
CONFORMING STOKES ELEMENTS YIELDING

DIVERGENCE–FREE APPROXIMATIONS ON

QUADRILATERAL MESHES

by

Duygu Sap

B. S. in Engineering Mathematics,

Istanbul Technical University, 2008

M. S. in Electronics & Communication Engineering,

Istanbul Technical University, 2011

M. S. in Mathematics,

University of Pittsburgh, 2014

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/95407496?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH

KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Duygu Sap

It was defended on

July 6, 2017

and approved by

Prof. Michael J. Neilan, Dept. of Mathematics, University of Pittsburgh

Prof. William J. Layton, Dept. of Mathematics, University of Pittsburgh

Prof. Catalin Trenchea, Dept. of Mathematics, University of Pittsburgh

Prof. Noel J. Walkington, Dept. of Mathematical Sciences, Carnegie Mellon University

Dissertation Director: Prof. Michael J. Neilan, Dept. of Mathematics, University of

Pittsburgh

ii



CONFORMING STOKES ELEMENTS YIELDING DIVERGENCE–FREE

APPROXIMATIONS ON QUADRILATERAL MESHES

Duygu Sap, PhD

University of Pittsburgh, 2017

In this dissertation, we propose conforming finite element methods that yield divergence–free

velocity approximations for the steady Stokes problem on cubical and quadrilateral meshes.

In the first part, we construct the finite element spaces for the two-dimensional problem on

rectangular grids. Then in the second part, we extend these spaces to n-dimensional spaces.

We use discrete differential forms and smooth de Rham complexes to verify the stability and

the conformity of the proposed methods, and the solenoidality of the velocity approxima-

tions. In the third part, we shift our focus from a dimensionwise extension to a meshwise

improvement by introducing macro elements on general shape–regular quadrilateral meshes.

By utilizing a smooth de Rham complex, we prove that the macro finite element method

yields divergence–free velocity solutions, and with the construction of a Fortin operator, we

validate the stability of the method. To improve the pressure approximation properties, we

compute a post–processed pressure solution locally. In addition, we describe the implemen-

tation process of the (velocity) macro finite element. We show that the methods developed

in this dissertation yield optimal convergence rates and present numerical experiments which

are supportive of the theoretical results. Moreover, we provide experimental results of our

method for the Navier-Stokes equations and show that the convergence rates are preserved.
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1.0 INTRODUCTION

Stokes equations describe the motion of the Stokes flow which is a kind of fluid flow where

the inertial forces are smaller than the viscous forces. In fluid dynamics, a dimensionless

quantity known as the Reynolds number (Re) is used in scaling the relative importance of

the inertial (or convective) terms and viscous (or diffusion) terms in a flow equation. By

definition, Re = UL/ν where ν denotes the fluid dynamic viscosity and the constants U

and L denote the respective reference length and velocity of the simulated flow. Stokes flow

occurs when Re is low, that is, where the fluid velocities are very low, or the viscosities are

very large, or the length-scales of the flow are very small [27]. In nature, this kind of flow

occurs in the locomotion of microorganisms, and the flow of lava, and in technology, it often

occurs in paint, MEMS devices, and in the flow of viscous polymers [17].

The steady Stokes system with no–slip boundary conditions is given by

−ν∆u +∇p = f , in Ω,

∇ · u = 0, in Ω,

u = 0, on ∂Ω,

(1.0.1)

where u is the fluid velocity, p is the fluid pressure and f is the external force applied to

the fluid. We assume that Ω ⊂ Rn is an open, bounded, simply–connected domain with a

piecewise smooth boundary. For simplicity, we also assume that ν is constant.

In Figure 1.1, an example of the Stokes flow where a solid sphere is moving at a constant

speed through a viscous fluid is illustrated [30].
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Figure 1.1: Stokes flow around the unit sphere, [30].

In this dissertation, we construct conforming and stable finite element spaces that yield

pointwise divergence–free velocity approximations and optimal convergence rates for the

discrete version of the Stokes system (1.0.1). However, the methods developed here can be

extended for the steady, incompressible Navier-Stokes Equations (NSE) given by

−ν∆u + (u · ∇)u +∇p = f , in Ω, (1.0.2a)

∇ · u = 0, in Ω, (1.0.2b)

u = 0, on ∂Ω, (1.0.2c)

where equation (1.0.2a) represents the conservation of momentum, and equation (1.0.2b),

known as the continuity equation, represents the conservation of mass.

