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The general problem underlying this article is to give a qualitative classification
Ž .of all compact subgroups G ; GL F , where F is a local field and n is arbitrary.n

Ž .It is natural to ask whether G is an open compact subgroup of H E , where H is a
linear algebraic group over a closed subfield E ; F. We show that G indeed has
this form, up to finite index and a finite number of abelian subquotients. When G

is Zariski dense in a connected semisimple group, we give a precise openness result
Ž .for the closure of the commutator group of G. In the case char F s 0 the answers

have long been known by results of Chevalley and Weyl. The motivation for this
work comes from the positive characteristic case, where such results are needed to
study Galois representations associated to function fields. We also derive openness
results over a finite number of local fields. Q 1998 Academic Press

0. INTRODUCTION

Consider a local field F, i.e., a topological field that is either complete
with respect to a non-trivial discrete valuation with finite residue field or
isomorphic to R or C. Let n be a positive integer. The general problem
underlying this article is to understand the structure of a compact sub-

Ž .group G ; GL F in view of properties that are shared by all openn
subgroups of G.

Ž .When char F s 0, it has long been known that G is a real or p-adic Lie
group. The main reason for this is that the logarithm and the exponential

Ž .series allow us to go back and forth between GL F and its Lie algebra.n
Ž w x.By results of Chevalley in the p-adic case cf. 1, Chap. II, Sect. 7 and

Ž w x.Weyl in the real case cf. 9, Chap. 4, Th. 2.1 , one finds that G is in some
sense essentially algebraic, to wit: the commutator subgroup of a suitable
open subgroup of G is open in an algebraic group over R resp. Z .p
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In positive characteristic it is not possible to translate the problem into
one of Lie algebras, as in the p-adic case. What is worse, there is no
subfield E ; F such that G is a priori an ‘‘E-adic’’ Lie group. Thus even
the definition of an algebraic envelope, in which G has a chance to be
open, poses substantial difficulties.

As a first step, let G be the Zariski closure of G in the algebraic group
GL . This is a linear algebraic group, which may be assumed connectedn, F
after G is replaced by a suitable open normal subgroup. The intersection
of G with the maximal solvable normal subgroup of G is a successive
extension of at most n abelian groups and can be studied directly without
much difficulty. Thus, after one divides G by its maximal solvable normal
subgroup, it remains to study the hard case that G is connected adjoint.
Write G as a direct product of Weil restrictions Łm RR G , where eachis1 F r F ii

G is an absolutely simple adjoint group over a finite extension F of F.i i
m Ž .Then we can view G as a subgroup of Ł G F . Thus we are led to theis1 i i

following, slightly more general question.

The Setup. For each 1 F i F m let G be an absolutely simple con-i
m Ž .nected adjoint group over a local field F . Let G ; Ł G F be ai is1 i i

Ž .compact subgroup whose image in each factor G F is Zariski dense. Thei i
problem is to give a qualitative classification of such G. Note that in this
formulation the F need not be given as extensions of one and the samei
local field, and the Zariski density is required only in each individual
factor. We need not even assume that the F have the same residuei
characteristic. In this situation the following phenomena can force G to be
small. First, some G might be defined already over a closed subfieldi

Ž .E ; F , such that the image of G in G F consists of E -valued points.i i i i i
Second, there might be an isomorphism of algebraic groups G ( G over ai j
field isomorphism F ( F , for i / j, such that the image of G is containedi j

Ž . Ž .in the graph of the resulting isomorphism G F ( G F . Third, there arei i j j
some additional pathologies involving non-standard inseparable isogenies
for certain root systems in characteristics 2 and 3. Any promising concept
of algebraic envelope of G has to take all these phenomena into account.

Ž .The use of quite elementary group schemes provides an elegant
language for this discussion. Changing notation with regard to the begin-
ning of this introduction, let us now consider the commutative semisimple
ring F [ [m F . Then the individual G fit together to a group schemei iis1

Ž . m Ž .G over F, such that G F s Ł G F . It may happen that there existsis1 i i
a semisimple closed subring E ; F such that F is of finite type as module
over E, another fiberwise absolutely simple adjoint group scheme H over

Ž Ž ..E, and an isogeny w : H = F ª G such that G ; w H E . In fact, eachE
of the above phenomena corresponds to such a situation.
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Ž .DEFINITION 0.1. We say that F, G, G is minimal if and only if, for any
Ž .such E, H, w , we have E s F and w is an isomorphism.

Ž .As long as F, G, G is not minimal, we may replace it by any triple
Ž y1Ž ..E, H, w D violating Definition 0.1. In Section 3 we prove that this
process stops and that the resulting triple can be chosen canonically. This
can then be viewed as the desired algebraic envelope of G.

˜Going on, let G denote the universal covering of G, i.e., consisting of
the universal coverings of the individual G . Then the commutator mor-i

˜ ; ˜w xphism of G factors through a unique morphism , : G = G ª G. Let
˜ ;Ž . w xG9 ; G F be the closure of the subgroup generated by G, G . For

˜ ˜Ž .E, H, w as above, let w : H = F « G be the associated isogeny of˜ E
universal coverings. The following is the main result of this article.

Ž . Ž .MAIN THEOREM 0.2. a There exist E, H, w as abo¨e such that w
has nowhere ¨anishing derï atï e and G9 is the image under w of an open˜

˜Ž .subgroup of H E .
Ž . Ž .b The ring E in a is uniquely determined, and H and w are unique

up to unique isomorphism.
˜Ž . Ž . Ž .c In particular, if F, G, G is minimal, then G9 is open in G F .

The reader should be aware that we do not assert that G is the image of
Ž .an open subgroup of H E . Indeed, this can be proved only when the

˜isogeny G ª G is separable.
When w is an isomorphism, one can view H as a model of G over E. By

the classification of semisimple groups, w must be an isomorphism over Fi
unless the root system of G possesses roots of different lengths for whichi
the square of the length ratio is equal to the characteristic of F . This cani
happen only in characteristics 2 and 3.

While the formulation of Main Theorem 0.2 was motivated by the
peculiarities of the positive characteristic case, it is a pleasant surprise that
a single statement covers all kinds of local fields, archimedean and
non-archimedean of all characteristics alike. One can view the content of
Main Theorem 0.2 as a combination of the field case together with a
statement about the interaction between different simple factors. The

˜following consequence means that the algebraic structure of G and F is
inherent in the structure of any open compact subgroup as topological
group! This can be viewed as a generalization of Weyl’s theorem on the
algebraicity of compact real Lie groups.

COROLLARY 0.3. For each i s 1, 2 consider a local field F , an absolutelyi
˜simple simply connected group G o¨er F , and an open compact subgroupi i

;˜ ˜ ˜Ž .G ; G F . Let f : G ª G be an isomorphism of topological groups. Theni i i 1 2
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;˜ ˜there exists a unique isomorphism of algebraic groups G ª G o¨er a unique1 2
;isomorphism of local fields F ª F , such that the induced isomorphism1 2

;˜ ˜Ž . Ž .G F ª G F extends f.1 1 2 2

Another special consequence of Main Theorem 0.2, stated in the frame-
work of abstract topological groups and thus with less conceptual ballast, is
the following:

COROLLARY 0.4. Consider a connected adjoint group G o¨er a local field
Ž .F and a compact Zariski-dense subgroup G ; G F . Let G9 denote the

closure of the commutator subgroup of G. Then there exists a local field E of
the same characteristic and the same residue characteristic as F, a connected

˜adjoint group H o¨er E, with unï ersal co¨ering p : H ª H, and an open
˜Ž . Ž .compact subgroup D ; H E , such that G9 ( p D as topological groups.

Finally, the reduction steps at the beginning of this introduction imply:

COROLLARY 0.5. Consider a local field F, a positï e integer n, and a
Ž .compact subgroup G ; GL F . Then there exist closed normal subgroupsn

G ; G ; G of G such that3 2 1

Ž .a GrG is finite.1

Ž .b G rG is abelian of finite exponent.1 2

Ž .c There exists a local field E of the same characteristic and the same
residue characteristic as F, a connected adjoint group H o¨er E, with unï ersal

˜ ˜Ž .co¨ering p : H ª H, and an open compact subgroup D ; H E , such that
Ž .G rG ( p D as topological group.2 3

Ž .d G is a successï e extension of F n abelian groups.3

Trace Characterization. In applying Main Theorem 0.2 it will be desir-
able to determine the subring E in advance and to have a criterion for w
to be an isomorphism. This can be achieved in most cases using traces of G
in suitable representations of G. We restrict ourselves here to a few
general results; more detailed information can be deduced from the results
of Section 3. For any representation r of G on an F-module of finite type
we let OO ; F be the closure of the subring generated by 1 and bytrŽ r .
Ž Ž ..tr r G , and put

x
E [ x , y g OO , y g F* ; F .r trŽ r .½ 5y

Ž .PROPOSITION 0.6. Let E, H, w be as in Main Theorem 0.2.

Ž .a Suppose that F is a field and that r is a non-constant irreducible
representation occurring as subquotient of the adjoint representation of G.
Then we ha¨e either E s E, or the characteristic p of F is 2 or 3 andr

� p 4E s x N x g E .r
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Ž .b Suppose that F is a field, and that r is a subquotient of the adjoint
representation of G. Then E ; E. In particular, if E s F, then E s F.r r

Ž .c Suppose that E s F for all nowhere constant fiberwise irreducibler

representations r which occur as subquotients of the adjoint representation
of G. Then E s F and w is an isomorphism.

Related work. The results of this article are similar, but in some sense
w xcomplementary, to those of Weisfeiler 13 concerning strong approxima-

Ž w x.tion. His main result, in a special case see 13, Th. 9.1, Th. 10.2 , concerns
a finitely generated Zariski dense subgroup G of an absolutely simple
group over a global field F, and under some additional assumptions he
obtains a theorem on simultaneous approximation by G at all but a finite,
sufficiently large, set S of places of F. The Main Theorem 0.2 above is
complementary to that result in that it can be applied to the remaining

w xplaces. The methods of 13 and the present article can be combined to
obtain a strengthening of Weisfeiler’s theorem. The author plans to deal
with this in a subsequent paper. Sections 2]4 of this article, which apply
equally to the local and the global case, have been written already with
that application in mind.

Returning to the local case, the motivation for Main Theorem 0.2
originally came from the study of Galois representations associated to
function fields. The consequences for Drinfeld modules in generic charac-

w xteristic are discussed in Pink 10 .

Sketch of the Proof. We indicate the method in the following special
case of Main Theorem 0.2.

THEOREM 0.7. Consider an absolutely simple connected adjoint group G
Ž .o¨er a local field F and a compact Zariski-dense subgroup G ; G F .

Assume that the adjoint representation of G is irreducible. Then there exists a
model H of G o¨er a closed subfield E ; F, such that G is an open subgroup

Ž .of H E .

To begin with, let Ad denote the adjoint representation of G on its LieG
Ž .algebra g. Abbreviate A [ End g , and let BB ; A be the closure of theF

Ž .Z-subalgebra that is generated by Ad G . From Burnside’s theorem ourG
assumptions imply F ? BB s A. With arguments mainly from linear algebra

Ž .we deduce cf. Section 2 :

LEMMA 0.8. BB is an order in a simple algebra B ; A with center E ; F,
such that the natural homomorphism B m F ª A is an isomorphism.E

Ž .By construction we have Ad G ; B*, which allows us to define aG
w xmodel of G over E, following Vinberg 12 . Namely, let B*, resp. A*,

denote the multiplicative group of B, resp. A, viewed as algebraic group
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over E, resp. over F. Then B* is a model of A*; i.e., we have a natural
Ž .isomorphism B* = F ( A*. Let H be the Zariski closure of Ad G inE G

Ž .B*. Then H = F is the Zariski closure of Ad G in A*, which isE G
Ž .Ad G ( G since G is Zariski dense and G is adjoint. By construction weG

Ž .now have G ; H E , and it remains to show that this subgroup is open.
Ž . Ž .Note that replacing F, G by E, H leaves BB unchanged, so that without

loss of generality we may assume that BB is open in A, and we must prove
Ž .that G is open in G F .

Next select a BB-invariant OO -lattice L ; g. Let p be a uniformizer inF
OO , and consider the subgroupsF

nD [ g g G F Ad g y id L ; p LŽ . Ž . Ž .� 4Ž .n G

for all integers n G 0. These principal congruence subgroups form a
Ž .cofinal system of open compact subgroups of G F . For all n G m G 0 we

have a natural group isomorphism

D rD ( p nLrp nqmL ,n nqm

obtained by truncating the logarithm and exponential series after the first
Ž .order term cf. Section 6 . Put G [ G l D for all n; then by constructionn n

the subgroup

G rG ; D rD ( p nLrp nqmLn nqm n nqm

r Ž .is invariant under BB. Fix an integer r G 1 so that p ? End L ; BB, andOOF

choose n G 2 r with G / G . Setting m [ 2 r we deducen nq1

G rG > D rD .n nq2 r nqr nq2 r

In other words, we have

G rG s D rD .nq r nq2 r nqr nq2 r

Ž .Repeating the argument inductively with n q i y 1 r in place of n, we
find

G rG s D rDnq i r nqŽ iq1. r nqi r nqŽ iq1. r

Ž .for all i G 1. This implies G s D , hence G is open in G F , thusnq r nqr
finishing the proof of Theorem 0.7.

In the general case of Main Theorem 0.2 all remaining problems are
related to inseparable isogenies which are not powers of Frobenius. As a
consequence one has to juggle with congruence subgroups with respect to
several groups at the same time. Other difficulties arise from the fact that

Ž .the ring BB may be smaller than an order in a model of End g . For anF
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element g g G9 to generate many new elements under conjugation by G,˜
one needs roughly that the logarithm of g be sufficiently far from the˜
invariant proper subspaces of the Lie algebra. This can be achieved by
applying a suitable inseparable isogeny, if necessary, and by raising g to a˜
large power to make it look more toric. For the relevant technical details
see Section 7.

Outline of the Article. Section 1 summarizes a number of mostly well-
known facts concerning linear algebraic groups over arbitrary fields and
their adjoint representations. To make it understandable to a wider audi-
ence this paper has been written with an effort to avoid scheme-theoretic
machinery as much as possible.

In Section 2 we prove some general results on the image of the group
ring of G in an algebraic representation r of G, where F, G, and G are as
above. For any semisimple representation one obtains an order in a
semisimple central algebra over a suitable subring E ; F. We also discussr

reducible representations in a special case.
In Section 3 the results of Section 2 are applied to the semisimplification

of the adjoint representation of G. The fundamental observation here is
that the adjoint representation automatically descends to any model of G
over a subring, and that its behavior under isogenies can also be described.

Ž .Using these facts, we find the candidate for E, H, w in Main Theorem
0.2 and are able to characterize it as in Proposition 0.6.

The study of the adjoint representation is continued in Section 4, where
we give a full qualitative characterization of the image of the augmenta-
tion ideal of the group ring of G. Here the difficulties arise from the fact
that the adjoint representation may be far from semisimple in small
positive characteristic. The results of this section yield a first order
approximation for the action of G on small neighborhoods of the identity

Ž .in G F , thereby finishing roughly the first half of the proof.
The next two sections set up the technical framework for working with

Ž .congruence subgroups of G F . This concerns only the non-archimedean
case; the archimedean summands of F will be dealt with by a separate
argument in the last section. First, in Section 5 we choose local parameters
which are compatible with the action of G and with various other maps
that must be carried along. Any such choice determines a system of
principal congruence subgroups. In Section 6 we discuss the linearization
of certain quotients of these by means of the truncated logarithm map.

After all these preparations the proof of Main Theorem 0.2 culminates
in Section 7. Having disposed of the archimedean summands of F, we
must show that G9 contains a suitable principal congruence subgroup. The
principle here is again to start with a suitable generic element g g G9 and˜
to conjugate it around by G. This is the point where the results of Section
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4 play a crucial role. A number of influences have to be balanced against
each other, such as the size of the action of G, the choice of g , and the˜
presence of non-standard isogenies. This makes the whole argument a
relatively delicate matter. However, most of these technical details are
necessary only in extreme cases.

The reader willing to avoid certain pathological cases in characteristics 2
and 3 will benefit from substantial technical simplifications throughout the
article, except in Section 2. We briefly indicate these. Let us rule out the

Ž .root systems of types B , C for n G 1 , and F in characteristic 2, andn n 4
type G in characteristic 3. Then in Section 3 any quasi-model is a model,2
and using the results of Section 2 one easily proves the existence and

w xGuniqueness of minimal quasi-models with E s E , as in Vinberg 12 . Thea

study in Section 4 can also be cut down significantly, but it cannot be
˜avoided completely when is isogeny G ª G is not separable. In that

section and the remaining ones all the special arguments involving the
isogeny G ª H and the Frobenius isogeny can be discarded. Altogether,
the amount of technical detail should decrease by about a third. By
contrast, the generality of allowing F to be a finite direct sum of fields
introduces no difficulties.

The proofs of the results mentioned in this introduction will be given at
the end of Section 7.

1. LINEAR ALGEBRAIC GROUPS: NOTATIONS AND
WELL-KNOWN FACTS

In this section we summarize a number of mostly well-known facts
concerning linear algebraic groups over an arbitrary field F and their
adjoint representations. For the fundamentals of linear algebraic groups

w x w xwe refer to Borel 1 and Humphreys 8 .

Generalities. For any positive integer n let GL denote the algebraicn, F
group over F of all invertible square matrices of size n. By a linear
algebraic group over F we mean a reduced group scheme over F which is
isomorphic to a Zariski closed algebraic subgroup of GL for some n.n, F
Important examples of linear algebraic groups are GL itself, in particu-n, F
lar the multiplicative group G s GL , and the additive group G .m , F 1, F a, F

Throughout this article we distinguish between a linear algebraic group
Ž .G over F and the group of its F-valued points G F . Among other things
Ž .G determines the groups of F9-valued points G F9 for any overfield F9

of F. Namely, realize G as the subgroup of GL given by certainn, F
Ž . Ž .equations in the coefficients of n = n -matrices. Then G F9 consists of

Ž .those invertible n = n -matrices over F9 which satisfy the same equations,
and this description is independent of the embedding G ¨ GL .n, F
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For any field homomorphism t : F ¨ F9 and any linear algebraic group
G over F the fiber product G = F9 in the sense of schemes defines aF , t

linear algebraic group over F9. When t is the inclusion of a subfield, we
abbreviate this as G = F9. If G ; GL , this base extension is thenF n, F
given by the same equations as G; we only ‘‘forget’’ that the coefficients of
these equations lie in the subfield F ; F9.

Representations. For any finite dimensional F-vector space V we have
Ž .the algebraic group of automorphisms Aut V . Namely, any choice ofF

[n Ž .basis identifies V with a standard vector space F and Aut V withF
Ž .GL . A homomorphism of algebraic groups r : G ª Aut V is called an, F F

representation of G on V, and then, equivalently, V is called a G-module.
The representation is called irreducible, resp. the G-module simple, if and
only if V / 0 and it possesses no G-submodule other than 0 and V itself.
It is called absolutely irreducible if and only if it is irreducible and the only
G-equivariant F-linear endomorphisms of V are the scalars F.

Lie Algebra. The tangent space of G at the identity element 1 is the
Lie algebra Lie G. Consider the commutator morphism

w x w x y1 y1, : G = G ª G, g , h ¬ g , h [ ghg h . 1.1Ž . Ž .

w xIts total derivative at the identity element yields the Lie bracket , :
Lie G = LieG ª Lie G. On the other hand consider the conjugation
morphism

G = G ª G, g , h ¬ ghgy1 .Ž .

