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Epichloë fungal endophytes are broadly found in cool-season grasses. The symbiosis

between these grasses and Epichloë may improve the abiotic and biotic resistance of

the grass plant, but some Epichloë species produce alkaloids that are toxic for livestock.

Therefore, it is important to understand the characteristics of the grass-Epichloë s

symbiosis so that the beneficial aspects can be preserved and the toxic effects to

livestock can be avoided. Since the 1990s, Chinese researchers have conducted a series

of studies on grass-Epichloë symbiosis. In this review, we describe the current state of

Epichloë endophyte research in Chinese native grasses. We found that more than 77

species of native grasses in China are associated with Epichloë endophytes. In addition,

we review the effects of various Epichloë species on native grass responses to abiotic

and biotic stress, phylogeny, and alkaloid production. We provide an overview of the

study of Epichloë species on native grasses in China and directions for future research.

Keywords: alkaloid, Chinese native grass, Epichloë endophyte, grass-Epichloë symbiosis, grass stress response,

Epichloë phylogeny

INTRODUCTION

Fungi of the genus Epichloë (Clavicipitaceae, Ascomycota) and their asexual state (Neotyphodium)
are common endophytes of cool-season grasses in the subfamily Pooideae (Leuchtmann et al.,
2014). Most previous research has indicated that asexual Epichloë species (29 species) are efficiently
transmitted through host seeds (vertical transmission) (White et al., 1993; Leuchtmann et al.,
2014). However, some recent studies have suggested that strictly asexual Epichloë endophytes
are occasionally transmitted horizontally among plants in close proximity via frequent mowing,
trampling, and grazing (Cheplick and Faeth, 2009; Iannone et al., 2009; Wiewióra et al., 2015;
Saikkonen et al., 2016), and by conidia from epiphytic mycelia (Tadych et al., 2007, 2012;
Oberhofer and Leuchtmann, 2014) via splashing water and possibly wind. Sexual Epichloë species
(12 species) are transmitted to new hosts with filamentuos ascospores in addition to condia
(horizontal transmission) (Leuchtmann et al., 2014; Saikkonen et al., 2016). Leuchtmann et al.
(2014) renamed the anamorphs of Neotyphodium as the asexual endophyte genus Epichloë and
examined the classification of sexual and asexual Epichloë species and varieties based on β-tubulin
(tubB) sequences.

Epichloë species often provide numerous benefits to their hosts, such as increased tolerance
to drought (Malinowski and Belesky, 2000; Kannadan and Rudgers, 2008; Gundel et al., 2013b),
disease resistance (Vignale et al., 2013), resistance to herbivory and parasitism (Bush et al., 1997;
Schardl et al., 2007; Gundel et al., 2013a), and enhanced aboveground and belowground vegetative
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and reproductive growth (Marks et al., 1991; Clay and Holah,
1999; Yue et al., 2000; Gundel et al., 2013b; Tadych et al., 2014).
Previous studies have confirmed that certain alkaloids play a
crucial role in a plant’s pasture persistence. For example, lolines
and peramine may confer significant toxicity against insect
pests (Johnson et al., 1985, 2013; Schardl et al., 2013; Philippe,
2016). However, conflicting results have been reported. When
Lolium perenne was grown under conditions of extremely poor
nutrient availability, Epichloë festucae var. lolii infection led to
a reduced root: shoot ratio and reduced photosynthetic shoot
fraction (Cheplick, 2007). Some symbiont combinations, such as
Schedonorus arundinaceus with Epichloë coenophiala and Lolium
perenne with E. festucae var. lolii, accumulate alkaloids that are
toxic to grazing animals (Di Menna et al., 2012; Schardl et al.,
2013; Philippe, 2016). On the other hand, sexual Epichloë species
could result in “choke disease” in host plants, in which sexual
Epichloë species produce stromata that envelop the inflorescences
and upper leaf sheaths of flowering culms; this leads to a reduced
number of offspring (Lembicz et al., 2010).

