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Abstract

In the paper we present an exhaustive discussion of the relations between Darboux-like functions
within the classes of Baire one, Baire two, Borel, and additive functions fromRn intoR. In particular
we construct an additive extendable discontinuous functionf :R→ R, answering a question of
Gibson and Natkaniec (1996–97, p. 499), and show that there is no similar function fromR2 intoR.
We also describe a Baire class two almost continuous functionf :R→ R which is not extendable.
This gives a negative answer to a problem of Brown, Humke, and Laczkovich (1988, Problem 1).
(See also Problem 3.21 of Gibson and Natkaniec (1996–97).) 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

The study of different generalizations of continuity of functions fromRn into R
has a long history. In this paper we will be interested in the functions with some of
these generalized continuities that are known under the common name of Darboux-like
functions. The readers unfamiliar with their definitions can find them in the next section.

The basic relations between these classes, for the functions fromR toR, are given in the
following chart, in which arrows→ denote strict inclusions. Moreover, all other possible
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“natural intersection” inclusions (in a form of AC∩CIVP⊆Conn∩CIVP) obtained from
different classes of this chart remain strict.

C - Ext
��*

AC - Conn - D
HHj PC

SCIVP CIVP PR- -
HHj ��*

@
@R

WCIVP

Chart 1.

The inclusions C⊂ Ext, Conn⊂ D ⊂ PC, SCIVP⊂ CIVP ⊂ WCIVP, and PR⊂ PC
are obvious from the definitions. The inclusions Ext⊂ AC ⊂ Conn were proved by
Stallings [27]. The inclusion CIVP⊂ PR was stated without the proof in [11]. The proof
can be found in [10, Theorem 3.8]. The inclusion Ext⊂ SCIVP was proved by Rosen,
Gibson, and Roush in [26]. An excellent discussion of this chart can be found in a recent
survey by Gibson and Natkaniec [10, Section 3]. The examples concerning the properness
of all intersection inclusions can be also found, in stronger versions, in Theorems 1.1, 1.2,
and 1.5 stated below. Also, functionF from Corollary 3.3 is the first simple ZFC example
of almost continuous SCIVP function which is not extendable.

For the functions fromRn into R with n > 1 the classes from the lower part of Chart 1
are not defined. The relations between the classes in the upper part of the chart change to
the following.

C(Rn) - Ext(Rn)=Conn(Rn)= PC(Rn) - AC(Rn)∩D(Rn)
��*

AC(Rn)

D(Rn)
HHj

Chart 2.

The inclusions C(Rn) ⊂ Ext(Rn) ⊂ Conn(Rn) are obvious from the definitions. The
inclusion Conn(Rn) ⊂ Ext(Rn) was recently proved by Ciesielski, Natkaniec, and
Wojciechowski [6]. The containment Conn(Rn)⊂ PC(Rn) was proved by Hamilton [15]
and Stallings [27], and the inclusion PC(Rn) ⊂ Conn(Rn) by Hagan [14]. (See also
Whyburn [28] and [10, Theorem 8.1].) The relation Conn(Rn) ⊂ AC(Rn) ∩ D(Rn) was
proved by Stallings [27]. The examples concerning the properness of the inclusions can be
found, in the Baire class one, in Theorem 1.3.

The main goal of this paper is to discuss these two charts when we restrict the function
in all these classes to the following four classes of functions: Baire oneB1, Baire two
B2, BorelBor, and additive functions Add. Notice that an intersection of any two of these
classes is trivial, sinceB1⊂ B2⊂ Bor and Add∩ Bor⊂ C.

Theorem 1.1. For the Baire one functionsB1 fromR toR the following holds.

C(Ext= AC=Conn=D= PC= SCIVP=CIVP= PR(WCIVP.
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Proof. The proof of the equation Ext∩ B1 = PC∩ B1 can be found in [3]. This equation
and Chart 1 imply all the other equations. The properness of the inclusions is justified as
follows.
• B1 ∩ D \ C 6= ∅. It is witnessed by the functionf0 :R→ R defined byf0(x) =

sin(1/x) for x 6= 0 andf0(0)= 0. (See [22, Example 1.1].)
• B1∩WCIVP\PC 6= ∅. It is witnessed by the functiong :R→R defined byg(x)= x2

for x 6= 0 andg(0)=−1. 2
Theorem 1.2. The classes from Chart1 restricted to either Baire two functionsB2 or
Borel functions fromR to R leads to the following chart. Moreover, all possible “natural
intersection” inclusions obtained from different classes of this chart remain strict.

C−→ Ext−→ AC−→Conn−→D−→ SCIVP=CIVP
��*

PR−→ PC

WCIVP
HHj

Proof. To see that the inclusion D⊆ SCIVP holds in the class of Borel functions letx < y
andK be a perfect set betweenf (x) andf (y). Sincef is Darboux,f−1(K) ∩ (x, y) is
an uncountable Borel set. Thus, it contains a perfect subsetC0. Moreover, we can find a
perfect setC ⊂ C0 for whichf � C is continuous. Similarly we can argue that the inclusion
CIVP⊆ SCIVP holds in the class of Borel functions.

The properness of the inclusions is justified as follows.
• B2 ∩Ext\C 6= ∅. See Theorem 1.1.
• B2 ∩AC \ Ext 6= ∅. See Corollary 3.3.
• B2 ∩Conn\AC 6= ∅. See Brown [2] or Jastrz¸ebski [17].
• B2 ∩D \Conn6= ∅. See Brown [2].
• B2 ∩SCIVP\D 6= ∅. See Example 3.5.
• B2 ∩WCIVP∩ PR\ CIVP 6= ∅. Let {Fq : q ∈ Q} be a family of pairwise disjoint

c-denseFσ sets. Thenf =∑q∈Q∩(0,1) q χFq is as desired.
• B2 ∩WCIVP∩ PC\ PR 6= ∅. It is witnessed byg = f + 2χD, wheref is as above

andD is a countable dense subset ofF2.
• B2 ∩WCIVP \PC 6= ∅. See Theorem 1.1.2
Restricting functions from Chart 2 to Baire one functions has a lot simpler solution.