The NSE play an essential role in modeling fluid flows such as the flows in pipes and

channels and the flows around wings of a plane [31]. Solving the NSE for specified boundary

conditions provides approximations for the fluid velocity and the fluid pressure in a given

geometry. However, due to their complexity, the NSE admit only a limited number of

analytical solutions. For example, the NSE for a laminar, steady, two–dimensional flow

of an incompressible fluid between two parallel plates or in a circular pipe can be solved

analytically [29].
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1.1 FINITE ELEMENT METHOD APPLIED TO THE STOKES PROBLEM

Finite element methods are numerical techniques developed for approximating solutions for

partial differential equations by piecewise polynomials. A finite element method is based on

the division of a mathematical model into disjoint components of simple geometry. These

disjoint components are called finite elements. Each element contributes to the model a

finite number of degrees of freedom evaluated at a set of points, and then the model is

approximated via the discrete model obtained by connecting or assembling these elements.

Consider a partition Th of an open, bounded and simply–connected domain Ω for a fixed

discretization parameter h.

A finite element space is a triple (T, PT ,ΣT ) that satisfies [10]

• T ⊂ Rn is closed and bounded with a piecewise smooth boundary ∂T , (element domain).

• PT is a finite dimensional space of real–valued functions over T , (basis functions, a.k.a.,

shape functions).

• ΣT consists of linear forms over C∞(T ), (degrees of freedom, a.k.a, nodal points).

In finite element theory, it is assumed that ΣT is PT unisolvent, that is, if ΣT = {φi}Ni=1,

then for scalars {αi}Ni=1 there exists a unique function p ∈ PT that satisfies φi(p) = αi for

1 ≤ i ≤ N . Therefore, dim(PT ) = N = card(ΣT ) and there exists a set of functions {pj}Nj=1

that forms a basis of PT and satisfies φi(pj) = δi,j for 1 ≤ i, j ≤ N . As a result, any p ∈ PT
can be written as p =

N∑
i=1

φi(p)pi.

To approximate (u, p) that solves the Stokes system given by (1.0.1), we need to construct

velocity and pressure finite element spaces.

Let Vh ⊂ H1
0(Ω) denote the velocity finite element space and Wh ⊂ L2

0(Ω) denote the

pressure finite element space. The finite element discretization of (1.0.1) reads:

Find (uh, ph) ∈ Vh ×Wh that satisfies

ν

∫
Ω

∇uh : ∇v −
∫

Ω

ph div(v) =

∫
Ω

f · v, ∀v ∈ Vh,∫
Ω

q div(uh) = 0, ∀q ∈ Wh.

(1.1.1)

A necessary criterion for the well–posedness and the stability of the discrete problem (1.1.1)

is the discrete inf–sup condition, also known as the Ladyzenskaja-Babuska-Brezzi (LBB)
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condition, which is given by [9]:

α‖q‖L2(Ω) ≤ sup
v∈Vh\{0}

∫
Ω
q div(v)

‖v‖H1(Ω)

, ∀q ∈ Wh, (1.1.2)

where α > 0 is a constant independent of the discretization parameter h.

The discrete inf–sup stability condition is equivalent to the property Wh ⊆ PWh
div(Vh) with

a bounded right-inverse, where PWh
: L2

0(Ω)→ Wh denotes the L2–projection onto Wh.

The inf–sup condition is invalid if the space Sp = {q ∈ Wh :
∫

Ω
q div(v) = 0, ∀v ∈ Vh}

is non–trivial. A non–zero element s ∈ Sp is known as a spurious pressure mode. Every

spurious pressure mode s yields a pressure solution (s + ph) for (1.1.1). Therefore, the

existence of spurious pressure modes violates the uniqueness of the pressure solution [9].

