmic microtubules seem to
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FIG. 9. Light and electron micrographs showing the structure of the cytasters by the end of the early first interphase. (A and B) Cytasters
(cy) appear as much thicker regions of the ectoplasm that enclose numerous organelles, particularly mitochondria (mi). Large yolk platelets
(y) mark the ectoplasm inner boundary. (C and D) At higher magnification one verifies that the structure of the cortex (co) does not seem
to have changed much, including numerous microfilaments (mf). The subcortex (sc) shows elongated mitochondria that will probably
divide (arrow) or have just come apart (arrow head). Numerous granules and profiles of endoplasmic reticulum (er) are seen. As in
less-developed cytasters, microtubules are found near mitochondria and the cortex. Bars, 8 um (A); 1 um (B); 0.2 um (C); 0.1 um (D).

provide radially arranged routes for organelles to flow
centripetally in the (+) — (—) direction or centrifugally in
the (=) — (+) direction. Thus, centripetal organelle trans-
location is probably involved in the formation of the pe-
rinuclear plasm domain at the egg center (Fernandez et al.,
1994), whereas the centrifugal organelle translocation is
probably responsible for the accumulation of numerous
organelles in the zygote ectoplasm (Fernandez et al., 1998a).
As shown in this paper, ectoplasmic microtubules orga-
nized in cytasters seem to function differently. They behave
as carriers, rather than rails, for bulk transportation of
organelles across the ectoplasm.

An ectoplasmic cytoskeleton made of mobile nucleation
centers would facilitate reiterative episodes of cytoskeleton
reorganization, and this is what actually happens in the
leech zygote (Fernandez and Olea, 1995). Late meiotic and

first interphase Tubifex eggs also form inner and outer
cytoskeleton domains, but in this case they are made of
actin instead of a combination of actin filaments and
microtubules. Interestingly, the outer actin filaments are
also arranged in foci (Shimizu, 1984, 1997).

Interphase Cytasters as Centers of Microtubule
and Microfilament Assembly/Disassembly

Evidence presented in this paper indicates that cytasters
are centers for the nucleation of polymerization of both
microtubules and microfilaments. However, structures so
far reported in the literature as cytasters nucleate microtu-
bules only. It is the case, for example, of cytasters in insect
parthenogenetic eggs (Riparbelli et al., 1998) and mouse
oocytes (Maro et al, 1985; Schatten et al., 1985). Foci of
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actin nucleation have been reported in Tubifex eggs
(Shimizu, 1997) and budding yeast (Adams and Pringle,
1984; Kilmartin and Adams, 1984; Mulholland et al., 1994;
Li et al., 1995; Winter et al., 1997; Lechler and Li, 1997).
These actin foci have motility and bear some similarities
with leech cytasters. For this reason they may be considered
actin cytasters. Hence, cytasters can be built upon micro-
tubules, microfilaments, or a mixture of both. In some cells
microtubule cytasters do not form spontaneously but can
be induced to form by Taxol a drug that is known to favor
microtubule nucleation by lowering the critical tubulin
concentration (De Brabander et al., 1981). One good ex-
ample of this is the Taxol-induced formation of cytasters in
sea urchin oocytes (Harris and Clason, 1992).

Leech zygotes resemble Xenopus eggs (Gard et al., 1990;
Buendia et al., 1990) and mouse oocytes (Maro et al., 1985)
in that their cytasters include centrosomal material and
hence constitute classical centers for the initiation of
microtubule polymerization. However the nondiscrete dis-
tribution of centrosomal antigens in leech cytasters gener-
ates some confusion. It is possible that during cytaster
collision and coalescence their centers, presumably con-
taining a centrosome, overlap with their processes lacking
centrosomal proteins. This situation might yield a diffuse
distribution of the antigens. However, diffuse distribution
of centrosomal antigens, such as y-tubulin, is reported to
occur throughout the extensive cytoplasm of the giant fresh
water ameba Reticulomyxa filosa (Kube-Granderath and
Schliwa, 1997). Moreover, centrosomal antigens can be
found in the mitotic spindle poles and also diffusely distrib-
uted on intermediate filaments (Buendia et al., 1990).

Since the cytasters of the early first interphase leech
zygote assemble microtubules and microfilaments continu-
ously, they must also be depolymerizing their cytoskeleton
continuously. Hence, cytasters can be considered centers of
cytoskeleton assembly/disassembly.

