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In this paper we give some additions and extensions to our previous 
paper [4] 2). In section l some remarks are made on trace-valued forms, 
in 2 a simpler formulation of one of our axioms is given, in 3 a special 
kind of polar geometries is considered, viz. those in which two maximal 
elements span the whole space, in 4 and 5, finally, polar geometries in 
spaces of infinite rank are discussed. 

l. In [ 4] we confined ourselves to null systems and polarities that 
can be represented by a trace-valued hermitian form. (See Ch. I, section 7, 
of [4].) That this restriction is by no means essential when strictly 
isotropic subspaces are in question can be readily seen in the following way: 

Let a be a polarity. Let V be the subspace that is spanned by the 
N-points with respect to a. Take a subspace M of V such that M is also 
spanned by N-points and 

V=V n va E9 M. 
We then have: 

If X is a maximal strictly isotropic subspace with respect to a, then of 
course X< V. From the maximality of X it follows that 

X= V n ya E9 X n M. 

As M is non-isotropic, the restriction of a to M is, again, a polarity; 
as the maximal strictly isotropic subspaces are determined by their 
intersection with M, we can confine ourselves to the consideration of the 
restriction of atoM. That this restriction has the properties we required 
in I, 7 of [ 4] is a consequence of the following proposition: 

PROPOSITION. If a is a polarity such that there exists a basis of N-points 
with respect to a, then a is a null system or it can be represented by a 
trace-valued hermitian form. 

1 ) The preparation of this paper was supported by the Nether lands Organization 
for Pure Research (Z.W.O.). 

2 ) References at the end of the paper. 
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Proof. We may suppose a to be represented by a semi-bilinear form f 
that is hermitian or skew-symmetric (Cf. [4], I, 5 or [l], ch. I, § 6). 

Iff is skew-symmetric, a is a null system. For there exists a basis of 
N-points and if f(x, x)=f(y, y)=O, then 

f(Ax+fty, AX+ftY)=Af(x, Y)ft+~tf(y, x)A. 

=At (x, Y)ft- A.f (x, Y)ft = 0. 

If f is a hermitian lX-form, the line of reasoning is as follows: 
From f(x, x)=e+e" and f(y, y)=a+a"' it follows that 

I (A.x + ftY, A.x + ftY) = A(e + e")A." + ~t(a + a")~t" +At (x, Y)ft" + ~tf (y, x))." 

= 1: + 7:" where 

-r:=A.eA."+~ta~t"'+Af(x, Y)ft"'· 

As there is a basis of N-points, f must be trace-valued. 

2. Axiom VII of III, 2 1) can be formulated in a simpler way, viz.: 

VII. Let a and b be maximal and a A b = 0. To every point x <a there 
exists an x' < b with rank r(x') = i(S) -l such that x v x' exists. 

The property mentioned in III, 2 as axiom VII, is a consequence of 
the above axiom. 

3. Instead of axiom VIII of III, ll one may consider the following 
axiom VIII*, which implies VIII. 

VIII*. There exist two maximal elements a and b such that every point 
in S lies on an imaginary line pq where p<a and q<b. 

From axiom VI follows that a A b = 0. 
If t is an element with r(t) = i(S) -l and r and s are points that are 

joined to t, then every point of the imaginary line rs is joined to t, as 
follows from the definition of imaginary lines. Now in a systemS satisfying 
axioms I-VII and VIII* this assertion has a converse: 

(3.1) PRoPOSITION. LetS satisfy axioms I-VII and VIII*. If tis an 
element of rank i(S)- l and r and s are points such that r v t and s v t 
exist but rs does not contain a point <t, and if x>t is a maximal element, 
then there exists a point y < x, y E rs. 

Proof. Take a and b such as in axiom VIII*. We distinguish several 
cases. 

1°. t<a, r<a, s<b. 
Take a pointy' such that x=tvy'. Then we can find points p<a and 

q<b such that y' E pq. y' v t and p v t exist, hence so does q v t. Therefore 
q=s. By applying Proposition III, 7 we find a point y<.y' v (t A (p v r)), 
y E rs; then x=t v y. 

1) In the sequel a reference as III, 2 will mean: Ch. III, section 2 of [4]. 
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2°. t<a, r and s arbitrary. 
As it is impossible that both r<a and s<a, one may suppose r{:a. 

We then can find points p<a and q<b such that r E pq. As p v t and 
r v t exist, so does q v t. From 1 o it follows that x = t v y' with y' E pq, 
and that tv s=t v s' with s' E pq. Applying proposition III, 7 again we 
find a point yErs, y<.y'v(t11(svs')); but then x=tvy. 

3°. The general case can be deduced step by step from the previous 
part of the proof with the aid of the following statement: 

Let r(lt)=r(t2)=i(S}-1,r(ltllt2)=i(S)-2 and let t1vt2 not exist. If 
the proposition we have to prove is true for h, so it holds for t2. 