Its derivative with respect to h, taken at h s 1, defines the adjoint
representation

Ad : G ª Aut Lie G .Ž .G F

Ž .General Notions. The radical RR G is the largest solvable connected
normal algebraic subgroup of G. The group G is called semisimple if and
only if its radical is trivial. The derived group Gder ; G is the linear
algebraic subgroup generated by the image of the commutator morphism
Ž .1.1 . A connected semisimple group is called adjoint if and only if its
adjoint representation is faithful. More generally, if G is connected
semisimple, the image of G in the adjoint representation Ad : G ªG

Ž . adAut Lie G is called the adjoint group G . It is an adjoint semisimpleF
group in its own right, although that is not entirely obvious. The notions
just explained are, like many others, invariant under base extension. For
instance, given G and any field extension F ; F9 we know that G is

Ž .semisimple resp. adjoint if and only if G = F9 has the same property.F
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Ž w x .Central Isogenies. Cf. Borel and Tits 2, Sect. 2 . By definition an
isogeny of connected linear algebraic groups f : G ª H is a surjective
homomorphism with finite kernel. It is called central if and only if the

Ž .commutator morphism 1.1 of G factors through a morphism H = H ª G.
For example, for any connected semisimple group G the natural homo-
morphism to its adjoint group G ª Gad is a central isogeny. It has the
universal property that any central isogeny G ª H induces an isomor-

;ad adphism on the adjoint groups G ª H . At the other extreme, a con-
nected semisimple group G is called simply connected if and only if every
central isogeny H ª G is an isomorphism. For every connected semisim-

˜ple group G there exists a simply connected semisimple group G and a
˜central isogeny p : G ª G, both unique up to unique isomorphism. This is

called the universal covering of G. By definition the commutator mor-
˜phism of G factors through a morphism

; ˜w x, : G = G ª G. 1.2Ž .

Ž .For any subgroup G ; G F we can therefore define the generalized
˜ ;Ž . w xcommutator group as the subgroup of G F generated by G, G . Its

Ž .image in G F is, of course, the usual commutator subgroup of G.
w x;It is also interesting to look at the derivative of , with respect to the

second argument. This is a morphism

& ˜Ad : G ª Hom Lie G, Lie G , 1.3Ž .Ž .G F

˜Ž .whose target is the vector space Hom Lie G, Lie G viewed as an affineF
algebraic variety over F. This morphism determines the adjoint represen-&˜tation of both G and G. For instance, we easily calculate Ad s k (Ad ,G G
where k is the morphism

˜k : Hom Lie G, Lie G ª End Lie G ,Ž .Ž .F F

f ¬ dp ( f q id. 1.4Ž .

Simple Groups. A connected semisimple group over F is called simple
if and only if it is non-trivial and possesses no non-trivial connected proper
normal algebraic subgroup. The group G is called absolutely simple if and
only if G = F9 is simple for every field extension F ; F9. For the mostF
part the study of connected semisimple groups reduces to that of abso-
lutely simple groups. Namely, suppose that G is adjoint or simply con-
nected. Then G is a direct product of simple groups, and each simple
factor has the form RR H, where RR denotes Weil restriction from aF 9r F F 9r F
finite separable field extension F ; F9 and H is an absolutely simple
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adjoint group over F9. When F is separably closed, the adjoint or simply
connected semisimple groups over F are classified by their root systems. A
connected semisimple group is absolutely simple if and only if its root
system is irreducible. We shall abbreviate ‘‘absolutely simple connected
adjoint semisimple’’ to ‘‘absolutely simple adjoint.’’

ŽInseparable Isogenies. An isogeny f : G ª H is called separable resp.
.totally inseparable if and only if the induced inclusion of function fields

Ž . Ž . Ž .F H ¨ F G is a separable resp. totally inseparable field extension.
Equivalently, f is separable if and only if its derivative induces an
isomorphism of Lie algebras, and it is totally inseparable if and only if its
kernel is supported only in the identity element of G. Note that an isogeny
may be both separable and totally inseparable, namely if and only if it is an
isomorphism.

Every separable isogeny of connected semisimple groups is central. In
Ž .the case char F s 0 every isogeny is separable and hence central. Sup-

Ž .pose that p [ char F ) 0. Then there exist both inseparable central
isogenies and non-central ones. Let s : F ª F denote the Frobenius
endomorphism x ¬ x p. For any linear algebraic group G over F and any

Ž n. ninteger n G 0 put s *G [ G = F. Then the morphism G ª G,F , s

defined by f ¬ f p n
in any coordinate f over F, factors through a unique

Ž n.nmorphism Frob : G ª s *G that makes the following diagram commu-p
tative:

66G G

6
6

ns *GŽ .

6 n6 s 6

Spec FSpec F

1.5Ž .

The morphism Frob n is a totally inseparable isogeny, called the nthp
Frobenius isogeny. When G is connected and non-commutative, and
n G 1, this isogeny is not central. The composite of Frobenius isogenies is
again a Frobenius isogeny.

Non-standard Isogenies. In a few special cases there exist totally insepa-
rable isogenies between connected semisimple groups which cannot be
obtained from central isogenies and Frobenius isogenies. The point is that
the Frobenius isogeny Frob itself can be factored in a non-trivial way.p
The resulting isogenies will be called non-standard.
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PROPOSITION 1.6. Let G be an absolutely simple adjoint group o¨er F.
Ž .Suppose that p [ char F is positï e and that the root system F of G

possesses roots of different lengths whose square length ratio is equal to p.
Then the Frobenius isogeny Frob of G factors through totally inseparablep

isogenies

w w>>G ª G ª s *G,

such that neither w nor w> is an isomorphism. Here G > is another absolutely
simple adjoint group o¨er F. If F > is its root system, the possibilities for
Ž >.p, F, F are listed in the following table.

p Type of F Type of F >
Ž .2 B n G 2 Cn n
Ž .2 C n G 2 Bn n

2 F F4 4
3 G G2 2

Proof. Suppose first that G splits over F, and fix a split maximal torus
T ; G. Let F s, resp. F l, denote the set of short, resp. long, roots in F.
Then F > [ F l " p ? F s is again a root system. Let T > be the quotient
torus of T whose character group is the Z-module generated by F >. Then
there exists a split connected adjoint group G > over F with maximal torus
T > and root system F >. The given isogeny T ª T > extends to an isogeny

> Ž w xw : G ª G e.g., Takeuchi 11, Th. 5.4 ; the assumption that T splits
.is sufficient there . The construction is such that the short root spaces in

Lie G are annihilated by dw, while the long root spaces map isomorphi-
cally to the short root spaces in Lie G >.

When this process is repeated with T > the next root system is p ? F, so
we can take T >> s s *T and G >> s s *G. The composite isogeny G ª s *G

w Ž .xhas zero derivative, so it factors through Frob 1, Chap. V, Ex. 17.5 1 . Inp

other words we have w >(w s c (Frob for some isogeny c : s *G ª s *G.p

By construction c is the identity on s *T and on the root system p ? F.
w x >Thus it is an isomorphism 1, Chap. V, Prop. 22.4 . After adjusting w by

cy1 we have w >(w s Frob , as desired.p

When G is not split over F we first apply the above arguments to a split
group G of the same type. The Galois cocycle which twists G into G0 0
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then can be used to twist all of G ª G > ª s *G , thus yielding the0 0 0
desired assertion in general.

For an alternative construction of G > note that the cases listed above
are precisely those where the adjoint representation of G possesses two
Jordan]Holder subquotients corresponding to the short resp. the long¨

Ž .roots see below . Let k ; Lie G be the largest G-invariant subspace
containing the short root spaces but not the long root spaces. This turns

w xout to be a restricted Lie subalgebra in the sense of 1, Chap. I, Sect. 3.1 ,
> wand G is nothing but the quotient of G by k in the sense of 1, Chap. V,

x ŽProp. 17.4 . Also, for an explicit discussion of the orthogonalrsymplectic
w x .case see Borel 1, Sect. 23 .

Classification of Isogenies. All isogenies between connected semisimple
groups can be obtained from central isogenies, Frobenius isogenies, and
the non-standard isogenies just discussed. We shall make this assertion
precise when G is adjoint.

THEOREM 1.7. Let f : G ª H be an isogeny between two absolutely simple
adjoint groups o¨er a field F of characteristic p.

Ž .a If p s 0, then f is an isomorphism.

Ž .b Suppose that p ) 0 but that G possesses no non-standard isogenies.
;nŽ .Then there exist an integer n G 0 and an isomorphism c : s *G ª H such

that f s c (Frob n. If the derï atï e of f is non-zero, then n s 0 and f is anp

isomorphism.

Ž .c Suppose that G possesses non-standard isogenies and hence p ) 0.
Ž n.Then there exist an integer n G 0 and an isogeny c : s *G ª H with

non-̈ anishing derï atï e such that f s c (Frob n. Moreo¨er, either c is anp
;n >Ž .isomorphism or there exists an isomorphism x : s *G ª H such that

c s x (w, where w is the non-standard isogeny introduced in Proposition 1.6.

Proof. Any homomorphism factors through Frob whenever its deriva-p
w Ž .xtive vanishes 1, Chap. V, Ex. 17.5 1 . By induction we can therefore

reduce ourselves to the case df / 0. When df is non-zero on all root
w xspaces, then f is central 1, Chap. V, Prop. 22.4 . Since both groups are

Ž .adjoint, f must then be an isomorphism, as desired. Otherwise ker df is a
G-invariant non-zero proper subspace of Lie G containing some but not
all root spaces. Thus there is a non-standard isogeny w : G ª G >. Since H

Ž . Ž . wis adjoint, we easily find that ker df s ker dw . By 1, Chap. V, Prop.
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x >17.4 it follows that f s x (w for an isogeny x : G ª H. By construction
the derivative of x induces an isomorphism on the short root spaces,

whence an isomorphism of root systems. Thus x is a central isogeny 1,
xChap. V, Prop. 22.4 , and therefore again an isomorphism, as desired.

Let us note the following direct consequence.

w w1 2
COROLLARY 1.8. Consider isogenies G ¤ G ª G between absolutely1 2

simple adjoint groups o¨er a field F. Then one of them factors through the
other, i.e. w s c (w for an isogeny c : G ª G , or ¨ice ¨ersa.1 2 2 1

w Ž .For non-adjoint groups we have, by Borel and Tits 2, Props. 2.24
Ž .x2.26 :

PROPOSITION 1.9. Let w : G ª H be an isogeny between connected
semisimple groups.

˜Ž .a If G is simply connected, then w factors uniquely as G ª H ª H,
˜where H denotes the unï ersal co¨ering of H.

Ž . adb If H is adjoint, then w factors uniquely as G ª G ª H.

Structure of the Adjoint Representation. Consider an absolutely simple
˜adjoint group G over a field F, with universal covering G. Since the

˜Ž .commutator morphism 1.1 of G factors through G, so does its adjoint
˜representation. Thus, taking derivatives, the isogeny G ª G induces a

G-equivariant linear map between the associated Lie algebras g ª g. We˜
denote its kernel by z , its image by g , and its cokernel by z*. In short, we
have the exact sequences

6 6 6 6 6

0 z g g z* 0˜ 6
6

g6
6

0 0

It will simplify the exposition to combine g and g into a single representa-˜
tion.

PROPOSITION 1.10. There exists a representation r of G on an F-¨ectorˆ
space g lying in a commutatï e diagram of G-equï ariant homomorphisms, inˆ
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which all oblique lines are exact:
00

6

6

0z*z0 66

6 6

gz z*6ˆ
di dÃ6 6

6

g g6

6 6

˜ 6
0 g 06

6

0 0
Proof. Put g [ g [ z*, and let di: g ¨ g be the inclusion in the firstˆ ˜ ˜ ˆ

summand. Let dÃ be the composite map g s g [ z* ¸ g [ z* ( g ,ˆ ˜
where the last step uses an arbitrary but fixed splitting of F-vector spaces& &

Ž . Ž .z* ¨ g. For any g g G we set r g [ id q di(Ad g ( dÃ , where Adˆ G G
Ž .is as in 1.3 . A straightforward calculation shows that this defines a group

representation. The rest is clear from the construction.

The following proposition classifies all G-submodules of g. Let p [ˆ
Ž .char F and F denote the root system of G.

Ž .PROPOSITION 1.11. a z and z* are constant representations of G of the
same dimension. This common dimension is greater than zero if and only if for
F the index of the root lattice in the weight lattice is dï isible by p. It is greater
than 1 if and only if p s 2 and F has type D for some e¨en integer n, and inn
that case the dimension is 2.

Ž .b Suppose that G does not ha¨e non-standard isogenies. Then g is an
absolutely irreducible non-constant representation of G. Moreo¨er, it is the
unique simple G-submodule of g and the unique simple quotient G-module of
g. In other words, the lattice of G-submodules of g is gï en by the following˜ ˆ
graphs, where nodes correspond to G-submodules, gï en in ascending order
from left to right:

g
` `Ž .dim z s 0 §

z g z*
` ` ` `Ž .dim z s 1 §

z z*! # " ! # "
` `

` `........

........

gŽ .dim z s 2 §
`` ``

` `

` `
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Ž .c Suppose that G possesses non-standard isogenies. Then g contains a
unique simple G-submodule, denoted g , and g has a unique simple quotient˜s
G-module, denoted g . These two simple subquotients are pairwise inequï a-l
lent absolutely irreducible non-constant representations of G. They are the only
non-constant simple subquotients in any Jordan]Holder series of g. The¨ ˆ

Žlattice of G-submodules is gï en by the following graphs, depending on p,
.Type of F :

g gs l2, FŽ .4 ` ` `§53, GŽ .2

dims1
g gz x z*s l2, BŽ .n ` ` ` ` ` `for n G 2 e¨en §52, CŽ .n

`
g z*l

gz s
` ` ` `Ž .2, B for n G 3 odd §n

z g l
`

`
g s z

z*g l
` ` ` `Ž .2, C for n G 3 odd §n

z g s
`

Ž .Proof. a is well known. Most of the remaining assertions are stated
w x w xand proved explicitly in Hiss 6 ; see also Hogeweij 7 . The rest is easily

shown by the same arguments. To give a rough sketch: Choose a maximal
torus of G. First note that if a G-submodule of g contains the root spaceˆ
of a root a , then it contains the root spaces for the whole orbit of a under
the Weyl group. It follows that in any Jordan]Holder series of g there are¨ ˆ
at most two simple subquotients which possess a non-zero weight, and if
there are two, then they must correspond to the set of short roots and the
set of long roots, respectively. Next one uses well-known facts about
Chevalley bases to determine the Lie bracket between any two root spaces.
This information, plus some explicit calculation, suffices to prove that any
G-submodule must be among those listed above. To see that the ones in
Ž . >c actually exist, consider the derivative dw : g ª g of the non-standard
isogeny w : G ª G >. Since dw is zero on a root space if and only if that
root is long, we can indeed find g and g in the kernel, resp. the image ofs l
dw. The rest is again some explicit calculation.
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The most interesting part of the adjoint representation is g. We denote
the representation of G on it by a G. When G possesses non-standard
isogenies, the interesting simple subquotients of g are g and g . Weˆ s l
denote the representations of G on these spaces by a G and a G. To avoids l
cumbersome case distinctions we set a G [ a G [ a G whenever G doess l
not possess non-standard isogenies. The rationale behind this notation is

G Ž G.that a resp. a is always the representation on that simple subquo-s l
tient of g which contains copies of the root spaces for all roots of smallestˆ
Ž .resp. greatest possible length.

When w : G ª G > is the non-standard isogeny of Proposition 1.6 and g >
denotes the Lie algebra of G >, the derivative dw induces an isomorphism

>; > G G > >Ž .g ª g . It follows that a ( a (w. Furthermore, recall that G (l s l s
Ž >. >s *G and hence Lie G ( g m F. Thus, by the same token, we obtainF , s >> G Gan isomorphism g ( g m F and hence a (w ( Frob ( a .l s F , s l p s

Image in Various Representations. We shall need to know the image of
G in various subquotient representations of the adjoint representation. In
most cases, but not all, it will be enough to have this information for the
irreducible subquotients.

Ž . GPROPOSITION 1.12. a The representation a is faithful unless p s 2
GŽ .and F has type A . In that case there is a canonical isomorphism a G (1

s *G. In short, we ha¨e

Ž . GŽ .p, Type of F a G
Ž ./ 2, A G1

˜Ž .s 2, A s *G1

Ž .b Suppose that G possesses non-standard isogenies. Then the images
of G under the representations a G and a G are gï en by the following table:s l

Ž . GŽ . GŽ .p, Type of F a G a Gs l
>Ž .2, F G G4 >Ž .3, G G G2

> >˜Ž .2, B for n G 3 G Gn
>˜ ˜Ž . Ž .2, C s 2, B G s *G2 2

˜Ž .2, C for n G 3 G s *Gn

Ž .c The representations of G on g and on g are always faithful.˜
Ž .d Suppose that p s 2 and F has type C for some n G 2. Let w :n> ˜ ˜ >G ª G be the non-standard isogeny of Proposition 1.6, and w : G ª G the˜

Ž .associated isogeny of their unï ersal co¨erings. Let g [ im dw and g [˜l l
Ž . >im dw . Then the image of G in its representation on g , resp. on g , is G .˜ ˜ l l
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Ž .Proof. Sketch . This is straightforward to prove, using the same meth-
ods as those of Proposition 1.11. The main point is to look at the derivative
of the given representation as a representation of the Lie algebra g and to
determine which root spaces act trivially. This follows from well-known

w xfacts about Chevalley bases as in 6 . The information thus obtained
already determines the image of G up to central isogenies. The remaining
information results from looking directly at the weights in the given
representation. By these methods, one can easily determine the image of
G in any given subquotient representation of g.ˆ

Terminology o¨er semisimple commutatï e rings. Now suppose that F is
a finite direct sum of fields [m F . We assume no relation between theiis1
summands F ; for example, they may have different characteristics.i
Scheme-theoretically Spec F is the disjoint union @ m Spec F . Thus anis1 i
algebraic variety X over F is a disjoint union @ m X , where each X isis1 i i
an algebraic variety of F . We say that X is the fiber of X over F . Alli i i
concepts concerning algebraic varieties over a field extend to this more
general setting. For example, a linear algebraic group G over F is the
same as a disjoint union @ m G of linear algebraic groups G over F .is1 i i i

Usually we say that G has a certain property of algebraic groups if and
only if each fiber G has that property. However, in order to avoidi

Ž .confusion in the case of properties such as ‘‘connected,’’ ‘‘ absolutely
simple,’’ and others, we shall often say ‘‘fiberwise connected,’’ etc. Con-
structions such as the derived group, the universal covering, and the
adjoint group of G and the concepts of homomorphisms and isogenies are
also defined fiber by fiber.

An F-module of finite type is the same as a direct sum V s [m V ofiis1
finite dimensional vector spaces V over F . A representation of G on Vi i
thus consists of a representation of each G on V . More abstractly, thei i

Ž .algebra End V corresponds to a natural affine algebraic variety over F,F
Ž .denoted End V , which has an algebra structure given by morphismsF

of varieties over F. Giving a representation of G on V is then the same
Ž .as giving a homomorphism of linear algebraic groups G ª Aut V sF

Ž .End V *.F
Of particular importance is the adjoint representation Ad on the LieG

algebra Lie G s [m Lie G . When G is a fiberwise absolutely simpleiis1
adjoint group we shall be interested especially in the subquotient represen-
tation a G of Ad which in every fiber is given by a G defined above.l G l

Ž . m Ž .The group of F-valued points of G is simply G F s Ł G F .is1 i i
˜When G is fiberwise connected semisimple and G denotes its universal

Ž . w x;covering, as in 1.2 the commutator induces a morphism , : G = G ª
˜ ˜Ž .G. The generalized commutator group of G is the subgroup of G F

defined in the same way as above.