Various Epichloë species have been discovered in China,
but have not been formally taxonomically described. There are
two reasons for this lack of taxonomic data: (i) the limited
number of researchers in this field and (ii) insufficient knowledge
on the identification and classification of Epichloë species. To
address the latter issue, Chinese researchers are establishing
collaborations with international institutes. The topic of hybrid
occurrence in Chinese Epichloë species is not discussed in-depth
in this manuscript because few Epichloë species are confirmed to
be of hybrid origin. However, known hybrid species from native
grasses appear to have the same two ancestors, for two main
reasons. First, researchers have only confirmed some Epichloë
species crosses for the Epichloë bromicola × Epichloë typhina
complex. Second, hybrid species are distributed in the same and
similar natural and geographic environments. Accordingly, these
hybrid species underwent the same hybridization process, but are
hosted by different grasses. This topic will be discussed in future
reviews when more data are available on hybrid endophytes.

We have built a long-term collaboration with Prof.
Christopher L. Schardl from the University of Kentucky
and Prof. German Spangenberg from the Australian Academy
of Technological Sciences and Engineering. With their help,
two kinds of Epichloë endophytes in drunken horse grass
were confirmed. The whole genome sequencing of an Epichloë
endophyte in Festuca sinensis is near completion. These studies
will push Epichloë research to a new level in China. We firmly
believe that the research prospects with respect to Epichloë
species are bright in our country.

THE DISTRIBUTION AND DIVERSITY OF
GRASS-EPICHLOË SYMBIOSIS

More than 77 species of native grasses in China have been
documented as infected with Epichloë species (Nan and Li, 2000;
Li et al., 2004, 2006b, 2009, 2012b; Wang et al., 2005; Wei et al.,
2006; Moon et al., 2007; Chen et al., 2009; Ji et al., 2009, 2011,
2012; Kang et al., 2009, 2011a; Zhan et al., 2009; Zhang et al.,

2009, 2011a, 2013; Han et al., 2012; Zhu et al., 2013; Card et al.,
2014; Leuchtmann et al., 2014). The endophytes have been found
in the following grass genera: Achnatherum, Agropyron, Agrostis,
Brachypodium, Bromus, Calamagrostis, Cleistogenes, Dactylis,
Deschampsia, Elymus, Elytrigia, Eragrostis, Festuca, Hordeum,
Koeleria, Leymus, Melica, Poa, Polypopon, Roegneria, and Stipa
(Table 1). Among these, many species of Triticeae, Stipeae, and
Poeae have been reported as infected and some new Epichloë
species have been described from these tribes (Li et al., 2004,
2006b; Wei et al., 2006; Chen et al., 2009; Kang et al., 2009,
2011a; Zhu et al., 2013). To date, nine Epichloë species have
been identified from Chinese native grasses (Li et al., 2009;
Leuchtmann et al., 2014). Unfortunately, many isolates from
Chinese native grasses have not been identified to the species level
based on morphology and DNA data (Table 1). For example, an
Epichloë endophyte was isolated from Festuca sinensis (Figure 1).
We found that this Epichloë endophyte is likely a new species,
based on phylogenetic trees constructed using many markers.
However, this research is still in progress. We posit that many
Epichloë species new to science could be infecting Chinese native
grasses.

Most Epichloë species are asexual endophytes without external
symptoms in their Chinese host grasses (Leuchtmann et al.,
2014), such as E. bromicola, E. gansuensis, E. gansuensis var.
inebrians, E. sibirica, and E. sinica. However, Dactylis glomerata
(Li et al., 2009), Roegneria kamoji (Li et al., 2006b), and Poa
pratensis ssp. pratensis (Kang et al., 2011a) can also be infected
with sexual Epichloë species. Although most Chinese Epichloë
endophytes are not hybrids, E. sinofestucae (from F. parvigluma)
(Chen et al., 2009), E. sinica (from Roegneria spp.) (Kang et al.,
2009), E. liyangensis (from P. pratensis ssp. pratensis) (Kang et al.,
2011a), and E. sp. (from F. myuros) (Han et al., 2012) are hybrids
of E. bromicola and E. typhina (Table 1). E. bromicola is abundant
in its host genera Elymus, Hordeum, and Roegneria, including
some of the most widely distributed grass species native to China.
The hybrid species E. liyangensis, E. sinica, E. sinofestucae, and
other Epichloë spp. have a common ancestor, e.g., the sexual
E. bromicola from R. kamoji in China.

