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Let f: R” — R be a seminorm and let (e;), _, ., be the canonical base of R".
Denote M = 3max, ,f(e, — e,), K = max,f(e,). We prove the inequality

n
in
i=1

We use the above inequality to prove some generalizations of Dobrushin’s inequal-
ities and a generalization of an inequality due to J. E. Cohen er al. (Linear Algebra
Appl. 179, 1993, 211-235). Hilbert space generalizations of the above inequalities
are proved using Levi’s reduction theorem. As special cases of our results we
obtain several inequalities given previously by Adamovici, Djokovic, Hlawka, and
Hornich.  © 1996 Academic Press, Inc.

) x=(xy,%p,...,%x,) €R".

f(x) SM( ixil) +(K-M)

i=1

1. INTRODUCTION

A nonhomogeneous Markov chain is described by a sequence (P,),. ,,
P, = (p,;(k)), i,j €S, of stochastic matrices. Throughout this paper by a
stochastic matrix we shall mean a column stochastic matrix, that is, a
matrix whose entries are nonnegative and the sum of the entries in each
column is equal to one.

The notion of weak ergodicity of the sequence (P,), ., introduced by
Kolmogorov [12] in 1931 requires that for every i, j, p, r,

lim (¢579 —¢579) =0, (1.1)

§— ®©

where T,, = (t§*) = P, P,,, ... P,,, represents a matrix product.
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Thus the columns of 7, tend to be identical as s — <. Hence a weakly
ergodic Markov chain exhibits some kind of stable behavior after a long
time.

Bernstein [2, 3] in his textbook of 1946 began the development of the
theory of both weak and strong ergodicity.

A very important notion in the study of ergodic theory of Markov chains
is that of the ergodicity coefficient. It was partly crystallized in a paper of
W. Doeblin of 1937, but was put into its most powerful form by Dobrushin
[8] and thoroughly exploited in 1958 by Hajnal [9], unaware of earlier
Soviet work.

The notion of an ergodicity coefficient simplifies and makes more
elegant and complete the theory of nonhomogeneous Markov chains.

There is a rich literature on the notion of a coefficient of ergodicity [11,
15, 16, 18—-20, 22] and on a specialized coefficient (Dobrushin’s) which is in
a sense the optimal tool in the study of the ergodic theory of Markov
chains.

If A =(a;;)isareal m X n matrix, then let us denote

a, ,(A) = min [ % min(a;,, ais)}

i=1

1 m
am n(A) = 5 maX( Z |air - ais|)'
' 2 rs i=1
In the case where A is a stochastic matrix, using the equality min(a, b) =
3(a + b — |a — b)), one can easily see that a,, (A) =1 — @, (A).
a,, ,(A) is called Dobrushin’s coefficient of ergodicity of the stochastic
matrix A. Sometimes in this paper we shall refer to the functional
A — a, (A) as Dobrushin’s coefficient of ergodicity.

m,n

Condition (1.1) may be written by means of Dobrushin’s coefficient as

limea, (7,,)=0 for every r > 1. (1.2)
5— o
This coefficient is important not only in the study of the asymptotic
behavior of Markov systems but also in comparisons of stochastic matrices
as communication channels [5, 6], consensus problems [4], or dynamic
programming.
Let A = (a;;) be a real m X n matrix. We shall associate with A a
linear operator 4: R" — R™ defined as Ax = ((Ax),,(Ax),,...,(A4x),,),
where

(Ax); = Zaijxj, i=1,2,...,m,x=(x,%,,...,%,) €R"
j=1
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For p €[1,%], x = (x;, x,,...,x,) € R", we shall denote by |x||, the
I7-norm of x, that is

n 1/p
lxll, = ( Y w) if p e [1,)
j=1

llxll, = max (Ile) if p= +oo,
1<j

The I”-norm of A is defined as
I All, = sup{llAxll,: x € R", ||x[l, = 1}.