The Dependence of Cytasters Motility on both
Microtubules and Microfilaments

The rate at which cytasters move during early first
interphase is similar to that at which chromosomes move
along the spindle in Xenopus oocyte extracts or in somatic
cells (Desai et al., 1998) and to the speed at which micro-
tubules and microfilaments backflow in lamellipodia of
moving cells (Waterman-Storer and Salmon, 1997). Yeast
actin patches also move in the plane of the cortex but at
much higher speed (Doyle and Boekstein, 1996; Waddle et
al., 1996; Winter et al., 1997). Movement of yeast actin
patches as well as leech cytasters might facilitate pro-
grammed changes in cytoskeleton organization. Thus, for-
mation of contraction rings relies on the orderly accumu-
lation of actin patches in yeast (Machesky, 1998) and of
cytasters in leech zygotes (unpublished observations).

Cytaster movement is an ATP-dependent process since it is
slowed and finally stopped by AMP-PNP in a dose-dependent
manner. Similar results were obtained by Desai et al. (1998) in
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their study of poleward microtubule flux in Xenopus extract
spindles. An important question to answer is how ATP energy
is utilized during cytaster movement. The fact that high
concentrations of Taxol paralyze cytasters suggests that their
movement would rely on sliding of microtubules subjected to
polymerization/depolymerization. However, this might be
only part of the explanation since the action of colchicine and
cytochalasin B (see Fernandez et al., 1998a), indicate that
cytaster movement probably depends on both microtubules
and microfilaments. The results of Taxol treatment may be
interpreted as showing that the drug produces ““freezing” of a
microtubule array, which in turn immobilizes the colocalized
actin lattice. Hence, ATP energy is probably consumed in
both microtubule and actin sliding using appropriate motors
and regulatory proteins (Yeh et al.,, 1995; Carminati and
Stearns, 1997; Cottingham and Hoyt, 1997). Due to the
superficial position of cytasters, the possibility cannot be
dismissed that their movement may also depend on the
interaction of its cytoskeletal components with cortical sites,
a situation that occurs during centrosome movement and
spindle positioning in mitotic cells (Karsenti et al., 1996).
Finally, the fact that the cytaster cytoskeleton is constantly
assembling/disassembling, polymerization/depolymerization
of microtubules and microfilaments may also contribute to
cytaster movement (reviewed by Inoué and Salmon, 1995;
Mitchison and Cramer, 1996; Svitnika et al., 1997).

Cytasters as Sites for Organelle Accumulation and
Vehicles for Bulk Transportation of Organelles

There are several reports in the literature indicating that
microtubule aster configurations are very important for
concentrating cytoplasmic components such as centroso-
mal material (Dirksen, 1961; Kallenbach, 1985; Buendia et
al., 1990; Harris and Clason, 1992) or mitochondria (Van
Blerkom, 1991, Pereira et al., 1997). The last authors have
even proposed that an aster configuration, such as that of
the spindle, may be required to properly segregate mito-
chondria during cell division. On the other hand, interac-
tion between mitochondria and other organelles with the
actin cytoskeleton is known to take place in budding yeast
(Boldogh et al., 1998), squid axoplasm (Bearer et al., 1993),
ascidian and Tubifex eggs (Jeffery, 1995; Shimizu, 1995),
and in many cells as part of the intracellular organelle
targeting process. Therefore, the combined microtubule/
microfilament cytaster appears as a suitable device to
collect and transport numerous mitochondria and other
organelles throughout the leech zygote.

Increasing accumulation of mitochondria throughout the
ectoplasm is the result of two processes: a microtubule-
based transport of mitochondria from the neighbor endo-
plasm and replication of the organelle (Fernandez et al.,
1998a). When mitochondria reach the ectoplasm they must
be transferred from the monaster fibers to the cytasters.
This requires that the two type of microtubules be inter-
connected, and this may be achieved by overlapping or
perhaps via microfilaments.
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Two lines of evidence demonstrate that mitochondria
accumulate in cytasters and move with them. First, egg
loaded with mitotracker shows that ectoplasmic mitochon-
dria form small moving clusters. Second, mitochondria
loaded with a mitotracker colocalize with cytasters that
have been labeled with fluorescent tubulin or actin.

The manner in which mitochondria and other organelles
relate with the dynamic cytaster cytoskeleton is not yet
understood and this is crucial to comprehend how they
move together. The role of molecular motors and protein
kinases in these processes is currently under investigation.

In this paper we show further evidence that the leech
zygote is a highly compartmentalized cell that provides a
detailed account of how different parts of the eukaryotic
cell do their specific tasks in an integrated manner.
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