RICHARD PINK456

Let H s @ n H be a linear algebraic group over another finite directjs1 j
sum of fields E s [n E . A ring homomorphism t : E ª F is requiredjjs1
to map the unit element of E to that of F, thus making F into an

� 4E-algebra. Clearly, giving t is equivalent to giving a map 1, . . . , m ª
� 4 Ž .1, . . . , n , i ¬ j i and a homomorphism t : E ¨ F for every 1 F i F m.i jŽ i. i
The base extension of H is then defined as

m

H = F s H = E .@E jŽ i. E t ijŽ i. , i
is1

An important example is the Frobenius isogeny. Let s be the endomor-
Ž .phism of F which on each simple summand F is the identity if char F si i

p Ž .0, and the Frobenius map x ¬ x if p s char F ) 0. Then we have ai
canonical isogeny

Frob: G ª s *G s G = F 1.13Ž .F , s

which is the identity in all fibers of characteristic zero, and the Frobenius
isogeny in all fibers of positive characteristic.

2. REPRESENTATIONS AND ASSOCIATED RINGS

Before we begin let us clarify some general terminology. All rings in this
article will have a unit element and all homomorphisms of rings are
required to map the unit element to the unit element. In particular, any
subring of a ring must contain the unit element of the bigger ring, and the
unit element must act as the identity on any module. According to

w xBourbaki 3, Sect. 5, No. 1, Def. 1 , a ring A is called semisimple if and´
only if each left A-module is a direct sum of simple modules. It is simple if
and only if it is semisimple, is non-zero, and does not possess any two-sided

� 4 w xideals other than 0 and itself 3, Sect. 5, No. 2, Def. 2 . Any semisimple´
w xring is a finite direct sum of simple rings 3, Sect. 5, No. 3, Th. 1 . The

center of a semisimple ring, and in particular any commutative semisimple
ring, is therefore a finite direct sum of fields. Actually, any semisimple ring
that occurs in this article will turn out to be of finite type as module over
its center. In other words, we shall be dealing only with finite direct sums
of finite dimensional central simple algebras over fields. However, this will
not be entirely obvious from the construction.

In this section and the following ones we fix a commutative semisimple
ring F, a connected linear algebraic group G over F, and a fiberwise

Ž . mZariski dense subgroup G ; G F . As before we let F s [ F be theiis1
decomposition into simple summands, and let G denote the fiber of Gi
over F . Throughout, we impose one of the following two conditions on Fi
and G.
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Ž .Assumption 2.1. a Global case: Each F is a global field, i.e., a finitei
Ž .extension either of Q or of F t for some prime p, and G is finitelyp

generated.

Ž .b Local case: Each F is a local field, and G is compact.i

Most of our definitions and theorems will have essentially the same
form in both cases. The main difference is that in the local case there will
always be an additional topological condition.

DEFINITION 2.2. Consider a representation r of G on an F-module V
of finite type.

Ž . Ž . Ž .a BB is the closure of, in the local case the subring of End Vr F
Ž .that is generated by r G .

Ž . Ž .b II is the closure of, in the local case the ideal of BB that isr r

Ž .generated by the elements r g y id for all g g G. This is called the
augmentation ideal of BB .r

The first main result of this section is the following.

THEOREM 2.3. Assume that r is fiberwise non-constant absolutely irre-
Ž .ducible. We identify F with the scalars in End V .F

Ž . Ža There exists a unique smallest semisimple subring E ; F closed, inr

.the local case such that:

Ž .i F is of finite type as module o¨er E ,r

Ž .ii B [ E ? BB is semisimple with center E , andr r r r

Ž . Ž .iii the natural homomorphism B m F ª End V is an isomor-r E Fr

phism.

Ž . Ž .b Let OO ; F be the closure of , in the local case the subringtrŽ r .
Ž Ž ..generated by tr r G . Then E is the total ring of quotients of OO .r trŽ r .

Ž .c Let OO [ F l BB . Then E is also the total ring of quotients of OO .r r r r

The subring OO ; E is finitely generated o¨er Z in the global case, and openr r

compact in the local case. Moreo¨er, II and BB are finite type modules o¨err r

OO , with finite index in each other.r

Ž .Note that in the local case c implies that II ; BB are open compact inr r

B . The proof of Theorem 2.3 will be somewhat lengthy. We begin with ther

following technical result on semisimple rings. Let us abbreviate A [
Ž .End V .F
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Ž .THEOREM 2.4. Consider a subring B ; A not necessarily an F-algebra
Ž .with the properties B ? F s A and length V - `. Let E denote the centerB

of B. Then:

Ž .a E is contained in the center F of A.
Ž .b B is a semisimple ring.
Ž .c The natural homomorphism B m F ª A is an isomorphism.E

Ž .d F is of finite type as module o¨er E.

Proof. By definition E commutes with F and B, and thus with B ? F s
Ž .A, whence a .

Ž . mFor b we first show that V is a semisimple B-module. Let V s [ Viis1
be the decomposition according to the decomposition of F into simple
summands. It suffices to show that each V is a semisimple B-module.i
Since it has finite length over B, it contains a simple B-submodule
0 / W ; V . Consider the submodule F ? W s Ý xW of V . By defini-i i i x g F i i
tion it is stable under B ? F s A; hence it is equal to V . On the other hand,i

w xas a sum of simple modules it is semisimple 3, Sect. 3, No. 3, Prop. 7 . We
wnow know that V is a faithful semisimple B-module of finite length. By 3,

xSect. 5, No. 1, Prop. 4 , any ring possessing such a module is semisimple.
Ž .This shows b .

Ž . nNext we prove c . Let B s [ B be the decomposition into simplejjs1
summands and let E denote the center of B . The inclusion E ¨ F isj j

� 4 � 4 Ž .then described by a map 1, . . . , m ª 1, . . . , n , i ¬ j i and a homomor-
phism t : E ¬ F for every 1 F i F m. Decomposing the homomorphismi jŽ i. i

Ž .in d according to the simple summands of F, we must show that for every
1 F i F m the natural homomorphism

B m F ª End V 2.5Ž . Ž .jŽ i. E i F ijŽ i. i

is an isomorphism. Since B ? F s A, this map is surjective, so its kernel is a
w Ž .xproper two-sided ideal. But by 3, Sect. 7, Ex. 6 c the ring B m FjŽ i. E ijŽ i.

possesses no non-trivial proper two-sided ideals. Hence the homomor-
Ž .phism is also injective, and therefore is an isomorphism. This proves c .

Ž .Finally, since each End V has finite dimension over F , the isomorphyF i ii
Ž .2.5 implies that each B has finite dimension over E . Therefore B is ofj j
finite type as E-module. Since V is of finite type over B, it is thus also of
finite type over E. Using any F-linear injection F ¨ V we can now deduce

Ž .the same for F. This shows d and thus finishes the proof of Theorem 2.4.

Next we note the following algebro]geometric version of Burnside’s
theorem.
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LEMMA 2.6. For e¨ery sufficiently large positï e integer n the morphism

n

G = . . . = G ª A [ End V , g , . . . , g ¬ r gŽ . Ž . Ž .Ý1 n jF
js1

is dominant.

Proof. Without loss of generality we may assume that F is a field. Let
H denote the image of G in A*. Since r is non-constant and G is
connected, the Lie algebra of H is a non-zero subspace of A. Since r is

Ž . Ž .absolutely irreducible, the action of g 9, g g G = G on A by a ¬ r g 9 ?
Ž y1 . Ž .a ? r g is also absolutely irreducible. Using the Zariski density of G F

X Ž .it follows that for every sufficiently large n there exist g , g g G F suchj j
that

n
X y1A s r g ? Lie H ? r g .Ž . Ž . Ž .Ý j j

js1

Consider the morphism

n
X y1H = . . . = H ª A , h , . . . , h ¬ r g ? h ? r g .Ž . Ž . Ž .Ý1 n j j j

js1

Ž .By construction its derivative at id, . . . , id is surjective. Hence this mor-
phism is dominant, and so is the morphism in the lemma.

Ž . Ž .Proof of Theorem 2.3 a , b . This part of the theorem is essentially due
to Vinberg. It does not really depend on Assumption 2.1 and can be

w xproved by the direct argument of 12 . But since we shall need Theorem 2.4
Ž .for c , we might as well use it here, too.

Ž .First note that Lemma 2.6 implies that tr BB ; F is Zariski dense inr
1 Ž .the affine line A . This means that the image of tr BB and hence of OOF r trŽ r .

in any simple summand F is infinite. From this one easily deduces thati

x
E [ x , y g OO , y g F* ; F .trŽ r . trŽ r .½ 5y

is semisimple and F is of finite type as module over E .trŽ r .
Ž .Now consider any subring E ; F satisfying the conditions in a . Fromr

Ž . Ž . Ž .the isomorphism a.iii we deduce that tr BB ; tr E ? BB s E , andr r r r

Ž . Ž .hence OO and E are contained in E . To prove a and b it thustrŽ r . trŽ r . r

Ž .remains to show that E satisfies the conditions in a . We alreadytrŽ r .
Ž .verified a.i . This, in turn, implies that V is of finite type as module over

ŽB [ E ? BB . On the other hand, by Burnside’s theorem see, e.g.,trŽ r . trŽ r . r



RICHARD PINK460

w x.Curtis and Reiner 4, Th. 3.32 , the absolute irreducibility of r, and the
Zariski density of G, we have B ? F s A. Thus, by Theorem 2.4, wetrŽ r .

;deduce that B is semisimple and B m F ª A, where E denotestrŽ r . trŽ r . E
the center of B . From this it follows thattrŽ r .

!
E s tr B s tr E ? BB s E ? tr BB s E .Ž . Ž . Ž .trŽ r . trŽ r . r trŽ r . r trŽ r .

Ž .Therefore E satisfies the conditions in a , as desired.trŽ r .

Ž .To prove Theorem 2.3 c we must construct the ring B internallytrŽ r .
from BB , instead of just imposing the center E from the outside. Untilr trŽ r .
the end of the proof we shall drop the subscript r ; that is; we abbreviate
BB [ BB , II [ II , OO [ OO , E [ E , and B [ B .r r tr trŽ r . trŽ r . trŽ r .

LEMMA 2.7. There exists an element b g II with the following properties:

Ž .a It is regular semisimple in A.
Ž .b In the global case, none of its eigen¨alues lies in a finite field.
Ž .c In the local case, all of its eigen¨alues ha¨e norm - 1.

Proof. Put

n

b [ r g y id g IIŽ .Ž .Ý j
js1

for g , . . . , g g G and n 4 0. By Lemma 2.6 the elements b thus obtained1 n
Ž .form a Zariski dense subset of A. Now condition a can be achieved

simply because it forbids only a Zariski closed proper subset. The same is
Ž .true for condition b , if the eigenvalue is fixed. But any eigenvalue lies in

an extension of bounded degree of some F . Moreover, the field ofi
constants of any F of positive characteristic is itself finite. Thus anyi
eigenvalue in a finite field lies in a finite field of bounded order. Thus
there are only finitely many eigenvalues to be ruled out. Therefore

Ž . Ž .condition b can be achieved. Finally, condition c is automatic if all g j
lie sufficiently close to the identity of G.

In the following we fix the element b given by Lemma 2.7. We let RR be
Ž . Ž .the closure of, in the local case the subring of End V that is generatedF
by b. Then

y1K [ y x x g RR, y g RR l A*� 4

is a commutative semisimple ring, and V is of finite type as module
over K.
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� y1 4LEMMA 2.8. We ha¨e B s K ? BB s y x N x g BB, y g RR l A* .

Proof. By construction K is contained in B. We first show that K ? BB is
a subring. For this consider x g BB and r g RR l A*. Note that A is of
finite type as left K-module! Consider the left K-submodule of A that is
generated by the elements xr i for all i g Z. As a submodule of a module
of finite type, it is itself of finite type. Suppose this submodule is generated
by the elements xr i for all l F i F k. Then we have xr ly1 g Ýk K ? xr i.is l
Multiplying by ryl on the right-hand side we deduce xry1 g Ýky l K ? xr i ;is0
K ? BB. In this way, we have proved that BB ? K ; K ? BB. This implies that
K ? BB is a ring.

Now recall that F ? K ? BB s F ? BB s A, and that, by construction, V is of
finite type as module over K ? BB. Thus we may apply Theorem 2.4 to this
ring. If E9 denotes the center of K ? BB, it follows that K ? BB s E9 ? BB. The

Ž . Ž .parts a and b of Theorem 2.3, which are already proved, now imply that
E ; E9. Thus we have B ; K ? BB ; B, as desired.

Ž .Proof of Theorem 2.3 c . First, we consider the local case, which is now
rather easy. Observe that K ? II s K ? BB s B, since b g II. By construction
RR is a compact open subring of K. As B is of finite type as left K-module,
the left RR-submodules II ; BB ; B are themselves open. On the other
hand II and BB are compact, because G is compact. It follows that
F l BB s E l BB is an open compact subring of E, that II ; BB are finitely

Ž .generated modules over E l BB, and that BBrII is finite. This proves c in
the local case.

In the remainder of the proof we consider the global case, which turns
out to be more involved. Recall that OO denotes the subring of E that istr

Ž Ž ..generated by tr r G . Let C be the centralizer of b in B. This is a
semisimple ring containing both K and E. Put CC [ C l BB. Our job will
be to compare the two rings CC and OO .tr

Ž .LEMMA 2.9. a OO is a finitely generated Z-algebra.tr

Ž .b OO ? II ; OO ? BB are OO -modules of finite type, with finite index intr tr tr
each other.

Ž .c CC is a finitely generated Z-algebra.

Proof. Choose elements g , . . . , g that generate G. Choose a system of1 n
generators of V over F. Then OO is contained in the subring of F that istr
generated by the coefficients of all the g "1. Of course, this ring is finitelyi
generated. On the other hand, Assumption 2.1 implies that any subring
of a finitely generated subring of F is itself finitely generated. This

Ž .proves a .
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Ž . nFor b choose x , . . . , x g BB such that B s Ý E ? x . Then x ¬1 n is1 i
Ž Ž .. [ntr xx defines an injective homomorphism of E-modules B ¨ E . Byi i
construction, the image of OO ? BB lies in OO[n. Since OO is noetherian, bytr r tr tr
Ž .a , it follows that OO ? II ; OO ? BB themselves are finitely generated. Sincetr tr

Ž .b g II l K*, the index must be finite. This proves b .
Ž .From b we can deduce that OO ? CC is finitely generated as module overtr
Ž .OO . Using a we find that this is a finitely generated Z-algebra. Again thetr

Ž .same follows for the subalgebra CC, thus proving c .

In order to be able to construct sufficiently many elements of CC, we
need something like a projector B ¸ C. Note that the semisimplicity of b

w ximplies that B s C [ b, B .

Ž .LEMMA 2.10. There exists an element P g End B with the properties:E

Ž .a P N s 0,w b, B x

Ž .b P N is multiplication by some element r g RR l K*, andC

Ž . Ž .c P BB ; CC.

Proof. Recall that B is a left K-module of finite type. The map ad :b
w xx ¬ b, x is an endomorphism of this module, which is an isomorphism on

w x Ž . w xb, B and zero on C. Therefore there is a polynomial F X g K X such
Ž . w xthat F ad is zero on b, B and the identity on C. Let r g RR l K* be theb

common denominator of the coefficients of F. Then the coefficients of
Ž . Ž .r ? F X lie in RR, and P [ r ? F ad has all the desired properties.b

LEMMA 2.11. Consider a place w of C, lying abo¨e a non-archimedean
place ¨ of E. Suppose that OO contains an element which has a pole at ¨ .tr
Then CC contains an element which has a pole at w.

Ž .Proof. Assume that none of the elements in P BB has a pole at w. Let
F denote the composite map

lPmid
B m E ª C m E ¸ C ¸ E ,E ¨ E ¨ w ¨

where l is any non-zero E -linear form. The assumption implies that¨
Ž .F BB is contained in a bounded subset of E . Choose elements x , . . . ,¨ 1

x g BB such that B s Ýn E ? x . Then we have an injective homomor-n is1 i
phism of E -modules¨

C : B m E ¨ Emn , x ¬ C xx .Ž .Ž .E ¨ ¨ i i

By construction, the image of BB lies in a bounded subset. Thus BB acts
faithfully on some module of finite type over the valuation ring in E . It¨
follows that the trace of any element is ¨-adically integral, contrary to the
assumption in the lemma.
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˜Let CC denote the normalization of the ring CC. The preceding lemma
has the following crucial consequence.

˜LEMMA 2.12. We ha¨e OO ; CC.tr

˜Proof. Consider any element x g OO . Since x g E ; C, and CC is atr
Dedekind ring, it suffices to show that x has no pole at any maximal ideal
of CC. This is guaranteed by Lemma 2.11.

˜Ž .Now we can finish the proof of Theorem 2.3 c . Since CCrCC is finite, so
Ž .is OO r OO l CC . Thus the total ring of quotients of OO l CC is again E.tr tr tr

Ž .The same also follows for the possibly larger ring OOr [ F l BB s E l CC.
Ž Ž ..As a subring of the finitely generated ring CC compare Lemma 2.9 c it is

Ž .itself finitely generated. The remainder of Theorem 2.3 c follows from
Ž .Lemma 2.9 b .

˜Consequences of Theorem 2.3. Let OO denote the normalization of ther

ring OO in Theorem 2.3. The arguments in the proof of Lemma 2.11 giver
˜the following characterization of OO .r

COROLLARY 2.13. Suppose that F is global, and consider a non-archi-
˜medean ¨aluation ¨ of E . Then ¨ corresponds to a maximal ideal of OO if andr r

only if G is ¨-adically bounded.

One important application of Theorem 2.3, in particular of its part
Ž . Ž .a.iii , is the construction of a natural model of r G over the subring E .r

Let B denote the affine algebraic variety over E corresponding to B ,r r r

with its algebra structure given by morphisms of varieties over E . This is ar

model of A over E ; i.e., we have a natural isomorphism B = F ( A .r r r E rr

THEOREM 2.14. In the situation of Theorem 2.3 there is a unique alge-
braic subgroup G ; BU such thatr r

;U U6

B = F Ar E rr

j j
; 6 Ž .G = F r G .r Er

Ž . Ž .Under this isomorphism r G corresponds to a subgroup of G E .r r

Ž . U UProof. By construction r G is contained in the subgroup B ; A . Letr r

G be its Zariski closure in BU. Then G = F maps isomorphically to ther r r Er

Ž . UZariski closure of r G in A . By the Zariski density of G, the latter is justr

Ž .r G . This shows the existence of G , and the uniqueness is obvious.r

˜We can also compare the rings E and OO for suitable different choicesr r

of r. The following special case will be enough for our purposes.
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PROPOSITION 2.15. Suppose that F is a field, and let r and a be two
non-constant absolutely irreducible representations of G such that a occurs as

Ž .subquotient of the Lie algebra of r G . Then

Ž .a E ; E , anda r

˜ ˜Ž .b OO ; OO .a r

Ž .Proof. Let G be the model of r G over E that is given by Theoremr r

2.14. The assumptions imply that a descends to a representation on a
Ž Ž ..subquotient of the Lie algebra of G . Hence tr a G ; E , which impliesr r

Ž . Ž . Ž .a . Assertion b follows from a together with Corollary 2.13.

