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Abstract

Historically, Pappophoreae included the genera Cottea, Enneapogon, Kaokochloa, Pappophorum and Schmidtia. Some authors consider this
tribe as a well-supported monophyletic group; while other evidences reveals Pappophoreae as polyphyletic, with Pappophorum separated from the
rest of the tribe. When the latter happens, it can form a clade with Tridens flavus. Molecular phylogenetic analyses of the subfamily Chloridoideae
have included few species of Pappophoreae; therefore, further research involving more representatives of this tribe is needed. With the aim of
providing new evidence to help clarify the phylogenetic position of Pappophorum and its relationships with other genera of the tribe and the
subfamily Chloridoideae, eight new sequences of ITS and trnL-F regions of Pappophoreae species were generated. These sequences were
analyzed together with other available sequence data obtained from GenBank, using maximum parsimony and Bayesian inference, for individual
(trnL-F or ITS) or combined trnL-F/ITS data sets. All analyses reveal that Pappophoreae is polyphyletic, with Pappophorum separated from the
rest of the tribe forming a well-supported clade sister to Tridens flavus.
© 2011 SAAB. Published by Elsevier B.V. All rights reserved.
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1. Introduction

The tribe Pappophoreae s.l. comprises five genera (Nicora
and Rúgolo de Agrasar, 1987), of which Cottea Kunth (1
specie) and Pappophorum Schreber (8 species) are American;
Kaokochloa Winter (1 specie) and Schmidtia Steud. (2 species)
are African; and Enneapogon Desv. ex P. Beauv. (30 species),
with only one specie distributed worldwide, is mainly
widespread in tropical and subtropical regions of Africa, Asia
and Australia (Van den Borre and Watson, 1997; Watson and
Dallwitz, 1994).

Although some authors consider this tribe as a well-supported
monophyletic group (Roodt-Wilding and Spies, 2006; Van den
Borre and Watson, 1997), other evidences reveal that Pappo-
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phoreae is polyphyletic within subfamily Chloridoideae (Colum-
bus et al., 2007; GPWG, 2001; Hilu and Alice, 2001; Ingram and
Doyle, 2007).

Characters such as many-nerved glumes, scabrous rachilla,
many-awned and many-nerved lemmas, and the presence of
elongated, bulbous-tip microhairs have been used to delimit
Pappophoreae (Clayton and Renvoize, 1986; Renvoize, 1985).
However, although included in the tribe, Pappophorum appears
as an atypical genus in which distinctive microhairs are absent
and glumes are 1-nerved instead of having several nerves
(Reeder, 1965). Based on these characters, Reeder (1965)
divided the tribe Pappophoreae in two subtribes: Cotteinae to
include Cottea, Enneapogon, Kaokochloa and Schmidtia, and
Pappophorinae, in which he placed Pappophorum.

Although this division is not reflected in other studies
involving Pappophoreae (Van den Borre and Watson, 1997),
the differentiation between Cotteinae (sensu Reeder, 1965) and
Pappophorinae (Pappophorum) was pointed out by Tivano and
ts reserved.
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Vegetti (2004) based on morphology, and by Hilu and Alice
(2001), Columbus et al. (2007), Ingram and Doyle (2007), and
Peterson et al. (2010) based on molecular phylogenetic studies.
In the molecular studies, the tribe Pappophoreae always
appeared as polyphyletic, although inconsistencies were only
found in the location of Pappophorum, while the remaining
taxa of the tribe were always gathered in a monophyletic group.
Pappophorum vaginatum Buckley and Tridens flavus were
paired as a well-supported clade (Columbus et al., 2007); or
Pappophorum pappiferum (Lam.) O. Kuntze was placed with
Neesiochloa barbata (Nees) Pilg. by Peterson et al. (2010).
Hilu and Alice (2001) placed it within a clade of Eragrostis
species but this is undoubtedly the result of a misidentified
sample. Based on rps16 and GBSSI (waxy) sequence data,
Ingram and Doyle (2007) provided additional evidence
supporting species of Pappophorum separated from
Eragrostis.

While molecular phylogenetic analyses of the subfamily
Chloridoideae included a few representatives of Pappophoreae
(Columbus et al., 2007; Hilu and Alice, 2000, 2001; Ingram and
Doyle, 2007; Peterson et al., 2010; Roodt-Wilding and Spies,
2006), further research involving more representatives of this
tribe is needed. In this study, we sequenced the nuclear ribosomal
internal transcribed spacer region (ITS1+5.8 S+ITS2) and a
chloroplast region comprising the trnL intron, the trnL partial
exon, plus the intergenic spacer between trnL and trnF genes
(trnL-F) for eight taxa including species ofCottea, Pappophorum
and Enneapogon. The aim of this study is to clarify the
phylogenetic position of Pappophorum and its relationships
with other genera in the subfamily Chloridoideae.

