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We extend the material symmetry group of the non-linear polar-elastic continuum by taking into account
microstructure curvature tensors as well as different transformation properties of polar and axial tensors.
The group consists of an ordered triple of tensors which makes the strain energy density of polar-elastic
continuum invariant under change of reference placement. An analog of the Noll rule is established. Four
simple specific cases of the group with corresponding reduced forms of the strain energy density are dis-
cussed. Definitions of polar-elastic fluids, solids, liquid crystals and subfluids are given in terms of mem-
bers of the symmetry group. Within polar-elastic solids we discuss in more detail isotropic, hemitropic,
cubic-symmetric, transversely isotropic, and orthotropic materials and give explicitly corresponding
reduced representations of the strain energy density. For physically linear polar-elastic solids, when
the density becomes a quadratic function of strain measures, reduced representations of the density
are established for monoclinic, orthotropic, cubic-symmetric, hemitropic and isotropic materials in terms
of appropriate joint scalar invariants of stretch, wryness and undeformed structure curvature tensors.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Material symmetry group of the non-linear micropolar contin-
uum was first characterized by Eringen and Kafadar (1976). They
discussed all density-preserving deformations and all microrota-
tions of reference placement of the continuum that cannot be
experimentally detected. Simple micropolar solids and simple
micropolar fluids in the spatial description were defined in terms
of members of the group. After 35 years we are still not aware of
any detailed discussion of the material symmetry group of non-lin-
ear micropolar continuum and of appropriate reduction of consti-
tutive equations in terms of members of the group.

In the present report we restrict ourselves to the non-linear po-
lar-elastic continuum, which material behavior is described by the
strain energy density W per unit reference volume. As compared
with Eringen and Kafadar (1976) we introduce three modifications:

1. At each material point our density W, satisfying the principle of
material frame-indifference, depends explicitly not only on nat-
ural Lagrangian stretch E and wryness C tensors, but addition-
ally upon the reference microstructure curvature tensor B as a
ll rights reserved.
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parametric tensor. Eringen and Kafadar (1976) used similar
strain measures in W, but introduced referential mass density
q, and microinertia tensor J, as parametric quantities.

2. In discussing invariance properties of W we take into account
that, while E is a polar tensor, C and B are axial tensors which
change signs under inversion transformation (mirror reflection)
of 3D space. Eringen and Kafadar (1976) did not take into
account that their C was the axial tensor.

3. Our material symmetry group G, consists of ordered triple of
tensors: unimodular P, orthogonal R, and second-order L. These
tensors appear from transformation of E, C and B under an arbi-
trary change of reference placement of the micropolar body.
The transformation properties of B are quite different from
those of J,.

As a result of these modifications, our material symmetry group
G, does not coincide with the group introduced by Eringen and
Kafadar (1976).

The tensor B appears naturally during description of the refer-
ence placement, see Pietraszkiewicz and Eremeyev (2009). The
case B – 0 indicates non-uniform distribution of directors in the
reference placement. From the mathematical point of view the
case B – 0 relates to non-Euclidean geometry of polar material be-
cause the directors can be considered as a nonholonomic basis.
From the physical point of view necessity of taking into account
B in constitutive equations corresponds to proper description of
microstructure of materials. B can be considered as an analog of
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Fig. 1. Micropolar body deformation.
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the curvature tensor in the theory of shells or of material parame-
ters describing helical substructures of rods, see for example Erem-
eyev and Pietraszkiewicz (2006), Lauderdale and O’Reilly (2007).

Within Cosserat-type theories of shells and rods various defini-
tions of material symmetry groups were proposed for example by
Murdoch and Cohen (1979), Eremeyev and Pietraszkiewicz (2006),
Luo and O’Reilly (2000), Lauderdale and O’Reilly (2007). The mate-
rial symmetry group of the second-grade elastic materials was con-
sidered for example by Huang and Smith (1967), El _zanowski and
Epstein (1992). Huang and Smith (1967) took into account differ-
ence between axial and polar tensors in construction of the mate-
rial symmetry group. Let us note that the invariance of the strain
energy density under transformations of the reference placement
is similar but not the same as the uniformity and homogeneity
properties considered by Epstein and de Leon (1996, 1998).

The paper is organized as follows. In Section 2 we recall after
Pietraszkiewicz and Eremeyev (2009) some basic relations of
non-linear micropolar continuum. In particular, we remind defini-
tions of stretch E and wryness C tensors, of undeformed structure
curvature tensor B, of strain energy density W satisfying the prin-
ciple of material fame-indifference, of referential S, K and Eulerian
T, M stress and couple-stress tensors, as well as appropriate forms
of equilibrium conditions.

Transformation properties of various fields under change of ref-
erence placement are discussed in Section 3. Then in Section 4
invariance requirements for W under change of reference place-
ment are analyzed. This allows one to derive the material symme-
try group G, of the polar-elastic continuum. The group G, consists
of an ordered triple of tensors which make W invariant under
change of reference placement. For G, we establish an analog of
Noll’s rule, see Noll (1958).

Four specific cases of G, with corresponding considerably sim-
plified forms of W are discussed in Section 5. After introducing in
Section 6 property of isotropy of the polar-elastic material, polar-
elastic fluids are defined by requiring G, to be the maximal group.
It is found that polar-elastic fluids are always isotropic and their
strain energy density W is the hemitropic scalar-valued even func-
tion of the structure curvature tensor C of deformed placement. By
the representation theorem of Smith and Smith (1971) the density
W is reduced to the scalar-valued function of the deformed density
q and of six scalar invariants of C. The constitutive equations for T
and M are derived, which generalize the ones proposed earlier for
polar-elastic fluids for example by Aero et al. (1965), Eringen
(1966), Eringen (1997), Allen et al. (1967).

In Section 8 we define the group G, of polar-elastic solids using
an additional hypothesis that elements of G, are described by
orthogonal tensors which are the same for the position vector
and the directors. Polar-elastic liquid crystals and subfluids are
then defined in Section 9 by G, which contains some elements
not belonging to the orthogonal group. Examples of Kelvin’s med-
ium defined by Grekova and Zhilin (2001) and of Ericksen’s liquid
crystal proposed by Eringen (1997, 2001) are briefly discussed.

Simplified representations of W for some forms of anisotropy of
polar-elastic solids are discussed in Section 10.

Applying representation theorems of the scalar-valued tensor
functions derived by Spencer (1965, 1971), we analyze possible
reduction of W for isotropic, hemitropic, cubic-symmetric, ortho-
tropic, and transversely isotropic non-linear polar-elastic solids.
As in Section 6 we apply the theory of representation of scalar-val-
ued functions of several tensorial arguments summarized in Spen-
cer (1971), Boehler (1987), Smith (1994), Zheng (1994) where
other references can be found. For polar-elastic solids the material
symmetry group is described by orthogonal transformations alone.
This gives possibility to represent W in terms of joint invariants of
the strain measures E and C as well as of the structure curvature
tensor B.
Finally, in Sections 11 and 12 physically linear polar-elastic sol-
ids are analyzed under mirror reflection as well as under mono-
clinic, orthotropic, cubic, hemitropic, and isotropic symmetry
conditions. For each case of symmetries reduced forms of W in
terms of appropriate joint scalar invariants of tensors E, C, and B
are given. In Appendix A we present table with invariants for the
isotropic symmetry.

2. Some relations of the non-linear micropolar elastic
continuum

Let the body B consisting of material particles X, Y, . . . deform in
three-dimensional (3D) Euclidean physical space E which transla-
tion vector space is E. According to Cosserat and Cosserat (1909),
Truesdell and Toupin (1960), Eringen and Kafadar (1976) for exam-
ple, each material particle X 2 B of the polar-elastic continuum has
six degrees of freedom of rigid body.

In the reference (undeformed) placement ,ðBÞ ¼ B, � E posi-
tion x 2 E of X 2 B is given by the vector x 2 E relative to origin
o 2 E of an inertial frame (o, ia), where ia 2 E, a = 1,2,3, is a right-
handed triple of orthonormal vectors. Orientation of X 2 B in E is
fixed by the right-handed triple of orthonormal directors ha 2 E,
so that ha = Hia, where H = ha � ia 2 Orth+ is the proper orthogonal
structure tensor of B,, H�1 = HT, det H = +1, and � denotes the ten-
sor product.

In the actual (deformed) placement cðBÞ ¼ Bc ¼ vðB,Þ
2 E;v ¼ c � x�1, position y 2 B, of X 2 B becomes defined by the
vector y 2 E taken here relative to the same origin o 2 E. Orienta-
tion of X becomes fixed by the right-handed triple of orthonormal
directors da 2 E or by the structure tensor D = da � ia 2 Orth+ of Bc.
As a result, the finite displacement of polar-elastic continuum can
be described by two smooth mappings (see Fig. 1):

y ¼ vðxÞ ¼ xþ uðxÞ; da ¼ Q ðxÞha; ð1Þ

where u 2 E is the translation vector and Q = DHT = da � ha 2 Orth+

is the proper orthogonal microrotation tensor, Q�1 = QT, det
Q = +1. Two independent fields u(x) and Q(x) describe translational
and rotational degrees of freedom of polar-elastic continuum.