Reducible Representations. Now we turn to the study of II for reducibler

representations. We restrict our attention to the simplest kind of represen-
tation which is not completely reducible, namely a non-split extension of
two absolutely irreducible representations. Assume that F is a field and
consider a short exact sequence of finite dimensional non-zero F-vector
spaces

0 ª V 9 ª V ª V 0 ª 0.

Let r be a representation of G on V which stabilizes V 9. We assume that
the representations r9, r0 induced on V 9, V 0 are absolutely irreducible,
and that the sequence does not possess a G-equivariant splitting. Let Ar

Ž . Ž .be the stabilizer of V 9 in End V . Its radical Rad A consists of thoseF r

endomorphisms which annihilate both V 9 and V 0. Thus we have a canoni-
Ž . Ž .cal isomorphism Rad A ( Hom V 0, V 9 . Clearly, the subring BB ofr F r

Definition 2.2 is contained in A .r

THEOREM 2.16. Suppose that r9 \ r0. Then we ha¨e

F ? Rad A l II s Rad A .Ž . Ž .Ž .r r r

Furthermore set

OO [ F l BB if r0 is constant,¡ r9 r 9

~OO [ F l BB if r9 is constant,OO [ r0 r 0¢OO ? OO if both r9 and r0 are non-constant.r9 r 0

Ž .Then Rad A l II is a OO-module of finite type.r r

Ž Ž . .Proof. If F ? Rad A l II is non-zero, we study it as a module underr r

left and right multiplication by BB ? F. Note that the left action factorsr

through the surjection BB ? F ¸ BB ? F. The latter ring is equal tor r 9

Ž .End V 9 . Indeed, this is obvious when r9 is the constant representationF
Ž .of dimension 1; otherwise it is just the assertion of Theorem 2.3 a.iii .
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Ž Ž . . Ž .Thus F ? Rad A l II is a non-zero submodule of Rad A under ther r r

Ž .left action of End V 9 . By symmetry, it is also invariant under the rightF
Ž . Ž .action of End V 0 . Since Rad A is irreducible under the combinationF r

of these two actions, the equality follows.
Ž . ssLet us now assume that Rad A l II s 0, and let r [ r9 [ r0r r

denote the semisimplification of r.

LEMMA 2.17. There exists an element in II s s which acts as a scalar on V 9r

and as a different scalar on V 0.

Proof. If r0 is a constant representation, then r9 is non-constant and
; Ž .sswe have II ª II . By Theorem 2.3 c there exists a non-zero element inr r 9

F l II . Then its lift to II ss has all the desired properties. When r9 isr9 r

constant, the result follows by symmetry.
When both r9 and r0 are non-constant, we can view r ss as a nowhere

constant absolutely irreducible representation over F [ F. Then by Theo-
Ž . s srem 2.3 c we can find the desired element unless E ; F [ F is con-r

tained in the diagonal. Suppose that this happens. Then E ss is a subfieldr

of F and B ss is a simple algebra which maps isomorphically to both Br r 9

and B . Thus V 9 and V 0 are isomorphic simple modules over B ss m F.r0 r E ssr

It follows that r9 and r0 are equivalent F-linear representations of G.
Since G is Zariski dense in G, they are also equivalent as representations
of G, contrary to the assumption.

Continuing the proof of Theorem 2.16, we choose an element as in
Lemma 2.17 and lift it to an element e g II . By construction the commu-r

w x Ž .tator e, BB is contained in Rad A l II . Since this group was assumedr r r

to vanish, it follows that e commutes with BB . Thus it commutes with Gr

and, by Zariski density, with G. This implies that the eigenspace decompo-
sition of V under e is G-invariant, i.e., that the extension splits, contrary
to the assumption.

Ž .Concerning the rest of the theorem, it is clear that Rad A l II is anr r

Ž .OO-module. By Theorem 2.3 c and the construction of OO both OO ? BB andr9

OO ? BB are finitely generated OO-modules. From the finite generation of BBr0 r

as a ring we find that OO ? BB is also finitely generated as module over OO.r

Ž .Thus the same holds for the submodule Rad A l II , as desired.r r

3. MINIMAL QUASI-MODELS OF SEMISIMPLE GROUPS

Let F, G, and G be as in the preceding section. From now on we assume
that G is fiberwise absolutely simple adjoint. The main question in this
section is how far we can reduce the structure constants of G to semisim-
ple subrings E ; F in such a way that G consists of E-rational points. The
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main tool for this will be the study of the action of G in the adjoint
representation of G. The results obtained in the process will also lay the
groundwork for later sections. In order to deal adequately with the effects
of non-standard isogenies, it is best to modify the usual concept of a model
of G over a subring.

Ž . Ž .DEFINITION 3.1. A weak quasi-model of F, G, G is a triple E, H, w ,
where

Ž .a E is a semisimple subring of F such that F is of finite type as
Ž .module over E and which is closed in the local case ,

Ž .b H is a fiberwise absolutely simple adjoint group over E, and
Ž .c w is an isogeny H = F ª G, such thatE

Ž . Ž Ž .. Ž .d G is contained in the subgroup w H E ; G F .

Ž .DEFINITION 3.2. A quasi-model of F, G, G is a weak quasi-model
Ž . Ž .E, H, w of F, G, G for which the derivative of w vanishes nowhere.

Note that a quasi-model is very close to being a model over a subring in
the usual sense. Indeed, if the fibers of G do not possess non-standard
isogenies, then if follows from Theorem 1.7 that w in Definition 3.2 is an
isomorphism.

Note also that in these definitions the isogeny w is totally inseparable,
Ž . Ž .because H is adjoint. Therefore the homomorphism H E ª G E is

Ž .injective. Thus for any weak quasi-model the group G is in bijection with
y1Ž . Ž .the fiberwise Zariski dense subgroup w G ; H E . We are in recursive

Ž y1Ž ..situation since the triple E, H, w G satisfies the same assumptions
Ž . Ž .as F, G, G . For example, if E9, H9, w9 is a weak quasi-model of

Ž y1Ž .. Ž .E, H, w G , then clearly E9, H9, w (w9 is a weak quasi-model of
Ž .F, G, G . One should be aware that the composite in this sense of two
quasi-models is in general only a weak quasi-model. This is one of the
reasons for dealing with the latter at all. On the other hand, every weak
quasi-model gives rise to a quasi-model, as follows.

Ž . Ž .PROPOSITION 3.3. For any weak quasi-model E, H, w of F, G, G
there exists a ring endomorphism t : F ª F, which on each simple summand

Ž .F is either the identity or a power of Frobenius, and a quasi-model E , H , wi 1 1 1
Ž . Ž .of F, G, G , such that E s t E . Clearly, if t is an isomorphism, then1

Ž . Ž .E, H, w is already a quasi-model of F, G, G .

Ž .Proof. Consider a simple summand F . If p [ char F is zero, then dwi i
is already non-zero over F , and we can put t N s id. Otherwise we knowi Fi

from Theorem 1.7 that over F the isogeny w is the composite of ai
Frobenius Frob n for some n G 0 and an isogeny with non-vanishingip i
derivative. In that case we let t N be the n th Frobenius map x ¬ x p ni forF ii
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all x g F . Then by construction w is the composite of two isogeniesi

wc 1
H = F ª t * H = F ª G,Ž .E E

where c is in each fiber either an isomorphism or a power of Frobenius,
and where dw vanishes nowhere. By construction we get an isomorphism1

; Ž .E ª t E \ E ; F. Let H denote the group over E corresponding to1 1 1
H via this isomorphism. Then we have

t * H = F s H = F = F s H = F s H = F .Ž . Ž .E E F , t E , t 1 E1

Ž .It is now clear from the construction that E , H , w is a quasi-model of1 1 1
Ž .F, G, G .

The problem of how far the structure constants of G can be reduced is
Ž .phrased in the following definitions compare Definition 0.1 .

Ž .DEFINITION 3.4. We say that F, G, G is minimal if and only if, for
Ž . Ž .every weak quasi-model E, H, w of F, G, G , we have E s F and w is an

isomorphism.

It is easy to show, though not obvious, that replacing the words ‘‘weak
quasi-model’’ by ‘‘quasi-model’’ in Definition 3.4 yields an equivalent
definition. Since we shall not make use of this fact, we omit its proof.

Ž . Ž . Ž .DEFINITION 3.5. A weak quasi-model E, H, w of F, G, G is called
Ž y1Ž ..minimal if and only if E, H, w G is minimal in its own right.

Note that this definition is phrased only as a relative minimality condi-
Ž . Žtion, not as a universal property vis-a-vis all weak quasi-models. It would`
.have been possible, but awkward, to do so. Thus both the existence and

the uniqueness of minimal quasi-models are by no means obvious.

Ž . Ž .THEOREM 3.6. a There exists a minimal quasi-model E, H, w of
Ž .F, G, G .

Ž . Ž .b The subring E ; F in a is unique, and H and w are determined up
to unique isomorphism.

Ž .Proof of Theorem 3.6 a . We begin by showing that the subring E in a
quasi-model cannot become arbitrarily small.

Ž .LEMMA 3.7. The number length F is finite and bounded independentlyE
Ž . Ž .of the quasi-model E, H, w of F, G, G .

Proof. Consider the representation a H of H defined in Section 1.l
Then there exists a linear representation r of G such that a H = F sl E
r (w. Indeed, consider any simple summand F of F. If w is an isomor-i
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phism over F , then the corresponding direct summand of r is just a G i.i l
Otherwise, the summand is a G i. This gives the desired representation r,s
and since there are only finitely many fibers G it also shows that thei
number of possibilities for the isomorphy class of r is finite.

Ž .Let E ; F denote the subring associated to r by Theorem 2.3 a .r

Recall that F has finite length as module over E . On the other hand wer

Ž y1Ž ..can apply the same constructions to E, F, w G and the representation
a H, yielding a subring E H ; E. Since the two representations and com-l a l

pact subgroups correspond to each other, we have E H s E , and hencea rl

E ; E. As there are only finitely many possibilities for E , we deduce thatr r

Ž . Ž .length F is bounded universally for all quasi-models of F, G, G .E

Ž .Continuing with the proof of a , we now choose a subring E ; F such0
Ž . Ž .that there exists a quasi-model of F, G, G of the form E , H , w and0 0 0

Ž .such that length F is as large as possible. Afterwards among theE0
Ž .quasi-models of the form E , H , w we select one for which the number0 0 0

of simple summands of F where w is not an isomorphism is as large as0
possible. I claim that this is a minimal quasi-model.

Ž . ŽTo show this consider any weak quasi-model E, H, w of E , H ,0 0
y1Ž .. Ž .w G . Then the composite E, H, w (w is again a weak quasi-model.0 0

Applying Proposition 3.3 to this triple we obtain a ring endomorphism t :
Ž . Ž . Ž .F ª F and a quasi-model E , H , w of F, G, G such that E s t E .1 1 1 1

Then we have

length F F length F s length t F F length F .Ž . Ž . Ž . Ž .Ž .E E t ŽE . E0 1

Ž .Since E was chosen such that length F is maximal among all quasi-0 E0

models, these inequalities are in fact equalities. This implies E s E and0
Ž .that t is an isomorphism. From Proposition 3.3 it follows that E, H, w (w0

Ž .is already a quasi-model of F, G, G . Suppose that w fails to be an
isomorphism over some simple summand F of F. By the classification ofi
inseparable isogenies in Theorem 1.7 and the fact that the derivative of
w (w vanishes nowhere the map w must be an isomorphism over F .0 0 i
Thus the number of simple summands of F where w (w is not an0
isomorphism is strictly greater than for w , contradicting the choice of0
Ž .E ,H , w . Summarizing, we have proved that for any weak quasi-model0 0 0
Ž . Ž y1Ž ..E, H, w of E , H , w G we have E s E and w is an isomorphism.0 0 0 0

Ž y1Ž .. Ž .In other words E , H , w G is minimal, and hence E , H , w is a0 0 0 0 0 0
Ž . Ž .minimal quasi-model of F, G, G , as desired. This proves a , the existence

part of Theorem 3.6.

Ž .The proof of b , the uniqueness part, is deferred to the end of this
section. The intervening results do not depend on it. Let us only note the
following consequence of uniqueness.
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COROLLARY 3.8. Consider a normal subgroup G9 ; G which is also
Ž . Ž .fiberwise Zariski dense in G. If F, G, G is minimal, then so is F, G, G9 .

Ž . Ž .Proof. Consider any minimal quasi-model E, H, w of F, G, G9 . For
Ž . y1any g g G let int g be the automorphism g ¬ g gg of G. Then

Ž Ž . . Ž .E, H, int g (w is another minimal quasi-model of F, G, G9 . By Theo-
Ž .rem 3.6 b there exists an automorphism i of H, defined over E, suchg

Ž .that int g (w s w ( i . Since w induces an isomorphism between theg

groups of outer automorphisms of H and G, we find that i is an innerg

Ž .automorphism. As H is adjoint, it follows that i s int d for someg

Ž . Ž . Ž Ž .. Ž .e g H E . It follows that g s w d g w H E ; that is, E, H, w is a
Ž .quasi-model of F, G, G . By minimality of the latter, we have E s F and

Ž . Ž y1Ž ..w is an isomorphism. Thus F, G, G9 ( E, H, w G9 is minimal, as
desired.

In the rest of this section we analyze the minimal case. We begin with an
easy but useful projection property. Consider a direct summand F9 of F;
we do not assume that F9 is simple. Let G9 be the part of G that lies over

Ž .F9, and let G9 denote the image of G under the projection map G F ª
Ž . Ž .G9 F9 . Then the triple F9, G9, G9 satisfies the same assumptions as

Ž .F, G, G . We say that it is obtained by projection to the summand F9.

Ž . Ž .PROPOSITION 3.9. If F, G, G is minimal, then so is F9, G9, G9 .

Ž . Ž .Proof. From any weak quasi-model E9, H9, w9 of F9, G9, G9 we can
Ž .construct a weak quasi-model of F, G, G , as follows. Write F s F9 [ F0

and put E [ E9 [ F0. Let H be the linear algebraic group over E which
coincides with H9 over E9 and with G over F0. Let w : H = F ª G beE
the isogeny which coincides with w9 over F9 and with the identity over F0.

Ž . Ž .Clearly E, H, w is a weak quasi-model of F, G, G . By the minimality of
Ž .F, G, G we have E s F and w is an isomorphism. This implies that

Ž .E9 s F9 and w9 is an isomorphism. Hence F9, G9, G9 is minimal, as
desired.

Next we study the rings E defined in the preceding section for variousr

fiberwise absolutely irreducible representations r obtained from the ad-
joint representation. First, we look at a single irreducible subquotient.

Ž .PROPOSITION 3.10. Suppose that F, G, G is minimal and that F is a
field. Let r be a non-constant absolutely irreducible representation of G which
occurs as subquotient of the adjoint representation of G. Then E s F unlessr

v Ž .char F s 2,
v the root system of G has type C for some n G 1, andn

v
Gr is equï alent to the representation a defined in Section 1.l

2 � 2 4In that case E is either equal to F or equal to F [ x N x g F .r
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Ž .Proof. From Theorem 2.14 we have a model G of r g over E , suchr r

Ž . Ž .that r G corresponds to a subgroup of G E . When r is faithful, wer r

Ž . Ž .obtain a quasi-model of F, G, G of the form E , G , . . . . In that case ther r

minimality assumption implies E s F, and we are done. In the generalr

case we have to argue more indirectly.

LEMMA 3.11. Suppose that F is separable o¨er E . Then there exists anr
;algebraic group H o¨er E and an isomorphism w : H = F ª G such thatr Er

Ž Ž ..G ; w H E .r

Ž . Ž .Ž .Proof. Let H be the Zariski closure of G ; G F s RR G EFr Er

inside RR G. By the universal property of the Weil restriction theFr Er

inclusion H ¨ RR G corresponds to a homomorphism w : H = F ª G.Fr E Er r

The condition on G being clear by construction, it remains to prove that w
is an isomorphism. Let E denote a separable closure of E . Since F is ar r

finite separable extension of E , we haver

RR G = E ( G = E ,Ž . ŁFr E E r F , t rr r
t

Ž .where r runs through Hom F, E . In particular RR G is a connectedE r Fr Er r

semisimple group and the natural homomorphism

RR G ª RR r G ( RR G = FŽ . Ž .Fr E Fr E Fr E r Er r r r

is a totally inseparable isogeny. By construction the image of H is the
Ž .subgroup G ; RR G = F . It follows that the map H ª G is ar Fr E r E rr r

totally inseparable isogeny and hence H is an absolutely simple connected
semisimple group. It also follows that w is an isogeny. To show that it is an
isomorphism note that we have a closed immersion

H = E ¨ G = E .ŁE r F , t rr
t

The projection to each factor is an isogeny. By Corollary 1.8 one of these
isogenies dominates all the others. Since the total map is a monomor-
phism, one of these isogenies must be an isomorphism. But then each of
them is an isomorphism, and hence w is one, as desired.

Ž .In the case of Lemma 3.11 the triple E , H, w is a quasi-model ofr

Ž .F, G, G , so the minimality assumption implies E s F, as desired.r

LEMMA 3.12. Suppose that F is not separable o¨er E . Let s : x ¬ x p
r

Ž .denote the Frobenius endomorphism of F, where p [ char F . Then there
� p 4exist an absolutely simply adjoint group H o¨er E [ x g F N x g E and ar
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commutatï e diagram of isogenies

w 6

H = F GE

6 6Frobb

; ad6 Ž .s *H = F r GE

Ž Ž ..such that G ; w H E .

Proof. Recall from Assumption 2.1 that F is either a global or a local
field. Since F is not separable over E , it follows that sy1 induces anr

;isomorphism E ª E. Definingr

H [ sy1 *Gad [ Gad = y1 E,Ž . r r E ,sp

we have a canonical isomorphism

s *H s H = E ( Gad = E,E , s r E , idr

and every E -valued point of Gad lifts under Frob to an E-valued pointr r p
of H. By Proposition 1.12 and Theorem 1.7 the Frobenius isogeny of G

Ž .adfactors through r G . Consider the composite isogeny

ad;adH = F ( G = F ª r G ª s *G s G = F .Ž .E , s r E , id F , sp

Identifying F through sy1 with its inseparable extension F9 of degree p,
this corresponds to an isogeny w : H = F9 ª G = F9 defined overE, id F , id

Ž .F9. By construction G is contained in the image of H E . Thus w maps a
Ž . Ž .Zariski dense subgroup of H F to G F . It follows that w is already

defined over F, and we are done.

Ž .In the case of Lemma 3.12 the triple E, H, w is a weak quasi-model of
Ž .F, G, G . From the minimality assumption we conclude that E s F and
that w is an isomorphism. This means first of all that E s F p. On ther

Ž .adother hand we deduce that r G s s *G which by Proposition 1.12
occurs if and only if p s 2, the root system of G has type C for somen

Gn G 1, and r ( a . This finishes the proof of Proposition 3.10.l

Next we compare two irreducible subquotients of the adjoint representa-
tion of G.