Interestingly, Epichloë endophytes in natural grasses are
morphologically diverse, e.g., the species that infectAchnatherum
sibiricum (Wei et al., 2007) and Elymus species (Song et al.,
2015b). Ren et al. (2009) isolated 484 Epichloë endophytes from
seven populations of A. sibiricum in Inner Mongolia, China
and detected five morphotypes that also exhibited different
magnitudes of inhibition of Rhizoctonia solani, Fusarium
oxysporum, Curvularia lunata, Cladosporium cucumerium, and
Phomopsis vexans. Researchers have also detected morphological
differences along an altitudinal gradient. Epichloë isolates
from populations of Elymus above 3000m present similar
morphological traits, while Epichloë populations below 3000m
are morphologically variable (Song et al., 2015b). Asexual
Epichloë endophytes below 3000m tend to grow faster on potato
dextrose agar than asexual Epichloë endophytes above 3000m
(Song et al., 2015b). In addition, a phylogenetic analysis showed
that Epichloë endophytes above 3000m form a clade, but isolates
from regions below 3000m belong to several clades (Song et al.,
2015b).
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TABLE 1 | Summary of Epichloë endophytes in Chinese native grasses.

Endophyte Isolate Host species Host tribe Hybrid status Sexual

reproduction

References

Epichloë bromicola Yes Brachypodium sylvaticum Brachypodieae Not observed Observed Ji et al., 2011,

2012

Epichloë bromicola Yes Bromus magnus Bromeae Non-hybrid Not observed Zhang et al., 2013

Epichloë bromicola Yes Elymus dahuricus Triticeae Non-hybrid Not observed Song and Nan,

2015

Epichloë bromicola Yes Elymus dahuricus var.

cylindricus

Triticeae Non-hybrid Not observed Song and Nan,

2015

Epichloë bromicola Yes Elymus excelsus Triticeae Non-hybrid Not observed Song and Nan,

2015

Epichloë bromicola Yes Elymus nutans Triticeae Non-hybrid Not observed Song and Nan,

2015

Epichloë bromicola Yes Elymus tangutorum Triticeae Non-hybrid Not observed Song and Nan,

2015

Epichloë bromicola Yes Elymus tibeticus Triticeae Non-hybrid Not observed Song and Nan,

2015

Epichloë bromicola Yes Leymus chinensis Triticeae Non-hybrid Not observed Wei et al., 2006;

Zhu et al., 2013

Epichloë bromicola Yes Roegneria kamoji Triticeae Non-hybrid Observed Li et al., 2006b

Epichloë gansuensis Yes Achnatherum inebrians Stipeae Non-hybrid Not observed Nan and Li, 2000;

Li et al., 2004

Epichloë gansuensis Yes Achnatherum pekinense Stipeae Non-hybrid Not observed Leuchtmann et al.,

2014

Epichloë gansuensis

var. inebrians

Yes Achnatherum inebrians Stipeae Non-hybrid Not observed Moon et al., 2007

Epichloë liyangensis Yes Poa pratensis ssp.

pratensis

Poeae Hybrid–Epichloë bromicola

x Epichloë typhina complex

Observed Kang et al., 2011a

Epichloë sibirica Yes Achnatherum sibiricum Stipeae Non-hybrid Not observed Zhang et al., 2009

Epichloë sinica Yes Roegneria spp. Triticeae Hybrid–Epichloë bromicola

x Epichloë typhina complex

Not observed Kang et al., 2009

Epichloë sinofestucae Yes Festuca parvigluma Poeae Hybrid–Epichloë bromicola

x Epichloë typhina complex

Not observed Chen et al., 2009

Epichloë stromatolonga Yes Calamagrostis epigeios Aveneae Non-hybrid Not observed Ji et al., 2009

Epichloë typhina Yes Dactylis glomerata Poaeae Non-hybrid Observed Li et al., 2009

Epichloë sp. No Achnatherum

purpurascens

Stipeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Achnatherum splendens Stipeae Not observed Not observed Nan and Li, 2000;

Wei et al., 2006

Epichloë sp. No Agropyron cirstatum cvr.

pectiniforme

Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Agropyron cristatum Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Agropyron desertorum Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Agropyron elongata Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Agropyron mongolicum Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. Yes Agrostis sp Aveneae Not observed Not observed Ji et al., 2011

Epichloë sp. Yes Agrostis spp Aveneae Not observed Not observed Wang et al., 2005

Epichloë sp. No Bromus inermis Bromeae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Bromus sp. Bromeae Not observed Not observed Ji et al., 2011

Epichloë sp. Yes Bromus spp. Bromeae Not observed Not observed Wang et al., 2005

Epichloë sp. Yes Calamagrostis sp. Aveneae Not observed Not observed Zhan et al., 2009

Epichloë sp. No Cleistogenes squarrosa Eragrostideae Not observed Not observed Wei et al., 2006