Theorem 1.3. For the Baire one functionsB1(Rn) fromRn to R, n > 1, Chart2 remains
unchanged.

Proof. The properness of all the inclusions, as well as of their other possible combinations,
is justified by the following facts.
• B1(Rn) ∩ Conn(Rn) \ C(Rn) 6= ∅. It is witnessed by a functionf :R2→ R given

by f (x, y) = sin(1/(x2 + y2)) for 〈x, y〉 6= 〈0,0〉 andf (0,0) = 0. It is in PC(R2)

straight from the definition.
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• B1(Rn) ∩ AC(Rn) ∩ D(Rn) \ Conn(Rn) 6= ∅. Rosen, Gibson and Roush [26,
Example 1] proved that a functionf : [−1,1] × [0,1]→ [−1,1] given byf (x, y)=
sin(1/y) for y > 0 andf (x,0)= x is Baire one, almost continuous, Darboux, but not
connectivity. It is easy to extend it to a finite support function onR2 with the same
properties.
• B1(Rn) ∩ D(Rn) \ AC(Rn) 6= ∅. It is justified by the functionF(x, y) = f0(x),

wheref0 is a function from Theorem 1.1. (See Natkaniec [22, Example 1.7] or [23,
Example 1.1.9].)
• B1(Rn) ∩ AC(Rn) \ D(Rn) 6= ∅. Let f (x) = sin(1/x) for x 6= 0 andf (0) = 1, and

let F : [−1,1]2→ [−1,1] be given by the formulaF(x, y) = yf (x). It was proved
by Natkaniec [23, Example 1.1.10] thatF is Baire one, almost continuous, and not
Darboux. It is easy to extendF to a functionF :R2→ [0,1] with compact support
while preserving these properties.2

The study of classes of additive functions from Charts 1 and 2 were initiated by
Banaszewski [1]. (See also [10, Section 5].) In this direction we have the following results.

Theorem 1.4. For the additive functionsAdd(Rn) fromRn to R, n > 1, Chart2 changes
as follows:

C(Rn)= Ext(Rn)=Conn(Rn)= PC(Rn)= AC(Rn)∩D(Rn)
��*

AC(Rn)

D(Rn)
HHj

Proof. The inclusion Add(Rn) ∩ AC(Rn) ∩ D(Rn) ⊂ C(Rn) is proved in Theorem 4.8.
The properness of the inclusions is justified by the following facts.
• Add(Rn)∩AC(Rn) \D(Rn) 6= ∅. See Example 4.9.
• Add(Rn)∩D(Rn) \AC(Rn) 6= ∅. See Example 4.10.2

Theorem 1.5. For the additive functionsAdd from R to R we have the equationPR=
WCIVP. The other inclusions of Chart1 remain unchanged, except possibly for the
inclusionAC⊂Conn. Thus, we have

C - Ext
��*

AC - Conn - D
HHj PC

SCIVP CIVP PR- -
HHj ��*

Moreover all possible “natural intersection” inclusions obtained from the different classes
of this chart and not involvingAC⊂Connremain strict. The inclusionAdd∩CIVP∩AC⊂
Conn is strict if union of less than continuum many meager subsets ofR is meager
in R.

Proof. The properness of all the inclusions is justified by the following facts.
• Add∩Ext\C 6= ∅. See Corollary 4.4.
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• Add∩ SCIVP∩ AC \ Ext 6= ∅. See Ciesielski and Rosłanowski [8]. Compare also
Ciesielski [5, Theorem 3.1].
• Add∩ SCIVP∩ D \ Conn 6= ∅. See Example 5.3. (An example of a function from

Add∩D \Conn was earlier given in [1].)
• Add∩PC\D 6= ∅. See Example 5.2. (An example of a function from Add∩CIVP\D

was earlier given in [1].)
• Add∩AC∩CIVP\SCIVP 6= ∅. See Ciesielski [5, Theorem 4.1].
• Add∩AC∩PR\CIVP 6= ∅. See Example 5.1.
• Add∩AC \PR 6= ∅. See Banaszewski [1].
• Add ∩ CIVP ∩ Conn\ AC. Such a function, under the assumption that union of

less than continuum many meager subsets ofR is meager, has been constructed by
Ciesielski and Rosłanowski [8]. (Example for Add∩ Conn\ AC requires only that
union of less than continuum many meager subsets ofR does not coverR.) 2

The following questions, which are variants of Banaszewski’s question [10, Ques-
tion 5.5], remain open.

Problem 1.1.
(1) Does there exist a ZFC example of an additive connectivity functionf :R→ R

which is not almost continuous?
(2) Does there exist an additive connectivity functionf :R→ R with SCIVP property

which is not almost continuous?

2. Definitions and notation

Our terminology is standard and follows [4]. We consider only real-valued functions
of one or more real variables. No distinction is made between a function and its graph.
A restriction of a functionf :X→ Y to a setA ⊂ X is denoted byf � A. SymbolχA
will be used for a characteristic function of a subsetA of a fixed spaceX. By R andQ
we denote the set of all real and rational numbers, respectively. We will considerRn as
linear spaces overQ. In particular, forX ⊂Rn we will use the symbol LINQ(X) to denote
the smallest linear subspace ofRn overQ that containsX. Recall also that ifD ⊂ Rn is
linearly independent overQ andf :D→R then

F = LINQ(f )⊂Rn+1

is an additive function (see definition below) from LINQ(D) intoR which extendsf . Any
linear basis ofR overQ will be referred as aHamel basis.

