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Upper Binomial Posets and Signed Permutation Statistics

Vicror REINER

We derive generating functions counting signed permutations by two statistics, using a
hyperoctahedral analogue of the binomial poset technique of Stanley [7].

1. INTRODUCTION

In two previous papers [5, 6] on signed permutation statistics, we derived generating
functions for such statistics using hyperoctahedral analogues of methods of Garsia and
Gessel. In this paper we derive more of these generating functions using a variation on
the binomial poset technique of Stanley [7]. In our presentation, we have chosen to
omit certain proofs that require only routine modifications of analogous proofs in [7].

2. UrpER BINOMIAL POSETS

An upper binomial poset is a partially ordered set P saiisfying the following
conditions:
(1) P has a greatest element 1, contains arbitrarily long finite chains, and all of its
intervals [x, y] are finite and graded (i.e. all maximal chains x = x,<x, < - -<x,=y
have the same length n = I[x, y]).
(2} For any interval [x, ¥] in P, the number of maximal chains in [x, ¥] depends only
on I[x, y] and on whether or not y = i. 1f y#1 and /[x, y] = n, we say that [x, ¥] is an
n-interval, and we denote by B(P, n) (or just B{(nr)) the number of maximal chains in
[x, y]. If y =i, and I[x, y] = n + 1, we say that [x, y] is an fi-interval, and we denote by
B(P, #) (or just B(A)) the number of maximal chains in [x, y].

ExampLe. If B(A)= B(n +1), then P is called a hinomial posei. See [7,8] for
applications of this concept, particularly to permutation enumeration.

ExaMpLE. Let V,. . be a 2n-dimensional symplectic space of a finite field F, of order
q, ie. V,, is a 2n-dimensional vector space endowed with a non-degenerate
skew-symmetric biliner form (-, -}. By the linear algebra of skew-symmetric forms, all
such spaces V,  are equivalent to one with a basis {e;, £}7_, in which (e,, e;) = 0 for all

L, §, and
(ei;ﬁ) = _(f;': f?i) = 6i.j-

A subspace W c V,  is isotropic if (w, w') =0 for all w, w' in W. Let L(V,,) denote
the lattice of isotropic subspaces of V, , with a greatest element 1 adjoined. Using the
natural inclusion i:V, , <V, ., ,, we can embed L(V, ,) into L(V,.,,) via the map

¢ W i(W)+Fee,.., so that the image ¢,(L(V,,)) is the upper interval
[F,e,+1, 1]. This makes

{¢n: L(anq)_) L(vn+l,q)}

into a directed system, and we denote by L(V,) its direct limit. This lattice L(V,) is an
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0195-6698/93/060581 + 08 $08.00/0 © 1993 Academic Press Limited



582 V. Reiner
upper binomial poset with B(n), B(/i} given by the following proposition:

Proposition 2.1. Let [n],=(¢" - 1)/{g~1)=1+qg+q*+---+4""". Then

B(H) = [n]!q = [n]q[n - llq e [zlq[llq’
B(a)=(2[n])!y = 2n],[2(n = D)), - - - [4], - - - [2),-

Proor. We prove both by induction on n, the n =0 cases being trivial. To count
B(n), note that if [W,, W,] is an n-interval in L[f/q], then W, is isotropic, and hence all
of its subspaces are isotropic. So a maximal chain Wyc---c W, in L(Vq) is simply a
maximal chain of subspaces. We can choose W, by choosing a line in W,/W, in
(g" — 1)/(g — 1) =[n], ways, and then choose Wyc---c W, in B(n — 1) ways. There-
fore B(n) = [n],B(n — 1), and we are done by induction.

Similarly, to count B(A), note that if [Wo, i] is an A-interval in L(V) then it is
1som0rphtc to the interval [{0}, 1] in L(¥,,). We can choose a maximal chain
{0}cW,--- cW, 1 by first choosing the line W, in (¢** —1)/(g —1)= (4], ways,
and then choose a maximal chain

Wo/Wyc--- W, /W el

of isotropic subspaces in Wi /W,. Since Wi /W, is isomorphic to V,_, , as mplectic
spaces, the latter choice can be made in B(n — 1) ways. So B{#A) =[i],B(n — 1)}, and
again we are done by induction. m|

By convention, we let L(V,) be the lattice of cofinite signed subsets of a countable
set, i.e. all vectors (g, £z, ...) where & =0, +1 or —1 and only finitely many g + +1,
ordered componentwise by 0<< +1,0< —1. This is also an upper binomial poset, with
B(n)=n!, B(Ai)=2"n!.