2. Materials and methods

Fresh material was collected and preserved in silica gel or,
in a few cases, plant material was obtained from herbarium
specimens. We sequenced the trnL-F/ITS regions of one
species of Cottea, three species of Enneapogon and three
species of Pappophorum. Kaokochloa was not included in
this study due to lack of samples. All sequences were
analyzed together with other sequences of Pappophoreae
available from GenBank (Appendix A). A total of 12 species
belonging to four out of the five genera of the tribe
Pappophoreae were included in the analyses. Additionally,
sequences from 38 genera of the subfamily Chloridoideae
were incorporated to test the monophyly of the tribe
[Columbus et al., 2007; Roodt-Wilding and Spies, 2006
(Appendix A)]. As outgroup, we used the same taxa used by
Columbus et al. (2007).

2.1. DNA extraction, PCR amplification and sequencing

Silica-gel-dried leaves and herbarium samples were ground
in liquid nitrogen. From silica-dried material, DNA was
isolated using modified CTAB protocols as described in
Giussani et al. (2001). From samples taken from herbarium
specimens, DNA was isolated using the DNeasy Plant Mini
Kit (Qiagen, Hilden, Germany) following the manufacturer's
instructions. The ITS region was amplified by polymerase
chain reaction (PCR), using the primers “ITS-5” and “ITS-4”
of White et al. (1990). The PCR amplification was performed
in a 25 μl reaction with 50 and 100 ng of DNA, 1.25–3 units of
Taq polymerase (Invitrogen Life Technologies, São Paulo,
Brazil), a final concentration of 1× PCR buffer minus Mg,
5 mM MgCl2, 0.025 mM dNTP each, 0.24 μM of each primer,
and 0.5× Q of the Taq PCR Core Kit (Qiagen) used as a PCR
additive. PCR was carried out using the following parameters
for the ITS: 1 cycle of 94 °C for 5 min, 39 cycles of 94 °C for
30 s, 48 °C for 1 min, and 72 °C for 1 min 30 s, and a final
extension cycle of 72 °C for 10 min. The trnL-F region was
PCR amplified using the primers C and F as described in
Taberlet et al. (1991). Amplification conditions were similar to
those used for the ITS region, except that 0.8X DMSO was
used instead of the Q additive. PCR parameters for the trnL-F
were similar to those of ITS, only the number of cycles was
reduced to 34, and the final extension to 7 min. From
Enneapogon cylindricus, in which primers C and F failed to
amplify, the trnL-F region was amplified in two fragments
using primers D and E of Taberlet et al. (1991), in combination
with primers Cii and Fdw of Giussani et al. (2009),
respectively. In order to test the concentration and quality of
the amplified DNA, PCR products were electrophoresed using
a 1% agarose gel in a 1× TBE buffer and visualized under UV
light. Sequencing reactions were performed by Macrogen Inc.
using the ABI PRISM BigDyeTM Terminator Cycle Sequenc-
ing Kits with AmpliTaq DNA polymerase (Applied Biosys-
tems, Seoul, Korea), following the protocols supplied by the
manufacturer. Sequencing primers were similar to the
amplification ones.

2.2. Data analyses

Sequenced fragments were assembled and edited using
Chromas Pro ver. 1.34 (Technelysium Pty, Ltd, Tewantin,
Australia). The alignments were constructed with CLUSTAL
W and then manually corrected using BioEdit version 7.0.5.3
(Hall, 1999). Sequences were submitted to GenBank (http://
www.ncbi.nlm.nih.gov); GenBank accession numbers are
provided in Appendix A. Alignments and phylogenetic trees
were submitted to TreeBASE: Journal Peer Reviewer's PIN
Number: XXXX).