Proposition 1 (Proposition 2.1 in [9]). Let (u, p) be the solution of (1.0.1) and suppose

that the inf–sup condition (1.1.2) holds. Then, there exists a unique pair (uh, ph) ∈ Vh×Wh

that solves the discretized system given by (1.1.1) and the errors satisfy

‖u− uh‖H1(Ω) + ‖p− ph‖L2(Ω) ≤ c inf
{vh∈Vh, qh∈Wh}

(
‖u− vh‖H1(Ω) + ‖p− qh‖L2(Ω)

)
,

where c > 0 is a constant independent of the discretization parameter h.

Remark 1. In the rest of this dissertation, we denote by c > 0 a generic constant that may

take different values at different instances.

1.2 PREVIOUS WORKS AND THE ADVANTAGES OF

DIVERGENCE–FREE APPROXIMATIONS

Over the past years, several mixed finite element methods for the Stokes problem on triangu-

lar meshes have been developed. Although conforming and stable approximations have been

derived by most of these methods, the incompressibility condition is usually only weakly

satisfied. Taylor-Hood elements, the MINI element [3], the Crouzeix-Raviart elements [15]

and the (P2 − P dc
0 ) pair in [9] are among the methods that belong to this class.

The discrete velocity solution is divergence–free if the image of the divergence of the

discrete velocity finite element space is a subset of the discrete pressure finite element space.

On the other hand, the cases where the image of the discrete divergence operator is strictly

smaller than the discrete pressure finite element space invalidate both the uniqueness of the

4



discrete pressure solution and the inf–sup stability condition on general meshes. For exam-

ple, the (Q1−P dc
0 ) element does not satisfy the inf–sup stability condition [9]. The stability

of this element depends highly on the mesh and global spurious modes, which can not be

eliminated easily, are observed on some regular meshes. Another example is the (P1 − P0)

element. In this case, the dimension of the spurious modes grows as the mesh size tends to

zero [9].

It is known that the finite element spaces that only satisfy the incompressibility con-

dition weakly may lead to instabilities in nonlinear problems [9, 10]. Additionally, since

the divergence–free condition models the conservation of mass, the inexact satisfaction of

the incompressibility condition also leads to the lack of mass conservation [22]. Additional

advantages of divergence–free finite element methods are as follows:

• The invariance f → f +∇φ =⇒ p→ p+ φ is preserved numerically, that is, the velocity

approximation is only influenced by the divergence–free part of the source function.

• If the velocity is coupled with transport, then the enforcement of mass conservation is

paramount to ensure accurate approximations [8].

• The construction of divergence–free yielding elements results in explicit characterizations

of the divergence–free subspaces, possibly leading to efficient iterative solvers [40].

• The velocity error estimates for divergence–free, stable and conforming finite element

pairs are decoupled from the pressure error estimates, i.e., [22]:

‖u− uh‖H1(Ω) ≤ c inf
v∈Zh

‖u− v‖H1(Ω)

where Zh denotes the kernel of the divergence operator acting on Vh.

On simplicial meshes, the first conforming, divergence–free finite elements were introduced by

Scott-Vogelius [41]. They showed that the Pk−P dc
k−1 pair is stable on simplicial triangulations

of two–dimensional polygonal domains if the polynomial degree k satisfies k ≥ 4 and the

triangulation does not contain singular vertices. Their results were extended in [22, 25]. In

[6, 38, 45, 47], it was shown that the spaces Pk−P dc
k−1 provide mass conservation for smaller

values of k if the meshes are Hsieh-Clough-Tocher or Powell-Sabin triangulations. Arnold

and Qin [6] showed that P2−P dc
1 pair yields an unstable method for some meshes even after

the spurious pressure modes are removed. However, for some meshes the method is stable

and gives optimal order convergence for velocity once the local spurious pressure modes are

5



removed, and yet for other meshes, the method is stable and yields optimal convergence

rates for both the pressure and the velocity approximations. Falk and Neilan [22] developed

conforming and stable finite elements that satisfy mass conservation on general triangular

meshes by using discrete smooth de Rham complexes. Unlike Scott and Vogelius, they do

not require quasiuniform meshes in their analysis and their elements have significantly fewer

global degrees of freedom than the Scott-Vogelius elements. The methods developed in the

first two chapters of this dissertation are extensions of the Falk-Neilan elements to rectangular

grids. Guzmán and Neilan [25] constructed divergence–free, conforming and stable finite

element pairs for the three–dimensional Stokes problem on general simplicial triangulations.