It is well known that

m
lAlly = max (Zlai,l
1 i=1

<j<n

. (1.3)

For every integer k > 1 put H, = {x € R*: x; +x, + - +x, = O}. If 4:
R"” — R™, then we shall denote by A the restriction of 4 to H,. The
[P-norm of A is defined as

I All, = sup{llAxll,: x € H,,, llxll, = 1}.

The following theorem is due to Dobrushin [8].

THEOREM 1.1. IfA = (aij) is an m X n stochastic matrix, then ||/T||1 =
a,, ,(A).

The above equality may be written as an inequality
| Axlly < @, ,(A4) - llxl: forevery x € H,. (1.4)
We shall refer to inequality (1.4) as Dobrushin’s first inequality.
The following result is also due to Dobrushin [8].
THEOREM 1.2.  Let A = (a;;) be an m X n stochastic matrix and B = (b;;)
be an n X p stochastic matrix. Then

@, ,(4B) <a, ,(A4)-a, ,(B). (1.5)

For a proof of the above result see losifescu [11, p. 58]. We shall refer to
inequality (1.5) as Dobrushin’s second inequality.

A generalization of Dobrushin’s first inequality has been recently given
as follows.
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THeEOREM 1.3 [5, Lemma 3.2]. Let A = (al-]-) be an m X n stochastic
matrix. Then

zx

+amn

(1.6)

uMg

E| e

s&m,n(A)(i

for every x,, x,,...,x, € R.

Another generalization of Dobrushin’s first inequality asserts that (1.4)
holds for arbitrary real matrices A. This follows at once from the two
theorems below.

THEOREM 1.4. Let C be a compact convex set in R" and let f: C — R be
a convex map. Then

sup f(x) = sup f(x).
xeC xeextC

(Here by ext C we denote the set of extreme points of C.)

THEOREM 1.5 [17, Corollary 3.2]. Let Q = {x € H,: llx|l; < 1}. Then
extQ ={3(e, —e,): r,s €{1,2,...,n}, r #s}. (Here by e, we denote the
vector (8,)); . ;. , of R" where &, is the Kronecker symbol.)

One of the main results of our paper uses Levi’s reduction theorem to
prove that in an inner product space H the inequality

(14l — &, ()] T,

7 (1.7)

\|M§

b b

< am,n(A)( % x|

holds for every real m X n matrix A =(a;;) and every x, € H, j =
1,2,...,n

One can easily see that inequality (1.7) supersedes the above mentioned
generalizations of Dobrushin’s first inequality.

It is very interesting to note that a series of inequalities belonging to
Hlawka [14, p. 171], Hornich [10], Adamovic [1], Djokovic [7], and Mitri-
novici [14, pp. 171-177] are also special cases of inequality (1.7).

Another result of our paper contains a generalization of Dobrushin’s
second inequality. More precisely, we prove that inequality (1.5) holds if A
is an arbitrary real matrix and all the sums of the entries in each column of
B are equal.
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2. GENERALIZATIONS OF DOBRUSHIN’S
INEQUALITIES: THE SCALAR CASE

Let 4 =(a;;) be an m X n stochastic matrix; it is well known that
a,, ,(A) = 1if and only if 4 has two orthogonal columns.

A generalization of the above property is contained in the following
proposition.

PrRoPOsSITION 2.1. Let A = (al-]-) be a real m X n matrix. Denote P = {r
e{1,2,...,n}: " la; | = l|All1}. Then the following assertions are equiva-
lent:

@ @, (A)=]Al.

(2) There exist distinct points r,s € P such that a
ie{1,2,..., mh

< 0 for every

ir@is

Proof.  This is obvious.