Phylogenetic analyses were conducted for individual (trnL-F
or ITS) or combined trnL-F/ITS data sets under Maximum
Parsimony (MP), as implemented in TNT ver. 1.1 (Goloboff
et al., 2003). All characters were equally weighted, treated as
unordered, and gaps were scored as missing data. Prior to
heuristic searches, all uninformative characters were deacti-
vated. The searches involved 1000 replicates, each of which
generated a Wagner tree using a random addition sequence of
taxa from the data matrix, swapping the initial tree with TBR
(tree bisection and reconnection) and retaining a maximum of 2
trees in each replicate. Subsequently, all optimal trees were
swapped using TBR, holding a maximum of 10,000 trees,
except for the analysis of trnL-F sequences, which required
holding 20,000 trees in memory.
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Fig. 1. Strict consensus of the ITS data set, produced from 2 most-parsimonious trees with a length of 2542, CI of 0.317 and RI of 0.613. Numbers above and below
branches are bootstrap percentages (N50%) and Bremer values (N2), respectively. The thick branches represent ≥94% Bayesian posterior probability, and
“*” indicates the nodes not found in the majority rule consensus tree obtained using Bayesian inference. Letters A, B and C represent the three clades observed in Hilu
and Alice (2001) and Columbus et al. (2007) for Chloridoideae. The bars indicate the tribes and subtribes recognized by Columbus et al. (2007) and Peterson et al.
(2007), and the subtribes supported in this work, as discussed in the text.
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To evaluate the relative support for individual clades,
bootstrap analysis (Felsenstein, 1985) was performed using a
total of 10,000 replicates. Each replicate was analyzed using a
Wagner tree as a starting point followed by TBR branch-
swapping, saving only one tree per replicate. Bootstrap values
are reported over 50%. Absolute Bremer support values
(Bremer, 1994) were also calculated searching sub-optimal
trees of 1, 2, 3 and up to 20 steps longer than the shortest trees,
saving a maximum of 10,000 trees in each step.

We also conducted a phylogenetic analysis under Bayesian
inference (BI) usingMrBayes 3.1.2 (Ronquist and Huelsenbeck,
2003), for trnL-F and ITS partitions, and for the combined trnL-
F/ITS data sets. The optimal evolutionary model was chosen
using the Akaike Information Criterion (AIC) as implemented in
jModeltest 0.1 (Posada, 2008). For the combined data set (trnL-
F/ITS) and for the ITS partition, GTR+I+G model was selected
by the AIC, and TVM+I+G for the trnL-F partition; both
models were set as Nst=6 for MrBayes. For the three data sets,
we ran four chains of the Markov Chain Monte Carlo, for 1
million generations, and one tree per 100 generations was
sampled in two independent runs (four MCMC, nrun=2; chain
temperature=0.1; sample frequency=100), until the standard
deviation of the split frequencies of these two runs dropped
below 0.01. We estimated the 50% majority rule consensus of
the remaining trees and used posterior probability (PP) to
evaluate nodal support. Nodes with PP values ≥94% were
considered well-supported.

The results of both, parsimony and inference phylogenetic
methods within each data set, were similar; hence only trees
obtained from MP analysis are presented here, and main
differences as much as support and high probabilities as shown
in the Bayesian results are indicated onto these figures.

3. Results

Sixty-eight aligned sequences of the entire ITS region of 68
specimens (63 ingroup and 5 outgroup specimens) resulted in
675 characters, of which 373 (55.25%) were phylogenetically
informative. Parsimony analyses yielded 2 equally parsimoni-
ous trees with a length of 2542 (CI=0.317; RI=0.613). Fig. 1
shows the strict consensus tree.

Sixty-nine aligned sequences of the trnL-F region (64
ingroup and 5 outgroup specimens) contained 1383 positions,
of which 168 (12.15%) were phylogenetically informative. The
analyses produced 15360 shortest trees of 450 steps (CI=0.510;
RI=0.725). The strict consensus tree was used to summarize the
results (Fig. 2).

Although the trnL-F sequences are longer than the ITS
ones, the proportion of informative characters was remarkably
lower in the trnL-F data set. However, both sets of data
Fig. 2. Strict consensus of the trnL-F data set, produced from 15360 most-parsimoni
below branches are bootstrap percentages (N50%) and Bremer values (N2), respectiv
indicates the nodes not found in the majority rule consensus tree obtained using Bayes
Alice (2001) and Columbus et al. (2007) for Chloridoideae. The bars indicate the tribe
and the subtribes supported in this work, as discussed in the text.
provided enough resolution among species and clades
obtained from the ITS and trnL-F were largely congruent
(Figs. 1 and 2). Major differences are due to a higher resolution
of the ITS consensus tree, and the addition of the trnL-F
sequence of Enneapogon cylindricus, which was included in
the Cottea-Enneapogon-Schmidtia clade (but not considered
in ITS). In the strict consensus of both markers analyzed
separately, Cottea-Enneapogon-Schmidtia appears as a well-
supported monophyletic group, while species of Pappo-
phorum are separated from the rest of the tribe, although
forming a well-supported clade with T. flavus (Figs. 1 and 2).
Within the Cottea-Enneapogon-Schmidtia clade, the genus
Schmidtia is paraphyletic in both analyses, while species of
Enneapogon form a monophyletic group nested within
Schmidtia (ITS), or included in a polytomy together with
Schmidtia pappophoroides (trnL-F).