The ordinal numbers will be identified with the sets of all their predecessors and
cardinals with the initial ordinals. In particular 2= {0,1} and the first infinite ordinalω
number is equal to the set of all natural numbers{0,1,2, . . .}. The family of all functions
from a setX intoY is denoted byYX . In particular 2n will stand for the set of all sequences
s : {0,1,2, . . . , n−1}→ {0,1}, while 2<ω =⋃n<ω 2n is the set of all finite sequences into
2. The symbol|X| stands for the cardinality of a setX. The cardinality ofR is denoted by
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c and referred ascontinuum. A setS ⊂ R is said to bec-denseif |S ∩ (a, b)| = c for every
a < b. The closure of a setA ⊂ Rn is denoted by cl(A), its boundary by bd(A), and its
diameter by diam(A).

We will use also the following terminology [10]. ForX ⊆Rn a functionf :X→R is:
• additive if X is closed under the addition andf (x + y) = f (x) + f (y) for every
x, y ∈X;
• Darboux if f [K] is a connected subset ofR (i.e., an interval) for every connected

subsetK of X;
• almost continuous(in sense of Stallings) if each open subset ofX×R containing the

graph off contains also a continuous function fromX toR [27];
• connectivityfunction if the graph off � Z is connected inZ ×R for any connected

subsetZ of X;
• extendabilityfunction provided there exists a connectivity functionF :X×[0,1]→R

such thatf (x)= F(x,0) for everyx ∈X;
• peripherally continuousif for every x ∈ X and for all pairs of open setsU andV

containingx andf (x), respectively, there exists an open subsetW of U such that
x ∈W andf [bd(W)] ⊂ V .

The classes of these functions are denoted by Add(X), D(X), AC(X), Conn(X), Ext(X),
and PC(X), respectively. The class of continuous functions fromX into R is denoted by
C(X). We will drop the indexX if X=R.

Recall also that if the graph off :R→R intersects every closed subsetB of R2 which
projection pr(B) onto thex-axis has nonempty interior thenf is almost continuous. (See,
e.g., [22].) Similarly, if the graph off :R→R intersects every compact connected subset
B of R2 with |pr(B)| > 1 thenf is connectivity. This follows from the following well-
known fact.

Fact 2.1. If S ⊂ R2 disconnectsR2 then it contains a nontrivial compact connected
subset.

A functionf :R→R has:
• Cantor intermediate value propertyif for every x, y ∈ R and for each perfect setK

betweenf (x) andf (y) there is a perfect setC betweenx andy such thatf [C] ⊂K;
• strong Cantor intermediate value propertyif for every x, y ∈ R and for each perfect

setK betweenf (x) andf (y) there is a perfect setC betweenx andy such that
f [C] ⊂K andf �C is continuous;
• weak Cantor intermediate value propertyif for every x, y ∈ R with f (x) < f (y)

there exists a perfect setC betweenx andy such thatf [C] ⊂ (f (x), f (y));
• perfect roadif for everyx ∈R there exists a perfect setP ⊂R havingx as a bilateral

(i.e., two-sided) limit point for whichf � P is continuous atx.
The above classes of these functions are denoted by CIVP, SCIVP, WCIVP, and PR,
respectively.
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3. Almost continuous Baire two class function which is not extendable

The main example described in this section answers Problem 2 and the main part of
Problem 1 from [3], as well as Problem 3.21 from [10].

Let C ⊂ [0,1] be the ternary Cantor set and letJ be the family of all component
intervals of[0,1] \C. We put

J0= {J ∈J : the length ofJ is 3−n with n < ω even}
and

J1= {J ∈J : the length ofJ is 3−n with n < ω odd}.
Let {(an, bn): n < ω} and{(cn, dn): n < ω} be the enumerations ofJ0 andJ1, respectively.
Define functionf : [0,1]→ [0,1] in the following way:
• for everyn < ω we putf (an)= f (dn)= 0,f (bn)= f (cn)= 1, and extend it linearly

on [an, bn] and[cn, dn];
• for all otherx ’s we putf (x)= 0.

Theorem 3.1. The functionf is almost continuous, Baire class two, but not extendable.

Proof. We will start with showing thatf is not extendable. By way of contradiction,
assume thatf can be extendable, that is, that there is a connectivity functionF : [0,1]2→
[0,1] with F(x,0)= f (x) for all x ∈ [0,1]. ThusF is peripherally continuous. We will
deduce from this that there exists a perfect setP ⊂ C×{0} on whichF is constantly equal
to 1, which evidently contradicts our definition off .

We will define the following families:〈ps ∈ C: s ∈ 2<ω〉, 〈Bs ⊂ [0,1]2: s ∈ 2<ω〉,
and〈Us ⊂ [0,1]2: s ∈ 2<ω〉 such that the following conditions hold for everys ∈ 2n and
differentt, t ′ ∈ 2n+1 extendings.

(i) 〈ps,0〉 ∈Us , f (ps)= 1, andUs is open with a diameter at most 2−n.
(ii) Bs is closed, connected, andF [Bs ] ⊂ [1− 2−n,1].
(iii) cl (Ut )∪Bt ⊂Us , 〈ps,0〉 /∈Ut , andBt ∩Bs 6= ∅.
(iv) cl(Ut )∩ cl(Ut ′)= ∅.
For s = ∅ ∈ 20 we putUs = Bs = [0,1]2 and choose an arbitraryps with f (ps) = 1.

Farther, the construction goes by the induction on the lengthn of s ∈ 2<ω. Thus, assume
that for somes ∈ 2n the setsBs , Us , and the pointps are already chosen. Lett and t ′
be different sequences from 2n+1 extendings. To chooseBt , pt , andUt we proceed as
follows.