Epichloë sp. No Deschampsia caespitosa Aveneae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Elymus ciliaris Triticeae Not observed Not observed Card et al., 2014

(Continued)
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TABLE 1 | Continued

Endophyte Isolate Host species Host tribe Hybrid status Sexual

reproduction

References

Epichloë sp. No Elymus cylindricus Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Elymus dahuricus var.

excelsus

Triticeae Not observed Not observed Card et al., 2014

Epichloë sp. Yes Elymus gmelinii Triticeae Not observed Not observed Card et al., 2014

Epichloë sp. Yes Elymus nevskii Triticeae Not observed Not observed Card et al., 2014

Epichloë sp. Yes Elymus sibiricus Triticeae Not observed Not observed Wei et al., 2006;

Card et al., 2014

Epichloë sp. Yes Elymus sp. Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Elytrigia dahuricus Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Elytrigia repens Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Elytrigia smitihii Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. Yes Eragrostis pilosa Eragrostideae Not observed Not observed Ji et al., 2011

Epichloë sp. No Festuca alatavica Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Festuca modesta Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Festuca myuros Poeae Hybrid–Epichloëbromicola x

Epichloë typhina complex

Not observed Han et al., 2012

Epichloë sp. No Festuca rubra Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Festuca sinensis Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Festuca sp. Poeae Not observed Not observed Ji et al., 2011

Epichloë sp. Yes Festuca spp. Poeae Not observed Not observed Wang et al., 2005

Epichloë sp. Yes Hordeum bogdanii Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Hordeum brevisubulatum Triticeae Not observed Not observed Nan and Li, 2000;

Wei et al., 2006

Epichloë sp. Yes Hordeum jubatum Triticeae Not observed Not observed Unpublished data

Epichloë sp. Yes Hordeum roshevitzii Triticeae Not observed Not observed Card et al., 2014

Epichloë sp. No Hordeum violaceum Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Koeleria cristata Aveneae Not observed Not observed Wei et al., 2006

Epichloë sp. Yes Melica przewalskyi Meliceae Not observed Not observed Li et al., 2012b

Epichloë sp. No Poa alpina Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Poa angustifolia Poeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Poa annua Poeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Poa palustris Poeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Poa paucifolia Poeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Poa pratensis Poeae Not observed Not observed Wei et al., 2006

Epichloë sp. Yes Poa spp. Poeae Not observed Not observed Ji et al., 2011

Epichloë sp. No Poa sphondylodes Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Poa tibetan Poeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Polypogon monspeliensis Agrostideae Not observed Not observed Nan and Li, 2000

Epichloë sp. Yes Roegneria canina Triticeae Not observed Not observed Zhang et al.,

2011a

Epichloë sp. Yes Roegneria ciliaris Triticeae Not observed Not observed Wang et al., 2005

Epichloë sp. Yes Roegneria hybrida Triticeae Not observed Not observed Wang et al., 2005

Epichloë sp. Yes Roegneria mayebarana Triticeae Not observed Not observed Wang et al., 2005

Epichloë sp. No Roegneria stricta Triticeae Not observed Not observed Nan and Li, 2000

Epichloë sp. No Roegneria turczaninovii Triticeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Stipa grandis Stipeae Not observed Not observed Wei et al., 2006

Epichloë sp. No Stipa purpurea Stipeae Not observed Not observed Nan and Li, 2000
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FIGURE 1 | Identification and isolation of Epichloë endophytes in Festuca sinensis. (A) Festuca sinensis. (B) Microscope image of hyphae. Blue line indicates

hyphae of Epichloë endophyte detected using the aniline coloring (0.1% aqueous) method, isolated on potato dextrose agar, and incubated in the dark at 25◦C for 4

weeks. (C) Obverse of colony. (D) Reverse of colony.

EFFECTS OF EPICHLOË SPECIES ON
ABIOTIC AND BIOTIC STRESS IN
GRASSES

Salt Stress
Plant cells are harmed by salt stress and do not intake sodium
as an essential element for their physiology. Although plants
have evolved several strategies to adapt to salt stress (Zhu, 2003;
Dinneny, 2015), only a few studies have confirmed that Epichloë
endophytes can increase salt tolerance in a grass host (Reza
Sabzalian and Mirlohi, 2010). When Hordeum brevisubulatum
was infected with Epichloë (EI), the grass exhibited significantly
increased N, P, and K+ concentrations, which led to an increase
in total biomass. The Epichloë infection also reduced Na+

accumulation in the EI plants compared to Epichloë-free plants
(EF) (Song et al., 2015d). Based on this work, we inferred that salt
tolerance could be further increased in grass-Epichloë symbiosis,
which potentially provide a valuable resource for improved salt
tolerance in crops.