Natural Lagrangian relative stretch and wryness (or change of
microstructure orientation) tensors E and C are defined according
to Pietraszkiewicz and Eremeyev (2009) as

E ¼ Q T F� I; C ¼ �1
2

E : Q T Grad Q
� �

: ð2Þ

Here F = Grady, det F > 0, is the classical deformation gradient ten-
sor taken relative to B,, I is the identity (metric) tensor of 3D space
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E, E = � I � I is the 3rd-order skew permutation tensor with � the
vector product, while the double dot product : of two 3rd-order ten-
sors A, B represented in ha is defined as A:B = AamnBmnbha � hb. The
strain measures defined in (2) are not symmetric, in general, ET – E,
CT – C.

Gradient of vector field v(x) 2 E is a 2nd-order tensor field
Gradv 2 E � E and gradient of 2nd-order tensor field A 2 E � E is
a 3rd-order tensor field GradA 2 E � E � E defined by (see for
example Ogden (1984))

½GradvðxÞ�a ¼ d
dt

vðxþ taÞjt¼0;

½GradAðxÞ�a ¼ d
dt

Aðxþ taÞjt¼0; for any t 2 R; a 2 E:
ð3Þ

In particular, gradient of product of 2nd-order tensor A(x) and
vector v(x) fields is calculated according to

Grad ðAvÞ ¼ vGradAT þ AGradv: ð4Þ

The wryness tensor C can also be expressed in several equiva-
lent forms, see Pietraszkiewicz and Eremeyev (2009), for example

C ¼ �1
2

ha � ðhaQ T Grad Q Þ ¼ Q T CF� B; ð5Þ

where B and C are the respective microstructure curvature tensors
of polar continuum in the reference and actual placements defined
by

B ¼ 1
2

ha � Grad ha; C ¼ 1
2

da � grad da; ð6Þ

with the operator grad being taken in the deformed placement Bc.
In what follows B and C play an important role because they

characterize non-uniform distributions of directors ha and da in
the reference and actual placements, respectively. In particular, if
ha are constant in space then B = 0.

Material behavior of the micropolar (hyper)elastic continuum is
described by the strain energy density W, per unit volume of
undeformed placement B,. The density W, satisfying the principle
of material frame-indifference takes the reduced form

W, ¼ cW ,ðE;C; x;BÞ: ð7Þ

We call the polar-elastic continuum homogeneous if there exists a
reference placement B, such that W, does not depend on x and
materially uniform if W, does not depend on B or B � 0.

Constitutive equations for referential stress S and couple-stress
K tensors introduced in Pietraszkiewicz and Eremeyev (2009) are
now defined as

S ¼ @W,

@E
; K ¼ @W,

@C
: ð8Þ

It is apparent that S and K are not symmetric, in general, ST – S,
KT – K.

The local Lagrangian equilibrium equations as well as kinematic
and dynamic boundary conditions of the non-linear theory of
micropolar continuum are, see Pietraszkiewicz and Eremeyev
(2009), Appendix A,

Div TN þ q,f ¼ 0; ð9Þ

Div MN þ ax TT
NFT � FTN

� �
þ q,c ¼ 0 in B,; ð10Þ

x� x0 ¼ 0; Q � Q 0 ¼ 0 along @B,d: ð11Þ

nTN � t0 ¼ 0; nMN �m0 ¼ 0 along @B,f : ð12Þ

In Eqs. (9) and (10), divergence operator Div in B, is defined as, for
example, in Billington (1986) by

½DivAðxÞ�a ¼ Div½AðxÞa�; 8A 2 E� E; 8a 2 E: ð13Þ
In Eqs. (9)–(12), TN, MN 2 E � E are nominal stress and couple-stress
tensors following from the generalized Cauchy theorem t(n) = nTN,
m(n) = nMN, in which t(n) and m(n) are surface traction and moment
vectors applied at any point of boundary @Pc of Pc � Bc, but mea-
sured per unit area of @P,, respectively, with n being the unit vector
externally normal to @P,. The nominal tensors TN, MN are related to
the referential tensors S and K given in (8) by

TN ¼ ST Q T ; MN ¼ KT Q T : ð14Þ

Additionally in (9)–(12), f, c 2 E are the external force and couple
vectors applied at any point of Bc but measured per unit mass of
B,, q, is the mass density in B,, while t0, m0 2 E are the external
boundary force and couple vectors applied on part of the deformed
boundary @Bcf but measured per unit area of @B,f, respectively. The
vector x0 and the tensor Q0 given on @B,d describe translation and
rotation of particles prescribed on @B,d, respectively, where
@B, = @B,d [ @B,f, @B,d \ @B,f = £.

Formally different than (9)–(12) but equivalent coordinate-free
forms of local equilibrium conditions follow by applying alterna-
tive definitions of gradient and divergence operators as well as of
the Cauchy theorem, see for example Maugin (1974, 1998), Scarp-
etta (1989), Lurie (1990), Zubov (1997), Yeremeyev and Zubov
(1999), Dai (2003).

The local Eulerian equilibrium equations and dynamic bound-
ary conditions in the actual placement Bc corresponding to (9)–
(12) are

divTþ qf ¼ 0; divMþ axðTT � TÞ þ qc ¼ 0 in Bc; ð15Þ
�nT� �t0 ¼ 0; �nM� �m0 ¼ 0 along @Bcf : ð16Þ

In (15) and (16), T and M are Cauchy-type stress and couple-stress
tensors which are related to the referential stress measures by

T ¼ ðdet FÞ�1FTN ¼ ðdet FÞ�1FST Q T ; ð17Þ
M ¼ ðdet FÞ�1FMN ¼ ðdet FÞ�1FKT Q T ; ð18Þ

q is the mass density in Bc, div is the divergence operator in Bc de-
fined as in (13), �t0; �m0 are measured per unit area of @Bcf, with �n
being the unit vector externally normal to @Bc.

3. Change of reference placement

Let us introduce another reference placement ,	ðBÞ ¼ B	 2 E of
B, in which position x⁄ 2 B⁄ of X 2 B is given by the vector x⁄ rel-
ative to the same origin o 2 E and its orientation is fixed by three
right-handed orthonormal directors h⁄a (Fig. 2). Let P, det P > 0,
be the deformation gradient transforming dx into dx⁄, and
R 2 Orth+ be the rotation tensor transforming ha into h⁄a, so that

dx	 ¼ Pdx; h	a ¼ Rha: ð19Þ

In what follows all fields associated with deformation relative to B⁄
will be marked by lower index ⁄.

Let us analyze how transform the strain measures E and C un-
der change of reference placement B, ? B⁄.

Since dy = Fdx = F⁄dx⁄, where F⁄ = Grad⁄y(x⁄), det F⁄ > 0, is the
deformation gradient relative to B⁄ and rotation h⁄a into da is given
by Q⁄ = da � h⁄a 2 Orth+, from (1) and (19) it follows that

F ¼ F	P; Q ¼ Q 	R: ð20Þ

Thus, from (2)1 and (20) we immediately obtain

E	 ¼ Q T
	F	 � I ¼ REP�1 þ RP�1 � I ¼ RðEþ IÞP�1 � I: ð21Þ

To find C⁄ one needs first express B⁄ through B. Using (4), (6)1,
(19) and applying the chain rule Grad⁄h⁄a = (Gradh⁄a)P�1, we
obtain
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B	 ¼
1
2

h	a � Grad	h	a ¼
1
2

Rhað ÞGrad Rhað Þ½ �P�1

¼ R
1
2

ha � RT ha Grad RT þ R Grad ha

� �� �
P�1

¼ R
1
2

ha � haRT Grad RT þ Grad ha

� �� �
P�1 ¼ RBP�1 � L; ð22Þ

L ¼ �R
1
2

ha � haR Grad RT
� �� �

P�1

¼ �R
1
2

E : R Grad RT
� �� �

P�1 ¼ RZP�1;

Z ¼ �1
2

E : R Grad RT
� �

: ð23Þ

As a result,

C	 ¼ Q T
	CF	 � B	 ¼ RQ T CFP�1 � RBP�1 þ L ¼ RCP�1 þ L: ð24Þ

Let us note that the 2nd-order tensors B, C, C, MN and K are ax-
ial tensors (pseudotensors), not usual (polar) ones. Axial tensors
differ from polar ones in that they change signs under inversion
transformation �I of 3D space E. Pseudoscalars, pseudovectors
and pseudotensors are widely used in modern physics, see for
example Nye (1957), Korn and Korn (1968), Feynman et al.
(1977), Arfken and Weber (2000). An example of pseudovector is
the vector product a � b of two polar vectors a, b 2 E. If O 2 Orth
is an orthogonal tensor then (Oa) � (Ob) = (detO)O(a � b) and the
vector product changes sign if O = � I. An example of axial 2nd-or-
der tensor is the skew tensor X = x � I with the polar vector x 2 E.
An example of axial 3rd-order tensor is the permutation tensor E.

