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Abstract

A higher syzygy of a module with positive codimension is a maximal Cohen–Macaulay module that
plays an important role in Cohen–Macaulay approximation over Gorenstein rings. We show that every
maximal Cohen–Macaulay module is a higher syzygy of some positive codimensional module if and only
if the ring is an integral domain. Also we discuss the hierarchy of rings with respect to Cohen–Macaulay
approximation by codimensions of modules.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let (R,m, k) be a complete Gorenstein local ring of dimR = d . Auslander and Buchweitz
introduced the notion of Cohen–Macaulay approximation.

Theorem 1.1. (See Auslander and Buchweitz [2].) Every finite R-module M has exact sequences

0 → YM → XM
ξM−−→ M → 0 (Cohen–Macaulay approximation),

0 → M
ηM−−→ YM → XM → 0 (finite projective hull),

where YM and YM are of finite projective dimension and XM , XM are maximal Cohen–
Macaulay modules.
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We may assume that no common summand exists between YM and XM nor between YM and
XM via these maps. We easily observe the following:

• Ωn
R(XM) ∼= Ωn

R(M) (n > d) where Ωn
R(M) denotes the nth syzygy module of M .

• ExtiR(M,R) ∼= ExtiR(YM,R) for i > 0.
• XM

∼= Ω1
R(XM) and YM

∼= Ω1
R(YM) up to projective summands.

Thus M shares syzygy property with XM and homological property with YM . Different from
Auslander and Buchweitz’s original motivation, our concern is how to recover M from XM

and YM . A typical example is given by modules with positive codimension.

Theorem 1.2. (See Kato [5].) Suppose M has a positive codimension. If a finite module N

satisfies XN ∼= XM and YN ∼= YM , then N ∼= M .

Motivated by this theorem, this paper gives a characterization of a maximal Cohen–Macaulay
module X such that X ∼= XM with some M of a positive codimension. This is not always the
case for any maximal Cohen–Macaulay module.

Example 1.3. Let R = k�x, y�/(xy) and let C = R/xR which is a maximal Cohen–Macaulay
module. Then C is not isomorphic to XM for any M with a positive codimension. Moreover, for
every indecomposable module M with a positive codimension, XR

M
∼= R/xR ⊕ R/yR.

Our result is the following:

Theorem 3.3. Every maximal Cohen–Macaulay module is isomorphic to XM with some M of
positive codimension if and only if the ring is an integral domain.

Before going to Theorem 3.3, in Section 2, among XM s with positive codimensional Ms, we
give classification in terms of codimM . If every maximal Cohen–Macaulay module C has some
M with codimM = r such that XM

∼= C, we say that the ring satisfies SCr -condition. Actually,
we show the implication from SCr+1-condition to SCr -condition. Thus the SCr -conditions give
hierarchy of rings. From this point of view, Theorem 3.3 says that SC1-condition is equivalent to
being an integral domain. As a preceding result, Yoshino and Isogawa showed that SC2-condition
is equivalent to being UFD [8]. Their original statement is for two-dimensional normal rings,
which we see is valid for general Gorenstein rings. Now finding an equivalent condition for SC3
is a very tempting problem, which is posed by Yoshino. But no results are known for this.

In the last section, we give a method to recollect M from YM , which explains another reason
for our interest in modules with positive codimensions.

Throughout the paper, R is a complete Gorenstein local ring. A finite R-module is simply
called an R-module. The R-dual HomR( ,R) is denoted by ( )∗. The category of finite R-
modules is denoted by modR, that of maximal Cohen–Macaulay modules by CM(R), and that
of finite projective dimensional modules by F(R). Two R-modules M and N are said to be

stably isomorphic and denoted as M
st∼= N if there are projective modules P and Q such that

M ⊕ P ∼= N ⊕ Q. (See [2].) A first syzygy Ω1
R(M) of a module M is a kernel of the projective

cover PM → M , and r th syzygy module is inductively defined as Ωr (M) = Ω1 (Ωr−1(M)).
R R R
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We use the convention that Ω0
R(M) = M . The Auslander transpose TrM of an R-module M is

defined as TrM = Coker δ∗ where P1
δ−→ P0 → M is a projective presentation of M .

We close the section by a fundamental property of Cohen–Macaulay approximations.