Note thatps is an endpoint of someJ ∈J sincef (ps)= 1. If ps is a left endpoint ofJ
we putI = [0,ps). Otherwise we putI = (ps,1]. Choose anε > 0 less than the diameters
of I andBs and such that

for everyJ ∈ J with J ⊂ I if the distance fromJ to ps is less thanε
thenJ × {0} ⊂Us. (∗)

Let Ws ⊂ [0,1]2 be an open neighborhood of〈ps,0〉 with diameter less thanε and such
thatF [bd(Ws)] ⊂ [1− 2−n,1]. It exists sinceF is peripherally continuous at〈ps,0〉 and
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F(ps,0)= f (ps)= 1. Without loss of generality we can assume that bd(Ws) is connected.
(ReplacingWs by its component, if necessary, we can assume thatWs is connected. Then
we can increaseWs to [0,1]2\Vs , whereVs is an “unbounded” component of[0,1]2\Ws ,
that is the one which contains the boundary of[0,1]2. This decreases bd(Ws) and makes it
connected.) Note that the choice ofε guarantees that bd(Ws)∩Bs 6= ∅ 6= bd(Ws)∩(I×{0})
sinceBs and I × {0} are connected and bd(Ws) disconnects[0,1]2. Let z ∈ I be such
that〈z,0〉 ∈ bd(Ws) ∩ (I × {0}). SinceF(z,0) ∈ F [bd(Ws)] ⊂ [1− 2−n,1] ⊂ (0,1] there
exists aJ ∈ J such thatz ∈ cl(J ). Let pt be the endpoint of cl(J ) for which f (pt )= 1.
By (∗) we have〈pt ,0〉 ∈ Us . The setBt is defined as a union of bd(Ws) and a closed
segment joining〈z,0〉 and〈pt ,0〉. The open neighborhoodUt of pt is chosen such that its
diameter is at most 2−(n+1) and thatps /∈ cl(Ut ) ⊂ Us . It is easy that conditions (i)–(iii)
are satisfied.

To chooseBt ′ , pt ′ , andUt ′ we replaceUs with U ′s = Us \ cl(Ut ) and repeat the process
described above. This finishes the inductive construction.

Now, to finish the argument take an arbitrarys ∈ 2ω and note that by (i) and (iii) the
limit lim n→∞〈ps�n,0〉 exists and is equal to a pointps which belongs toC×{0}. Also, by
(ii), the set

Bs =
⋃

0<n<ω

Bs�n

is connected andps is its only accumulation point. SinceP = {ps : s ∈ 2ω} is evidently
equal to a perfect set

⋂
n<ω

⋃{cl(Ut ): t ∈ 2n} it is enough to prove thatF(ps) = 1
for every s ∈ 2ω. But if F(ps) 6= 1 thenF(ps) = 0, sinceps ∈ C × {0}. Takeε > 0 is
less then the diameter ofBs and letU be an open neighborhood ofps of diameter less
than ε and such thatF [bd(U)] ⊂ [0,1/2). Then for a pointw ∈ Bs ∩ bd(U) we have
F(w) ∈ [0,1/2)∩[1/2,1], a contradiction. This finishes the proof thatf is not extendable.

Next we will show thatf is almost continuous. LetG be an open set contained in[0,1]2
containing the graph off . For everyx ∈ [0,1] there exists an interval(ax, bx) such that
• x ∈ (ax, bx),
• f (ax)= f (bx)= 0, and
• there is a continuous functiongx : [0,1] → R with gx � [ax, bx] ⊂ G and such that
gx(t)= 0 for t /∈ (ax, bx).

Indeed, iff (x)= 0 then it is easy to find(ax, bx) for which gx ≡ 0 works. Iff (x) 6= 0
then x ∈ J for someJ ∈ J , say J = (A,B). Assume thatf is increasing onJ , the
other case is similar. Thenf (B) = 1. Find an intervalJ ′ = (C,D) ∈ J on which
function f is decreasing and such that[B,C] × {1} ⊂ G. Put ax = A, bx = D, define
gx(B)= gx(C)= 1, gx(0)= gx(ax)= gx(bx)= gx(1)= 0, and extendgx in a linear way
on each interval with these endpoints. Thusgx has a hat shape.

Now choose a finite subcover{(axi , bxi ): i < n}, with n < ω, of the cover{(ax, bx): x ∈
[0,1]} of the interval[0,1]. Then the function

g(x)=max
{
gxi (x): i < n

}
is continuous andg ⊂G. This ends the proof thatf is almost continuous.
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To see thatf is of Baire class two it is enough to notice that the preimage of every open
(and closed) setU is a countable union ofFσ (closed) setsf−1(U) ∩ cl(J ) with J ∈ J
and, possible, of aGδ setC \⋃{cl(J ): J ∈J }. 2

In [3, Problem 1] the authors asked also whether the function as above can be in the class
J1 of all functions (fromR or [0,1] into R) that are pointwise limits of functions which
have only discontinuities of the first class, that is, these functions for which both one sided
limits exist at each point. ClearlyB1⊂ J1⊂ B2. Our function gives also an answer to this
question.

Theorem 3.2. There exists aJ1 functionf : [0,1]→ [0,1]which is almost continuous but
not extendable.

Proof. Let f be a function from Theorem 3.1 and letχD stand for a characteristic function
of D ⊂ [0,1]. If {Jn: n < ω} is an enumeration of{cl(J ): J ∈ J } andDn =⋃i<n Ji then
f is a pointwise limit of functionsf χDn . Thus,f is in J1. 2
Corollary 3.3. There exists aJ1 functionF :R→ R which is almost continuous but not
extendable.

Proof. Extend the functionf from Theorem 3.2 toF by putting F(x) = 0 for all
x ∈R \ [0,1]. 2

The main core of the proof that the functionf from Theorem 3.1 is not extendable is
that the setf−1(1) is countable. The next proposition shows that it is essentially the only
obstacle forf to be extendable, in a sense that we can redefinef on a subset ofC to get
an extendable function.