Within classical (or Cauchy type) continuum discussed for
example in Truesdell and Noll (1965), Truesdell (1966, 1991) it is
enough to consider polar 2nd-order tensors when defining the
material symmetry group of Green-elastic body. However, for the
micropolar (or Cosserat type) continuum one has to take into ac-
count that C and B appearing in the density W, defined in (7)
are axial 2nd-order tensors, not the polar ones. Thus one has to ex-
tend B⁄ by allowing R in (7) to be an orthogonal tensor R 2 Orth and
by requiring P to be non-singular tensor, detP – 0. Additional
inversion of space orientation does not correspond to any real
deformation of the reference placement. It simply reflects neces-
sary invariance of constitutive equations under mirror reflection
of the reference placement or, equivalently, under change of orien-
tation of the base vectors ha from right-hand to left-hand one. Then
the refined transformations (22) and (24) become

B	 ¼ ðdet RÞRBP�1 � L; C	 ¼ ðdet RÞRCP�1 þ L: ð25Þ
4. Definition of material symmetry group

The form of elastic strain energy density W, of the micropolar
body at any particle X 2 B depends upon the choice of reference
placement, in general. Particularly important are sets of reference
placements which leave unchanged the form of energy density.
Transformations of reference placement under which the energy
density remains unchanged are called here invariant transforma-
tions. Knowledge of all invariant transformations allows one to
precisely define fluid, solid, liquid crystal or subfluid as well as to
introduce notions of isotropic, hemitropic or orthotropic polar-
elastic continua, for example. Similar approach is used in classical
continuum mechanics and in non-linear elasticity by Truesdell
(1964), Truesdell and Noll (1965), Wang and Truesdell (1973),
Truesdell (1991), Rivlin (1980), as well as in non-linear theories
of shells by Wang (1973), Murdoch and Cohen (1979), Eremeyev
and Pietraszkiewicz (2006).

The elastic strain energy density W⁄ relative to B⁄ depends in
each point x⁄ 2 Bw on the stretch tensor E⁄, the wryness tensor
C⁄, and also upon the structure curvature tensor B⁄. This depen-
dence may, in general, be different than that of W,(E,C;x,B). How-
ever, the strain energy of any part of continuum should be
conserved, so that

ZZZ
P,

W, dv, ¼
ZZZ

P	

W	 dv	 ð26Þ
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for any part P, � B, corresponding to P⁄ � B⁄, because the functions
W, and W⁄ describe strain energy densities of the same deformed
state of Pc � Bc = v(P,) = v⁄(P⁄), where v⁄ is deformation function
from B⁄ to Bc.

Changing variables x⁄? x in the right-hand integral of (26), we
obtainZZZ

P	

W	 E	ðx	Þ;C	ðx	Þ; x	;B	ðx	Þ½ � dv	

¼
ZZZ

P,

jdet Pj W	 E	ðxÞ;C	ðxÞ; x;B	ðxÞ½ � dv,:

Thus, from (26) it follows that W⁄ and W, are related by

jdet Pj W	ðE	;C	; x;B	Þ ¼W,ðE;C; x;BÞ:

Here E⁄, C⁄, and B⁄ are expressed as in (21) and (25).
From physical reasons invariant transformations of the refer-

ence placement should preserve elementary volume of B,. Hence,
the transformation tensor P should belong to the unimodular
group for which jdetPj = 1.

The assumption that the constitutive relation be insensitive to
the change of reference placement means that explicit forms of
W, and W⁄ should coincide, that is

W,ðE;C; x;BÞ ¼W,ðE	;K	; x;B	Þ:

In other words, one may use the same function for the strain en-
ergy density independently upon the choice of B, or B⁄, but with
different expressions for stretch and wryness tensors as well as
for the microstructure curvature tensor. In what follows we not
always explicitly indicate that all functions depend also on the
position vector x and W is taken relative to the undeformed
placement B,.

Using (21) and (25) we obtain the following invariance require-
ment for W under change of reference placement:

WðE;C;BÞ ¼W REP�1þRP�1� I; ðdetRÞRCP�1þL; ðdetRÞRBP�1�L
h i

:

ð27Þ

The relation (27) holds locally, i.e. it should be satisfied at any x
and B, and tensors P, R, L are treated as independent here. As a re-
sult, local invariance of W under change of reference placement is
described by triple of tensors (P,R,L).

In what follows we shall use the following nomenclature:

Orth = {O: O�1 = OT,detO = ±1} – the group of orthogonal tensors;
Orth+ = {O: O 2 Orth,det O = 1} – the group of rotation tensors;
Unim = {P: P 2 E � E,det P = ±1} – the unimodular group;
Lin = {L 2 E � E} – the linear group.

Here Orth and Unim are groups with regard to multiplication,
and Lin is the group with regard to addition.

Now we are able to introduce the following definition:

Definition 1. By the material symmetry group G, at x and B of
the polar-elastic continuum we call all sets of ordered triples of
tensors

X ¼ ðP 2 Unim;R 2 Orth; L 2 LinÞ; ð28Þ

satisfying the relation

WðE;C;BÞ ¼W REP�1þRP�1� I; ðdetRÞRCP�1þ L; ðdetRÞRBP�1�L
h i

ð29Þ

for any tensors E, C, B in domain of definition of function W.
The set G, is group relative to the group operation � defined by

ðP1;R1; L1Þ � ðP2;R2; L2Þ ¼ P1P2;R1R2; L1 þ ðdet R1ÞR1L2P�1
1

h i
:

Let us check that if X1 � ðP1;R1; L1Þ 2 G, and X2 � ðP2;R2; L2Þ 2 G,,
then also X1 �X2 2 G,. Indeed, if X1 2 G, and X2 2 G, then

WðE;C;BÞ¼W R1EP�1
1 þR1P�1

1 � I;ðdetR1ÞR1KP�1
1 þL1;ðdetR1ÞR1BP�1

1 �L1

h i
¼W R2EP�1

2 þR2P�1
2 � I;ðdetR2ÞR2CP�1

2 þL2;ðdetR2ÞR2BP�1
2 �L2

h i
:

Taking these relations into account we have

W R1R2EP�1
2 P�1

1 þR1R2P�1
2 P�1

1 � I;
h
detR1ð ÞðdetR2ÞR1R2CP�1

2 P�1
1 þL1þ detR1ð ÞR1L2P�1

1 ;

detR1ð Þ detR2ð ÞR1R2BP�1
2 P�1

1 �L1� detR1ð ÞR1L2P�1
1

i
¼WfR1 R2EP�1

2 þR2P�1
2 � I

� �
P�1

1 þR1P�1
1 � I;

detR1ð ÞR1 detR2ð ÞR2CP�1
2 þL2

h i
P�1

1 þL1;

detR1ð ÞR1 detR2ð ÞR2BP�1
2 �L2

h i
P�1

1 �L1g

¼W R2EP�1
2 þR2P�1

2 � I; detR2ð ÞR2CP�1
2 þL2; detR2ð ÞR2BP�1

2 �L2

h i
¼W E;C;Bð Þ;

which proves that X1 �X2 belongs to the group G, indeed.
The unit element of G, is I ¼ ðI; I;0Þ, and the inverse element to

X 2 G, is given by

X�1 � ðP;R; LÞ�1 ¼ P�1;RT ;�ðdet RÞRT LP
h i

:

Indeed,

X �X�1 � ðP;R; LÞ � ðP;R; LÞ�1

¼ PP�1;RRT ; L � ðdet RÞ2RRT LPP�1
h i

¼ ðI; I;0Þ:

Our symmetry group G, differs from the one of micropolar elas-
tic materials proposed by Eringen and Kafadar (1976). We take into
account explicit dependence of W upon B as parametric tensor,
while in Eringen and Kafadar (1976) dependence of T, M and other
quantities on the microinertia tensor J, is assumed. In our notation,
definition of G, by Eringen and Kafadar (1976) is based on the
formula

WðE;C; J,Þ ¼W REP�1 þ RP�1 � I;RCP�1 þ L; RJ,RT
h i

: ð30Þ

The microinertia tensor J, appearing in (30) has another nature and
transforms by another rule than B under change of reference place-
ment. Moreover, in what follows we take into account that C and B
as arguments of W are axial tensors. Eringen and Kafadar (1976) did
not take into account that C was the axial tensor. The mentioned
differences in definitions of G, lead to different restrictions of con-
stitutive relations of polar-elastic continua.

Let us show that Definition 1 allows one to establish an analog
of Noll’s rule given for classical simple material continuum by Noll
(1958). Since the material symmetry group depends not only on
particle X 2 B but also upon choice of reference placement, let us
analyze how symmetry groups corresponding to different refer-
ence placements are related. Let B1 and B2 be two different refer-
ence placements, and G1 and G2 be material symmetry groups
relative to these reference placements, respectively. In what fol-
lows quantities described in the placements B1 and B2 are marked
by the respective lower indices 1 and 2.