PROPOSITION 3.13. Suppose that F is a direct sum of two fields F [ F1 2
Ž Ž ..and that the projection to each summand F , G , pr G is minimal. Fori i i

each i let r be a non-constant absolutely irreducible representation of Gi i
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which occurs as subquotient of the adjoint representation of G . Put r [ r [i 1
r as representation of G o¨er F. Then we ha¨e either2

Ž .a E s E [ E , orr r r1 2

Ž . Ž . Ž .b there exists a quasi-model E, H, w of F, G, G such that E is a
field, w is an isomorphism, and r s r (w for a representation r of H.0 0

Proof. By construction E is a subring of F whose image in each F isr i
Ž .equal to E . Thus if E is not a field, we have the case a . Let us assumer ri

Ž .that E is a field; we must then prove b . Note that the projection mapsr
;induce isomorphisms p : E ª E , and by Proposition 3.10 the latter isi r r i

equal to F or F 2. Also recall that by Theorem 2.14 we have an algebraici i
group G over E and an isomorphismr r

;G = F ª r GŽ .r Er

Ž . Ž .under which r G corresponds to a subgroup of G E . For each fiber thisr r

amounts to an isomorphism

;G = F ª r G .Ž .r E ,p i i ip i

; ;First, suppose that F ¤ E ª F . Then the literal analogue of Lemma1 r 2
3.11 shows everything except that r descends to H. But this last assertion
follows at once from the fact that by construction r comes from a

Ž .representation of G and that the isogeny G ª r G descends to anr

isogeny H ª G .r
; ;2 2Next consider the case F ¤ E ª F . This time the literal analogue of1 r 2

Lemma 3.12 shows everything except that r descends to H. But now we
know that r ( a G i for both i s 1, 2, so r descends to r [ a H, asi l 0 l
desired.

; ; 2 ŽFinally, we treat the case F ¤ E ª F the fourth case then follows by1 r 2
.symmetry . As in the proof of Lemma 3.12 we have an isomorphism

;ad
y1G = F ª G .r E , s (p 2 2p 2

Since p : E ª F is an isomorphism, we deduce an isogeny1 r 1

G = y1 y1 F1 F , s (p (p 21 2 1

6

adr1

; ;ad ad6

6Ž . y1 y1 y1r G = F G = F G .1 1 F , s (p (p 2 r E , s (p 2 21 2 1 r 2

Ž . Ž .By construction this isogeny maps pr G to pr G , so it is part of a1 2
Ž Ž ..quasi-model of F , G , pr G . By the minimality assumption it must2 2 2
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therefore be an isomorphism. On the other hand, by Section 1 the group
Ž . Ž .r G is not adjoint, so neither is G , nor r G . Since G is adjoint, the2 2 r 1 1 2

isogeny cannot be an isomorphism. This contradiction finishes the proof.

It is now easy to look at the irreducible subquotients of the adjoint
representation of G altogether. Recall that some fibers may have two
different interesting irreducible subquotients.

PROPOSITION 3.14. Consider the algebra

m F [ F if G possesses non-standard isogenies,i i iF9 [ [ ½ F if G does not possess non-standard isogeniesi iis1

o¨er F s [m F , and the representation of G = F9i Fis1

m G Gi ia [ a if G possesses non-standard isogenies,s l i
r [ [ G½ ia if G does not possess non-standard isogenies.is1 i

Ž .Suppose that F, G, G is minimal. Then

m
G GE [ E if G possesses non-standard isogenies,i ia a is lE s [r ½ GE if G does not possess non-standard isogenies.iis1 a i

Ž .Proof. By Theorem 2.3 a the ring E is a finite direct sum of fields,r

and we must show that the decompositions into simple summands of Er

and F9 correspond to each other. Suppose not. Then there is a simple
summand E of E which is not contained in a simple summand of F9.r, 0 r

Select two simple summands of F9 such that E injects into each ofr, 0
them. There are two cases, in each of which we shall establish a contra-
diction.

Suppose first that these two simple summands of F9 lie above two
different simple summands F , F of F. By projecting everything to F [ Fi j i j
and applying Proposition 3.9 we may assume without loss of generality that

Ž . Ž .F s F [ F . Now Proposition 3.13 b yields a quasi-model of F, G, G ,1 2
which contradicts the minimality assumption.

Suppose that the two simple summands of F9 lie above the same simple
summand F of F. By projecting everything to F and applying Propositioni i
3.9 we may assume without loss of generality that F is a field. Then
Ž .F9, G = F9, G together with r satisfies the conditions of PropositionF

Ž .3.13. If E, H, w is the quasi-model and r the representation provided by0
Ž .Proposition 3.13 b , we find that by construction r is equivalent to both0

a H and a H. Since these two representations are inequivalent, we haves l
reached a contradiction.
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The preceding results now make it easy to prove the uniqueness of
minimal quasi-models.

Ž .Proof of Theorem 3.6 b . Consider two minimal quasi-models
Ž . Ž . Ž .E , H , w and E , H , w of F, G, G . We must prove that E s E1 1 1 2 2 2 1 2

;and that there exists a unique isomorphism c : H ª H such that w s1 2 1
w (c . In fact, the uniqueness of c is obvious once it exists.2

Let us first assume that F is a field. Then for each m s 1, 2 the
representation a G descends to the representation r s a Hm or s a Hm ofs m s l
H . Put r [ r [ r as representation of H " H over E [ E . Thenm 1 2 1 2 1 2

Ž Ž .y1Ž ..the triple E [ E , H " H , w = w G together with r satisfies1 2 1 2 1 2
the assumptions of Proposition 3.13. By construction, we have E ;r

Ž . Ž .diag F ; F [ F. Thus we must have the case b of Proposition 3.13, i.e.,
Ž . Ž Ž .y1Ž ..there is a quasi-model E, H, w of E [ E , H " H , w = w G1 2 1 2 1 2

such that E is a field and r descends to a representation of H. By
projection to each summand and the minimality assumption the induced
maps E ¨ E and H = E ª H must be isomorphisms. In particular,m E m m

Ž y1Ž .y1Ž ..E, H, w w = w G itself is minimal, which by Proposition 3.101 2
implies that E is equal to E or to E2. Since E is contained in ther r

Ž . Ž .diagonal diag F , it follows easily that E ; diag F as well. This shows
;that E s E and that the two maps E ª E are the same. The isomor-1 2 m

phism c is obtained from the two isomorphisms H = E ª H .E m m

Now we consider the general case. From Proposition 3.9 and the field
case just proved we deduce that the images of E , E in any given simple1 2
summand F of F are equal, and that w is an isomorphism over F if andi 1 i
only if w has that property. This implies that there is a subquotient2
representation r of the adjoint representation of G such that r (w (m

a Hm m F for both m s 1 and m s 2. From Proposition 3.14 it follows thatl Em

each E is totally inseparable over E . Since both E have the same imagem r m

in each F , one easily deduces that E s E . Finally, the isomorphism c isi 1 2
constructed by combining the given isomorphisms for all simple summands
of E s E .1 2

4. THE AUGMENTATION IDEAL IN THE
ADJOINT REPRESENTATION

We keep the notations and assumptions of the preceding section. The
aim of this section is to give a full qualitative characterization of the

Ž .augmentation ideal II defined in Definition 2.2 b , where r is the adjointr

representation of one of several groups related to G. Here we assume that
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Ž .F, G, G is minimal. From Proposition 3.14, together with Theorem 2.3,
we already have the best possible result for the semisimplification of the
adjoint representation. Thus the problem will be to characterize certain
nilpotent elements in II .r

To set up the framework, we fix another fiberwise absolutely simple
adjoint group H over F and an isogeny w : G ª H with nowhere vanishing

˜ ˜derivative. Let G and H denote their universal coverings. Then we have a
commutative diagram of isogenies

w̃ 6˜ ˜G H

6 6 4.1Ž .p v

w 6
G H .

˜Recall from Proposition 1.10 that the Lie algebras g [ Lie G and˜
ˆg [ Lie G fit together to a single representation g. Let h be theˆ

ˆ ˜analogous representation combining h [ Lie H and g [ Lie H. Then we
have a commutative diagram

dw̃ 6 ˜g h˜

6 6

lllll lllll

ˆg hˆ

66 66dÃ

dw 6

g h.

ˆLet r denote the representation of G on h. Let s :F ª F and Frob:ˆ
Ž .G ª s *G be as in 1.13 . When w is not an isomorphism, a certain part of

the representation r factors through Frob.ˆ
PROPOSITION 4.2. There is a natural commutatï e diagram with exact rows

˜0 ª im dw ª h ª ker dw m F ª 0Ž . Ž .˜ ˜ F , s

5 l l
ˆ0 ª im dw ª h ª ker dw ( dÃ m F ª 0Ž . Ž .˜ F , s

6 66 66

0 ª im dw ª h ª ker dw m F ª 0.Ž . Ž . F , s

Proof. In the first and the third line, the horizontal maps on the
˜ ˜right-hand side are the derivatives of the homomorphisms H ª s *G and

H ª s *G, taking into account the natural isomorphisms Lie s *G (
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˜ ˜Ž . Ž .Lie G = F and Lie s *G ( Lie G m F. The exactness follows, forF , s F , s

instance, by a straightforward case-by-case analysis using the information
in Proposition 1.11. The same remarks apply to the second line. For
instance, one shows that the term on the left of the second line is the

ˆsmallest submodule of h which contains the subquotient g if w is anl
isomorphism, and the subquotient g otherwise. One also checks easilys
that the quotient injects into g m F. The rest is left to the reader.ˆ F , s

The following definition collects all the qualitative information about
the augmentation ideal II that is available so far. As before we write Gr iˆ
for the fiber of G over F . Let g , g , and g be the representationi i i, s i, l
spaces of a G i, a G i, and a G i, respectively.s l

ˆŽ .DEFINITION 4.3. Let J be the set of all x g End h satisfying ther Fˆ
following conditions:

ˆŽ .a x maps each G-invariant F-submodule of h into itself,
ˆŽ .b x annihilates each G-invariant F-subquotient of h on which G

acts trivially,
Ž . Ž . Ž . Ž .c x maps the subspace ker dw ( dÃ m s F of ker dw ( dÃF , s

m F into itself, andF , s

Ž . Ž .d for each simple summand F with char F s 2 and for which thei i
root system of G has type C for some n G 1, the endomorphism of gi n i, l
induced by x lies in B G .ia l

Ž .Recall that F, G, G is assumed to be minimal. Therefore, with Proposi-
Ž .tion 3.10 taken into account, this definition shows that J is a s F -mod-r̂

ule. Clearly, we have II ; J . The main result of this section is ther rˆ ˆ
following theorem.

THEOREM 4.4. There is a subring OO9 ; F with the following properties:

Ž .a OO9 is finitely generated in the global case, resp. open compact in the
local case,

Ž .b the total ring of quotients of OO9 is F,
Ž . Ž .c II is a module of finite type o¨er s OO9 , andr̂

Ž . Ž .d s F ? II s J .r rˆ ˆ

In the local case the theorem is equivalent to saying that II is openr̂

compact in J .r̂

Ž . Ž . Ž .Proof. First we show a ] c . Let Rad J denote the radical of J , thatr rˆ ˆ
is, the kernel of the action of J in the semisimplification r ss of r. Let OO Hˆ ˆr aˆ l˜be as in Theorem 2.3, and let OO be its normalization in F. From
Proposition 2.15 we see that for each non-constant irreducible subquotient
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˜r9 of r, defined over a simple summand F of F, the image of OO in F isˆ i i
˜of finite type as module over OO . Therefore there is a subring OO9 ; OO ofr9

Ž . Ž .finite index such that II modulo Rad J is a s OO9 -module. By Theoremr rˆ ˆ
Ž . Ž .2.3 c this module is of finite type. In the proof of d below we shall show

that

n n
s F ? Rad J l II s Rad J 4.5Ž . Ž .Ž . Ž .ž /r r rˆ ˆ ˆ

Ž .n Ž .nq1for all n G 0. On the successive quotients Rad J rRad J the leftr rˆ ˆ
Ž .and right action of J factors through J rRad J . Therefore by downwardr r rˆ ˆ ˆ

Ž .n Ž .induction on n we easily deduce that Rad J l II is a s OO9 -module forr rˆ ˆ
all n, provided that OO9 is made a little smaller at each step when
necessary. The fact that this module is finitely generated is proved just as

Ž . Ž . Ž .in Theorem 2.16. This shows assertions a ] c modulo Eq. 4.5 .
Ž .Coming to the proof of d , we first show that

s F ? II ' J modulo Rad J . 4.6Ž . Ž .Ž .r r rˆ ˆ ˆ

ss Ž .This assertion concerns only the representation r . By Definition 4.3 bˆ
we may discard all those simple subquotients on which G acts trivially. The
remaining simple subquotients are precisely those listed in Proposition
3.14, except for the fact that the subquotients g that do not occur ini, s

Ž .im dw are replaced by their pullback via Frobenius g m F . This factˆ i, s F , s ii
Ž . Ž .is accounted for by Definition 4.3 c . Moreover, Definition 4.3 d takes

Ž .care of the symplectic case of Proposition 3.10. Thus Eq. 4.6 follows from
Theorem 2.3 and Proposition 3.14.

Next we reduce everything to an equation modulo the square of the
radical. Suppose that we know

2
s F ? Rad J l II ' Rad J modulo Rad J . 4.7Ž . Ž .Ž . Ž . Ž .Ž .r r r rˆ ˆ ˆ ˆ

By induction on n we find that

n n nq1
s F ? Rad J l II ' Rad J modulo Rad JŽ . Ž . Ž . Ž .ž /r r r rˆ ˆ ˆ ˆ

Ž .for all n G 1. By 4.6 the same holds for n s 0. Thus by downward
Ž .induction on n we deduce 4.5 for all n. For n s 0 this is just the

Ž .assertion of Theorem 4.4 d .
Ž .It remains to prove Eq. 4.7 . For this we first look at all subquotients of

ĥ which are non-trivial extensions of two irreducible representations. The
ˆprecise form of the result will depend on where in h this subquotient

occurs. The following result will cover all cases.
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LEMMA 4.8. Let 0 ª V 9 ª V ª V 0 ª 0 be a non-trï ial extension of
G-modules where V 9 and V 0 are absolutely irreducible. Assume that one of
the following two conditions holds:

ˆŽ . Ž .a V is a subquotient of h but not of ker dw ( dÃ = F.F , s

Ž . Ž .b V is a subquotient of ker dw ( dÃ .

Let r denote the representation of G on V, and A the stabilizer of V 9 inr

Ž .End V . ThenF

s F ? Rad A l II s Rad A .Ž . Ž . Ž .Ž .r r r

Ž .Proof of Eq. 4.7 . Here I advise the gentle reader to view the represen-
tation as written in terms of block matrices adapted to a Jordan]Holder¨

ˆseries of h. The part over each F has length at most 5, so that scribbling ai
few small matrices can be of great help in visualizing the argument. First,

Ž . Ž .2we see at once that Rad J rRad J is a direct sum of its images onr rˆ ˆ
various subquotients which are extensions of length 2. Consider the

Ž . Ž .2decomposition of Rad J rRad J into isotypic components under ther rˆ ˆ
Ž . Ž .simultaneous left and right actions of J rRad J . By 4.6 it suffices tor rˆ ˆ

Ž . Ž Ž . .prove that s F ? Rad J l II surjects onto each isotypic component.r rˆ ˆ
ˆIf the isotypic component arises from exactly one subquotient of h of

length 2, the surjectivity follows directly from Lemma 4.8. Indeed, this is
Ž . Ž .obvious in the case of Lemma 4.8 a ; and in the case b the only

difference is that one has to apply an extra tensor product m F.F , s

Suppose that the isotypic component comes from more than one exten-
sion of length 2. By the list in Proposition 1.11 this happens only for a fiber

Ž .with char F s 2 and where the root system of G has type D for somei i n
even integer n. In that case we are looking at an extension of g with twoi
copies of the trivial representation of dimension 1. Since that extension
does not split even partially, the surjectivity again follows from Lemma 4.8.

Ž .This proves Eq. 4.7 modulo Lemma 4.8.

Proof of Lemma 4.8. Since the extension is non-trivial, both V 9 and V 0
must be vector spaces over the same simple summand of F. After project-
ing to that summand and using Proposition 3.9 we may suppose without
loss of generality that F is a field. Let r9, r0 denote the representation of
G on V 9, resp. V 0. Since the extension is non-trivial and G is semisimple,
at least one of r9, r0 is a non-constant representation. As every non-con-

ˆstant irreducible subquotient occurs only once in h or g , we deduce thatˆ
r9 \ r0. From Theorem 2.16 we now obtain that

F ? Rad A l II s Rad A . 4.9Ž .Ž . Ž .Ž .r r r
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Ž .We need the same equation with F replaced by s F . Recall that
Ž .Rad A l II is a module over the ring OO defined in Theorem 2.16. Thus,r r

Ž . Ž .if Quot OO s F, we have s F ? OO s F, which directly implies the desired
Ž .strengthening of 4.9 . Thus in the remainder of the proof we assume that

Ž . ŽQuot OO / F. Then each E and E defined whenever the correspond-r9 r 0

.ing representation r9 resp. r0 is non-constant is a proper subfield of F.
By classifying the possible cases, the following sublemma extracts some
useful common features.

Ž .SUBLEMMA 4.10. If Quot OO / F, we must ha¨e:

Ž . Ž .a char F s 2,

Ž . Ž . Ž .b Quot OO s s F ,

Ž . Ž .c the group r G is adjoint, and

Ž .d the representation r does not factor through Frobenius.

Ž .Proof. Suppose first that r9 is constant. Since ker dw ( dÃ does not
have a non-zero constant representation as a quotient, we must be in the

Ž .case b of Lemma 4.8. Thus r0 is a non-constant subquotient of g. Sinceˆ
E / F, we must be in the symplectic case of Proposition 3.10, withr0

G Ž . Ž .r0 ( a and E s s F . If rank G s 1, the second diagram in Proposi-l r 0

Ž . Ž .tion 1.11 b shows that V ( g. Then r is faithful, by Proposition 1.12 c ,˜
Ž .and all the desired assertions are proved. If rank G ) 1, the relevant

Ž . Ž . >diagram in Proposition 1.11 c shows that V ( g and hence r G ( G in˜ l
Ž .the notation of Proposition 1.12 d . Again all assertions are proved in this

case.
Suppose that r9 is non-constant. In each of the cases of Lemma 4.8 this

must be a subquotient of g. Therefore we are again in the symplectic caseˆ
G Ž . Ž .of Proposition 3.10; this time with r9 ( a and E s s F . If rank Gl r 9

s 1, as above we find V ( g and that r is faithful, whence the lemma.
Ž .Otherwise the relevant diagrams in Proposition 1.11 c leave two cases. If

Ž . >r0 is constant, then V ( g and hence again r G ( G in the notation ofl
Ž .Proposition 1.12 d . If r0 is non-constant, then w must be a non-standard

Ž .isogeny and V ( h. By Proposition 1.12 a the representation of H on h is
Ž . >faithful, so that again we obtain r G ( G . Thus the sublemma is proved

in all cases.

The rest of the proof of Lemma 4.8 follows the same principle as that of
Proposition 3.10. Namely, assuming that Lemma 4.8 is false we shall

Ž .construct a quasi-model of F, G, G which violates the minimality condi-
tion. The method for constructing a model over a subring follows that of
Theorem 2.14, except that now the ring is no longer semisimple.
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SUBLEMMA 4.11. Suppose that the assertion of Lemma 4.8 is false. Set
Ž .B [ s F ? BB ; A . Then the canonical homomorphism B = F ª Ar r r r s ŽF . r

is an isomorphism.

Proof. First we look at the semisimplification of A . Since r9 and r0r

Ž .are not equivalent, the image of B in A rRad A is isomorphic to ther r r

Ž . Ž .direct sum of its images in End V 9 and in End V 0 . From SublemmaF F
Ž . Ž .4.10 b we already know that this image is a model of A rRad A overr r

Ž .s F . This is seen directly when r9 resp. r0 is constant; otherwise we use
Ž .Theorem 2.3 a.iii .