To prove this we first choose two points r1 and 81 such that 
r1 v t1, r1 v t2, 81 v t1 and 82 v t2 exist and that r1s1 does not contain a point 
< t1 or < t2. Now if x > t2, we take x' > h such that r(x Ax')= i(S) -1. 
Then there exists a point y<x', y E r1s1, because of the assumption about 
fi. From y E r1s1 it follows that y v t2 exists. As fi v t2 does not exist, 
x' ::!>t2. But then y < x 11 x'. Thus we have found a point y < x, y E r1s1. 

Now let rands be arbitrary points such that r v t2 and s v t2 exist and 
that rs does not contain a point < t2. There must exist a point < r v t2 
on r1s1, say r1, and a point < s v t2 on r1s1, say s1. On s v 81 we can find 
a point 82 such that neither r v 82 nor r1 v 82 exists, because of the non
existence of r v s v 81 and ri v s v 81. 

H then x>t2, there is a pointE riBI, that is <x. Applying proposition 
III, 7, again, we find a point E r1s2 that is <x, in the same way a similar 
point ,E rs2 and finally one E rs, which completes the proof. 

With the proposition we have just proved we can show: 

(3.2) PRoPOSITION. Let u and v be two maximal elements of S (satisfying 
I-VII and VIII*) with u 11 V= 0. Then every point xES lies on an imaginary 
line pq where p<u and q<v. 

Proof. We may assume x {: u, {: v, in the other case the proof 
being trivial. We take UI < u and VI< v, both of rank i(S) - 1, such that 
x v UI and x v VI exist. We then take points p < u and q < v such that 
p v v1 and q v u1 exist. Then we can prove that x E pq: 

If p v q exists, p<u1 and q<v~. Then x v UI v q exists, hence x<ui v q, 
for u1 v q is maximal; similarly x<v1 v p. Hence x< (u1 v q) 11 (v1 v p) = 
=p V q, i.e. X E pq. 
If p v q does not exist, there must exist a point y E pq, y < x v v1. As 

p v UI=U and q v u1 exist, so does y v u1. If XoFy, (x v y) 11 V1=q' would 
be a point * q such that UI v q' exists; but then UI v q v q' would be of 
rank i(S) + 1, which leads to a contradiction. Hence X= y, i.e. x E pq. 

4. Polar geometry in spaces of infinite rank. 

4.1. So far we have only spoken about polar geometries corresponding 
to polarities in projective spaces of finite rank. The notion of polarity, 
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however, can be generalized to that of quasipolarity in a space of arbitrary 
rank; see H. LENZ [3]. Such a quasipolarity is a mapping a of a projective 
space P(A) into its dual space, i.e. the space of hyperplanes in P(A), 
with the properties: 

(l} To every point X of P(A) thereisdefinedexactly one hyperplane X". 
(2) To every hyperplane Y in P(A) there is at most one point X 

such that Y =X". 
(3) If X and Y are points such that X< Y", then Y <X". 

If (2) is replaced by 

(2') To every hyperplane Y m P(A) there is exactly one point X 
such that Y =X", 

then a is a polarity and P(A) has finite rank. If, conversely, a is a 
quasipolarity in a space of finite rank, then a is a polarity. 

The definition of a can, of course, be extended to subspaces of arbitrary 
rank by stating V" = n X" where the intersection is taken over all points 
X< V, and 0"=A. 

Quasipolarities can be represented by semi-bilinear forms in exactly 
the same way as polarities. 

N-points, N-subspaces and isotropic, strictly isotropic and non-isotropic 
subspaces with respect to a quasipolarity are defined in the usual way. 

( I U)" = n U" is also true for quasipolarities but if (f is not a 
Ue8 UE@ 

polarity, ( U n V)" = U" + V" is not true for every U and V; we can only 
say (n U)";;;. I U". But if P and Q are points, (P" n Q")"=P+Q, 

UE@ UE@ 

as follows from H. LENZ [3], § l, Hilfssatz 2. 
V"";;;. V but not necessarily V"" = V if a is a quasipolarity. If V"" = V, . 

Vis called closed with respect to a. If Vis closed and F has finite rank, 
V + F is closed; as 0 is closed, every subspace of finite rank is closed. 
If V has finite rank and V n V" = 0, then A= V + V", where A is the 
whole ·space. For the proofs see e.g. I. KAPLANSKY [2]. 

If V n V"=O and we define~ for the subspaces of V by Xd=X" n V, 
then b is clearly a quasipolarity, the restriction of a to V. 

4.2. An important property of quasipolarities is the following one 
(see [2]): 

If V is a subspace of finite rank, then there exists a subspace W;;;. V 
of finite rank such that W n W" = 0. 

( 4.2.1) We now suppose that r1 is a null-system or that it is represented 
by a trace-valued hermitian form. This restriction is not essential, for 
everything we said in section l of this paper on polarities is also true for 
quasipolarities. 