Proposition 3.4. If f is from Theorem3.1 then there exists a meagerFσ subsetB of
C0= C \⋃{cl(J ): J ∈ J } such thatf0= f + χB is extendable.

Proof. Gibson and Roush [12] proved that a functiong : [0,1] → [0,1] is extendable if
and only if there exists a sequence〈〈In, Jn〉: n < ω〉 of pairs of open intervals, called aPI
family forg, such that

(a) limn→∞ diam(In)= 0,
(b) g[bd(In)] ⊂ Jn for everyn < ω,
(c) for everyx ∈ [0,1] andε > 0 there exists ann < ω such thatx ∈ In, g(x) ∈ Jn, and

max{diam(In),diam(Jn)}< ε,
(d) for everyn < m < ω if the setsIn ∩ Im, In \ Im, andIm \ In are nonempty then

Jn ∩ Jm 6= ∅.
It was also noticed in [6] that in (c) it is enough to consider only discontinuity pointsx of
g. In what follows we will construct a PI family for our futuref0.
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Let T be the set of all endpoints of all intervalsJ ∈ J and let {tn: n < ω} be an
enumeration ofT . We construct by induction onn < ω the finite familiesFn of triples
〈t, I, J 〉 such that

(1) I andJ are open intervals in[0,1], t ∈ T ∩ I , andf (t) ∈ J ;
(2) f [bd(I)] ⊂ (0,1)∩ J and diam(J )6 2−n;
(3) I ∩ I ′ = ∅ for different〈t, I, J 〉, 〈t ′, I ′, J ′〉 ∈ Fn;
(4) C ⊂⋃{I : 〈t, I, J 〉 ∈ Fn} and{ti : i < n} ⊂ {t : 〈t, I, J 〉 ∈ Fn};
(5) if n > 0 then for every〈t, I, J 〉 ∈ Fn there exists〈t0, I0, J0〉 ∈ Fn−1 such thatI ⊂ I0.

The induction can be started withF0 = {〈t0, (0,1), (0,1)〉}, and can be easily carried
through sinceC is compact zero-dimensional and the setsf−1(1) andT ∩ f−1(0) are
dense inC.

Now, let {〈tn, In, Jn〉: n < ω} be an enumeration of
⋃
n<ω Fn. We claim that the

sequence〈〈In, Jn〉:n < ω〉 is a PI family forf0 = f + χB for an appropriately chosen
setB.

Clearly (3) and (5) imply that condition (d) is satisfied in void. Condition (a) can be
deduced from the density ofT in C and (1)–(3). (b) Forg = f0 is implied by (2) and the
fact thatf0(x)= f (x) for x ∈ [0,1] \ C. Similarly (c) for the pointsx ∈ T is implied by
(4) andf0 � T = f � T . To finish the proof it is enough to show that (c) holds for points
x ∈ C0 for an appropriate choice ofB. But everyx ∈ C0 the setSx = {k < ω: x ∈ Ik} is
infinite. LetB be the set of all those pointsx ∈ C0 for which the set{k ∈ Sx : f (tk)= 0} is
finite. Then for everyx ∈ C0 the set{k ∈ Sx : f0(x) ∈ Jk} is infinite proving (b).

The fact thatB is a meagerFσ subset ofC0 is left as an exercise.2
Example 3.5. There exists anf ∈B2 ∩SCIVP\D.

Proof. Defineg from [−1,1] onto(0,1] by g(x)= (x2− 1)sin2(1/x)+ 1 for x 6= 0 and
f (0) = 1. Note thatg(−1) = g(1) = 1 and thatg is SCIVP. For each componentJ of
[0,1] \ C of length 1/3−n definef � cl(J ) as (−1)ng ◦ hJ , wherehJ is an increasing
linear function withhJ [cl(J )] = [−1,1]. For all other pointsx we putf (x) = 1. Note
that f [R] = [−1,0) ∪ (0,1] and that preimage of every open set is a union of aGδ

and anFσ set. Sof is Baire two and not Darboux. To see that it is SCIVP takex < y

and a perfect setK betweenf (x) andf (y). We have to find a perfect setP ⊂ (x, y)
on which f is continuous and withf [P ] ⊂ K. If both x and y belong to the closure
of the same component ofC then the existence ofK follows from SCIVP property
of g. Otherwise there exist two componentsJ0 and J1 of C betweenx and y with
f [J0 ∪ J1] = [−1,0)∪ (0,1]. This we can choose appropriateK ⊂ J0 ∪ J1. 2

4. Additive extendable discontinuous function

Let h ∈ Ext(R). We say that a setG ⊂ R is h-negligible for a functionh provided
f ∈ Ext for every functionf :R→R for whichf = h on a setR \G.
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Lemma 4.1 (Rosen [25], Ciesielski and Recław [7]).There exists an extendable function
h :R→R such that some denseGδ-setG⊂R is h-negligible.

Lemma 4.2. If g :R → R is homeomorphism,h ∈ Ext, and G is h-negligible then
h ◦ g−1 ∈ Ext andg[G] is (h ◦ g−1)-negligible.

Proof. This is a simple corollary from [18, Lemma 2.2]. (See also [24].)2
Proposition 4.3. For every c-dense meagerFσ -set F ⊂ R there exists an extendable
functionf :R→R such thatR \F is f -negligible.

Proof. Let h and G be as in Lemma 4.1. By Lemma 4 of [13] there exists a
homeomorphismg :R→R such thatg[R\G] ⊂ F . ThenR\F ⊂ g[G] so, by Lemma 4.2,
functionf = h ◦ g−1 is extendable and the setR \F is f -negligible. 2
Corollary 4.4. There exists an additive extendable functiong :R→R with a dense graph.
In particular g ∈ Add∩Ext\C.