The combined data set (ITS+ trnL-F) includes all speci-
mens from both matrices except Enneapogon cylindricus,
from which only trnL-F sequences were obtained. The
combined data matrix consisted of 2058 characters of which
539 (26.19%) were phylogenetically informative. Parsimony
analyses resulted in 12 equally parsimonious trees with a
length of 3021 (CI=0.343; RI=0.625). Fig. 3 represents the
strict consensus tree obtained under MP. Tribe Pappophoreae,
as traditionally considered, is polyphyletic. The Cottea-
Enneapogon-Schmidtia group appears as monophyletic but
separated from the monophyletic Pappophorum; the latter
closely related to T. flavus (Fig. 3). The combined analyses
showed a highly resolved consensus tree with high support in
most branches. Relationships among other members of the
subfamily Chloridoideae are congruent with results by Hilu
and Alice (2001), Columbus et al. (2007), and Peterson et al.
(2010), hence the relationships are briefly discussed under the
scope of this study.

4. Discussion

With regard to recent molecular phylogenies which
comprise representatives of the tribe Pappophoreae s. l, in
this work we add Pappophorum and Enneapogon species/
sequences (Table 1). Our study agree in the delimitation of
major clades within subfamily Chloridoideae (Columbus et al.,
2007; Hilu and Alice, 2001; Peterson et al., 2010), being the
three major clades “A”, “B” and “C” [corresponding to the
Eragrostideae, Zoysieae and Cynodonteae tribes respectively,
of Columbus et al. (2007) and Peterson et al. (2007)] also
represented in our study (Figs. 1, 2 and 3). Members of the
Triraphideae clade of Peterson et al. (2010) were not included
in this work. In our study clade A is basal and sister to B+C for
the ITS partition and ITS+ trnL-F under MP and BI (Figs. 1
ous trees with a length of 450, CI of 0.510 and RI of 0.725. Numbers above and
ely. The thick branches represent ≥94% Bayesian posterior probability, and “*”
ian inference. Letters A, B and C represent the three clades observed in Hilu and
s and subtribes recognized by Columbus et al. (2007) and Peterson et al. (2007),
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Table 1
Representatives of the tribe Pappophoreae s. l included on recent molecular phylogenies.

Reference Data sets Taxon

GPWG (2001) ndhF Pappophorum bicolor E. Fourn.
rbcL Enneapogon scaber Lehm.

Hilu and Alice (2001) matK Cottea pappophoroides Kunth
Enneapogon glaber N.T. Burb.
Enneapogon scoparius Stapf
Pappophorum bicolor E. Fourn.
Schmidtia pappophoroides Steud ex J.A. Schmidt

Roodt-Wilding and Spies (2006) trnL-F and ITS Enneapogon cenchroides (Roem. & Schult.) C.E. Hubb
Enneapogon scoparius Stapf
Schmidtia pappophoroides Steud
Schmidtia kalahariensis Stent

Ingram and Doyle (2007) rps16 and waxy Enneapogon scoparius Stapf
Pappophorum bicolor E. Fourn.
Pappophorum mucronulatum Nees
Schmidtia pappophoroides Steud ex J.A. Schmidt

Columbus et al. (2007) trnL-F and ITS Cottea pappophoroides Kunth
Enneapogon desvauxii P. Beauv.
Pappophorum vaginatum Buckley

Peterson et al. (2010) ndhF, rpl32-trnL, rps16-trnK, rps3,
rps16 intron, ndhA, ITS

Enneapogon desvauxii P. Beauv.
Cottea pappophoroides Kunth
Pappophorum pappiferum (Lam.) O.Kuntze

This study trnL-F and ITS Cottea pappophoroides Kunth
Enneapogon scoparius Stapf
Enneapogon desvauxii P. Beauv.
Enneapogon cylindricus N.T. Burb.
Enneapogon cenchroides (Roem. & Schult.) C.E. Hubb
Enneapogon asperatus C.E. Hubb.
Pappophorum caespitosum Fries R.E.
Pappophorum pappiferum (Lam.) O.Kuntze
Pappophorum philippianum Parodi
Pappophorum vaginatum Buckley
Schmidtia pappophoroides Steud.
Schmidtia kalahariensis Stent
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and 3). Within clade A, two more clades appear in all analyses
(Figs. 1, 2 and 3): one includes Cottea pappophoroides and the
species of Enneapogon and Schmidtia (“Cotteinae clade”), and
the other includes all the species of Eragrostis, with
Cladoraphis, Ectrosia, Fingerhuthia, Pogonarthia and Uniola
(“Eragrostidinae-Uniolinae clade”).