Examprie.  Given any upper binomial poset P and r € P, we can form a new upper
binomial poset by putting the componentwise partial order on the set
P={(xy,...,x):x; € P lx,, 1]|=---=Ix, 1]}.
One can check that
B(P., n)=B(p, n) and B(P.,#R)y=B(P, ).
If P= L(Vq) from the previous example, we denote P, by L,(f/,,).

ExampLe.  Given any upper binomial poset P and k e P, the following subposet
P® = {x ¢ P:{[x, 1] — 1 is divisible by k}
is also upper binomial, and one¢ can check that
B(P, kn)
B{P, k)"

B(P, kn)

B(PW, n)= By

and  B(PW®, A)=

3. Maéaius FuncTions

Recall that if P is a poset the intervals of which are finite, its incidence algebra I(P) is
the C-vector space of all functions f: Int(P)— C (where Int(P) denotes the set of all
non-empty intervals [x, y] in P), endowed with multiplication f * g, defined by

(f *g)lx. y] = Z flx, zlglz, yl.

zelx, y]
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If P is upper binomial, we let R(P) be the vector subspace of I(P) consisting of all
functions which satisfy f[x, y] =flx', y'] =f(n) if [x, y], [x', y'] are both n-intervals,
and flx, 1] flx', 11=F(A) if [x, 1}, [x', 1] are both A-intervals. In the language of
[4], R(P) is the reduced incidence algebra of P corresponding to the order-compatible
equivalence relation which sets all n-intervals equivalent, and all A-intervals
equivalent.

Prorosition 3.1.  If P is upper binomial, the map

(e fGry
= En(s(n) B(ﬁ))

is a C-algebra isomorphism

R(PY= C{{x, y))/(yx, y*)

where C({x, y)) is the ring of formal power series in two non-commuting variables x,
y, and (yx, y*) is the two-sided ideal generated by yx and y*.

Proor. Since C{{x,y))/(yx,y?) has C-basis {1,x,x% ...,y xy, x%,...}, the
map ¢ is clearly an isomorphism of C-vector spaces. It only remains to show that

(f=8) = ¢(f) - d(g).

Let [a,, b,) be a typical n-interval, and [c,, 1] a typical /A-interval in P. We have

_ (f *g)n)x" (f*g)(n)x y

¢(f*8) —E(,( B(n) B(r) )
_ flan, zlglz, b, 1x" fle., 2)glz, "y
_nE‘a() (zE[a%b,,] B(”) " ze%.i] B(ﬁ’) )

There are B(n)/B(i)B(n —i) elements z e [a,, b,] for which [a,, z]=i=n, and
B(A)/B(i)B(n — 1) elements z € [c,,, i] for which /[c,, z] =i = n. This gives us

. f@) gln - & fl) g(n f@)©) .,
$r8)= n§>:ll azuB(l) B(n - )x +n>n i= nB(z)B(n—:) néﬂ B(n)
-y ) .5 g) ) 5 8A) . f(n)
=2 a2 a2 Em " 2w O 2 56
Meanwhile,
_ _ v (fl)x™  flA)x"y gln)x"  g(A)X"y
o) 20=2 (Goy + 5 ) 2 (5im *+ ar)

which, when multiplied out using the rules yx =y*=0, gives the same result as the
preceding line. O

We recall two key elements of I(P): the zeta function, defined by C[x, y] =1 for all
intervals [x, y], and its multiplicative inverse, the Mobius function p. If P is upper
binomial, then both £ and u are also elements of R(P), and the preceding proposition
may be used to calculate .

ExampLe. Let P = L({V,). Then

20=3 (5+52)=e e,

n=l 2"n!
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Since u = £~ in I{P), we have

ppy=@(L) ' =e T —e =3

n=(0

((_l)nxn N (_1)n+|xny)
n! 2n!
and hence p{n)=(—1)", p(n)=(—1)""". More generally, p{x)+ g(x)y is invertible in
C({x, y)}/(yx, y*) iff p(0)#0, and its inverse is given by p(x)~'(1 — p(0)~'g(x)y).
There are two ways in which to rank-select intervals in an upper binomial poset P.
Given § c P and an interval [x, 1) in P, we define two rank-selected subposets

[x, {]s={x, YU {z €[x, 1]: {|x, z] € §},
[x, 5= {x, DY U{z e[, 1]z, 1] € $).
We write ps(A) = pp,.iplx, 1] and pg(i) = iz il X, 1], where [x, 1] is any #-interval.

The next three propositions allow us to calculate ug(#i) and pz(A), and are proven
analogously to their corresponding results in [7]:

Proposition 3.2 (cf. [7], Theorem 2.2]). If P is upper binomial and S c P, then

o At o X7 x” ps(A)x"
nEZU B(#) _nE?UB(ﬁ)-'-nZ?OB(n)IH;ES B(#) .