Drought Stress
Compared to salt stress, crop plants are inclined to suffer from
drought stress (Boyer, 1982). Studies have confirmed Epichloë
endophytes play a vital role in increasing drought tolerance in EI
grasses (Richardson et al., 1992; Clay and Schardl, 2002; Schardl
et al., 2004). A relationship between increased drought tolerance
and EI has been well documented in five EI grasses that are
native to China. Under drought stress, EI Leymus chinensis had
significantly more total biomass than EF L. chinensis, regardless
of fertilizer levels (Ren et al., 2014). Peng et al. (2013) found that

seed hydropriming treatment is an effective strategy to improve
seed germination and plant growth in EI F. sinensis. Epichloë
infection also increased the germination of Elymus dahuricus
under different osmotic potential pressures, but germination
success was variable among populations (Zhang and Nan, 2010).
Several studies have shown that Epichloë infection can improve
the relative fitness of grasses under drought stress (Faeth, 2002;
Faeth et al., 2004; Iannone et al., 2012). Zhang and Nan (2007b)
showed that EI E. dahuricus producedmore biomass, more tillers,
and taller plants under low water treatment, but EI had no
influence on plant biomass in the high water treatment. However,
in a study of EI A. sibiricum, the addition of fertilizer resulted
in greater plant growth, but this advantage decreased under
reduced water and/or nutrient availability (Ren et al., 2011).
Moreover, Song et al. (2015e) demonstrated that asexual Epichloë
endophyte infection can increase resistance to waterlogging stress
in H. brevisubulatum. The effect of EI on drought tolerance
seems to differ among grass species. It remains to be determined
whether these effects are caused by the species of infectious
Epichloë, the grass species, or other factors.

Other Abiotic Stress
Epichloë endophytes confer stress tolerance to native grasses in
China and play a significant role in the survival of some plants in
high-stress environments, such as cadmium (Cd)-contaminated
soils and nutrient-depleted soils. Epichloë-infected A. inebrians
(Zhang et al., 2010a,b) and E. dahuricus (Zhang et al., 2012a)
had higher germination rates, more tillers, longer shoots and
roots, and more biomass compared to EF plants in high Cd2+

concentrations. There was no significant difference between

Frontiers in Microbiology | www.frontiersin.org 5 September 2016 | Volume 7 | Article 1399

http://www.frontiersin.org/Microbiology
http://www.frontiersin.org
http://www.frontiersin.org/Microbiology/archive


Song et al. Epichloë in China

EI and EF plants under low Cd2+ concentrations, indicating
that Epichloë infection was only beneficial to the growth and
development of A. inebrians and E. dahuricus exposed to high
Cd2+ concentrations.

Studies of nutrient acquisition in EI grasses have focused on
the influence of nitrogen (N), since this element is a constituent of
alkaloids in infected plants and is also one of the most important
limiting resources for plant growth in general (Li et al., 2012a).
It has been documented that increased N availability may change
the relative availability of other nutrients, such as phosphorus (P)
(Van Der Wouder et al., 1994). Li et al. (2012a) found that A.
sibiricum–Epichloë associations are conditional on both N and
P availability, but are more conditional on N than P. Changes
in N allocation increase the photosynthetic ability of EI plants
and also significantly increase their biomass. In addition, the
benefits of Epichloë infection decline when nutrient availability
decreases (Ren et al., 2011). Epichloë infection tends to reduce
overall nitrogen concentration in A. sibiricum leaves, but causes
the host to allocate significantly higher fractions of N to the
photosynthetic machinery (Ren et al., 2011). Thus, EI plants have
higher photosynthetic N use efficiency and shoot biomass than
that of EF plants when fertilizer is limited (Ren et al., 2014).
Song et al. (2015d) confirmed that EI H. brevisubulatum has
lower ratios of C:N, C:P, Na+:K+ and a higher ratio of N:P
than EF plants under salt stress. According to Jia et al. (2014),
the effects of EI on A. sibiricum suggest that the A. sibiricum
host genotype has a stronger influence on the response to stress
than the influence of Epichloë. They found that Epichloë infection
did not positively affect general growth, physiology, or nutrient
content of A. sibiricum, before or after clipping.