Proof. Let F bec-dense meagerFσ -set which is linearly independent overQ. Such a set
can be easily constructed from a linearly independent perfect set, which description can
be found in [20, Theorem 2, Chapter XI, Section 7]. By Proposition 4.3 there exists an
f ∈ Ext such thatR \ F is f -negligible. In particularf � F must be discontinuous. Let
g be a linear extension off � F . Theng ∈ Ext sinceR \ F is f -negligible. Clearlyg is
additive and discontinuous, so it has a dense graph.2

Next we prove that Add(Rn) ∩ AC(Rn) ∩ D(Rn)⊂ C(Rn) for n > 1. Its proof will be
based on the following two propositions, the first of which was proved by Lipiński [19].
(See also Maliszewski and Natkaniec [21].) This fact was noticed independently by the
authors of this paper and our proof is enclosed below.

Proposition 4.5. If f :R→R is discontinuous thenF :R2→R given byF(x, y)= f (x)
is not almost continuous.

Proof. Assume thatf :R→ R is discontinuous at some pointx. Taking a translation of
a graph off , if necessary, we can assume thatx = 0 andf (0) = 0. So, there exists a
sequence{xn}n<ω converging to 0 such that limn→∞ f (xn) = L0 6= 0. Multiplying f by
3/L0, if necessary, we can assume thatL0= 3. We will also assume thatf (xn) > 2 for all
n < ω.

Consider the closed set

A= {〈x, y, z〉: x = xn for somen < ω, y ∈R, andz6 2
}∪ ({0} ×R2)

and letG= R3 \ A. ThenG is an open set containing all the graph ofF except of a line
L= {0} ×R× {0}. Let

H = {〈x, y, z〉 ∈R3: x2+ z2< e−y2}
.
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ThenH is an open and containsL, soU =G ∪H containsF . We will show thatU does
not contain a graph of a continuous function.

By way of contradiction assume that there exists a continuousg :R2→R with g ⊂ U .
Then〈0,0, g(0,0)〉 ∈H . In particular,g(0,0) ∈ (−1,1). So, by the continuity ofg, there
exists ann < ω such thatg(xn,0) ∈ (−1,1). We claim thatg � ({xn}×R) is discontinuous.
Indeed, notice that({xn} ×R2)∩U ⊂ {xn} × (G0 ∪H0),

whereG0=R× (2,∞),H0= (−b, b)× (−∞,1), andb > 0 is such that e−(|xn|+b)2 = 1.
Moreover,〈xn,0, g(xn,0)〉 ∈ {xn} ×H0. But clearly there is no continuous function onR
whose graph is contained inG0 ∪ H0 and intersectsH0. This contradiction finishes the
proof. 2

Notice that Proposition 4.5 stay in contrast with the following fact.

Fact 4.6 (Natkaniec [22, Corollary 4.2(1)]).If f :R→ R is almost continuous andY
is a compact topological space thenF :R× Y → R given byF(x, y) = f (x) is almost
continuous.

Proposition 4.7. If n > 1 andF ∈ Add(Rn)∩D(Rn) thenF−1(0) contains a straight line.

Proof. If F is constantly equal to 0 then there is nothing to prove. So, assume that this
is not the case. Thenf [R2] = R. In particularV = F−1(0) disconnectsR2. (Otherwise
its complementR2 \ V would be connected, whileF [R2 \ V ] = R \ {0} would not,
contradicting Darboux property.) Thus, by Fact 2.1,V contains a nontrivial compact
connected subsetK. Pick a, b ∈ K with diam({a, b}) = diam(K). Since every rotation
r is a linear homeomorphism, replacingF with F ◦ r for an appropriater if necessary,
we can assume thata andb are on the same vertical line. If pr(K) is a singleton, thenK
contains a straight line segment connectinga with b. This, and the fact thatV is linear over
Q, easily imply thatV contains a straight line. So, assume that pr(K)= [x0, x1] for some
x0< x1. We claim that this implies that

there exists a bounded open setU ⊂R2 with bd(U)⊂ V. (∗)
To see it takec, d ∈K with pr(c)= x0 and pr(d)= x1, and let[y0, y1] be a projection

of K to the second coordinate. LetP = [x0, x1] × [y0, y1]. Notice thatK ⊂ P and that
a andb lie on the opposite horizontal sides ofP , andc andd on opposite vertical sides
of it. Note also that vectorsv = b − a andw = d − c belong toV . Now consider the
parallelogram-like set

B =
4⋃

m=0

[
mv+ (K ∪ (4w+K))∪mw+ (K ∪ (4v+K))]⊂ V.

(The “sides” are formed from translated “roads” froma to b and fromc to d .) Note that
the interiorU0 of 2v +w + P is disjoint withB and thatB separates it from the infinity.
Then the componentU of R2 \B containingU0 satisfies (∗).



K. Ciesielski, J. Jastrz¸ebski / Topology and its Applications 103 (2000) 203–219 215

Now, as in [9, Lemma 5.4] we can find a nonempty bounded connected open setW ⊂R2

with connected boundary bd(W) ⊂ B ⊂ V . Take anε > 0 such that some open disk
of radiusε is contained inB. Then, if B(ε) = {v ∈ R2: length ofv is less thanε} then
for everyv ∈ B(ε) we have bd(W) ∩ (v + bd(W)) 6= ∅. So,v ∈ bd(W) − bd(W) ⊂ V .
Therefore,B(ε)⊂ V , and soV =R2 contradicting our assumption thatF is non-zero. 2
Theorem 4.8. Add(Rn)∩AC(Rn)∩D(Rn)⊂C(Rn) for n > 1.