Within the “Cotteinae clade”, relationships are well-
resolved and highly supported by ITS and combined analyses
(Figs. 1 and 3). In these analyses, Cottea pappophoroides
appears as sister to the rest of Cotteinae, the genus Schmidtia
is paraphyletic and closely related to species of Enneapogon,
while genus Enneapogon is monophyletic and well-sup-
ported. In the ITS and ITS+trnL-F analyses (Figs. 1 and 3), E.
asperatus and E. desvauxii are closely related and may be
supported by the presence of cleistogamy; clesitogamous
Fig. 3. Strict consensus of 12 most-parsimonious trees with a length of 3021, CI of
below branches are bootstrap percentages (N50%) and Bremer values (N2), respect
Indicates the nodes not found in the majority rule consensus tree obtained using Bay
from the MP tree. Letters A, B and C represent the three clades observed in Hilu and A
tribes and subtribes recognized by Columbus et al. (2007) and Peterson et al. (2007
spikelets are present in the basal region of the plant (E.
desvauxii) or cleistogamous inflorescences are hidden in the
upper leaf sheaths (E. asperatus). When E. cylindricus is
included in the analysis, (trnL-F tree, Fig. 2), E. desvauxii
forms a clade with E. scoparius and E. cenchroides, while E.
asperatus is sister to E. cylindricus, a species that bears
cleistogamous spikelets near the base of the culms and has
cleistogamous inflorescences hidden in the upper leaf
sheaths.

Pappophorum is monophyletic in all analyses, and separate
from the rest of Pappophoreae (Figs. 1, 2 and 3). As Columbus
et al. (2007) have observed, Pappophorum is located in the so-
called clade C, forming a well-supported monophyletic group
with T. flavus. Although species of Pappophorum and Tridens
bear hairs along the central and marginal nerves of the lemma
0.343 and RI of 0.625, based on the ITS+ trnL-F data sets. Numbers above and
ively. The thick branches represent ≥94% Bayesian posterior probability. “*”
esian inference; “–” indicates the supported clades in the Bayesian tree, absent
lice (2001) and Columbus et al. (2007) for Chloridoideae. The bars indicate the

), and the subtribes supported in this work, as discussed in the text.
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(Columbus et al., 2007), both genera show significant
differences in aspects related to glumes, lemmas, rachilla ends
as wells as the anatomical leaf characters (Watson and Dallwitz,
1994). When excluding T. flavus from the analyses (data not
shown), Pappophorum remains a monophyletic group within
clade C, but no sister relationships can be identified. In Peterson
et al. (2010) the alignment of Pappophorinae (Pappophorum
and Neesiochloa) in the Cynodonteae is interesting since it
appears as a grade between the Tripogoninae (includes
Tripogon and Eragrostiella) and incertae sedis genera consist-
ing of Dignathia–Gymnopogon sister to Mosdenia–Perotis in
the ITS derived phylogram; and appears as a grade between the
Tripogoninae (includes Melanocenchris, Tripogon, and Era-
grostiella) and the Traginae (includes Monelytrum, Polevansia,
Tragus and Willkommia). The only species of Tridens
[T. muticus (Torr.) Nash] investigated by Peterson et al.
(2010) appears in a moderately supported Tridentinae clade
with Gouinia, Triplasis and Vaseyochloa. Gouinia, Tridens
muticus, Triplasis, and Vaseyochloa were also found in
moderately supported clade in the combined trnL-F-ITS tree
in Columbus et al. (2007). The association of T. flavus with
Pappophorum should be further confirmed with additional
accessions in future studies.

Contrary to observations made by Hilu and Alice (2000 and
2001) that Pappophorum bicolor is aligned within an
Eragrostis clade, no species of Pappophorum in our study
appears to be related to species of Eragrostis. There are serious
suspicions that the matK sequence of Pappophorum bicolor
used by Hilu and Alice (2000 and 2001) is misidentified or
misplaced with other Eragrostis spp. (Ingram and Doyle, 2007).
Analyses carried out with rps16 and waxy sequences placed
Pappophorum bicolor sister to P. mucrunulatum, separated
from Eragrostis (Ingram and Doyle, 2007).