Lemma 1.4. Let 0 → A → B → C → 0 be an exact sequence of R-modules. The following are
commutative diagrams with exact rows and columns:

(1) 0 0 0

0 YA YB YC 0

0 XA XB XC 0

0 A B C 0,

0 0 0

(2) 0 0 0

0 A B C 0

0 YA YB YC 0

0 XA XB XC 0.

0 0 0

Proof. (1) Let PA•, PB• and PC• be projective resolutions of A, B and C, respectively.
Let θ :PC•+1 → PA• be a chain map that corresponds to the given sequence 0 → A → B →
C → 0. Then θ gives an R-linear map Ωd

R(θ) :Ωd+1
R (C) → Ωd

R(A), which induces a chain map
PΩd

R(XC)•+1
→ PΩd

R(XA)• because Ωd
R(XC) = Ωd

R(C) and Ωd
R(XA) = Ωd

R(A). From this chain

map we can construct a chain map θX :PXC •+1 → PXA• since XA and XC are maximal Cohen–
Macaulay modules. Hence we have a commutative diagram of chain maps

PC•+1
θ

PA•

PXC •+1

ξC•+1

θX
PXA•

ξA•
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where ξA• and ξC• are chain maps with the property ξAi = id and ξCi = id for i > d . Notice that
H0(ξA•) = ξA and H0(ξC•) = ξC . Now we have a commutative diagram with termwise exact
rows

0 PXA•
ξA•

C(θX) PXC •
ξC•

0

0 PA• C(θ) PC• 0

where C(θ) and C(θX) are mapping cones of chain maps θ and θX . It is easy to see that C(θ) is
a projective resolution of B and C(θX) is that of XB . Thus we have a desired diagram

0 XA

ξA

XB

ξB

XC

ξC

0

0 A B C 0.

(2) Since XA is a maximal Cohen–Macaulay module, there is an exact sequence

0 → XA

εXA−−→ F 1
XA

→ X′ → 0

with a projective module F 1
XA

and a maximal Cohen–Macaulay module X′. The finite projective
hull is obtained by a push-out of ξA and εXA

[2];

0 0

0 YA XA

εXA

ξA

A 0

0 YA F 1
XA YA 0

X′ XA

0 0

Now that we have (1), to show (2) is a matter of diagram-chasing. �
2. The SCr -conditions

Definition 2.1. Let r be a positive integer. A maximal Cohen–Macaulay module X is said to

satisfy SCr -condition if there exists M ∈ modR such that codimM = r and XC

st∼= X. If every
X ∈ CM(R) satisfies SCr -condition, we say the ring R satisfies SCr -condition.
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We can restrict our attention from all the modules with positive codimension to Cohen–
Macaulay modules with positive codimension. Let us denote the category of Cohen–Macaulay
modules with codimension r as CMr (R), whose object M ∈ CMr is characterized with the
property ExtiR(M,R) = 0 (i �= r).

Proposition 2.2. Let X be an object of CM(R), and let r be a positive integer. The following are
equivalent.

(1) X satisfies SCr -condition; there is M ∈ modR with codimM = r such that XM

st∼= X.

(2) There is C ∈ CMr (R) such that XC

st∼= X.

The proof is given after the following two lemmata.

Lemma 2.3. For given X ∈ CM(R), if there is M ∈ modR with positive codimension such that

XM

st∼= X, then there exists C ∈ CMs(R) such that XC

st∼= X where s = codepthM .

Proof. Let us put s = codepthM , r = codimM , and use an induction on s − r . If s = r , then
M ∈ CMs(R). Suppose s > r . Note that ExtiR(M,R) = 0 (i < r). Set E = ExtrR(M,R) and PE•
as a projective resolution of E. Since ExtiR(E,R) = 0 (i < r),

0 → PE0
∗ → PE1

∗ → · · · → PEr
∗ → TrΩr−1

R (E) → 0

gives a projective resolution of Y r = TrΩr−1
R (E). We have pd(Y r) � r , ExtiR(Y r ,R) = 0

(0 < i < r), and ExtrR(Y r ,R) ∼= E = ExtrR(M,R). Now we want to make a map M → Y r that
induces an isomorphism ExtrR(Y r ,R) ∼= ExtrR(M,R). As for a projective resolution of M

· · · → PMr+1
dr+1−−−→ PMr

dr−→ PMr−1 → ·· · → PM 0 → 0,

we have an exact sequence

0 → E → Cokerd∗
r → Imd∗

r+1 → 0.