In Lemma 2.2 and Theorem 2.3 we shall use the following notation. Let
n > 1 be a natural number and let I = {1,2,...,n}. Denote by (1) the
family of all subsets of I. If J is a subset of I we shall denote by J' the
complement of J with respect to I and by |J]| the cardinal of J.
Forevery a >0, b € R, and J € 2(]), put

Z(a,b,J) = {x€ IR”:ijO(V)jEJ, xjsO(V)jEJ’, lej|=a,
j=1

n

Lx;=b).

j=1

Consider the sets

W, ={(a,b,J) eR,XRX2(I):0<|bl<a,1<|J<n—-1}
W, ={(a,b,J) € R, X RXP(1):0<a=0>b,|J|=n}
Wy,={(a,b,J) ER,XRX2(I):0<a=—b,J]=0)
W=Ww UWw,UWw,.
For every i € I, put ¢; = (§;)); ;. (Here by §;; we denote the Kronecker
symbol.)

LEMMA 2.2. The following assertions hold.:
(i) (a,b,J) € Wifandonly if Z(a,b,]) + .
(i) If (a,b,J) € W then the set Z(a,b,J) is compact and convex
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ext{Z(a, b, )] = {u(r,s,a,b): relJ, s}, where u(r,s,a,b) = ((a +
b)/2e, + (b — a)/2)e,.
(iii) The family {Z(a, b, J): (a,b,J) € W} is a covering of R".

Proof. To prove (i) consider (a,b,J) € W. If (a,b,J) € W,, then put

Jl=m, x,=x,= -+ =x,=a+b)/2m) >0, x,, .1 =X, ., = """ X,
=b-a/2(n —m) <0, x=(x;,x,,...,x,) and note that x
Z(a,b,J). For (a,b,J) € W,, let x, =x, = --- =x, = a/n and note that

x=(x, xp,..., x,) € Z(a,b,J). For (a,b,J) € Wy, let x;, =x, = -+ =
x, = b/n and note that x = (x, x,,...,x,) € Z(a, b, J).

To prove (ii) consider (a,b,J) € W and put m = |J|, €; = (8,1 _ ;<
i=12,...,m, e/i’=(8i/-)1£j§n_mi=1,2,...,n—m.

Y, =

m atb
x€ER™ x;20,j=12,...,m, Y x;=
j=1 2

Y, =

n—m b—a
XER"Mx, <0,j=1,2,...,n—m, ¥ x = '
j=1 ?

Let o: I — I be a bijection such that c({1,2,...,m}) =J, c((m + L, m
+2,...,n}) =J and consider the linear isomorphism ¢: R" - R”,
e(xy, Xy, 0000 %) = (X, 00 Xgpr oo o0 Xo ) (X1, X500, x,) € R™

Note that Z(a, b, J) = ¢(Y; X Y,), hence

ext[Z(a,b,J)] = ext(e(Y, X Y;)) = ¢(ext(Y, X Y;))
= p(extY; X extY,).

Since extY, = {((a + b)/2e.: re{l,2,...,m}}, ext¥, = {({(b —a)/2)e:
re{l,2,...,n — m}} we obtain

{a+b b+a

ext[Z(a,b,J)] e + e;.re{l,2,...,m},

N2 2

se{m+l,m+2,...,n}})

{u(r,s,a,b):rel,sel}.

To prove (i), let x € R” and put J={j el x; >0}, a =X lx],
b =YX/ ,x; Then x € Z(a, b, ]).

THEOREM 2.3. Let f: R" — R be a map with the properties

f(x+y) <f(x) +f(y), xyeR” (2.1)
f(Ax) = |Mf(x), reER, xeR". (2.2)
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Denote M = 3max, [f(e, —e)], K = max,[f(e,)], and L = {Xe;: fle;) = K
and A € R}. Then the inequality

n
ij

j=1

+(K—-M) , x=(x3,%,...,x,) €ER"

f(x) < M( i Iij

(2.3)

holds. For every x € L we have equality in (2.3).