Within the T. flavus–Pappophorum clade, analyses based on
ITS and ITS+ trnL-F (Figs. 1 and 3) show Pappophorum
pappiferum and P. philippianum sister to a monophyletic group
consisting of P. caespitosum and P. vaginatum. In Pappo-
phorum pappiferum fewer number of awns originating from the
lemmas than other species in the genus, while in P.
philippianum the lemma is larger than 3 mm in length, with
its inner surface pubescent or densely pubescent near the apex.
In P. caespitosum and P. vaginatum the lemma body is smaller
than 3 mm long, with its inner surface scabrous or slightly
scabrous near the apex (Pensiero, 1986).
4.1. Taxonomic treatment of the tribe Pappophoreae s. l

According to phylogenetic analyses, some uncertainty
exists concerning the taxonomic status of the Pappophoreae.
According Reeder (1965), Pappophorum unique when com-
pared to other genera of the tribe because it lacks the typical
pappophoroid leaf epidermal microhairs, it possesses 1-nerved
instead of multi-nerved glumes, and the margins of the
embryonic leaf do not overlap, whereas in the other genera,
the embryonic leaf has distinctly overlapping margins. Based
on these differences, Reeder (1965) distinguished two sub-
tribes: Cotteinae to include Cottea, Enneapogon, Kaokochloa
and Schmidtia and Pappophorinae, with Pappophorum.

Peterson et al. (2007), based on previous morphological and
molecular studies, and primarily based on clades A, B, and C
from Columbus et al. (2007), proposed changes to the
classification of Chloridoideae recognizing three tribes: Era-
grostideae, Zoysieae and Cynodonteae, respectively. Peterson
et al. (2007) included Cottea and Enneapogon [Schmidtia is
included in the Cotteinae in Peterson et al. (2010)] in subtribe
Cotteinae (tribe Eragrostideae); leaving Pappophorum (the type
genus of the tribe) as insertae sedis together with other 24
genera with unknown affinities, within tribe Cynodonteae. In
Peterson et al. (2010), the Pappophorinae (including Neesio-
chloa and Pappophorum) is firmly embedded in the tribe
Cynodonteae with equivocal alignment. Based on a larger
sampling of Pappophorum and in the light recent of molecular
phylogenetic evidence, we support the division of Pappophor-
eae s. l., maintaining the subtribe Pappophorinae in the tribe
Cynodonteae, and subtribe Cotteinae in the tribe Eragrostideae.
Additionally, data from the geographical location, is consistent
with the dissolution of Pappophoreae s. l. in: a) a group of
species probably originated in Africa or Australia (with the
exception of Cottea pappophoroides) corresponding to the
subtribe Cotteinae; and b) a group of exclusively American
species possibly derived from the above, and included in the
subtribe Pappophorinae (Peterson et al., 2010; Watson and
Dallwitz, 1994). On the other hand, Cytology data do not
provide evidence to support the distinction between Cotteinae
and Pappophorinae; x=10 base chromosome number is com-
mon in all chloridoids, including Pappophorum (Peterson et al.,
2010). A reduction of the base chromosome number can be
found in Enneapogon (x=9, 10)and Schmidtia x=9, increasing
to x=11 in Kaokochloa (Reeder and Singh, 1968; Watson and
Dallwitz, 1994), all these numbers being derived states within
major clades. Diploids were found in Cottea, Enneapogon, and
Kaokochloa, although polyploidy is also frequent within Chlor-
idoideae: Pappophorum with 4, 6 and 10-ploid (Watson and
Dallwitz, 1994), Enneapogonwith 4-ploid, and Schmidtia being
4-ploid (Reeder and Singh, 1968; Watson and Dallwitz, 1994).
Evidences for hybridization or autopolyploidy should be further
investigated for the group.

The position of Pappophorum as sister to T. flavus should be
further investigated by incorporating other vouchers of Tridens.
In addition, Kaokochloa has not been included in molecular
analyses and its relationship to other genera in the Cotteinae is
still in question (Peterson et al., 2010).
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Appendix A
Taxon
 Voucher
 Source
 Genbank accession
number
trnL-F
 ITS
Cottea pappophoroides Kunth
 Tivano et al. 782 (SF)
 This study
 xxxxxxx
 xxxxxxx

Enneapogon asperatus C.E.Hubb.
 Lazarides 4049 (CANB)
 This study
 xxxxxxx
 xxxxxxx

Enneapogon cylindricus N.T.Burb.
 R.A. Perry 3265 (CANB)
 This study
 xxxxxxx
 –

Enneapogon desvauxii P. Beauv.
 Tivano et al. 780 (SF)
 This study
 xxxxxxx
 xxxxxxx

Pappophorum caespitosum Fries R.E.
 Tivano et al. 797 (SF)
 This study
 xxxxxxx
 xxxxxxx