The map E → Cokerd∗
r induces a chain map of projective resolutions

0 PEr · · · PE1 PE0 E 0

0 PM 0
∗ · · · PMr−1

∗ PMr
∗ Cokerd∗

r 0

whose R-dual gives a map M → Y r , inducing ExtrR(Y r ,R) ∼= ExtrR(M,R). Grade the mapping
cone C• of PM• → (PE)∗ as

0 → PEr−1−i
∗ → Ci → PMi → 0
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are exact. We have Hi (C•) = 0 (i > 0) and Hj (C
∗• ) = 0 (j � r), hence M ′ = CokerdC1 has

Ωr
R(M ′)

st∼= Ωr
R(M) and ExtiR(M ′,R) = 0 (i < r + 1). Therefore XM ′

st∼= XM

st∼= X, codepthM ′ =
codepthM = s and codimM ′ > codimM . Now we get a conclusion from the inductive hypoth-
esis. �
Lemma 2.4. Let X be an object of CM(R), and let r be a positive integer. If there is C ∈
CMr+1(R) such that XC

st∼= X, then there exists C′ ∈ CMr (R) such that XC′
st∼= X.

Proof. There exist an R-regular sequence a1, . . . , ar , ar+1 ∈ annR C. Set R = R/(a1, . . . , ar )R

and take the Cohen–Macaulay approximation of C over R;

0 → YR
C → XR

C → C → 0

where YR
C ∈ F(R) and XR

C ∈ CM(R). Since YR
C has a finite projective dimension also as an

R-module, we have X
XR

C

st∼= XC

st∼= X. Obviously, XR
C is an object of CMr (R). �

Proof for Proposition 2.2. We have only to show (1) ⇒ (2). Suppose there exists a module

M with codim M = r such that XM

st∼= X. From Lemma 2.3, there is a module D ∈ CMs(R)

with s = codepth M such that XD

st∼= X. Since s � r , applying Lemma 2.4, we get a module

C ∈ CMr (R) with XC

st∼= X. �
Proposition 2.5. Let X be an object of CM(R), and let r be a positive integer. If X satisfies
SCr+1-condition, then X satisfies SCr -condition.

Proof. Straightforward from Proposition 2.2 and Lemma 2.4. �
Lemma 2.6. Let X be an object of CM(R), and let r be a positive integer. If X satisfies SCr -
condition, then Xp is free Rp-module for every prime ideal p with ht p < r .

Proof. Let us take C ∈ CMr (R) with XC

st∼= X. Let p be a prime ideal of height less than r . Take
the Cohen–Macaulay approximation

0 → YC → XC → C → 0

of C, and localize this with p. Then we have (YC)p
∼= (XC)p. In particular (XC)p is a maximal

Cohen–Macaulay Rp-module with a finite projective dimension hence is an Rp-free module. �
The following is an immediate corollary of Lemma 2.6.

Proposition 2.7. If R satisfies SCr -condition, then Rp is regular for each prime ideal p with
ht p < r .

However SCr -condition is stronger than the last condition in Proposition 2.7.
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Theorem 2.8. (See Yoshino and Isogawa [8, Theorem 2.2].) A normal Gorenstein complete local
ring of dimension two satisfies SC2-condition if and only if R is a unique factorization domain.

Actually we do not need the assumption of dimension two.

Theorem 2.9 (Generalized version of Yoshino–Isogawa’s theorem). A complete Gorenstein local
ring satisfies SC2-condition if and only if R is a unique factorization domain.

Proof. We can omit the assumption “normal” by Proposition 2.7. And we need only slight mod-
ifications to their original proof in [8, Theorem 2.2].

For the “if” part, replacing “dimN = depthN = 1” with “codimN = codepthN = 1” on the
fourth line, we can follow the original proof until the last two lines of (a) ⇒ (b). If R is a
Gorenstein complete local UFD of any dimension, along their proof, we can conclude that each

M ∈ CM(R) has a module L with codimL � 2 such that Ω2
R(L)

st∼= M . This equivalently says

that each X ∈ CM(R) has a module L with codimL � 2 such that XL

st∼= X. From Proposi-

tion 2.2, there is L′ ∈ CMr (R) such that X
st∼= XL′ with codimL = r � 2, which implies the

existence of L′′ ∈ CM2(R) such that X
st∼= XL′′ by Lemma 2.4.