They used a pressure space consisting of piecewise constants and a velocity space consisting

of cubic polynomials augmented with rational functions. Christiansen and Hu [12] presented

a general framework for the discretization of de Rham sequences of differential forms with

high regularity and some examples of finite element spaces that fit in the framework.

Similar to the simplicial case, the construction of Stokes pairs yielding divergence–free

approximations on tensor–product meshes is mostly limited to the two–dimensional case

[26, 46, 7]. The first conforming, divergence–free element on a rectangular mesh was proposed

by Austin, Manteuffel and McCormick [7]. The finite element space they introduced is a

continuous space that is based on a Raviart-Thomas finite element space. The authors

constructed a P3,2 × P2,3 finite element pair as a direct sum of two L2–orthogonal spaces

and proved that the optimal convergence is obtained in the energy norm for tensor–product

grids. Another conforming, divergence–free element on rectangular grids was proposed by

Zhang [45]. He showed that the (Pk+1,k × Pk,k+1 − P−k ) mixed element, where P−k denotes

the discontinuous polynomials of separated degree k or less with spurious modes filtered, is

stable and yields an optimal order of approximation for the Stokes problem for all k ≥ 2.

Moreover, Buffa, de Falco and Sangalli [11] proposed several choices of spline spaces which

can be perceived as extensions of the Taylor-Hood, Nédélec and Raviart-Thomas pairs of

finite element spaces for the approximations of the velocity and pressure fields. They studied

the stability and convergence of each method and discussed the exact mass conservation of

the discrete velocity fields. Evans and Hughes [21, 20] developed B–spline discretizations

that produce pointwise divergence–free velocity approximations. Their method is motivated
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by isogeometric discrete differential forms and can be interpreted as a smooth generalization

of Raviart-Thomas elements.

1.3 METHODOLOGY

The construction of the finite element pairs in this dissertation is motivated by smooth de

Rham complexes (Stokes complexes) [22]. The Stokes complex we use as a guiding tool in

developing our methods is a Hilbert complex used for the Stokes flow model that constitutes

Hilbert spaces as scalar and vector potentials, the flow velocity and the flow pressure.

The Stokes complex employs the standard Sobolev spaces:

L2
0(Ω) = {v ∈ L2(Ω) :

∫
Ω

v = 0},

Hk(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω), ∀|α| ≤ k},

Hk
0 (Ω) = {v ∈ Hk(Ω) : Dαv = 0 on ∂Ω, ∀|α| ≤ k − 1}.

The two–dimensional Stokes complex is given by the sequence:

R ⊂−→ H2(Ω)
curl−−→ H1(Ω)

div−→ L2(Ω) → 0, (1.3.1)

where the curl operator acting on a scalar function z ∈ H2(Ω) is defined as curl(z) =

(∂z
∂y
,− ∂z

∂x
)t. Provided Ω is simply–connected, the complex (1.3.1) is exact, that is, the range

of each map in the complex is the null space of the succeeding map.

Our main goal is to construct finite element spaces (Σh,Vh,Wh) which by the sequence

(1.3.2) forms an exact subcomplex of the complex (1.3.1).

R ⊂−→ Σh
curl−−→ Vh

div−→ Wh → 0. (1.3.2)

Since (1.3.2) is a subcomplex of (1.3.1), there holds Σh ⊂ H2(Ω), Vh ⊂ H1(Ω) and Wh ⊂
L2(Ω), that is, the finite element spaces are conforming. To verify the exactness of (1.3.2),

we need to show that for every q ∈ Wh, there exists v ∈ Vh satisfying div(v) = q, and if

v ∈ Vh with div(v) = 0, then v = curl(z) for some z ∈ Σh. Along with an estimate of the

right–inverse, this result also yields inf–sup stability.