Pappophorum caespitosum Fries R.E.
 Tivano et al. 801 (SF)
 This study
 xxxxxxx
 xxxxxxx

Pappophorum pappiferum (Lam.) O.Kuntze
 Tivano et al. 776 (SF)
 This study
 xxxxxxx
 xxxxxxx

Pappophorum philippianum Parodi
 Tivano et al. 799 (SF)
 This study
 xxxxxxx
 xxxxxxx

Cladoraphis spinosa (L.f.) S.M. Phillips
 Spies 6335
 Roodt-Wilding and Spies (2006)
 DQ655889
 DQ655833

Enneapogon cenchroides (Roem. & Schult.) C.E.Hubb
 Spies 7506
 Roodt-Wilding and Spies (2006)
 DQ655894
 DQ655841

Enneapogon scoparius Stapf
 Spies 7487
 Roodt-Wilding and Spies (2006)
 DQ655895
 DQ655843

Eragrostis biflora Hack. ex Schinz
 Spies 6705
 Roodt-Wilding and Spies (2006)
 DQ655879
 DQ655824

Eragrostis capensis (Thunb.) Trin.
 Spies 6551
 Roodt-Wilding and Spies (2006)
 DQ655881
 DQ655826

Eragrostis lehmanniana Nees var. lehmanniana
 Swart 20
 Roodt-Wilding and Spies (2006)
 DQ655875
 DQ655819

Eragrostis superba Peyr.
 Spies 7470
 Roodt-Wilding and Spies (2006)
 DQ655880
 DQ655825

Schmidtia kalahariensis Stent
 Spies 7490
 Roodt-Wilding and Spies (2006)
 DQ655897
 DQ655845

Schmidtia pappophoroides Steud.
 Spies 6334
 Roodt-Wilding and Spies (2006)
 DQ655896
 DQ655844

Sporobolus consimilis Fresen.
 HJTV 9354
 Roodt-Wilding and Spies (2006)
 DQ655900
 DQ655848

Aegopogon cenchroides Humb. &Bonpl. Ex Wild.
 4380
 Columbus et al. (2007)
 EF156669
 EF153020

Bouteloua dactyloides (Nutt.) Columbus

(syn. Buchloë dactyloides (Nutt.) Engelm)

2329
 Columbus et al. (2007)
 EF156675
 EF153026
Calamovilfa longifolia (Hook.) Hack.
Ex Scribn. &Southw. var. longifolia
3917
 Columbus et al. (2007)
 EF156677
 EF153028
Chaboissaea decumbens (Swallen) Reeder & C. Reeder
 3653
 Columbus et al. (2007)
 EF156678
 EF153029

Chloris elata Desv. (syn. C. dandyana C. D. Adams)
 3068
 Columbus et al. (2007)
 EF156680
 EF153031

Chloris truncata R. Br.
 3203
 Columbus et al. (2007)
 EF156681
 EF153032

Cottea pappophoroides Kunth
 3183
 Columbus et al. (2007)
 EF156682
 EF153033

Dasyochloa pulchella (Kunth) Willd. ex Rydb.

(syn. Erioneuron pulchellum (Kunth) Tateoka)

2577
 Columbus et al. (2007)
 EF156687
 EF153038
Dinebra retroflexa (Vahl) Panz. var. retroflexa
 Clarke s.n.
 Columbus et al. (2007)
 EF156688
 EF153039

Ectrosia leporina R. Br. var. leporina
 Bell 171
 Columbus et al. (2007)
 EF156690
 EF153041

Eleusine indica (L.) Gaertn.
 2875
 Columbus et al. (2007)
 EF156691
 EF153042

Enneapogon desvauxii P. Beauv.
 3133
 Columbus et al. (2007)
 EF156692
 EF153043

Eragrostis amabilis (L.) Wight & Arn. ex Nees (= E. tenella)
 4317
 Columbus et al. (2007)
 EF156695
 EF153046

Eragrostis pectinacea (Michx.) Nees var. pectinacea
 2704
 Columbus et al. (2007)
 EF156696
 EF153047

Eragrostis sessilispica Buckley (syn. Acamptoclados sessilispicus

(Buckley) Nash)

3328
 Columbus et al. (2007)
 EF156698
 EF153049
Eustachys distichophylla (Lag.) Nees
 3090
 Columbus et al. (2007)
 EF156700
 EF153051

Fingerhuthia africana Nees ex Lehm.
 Snow and Burgoyne

7207 (MO)

Columbus et al. (2007)
 EF156701
 EF153052
Hilaria cenchroides Kunth
 3758
 Columbus et al. (2007)
 EF156704
 EF153055

Leptochloa dubia (Kunth) Nees

(syn. Diplachne dubia (Kunth) Scribn.)