Next choose an element e g BB which acts as two different scalars on V 9r

and V 0. Decomposing A under left and right multiplication by e wer

easily find that

Rad B [ Rad A l B s s F ? Rad A l II .Ž .Ž . Ž . Ž .Ž .r r r r r

To finish the proof it thus suffices to show that the homomorphism

Rad B m F ª Rad A 4.12Ž .Ž . Ž .r s ŽF . r

is an isomorphism. We know already that it is surjective. Let S ;
Ž Ž .. Ž .End Rad A denote the s F -subalgebra generated by left and rightF r

Ž .multiplication by all elements of B . Since F ? B ¸ A rRad A , wer r r r

Ž Ž .. Ž .easily find that F ? S s End Rad A . It follows that Rad A is anF r r

Ž .S-module of length at most 2. Now by construction Rad B is a non-zeror

S-submodule, and by assumption it is a proper submodule. This implies
Ž Ž .. Ž Ž ..that length Rad B s 1 and length Rad A s 2. Finally from Sub-S r S r

Ž . Ž .lemma 4.10 a we infer that dim F s 2. This shows that the homo-s ŽF .
Ž .morphism 4.12 is a surjective homomorphism between two S-modules of

length 2. Therefore it is an isomorphism, as desired.

To finish the proof of Lemma 4.8 let us assume that the assertion is
false. Then both preceding sublemmas apply. Note that by construction we

Ž . Uhave r G ; B . Therefore we can argue as in Theorem 2.14, obtaining ar

Ž .linear algebraic group G over s F and an isomorphism G = Fr r s ŽF .
; Ž . Ž . Ž Ž ..ª r G such that r G corresponds to a subgroup of G s F . Byr

Sublemma 4.10 the group G is adjoint, and the Frobenius isogeny of Gr

Ž . Ž .factors through an isogeny r G ª s * G which is not an isomorphism.
Thus, following the procedure of Lemma 3.12, we obtain a quasi-model
Ž . Ž .y1F,G = F, . . . of F, G, G in which the isogeny is not an isomor-r s ŽF ., s

Ž .phism. This contradicts the minimality of F, G, G . This finishes the proof
of Lemma 4.8 and thus of Theorem 4.4.

Consequences of Theorem 4.4. We formulate two special results that
will be needed later on. To fix notations, let t be the endomorphism of F



COMPACT SUBGROUPS 481

which on each simple summand F is the identity if w is an isomorphismi
over F and equal to the Frobenius endomorphism s otherwise. Clearlyi
the first and the last line in Proposition 4.2 remain exact when s is

˜ ˜Ž .replaced by t . Define t F -submodules W ; h and W ; h so that the
following diagrams have exact rows:

˜0 ª im dw ª h ª ker dw m F ª 0Ž . Ž .˜ ˜ F , t

5 4.13j j Ž .
˜0 ª im dw ª W ª ker dw m t F ª 0Ž . Ž . Ž .˜ ˜ F , t

0 ª im dw ª h ª ker dw m F ª 0Ž . Ž . F , t

5 j j 4.14Ž .
0 ª im dw ª W ª ker dw m t F ª 0.Ž . Ž . Ž .F , t

˜The homomorphism dv induces a map W ª W, and J can be interpretedr̂
˜Ž . Ž .as a t F -submodule of Hom W, W . In the following, we let OO9 ; Ft ŽF .

Ž . Ž .be the subring given by Theorem 4.4. By a t OO9 -lattice in a t F -module
Ž .of finite type we mean a finitely generated t OO9 -submodule which gener-

Ž .ates the total space over t F . In the same sense, the main content of
Ž .Theorem 4.4 is that II is a s OO9 -lattice in J .r rˆ ˆ

˜For the first special result we consider the quotient module h ¸ h l
˜given by Proposition 1.11, and let W denote the image of W in h . Let r̃l l

˜denote the representation of G on h.

˜Ž .LEMMA 4.15. Let J be the image of J in End h . Then we ha¨er r F˜ ˆ

˜ ˜Hom W , W l J ? t F s Hom W , W .Ž .Ž . Ž .ž /t ŽF . l r t ŽF . l˜

Proof. Since everything decomposes according to the simple summands
of F, we may assume that F is a field. Suppose first that w is an

˜ ˜isomorphism. Then by construction we have W s h s g and W s h s g ,˜ l l l
and the latter is the unique irreducible quotient module of the former.

˜Ž .Going through Definition 4.3, we find that Hom W , W ; J , except int ŽF . l r̃

Ž .the symplectic case of Definition 4.3 d . In that case, the weaker statement
Ž .Gof the lemma still follows, using the equality B ? F s End g of Theo-a F ll

Ž .rem 2.3 a.iii .
Ž .If w is not an isomorphism, we have t s s and W ( g m s F .l s F , s

Going through Definition 4.3 it is straightforward to see that
˜Ž .Hom W , W ; J . This proves Lemma 4.15.s ŽF . l r̃
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˜Ž .Since the image of II in End W is just II , from Theorem 4.4 we nowr F rˆ ˜
immediately obtain:

˜Ž . Ž .COROLLARY 4.16. Hom W , W l II generates a t OO9 -lattice int ŽF . l r̃
˜Ž .Hom W , W .t ŽF . l

The second corollary concerns the following quotient module of h. It
suffices to define it fiber by fiber, so let us suppose that F is a field. Then,
in the notation of Proposition 1.11, we set

¡z* if char F s 2 and the root system of HŽ .
has type C for some n G 1; otherwise:n~h [l t >dc h if H has a non-standard isogeny c : H ª H ,Ž .¢

h if it does not.
4.17Ž .

Here the index l stands for ‘‘long roots’’ and the index t for ‘‘torus.’’ The
reason is this: Recall that the weight 0 subspace of h comes from a
maximal torus. Let u : h ¸ h denote the canonical projection. If H doesl t
not have non-standard isogenies, then h is the smallest quotient modulel t
of h such that the weight 0 subspace still injects into h . If H has al t
non-standard isogeny c : H ª H >, then h is the smallest quotient mod-l t

Ž . Ž .ule of dc h such that the weight 0 subspace of dc h injects into h .l t
This property will be important later on.

Let W be the image of W in h .l t l t

LEMMA 4.18. We ha¨e

˜Hom W , W ; J .Ž .t ŽF . l t r̂

Proof. This is proved in the same way as Lemma 4.15, by going through
Definition 4.3 and the cases of Proposition 1.11.

Using Theorem 4.4 we deduce:

˜Ž . Ž .COROLLARY 4.19. II contains a t OO9 -lattice in Hom W , W .r t ŽF . l tˆ

5. LOCAL PARAMETERS

In this section and the next two we consider the local case. We also
assume that F is non-archimedean; i.e., it is a finite direct sum of
non-archimedean local fields. Let G be a linear algebraic group over F.
The aim of this section is to set up the framework for studying the
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Ž .profinite structure of congruence subgroups of G F . In order to speak of
principal congruence subgroups we must choose local parameters of G at
the identity section. We shall also discuss homomorphisms and commuta-
tor maps between various groups, which requires that the choices of local
parameters be compatible with each other in a certain sense. The present

˜section is devoted to finding such local parameters for the groups G, G,
etc., that were discussed in the preceding section. Our arguments will be
kept at a rather elementary level, avoiding Bruhat]Tits theory, and all of
them work essentially fiber-by-fiber over F.

ˆLet us denote the identity section of G by 1. Let OO denote theG, 1
completion of the affine ring of G with respect to the ideal defining the
identity section. If G denotes the fiber of G over a simple summand F ,i i

ˆ ˆthen OO is just the direct sum of the completed local rings OO of theG, 1 G , 1iˆ ww xxindividual fibers. Moreover we have OO ( F x , . . . , x for anyG , 1 i i, 1 i, ni i

system x , . . . , x of local parameters of G at 1. Note that the mor-i, 1 i, n ii
Ž . y1phism d: G = G ª G, g, h ¬ gh induces an F-algebra homomor-F

phism

ˆ ˆ ˆ ˆd*: OO ª OO m OO , 5.1Ž .G , 1 G , 1 F G , 1

ˆwhere m denotes the completed tensor product. The image of any x isF i, j
then a power series in the variables x m 1 and 1 m x for all 1 F k F n .i, k i, k i

Let OO be the maximal compact subring of F. This is, of course, just the
direct sum of the valuation rings OO ; F . We are interested in locali i
parameters for which the above power series have coefficients in OO. Giving
such local parameters amounts essentially to giving a structure of G over
OO in a very small neighborhood of the identity. The most natural terminol-

Ž w x.ogy for this is that of formal schemes cf. Hartshorne 5, Chap. II, Sect. 9 .
The reader should not feel deterred by our use of formal schemes, since
we shall need only their most elementary properties and the arguments
below will consist only of easy manipulations of power series.

Ž .DEFINITION 5.2. A smooth formal model over OO of G is a formal
ˆscheme GG s Spf RR, where RR is an OO-subalgebra of OO such thatG, 1

Ž .a there exists a system x , . . . , x of local parameters of each Gi, 1 i, n iim ww xxat 1 such that RR s [ OO x , . . . , x , andi i, 1 i, nis1 i

ˆŽ .b the homomorphism d* induces a homomorphism RR ª RR mOO

RR. In other words, the morphism d corresponds to a morphism of formal
schemes GG = GG ª GG, which makes GG into a smooth formal groupOO

scheme over OO.

Consider a smooth formal model GG over OO of GG. The Lie algebra of GG

is the relative tangent space at the identity element. Clearly, in terms of
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Ž .the local parameters of Definition 5.2 a we have

nm i ­
Lie GG s OO ? .[ [ i ž /­is1 js1 x i , j 1

This is an OO-lattice in Lie G, that is, a finitely generated OO-submodule
Ž .with F ? Lie GG s Lie G.

Let w : G ª H be a homomorphism of linear algebraic groups over F. If
we are given smooth formal models GG s Spf RR of G and HH s Spf SS of
H, then w induces a homomorphism of formal group schemes GG ª HH if

ˆ ˆand only if its transpose w*: OO ª OO induces an algebra homomor-H , 1 G, 1
phism SS ª RR. Looking at the derivative we find that a necessary condi-
tion for this is that dw map the lattice Lie GG to the lattice Lie HH. The
induced homomorphism GG ª HH will be denoted again by w, whenever it
exists.

Let us take up the situation of Section 3. Thus G is now a fiberwise
absolutely simple adjoint group over F, and G is a fiberwise Zariski dense

˜Ž .compact subgroup of G F . Let p : G ª G denote the universal covering
of G.

˜ ˜PROPOSITION 5.3. There exist smooth formal models GG of G and GG of G
such that

˜Ž .a p extends to a homomorphism GG ª GG, and
; ˜Ž . w x Ž .b for e¨ery g g G the morphism g , : G ª G of 1.2 extends to

˜a morphism GG ª GG.

w x;Note that, as a consequence, the morphism p ( g , extends to a
morphism GG ª GG, and hence the conjugation action of G on G extends to

w x;an action on GG. Likewise g , (p defines an extension of the conjuga-
˜ ˜tion action on G to GG.

Proof. There are several aspects to take care of. First we observe that
all fibers over F can be considered separately. Thus, for the purposes of
this proof we may and do suppose that F is a field. We use the following
‘‘Ansatz’’: Fix local parameters j , . . . , j of G, and local parameters1 n
˜ ˜ ˜ yNj , . . . , j of G. Fix a uniformizing element t g OO, and put x [ t j and1 n i i

yN˜x [ t j for all i and some integer. Letĩ i

G̃G [ Spf OO x , . . . , x ,˜ ˜1 n

w xGG [ Spf OO x , . . . , x .1 n

˜We shall show that GG and GG have all the desired properties, provided that
˜the j and j satisfy certain conditions that are detailed below, and that Ni i
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˜is sufficiently large. We shall also show that the conditions on the j and ji i
can indeed be met. Consider the OO-lattices

n ­
L s OO ? ; Lie G,[ ž /­jis1 i 1

n ­˜ ˜L s OO ? ; Lie G.[ ž /˜­jis1 i 1

˜ ˜ N˜If GG and GG are smooth formal models, we clearly have Lie GG s t L and
Lie GG s t NL.

˜LEMMA 5.4. For any N 4 0, both GG and GG are smooth formal models of
G̃ resp. of G.

˜Proof. We concentrate on GG, the proof for GG being exactly the same.
Ž .Consider the homomorphism 5.1

w x w xd*: F j , . . . , j ª F j m 1, . . . , j m 1; 1 m j , . . . , 1 m j .1 n 1 n 1 n

Since the j are algebraic functions on G, and d* comes from an algebraici
morphism, the image of j is a power series f which is the expansion ofi i
an algebraic function. It is known that the coefficients of such a power
series are bounded by a linear function of the total degree. For a precise

j kformulation let us write a monomial in the form j m j with multi-in-
< < < <dices j and k. This term has total degree j q k , where denotes the

sum over all entries in a multi-index. Then there exists an integer M G 0
j ksuch that for all i, j, and k the coefficient of j m j in f has t-adici

Ž < < .valuation G yM ? j q k q 1 . Rewriting everything in terms of the
variables x , we obtaini

d*x s tyN ? f t N x m 1, . . . , 1 m t N x .Ž .i i 1 n

j kHere the coefficient of x m x has t-adic valuation

< < < <G N ? j q k y 1 y M ? j q k q 1 .Ž . Ž .
Taking N G 3M, this is

< < < <G M ? 3 ? j q k y 1 y j q k q 1Ž . Ž .ž /
< <s M ? 2 j q k y 4Ž .

G 0
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< <provided that j q k G 2. Thus for all N 4 0, the coefficients of all terms
of total degree G2 lie in OO. On the other hand the group axioms imply
that

f j m 1, . . . , 1 m j ' j m 1 y 1 m j modulo terms of degree G2.Ž .i i n i i

It follows that

d*x ' x m 1 y 1 m x modulo terms of degree G2.i i i

Thus all coefficients lie in OO, as desired.

˜ ˜LEMMA 5.5. Suppose that dp : Lie G ª Lie G maps L to L. Then for
˜any N 4 0 the isogeny p extends to a homomorphism GG ª GG.

Proof. Consider the image of j under the homomorphismi

˜ ˜w xp *: F j , . . . , j ª F j , . . . , j .1 n 1 n

This is a power series g which is the expansion of an algebraic function ofi
˜the j . The image of x is thenj i

p *x s tyN ? g t N x , . . . , t N x .˜ ˜Ž .i i 1 n

The same argument as that in the proof of Lemma 5.4 shows that for this
series the coefficients of all terms of total degree G2 lie in OO, whenever
N is sufficiently large. On the other hand, the coefficients of the linear
terms are the same as those on the Lie algebra. Since we already know

˜ N˜ Nthat Lie GG s t L and Lie GG s t L, these coefficients lie in OO if and only
˜Ž .if dp L ; L.

; ˜w xNext recall that the derivative of g , : G ª G is the homomorphism& ˜Ž . Ž .Ad g : Lie G ª Lie G of 1.3 . A necessary condition for PropositionG
˜Ž .5.3 b is that this homomorphism map L to L.

&
y1˜Ž .Ž . Ž . Ž .LEMMA 5.6. Suppose that Ad G L ; L ; dp L . Then for anyG

; ˜w xgï en N 4 0, the morphisms g , extend to morphisms GG ª GG for all
g g G.

Proof. If we had to deal with only finitely many elements g g G, we
could proceed directly as in the proof of Lemma 5.5. But in order to
account for all of G at once we must replace G by something larger which
has the structure of an algebraic variety over OO. &

Ž . Ž .Working first over F, recall from 1.3 and 1.4 that Ad s k (Ad .G G&
Ž . Ž . Ž .Since Ad G ; Aut Lie G , this shows that Ad G is contained in theG GF

open subvariety

y1 ˜U [ k Aut Lie G ; Hom Lie G, Lie G .Ž . Ž .Ž .F F
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&
In fact, Ad must be a closed embedding G ¨ U, because Ad is one.GG
Summarizing, we have a commutative diagram

&
AdG 6

;;;;; ˜Ž .G U ; Hom Lie G, Lie GF

6 6k k

Ž . Ž .Aut Lie G ; End Lie G .F F

Next, we repeat these constructions over OO, using the chosen lattices.
˜Ž .For a start, Hom L, L is an affine scheme over OO whose generic fiber is

OO

˜Ž . Ž .Hom Lie G, Lie G . The assumption of Lemma 5.5 a implies that kF
˜Ž . Ž .extends to a morphism Hom L, L ª End L . Consider the affine open

OO OO
y1 ˜Ž Ž .. Ž .subscheme UU [ k Aut L ; Hom L, L , and let HH be the Zariski

OO OO&
Ž .closure of Ad G in UU. This is an affine scheme over OO, say HH s Spec BBG

for an OO-algebra BB. Summarizing, we have another commutative diagram,

˜Ž .HH ; UU ; Hom L, LOO

6 6k k

Ž . Ž .Aut L ; End L .OO OO

&
Ž . Ž .These constructions imply that Ad G ; HH OO . Indeed, the assumptionG& ˜Ž . Ž .in Lemma 5.6 shows that Ad g is an OO-valued point of Hom L, L .G OO

Ž . y1Therefore Ad g stabilizes L. Since the same holds for g in place ofG &
Ž . Ž . Ž . Ž .g , it follows that Ad g g Aut L , and hence Ad g g UU OO . By theG OO G

Ž .definition of HH this point already lies in HH OO , as desired.& ;Recall that, by construction, Ad induces an isomorphism G ª HH = F.OOG &
Ž . Ž .In other words HH is a model of G over OO. Since we have Ad G ; HH OO ,G

to prove the lemma it suffices to show that the generalized commutator
; ˜ ˜w xmorphism , : G = G ª G extends to a morphism HH = GG ª GGF OO

whenever N is sufficiently large.
With this setup we can now proceed as above. The generalized commu-

tator morphism corresponds to an F-algebra homomorphism

˜ ˜ w xF j , . . . , j ª F ? BB j , . . . , j .Ž .1 n 1 n

˜ Ž ww xx.The image of j is a power series in BB m F j , . . . , j which repre-i OO 1 n
sents an algebraic function. Thus, writing the image of x as a power seriesĩ
in the x , the same argument as that in the proof of Lemma 5.4 shows thatj
the coefficients of all terms of total degree G2 lie in OO, whenever N 4 0.
For the linear terms it suffices to look at the Lie algebras. Here the
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integrality follows from

˜HH ; Hom L , LŽ .OO

N N˜s Hom t L , t LŽ .OO

˜s Hom Lie GG , Lie GG ,Ž .OO

as desired.

To finish the proof of Proposition 5.3 we must show that the local
˜parameters j and j can be chosen in such a way that the conditions ofi i

Lemmas 5.5 and 5.6 are satisfied. Since these conditions depend only on L
˜and L, we may first select these lattices. Clearly the local parameters can

then be chosen accordingly. Thus it remains to prove the following lemma.
˜ ˜LEMMA 5.7. There exist OO-lattices L ; Lie G and L ; Lie G, such that

& y1˜Ad G L ; L ; dp L .Ž . Ž . Ž . Ž .G

Ž .Proof. Take any Ad G -stable lattice L ; Lie G. Then we haveG&
y1 ˜Ž .Ž . Ž . Ž .Ad G L ; dp L , and any lattice L lying between these twoG

submodules does the job. This finishes the proof of Proposition 5.3.