Let now P be a non-singular deformation gradient, detP – 0, R
be an orthogonal tensor associated with the transformation
B1 ? B2, as well as P�1 and RT be an inverse deformation gradient
and an inverse orthogonal tensor associated with an inverse trans-
formation B2 ? B1, respectively. Cases detP < 1 and detR = � 1 cor-
respond to change from right-handed frame in B1 to left-handed
one in B2. Then, by analogy to (21) and (25) we can relate the strain
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measures E1 and E2, C1 and C2, as well as the structure curvature
tensors B1 and B2 defined relative to two different reference place-
ments by

E2 ¼ RE1P�1 þ RP�1 � I; C2 ¼ ðdet RÞRC1P�1 þ L: ð31Þ
B2 ¼ ðdet RÞRB1P�1 � L; L ¼ ðdet RÞRZP�1: ð32Þ

Let W1 and W2 be strain energy densities defined relative to the
two reference placements. From (26) it follows that W2 and W1 are
related by

jdet Pj W2ðE2;C2; B2Þ ¼W1ðE1;C1; B1Þ:

Taking into account (31) and (32) we have

jdet Pj W2 RE1P�1 þ RP�1 � I; ðdet RÞRC1P�1 þ L; ðdet RÞRB1P�1 � L
h i

¼W1ðE1;C1; B1Þ:
ð33Þ

Let the element X1 � ðP1;R1; L1Þ 2 G1. Then using (33) we
obtain

jdet Pj W2ðE2;C2; B2Þ ¼W1ðE1;C1; B1Þ
¼W1½R1E1P�1

1 þR1IP�1
1 � I;

ðdet R1ÞR1C1P�1
1 þ L1;

ðdet R1ÞR1B1P�1
1 � L1�

¼ jdet Pj W2½RR1E1P�1
1 P�1 þ RR1IP�1

1 P�1 � I;
ðdet RÞðdet R1ÞRR1K1P�1

1 P�1

þ ðdet RÞRL1P�1 þ L;

ðdet RÞðdet R1ÞRR1B1P�1
1 P�1

� ðdet RÞRL1P�1 � L�
¼ jdet Pj W2½RR1RT E2PP�1

1 P�1

þ RR1RT IPP�1
1 P�1 � I;

ðdet R1ÞRR1RT K2PP�1
1 P�1

� ðdet R1ÞRR1RT LPP�1
1 P�1

þ ðdet R1ÞRL1P�1 þ L;

ðdet R1ÞRR1RT B2PP�1
1 P�1

þ ðdet R1ÞRR1RT LPP�1
1 P�1

� ðdet R1ÞRL1P�1 � L�: ð34Þ

From (34) it follows that the element X2 � ðP2;R2; L2Þ 2 G2, where

P2 ¼ PP1P�1; R2 ¼ RR1RT ;

L2 ¼ L þ ðdet R1ÞRL1P�1 � ðdet R1ÞRR1RT LPP�1
1 P�1:

It is easy to show that X2 ¼ P �X1 � P�1, where P � ðP;R; LÞ.
Indeed,

P �X1 � ðP;R; LÞ � ðP1;R1; L1Þ ¼ PP1;RR1; L þ ðdet RÞRT LP
h i

:

Taking into account that P�1 ¼ ½P�1;RT ;�ðdet RÞRT LP�; we obtain

P �X1 � P�1 ¼ PP1P�1;RR1RT ; L þ ðdet RÞ2ðdet R1ÞRL1P�1
h
�ðdet RÞ2ðdet R1ÞRR1RT LPP�1

1 P�1
i
;

from which follows the sought result.
Thus the material symmetry group under change of reference

placement transforms according to

G2 ¼ P � G1 � P�1: ð35Þ

The transformation (35) is a counterpart in non-linear micropolar
elasticity of the well known Noll rule for symmetry groups of sim-
ple materials in classical continuum mechanics, see Noll (1958),
Truesdell and Noll (1965), Wang and Truesdell (1973).
5. Material symmetry and reduced forms of strain energy
density

The structure of G, puts some constraints on the form of W
which allow us to considerably simplify this form.

In this Section we consider some simple specific cases of G,.

Case 1. Let us discuss the trivial symmetry group G, consisting
of two elements: I and �I ¼ ð�I;�I;0Þ. Applying �I, from defini-
tion of G, it follows that W should be an even function of C and
B, that is

WðE;C; BÞ ¼WðE;�C;�BÞ: ð36Þ

The condition (36) means, in particular, that explicit expression of
W(E,C;B) cannot have terms linear in C alone such as tr(ETC). Only
when explicit dependence of W on B is taken into account, terms
linear in C of the type tr(BTC) or tr(BTCE) are allowed.

Case 2. If G, consists of tensor triples containing two identities
and an arbitrary tensor L 2 Lin, then the number of arguments in W
can be reduced.

Indeed, let X ¼ ðI; I; LÞ 2 G,. Then

WðE;C; BÞ ¼WðE;Cþ L; B� LÞ; 8L 2 Lin: ð37Þ

Introducing one-parameter family of transformations

WðE;C; BÞ ¼WðE;Cþ tL; B� tLÞ; 8L 2 Lin; 8t 2 R;

and differentiating the latter equation with regard to t at t = 0, we
find that

0 ¼ @W,

@C
: L � @W,

@B
: L; 8L 2 Lin:

This equation is satisfied if and only if

W ¼WðE;Cþ BÞ ¼ fW ðE;PÞ;
where P = C + B. Here : denotes the double-dot (scalar) product of
two 2nd-order tensors, A:B = tr(ATB) = AmnBmn.

Alternatively, since (37) should be satisfied by any L let us take
L to be equal B. Then from (37) it directly follows that

WðE;C; BÞ ¼WðE;Cþ B; 0Þ ¼ fW ðE;PÞ:
Case 3. Let us consider the reduced form W = W(E,C), i.e. let us

neglect its explicit dependence on B. This form is widely used in
the literature, see for example Maugin (1998), Nikitin and Zubov
(1998), Eringen (1999), Ramezani and Naghdabadi (2007), Rame-
zani et al. (2009).

If G, ¼ fX : X ¼ ðI; I; LÞg contains an arbitrary tensor L 2 Lin, we
have W(E,C) = W(E,C + L). Then we can again introduce one-
parameter family of transformations

WðE;CÞ ¼WðE;Cþ tLÞ; 8L 2 Lin; 8t 2 R:

Differentiating this equation with regard to t at t = 0, we obtain

@W
@C

: L ¼ 0; 8L 2 Lin;

from which it follows that @W/@C = 0. Thus in this case W takes the
reduced form

W ¼WðEÞ: ð38Þ

Such a significant reduction of W = W(E,C) follows directly from
assumption that the material symmetry group contains an arbitrary
tensor L. To keep the second argument C in W it is necessary to
avoid using material symmetry groups containing an arbitrary ten-
sor L.

The form (38) of W corresponds to so-called reduced elastic
Cosserat continuum in which the couple-stress tensor K vanishes
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while the stress tensor S still remains non-symmetric, in general.
The couple equilibrium equations (10) and (15)2 reduce to

ax TT
NFT � FTN

� �
þ q,c ¼ 0 in B,; ð39Þ

ax TT � T
� �

þ qc ¼ 0 in Bc: ð40Þ

These equations become non-trivial here and can be used to find the
field of rotation Q. However, since (39) and (40) constitute the sys-
tem of non-linear arbitrary equations with respect to Q, it is not
possible to assume arbitrary rotation Q at the boundary @B,d.

The linear version of reduced Cosserat elastic continuum was
used to describe wave propagation in soils and rocks, see for exam-
ple Grekova et al. (2009).

Case 4. Let the material symmetry group of reduced Cosserat
continuum (Case 3) be wider: G, ¼ fX : X ¼ ðI;R 2 Orthþ;
L 2 LinÞg. Then it describes the classical non-linear Green-elastic
material (Truesdell and Noll, 1965; Ogden, 1984) for which
W = W(U), where U = (FTF)1/2.

Within the reduced Cosserat continuum tensors P, R and L be-
long to G, if

WðEÞ ¼WðREP�1 þ RP�1 � IÞ ¼WðRQ T FP�1 � IÞ:
Let us substitute here P = I and R = ATQ, where A is the proper
orthogonal tensor following from the polar decomposition F = AU
of deformation gradient F and Q 2 Orth+. Then we obtain

WðEÞ ¼WðAT QQ T F� IÞ ¼WðAT F� IÞ ¼WðU� IÞ ¼W�ðUÞ:

In this case the corresponding Cauchy stress tensor T becomes sym-
metric, T = TT. The proof is based on straightforward calculation of S
using W = W�(U) which gives us the formula

T ¼ ðdet FÞ�1AUS�AT
;

where S� = dW�/dU, and S�T = S�.
Since K = 0, the couple equilibrium equations (10) or (15)2 are

identically satisfied for vanishing couple vector c. Material symme-
try groups and representations of constitutive equations of non-
linear elastic continuum were discussed for example in Truesdell
and Noll (1965), Wang and Truesdell (1973), Ogden (1984).

Four simple specific cases discussed above demonstrate that
knowledge of elements of the material symmetry group allows
one to substantially simplify the form of W. In next sections we
consider some cases of G, which lead to definitions of polar-elastic
solids, fluids, liquid crystals, or subfluids, and to their reduced con-
stitutive equations.