In n–dimensions, we view the functions in H1(Ω) and L2(Ω) as (n−1)-forms and n-forms,
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respectively. In particular, if v ∈ H1(Ω) with v = (v(1), v(2), . . . , v(n))t and q ∈ L2(Ω), then

v ∼
n∑
j=1

v(j) dx1 ∧ · · · ∧ d̂xj ∧ . . . dxn, q ∼ q dx1 ∧ . . . dxn,

where hat indicates a suppressed argument. Let d denote the exterior differentiation operator

and set HΛl(Ω) as the space of L2(Ω) l–forms with exterior derivatives in L2(Ω). Then the

n–dimensional de Rham complex with minimal L2(Ω) smoothness is given by [4, 5]

R d−→ HΛ0(Ω)
d−→ . . .

d−→ HΛn−2(Ω)
d−→ HΛn−1(Ω)

d−→ HΛn(Ω) → 0. (1.3.3)

The n–dimensional Stokes complex is obtained by imposing additional regularity in the

second–to–last and third–to–last spaces in the sequence as follows:

R d−→ HΛ0(Ω)
d−→ . . .

d−→ ĤΛn−2(Ω)
d−→ H1Λn−1(Ω)

d−→ HΛn(Ω) → 0, (1.3.4)

where H1Λn−1(Ω) denotes the space of (n− 1)-forms with coefficients in H1(Ω) and

ĤΛn−2(Ω) := {ω ∈ HΛn−2(Ω) : dω ∈ H1Λn−1(Ω)}.
Starting with a HΛ0(Ω)–conforming finite element space, we follow the sequence (1.3.4) to

derive a finite element pair Vh ×Wh with the desired properties.

Throughout this dissertation, we refer to the following theorem in obtaining the stability

results.

Theorem 1 (Theorem 2.1.2 in [19]). For every q ∈ L2
0(Ω), there exists v ∈ H1

0(Ω) such that

div(v) = q,

‖v‖H1(Ω) ≤ c‖q‖L2(Ω),

where c > 0 is a constant independent of the discretization parameter h.

1.4 OUTLINE

In the next chapter, we describe our method for constructing a pair of conforming, stable

and divergence–free finite element spaces for the Stokes problem on rectangular meshes. We

discuss the stability and the approximation properties of the element pairs we propose. In

the third chapter, we explain the extension of the two–dimensional finite element spaces

constructed on rectangular meshes to n–dimensions, and state the stability and the con-

vergence characteristics of the new element pairs. Additionally, we derive reduced elements
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with less global degrees of freedom and carry out the convergence analysis for the reduced

elements. In the fourth chapter, we introduce a macro finite element method on convex

quadrilateral meshes. We construct a Fortin operator to prove the inf–sup stability on gen-

eral shape–regular quadrilateral meshes and derive convergence results. Furthermore, we

compute a post–processed pressure solution locally to improve the rate of convergence of our

pressure approximations. In addition, we describe the implementation process of the (veloc-

ity) macro finite element, and provide numerical experiments that support the theoretical

results. Moreover, we provide experimental results of our method for the Navier-Stokes

equations.
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2.0 FEM FOR THE STOKES PROBLEM ON RECTANGULAR GRIDS

In this chapter, we construct a pair of conforming and stable finite elements that yield

divergence–free velocity approximations on rectangular grids. We assume that Ω ⊂ R2 is an

open, bounded, simply–connected, polygonal domain with edges parallel to the coordinate

axes. We denote by Qh the shape–regular rectangular mesh of Ω. To each element Q ∈ Qh,
we assign hQ = diam(Q), and then define the global mesh size h := max

Q∈Qh

hQ. Additionally,

we let VQ := {ai}4
i=1 and EQ := {Li}4

i=1 denote the vertices and the edges of a rectangular

element Q ∈ Qh. Moreover, we assume that the elements of VQ are ordered in a counter-

clockwise fashion starting at a1 = (x0, y0) and ending at a4 = (x0, y1) (See Figure 2.1).

The space of polynomials of degree less than or equal to m in x and n in y is denoted by

Pm,n. The vector–valued functions and variables are written in bold–face. For example,

H1(Ω) = (H1(Ω))2.

2.1 THE LOCAL FINITE ELEMENT SPACES

2.1.1 The C1 Bogner-Fox-Schmidt Finite Element Space

We utilize the Bogner-Fox-Schmidt(BFS) rectangular element in building the finite element

space Σh(Q) = P3,3(Q) [13]. The degrees of freedom of Σh(Q) shown in Figure 2.1 are given

by

SΣ = {z(ai), ∇z(ai),
∂2z

∂x∂y
(ai) : ai ∈ VQ}.

Lemma 1. The degrees of freedom stated in SΣ are unisolvent on Σh(Q).