Generalizations. We shall need to generalize these results by taking
˜ Ž .into account a further isogeny. Let w : G ª H, H, etc., be as in 4.1 . As in

Ž .4.13 ff. let t be the endomorphism of F which on each simple summand
F is the identity if w is an isomorphism over F , and equal to thei i
Frobenius endomorphism s otherwise. Consider the isogeny G ª t *G
which is the identity over F if w is an isomorphism over F , and thei i
Frobenius isogeny otherwise. By Theorem 1.7 this isogeny factors through
w, and the same holds for the universal coverings. Thus we can enlarge the

Ž .diagram 4.1 to a commutative diagram of isogenies
˜w c˜ 6 6˜ ˜ ˜G H t *G

6 6 6 5.8Ž .p v t *p

w c6 6

G H t *G.
The desired generalization of Proposition 5.3 goes as follows. We will not
care any longer about w and w.˜

˜ ˜ ˜PROPOSITION 5.9. There exist smooth formal models GG, GG, HH, HH of G, G,
˜H, H, such that

˜Ž .a the morphisms p , v, c , and c extend to homomorphisms in the
commutatï e diagram

c̃ 6˜ ˜ ˜GG HH t *GG

6 6 6p v t *p

c 6

GG HH t *GG ,
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˜ ˜ ˜Ž . Ž . Ž .b the derï atï es dc : Lie HH ª Lie t *GG and dc : Lie HH ª Lie t *GG

ha¨e OO-torsion free cokernel, and
; ˜ ˜Ž . w xc for e¨ery g g G the morphisms g , : G ª G and H ª H ex-

˜ ˜tend to morphisms GG ª GG and HH ª HH.

Proof. As in the proof of Proposition 5.3 we may assume that F is a
˜field. When w is an isomorphism, we take GG and GG as in Proposition 5.3,

˜and choose the corresponding smooth formal models for HH and HH. Then
there is nothing new to prove. So let us assume that w is not an

Ž .isomorphism, in which case p [ char F is positive and t s s . As before,
the important point is to choose suitable lattices in the Lie algebras of all
groups in question.

˜ ˜LEMMA 5.10. There exist OO-lattices L ; Lie G, L ; Lie G, M ; Lie H,
˜ ˜and M ; Lie H, such that

˜Ž .a the derï atï es of p , v, c , and c induce homomorphisms

˜dc 6˜ ˜ ˜ ˜L M t *L s L m OOOO , t

6 6 6Ž .t * dpdp dv

dc 6

L M t *L s L m OO ,OO , t

˜Ž . Ž .b the cokernels of the maps dc and dc in a are OO-torsion free, and
& &˜ ˜Ž . Ž .Ž . Ž Ž ..Ž .c Ad G L ; L and Ad w G M ; M.G H

Proof. The lattices must be chosen inside the F-vector spaces

˜dc 6˜ ˜ ˜ ˜Lie G Lie H t * Lie G s Lie G m FŽ . Ž . F , t

6 6 6Ž .t * dpdp dv

dc 6

Lie G Lie H t * Lie G s Lie G m F .Ž . Ž . F , t

&
Ž . Ž Ž ..Take any Ad G -stable lattice L ; Lie G. Next choose an Ad w G -G H

Ž .y1Ž .stable lattice M ; dc t *L . As in Lemma 5.7 we can then find a
lattice

& y1˜Ad w G M ; M ; dv M .Ž . Ž . Ž . Ž .Ž .H

We easily calculate that

& y1˜ ˜dc M q Ad G L ; dp L ,Ž . Ž . Ž . Ž .Ž .Ž . G

˜so that we can also find a lattice L between these two submodules.
Ž .The lattices thus constructed satisfy all conditions except possibly b .
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Consider an integer r G 0 such that t r annihilates the OO-torsion of
˜ ˜ ˜Ž . Ž . Ž . Ž .both t *L rdc M and t *L rdc M . Then after replacing M by

y1 yr ˜ ˜ y1 ˜ yr ˜Ž . Ž . Ž . Ž .dc t *L l t M and M by dc t *L l t M one easily checks
that all conditions hold.

The construction of smooth formal models now follows the same Ansatz
as that in the proof of Proposition 5.3. We choose local parameters
j , . . . , j of G such that1 n

n ­
L s OO ? ; Lie G,[ ž /­jis1 i 1

˜ ˜ ˜and local parameters j , h , h of G, H, H, respectively, which satisfy the˜i i i
˜ ˜analogous relation vis-a-vis the lattices L, M, and M. Next we put`

yN yN˜ yp N ypNx [ t j , x [ t j , y [ t h , and y [ t h . Note that the new˜ ˜ ˜i i i i i i i i
parameters have a different scaling factor! Finally, we let

G̃G [ Spf OO x , . . . , x ,˜ ˜1 n

w xGG [ Spf OO x , . . . , x ,1 n

H̃H [ Spf OO y , . . . , y ,˜ ˜1 n

w xHH [ Spf OO y , . . . , y .1 n

Then the proof of Proposition 5.3 already shows everything except the
˜assertions concerning the extensions of c and c . We discuss c , the proof

˜for c being exactly the same. The transpose of c is a homomorphism

w x w xc *: F j , . . . , j m F ª F h , . . . , h .1 n F , t 1 n

If the image of j m 1 is the power series h , the image of x m 1 si i i
Ž yN . yp Nt j m 1 s j m t is equal toi i

c * x m 1 s typ N ? h t pN y , . . . , t pN y .Ž . Ž .i i 1 n

The same argument as that in the proof of Lemma 5.4 shows that for
this series the coefficients of all terms of total degree G2 lie in OO, when-
ever N is sufficiently large. For the linear terms we look at the Lie

pN Ž .algebras, which turn out to be Lie HH s t M and Lie t *GG s t * Lie GG s
Ž N . pN Ž . Ž .t * t L s t ? t *L. Now Lemma 5.10 a , b implies that dc induces a

homomorphism Lie HH ª Lie t *GG with OO-torsion free cokernel. In particu-
Ž .lar the linear coefficients are in OO, proving Proposition 5.9 a . At the same

Ž .time this shows b , and we are done.
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6. PRINCIPAL CONGRUENCE SUBGROUPS AND THE
TRUNCATED LOGARITHM MAP

Let OO ; F be as in the preceding section; that is, F is a non-archi-
medean local commutative semisimple ring and OO is its maximal compact
subring. Consider a linear algebraic group G over F, and fix a smooth
formal model GG over OO of G. This determines a collection of principal

Ž .congruence subgroups of G F . In this section we discuss the linearization
of certain quotients of these by means of a truncated logarithm map.
Recall that in characteristic zero the logarithm and the exponential series
allow us to go back and forth between a Lie group and its Lie algebra. But
in arbitrary characteristic we can use only the terms of degree F1 in these
series. This is why we obtain natural isomorphisms only between suitable
subquotients. The definition and the properties of these isomorphisms are
rather straightforward. We first discuss these things for an arbitrary group
G. Later on we specialize to the situation of the preceding sections.

Let m denote the radical of OO, which is the direct sum of the maximal
ideals m of the local rings OO .i i

DEFINITION 6.1. For any open ideal a ; m we set

GG a [ ker GG OO ª GG OOra .Ž . Ž . Ž .Ž .

Ž .In other words, this is the set of those points in GG OO on which all local
Ž .parameters have values in a. It is a normal subgroup of GG OO and open in

Ž . Ž .G F . When a runs through a cofinal system of open ideals, then GG a
runs through a cofinal system of neighborhoods of the identity. These
groups are called principal congruence subgroups. The following proposi-
tion introduces the truncated logarithm map.

Ž . 2PROPOSITION 6.2. a For any open ideals a ; b ; a ; m there exists
a canonical group isomorphism

;log : GG a rGG b ª Lie GG m arb .Ž . Ž . Ž . Ž .a r b OO

Ž . 2 2b For any open ideals a ; b ; a ; m and a9 ; b9 ; a9 ; m
such that b9 ; b and a9 ; a , the following diagram commutes, where the
¨ertical maps are the ob¨ious ones:

loga9r b 9 6

GG a9 rGG b9 Lie GG m a9rb9Ž . Ž . Ž . Ž .OO

6 6

loga r b 6

GG a rGG b Lie GG m arb .Ž . Ž . Ž . Ž .OO
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Ž .c Let HH be a smooth formal model o¨er OO of another linear algebraic
group H. Consider a morphism w : GG ª HH, which may or may not be a group
homomorphism. Then the following diagram commutes:

loga r b 6w xg g GG a rGG b Lie GG m arbŽ . Ž . Ž . Ž .OO

6 6 6w x dwmidw

log a r b 6
w g g HH a rHH b Lie HH m arb .Ž . Ž . Ž . Ž . Ž .OO

Proof. We may decompose everything according to the simple sum-
mands of F. Thus without loss of generality we may assume that F is a
field. Then any choice of local parameters x , . . . , x of GG determines a1 n
homeomorphism

; [nGG a ª a , g ¬ x g , . . . , x g .Ž . Ž . Ž .Ž .1 n

Consider the map

GG a ª Lie GG m arb ,Ž . Ž . Ž .OO

n ­
g ¬ m x g .Ž .Ý iž /­ xiis1 1

Since the group structure of GG is given by power series with coefficients in
OO, all terms of degree G2 are subsumed in a 2 ; b. Therefore this is a

Ž .group homomorphism. Clearly it is surjective with kernel GG b , so it
Ž .induces the desired isomorphism in a . If we compare this map with that

defined by another system of local parameters, the terms of degree G2
again appear only in b. Thus one easily calculates that the map is

Ž .independent of the choice of the x . This proves a . A similar calculationi
Ž . Ž .proves c . Finally, part b is obvious from the construction.

Next we discuss the behavior of truncated logarithm maps under Frobe-
nius isogenies. Let t be an endomorphism of F which on each F is eitheri

Ž Ž . .the identity or the Frobenius endomorphism provided that char F ) 0 .i
Consider the isogeny F: G ª t *G which over each F is the identity ori
the Frobenius isogeny depending on whether t is an isomorphism over Fi
or not. Clearly F extends to a homomorphism GG ª t *GG, by the same

Ž .definition as that in 1.5 .

Ž .PROPOSITION 6.3. a Consider an open ideal a9 ; m and set a [
Ž .t a9 OO. Then F induces an isomorphism

;
GG a9 ª F G F l t *GG a .Ž . Ž . Ž . Ž .Ž .
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Ž . 2 Ž .b Consider open ideals a9 ; b9 ; a9 ; m and set a [ t a9 OO

Ž .and b [ t b9 OO. Then the following diagram commutes

loga9r b 9 6

GG a9 rGG b9 Lie GG m OO a9rb9Ž . Ž . Ž . Ž .

6 6w xF X X idmt

F G F l t *GG aŽ . Ž . Ž .Ž . ; 6

Lie GG m t a9 rt b9Ž . Ž . Ž .Ž .OO , tF G F l t *GG bŽ . Ž . Ž .Ž .
l l

loga r b 6
t *GG a r t *GG b Lie t *GG m arb .Ž . Ž . Ž . Ž . Ž . Ž .OO

Proof. As in Proposition 6.2 this is an easy calculation in terms of
explicit local parameters.

Let us now take up the situation of Proposition 5.9. By Proposition 6.2
we have for all open ideals a 2 ; b ; a ; m a commutative diagram

loga r b 6˜ ˜ ˜HH a rHH b Lie HH m arbŽ . Ž . Ž .Ž . OO

6 6 6.4Ž .w xv dv

log a r b 6

HH a rHH b Lie HH m arb .Ž . Ž . Ž . Ž .OO

Moreover, the action of any g g G yields a commutative diagram

loga r b 6˜ ˜ ˜HH a rHH b Lie HH m arbŽ . Ž . Ž .Ž . OO

6 6&; 6.5ww Ž . x x Ž .w g , Ž Ž ..Ad w gH

loga r b 6

HH a rHH b Lie HH m arb .Ž . Ž . Ž . Ž .OO

Ž Ž ..Next we want to characterize the subquotients of w G F determined
˜ ˜Ž .by the congruence subgroups of HH OO . Let W ; h and W ; h be as in

˜ ˜ ˜Ž . Ž . Ž . Ž .4.13 and 4.14 . Then L [ W l Lie HH and L [ W l Lie HH are
˜Ž .t OO -lattices in W resp. in W.

PROPOSITION 6.6. Consider open ideals a92 ; b9 ; a9 ; m and set a [
Ž . Ž .t a9 OO and b [ t b9 OO. Then we ha¨e commutatï e diagrams

loga r b 6˜ ˜ ˜Ž . Ž . Ž . Ž .HH a rHH b Lie HH m arbOO

j j
˜ ˜w G F l HH aŽ . Ž .˜ Ž . 6

;;;;; ˜ Ž Ž . Ž ..L m t a9 rt b9t ŽOO .˜ ˜w G F l HH bŽ . Ž .˜ Ž .
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and
loga r b 6Ž . Ž . Ž . Ž .HH a rHH b Lie HH m arbOO

j j
w G F l HH aŽ . Ž .Ž . 6

;;;;; Ž Ž . Ž ..L m t a9 rt b9 .t ŽOO .w G F l HH bŽ . Ž .Ž .

Proof. The proof is the same for both diagrams. Let us do the second
one. Using Proposition 6.3 we obtain a commutative diagram

loga r b

; 6
Ž . Ž .HH a rHH b Ž . Ž .Lie HH m arbOO

6

6 6

Ž . Ž .Lies *GG m arbOO6

jjjjj jjjjj
Ž Ž .. Ž .w G F l HH a Ž Ž . Ž ..L m s a9 rs b9s ŽOO .

6
Ž Ž .. Ž .w G F l HH b

6
jjjjjŽ Ž .. Ž .Ž .Frob G F l s *GG a ; 6

Ž . Ž Ž . Ž ..Lie GG m s a9 rs b9 .OO , sŽ Ž .. Ž .Ž .Frob G F l s *GG b

Ž .Here the condition in Proposition 5.9 b implies that the four objects on
the right-hand side form a cartesian subdiagram. Thus we obtain the
desired factorization. The map is injective because log is an isomor-a r b

phism.

˜ ˜Ž .Now consider a closed subgroup G ; G F . To analyze the subquotients
˜ ˜Ž .of G induced by the filtration of H F by principal congruence subgroups

we make the following definition.

DEFINITION 6.7. Consider open ideals b9 ; a9 and b ; a as in Propo-
sition 6.6. We say that condition Full holds if and only ifa 9r b 9

˜w G l HH aŽ .Ž .˜ ˜log s L m t a9 rt b9 .Ž . Ž .Ž .a r b t ŽOO .ž /˜w G l HH bŽ .Ž .˜

From Proposition 6.6 we deduce the following openness criterion.

COROLLARY 6.8. Consider a cofinal system of open ideals m > aX >0
X X X 2 Ž X .a > . . . satisfying a > a for all n G 0. Set a [ t a OO. Suppose1 nq1 n 0 0

that Full X X holds for all n G 0. Thena r an nq1

˜ ˜ ˜w G F l HH a ; w G .Ž . Ž . Ž .˜ ˜Ž . 0

˜ Ž .In particular, G is open in G F .
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7. THE MAIN THEOREM

Ž .Let F, G, G be as in Section 3. We consider the local case; i.e., we
Ž .make Assumption 2.1 b . The aim of this section is to relate the concept of

minimality of Definition 3.4 with that of topological openness. We begin
˜with the easy part. Let p : G ª G be the universal covering of G, and let

˜Ž .G9 ; G F denote the closure of the generalized commutator group of G.

˜Ž . Ž .PROPOSITION 7.1. If G9 is open in G F , then F, G, G is minimal.

Ž . Ž .Proof. Consider any weak quasi-model E, H, w of F, G, G , and let
˜ ˜w : H = F ª G be the isogeny of universal coverings induced by w.˜ E

Applying the universal property of the Weil restriction to w we obtain a˜
˜ ˜homomorphism w9: H ª RR G of algebraic groups over E. If we takeFr E

˜Ž .E-valued points our assumption implies that the image of the map H E
˜ ˜Ž .Ž . Ž .ª RR G E s G F is open. This can happen only when the mor-Fr E

Ž .phism w9 is a local isomorphism at some point of H E . Therefore we
must have E s F and that w itself is an isomorphism.

The converse can be phrased in slightly greater generality.

Ž .MAIN THEOREM 7.2. Suppose that F, G, G is minimal. Consider any
˜ ˜Ž .compact subgroup G ; G F which is fiberwise Zariski dense and normalized

˜ ˜Ž .by G. Then G is open in G F .

Ž .COROLLARY 7.3. Suppose that F, G, G is minimal. Then G9 is an open
˜Ž .subgroup of G F .

The proof of the Main Theorem will cover the rest of this section.
Ž .Throughout we shall assume that F, G, G is minimal. We begin with a

few reduction steps.

PROPOSITION 7.4. Suppose that each simple summand F of F is arch-i
imedean. Then

Ž .a F s R for all i,i

˜ ˜Ž . Ž .b G s G F , and
˜Ž .c G is connected.

˜Proof. Suppose first that F is a field. As G is compact, it is contained
˜in a compact real form of G. By the minimality assumption it follows that

Ž w x.F s R. Next, by a theorem of Weyl cf. 9, Chap. 4, Th. 2.1 any compact
Ž .subgroup of GL R is the group of R-valued points of an algebraicn

˜ ˜ ˜Ž .subgroup. Thus the Zariski density of G implies that G s G F . Observe
˜ ˜Ž .also that, since G is connected, the identity component G F 8 is still

˜ ˜Ž . Ž .Zariski dense. Again by Weyl’s theorem it follows that G F 8 s G F .
This proves the proposition when F is a field.
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In the general case the projection property Proposition 3.9 proves both
˜ ˜Ž . Ž .a and that the map G ª G F is surjective for every i. Look at the mapi i

˜ mŽ . Ž .to the adjoint group G ª G F s Ł G F . It is known that eachis1 i i
Ž .G F is a simple group. Thus the map can fail to be surjective only if thei i

Ž . Ž . Ž . Ž .image in G F = G F is the graph of an isomorphism G F ( G Fi i j j i i j j
for suitable i / j. Again by Weyl’s theorem this isomorphism must be
algebraic, contradicting the minimality condition. Thus the total map is

˜Ž .surjective. Going back to G F by generalized commutators, we find that
˜ ˜Ž . Ž . Ž .G s G F , proving b . At last, c now follows from the field case together

Ž .with b .

LEMMA 7.5. To pro¨e Main Theorem 7.2 it suffices to consider the case
when all F are non-archimedean with the same residue characteristic.i

Proof. Let p , . . . , p be the pairwise distinct residue characteristics1 n
occurring in F. Write F s [n F , where F contains all non-archi-Žn . Žn .ns0
medean summands with residue characteristic p if n ) 0, resp. alln

˜ ˜archimedean summands if n s 0. Let G be the part of G that lies overŽn .
˜ ˜ ˜ Ž .F , and G the image of G in G F . It is enough to prove that theŽn . Žn . Žn . Žn .

image of the map

n
˜ ˜G ª G 7.6Ž .Ł Žn .

ns0

˜ Ž .is open. For this, first note that G is connected, by Proposition 7.4 c .Ž0.
˜ ˜Therefore any open subgroup of G surjects onto G . By the compactnessŽ0.

˜ ˜ ` ˜ ˜of G it follows that the identity component G surjects onto G . Since GŽ0. Žn .
˜is totally disconnected for all n ) 0, the identity component G lies onlyŽ0.