6. Polar-elastic isotropic material

As in case of non-polar elastic materials, property of isotropy of
the polar-elastic material is expressed in terms of orthogonal
group.

Definition 2. The micropolar elastic continuum is called isotropic
at x and B if there exists a reference placement B,, called
undistorted, such that the material symmetry group relative to
B, contains the group S,,
S, � G,; S, � fðP ¼ O;O;0Þ : O 2 Orthg: ð41Þ

From physical point of view this definition means that uniform
rotations and mirror reflections of the undistorted reference place-
ment B, cannot be recognized by any experiment.

7. Polar-elastic fluids

The strain energy density of micropolar elastic fluids should be
insensitive to any change of reference placement, i.e. the Eq. (27)
should be satisfied by any triple of tensors P 2 Unim, R 2 Orth,
L 2 Lin.
Definition 3. The micropolar elastic continuum is called the polar-
elastic fluid at x and B if there exists a reference placement B,,
called undistorted, such that the material symmetry group relative
to B, is given by

G, ¼ U, � fðP 2 Unim;R 2 Orth; L 2 LinÞg: ð42Þ
Hence, the strain energy density of the polar-elastic fluid satis-

fies the relation

W,ðE;C; BÞ ¼W,½REP�1 þ RP�1 � I; ðdet RÞRCP�1 þ L;

ðdet RÞRBP�1 � L�;
8P 2 Unim; 8R 2 Orth; 8L 2 Lin: ð43Þ

From Noll’s rule (35) it is easy to verify that any reference place-
ment of the polar-elastic fluid becomes undistorted, similarly as it
is for the non-polar elastic fluid, because the symmetry group be-
comes here maximal. Obviously, any polar-elastic fluid is also
isotropic.

Strain energy density of polar-elastic fluid satisfying (43) takes
the form

W ¼WðE;PÞ ¼W�ðdet F;CÞ; ð44Þ

where C is the structure curvature tensor of the deformed place-
ment Bc defined in (6)2. Since C does not depend on the choice of
reference placements, it is easy to check that (44) satisfies the
requirement (43).

The strain energy density (44) describes polar-elastic contin-
uum which is insensitive to arbitrary deformations preserving an
elementary volume element. However, it is still sensitive to change
of orientation of particles.

By the principle of material frame-indifference (invariance un-
der superposed rigid-body deformation) the function W� satisfies
the condition

Wðdet F;CÞ ¼W� detðQ T FÞ;OT CO
h i

; 8O 2 Orthþ;

i.e. W� is the hemitropic function with regard to C.
Using general representations of isotropic and hemitropic sca-

lar-valued functions of one non-symmetric tensor C given by Spen-
cer and Rivlin (1962), Smith (1965), Smith (1994), Spencer (1965),
Spencer (1971), Smith and Smith (1971) with the help of algebraic
theory of the invariants, W� can be constructed as a function of six
invariants jn, n = 1, . . . ,6,

W ¼W� det F; j1; j2; . . . ; j6ð Þ ð45Þ

where

j1 ¼ tr C; j2 ¼ tr C2; j3 ¼ tr C3; j4 ¼ tr CCT
� �

; ð46Þ

j5 ¼ tr C2CT
� �

; j6 ¼ tr C2CT2
� �

as was used for example in Kafadar and Eringen (1971).
Since detF = q,/q, the strain energy density of the polar-elastic

fluid may be given in another form more convenient in
hydrodynamics,

W ¼Wðq;CÞ ¼Wðq; j1; j2; . . . ; j6Þ: ð47Þ

Because C is the axial tensor, it changes sign under change of frame
orientation. Thus, W should be an even function of
C; Wðq;CÞ ¼Wðq;�CÞ, and its invariant expression should have
the property

W q; j1; j2; j3; j4; j5; j6ð Þ ¼W q;�j1; j2;�j3; j4;�j5; j6ð Þ:

As a simple example of the polynomial strain energy density we can
propose the following quadratic function:

Wðq;CÞ ¼ a0ðqÞ þ a1j2
1 þ a2j2 þ a3j4; ð48Þ
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where aa, a = 1, 2, 3, are assumed to be constants.
Constitutive equations for T and M corresponding to (47) are

T ¼ �pI�MC; M ¼ q
q,

@W

@CT ; p ¼ q2

q,

@W
@q

: ð49Þ

For example, with the strain energy density (48) the couple-stress
tensor M is given by the constitutive equation

M ¼ 2
q
q,
ða1j1Iþ a2CT þ a3CÞ:

Basic equations of viscous micropolar fluids were proposed by
Aero et al. (1965), Eringen (1966). Similar theory of fluids with
three rigid directors as primary quantities was introduced by Allen
et al. (1967). Within the framework of these models the strain en-
ergy density had the form W = W(q), which is the particular case of
(47). Strain energy density (44) of the polar-elastic fluids was
established by Zubov and Eremeev (1996), Yeremeyev and Zubov
(1999) without introduction of material symmetry group.

8. Polar-elastic solids

Material symmetry group of non-polar non-linear elastic solids
is constructed with the help of orthogonal transformations
describing rotations and reflections of reference placement, see
Truesdell and Noll (1965), Wang and Truesdell (1973), Ogden
(1984). But for polar-elastic continua material symmetry group
consists of ordered triple of independent tensors, G, ¼ ðP;R; LÞ.

In Definition 3 of the polar-elastic fluid tensors P and R are en-
tirely independent from each other. Considering directors ha as
unit orthogonal vectors rigidly attached to rigid particles (e.g.
molecules) of the fluid, it is apparent that P need not coincide
with R. This is also true in the mechanical modeling of sand, pow-
der, etc.

In polar-elastic solids both P and R describing change of the ref-
erence placement should be orthogonal. Then corresponding con-
stitutive equations might be sensitive to differences of both
orthogonal tensors P and R, which would be difficult to accept.
Hence, we assume here that P = R 2 Orth.

The case L – 0 corresponds to a non-homogeneous field of R,
see (23). It can be shown that the material symmetry group with
L – 0 would lead to constitutive equations describing polar-elastic
liquid crystals and subfluids. Hence, for the polar-elastic solids the
following hypothesis seems to be physically justified:

Hypothesis. The material symmetry group of the polar-elastic
solids consists of all transformations of reference placement
performed by the same orthogonal transformations of position
vector and directors. Additionally we assume that L = 0.

The hypothesis requires that P = R and values of R should be-
long to a subgroup of Orth.

Accepting the hypothesis we can propose the following
definition:

Definition 4. The micropolar elastic continuum is called the polar-
elastic solid at x and B if there exists a reference placement B,,
called undistorted, such that the material symmetry group relative
to B, is given by

G, ¼ R, � fðP ¼ O;O;0Þ : O 2 O, � Orthg: ð50Þ

The group R, is fully described by a subgroup O, of orthogonal
group Orth. Invariance requirement of W leads here to finding the
subgroup O, such that

WðE;C; BÞ ¼W OEOT ; ðdet OÞOCOT ; ðdet OÞOBOT
h i

; 8O 2 O,:

ð51Þ
Both our definitions of fluids (43) and solids (51) differ from
definitions proposed by Eringen and Kafadar (1976) by factors
det R and det O, which take into account that our C and B are axial
tensors. Additionally, the tensor B appears instead of J, in the list of
arguments of our W.

9. Polar-elastic liquid crystals and subfluids

The strain energy density of polar-elastic continuum may also
admit other material symmetry groups, in general. For example,
it is possible to construct material symmetry groups of W in anal-
ogy to symmetry groups used to model liquid crystals or subfluids
in continuum mechanics of simple materials, see Coleman (1965),
Wang (1965), Truesdell and Noll (1965), Wang and Truesdell
(1973). However, those mathematical models differ from physical
models of liquid crystals used for nematics, smectics and other
materials, which are usually based on introducing one rigid direc-
tor, c.f. Truesdell and Noll (1965), de Gennes and Prost (1993),
Ericksen (1998).

Definition 5. The micropolar elastic continuum is called the polar-
elastic liquid crystal at x and B if the material symmetry group G,

does not coincide with U,, but there exist elements X 2 G,, which
are not members of any group constructed using only orthogonal
tensors.Definition 5 means that a polar-elastic liquid crystal is neither a
polar-elastic fluid nor a polar-elastic solid.
Within micropolar elastic continuum the number of material
symmetry groups corresponding to polar-elastic liquid crystals is
larger than in case of non-polar elastic liquid crystals, because
the structure of G, of the former is more complex. The Cases 2–4
considered above belong to polar-elastic liquid crystals by their
definitions. Below we give other examples of polar-elastic liquid
crystals.

Grekova and Zhilin (2001) defined the Kelvin medium as a spe-
cial case of polar-elastic solids, which strain energy density
W = W(E,C) is insensitive to rotation by any angle u about a fixed
axis with unit vector e. It is possible to prove that the Kelvin med-
ium should in fact be considered as a polar-elastic liquid crystal,
because its material symmetry group contains non-orthogonal
tensors.