3155
 Columbus et al. (2007)
 EF156707
 EF153058
Leptochloa panicea (Retz.) Ohwi subsp. brachiata
(Steud.) N. W. Snow
2700
 Columbus et al. (2007)
 EF156709
 EF153060
Leptothrium rigidum Kunth
 3429
 Columbus et al. (2007)
 EF156710
 EF153061

Lycurus setosus (Nutt.) C. Reeder
 3286
 Columbus et al. (2007)
 EF156711
 EF153062

Muhlenbergia emersleyi Vasey
 3275
 Columbus et al. (2007)
 EF156715
 EF153066

Neeragrostis reptans (Michx.) Nicora

(= Eragrostis reptans (Michx.) Nees)

Hill 22450
 Columbus et al. (2007)
 EF156697
 EF153048
Neobouteloua lophostachya (Griseb.) Gould
 3144
 Columbus et al. (2007)
 EF156719
 EF153070

Neostapfia colusana (Burtt Davy) Burtt Davy
 Reeder and Reeder 6198
 Columbus et al. (2007)
 EF156720
 EF153071

Orcuttia californica Vasey
 2687
 Columbus et al. (2007)
 EF156721
 EF153072

Pappophorum vaginatum Buckley
 2540
 Columbus et al. (2007)
 EF156722
 EF153073

Pereilema crinitum J. Presl
 3621
 Columbus et al. (2007)
 EF156723
 EF153074

Pogonarthria squarrosa (Roem. & Schult.) Pilg.
 Snow et al. 7023 (MO)
 Columbus et al. (2007)
 EF156724
 EF153075

Reederochloa eludens Soderstr. & H. F. Decker
 Bell 250
 Columbus et al. (2007)
 EF156726
 EF153077

Schaffnerella gracilis (Benth.) Nash
 4040
 Columbus et al. (2007)
 EF156727
 EF153078

Schedonnardus paniculatus (Nutt.) Branner & Coville
 Reeder and Reeder 9431
 Columbus et al. (2007)
 EF156728
 EF153079
(continued on next page)
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Appendix A (continued )
Taxon
 Voucher
 Source
 Genbank accession
number
trnL-F
 ITS
Sohnsia filifolia (E. Fourn.) Airy Shaw
 4038
 Columbus et al. (2007)
 EF156730
 EF153081

Spartina pectinata Link
 3210
 Columbus et al. (2007)
 EF156731
 EF153082

Sporobolus pyramidatus (Lam.) Hitchc.
 4264
 Columbus et al. (2007)
 EF156733
 EF153084

Sporobolus wrightii Munro ex Scribn.
 2507
 Columbus et al. (2007)
 EF156734
 EF153085

Tragus racemosus (L.) All.
 2228
 Columbus et al. (2007)
 EF156736
 EF153087

Trichloris crinita (Lag.) Parodi
 3109
 Columbus et al. (2007)
 EF156737
 EF153088

Trichoneura elegans Swallen
 4299
 Columbus et al. (2007)
 EF156738
 EF153089

Tridens flavus (L.) Hitchc. var. flavus
 3212
 Columbus et al. (2007)
 EF156739
 EF153090

Tridens muticus (Torr.) Nash var. muticus
 3254
 Columbus et al. (2007)
 EF156740
 EF153091

Tripogon spicatus (Nees) Ekman
 3108
 Columbus et al. (2007)
 EF156743
 EF153094

Uniola paniculata L.
 4206
 Columbus et al. (2007)
 EF156745
 EF153096

Willkommia texana Hitchc. var. texana
 4143
 Columbus et al. (2007)
 EF156747
 EF153098

Zoysia matrella (L.) Merr. s.l.
 3985
 Columbus et al. (2007)
 EF156748
 EF153099

Outgroup

Aristida adscensionis L.
 2991
 Columbus et al. (2007)
 DQ172196
 DQ171972

Arundo donax L.
 3201
 Columbus et al. (2007)
 DQ172302
 DQ172077

Chasmanthium latifolium (Michx.) H. O. Yates
 3211
 Columbus et al. (2007)
 DQ172304
 DQ172079

Hackelochloa granularis (L.) Kuntze
 2624
 Columbus et al. (2007)
 DQ172306
 DQ172081

Panicum hirticaule J. Presl var. hirticaule
 2536
 Columbus et al. (2007)
 DQ172307
 DQ172082
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