˜in the archimedean summand. This shows already that G is the direct
˜ ˜ n ˜product of G with some closed subgroup G ; Ł G . On the otherŽ0. Ž)0. ns1 Žn .

˜hand, observe that we are allowed to replace G by arbitrarily small open
˜subgroups. Thus after shrinking it we may assume that its image G is aŽn .

Ž .pro-p -group for every n ) 0. As the p are pairwise distinct, the map 7.6n n

is then bijective.

In the rest of the proof, we assume that all F are non-archimedean withi
the same residue characteristic p. Sooner or later we have to begin

˜constructing elements of G. The only possible starting point is to choose
some sufficiently generic element. We cannot do essentially better than

˜taking g g G regular semisimple and sufficiently close to the identity. The˜
last point will be made precise below; apart from that, such an element will
be fixed throughout the rest of this section.

Let us first outline the remaining arguments. Let m ; OO ; F be as in
the preceding section. Suppose we are given suitable local parameters for
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˜ ˜G, that is, a smooth formal model GG and OO. Then g lies in a unique˜
˜Ž .smallest principal congruence subgroup GG a . By the truncated logarithm

Ž .map of Proposition 6.2 it will correspond to a primitive element log g g˜
˜ 2Ž . Ž .Lie GG m ara . In favorable circumstances, the action of G generatesOO

Ž .many new elements from log g . If˜

˜ 2Lie GG m bra ; Ad G ? log g 7.7Ž . Ž . Ž .Ž . Ž . ˜˜OO G

2 ˜for some open ideal a ; b ; a , it follows that elements of G fill out the
˜ ˜ 2 2Ž . Ž .whole quotient group GG b rGG a . If we can show that bra is not too

˜small, we can use the same method to prove inductively that G fills out the
˜ ˜Ž . Ž .quotient groups GG a rGG a for a cofinal system of open idealsn nq1

˜ ˜Ž .a > a > . . . . Then it follows that G contains GG a , and we are done.1 2 1
˜The problem with this Ansatz is that the action of G on Lie G may be

˜ Ž .too small. If G does not act irreducibly on Lie G, and log g lies too close˜
Ž .to a proper invariant subspace, then the subgroup 7.7 will be too small.

The only possible remedy regarding g is to replace it by some large power˜
g p n

, hoping that its position is then under better control. But in the fibers˜
˜of G which possess non-standard isogenies that prescription is not always

enough. It may be necessary to alter the whole system of principal
congruence subgroups and logarithm maps. This can be achieved by

˜ ˜ ˜choosing an isogeny w : G ª H and working inside H. If the choice of w is˜ ˜
adapted to the given element g , all obstacles will be removed.˜

Ž . Ž .The right choices are made as follows. Set s [ p g g G F . This˜
element is regular semisimple, so the identity component of its centralizer
is a maximal torus S ; G. Let F be the root system of a fiber G withi i
respect to S. Fix a valuation ¨ on F and extend it to an algebraic closurei i

Ž .F . For each a g F we are interested in the eigenvalue a s g F . Byi i i
Ž Ž . .choosing g close to the identity, we can make ¨ a s y 1 arbitrarily˜ i

large. In particular we may, and do, assume that

0 if char F s p ,Ž .i¨ a s y 1 )Ž .Ž .i ½ ¨ p if char F s 0,Ž . Ž .i i

for all i and a . This assumption guarantees that

pn ? ¨ a s y 1 if char F s p ,Ž . Ž .Ž .n i ip¨ a s y 1 sŽ .Ž .i ½ n ? ¨ p q ¨ a s y 1 if char F s 0.Ž . Ž . Ž .Ž .i i i

7.8Ž .

We shall not need any further condition on s. Later on we shall see that
Ž p n. Ž .the ‘‘position of log s ’’ depends mainly on the values 7.8 , when n is

large.
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˜ Ž .Next we must choose suitable w : G ª H, H, etc., as in 4.1 . For any
Ž . Ž .choice T [ w S is a maximal torus of H containing t [ w s . Let Hi

denote the fiber of H over F , and let C be the root system of H withi i i
respect to T. When H possesses non-standard isogenies, let C v ; Ci i i

v vdenote the set of short roots for s s, resp. long roots for s s, and put
v v¨ [ min ¨ a t y 1 a g C .Ž .� 4Ž .i i i

LEMMA 7.9. Gï en g as abo¨e, the choice of H and w : G ª H can be˜
made such that ¨ l - 2 ? ¨ s for all fibers H which possess non-standardi i i
isogenies.

Proof. If G does not have non-standard isogenies, there is nothing toi
v

vprove. Otherwise let F ; F denote the set of short roots for s s, resp.i i
vlong roots for s s, and set

v vu [ min ¨ a s y 1 a g F .Ž .� 4Ž .i i i

If ul - 2 ? us, we can take H s G and w s id. Otherwise we are forced toi i i i
take the non-standard isogeny w : G ª G > \ H . Recall from Propositioni i i
1.6 that then C s s F l and C l s p ? F s. Taking into account the fact thati i i i

Ž . s lchar F s p in this non-standard case, we deduce that ¨ s u andi i i
¨ l s p ? us. Thereforei i

p p
l s l s s¨ s p ? u F ? u s ? ¨ - 2 ? ¨ ,i i i i i2 2

since p F 3 - 4 whenever there is a non-standard isogeny. This proves the
lemma.

In the rest of the proof w : G ª H, etc., will be fixed, subject to the
condition in Lemma 7.9. Let OO be the maximal compact subring of F.

˜ ˜We fix t : F ª F and smooth formal models GG, GG, HH, and HH as in Propo-
sition 5.9. For each n G 0 let aX ; OO be the smallest ideal such that t p n

n
Ž . Ž X . Xg HH a , where a [ t a OO. As n goes to infinity, a runs through an n n n

Ž .cofinal system of open ideals. Let W ; h be as in 4.14 , and consider the
Ž . Ž .t OO -lattice L [ W l Lie HH as in Proposition 6.6. Then

log 2 t p n g L m t aX rt aX 2 . 7.10Ž . Ž . Ž .Ž .ž /a r a t ŽOO . n nn n

Ž . Ž . Ž .Let u : h ¸ h be as in 4.17 . Then L [ u L is a lattice in W [ u W .l t l t l t
Ž Ž p n..2It is possible that u log t is more divisible than the elementa r an n

Ž . X7.10 . But not too much! Namely, let b be the smallest ideal satisfyingn
aX 2 ; bX ; aX such thatn n n

u log 2 t p n g L m t bX rt aX 2 , 7.11Ž . Ž . Ž .Ž .ž / ž /a r a l t t ŽOO . n nn n

Ž X .and let b [ t b OO.n n
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LEMMA 7.12. Fix any open ideal cX ; OO. Then aX 2 ; bX cX for all n 4 0.n n

Proof. All fibers over F can be considered separately; hence we may
assume that F is a field. For the duration of this proof we shall drop the

Ž .index i in C , etc. In the case char F s 0 the adjoint representation of Hi
is irreducible, so that W s W and L s L. Therefore we have bX s aX ,l t l t n n
which is enough since this ideal goes to 0 as n ª `. So we may assume

Ž .that char F s p.
˜Let F ; F be the finite extension of F that is generated by the

˜Ž .eigenvalues a t for all roots a g C. Let OO be the normalization of OO in
˜ ˜F. We want to replace everything by its base extension to OO. For instance,

˜ ˜Ž . Ž .Lie HH is replaced by Lie HH = OO s Lie HH m OO, and so on. We findOO OO
X ˜ X ˜easily that the ideals a OO resp. b OO have the analogous defining propertyn n

as aX and bX . Since we shall not use the minimality assumption in thisn n
˜proof, we may now assume that F s F. In other words T splits over F.

� 4Choose a basis D s a , . . . , a of C. Then we have T s1 r
w "1 < r x ww y1Ž . < r xxSpec F a , and TT [ Spf OO d a y 1 is a smooth formalis1 is1i i

model of T for any given 0 / d g OO. As in Lemma 5.5 we find that the
inclusion T ¨ H extends to a homomorphism TT ª HH whenever d is
sufficiently small. Now let d ; m be the ideal generated by the elements
Ž .a t y 1 for all a g C. As D is a basis of C, this is the same as the ideal

Ž .generated by the elements a t y 1 for 1 F i F r. Thus for all n 4 0 wei
p n Ž y1 p n. Ž y1 p n. p n Ž Ž . .have t g TT d d ; HH d d . Since t f HH t m a by the defi-n

Ž . y1 p n
nition of a , we deduce that t m a ; d d for all n 4 0.n n

For b we need a relation in the other direction. Suppose first that Hn
does not have non-standard isogenies. Then u induces an injective map
Lie T ¨ h , and hence Lie TT ¨ L . Choose an element 0 / e g OO whichl t l t

Ž .annihilates the torsion of L rLie TT. Then 7.11 impliesl t

e ? log 2 t p n g Lie TT m b ra 2 ,Ž . Ž .a r a OO n nn n

p n Ž y1 .where now the logarithm is taken in TT. This means that t g TT e b .n
By the definition of TT we obtain the relation dy1 d p n ; ey1 b . Altogethern

Ž . y1 p n y1 y1we now have the inclusions t m a ; d d ; e b ; e a . Thisn n n
means that b differs from a only by a bounded amount. Since a goesn n n
to 0 as n ª `, the desired assertion follows.

In the presence of non-standard isogenies a slightly modified argument
applies. Let c : H ª H > be the isogeny of Proposition 1.6, and set

> Ž . >T [ c T . By the definition of h , the image of Lie T in Lie T injectsl t
Ž . p n >into h . Repeating the above argument with the logarithm of c t g Tlt

; H >, we find that dy1 d p n ; ey1 b for all n 4 0, where 0 / e g OO isl n
Ž Ž ..fixed and d ; m is the ideal generated by the elements a c t y 1 forl

all roots a of H >. Now recall from Proposition 1.6 that the short roots of
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H > are in one-to-one correspondence with the long roots of H. Since
every root in a root system is an integral linear combination of short roots,

Ž .we find that d is the ideal generated by a t y 1 for all long roots a ofl
Ž .H. Likewise, d is the ideal generated by a t y 1 for all short roots of H.

Thus from the choice in Lemma 7.9 we deduce that d 2 m d . Altogetherl
we find, in terms of fractional ideals, that

2 nn py12 y1 p 2a t m d d 1 dŽ .Ž .n ; s ? ,n 2y1 p ž /b ded d edt mŽ .n ll

for all n 4 0, where the right-hand side goes to 0 as n ª `. This finishes
the proof of Lemma 7.12.

To prove Main Theorem 7.2 it now remains to combine all the informa-
˜ ˜ Ž . Ž .tion collected so far. Let W ; h be as in 4.13 , and consider the t OO -

˜ ˜ ˜Ž .lattice L [ W l Lie HH as in Proposition 6.6. The following two lemmas
do not depend on each other.

LEMMA 7.13. For any open ideal d9 ; OO there exists an open ideal
a9 ; d9 such that condition Full of Definition 6.7 holds.a 9r a 9d 9

Proof. By Corollary 4.19 there exists an open ideal c9 ; OO such that

˜Hom L , cL ; II ,Ž .t ŽOO . l t r̂

Ž . Xwhere c [ t c9 OO. Thus from the definition of b we obtainn

˜ X X 2 ˜ p n
2c ? L m t b rt a s Hom L , cL ? log tŽ . Ž .Ž . Ž .ž /ž /t ŽOO . n n t ŽOO . l t a r an n

; II ? log 2 t p nŽ .r a r aˆ n n

˜ X X 2; L m t a rt aŽ . Ž .ž /t ŽOO . n n

for all n G 0. By Lemma 7.12 we may choose n 4 0 such that aX 2 ; bX cX dX.n n
Ž .Using 6.5 we find that

˜w G l HH aŽ .Ž .˜ nX X 2˜ 2L m t b c9 rt a ; log .Ž . Ž .ž /t ŽOO . n n a r an n 2˜ž /w G l HH aŽ .˜ Ž .n

Now Proposition 6.6 implies condition Full X X X 2 . Setting aX [ bX cX, theb c r a nn n

lemma follows.

LEMMA 7.14. For any open ideal cX ; m there exists an integer r G 1 such
that, for any open ideal aX ; cX rq1, the condition Full X X X r impliesa r a c

Full X X X X rq1.a c r a c
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˜ Ž .Proof. Let L be the image of L in W . This is a t OO -lattice. Letl l
Ž .c [ t c9 OO. Since c9 ; m , Corollary 4.16 implies that

r˜ ˜Hom L , c L ; Hom L , cL l II ? t OO 7.15Ž . Ž .Ž . Ž .ž /t ŽOO . l t ŽOO . l r̃

for any large enough integer r G 1. We shall prove that any such choice of
r does the job. Consider any open ideal a9 as in the lemma, and set

Ž X.a [ t a OO. Then we have a commutative diagram with exact columns:

0 0
x x

r˜w G l HH acŽ .Ž .˜
r rq1˜r rq1log ; L m t a9c9 rt a9c9Ž . Ž .Ž .a c r a c t ŽOO .rq1ž /˜w G l HH acŽ .Ž .˜

x x
˜w G l HH aŽ .Ž .˜

rq1˜rq 1log ; L m t a9 rt a9c9Ž . Ž .Ž .a r a c t ŽOO .rq1ž /˜w G l HH acŽ .Ž .˜
x x
˜w G l HH aŽ .Ž .˜

r˜rlog s L m t a9 rt a9c9Ž . Ž .Ž .a r a c t ŽOO .rž /˜w G l HH acŽ .Ž .˜
x x
0 0

7.16Ž .

˜Ž .Note that Hom L , cL l II annihilates the term on the upper right oft ŽOO . l r̃

Ž .Diagram 7.16 . Therefore we have

˜ X r X X rq1
L m t a9c rt a cŽ . Ž .Ž .t ŽOO .

X X X rq1r˜ ˜s Hom L , c L ? L m t a rt a cŽ . Ž .Ž .Ž . ž /t ŽOO . r t ŽOO .

Ž .7.15
X rq1˜ ˜; Hom L , cL l II ? t OO ? L m t a9 rt a9cŽ . Ž . Ž .Ž .Ž . ž /ž /t ŽOO . r r t ŽOO .˜

X rq1˜ ˜s Hom L , cL l II ? L m t a9 rt a9cŽ . Ž .Ž .Ž . ž /ž /t ŽOO . r r t ŽOO .˜

˜w G l HH aŽ .Ž .˜! ˜ rq 1s Hom L , cL l II ? logŽ .ž /t ŽOO . r r a r a c˜ rq1ž /˜w G l HH acŽ .Ž .˜

˜w G l HH aŽ .Ž .˜
rq 1; log .a r a c rq1ž /˜w G l HH acŽ .Ž .˜
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Ž .It follows that the first inclusion in Diagram 7.16 is in fact an equality. By
the 5-Lemma the same holds for the middle inclusion. In other words, the
condition Full rq 1 holds. This directly implies the desired conditiona 9r a 9c 9

rq 1Full .a 9c 9r a 9c 9

To finish the proof of Main Theorem 7.2, take any open ideal c9 ; m
and let r G 1 be as in Lemma 7.14. By Lemma 7.13 there exists an open
ideal a9 ; cX rq1 such that the condition Full rq 1 holds. In particular,a 9r a 9c 9

condition Full r is true. By induction on n G 0, using Lemma 7.14, wea 9r a 9c 9

find that condition Full n nq r holds for all n G 0. In particular wea 9c 9 r a 9c 9

know that Full n nq1 is true for all n G 0. From Corollary 6.8 ita 9c 9 r a 9c 9
˜ Ž .follows that G is open in G F , as desired. This finishes the proof of Main

Theorem 7.2.

Proof of Main Theorem 0.2. In the situation of Main Theorem 0.2, let
Ž . Ž .E, H, w be a quasi-model of F, G, G in the sense of Definition 3.1. Let
˜ ˜ ˜H ª H be the universal covering of H, and w : H = F ª G the lift of w.˜ E

˜Ž .Let G9 ; G F be the closure of the generalized commutator group of G.
y1Ž .then w G9 is the closure of the generalized commutator group of˜

y1Ž .w G . By Proposition 7.1 and Corollary 7.3 this subgroup is open in
˜Ž . Ž .H E if and only if E, H, w is minimal in the sense of Definition 3.5. The

Ž .existence and uniqueness of such E, H, w is guaranteed by Theorem 3.6.
This proves Main Theorem 0.2.

Proof of Corollary 0.3. For each i s 1, 2 let G
X be the closure of thei

˜ ˜ Ž .commutator group of G , and G the adjoint group of G . Let G ; G Fi i i 1 1
Ž .= G F be the image of the graph of the isomorphism f. Then the2 2

closure G9 of the generalized commutator group of G is just the graph of
;X X Ž .the isomorphism G ª G induced by f. Let E, H, w be a minimal1 2

Ž .quasi-model of F [ F , G " G , G . By Corollary 7.3 the group G9 is an1 2 1 2
˜ ˜ ˜Ž Ž .. Ž . Ž .open subgroup of w H E . Thus the map H E ª G F is a local˜ i i

˜ ˜isomorphism for each i s 1, 2. It follows that both E ª F and H ª Gi i
are isomorphisms. This yields the desired isomorphism in Corollary 0.3. Its
uniqueness follows from the uniqueness of minimal quasi-models.

Proof of Corollary 0.4. As in the Introduction write G as a direct
product of Weil restrictions Łm RR G , where each G is an absolutelyis1 F r F i ii

simple adjoint group over a finite separable extension F of F. Let G9 bei
the algebraic group over F9 [ [m F whose fiber over each F is G . Wei i iis1

Ž .can then view G as a subgroup of G9 F9 and apply Main Theorem 0.2 to
Ž . Ž .F9, G9, G . Let E9, H9, w9 be the resulting quasi-model. As E9 is a finite
direct sum of local fields of the same characteristic and the same residue
characteristic, we can identify each simple summand with a finite separa-
ble extension of a fixed local field E. The Weil restriction H [ RR H9E9r E
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˜is then a connected adjoint group over E, and its universal covering H is
˜the Weil restriction of the universal covering H9 of H9. By Main Theorem

Ž .0.2 a the closure of the commutator subgroup of G is isomorphic to the
˜ ˜Ž . Ž .image of some open compact subgroup of H9 E9 ( H E , as desired.

Proof of Proposition 0.6. We must show that the characterizations are
Ž .correct for a minimal quasi-model of F, G, G . In the situation of Proposi-

Ž . Ž .tion 0.6 a suppose first that r is in the image of dw : Lie H m F ªE

Lie G. Then the assertion follows from Proposition 3.10. Otherwise w is
Ž .not an isomorphism, so p [ char F is equal to 2 or 3 and r corresponds

to the representation Frob ( a H. Now Proposition 3.10 implies thatp s
� p 4HE s E, hence E s x N x g E , as desired.a rs

Ž . Ž Ž ..In particular, Proposition 0.6 a says that tr r G ; E for every non-
constant irreducible subquotient representation of Lie G. Since the same
assertion is obvious for any constant representation, it is true for every

Ž .subquotient of Lie G. This implies Proposition 0.6 b .
Ž .Finally, in the situation of Proposition 0.6 c we consider the same

representation r as that in the proof of Lemma 3.7. It occurs inside Lie G,
but also comes from a representation inside Lie H. Therefore we have
F s E ; E. To prove the isomorphy of w we can reduce ourselves to ther

Ž .case where F is a field. If w is not an isomorphism, then p [ char F is
G H � p 4Gpositive and a (w ( Frob ( a . Thus F s E ; x N x g E m F,l p s a l

which is a contradiction. Now everything is proved.
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