Proof. By (2.1) and (2.2) one can easily see that f(x) > 0, x € R". Let
(a,b,J) € W. By Theorem 1.4 we have that the inequality

a+b b—a
f(x) <max{f(v):veext[Z(a,b,J)]} = max [f( ; e, + es)}

sel’

holds for every x € Z(a, b, J).
Put w,, = f(((a + b)/2)e, + (b — a)/2)e,) and note that

a+b a+b

5 (e,—es)+bex) sf( > (e,—es))—I—f(bes)

]

a+

b
(e, = e) +Iblf(e,)

(a +b)M + K|b],
a+b b—a
4

IA

+
2 T T

rs

b—a
=f( 2 (63 - er) + ber)

<175 e =) +scee)

a—>b
2

f(e, —e,) + Iblf(e,) < (a — b)M + K|b|.

Thus w,, < min{(a + b)M + K|b|, (a — b)M + KI|bl} = aM + K|b| +
min(bM, —bM) = aM + K|b| — M|b| = aM + (K — M)|b| and hence

f(x) <aM + (K- M)|b| foreveryx e Z(a,b,J). (2.4)

From (2.4) and the preceding lemma inequality (2.3) follows.

The following corollary of Theorem 2.3 is a generalization of Theorem
1.3.
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CoROLLARY 2.4.  Let A = (a;;) bearealm X nmatrixand 1 <p < +.
Put

1 m 1/p
ar(np)n(/l) = - Mmax Z |air - ais|p if1 Sp <+
! 2 r,s i=1

if p=+x

al

1
alP(A) = Emaxla —a;

1/p
(P’(A)—max(ZIal,l”) ifl<p< 4w

B(A) = maxla if p=+o

1/p
Z |air|p)
i=1

ifl<p< +w

T(m,n,p) = {r e{1.2,....n}: BP,(A) = max(|a,,|)}

Ir|

3

T(m,n,p) = {re{l,Z,...,n} B(A) =

if p=+x
L(m,n,p) ={Ae,:reT(m,n,p), A €R} ifl<p< +oo.
Then for every x,, x,, ..., x,, € R the following inequalities hold.
| X ayx < aﬁf)n(A)( )y |ij)
i=1]j=1 j=1
+(BIW(A) —aP(A))| X x; ifl<p< 4w
j=1
(2.5)
1<z<m Za” J = a(p)(A)( ‘Zl|x]'|)
Z =
+H(BI(A) =@l (A) Xy ifp =+
j=1
(2.6)
) Zaijxj = am,n(A)( 2 xl| + (||A||1 m,n(A))’ Zx] (2.7)
i=1]j=1 = j=1




DOBRUSHIN’S INEQUALITIES 639

For every p € [1,%], x = (x;, x,,...,x,) € L(m, n, p) we have equality in
(2.5) and (2.6). For every x = (x, x,,...,x,) € L(m, n,1) we have equality
in (2.7).

Proof. For every p € [1,=] consider the map f,(x) = [l Axl,, x € R".
Then using the notation from the preceding theorem we have that M =
all(A), K = B\ (A). Applying Theorem 2.3 we obtain inequalities (2.5)
and (2.6).

If in inequality (2.5) we put p = 1, then we obtain inequality (2.7).

Generalizations of inequality (2.7) to spaces of integrable functions or to
spaces of measures may be found in Zaharopol and Zbaganu [24] and
Zbdganu [25].

Remark 25. al)(A) and B)(A) have the following remarkable
interpretation. Let E, F, H be three Banach spaces defined as follows: £
is R"” endowed with the /*-norm, F is endowed with the /”-norm, and H is
the subspace {x € R: Zj 1X; = 0} of E. Then the norm of the linear map
A1 E > F, (Ax), = Tj_yayx;, i = 1,2,...,m is BL7)(A4), while the norm
of the restriction of A to H is a(P)(A)

COROLLARY 2.6. Let B = (b;;) be an invertible real n X n matrix. Then
the inequality

+ (1B~ — @, (B™"))

n
Z |y,| <«
i=1

HM:

n
Z ljyj

(2.8)

nM:

n
Z ]yj

holds for every y,, y,,...,y, € R.