Within non-polar elastic materials Wang developed constitu-
tive equations of 14 classes of the simple subfluids being special
cases of non-polar liquid crystals, see Wang (1965), Truesdell and
Noll (1965), Wang and Truesdell (1973), Cohen and Wang
(1983). The material symmetry group of simple subfluids con-
tained only elements of the dilatation group, that is the group of
all unimodular tensors having three fixed linearly independent
vectors as their proper vectors. The dilatation group consists of
tensors

D,¼ P : P2Unim;P¼p1e1�e1þp2e2�e2þp3e3�e3;p1p2p3¼
1f g:

Here e1, e2, e3 are three orthogonal unit vectors called the preferred
basis.

In analogy to Wang (1965) we can define polar-elastic subfluids
as follows:

Definition 6. The micropolar elastic continuum is called the polar-
elastic subfluid at x and B if its material symmetry group G,

contains elements of the dilatation group, that is

G, ¼ fðP;R; LÞ : P 2 D,;R 2 Orth; L 2 Ling:

Discussing application of micropolar elastic continuum for
modeling liquid crystals, Eringen (1997) developed constitutive
equations based on the strain energy density
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W ¼W q;c; jð Þ; ð52Þ

where j = QJ,QT, c = QCF�1 in our notation. The relative Eulerian
wryness measure c determines relative changes of orientation of
the polar-elastic continuum, see Pietraszkiewicz and Eremeyev
(2009). From (5) it follows that

c ¼ C� QBF�1:

Hence, c = C if and only if B = 0. In case of B – 0 the strain energy
density W in (52) corresponds to a special type of polar-elastic con-
tinuum, neither a fluid nor a solid, because W depends on the rela-
tive wryness measure c which is sensitive to change of orientation
of continuum particles with respect to the reference placement. Un-
der change of the reference placement c transforms according to

c	 ¼ cþ QZF�1;

where c	 ¼ C� Q 	B	F
�1
	 .

Using j as the structural tensor, Eringen derived various types of
constitutive equations. Since in our model B is used as the para-
metric tensor instead of j, Eringen’s model may be incomparable
with ours in sense of the material symmetry group.

Brief discussion stretched above and in Section 5 indicates that
polar-elastic liquid crystals and subfluids deserve detailed presen-
tation in a separate paper.

10. Some material symmetry groups for polar-elastic solids

Let us discuss simplified forms of W for some particular cases of
anisotropy.

Definition 7 (Isotropic material). The polar-elastic solid is called
isotropic at x and B if there exists a reference placement B,, called
undistorted, such that the material symmetry group relative to B,
takes the form

G, ¼S, � ðP ¼ O;O;0Þ : O 2 Orthf g: ð53Þ

This definition means that the strain energy density of the
polar-elastic isotropic solid satisfies the relation

WðE;C; BÞ ¼W OEOT ; ðdet OÞOCOT ; ðdet OÞOBOT
h i

; 8O 2 Orth:

Scalar-valued isotropic functions of a few 2nd-order tensors can be
expressed by so-called representation theorems in terms of joint
invariants of the tensorial arguments. To construct representation
for W(EC;B) as an isotropic function of joint invariants of E , C,
and B, we recall first the results of Spencer (1965, 1971) on isotropic
scalar-valued functions which are invariant with respect to proper
orthogonal tensors O 2 Orth+. Then, we apply additional restriction
on the representations by requiring also invariance with respect
to mirror reflection, i.e. additionally considering O = � I.

Decomposing non-symmetric tensors E, C, and B into symmet-
ric and skew parts,

E ¼ ES þ EA; ES ¼
1
2

Eþ ET
� �

; EA ¼
1
2

E� ET
� �

;

C ¼ CS þ CA; CS ¼
1
2

Cþ CT
� �

; CA ¼
1
2

C� CT
� �

;

B ¼ BS þ BA; BS ¼
1
2

Bþ BT
� �

; BA ¼
1
2

B� BT
� �

;

we represent W as scalar-valued function of three symmetric and
three skew tensors,

W ¼W ES;EA;CS;CA; BS;BAð Þ: ð54Þ

Integrity basis for the proper orthogonal group is given by Spen-
cer, see Table 1 in Spencer (1965) or Table II in Spencer (1971).
These tables are too lengthy to be presented here. Number of
members of integrity basis of ES, EA, CS, CA, BS, BA is much larger
than number of components of these tensors. However, there are
some polynomial dependencies between elements of the integrity
basis of three symmetric and three skew tensors. Hence the num-
ber of functionally independent invariants can be reduced, but it is
still very large, see Zheng (1994).

For proper orthogonal group there is no difference in transfor-
mations of the axial and polar tensors. It is not the case if one con-
siders transformations using the full orthogonal group. Since CS,
CA, BS, BA are axial tensors, not all invariants listed in Spencer
(1965, 1971) are absolute invariants under orthogonal transforma-
tions, because some of them change sign under non-proper orthog-
onal transformations. Following Spencer (1971), we call such
invariants relative invariants. Examples of relative invariants are
tr CS; tr C3

S ; tr ESCS; tr ESBS, etc. This gives us the following property
of W:

W ES;EA;CS;CA; BS;BAð Þ ¼W ES;EA;�CS;�CA;�BS;�BAð Þ: ð55Þ

There are 119 invariants of non-symmetric tensors E, C, B pre-
sented in Table A.1, see Appendix A. The strain energy density of po-
lar-elastic isotropic solids can be any scalar-valued function of these
invariants which satisfy (55).

If we neglect explicit dependence of W on B, or assume that
B = 0, then W = W(E,C). Integrity basis of two non-symmentric
tensors under the orthogonal group contains 39 members. Follow-
ing Zheng (1994), Ramezani et al. (2009) listed these invariants for
the non-linear polar-elastic solids and proposed corresponding
constitutive equations. Let us note, however, that not all 39 ele-
ments of this integrity basis are functionnally independent. Kafa-
dar and Eringen (1971) constructed the functional basis for two
non-symmetric tensors taking into account these functional
dependencies. Table A.1 contains the invariants of Ramezani
et al. (2009) and of Kafadar and Eringen (1971) as well as aditional
joint invariants of E, C, and B. According to Kafadar and Eringen
(1971), as the isotropic scalar-valued function of two non-symmet-
ric tensors E and C, W is expressible in terms of 15 invariants,

W ¼W I1; I2; . . . ; I15ð Þ; ð56Þ

where Ik are given by

I1 ¼ tr E; I2 ¼ tr E2; I3 ¼ tr E3;

I4 ¼ tr EET ; I5 ¼ tr E2ET ; I6 ¼ tr E2ET2;

I7 ¼ tr EC; I8 ¼ tr E2C; I9 ¼ tr EC2;

I10 ¼ tr C; I11 ¼ tr C2; I12 ¼ tr C3;

I13 ¼ tr CCT ; I14 ¼ tr C2CT ; I15 ¼ tr C2CT2:

Taking into account that W = W(E,C) is an even function with re-
spect to C, because in our case the group S, contains the reflection
�I;W becomes also an even function with respect to some
invariants,

W I1; I2; I3; I4; I5; I6; I7; I8; I9; I10; I11; I12; I13; I14; I15ð Þ
¼W I1; I2; I3; I4; I5; I6;�I7;�I8; I9;�I10; I11;�I12; I13;�I14; I15ð Þ:

ð57Þ

Expanding W into the Taylor series relative to E and C, and
keeping up to quadratic terms, we obtain the approximate polyno-
mial representation of (57),

W ¼ w0 þ a1I1 þ a2I10 þ b1I2
1 þ b2I1I10 þ b3I2

10 þ b4I4 þ b5I2 þ b6I7

þ b7I11 þ b8I13 þ O maxðkEk3
; kCk3Þ

� �
;

where w0, a1, a2, b1, . . . ,b8 are material constants. Applying to the
latter expression the property (57), we finally obtain the following
polynomial representation of W up to quadratic terms of E and C:
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W ¼ w0 þ a1I1 þ b1I2
1 þ b3I2

10 þ b4I4 þ b5I2 þ b7I11 þ b8I13: ð58Þ

We may also consider the representation of W as a sum of two
scalar functions each depending on one strain measure,

W ¼W1ðEÞ þW2ðCÞ: ð59Þ

The form (59) was used for example by Ramezani et al. (2009) in or-
der to generalize classical neo-Hookean and Mooney–Rivlin models
to polar-elastic solids. As in Section 7, one can use here the repre-
sentation theorem for isotropic scalar-valued function of one non-
symmetric tensor given by Smith and Smith (1971). This leads to
the following representation of W:

W ¼ fW 1 I1; . . . ; I6ð Þ þ fW 2 I10; . . . ; I15ð Þ; ð60Þ

where fW 2 is such that

fW 2 I10; I11; I12; I13; I14; I15ð Þ ¼ fW 2 �I10; I11;�I12; I13;�I14; I15ð Þ: ð61Þ

Expanding (60) with (61) into the Taylor series and keeping up to
quadratic terms in E and C, W takes the form (59) with

W1 ¼ w0 þ a1I1 þ b1I2
1 þ b4I4 þ b5I2; W2 ¼ b3I2

10 þ b7I11 þ b8I13:
Definition 8 (Hemitropic material). The polar-elastic solid is called
hemitropic at x and B if there exists a reference placement B,, called
undistorted, such that the material symmetry group relative to B,
takes the form

G, ¼Sþ, � fðP ¼ O;O;0Þ : O 2 Orthþg: ð62Þ
The strain energy density of the hemitropic polar-elastic solid

satisfies the relation

WðE;C; BÞ ¼W OEOT ;OCOT ; OBOT
� �

; 8O 2 Orthþ: ð63Þ

The hemitropic polar-elastic solid is insensitive to change of ori-
entation of the space. In case of reduced strain energy density
W = W(E,C) the representation of W is given by (56), but the prop-
erty (57) does not hold, in general. Obviously, the polar-elastic iso-
tropic solid is also hemitropic.