For the “only if” part, it is enough to show that c(p) is trivial in the divisor class group of R

for any prime ideal p of height 1. Let d be the dimension of R. A maximal Cohen–Macaulay

module Xp has some L ∈ CM2(R) such that XL

st∼= Xp. This means Ωd
R(L)

st∼= Ωd
R(p). Since a

localization Lq vanishes for any prime ideal q of height less than two, c(L) = 0. Hence we have
c(Ωd

R(p)) = c(Ωd
R(L)) = 0 and c(p) = 0 from Proposition 16 of [4]. �

3. SC1-condition

In this section, we shall see the equivalent condition to SC1 for the ring.

Lemma 3.1. Let R be a noetherian local ring. If TrM is of finite projective dimension, then M

has a rank.

Proof. Our assertion is that Mp is a free Rp-module of constant rank for every minimal prime
ideal p. Clearly Mp is an Rp-free module, so it remains to show that μRp(Mp) is independent of

the choice of p. Let P1
d−→ P0 → M → 0 be a projective presentation of M . Let t be the maxi-

mal size of non-vanishing minors of the matrix corresponding to d , and It (d) an ideal generated
by the t-minors of the matrix. We state that ht(It (d)) � 1. Since TrM = Cokerd∗ is of finite
projective dimension, we have ht(It (d

∗)) � 1 from Buchsbaum–Eisenbud’s theorem [3]. Obvi-
ously It (d) = It (d

∗). Therefore It (d) �⊂ p for any minimal prime ideal p. In other words, some
t-minors of d is a unit in Rp, so that μRp(Mp) = μR(M) − t . �
Lemma 3.2. A maximal Cohen–Macaulay module X has a rank if and only if there exists M ∈
CM1(R) such that XM

st∼= X.

Proof. Suppose X has a rank. Then there is an exact sequence

0 → F → X → M → 0
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with a free module F and a torsion module M . This sequence is a Cohen–Macaulay approxi-

mation of M hence X
st∼= XM . Dualize this sequence with R, we have ExtiR(M,R) = 0 (i > 1).

Since M∗ = 0, M ∈ CM1(R).
To show the “if” part, take the Cohen–Macaulay approximation of M :

0 → M → YM → XM → 0.

Since M∗ = 0, TrM has a projective dimension not larger than one. Hence from Lemma 3.1,

both of YM and M have ranks, thus so does X
st∼= XM . �

Theorem 3.3. The following conditions are equivalent for a complete Gorenstein local ring R.

(1) R is an integral domain.
(2) Every finitely generated module has a rank.
(3) Every maximal Cohen–Macaulay module has a rank.
(4) Every maximal Cohen–Macaulay module is a higher syzygy of some module with a positive

codimension.
(5) R satisfies SC1-condition; for every maximal Cohen–Macaulay module C, there exists an

R-modules M such that XM

st∼= C and codimM = 1.

Proof. (1) ⇔ (2). It is well known that the equivalence holds for general noetherian rings.
(2) ⇒ (3). It is obvious.
(3) ⇒ (2). Let M be a finite R-module. Consider the minimal Cohen–Macaulay approxima-

tion of M

0 → YM → XM → M → 0.

From the assumption, both YM and XM have ranks hence so does M .
(3) ⇔ (5). It is straightforward from Lemma 3.2 together with Proposition 2.2.
(4) ⇒ (3). Let C be any object of CM(R). Let M be a module with positive codimension

such that Ωn
R(M)

st∼= C for some n > 0. We have an exact sequence

0 → C → Pn−1 → Pn−2 → ·· · → P0 → M → 0

with projective modules Pis. From Lemma 3.1, M has a rank, hence so does C.