Proof. Let A =(a;)=B"'. Inequality (2.8) follows at once from
inequality (2.7) if we put y, = Y qa;x;, i=1,2,...,n For every real
m X n matrix A4 = (a;;) put

1
‘Ym n(A) =5 max Z (azr - lS)
S oli=1
Bm,n(A) = max Zatr
roli=1

One can easily see that the inequalities
Y n(A) <@, (A), 5, (A) <Al

hold for every real m X n matrix A.
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Using the functionals v,, , and §,, , we can state the following general-
ization of Dobrushin’s second inequality:

THEOREM 2.7. Letp €[1,»], A = (aij) be a real m X n matrix and let
B = (b;;) be a real n X k matrix. Then the following inequalities hold:

@,/ (AB) < @, (A)a, (B)
+ % (B)(BI(A) — a;l,(A)) (2.9)
Byl (AB) < @l (A)IBlly + (B.(A) — @,(A4))8, (B) (2.10)
@, (AB) <@, ,(A)a, (B) + v, «(B)(Il4l: - @, ,(4)) (2.11)
I4Bl; < @, ,(A)IBll + (14l — @, ,(A))8, (B). (2.12)
Proof. Put
o(A,B) = a,l (A)@, «(B) + %, (B)(B)(A) — &, (A4))
(A, B) =, (A)(IBIl, - &, ,(B))
+(BI(A) — a0 (A))(8, «(B) = v,.4(B)).

Let x = (x;, x,,..., x;) € R¥ and note that
n k n
Z(Z Ji 1) = Z(iji)xl
j=1\i= i=1\j=1
k
< % 1(B)llxlly + (8, «(B) = %, «(B))| X xi|-
i=1
By the above inequality and by (2.5) and (2.6) we obtain
I4Bxll, < @, (A)lIBxl,; Y (Bx),
j=1
k
< a,;e;(A)[an,k(B)nxnl + (1Bl — @, «(B))| X x;
i=1

_|_(B(p)(A) — a(p)(A))

i=1

i:l ( i bjixi)

IA

k
@(A, B)llxlly + ¢(A, B) .Zx,- .
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If in the above inequality we take the supremum over {x € R*;|x|; <
1, X5 ,x; = 0}, then we obtain inequality (2.9). Since [ A4Bxll, <
(A, Bllxlly + ¢(A, B) - [Zf_ x,| < (¢(A, B) + (A, B))llx|l; we obtain
that

IA

B, (AB) < ¢(A,B) + (A, B)

= a " (A)IBlly + (B)(A) — &l (A)) -8, ((B).

m,n

If in (2.9) and (2.10) we put p = 1 we obtain (2.11) and (2.12).

CorOLLARY 2.8. Let A = (a;;) be a real m X n matrix and let B = (b;;)
be a real n X k matrix. If for some b € R we have Y[_b;; = b for every
jei{l,2,...,k}, then

a, (AB) < a,, (A)-a, (B). (2.13)

Proof. The condition that all the sums of the entries of B in each
column are equal implies that v, ,(B) = 0. Now, inequality (2.13) follows
at once from (2.11).

Remark 2.9. One can easily see that inequality (2.12) improves the
classical inequality || AB]l, < || All; - || Bll;.

3. A HILBERT SPACE GENERALIZATION OF
DOBRUSHIN’S FIRST INEQUALITY

The following theorem is known as Levi’s reduction theorem.

THEOREM 3.1 [13; 14, p. 175]. Let A = (aij) be a real m X r matrix and
let B = (b,;) be a real n X r matrix. Consider on R* the 1*-norm. Suppose
that

m r n r
Yl Xa| < Y| X bt (3.1)
i=1]j=1 i=1]j=1
forevery t,t,,...,t. € R.
Then for every x,, x,,..., X, € R* we have

m r n r

Y Zaijxj <) Zbl-jx] ) (3.2)

i=1]j=1 o i=1llj=1 2

Remark 3.2. Since every two finite dimensional Hilbert spaces of the
same dimension are isometric, it follows that inequality (3.1) implies that
inequality (3.2) holds in any finite dimensional Hilbert space.
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One can easily see that this implies that inequality (3.2) holds in
pre-Hilbert spaces of arbitrary dimension.