Then the property that every subspace of finite rank is contained in 
a non-isotropic subspace of finite rank ensures that l}, 2) and 3) of I, 7 
are also valid for quasipolarities, provided that the subspaces V and W 
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which we speak of in 1) and 3) have finite rank. Further, if the maximal 
rank i( a) of a strictly isotropic subspace is finite, then I, 8 remains true; 
so every maximal strictly-isotropic subspace has rank i(a). 

I, 9-11 remains true with only some minor changes in the proofs. 

4.3. The definition of polar geometry in II, 1 is extended to quasi
polarities in the following way: 

Let a be a quasipolarity in a projective space P(A) with property 4.2.1 
such that the maximal rank i(a) of a strictly isotropic subspace is finite 
but not less than 3. 

Let S be the system of strictly isotropic subspaces of A, partially 
ordered by inclusion (;;;;; ). Then S is called the polar geometry corresponding 
to a. 

Instead of i(a) we speak again of i(S), the index of S. 
The rest of II, 1 and II, 2 remains unchanged. 

4.4. II, 3-12 remains true for quasipolarities with only some changes, 
the most important of which we shall enumerate here: 

In II, 7 "r( V) = r( U")" must be replaced by "cor( V) = r( U)"; here 
cor( V) =co-rank of V = r(AJ V). 

In II, 8 the consequence of the above change must be drawn. Further, 
at the end of this section we make use of the fact that if 

where P and the Q-s are points, then P"=(Ql" n Ql'")+(Q2" n Q2'e1). 
If this were not true, Q1" n Q1'" = Q2" n Q2'e1, as lefthand and righthand 
side of the equation have both co-rank 2; but then we apply a and find 
Ql + Q1' = Q2 + Q2', which is supposed not to be true. 

In II, 9 and II, 10 we have to say that pe1 has a basis of N-points 
P and Pt, where i ranges over a certain set of indices. 

In II, 11.3. and 5., we must take V = 2Pt as a possibly infinite sum. 
i 

4.5. It is readily seen that a polar geometry S such as defined in 
4.3 satisfies the axioms I-VII, IX and X we stated in chapter III. 

In chapter IV we have embedded a system S satisfying axioms I-X 
in a projective space, where it is a polar geometry with respect to a 
polarity (with exception of the case that the field of coordinates has 
characteristic 2). Exactly the same can be done with a system S that 
satisfies axioms I-VII, IX and X. The only place in chapter IV where 
we essentially made use of axiom VIII is IV, 18, in which section we 
showed that S can be embedded in a space of finite rank. 

In the sections after IV, 18 some changes have to be made when we 
omit axiom VIII. So a is no longer a polarity but a quasi-polarity. 

In IV, 20-22, "r(P(J)>n-l" and "r(P")=n-1" must be replaced by 
"cor(P(J);;;;; l" and "cor(P") = 1" respectively, and analogously in the 
proofs. Further, some more obvious changes. 



212 

The final result is then : 

THEOREM. The polar geometries S with respect to a quasipolarity (satis
fying the condition 4.2.1) are characterized by the axioms I-VII, IX and X 
of chapter III of [ 4]; in case that the field of coordinates of the maximal 
elements of a system S that satisfies these axioms, has characteristic 2 it can 
only be shown that S is part of a polar geometry with respect to a quasi
polarity. S is a polar geometry with respect to a polarity (in a space of finite 
rank) if, and only if, it satisfies, moreover, axiom VIII. 

5. We can now ask whether it is possible to characterize polar 
geometries with respect to a quasipolarity a with infinite i(a). We can 
only say that our axioms of [ 4] completely fail to describe this situation. 

To show that all maximal strictly isotropic subspaces have the same 
rank and co-rank is not so very difficult in case of countable i(a). But 
axiom VI is certainly not true if i(a) = CXJ, i.e. two disjoint strictly isotropic 
subspaces are not necessarily contained in disjoint maximal ones. As 
axiom VI is often used in our proofs in an apparently essential way, it is 
clear that we have to look for quite different methods. 

We shall, finally, show that not every two disjoint strictly isotropic 
subspaces are contained in two disjoint maximal ones. If VI were true, 
we could find two disjoint maximal strictly isotropic subspaces (for 
0 and 0 are disjoint), say U and V. As U + V is non-isotropic, we can 
restrict a to U + V. 

For X< U we define X 6 =Xa n V. This is a mapping of U into the 
dual space of V. But as r( U) = r( V) = c:xJ, the dual space of V has a rank 
greater than r( U), hence o cannot be a mapping onto. So we can find a 
Y < V,r(VjY)= 1, such that there is no point X< U with X 6 = Y. Hence 
ya= V. If we then take a point Z such that V = Y +Z, then Y and Z are 
disjoint strictly isotropic but the only maximal strictly isotropic subspace 
> Y is V with V n Z i= 0. This contradicts axiom VI. 
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