(5) ⇒ (4). Let C be an object of CM(R). There exists C′ ∈ CM(R) such that C
st∼= Ωd

R(C′)
where d = dimR. From the hypothesis, there is an R-module M with a positive codimension

such that XM

st∼= C′. Now we have C
st∼= Ωd

R(C′)
st∼= Ωd

R(XM)
st∼= Ωd

R(M). �
4. Category determined by YM

In this section, we explain another reason why we insist on positive codimension. For a given

Y ∈ F(R), how do we find a non-trivial module M with YM
st∼= Y ? We do this by a new method

of getting a maximal Cohen–Macaulay module associated to Y .
First we shall fix the notations.
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Definition 4.1. (See Auslander and Bridger [1].) The projective stabilization modR is defined as
follows.

• Each object of modR is an object of modR.
• For objects A, B of modR, a set of morphisms from A to B is HomR(A,B) =

HomR(A,B)/P(A,B) where P(A,B) := {f ∈ HomR(A,B) | f factors through some pro-
jective module}. Each element of HomR(A,B) is denoted as f = f modP(A,B).

For a finite module M , the Auslander transpose TrM is defined as TrM = Coker δ∗ where
P1

δ−→ P0 → M is a projective presentation of M .

A morphism f in modR is a stable isomorphism if and only if f is an isomorphism in modR.
(See [1] for example.)

Both TrM and Ωi
Rs are endo-functors on modR. And there is a natural map ϕrM :M →

Ωr TrΩr TrM for each non-negative integer r . We call T = Ωd TrΩd Tr and ϕM = ϕdM for
d = dimR. Notice that T M is a maximal Cohen–Macaulay module, and ϕM :M → T M is the
Auslander transpose of ξTrM :XTrM → TrM .

Now we are ready to introduce our method. Let Y be a module with a finite projective dimen-
sion. Then together with a projective cover ρT Y :PT Y → T Y , we have an exact sequence

0 → NY → Y ⊕ PT Y
(ϕY ρT Y )−−−−−→ T Y → 0

which is the finite projective hull of the module NY . Thus we get a module NY with the prop-

erty YNY
st∼= Y . Moreover, suppose M ∈ modR satisfies YM

st∼= Y . Then applying T to the map
f :YM → XM , we get a diagram

YM

ϕ
YM

f

XM

ϕ
XM

T YM
Tf

T XM

which commutes up to projective modules. Since ϕXM is an isomorphism, we may say f =
Tf ◦ ϕY in modR.

Theorem 4.2. For a given Y ∈F(R), there uniquely exists NY ∈ modR such that

(1) YNY
st∼= Y .

(2) For any M ∈ modR with YM
st∼= Y , there exists an R-linear map NY → M which induces

ExtiR(M,R) ∼= ExtiR(NY ,R) for i > 0.

Proof. We shall start with the existence. We have already seen (1). To see (2), let M ∈ modR

have YM
st∼= Y and let f :YM → XM be a map with Kerf = M . The equation f = Tf ◦ ϕY in
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modR implies that there exists q :Y → PXM such that f = Tf ◦ ϕY + ρXM ◦ q in modR. We
have a diagram

0 0

NM
∼= NYM

0 M ⊕ PT YM ⊕ PXM YM ⊕ PT YM ⊕ PXM

d

a
XM 0

0 T M T YM ⊕ PXM

c
T XM 0

0 0

where a = (f Tf ◦ ρT YM ρXM ), b = ( ϕ
YM ρ

T YM 0
q 0 1

)
and c = (Tf ρXM ).

The middle row is a finite projective hull of M ⊕ PT YM ⊕ PXM and the middle column is that
of NYM . Looking at the leftmost column, we get (2).

To show the uniqueness, let N ′ be an R-module also satisfying (1) and (2). Then we have
maps h :NY → N ′ and g :N ′ → NY such that ExtiR(h,R) and ExtiR(g,R) are isomorphisms for
i > 0. All we need is to prove that h and g are stable isomorphisms, which comes from the
following lemma. �
Lemma 4.3. If an endomorphism f on an R-module M induces isomorphisms ExtiR(f,R) for
i > 0, then f is a stable isomorphism.

Proof. Let us take an exact sequence

0 → K → M ⊕ PM
(fρM)−−−−→ M → 0

with a projective cover ρM :PM → M . From the assumption, we have ExtiR(K,R) = 0 (i > 0)
hence K is a maximal Cohen–Macaulay module. On the other hand, from Lemma 1.4, finite
projective hulls make a commutative diagram with exact rows and columns.