Prorosimion 3.3 (cf. [7, Corollary 2.4]). If P is upper binomial and S = kP for some
keP, then

1

us(A)x” x x" xkn-l nooxkeoy -l
~ 2y 2 5T 2 B0 2 (,Z:,B(kn)) :

A=l n=0 nao B(n) n;nN(m)

Lemma 3.4 {cf. [7, Lemma 2.5]). Let P be upper binomial, and define three elements
£, &, h of R(P) as follows:

f0)=0

f)y=QQ+0, n=1,
FA)=0, n=0,
g(n}=0, n=0,
g(A)=(1+1)", n=0,
h(n) =0, n=0,
hAY= X ps(A*5, n=0

S<{l,.... n}

Then h = —(1+f) 'g in R(P).

4. SIGNED PERMUTATIONS

Let B, denote the group of signed permutations on n eléments, i.e. all permutations
and sign changes of the co-ordinates in R". We may view B, as a Coxeter group with
simple generators S = {s,, ..., s,} (see [2] for background). Here S, is the transposi-
tion of co-ordinates i and i+ 1 for 1==i=<n—1, and s, is a sign change in the last
co-ordinate. The length I{r) for & € B, is defined by

() =min{t: T =3,5, - -5, for some s; € §}
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and the descent set of m is defined by

D(m) = {i: l(7s;) < l(m)}.

We let [#] denote the set {1, ..., n}. The key relation between upper binomial posets
and B, is given by the following theorem.

THeoREM 4.1 (cf. [7, Theorem 3.1]). Let P=L,(V,) and K< {1,..., n}. Then

(D) (A= >, gl
(xy,.... 0 )EB,
Ui D(r)=K
Proor. Let
d gr(K):(_l)#KﬂluK(ﬁ)
an

L) = 2 8(K)

Kcgl
for K, L c[n]}. We need to show that g, (K) is equal to the right-hand side of the
theorem. When r = 1, this is exactly the assertion of [1, equation 4.20] (we need the
special case in which G is a finite Chevalley group over F, of type C,, and the
corresponding building is the flag complex of L(V, ,); see [2, Section V.6] and [1] for
more details).
For r > 1, by inclusion—exclusion, it would suffice to show that

fr(L) — z qf(n|)+---+!(.n:,),

which we now set out to prove. Let [x, 1] be any #-interval in L,(V,). We have

ALy = 3 (1" ux(A)

Kel
- 2 (_1)#K+l E (_l)lenglh(c)
Kel chains eglx, 1]k

by P. Hall’s Theorem {8, Proposition 3.8.5]
— z (_l)lcnglh(c) E (__1)#K+l,

chuinsc;[x,f];l ricycKci.

where r{c)= {I[x, ¢} c;ec)

2 (—l)lenglh(C)ar((‘).L

chains c<[x. i!;,

# {maximal chains in [x, 1],}

= #{maximal chains in {x', 1],}",
where [x', 1] is any #-interval in Ll(f/q)

=f(Ly

by reversing the argument so far

— ( Z ql(:r))r
Te8,
D{m)cL
by the r =1 case of the theorem

— 2 qf(n|)+---+l(n,.)’
{my,..., 1, )eBy
UiD(m)eL

as we wanted. O
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Having this interpretation for pu(s), we can deduce our first result on signed
permutation statistics:

Tuzorem 4.2 (cf. [7, Corollary 3.3]). For keP, let
fqu = E ql(:r1)+-~-+f(1r,),

[ TT. mx,)eBL
UkD(m)=(n+ 1 —kP)Mi[n]

where (n + 1 —kP)N[n]l={n+1—itiekP,n+1—ie|n]}. Then

n n kn—1

(_1)[nlk]ﬁ"gxn_ x X X xkn —1
ngil (2[nDY, B ::Ez:u Pl ])18 - ngl 7]t gl Q2lkn — 1], (g‘(, [kn]!;) ’

Proor. If we let § = kP, then

1#5(A) = b1 —xpyrpa)(R)
and |n/k|=#(n+1-kPN[n]), so (—1)**If  =uga) by the previous theorem.
Now apply Proposition 3.3. O

To eliminate the (—1)!"*! factor, we use a lemma proven very similarly to [7,
Lemma 3.4]:

LEMMA 4.3, If F(x) = %m0 (=D If(n)x", then

9 k=t 2+1
S flapr =2 3 FED

n=0 k j=0 1- Ciwﬂ) '

where € = ™%

CoroLLary 4.4, Let
A, ={meB, D(m)={n—-1,n-3,...}}
be the set of alternating signed permutations. Then
(_1)[nlkj Z.n:e‘ ) q!(n)xn " " xZn—l x2n -1
) ;4 - 1 by ! > —11 (2 ! )
nz=l) (2[”]).q n=0 (2[”]).q n=l [n].q n=1 (2[2n 1]).q n=0 [2’1].‘],

and

#od, x" cos(x/2)+sm(x/2)
2 2inl

n=0 ! cos(x)