Pest Resistance
The grass-Epichloë symbiosis provides the grass host protection
from herbivorous insects by producing alkaloids in the form of
secondary metabolites (García Parisi et al., 2014; Thom et al.,
2014). Aphid populations exhibit slow growth when feeding on
grass infected with Epichloë species (Hartley and Gange, 2009;
Saikkonen et al., 2010). However, Börschig et al. (2014) concluded
that the effect of Epichloë endophytes on herbivores is generally
weak and depends on the regional environmental context. They
posit that more field research is necessary to detect the relative
importance of Epichloë endophytes and environmental context
on biotic interactions in grasslands (Börschig et al., 2014).

To date, insect resistance has only been reported for
L. chinensis–E. bromicola, A. sibiricum–E. sibirica and A.
inebrians–E. gansuensis associations in China. Jia et al. (2013)
concluded that L. chinensis–E. bromicola and A. sibiricum–
E. sibirica symbioses could diminish the negative effects of
infection by Meloidogyne incognita. The researchers used a 72-h
exposure to undiluted culture filtrates of the two endophytes and
found L. chinensis infected with E. bromicola had an especially
strong antagonistic effect on Meloidogyne infection. Similarly,
Zhang et al. (2012b) found that A. inebrians infected with
E. gansuensis reduced the survival of the aphids Rhopalosiphum
padi, Tetranychus cinnabarinus, Oedaleus decorus, and Messor
aciculatus under laboratory and field conditions. Additionally,

they demonstrate that EI had an anti-herbivore effect on a wide
range of arthropod groups (Zhang et al., 2012b).

Pathogen Resistance
Reports that EI grasses are resistant to diseases and pathogens are
limited compared to evidence that EI increases pest resistance.
Epichloë endophytes negatively impact the in vitro growth of
plant fungal pathogens (White and Cole, 1985; Siegel and
Latch, 1991). However, Sabzalian et al. (2012) found that
EI tall fescue was not more resistant to powdery mildew
(Blumeria graminis) than EF tall fescue. Yue et al. (2000)
demonstrated that extracts from a wide range of Epichloë
endophytes exhibited various degrees of antifungal activity and
the greatest antifungal activity was detected from extracts of
E. festucae and E. tembladerae.

Li et al. (2007) confirmed that the fungi Bipolaris sorokiniana,
Curvularia lunata, Fusarium acuminatum, and Alternaria
alternate cause lesions on detached A. inebrians leaves, regardless
of their status as EI or EF. When leaves were EF, the number and
size of lesions caused by all pathogens were reduced compared to
those on EI leaves. In addition, Xia et al. (2015) demonstrated
that, in greenhouse conditions, EI reduced the ability of
Blumeria graminis to colonize A. inebrians and enhanced the
photosynthetic performance of host plants under pathogen stress
or ameliorated host plant damage, to some degree (Xia et al.,
2016). Zhou et al. (2015b) found that EI F. sinensis produced
secondary metabolites that inhibited fungal pathogens, including
Alternaria alternata, Bipolaris sorokiniana, Curvularia lunata,
and Fusarium acuminatum. They found significant reductions in
disease incidence and lesion size on EI detached leaves compared
to EF leaves (Zhou et al., 2015b). Song et al. (2015f) found that E.
bromicola from Elymus tangutorum exhibits antifungal activities
against Alternaria alternata, Fusarium avenaceum, Bipolaris
sorokiniana, and Curvularia lunata.

MOLECULAR IDENTIFICATION OF
CHINESE EPICHLOË SPECIES

In the past, taxonomic identification of Epichloë endophytes
relied on morphological features, e.g., colony morphology,
colony growth rate, and spore type and size. Currently, allozyme
profiles and molecular methods have been applied to Epichloë
research and greatly aid in identification. Recent research
combines morphological features and molecular data to identify
Epichloë endophytes.

Epichloë endophytes are typically analyzed using β-tubulin
(tubB) (Tsai et al., 1994), translation elongation factor 1-α
(tefA) (Moon et al., 2002), actin (actG) (Moon et al., 2007;
Zhang et al., 2009), simple sequence repeats (SSR) (Moon
et al., 1999; Schirrmann et al., 2015), amplified fragment length
polymorphisms (AFLP) (Karimi et al., 2012), internal transcribed
spacers of the nuclear ribosomal RNA (ITS) (Moon et al.,
2000), calmodulin M (calM) (McCargo et al., 2014), and so
on. The most common markers for taxon identification and
determining phylogenetic relationships are tubB, tefA, and actG
(Clay and Schardl, 2002). These studies have shown that asexual
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Epichloë endophytes evolved from sexual Epichloë species and
subsequently lost the ability to sexually reproduce (Moon et al.,
2000).