Proof. Let F ∈ Add(Rn)∩AC(Rn)∩D(Rn). We will show that it is continuous.
Since it is enough to prove continuity of any restriction ofF to a plane containing the

origin, we can assume thatn = 2. Now, by Proposition 4.7,f−1(0) contains a lineL0.
Sincef−1(0) is close under addition, it contains also a parallel lineL which contains the
origin. Since all the classes under consideration are closed under inner composition with a
rotation, we can assume thatL is a vertical line. But this means that there exists additive
f :R→ R such thatF(x, y)= f (x) for everyx, y ∈ R. So, by Proposition 4.5, function
f is continuous. ThusF ∈C(R2). 2
Example 4.9. There exists anf ∈ Add(R2)∩AC(R2) \D(R2).

Proof. Let B be a family of all closed subsetsB of R2 × R for which the projection
pr(B) onto first coordinateR2 has cardinalityc. (Thus, it contains a perfect set.) It is
known that if f :R2→ R intersects every element ofB then f ∈ AC(R2). (See [22,
Proposition 1.2].) Let{Fξ : ξ < c} be an enumeration ofB. By induction onξ < c define a
sequence〈〈aξ , bξ , yξ 〉: ξ < c〉 such that for everyξ < c the following conditions hold:

(i) aξ ∈ pr(Bξ ) \ LINQ({aζ : ζ < ξ} ∪ {bζ : ζ < ξ}),
(ii) bξ ∈ pr(Bξ ) \ LINQ({aζ : ζ 6 ξ} ∪ {bζ : ζ < ξ}),
(iii) 〈aξ , yξ 〉 ∈Bξ .
LetA= {aξ : ξ < c},B = {bξ : ξ < c}, andH be a Hamel base containingA∪B. Define

f0 :H → R by puttingf0(aξ ) = yξ andf0(x) = 1 for x ∈ H \ A. Let f :R2→ R be a
linear extension off0. Thenf is additive and almost continuous, since it intersects every
F ∈F . However, it is not Darboux, since the setD = B ∪ {0} is connected, as it intersects
every perfect subset ofR2, while f [D] = {0,1} is not connected.2
Example 4.10. There exists anf ∈ Add(R2)∩D(R2) \AC(R2).

Proof. Take an additive Darboux functiong :R→R with the property that

g
[
(a, b)

]=R for everya < b. (∗)
A function f from Example 5.3 has the property. Definef :R2→ R by f (x, y)= g(x).
Clearly f is additive and discontinuous. To see thatf is Darboux take a nonempty
connected setD ⊂ R2. If J = pr(D) is a singleton thenf [D] = g[pr(D)] is a singleton,
so it is connected. Otherwise pr(D) contains an interval(a, b) 6= ∅ and, by (∗), f [D] =
g[pr(D)] ⊃ g[(a, b)] =R. Now, by Theorem 4.8,f is not almost continuous.2
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As noted above, functionf from Example 4.10 cannot be almost continuous. It is
interesting however, that if functiong used to definef is almost continuous, which can
be easily constructed, thenf � R × [−k, k] is almost continuous for everyk > 0. This
follows from Fact 4.6.

5. Some missing examples of additive Darboux-like functions onR

Example 5.1. There exists anf ∈ Add∩AC∩PR\CIVP. Moreover,f [K] is not nowhere
dense for every perfect setK ⊂R.

Proof. LetP be a family of pairwise disjoint perfect sets such that the set
⋃
P is linearly

independent and|{P ∈ P : P ⊂ (a, b)}| = c for everya < b. Such a family can be easily
constructed from a linearly independent perfect set. (See, e.g., [20, Theorem 2, Chapter XI,
Section 7].) LetJ be a family of all nonempty open intervals and let{〈Iξ , Jξ 〉: ξ < c}
be an enumeration ofJ × J . By an easy induction we can find a one-to-one sequence
{Pξ ∈P : ξ < c} such thatPξ ⊂ Iξ for everyξ < c. LetH ⊂R be a Hamel basis containing⋃
P and for eachh ∈H let Jh = Jξ if h ∈ Pξ , andJh = (0,1) otherwise. Ourf will be a

linear extension of some functionf0 :H →R such that

f0(h) ∈ Jh for everyh ∈H. (∗)
It is easy to see that any such anf will have a perfect road. To make sure thatf
has the additional property, which make it not CIVP, we will need to make some more
work.

LetF be the family of all perfect nowhere dense subsets ofR and let{〈Kξ ,Sξ 〉: ξ < c}
be an enumeration ofF × F . We will make sure for everyξ < c there exists anxξ ∈Kξ
such thatf (xξ ) /∈ Sξ . Clearly such a function will have all the desired property. For this
we will construct a sequences〈Hξ : ξ < c〉 of pairwise disjoint finite subsets ofH and
〈gξ : ξ < c〉 of functions fromHξ intoR such that for everyξ < c

(i) gξ (h) ∈ Jh for everyh ∈Hξ ,
(ii) there exists anxξ ∈ Kξ ∩ LINQ(

⋃{Hζ : ζ 6 ξ}) such thatGξ(xξ ) /∈ Sξ , where
Gξ = LINQ(

⋃{gζ : ζ 6 ξ}).
Now, the inductive choice ofHξ and gξ is quite simple. We choose anxξ ∈

Kξ \ LINQ(
⋃{Hζ : ζ < ξ}) and representxξ as z + q1h1 + · · · + qnhn where z ∈

LINQ(
⋃{Hζ : ζ < ξ}), h1, . . . , hn ∈ H \ ⋃{Hζ : ζ < ξ}, and q1, . . . , qn ∈ Q. We put

Hξ = {h1, . . . , hn} and definegξ such that (i) and (ii) are satisfied. This can be done, since
we have an open interval of possible choices for each value ofgξ (hi), while we have to omit
only a nowhere dense setSξ for the value ofGξ(xξ )=Gξ(z)+q1gξ (h1)+· · ·+qngξ (hn).
Now, if f0 :H →R is any extension of

⋃
ξ<c gξ which satisfies (∗) then a linear extension

f of f0 has all the desired properties.2
Example 5.2. There exists anf ∈ Add∩SCIVP∩PC\D.
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Proof. LetH0 be a Hamel basis such that|H0∩K| = c for every perfect setK ⊂R. (See
[4, Corollary 7.3.7].) Leth0 ∈ H0 andV = LINQ(H0 \ {h0}). ThenV is a proper linear
subspace ofR with |V ∩K| = c for every perfectK ⊂R.