Proor. The first equation is Theorem 4.2 with k=2 and r=1. If we set ¢ =1 in
the first equation, we obtain

(—I)L"”‘J#.Sﬂ,,x" x2n-1 X2\
E Y] (] 2 | 2 2n—1 | (2 )
=0 2 n: n>(l2 n. n?—ln n?]2 (2 1)- n=0 (2”)'
sinh(x/2) €™
cosh(x)  cosh(x)’

Applying the preceding lemma with k& =2 gives

=ex.'2__ (ex — 1)

z #&fnxn B 'ei.x."Z N efi.xfz
<4 2"t (1+i)cosh(ix) (1 - i) cosh(—ix)
cos(x/Z) + 51n(x/2)

cos(x)
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ReEMARK. A generalization of this last result to the wreath product C, 1 S, of a cyclic
group of order k with the symmetric group 3, is given in [9].
If we set k =1 in Theorem 4.2, and replace x by —x, we obtain the following:

CoOROLLARY 4.5.

qi(:r,)+~-+1(.n,)xn _ (_x)n (_x)n =1
nzau (G.B(.J.Tz:_r),:.[fi; (2[nD; nza;n (2[nD1, q (nzzo {"]!; )

When r = 2, this gives the hyperoctahedral‘q-analogue of a result from [3].
Next we consider generating functions that count descents. For x € B, define its
number of descents to be d(x)=#D(x).

THEOREM 4.6. Let

Gnkr(t, q) = 2 q’(”')"'"'*”(’Tr)t"-#U,D(n.-)
(A),.... 7 }EB,
and let BFTER=LIT ot
akrlls q x"
B AL g, x)= kAl 7
ot 4.%) nEz() (2[kn])',
Then

e )TN S =D
By (t,q,x) = (1 ;;:] [kn}t, ) nZ;-n 2[kn])t; .

Proor. Let P=L,(V,), so that P®) =L (V,)*). We have

Gnkr(ti CI)B(P: ‘k)mx’l
B (¢, g, B(P, kYx)y=
wlt, g, B(P, kYx)y "230 B(P, &)

)+ ) gt 7#U.-D(m)xn

q
T
n=l Sckir) (m,....7)eB) B(P( ’ , i)

_ E 2 ( 1)L§+l|us(n)tn #5
n= Sck(n] B(P(k), fi)
by Theorem 4.1, where ps(72) here refers to an A-interval in P, not P*),
ps(A)(—t
- -1 n+}
nza:u( ) 5521"] B(P®, )
where ugs(/i) now refers to an s-interval in P, not P!
-3 h(@)] - (—x)*(~y)
a0 B(P®, Ry 7
where 4 is the element of R(P)) defined in Lemma 3.4,
= ¢(h)|—r —r.—y-

Bkr(tr q, x)y = T[¢(h)]s
where T is the operator which substitutes —t for 1, —x/B(P, k) for x, and ~y for y.

Since h=—(1+f) "g in R(P*") by Lemma 3.4, one concludes from Proposition 3.1
that

)n —#any

Therefore

B,(t, g, x)y =T[-(1 + ¢(f)~" ¢(§)J 1 o
[ (1+ s {1+ )) D (1+t)xy]

nz=1 B(P(k) n n=0 B(P(k), ﬁ)
(t—1)"""'x ) {t— 1"
=1-p, —— ———y,
( ,E, [kn)Y, 2, Qlkn]? ”
which implies the result. '
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By setting k =r =1 in this theorem, we recover a special case of a result from [5];
namely, a generating function for a hyperoctahedral g-analogue of the Eulerian

polynomials (see [8], Section 1.3]):

CoRroOLLARY 4.7.

Z EJ'IEB,, ql(n)tn—d(n)xn

n=0 (2["])!.; = Bu(!‘, q, x)
(Gl VA AR e Vi
(1_2' [n1t, ) PO

and hence, setting ¢ =1, we have

2 E:reﬂ,' tn—d(:t)xn _ (t _ 1)e(rr~1)x.’2

n=l) znn‘ t— e(r_ljx

Note that, in general, when r =g = 1, the expressions in Theorems 4.2 and 4.6 can
be written in terms of the exponential functions e* and e*?, so one expects such
functions to occur naturally in signed permutation enumeration problems, similar to
the occurrences of e in permutation enumeration.
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