Although new Epichloë endophytes have been identified
based on traditional morphology, this method has limitations
when determining whether the Epichloë endophytes experienced
hybridization events. Fortunately, DNA sequencing can help
resolve this problem. To date, all putative Epichloë hybrids
contain more than one copy of tubB and can be detected
by allozyme analysis (Moon et al., 2004; Oberhofer and
Leuchtmann, 2012; Leuchtmann et al., 2014; Iannone et al., 2015).
For example, E. chisosa and E. coenophiala each have three copies
(Leuchtmann et al., 2014), indicating they experienced multiple
ancient hybridization events or subsequent gene duplication.
Oberhofer and Leuchtmann (2012) found four new Epichloë
species in Hordelymus europaeus using five enzymes; two
were interspecific hybrids and the others were of nonhybrid
origin.

Molecular markers can be used to identify new species and
to estimate evolutionary relationships with phylogenetic trees.
Molecular studies on Chinese Epichloë species have mainly been
applied to identify new species. Various Epichloë species, e.g.,
E. stromatolonga (Li et al., 2006b; Ji et al., 2009), E. sinica
(Kang et al., 2009), E. sinofestucae (Chen et al., 2009), E.
liyangensis (Kang et al., 2011a), and E. sp. (Han et al., 2012),
have been described and exhibit natural symbioses with R.
kamoji, Calamagrostis epigeios, Roegneria spp., F. parvigluma, P.
pratensis ssp. pratensis, and F. myuros. These Epichloë species are
native to China and were described based on host specificity,
morphology, and molecular phylogenetic evidence. Zhang et al.
(2009) identified a new Epichloë endophyte, E. sibirica (A.
sibiricum), and three morphotypes based on morphological and
phylogenetic analyses. They found that its ancestor was probably
derived from E. sibirica (Zhang et al., 2009). Zhu et al. (2013)
analyzed L. chinensis and found that its Epichloë associate is E.
bromicola, which was classified into three morphotypes based
on morphological features and phylogenetic analyses of tubB,
tefA, and actG sequences. Additionally, a molecular phylogenetic
study showed that E. gansuensis var. inebrians from Chinese A.
inebrians is a unique and novel non-hybrid species (Moon et al.,
2007).

Although some studies have examined the evolutionary
relationships among Epichloë species, few have examined the
phylogeny or co-evolution of Chinese Epichloë species and hosts.
In the southern hemisphere, most asexual Epichloë species are the
result of hybridization events between two sexual species (e.g., E.
festucae and E. typhina) from the northern hemisphere (Gentile
et al., 2005). These studies have looked at the extent of Epichloë
gene flow between the Northern and Southern Hemispheres
based onmolecular data (Moon et al., 2002). Iannone et al. (2009)
studied South American Epichloë endophytes from Bromus
auleticus and found that E. tembladerae was a hybrid of the
Northern E. festucae and E. typhina, but the ancestral E. typhina
genotype was distinguished based on tubB and tefA. Schirrmann
et al. (2015) used 15 microsatellites to assess the population
structure of sympatric species in the E. typhina complex and
found that host specificity and maladaptation of Epichloë hybrids

to host grasses may act as reproductive isolation barriers in
asexual Epichloë and therefore promote their speciation.

Notably, Kang et al. (2011b) analyzed the asymptomatic
symbiosis between Roegneria and E. sinica and found no
relationship between phylogeny and morphology in the E. sinica
isolates. They concluded that E. sinica is a species complex
that resulted from multiple, independent hybridization events
(Kang et al., 2011b). In a comparison of genetic diversity in
Epichloë species and their host plants, Zhang et al. (2010c)
found approximately 4–7-fold greater diversity among Epichloë
endophytes than among host plants based on SSR markers. This
indicates more gene flow of Epichloë endophytes than hosts. The
authors also state that Epichloë infection might confer selective
advantages to A. sibiricum under certain conditions, which could
help tomaintain high-EI frequencies, even when their population
structure would not suggest selection for EI (Zhang et al., 2010c).