Levi’s reduction theorem allows us to obtain a Hilbert space generaliza-
tion of Dobrushin’s first inequality.

THEOREM 3.3.  Let H be a pre-Hilbert space and let A = (a;;) be a real
m X n matrix. Then

n

j=1

n
Y a;x;

+ (141 - @, ,(4))

< am,n(A)( ¥l
j=1
(3.3)

for every x,, x,,...,x, € H.

Proof. The above inequality follows at once from (2.7) and Levi’s
reduction theorem.

CoROLLARY 3.4 (Hlawka’s Inequality [14, p. 171]. Let H be a pre-Hilbert
space. Then

lx +yll+ 1y +zlIl + llz + xll < llxll + iyl + lzll + llx +y + 2l (3.4)

foreveryx,y,z € H.
Proof. Inequality (3.4) follows at once from (3.3) if we take

0 1 1
1 0 1

1 1 0

A=

and note that @, 5(A4) = 1, | 4ll, = 2.

CoroLLARY 3.5. Let H be a pre-Hilbert space, n >3, and k €
{2,3,...,n — 1}. Then

n n
Yl +xll < (n - 2)( Yollx ]+ X x; (3.5)
l<i<j<n i=1 i=1
n—k = "
by llx;, +x;, + - +x, |l < C,f:zz(m 2+ X X
1<ij<ip< - <iy<n i=1 i=1

(3.6)

for every x,, x,,...,x, € H.
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Proof. One can easily see that inequality (3.5) is a special case of
inequality (3.6). To prove (3.6) let m = C* and consider the set

L={(iy iy ip) €{1,2,....n} 1 <iy <iy < =+ <i, <n}.

Let 0:{1,2,...,m} = L, 0 = (04, 0,,..., d,), be a bijection and consider
the m X n matrix A = (a;;) whose entries are defined as

L 1 ifje {0’1(1'), O'Z(i),...,(rk(i)}
Y 0 ifj & {oi), o5(i),..., o (i)}

Note that @, ,(A4) = Cf=1 — Ck-Z and || All, = C;-{. An application
of inequality (3.3) to the matrix A yields inequality (3.6).

Inequality (3.5) was established by Adamovic [1]. This inequality con-
tains Hlawka’s inequality as a special case when n = 3. Adamovic’s proof
is based on an identity in an inner-product space. A straightforward proof
by induction of inequality (3.5) was given by Vasic [23].

Inequality (3.6) was proved by Djokovic [7] and independently by Smiley
and Smiley in [21]. Conditions for equality in (3.6) were given in [7, 21].

COROLLARY 3.6. Let H be a pre-Hilbert space, a € H, x;, x,,...,x, € H.

if
ixi = —ta (r=1) (3.7)

i=1

then the inequality
Y (lx; +all = lxll) < (n = 2)llall (3.8)
i=1

holds. If t < 1 in (3.7), then (3.8) need not necessarily hold.

Proof. Let A = (a,.j) where a; = §; — 1/t,1 <, j < n, and note that
a, (A) =1 A4l =1+ (n — 2)/t. By (3.3) we obtain that

M:

llx; + all =

HM:

Z| e

1

i

IA

n
L x

i=1

&, ,(A) LIl + (14l — @, ,(4))
i=1

n

XX,

" n
ol +
i=1

= Ylxll + (n = 2)llal.
i=1
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The result from the above corollary is known as Hornich’s inequality.
Hornich [10] gave his inequality in a different form, which is a special case
of (3.8).

A comprehensive discussion on the inequalities of Hlawka, Adamovic,
Djokovic, and Hornich may be found in Mitrinovici [14, pp. 171-173].
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