0 0 0

0 K M ⊕ PM M 0

0 K YM ⊕ PM YM 0

XM XM

0 0
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Therefore K is of finite projective dimension and maximal Cohen–Macaulay at the same time,
hence is projective.

The module K is what we call a pseudo-kernel Kerf of f (see [6]). By Theorem 4.12 of [6],
since K = Kerf is a first syzygy, there exists an exact sequence

θ : 0 → M

(f
ε

)

−−→ M ⊕ Q → K ′ → 0

that has the following property:

(1) Q is a projective module.
(2) an R-dual

0 → K ′∗ → M∗ ⊕ Q∗ → M∗ → 0

is exact.
(3) Ω1

R(K ′) ∼= K .

We claim that K ′ is projective. First, from the assumption and (2), K ′ is a maximal Cohen–
Macaulay module. And since Ω1

R(K ′) ∼= K is projective, K ′ is of finite projective dimension. �
Let Y be an object of F(R). The proof of Theorem 4.2 says that for any M ∈ modR with

YM
st∼= Y , the map YM → XM factors through the canonical map Y → T Y . This motivates us to

characterize maximal Cohen–Macaulay modules of the form T Y with Y ∈ F(R).

Proposition 4.4. As subcategories of modR,

{
T Y

∣∣ Y ∈F(R)
} = {

XW
∣∣ W ∈ CM1(R)

}
.

Proof. Set S1 = {T Y | Y ∈ F(R)} and S2 = {XW | W ∈ CM1(R)}. First we claim that S1 equals
to {T Z | pd(Z) � 1}. Let Y ∈ F(R). Then from Lemma 3.1, TrY has a rank; there is an exact
sequence

0 → F → TrY → V → 0

where F is a free module and V ∗ = 0. This implies that XTrY
st∼= XV hence T Y

st∼= TrXTrY
st∼=

TrXV

st∼= T TrV . And TrV is of projective dimension at most one.
S2 ⊂ S1. For a one-codimensional Cohen–Macaulay module W , W∨ = Ext1R(W,R) also be-

longs to CM1(R) hence pd(TrW∨) � 1. We shall show

XW
st∼= T TrW∨. (4.1)

By Herzog–Martsinkovsky’s formula [7], XW
st∼= Ω1

R(TrΩ1
R(W∨)). The right-hand side is

Tr TrΩ1 (TrΩ1 (W∨)) = TrXW∨ = T TrW∨.
R R
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S1 ⊂ S2. Let Z be a module with pd(Z) � 1. Since (TrZ)∗ = 0, there exists a non-zero-
divisor x ∈ annR(TrZ). Set R = R/xR, which is a Gorenstein ring with dimR = dimR − 1.
Since TrZ ∈ modR, we have a Cohen–Macaulay approximation of TrZ over R; 0 → U →
L → TrZ → 0 where U ∈F(R) and L ∈ CM(R). Since U is of finite projective dimension also

as an R-module, XL

st∼= XTrZ hence T TrL
st∼= T Z in modR. From (4.1) we have T TrL

st∼= XL∨

hence T Z
st∼= XL∨

. Obviously L ∈ CM1(R). �
References

[1] M. Auslander, M. Bridger, The stable module theory, Mem. Amer. Math. Soc. 94 (1969).
[2] M. Auslander, R.O. Buchweitz, The homological theory of maximal Cohen–Macaulay approximations, Mem. Soc.

Math. Fr. (N.S.) 38 (1989) 5–37.
[3] D. Buchsbaum, D. Eisenbud, What makes a complex exact? J. Algebra 13 (1973) 259–268.
[4] N. Bourbaki, Algèbre Commutative, Masson, Paris, 1981 (Chapitre VII).
[5] K. Kato, Cohen–Macaulay approximations from the viewpoint of triangulated categories, Comm. Algebra 27 (1999)

1103–1126.
[6] K. Kato, Morphisms represented by monomorphisms, J. Pure Appl. Algebra 208 (2007) 261–283.
[7] J. Herzog, A. Martsinkovsky, Glueing Cohen–Macaulay modules with applications to quasihomogeneous complete

intersections with isolated singularities, Comment. Math. Helv. 68 (1993) 365–384.
[8] Y. Yoshino, S. Isogawa, Linkage of Cohen–Macaulay modules over Gorenstein ring, J. Pure Appl. Algebra 149

(2000) 305–318.