Song et al. found that Epichloë species likely originated in
Eurasia, and Epichloë gene flow between theWestern and Eastern
hemispheres is common based on phylogenetic and network
analyses (Song and Nan, 2015; Song et al., 2015a). They suspect
that migratory birds or humans might have aided the dispersal of
Epichloë endophytes from Eurasia to other continents (Song and
Nan, 2015). Furthermore, Song et al. (2015c) analyzedHordeum-
endophytes and Elymus-endophytes and found that Chinese
Hordeum species likely contain two Epichloë endophyte species.
One is also found in North American Elymus species and the
other endophyte is found in Chinese Elymus species, indicating
that Epichloë endophytes isolated from Chinese Hordeum are
not host-specific. They proposed that Epichloë endophytes spread
among different grass hosts by plant hybridization, and this could
likely transform the hybrid offspring from EF status to EI status
(Song et al., 2015c). This needs to be tested in future studies,
but it would add further evidence to the hypothesis that asexual
Epichloë endophytes are horizontally transmitted (Tadych et al.,
2012; Wiewióra et al., 2015). Moreover, molecular phylogenetic
studies based on tubB and tefA intron sequences have confirmed
that E. gansuensis infectedA. sibiricum andA. inebrians in China,
indicating the potential of conidia cultures to mediate horizontal
transmission (Li et al., 2015).

ALKALOIDS

From an agronomic point of view, a negative aspect of the
grass-Epichloë symbiosis is that some Epichloë produce ergot
and indole-diterpene fungal alkaloids that are highly toxic for
livestock (Clay and Schardl, 2002). Variability in the profile
and level of alkaloids has allowed researchers to inoculate grass
cultivars with selected Epichloë endophytes that are not toxic
to livestock and still confer benefits to host plants. This has
become a key strategy for breeding drought-, salt-, and pest-
resistant forage grasses (Gundel et al., 2013b; Johnson et al.,
2013). A. inebrians is widely distributed in northern China and
is commonly known as drunken horse grass because of its long-
recognized toxic and narcotic effects on livestock, especially
horses. Additionally, owing to the toxicity to livestock, recent
research has shown thatA. inebrians can protect biodiversity (Yao
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et al., 2015). These toxins are apparently caused by E. gansuensis
(Li et al., 2004; Zhang et al., 2014). Epichloë-infected drunken
horse grass contains high levels of the ergot alkaloids, ergine,
and ergonovine (Miles et al., 1996; Li et al., 2006a). High
alkaloid levels have also been confirmed in EI A. inebrians
under salt or drought stress, with higher levels of ergonovine
than ergine (Zhang et al., 2011b). Cytotoxic effects to animal
muscle tissue have been described after the consumption of
ergonovine and ergine (Zhang et al., 2014). The EI E. dahuricus
only produces the alkaloid peramine. Production is seasonal; the
concentration of peramine are highest in October and below
detectable levels in June (Zhang and Nan, 2007a). Recently,
Zhou et al. (2015a) evaluated the effects of temperature on ergot
alkaloid production in three F. sinensis ecotypes and found that
concentrations of ergine and ergonovine differed considerably
in the three endophyte-infected ecotypes. They also found the
ecotypes varied in their production of secondary metabolites,
the bioprotective alkaloids ergine and ergonovine, in response
to short-term cold stress. However, compared to recent research
abroad (Schardl et al., 2012), little is known about alkaloid
production in Chinese native grasses using molecular methods.
We hope to increase research in this area in the future.

CONCLUSIONS AND PERSPECTIVES

In this review, we briefly summarized progress in Epichloë
endophyte research in China in the past 25 years. We found that
more than 77 species of native grasses in China were infected
with Epichloë species. To date, nine Epichloë species have been
identified from Chinese native grasses. Additionally, seven have

been confirmed as new Epichloë endophytes. Epichloë species
originated in Eurasia based on the high species diversity in the
area (Song and Nan, 2015). Unfortunately, many isolates from
Chinese native grasses have not been identified to the species
level. Therefore, to apply this precious resource, Chinese research
should focus on taxonomical evaluations of Epichloë species
from Chinese native grasses. In addition, Chinese studies have
extensively examined abiotic and biotic resistance using Epichloë
endophytes. However, little is known about Epichloë evolution,
functional genomics, and comparative genomics. Nevertheless,
we believe that Chinese researchers will intensify their efforts in
these areas in the future.
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