As in the example above, letP be a family of pairwise disjoint perfect sets such that
the set

⋃
P is linearly independent and|{P ∈ P : P ⊂ (a, b)}| = c for everya < b. LetJ

be a family of all nonempty open intervals and let{〈Iξ , vξ 〉: ξ < c} be an enumeration of
J ×V . Find a one-to-one sequence{Pξ ∈ P : ξ < c} such thatPξ ⊂ Iξ for everyξ < c and
letH ⊂R be a Hamel basis containing

⋃
P .

Definef0 :H → V by puttingf0(h)= vξ for h ∈ Pξ and choose an arbitraryf0(h) ∈ V
for all otherh ∈ H . Let f :R→ R be a linear extension off0. Thenf is additive and
non-zero, sof has a dense graph. Thusf ∈ PC. Alsof [R] = V implying f /∈ D. It is
SCIVP since for every perfect setK ⊂ R anda < b there existv ∈ V ∩K andξ < c such
that〈Iξ , vξ 〉 = 〈(a, b), v〉. Sof [Pξ ] = {vξ } = {v} ⊂K andf � Pξ is continuous. 2
Example 5.3. There exists anf ∈ Add∩SCIVP∩D \Conn.

Proof. The construction is very similar to that for functiong from Example 4.10. Let
L= {〈x, x+1〉: x ∈R}. As above choose a familyP of pairwise disjoint perfect sets such
that the set

⋃
P is linearly independent and|{P ∈ P : P ⊂ (a, b)}| = c for everya < b.

Let {A,B} be a partition of continuumc with |A| = |B| = c. PutJ = {(a, b): a < b}
and let{〈Iξ , rξ 〉: ξ ∈ A} be an enumeration ofJ × R. Also, find a one-to-one sequence
{Pξ ∈ P : ξ < c} such thatPξ ⊂ Iξ for everyξ < c. Finally, letH ⊂ R be a Hamel basis
containing

⋃
P and letH = {hξ : x ∈ B}.

By induction onξ < c construct a sequence〈〈Kξ ,yξ 〉: ξ < c〉 such that for everyξ < c

the following conditions hold.
(i) Kξ ∩ LINQ(

⋃{Kζ : ζ < ξ})= ∅.
(ii) L ∩ LINQ(

⋃{Kζ × {yζ }: ζ 6 ξ})= ∅.
(iii) If ξ ∈A thenKξ is a perfect subset ofPξ andyξ = rξ .
(iv) If ξ ∈ B then|Kξ |6 1 andhξ ∈ LINQ(

⋃{Kζ : ζ 6 ξ}).
To find such a sequence assume that a sequence〈〈aζ , yζ 〉: ζ < ξ〉 is already constructed

for someξ < c. If ξ ∈A putyξ = rξ and look at the set

Z = L ∩ LINQ

(⋃
{Kζ × {yζ }: ζ 6 ξ}

)
∪ (Pξ × {yξ }).

Notice thatZ has cardinality less thanc sinceZ ⊂ R × LINQ(
⋃{yζ : ζ 6 ξ}) and L

intersects every horizontal line at exactly one point. LetT = pr(Z) and notice that by
the inductive assumption of (ii) we haveT ∩ LINQ(

⋃{Kζ : ζ < ξ})= ∅. For everyt ∈ T
choose anht ∈H \⋃{Kζ : ζ < ξ} with t /∈ LINQ(H \ {ht }). Then the set

S = {ht : t ∈ T } ∪
⋃
{Kζ : ζ < ξ andζ ∈B}

has cardinality less thanc. Choose a perfect setKξ ⊂ Pξ \ S. ThenKξ satisfies (i)–(iii).
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Next assume thatξ ∈ B and letV = LINQ(
⋃{Kζ : ζ < ξ}). If hξ ∈ V we putKξ = ∅

and chooseyξ arbitrarily. So assume thathξ /∈ V . We putKξ = {hξ }. This guarantees (i)
and (iv). To get (ii) we have to findyξ such that the set

LINQ
(
V ∪ {〈hξ , yξ 〉}

)= {〈x, y〉 + q〈hξ , yξ 〉: 〈x, y〉 ∈ V andq ∈Q}
is disjoint withL. Thus, we must havey + qyξ 6= x + qhξ + 1, that is,yξ 6= px + hξ −
py + p for every〈x, y〉 ∈ V andq = p−1 ∈Q \ {0}. Therefore it is enough to choose

yξ /∈ LINQ

(⋃
{Kζ : ζ 6 ξ} ∪ {yζ : ζ < ξ} ∪ {1}

)
which can be done, since LINQ(

⋃{Kζ : ζ 6 ξ}) has co-dimensionc. This finishes the
inductive construction.

Now putf = LINQ(
⋃{Kξ × {yξ }: ξ < c}. Thenf :R→ R is additive and missesL,

so it is not connectivity. It is Darboux and SCIVP since for everya, b, y ∈R, a < b, there
existsξ < c such that〈Iξ , yξ 〉 = 〈(a, b), y〉. SoKξ ⊂ Pξ ⊂ Iξ = (a, b), f [Kξ ] = {yξ }, and
f �Kξ is continuous. 2
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