Definitions (53) and (63) are somewhat similar to the corre-
sponding definition of the isotropic polar-elastic solid proposed
by Eringen and Kafadar (1976), who required

W E;C; J,ð Þ ¼W OEOT ;OCOT ; OJ,OT
� �

; 8O 2 Orth: ð64Þ

However, properties (57) or (61) do not follow from (64) and addi-
tionally dependence of W upon J, is disregarded here.

Definition 9 (Orthotropic material). The polar-elastic solid is called
orthotropic at x and B if the material symmetry group for some
reference placement B, takes the form

G, ¼ fðP ¼ O;O;0Þg :

O ¼ fI; �I; 2e1 � e1 � I; 2e2 � e2 � I; 2e3 � e3 � Ig;
ð65Þ

where O are orthogonal tensors performing mirror reflections and
rotations of 180� about three orthonormal vectors ek.

Obviously, the polar-elastic isotropic solid is also orthotropic.
Thus, all invariants in Table A.1 can be used for representation of
the strain energy density of the polar-elastic orthotropic solid.
There are 60 additional absolute and relative invariants responsi-
ble for orthotropic properties of polar-elastic solids, so that the to-
tal number of invariants becomes 179.

Definition 10 (Cubic symmetry). The polar-elastic solid is called
cubic-symmetric at x and B if the material symmetry group for
some reference placement B, takes the form
G, ¼ fðP ¼ O;O;0Þg :

O ¼ I; �I; e1 � e1 � e1 � I; e2 � e2 � e2 � I; e3 � e3 � e3 � If g;
ð66Þ

where O are orthogonal tensors performing mirror reflections and
rotations of 90� about three orthonormal vectors ek.
Definition 11 (Transversely isotropic material). The polar-elastic
solid is called transversely isotropic at x and B with respect to a
direction described by e if the material symmetry group for some
reference placement B, takes the form

G, ¼ fðP ¼ O;O;0Þg : O ¼ fI; �I; OðueÞ; 8ug; ð67Þ

where O(ue) = (I � e � e)cosu + e � e + e � Isinu is the rotation
tensor with the rotation angle u about the unit vector e.

There are 167 absolute and relative invariants for polar-elastic
transversely isotropic solids.

11. Physically linear polar-elastic solids

Let us consider the polar-elastic strain energy density as a qua-
dratic function of E and C,

W ¼ 1
2

E : C : Eþ E : B : Cþ 1
2

C : D : C; ð68Þ

where C;B, and D are 4th-order tensors of elastic moduli of the po-
lar-elastic solid. Components of tensors C and D have symmetry
properties

Cijmn ¼ Cmnij; Dijmn ¼ Dmnij:

With (68) corresponding referential stress measures S and K follow
from (8) to be

S ¼ C : Eþ B : C; K ¼ E : BþD : C:

The model based on (68) can be called the physically linear polar-
elastic solid. In this case tensors C;B, and D coincide with the tan-
gent stiffness tensors introduced by Ramezani et al. (2009). Since E
and C are non-symmetric tensors, W contains 2 � 45 + 81 = 171
independent material constants, in general. In what follows we
find restrictions for C;B, and D corresponding to some particular
material symmetry groups.

1. Mirror reflection. Let S, contain two elements, S, ¼ fI;�Ig.
Substituting �I into (51) we obtain
1
2

E :C : EþE :B :Cþ1
2
C :D :C¼1

2
E :C : E�E :B :Cþ1

2
C :D :C;
from which it follows that either B ¼ O, where O is the 4th-order
zeroth tensor, or as has been shown above (Case 1 in Section 5), W is
an even function of E and C. In this case one has 90 independent
scalar elastic moduli. In what follows we always assume that S,

contains�I with only one exception for the hemitropic solid. Hence,
W, S, and K take the reduced form
W ¼ 1
2

E : C : Eþ 1
2

C : D : C; S ¼ C : E; K ¼ D : C: ð69Þ
In the tensor base comprised of directors ha the tensors C and D can
be expressed as symmetric 9 � 9 matrices. For example, the matrix
of C is
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½C�¼

C1111 C1122 C1133 C1123 C1131 C1112 C1132 C1113 C1121

C2222 C2233 C2223 C2231 C2212 C2232 C2213 C2221

C3333 C3323 C3331 C3312 C3332 C3313 C3321

C2323 C2331 C2312 C2332 C2313 C2321

C3131 C3112 C3132 C3113 C3121

C1212 C1232 C1213 C1221

SYM C3232 C3213 C3221

C1313 C1321

C2121

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

;

Since ½D� has the same structure as ½C�, in what follows we restrict
ourselves to representation of ½C�.

2. Monoclinic symmetry. The corresponding material symmetry
group S, consists of mirror reflection and rotations of 180� about
unit vector e: O = {I,�I,2e � e � I}. Using e as coordinate vector of
the 3rd axis, we obtain that matrices ½C� and ½D� should have some
zero elements, so that ½C� takes the form
½C�¼

C1111 C1122 C1133 0 0 C1112 0 0 C1121

C2222 C2233 0 0 C2212 0 0 C2221

C3333 0 0 C3312 0 0 C3321

C2323 C2331 0 C2332 C2313 0
C3131 0 C3132 C3113 0

C1212 0 0 C1221

SYM C3232 C3213 0
C1313 0

C2121

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

The polar-elastic physically linear monoclinic solid is described by
50 independent elastic moduli.

3. Orthotropic symmetry. In this case we have 30 independent
elastic moduli. The corresponding matrix ½C� is given by
½C�¼

C1111 C1122 C1133 0 0 0 0 0 0
C2222 C2233 0 0 0 0 0 0

C3333 0 0 0 0 0 0
C2323 0 0 C2332 0 0

C3131 0 0 C3113 0
C1212 0 0 C1221

SYM C3232 0 0
C1313 0

C2121

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

Rotations by 90�. Additionally to the previous case, let us
uire invariance of W under rotations of 90� about the unit vec-
e3: O = {e3 � e3 � e3 � I}. As a result, the solid is described by
independent elastic moduli and ½C� is given by

½C�¼

C1111 C1122 C1133 0 0 0 0 0 0
C1111 C1133 0 0 0 0 0 0

C3333 0 0 0 0 0 0
C2323 0 0 C2332 0 0

C3131 0 0 C2332 0
C1212 0 0 C1221

SYM C3131 0 0
C2323 0

C1212

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

5. Cubic symmetry. The material symmetry group G, related to
cubic symmetry additionally contains rotations of 90� about all
orthogonal axes with unit vectors ek, k = 1, 2, 3. Hence, the matrix
½C� becomes

½C�¼

C1111 C1122 C1122 0 0 0 0 0 0
C1111 C1122 0 0 0 0 0 0

C1111 0 0 0 0 0 0
C1212 0 0 C1221 0 0

C1212 0 0 C1221 0
C1212 0 0 C1221

SYM C1212 0 0
C1212 0

C1212

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

:

For the physically linear polar-elastic solid with cubic symmetry we
have eight independent elastic moduli.

6. Isotropy. In this case one can use representation (56) with (57).
Taking into account only quadratic terms in E and C we find that
2W ¼ a1I2
1 þ a2I2 þ a3I4 þ b1I2

10 þ b2I11 þ b3I13; ð70Þ
where aa, ba, a = 1, 2, 3 are independent elastic moduli. The corre-
sponding tensors C and D are
C ¼ a1I� Iþ a2ha � I� ha þ a3ha � hb � ha � hb; ð71Þ
D ¼ b1I� Iþ b2ha � I� ha þ b3ha � hb � ha � hb; ð72Þ
where ha, a = 1,2,3 is now any Cartesian base.
The strain energy density of the physically linear polar-elastic

isotropic solid contains only six scalar elastic moduli. This constitu-
tive relation corresponds to the linear isotropic elastic Cosserat con-
tinuum widely used in the literature, see for example Nowacki
(1986), Eringen (1999). For example, in terms of material constants
used by Eringen (1999), formulas 5.3.1, our constants aa, ba are ex-
pressed as follows: a1 = k, a2 = l, a3 = l + j, b1 = a, b2 = b, b3 = c.
Within linear micropolar elasticity the explicit structure of tensors
C and D was presented by Zheng and Spencer (1993) for 14 symme-
try groups.