Proof. Note that the cardinality of the set SΣ equals the dimension of the polynomial space

P3,3(Q). Therefore, it suffices to prove that if z nullifies SΣ, then z = 0 in Q.
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If z ∈ Σh(Q), then we may write z(x, y) = s1(x)s2(y), where s1 and s2 are univariate cubic

polynomials. Then, if z nullifies SΣ, we have

s1(x0)s2(y0) =s1(x1)s2(y0) = s1(x0)s2(y1) = s1(x1)s2(y1) = 0,

s′1(x0)s2(y0) =s′1(x1)s2(y0) = s′1(x0)s2(y1) = s′1(x1)s2(y1) = 0,

s1(x0)s′2(y0) =s1(x1)s′2(y0) = s1(x0)s′2(y1) = s1(x1)s′2(y1) = 0.

On L4, z(x, y) = s1(x0)s2(y), and if s1(x0) 6= 0, then s′2(y0) = s′2(y1) = s2(y0) = s2(y1) = 0.

This implies that s2|L4 = 0 since s2 ∈ P3(Q). Therefore, z|L4 = 0.

Similar computations show that z|∂Q = 0. Thus, z = α bQ, where α ∈ P1,1(Q) and bQ is a

bubble function. More precisely, bQ is a biquadratic polynomial that vanishes on ∂Q, takes

the value one at the center of Q and is nonnegative in Q. If we denote by bi a non–trivial

linear function that vanishes on Li for every 1 ≤ i ≤ 4, then we may write bQ = b1b2b3b4.

Moreover, we have ∂z
∂x∂y

(ai) = 0 for all 1 ≤ i ≤ 4, therefore, z has b2
Q as a factor. Since

b2
Q ∈ P4,4, this implies that z = 0 in Q.

2.1.2 The Velocity Space

We define the local velocity space as Vh(Q) = P3,2(Q)× P2,3(Q).

The degrees of freedom of Vh(Q) illustrated in Figure 2.1 are given by the set

Sv = {v(ai),
∂v1

∂x
(ai),

∂v2

∂y
(ai) : v = (v1, v2), ai ∈ VQ,

∫
Q

v · κκκ : κκκ ∈ P1,0(Q)× P0,1(Q),∫
Li

v · n : Li ∈ EQ},

where n denotes the (outward) unit normal vector.

Lemma 2. The degrees of freedom stated in Sv are unisolvent on Vh(Q).

Proof. Since dim(Vh(Q)) = 24 equals the cardinality of the set Sv, it suffices to show that

if v nullifies Sv, then v = 0 in Q.

We may write v1(x, y) = s1(x)s2(y), where s1 and s2 are cubic and quadratic polynomials,

respectively. Then, if v nullifies Sv, the following holds

v1(x0, y0) = s1(x0)s2(y0) = v1(x0, y1) = s1(x0)s2(y1) = 0,

v1(x1, y0) = s1(x1)s2(y0) = v1(x1, y1) = s1(x1)s2(y1) = 0,
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∂v1

∂x
(x0, y0) = s′1(x0)s2(y0) =

∂v1

∂x
(x0, y1) = s′1(x0)s2(y1) = 0,

∂v1

∂x
(x1, y0) = s′1(x1)s2(y0) =

∂v1

∂x
(x1, y1) = s′1(x1)s2(y1) = 0,∫

L3
v1 =

∫
L4
v1 = 0,∫

Q
v1 κ1 + v2 κ2 = 0, for all κκκ = (κ1, κ2) ∈ P1,0(Q)× P0,1(Q).

On L1, v1(x, y) = s1(x)s2(y0), and if s2(y0) 6= 0, then s1(x0) = s1(x1) = s′1(x0) = s′1(x1) = 0.

This implies that s1|L1 = 0 since s1 ∈ P3(Q). Thus, v1|L1 = 0. Similar arguments show that

v1|L2 = 0.

On L4, v1(x, y) = s1(x0)s2(y), and if s1(x0) 6= 0, then s2(y0) = s2(y1) = 0. Moreover,∫
L4 v1 = 0 implies that s2(y∗) = 0 for some y∗ ∈ (y0, y1). As a result, we have s2|L4 = 0

since s2 ∈ P2(Q). Therefore, v1|L4 = 0. Similar arguments show that v1|L3 = 0. Hence,

v1 ∈ H1
0 (Q) ∩ P3,2(Q). Therefore, we may write v1 = q1bQ, where bQ ∈ P2,2(Q) is a bubble

function and q1 ∈ P1,0(Q).