7. Hemitropy. For the polar-elastic hemitropic solid the material
symmetry group contains only rotation tensors, see (62). Hence
B – O, in general. Tensors C and D take here the form (71) while
B is given by
B ¼ c1I� Iþ c2ha � I� ha þ c3ha � hb � ha � hb;
where ca, a = 1, 2, 3, are additional independent scalar elastic mod-
uli. As a result, for the polar-elastic physically linear hemitropic so-
lid the strain energy density contains nine independent scalar
elastic moduli. In linear micropolar elasticity this representation
is given for example in Dyszlewicz (2004).

12. Physically linear polar-elastic solids which elasticity tensors
depend on the microstructure curvature tensor

Let us now consider the polar-elastic strain energy density as a
quadratic function (68) of E and C,

W ¼ 1
2

E : CðBÞ : Eþ E : BðBÞ : Cþ 1
2

C : DðBÞ : C: ð73Þ

But now C;B, and D are 4th-order tensors of elastic moduli as-
sumed to depend on B. The tensor B plays here the role of structural
tensor used in representation of anisotropic tensor functions, see for
example Boehler (1987) and Zheng (1994). Dependence of elasticity



Table A.1
Invariants in W.

Agencies Invariants

ES trES trE2
S trE3

S

EA trE2
A

ES, EA trESE2
A trE2

S E2
A trE2

S E2
AESEA

CS trCS trC2
S trC3

S

CA trC2
A

CS, CA trCSC
2
A trC2

S C2
A trC2

SC2
ACSCA

BS trBS trB2
S trB3

S

BA trB2
A

BS, BA trBSB2
A trB2

S B2
A trB2

S B2
ABSBA

ES, CS trESCS trE2
S CS trESC

2
S trE2

SC2
S

ES, BS trESBS trE2
S BS trESB2

S trE2
S B2

S

CS, BS trCSBS trC2
S BS trCSB2

S trC2
S B2

S

ES, CS, BS trESCSBS

EA, CA trEACA

EA, BA trEABA

CA, BA trCABA

EA, CA, BA trEACABA

ES, CA trESC
2
A trE2

S C2
A trE2

SC2
AESCA

ES, BA trESB2
A trE2

S B2
A trE2

S B2
AESBA

CS, EA trCSE2
A trC2

S E2
A trC2

S E2
ACSEA

CS, BA trCSB2
A trC2

S B2
A trC2

S B2
ACSBA

BS, CA trBSC
2
A trB2

SC2
A trE2

SC2
ABSCA

BS, EA trBSE2
A trB2

S E2
A trB2

S E2
ABSEA

ES, CS, EA trESCSEA trE2
S CSEA trESC

2
S EA trESE2

ACSEA

ES, CS, CA trESCSCA trE2
S CSCA trESC

2
S CA trESC

2
ACSCA

ES, CS, BA trESCSBA trE2
S CSBA trESC

2
S BA trESB2

ACSBA

ES, BS, EA trESBSEA trE2
S BSEA trESB2

S EA trESE2
ABSEA

ES, BS, CA trESBSCA trE2
S BSCA trESB2

S CA trESC
2
ABSCA

ES, BS, BA trESBSBA trE2
S BSBA trESB2

S BA trESB2
ABSBA

CS, BS, EA trCSBSEA trC2
S BSEA trCSB2

S EA trCSE2
ABSEA

CS, BS, CA trCSBSCA trC2
S BSCA trCSB2

S CA trCSC
2
ABSCA

CS, BS, BA trCSBSBA trC2
S BSBA trCSB2

S BA trCSB2
ABSBA

ES, EA, CA trESEACA trESE2
ACA trESEAC2

A

ES, EA, BA trESEABA trESE2
ABA trESEAB2

A

ES, CA, BA trESCABA trESC
2
ABA trESCAB2

A

CS, EA, CA trCSEACA trCSE2
ACA trCSEAC2

A

CS, EA, BA trCSEABA trCSE2
ABA trCSEAB2

A

CS, CA, BA trCSCABA trCSC
2
ABA trCSCAB2

A

BS, EA, CA trBSEACA trBSE2
ACA trBSEAC2

A

BS, EA, BA trBSEABA trBSE2
ABA trBSEAB2

A

BS, CA, BA trBSCABA trBSC
2
ABA trBSCAB2

A

2004 V.A. Eremeyev, W. Pietraszkiewicz / International Journal of Solids and Structures 49 (2012) 1993–2005
tensors on B changes significantly representation of (73) and the
number of independent elastic moduli.

In what follows, for simplicity, we restrict ourselves to polar-
elastic hemitropic and isotropic solids. Using Table A.1, we obtain
the following 58 quadratic invariants of E and C:

J1 ¼ tr2ES; J2 ¼ tr E2
S ; J3 ¼ tr E2

A;

J4 ¼ tr2CS; J5 ¼ tr C2
S ; J6 ¼ tr C2

A;

J7 ¼ tr ESCS;

J8 ¼ tr2ESBS; J9 ¼ tr E2
S BS;

J10 ¼ tr2ESB2
S ; J11 ¼ tr E2

S B2
S ;

J12 ¼ tr2CSBS; J13 ¼ tr C2
S BS;

J14 ¼ tr2CSB2
S ; J15 ¼ tr C2

S B2
S ; J16 ¼ tr ESCSBS;

J17 ¼ tr EACA; J18 ¼ tr2EABA;

J19 ¼ tr2CABA; J20 ¼ tr EACABA;

J21 ¼ tr2ESB2
A; J22 ¼ tr E2

S B2
A;

J23 ¼ tr2CSB2
A; J24 ¼ tr C2

S B2
A;

J25 ¼ tr BSC
2
A; J26 ¼ tr B2

SC
2
A;

J27 ¼ tr BSE2
A; J28 ¼ tr B2

S E2
A;

J29 ¼ tr ESCSBA; J30 ¼ tr ESBSEA;

J31 ¼ tr ESBSCA; J32 ¼ tr ESB2
SCA;

J33 ¼ tr2ESBSBA; J34 ¼ tr E2
S BSBA;

J35 ¼ tr2ESB2
S BA; J36 ¼ tr2ESB2

ABSBA;

J37 ¼ tr CSBSEA; J38 ¼ tr CSBSCA; J39 ¼ tr CSB2
SCA;

J40 ¼ tr2CSBSBA; J41 ¼ tr C2
S BSBA;

J42 ¼ tr2CSB2
S BA; J43 ¼ tr2CSB2

ABSBA;

J44 ¼ tr ESEABA; J45 ¼ tr ESEAB2
A;

J46 ¼ tr ESCABA; J47 ¼ tr ESCAB2
A;

J48 ¼ tr CSEABA; J49 ¼ tr CSEAB2
A;

J50 ¼ tr CSCABA; J51 ¼ tr CSCAB2
A; J52 ¼ tr BSEACA;

J53 ¼ tr2BSEABA; J54 ¼ tr BSE2
ABA; J55 ¼ tr2BSEAB2

A;

J56 ¼ tr2BSCABA; J57 ¼ tr BSC
2
ABA J58 ¼ tr2BSCAB2

A:

ð74Þ

The strain energy density of linear polar-elastic hemitropic solid is
now the sum of 58 terms,

W ¼
X58

i¼1

ciJi; ð75Þ

where ci are functions of invariants of B, in general.
Since underlined terms in (74) are relative invariants, which

change signs under change of orientation of the space, for the
physically linear polar-elastic isotropic solid the strain energy den-
sity takes the form (75), but now with c7 = c9 = c13 = c25 = c27 =
c30 = c32 = c44 = c47 = 0.

One can derive in the same manner quadratic strain energy
densities of physically linear polar-elastic orthotropic and trans-
versely isotropic solids. Let us however note that when one takes
into account explicit dependence of elasticity tensors on B one ob-
tains a huge number of material parameters even when one as-
sumes that ci are constant elastic moduli.
13. Conclusions

We have defined anew the material symmetry group G, of the
non-linear polar continuum. The group generalizes the one
proposed by Eringen and Kafadar (1976) by introducing the
undeformed microstructure curvature tensor B instead of the micr-
oinertia tensor J, as well as by taking into account that B and the
wryness tensor C are axial tensors which change signs under
inversion transformation of 3D space. Our group G, consists of
an ordered triple of tensors which make the strain energy density
invariant under change of reference placement. In terms of mem-
bers of G, polar-elastic fluids, solids, liquid crystals, and subfluids
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have conveniently been defined. Reduced forms of constitutive
equations for non-linear and physically linear polar-elastic solids
are given for several particular material symmetry groups.

In many cases discussed here even the reduced constitutive
equations of polar-elastic solids still involve a large number of
material constants, which should be experimentally or theoreti-
cally identified. Difficulties in identifications of material constants
pose a serious challenge for wider application of polar-elastic sol-
ids in science and technology.
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Appendix A. Invariants in strain energy density

Using the representations of Zheng (1994), for isotropic polar-
elastic solids in Table A.1 we present the list of 119 irreducible
invariants of E, C, and B expressed in terms of their symmetric
and skew-symmetric parts.
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