Similar computations show that v2 ∈ H1
0 (Q) ∩ P2,3(Q). Hence, we may write v2 = q2bQ

where q2 ∈ P0,1(Q). Thus, we have v|∂Q = 0.

In order to show that v = 0 in Q, we need to verify that q1 = q2 = 0 in Q. Note that∫
Q v · κκκ = 0 for all κκκ = (κ1, κ2) ∈ P1,0(Q) × P0,1(Q). Letting κκκ = (q1, q2) gives

∫
Q v · κκκ =∫

Q(q2
1 + q2

2) bQ = 0. Since bQ > 0 in Q, this implies that (q2
1 + q2

2) = 0 on Q, therefore,

q1 = q2 = 0 in Q. As a result, v = 0 in Q.

2.1.3 The Pressure Space

We define the local pressure space as Wh(Q) = P2,2(Q).

The degrees of freedom of Wh(Q) shown in Figure 2.1 are as follows:

Sq = {q(ai),
∫
Q
q r : r ∈ P2,2(Q), r(ai) = 0, ai ∈ VQ}.
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a1 a2

a3a4

L3

L1

L2

L4

The BFS Element, Σh(Q).

a1 a2

a3a4

a1 a2

a3a4

The Velocity Elements, Vh(Q).

a1 a2

a3a4

The Pressure Element, Wh(Q).

Figure 2.1: Degrees of freedom on a rectangular element. Solid circles indicate function
evaluations, larger circles indicate gradient evaluations and arrows indicate derivative eval-
uations.
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Lemma 3. The degrees of freedom stated in Sq are unisolvent on Wh(Q).

Proof. Note that the cardinality of the set Sq equals dim(Wh(Q)) = 9. If q nullifies Sq, then

q(ai) = 0 and
∫
Q q r = 0 for all r ∈ P2,2(Q) that satisfies r(ai) = 0. Choosing r = q yields∫

Q q
2 = 0, and this implies q = 0 in Q. As a result, the given set of degrees of freedom

determines Wh(Q).

2.1.4 A Local Characterization of the Divergence Operator

In this section, we impose boundary conditions on the local finite element spaces and prove

a local inf–sup stability condition. To this end, on each Q ∈ Qh, we define the spaces

• Σh,0(Q) = H2
0 (Q) ∩ Σh(Q),

• Vh,0(Q) = H1
0(Q) ∩Vh(Q),

• Wh,0(Q) = {q ∈ Wh(Q) :
∫
Q q = 0, q(ai) = 0 at ∀ai ∈ VQ}.

Lemma 4. The space Σh,0(Q) is the trivial set, i.e.,

Σh,0(Q) = {0}.

Proof. If z ∈ Σh,0(Q), then z = b2
Qw where bQ ∈ H2

0 (Q) is a biquadratic bubble function and

w ∈ P1,1(Q). Since b2
Q ∈ P4,4(Q), we conclude that w = 0 in Q, therefore, z = 0 in Q.

Lemma 5. There holds

div(Vh,0(Q)) ⊆ Wh,0(Q).

Proof. Let r ∈ div(Vh,0(Q)). Then, there exists v ∈ Vh,0(Q) such that div(v) = r. Since

v ∈ H1
0(Q), the divergence theorem yields∫

Q
r =

∫
Q
div(v) =

∫
∂Q

v · n = 0,

where n denotes the unit (outward) normal vector to ∂Q. Moreover, at each vertex ai ∈ VQ,

r(ai) = div(v(ai)) =
∂v1

∂x
(ai) +

∂v2

∂y
(ai) = 0,

since v|∂Q = 0 implies that ∂vi
∂x

(ai) = ∂vi
∂y

(ai) = 0. Thus, r ∈ Wh,0(Q).

Lemma 6. The kernel of the divergence operator acting on Vh,0(Q) satisfies

Ker(div(Vh,0(Q))) = curl(Σh,0(Q)) = {0}.
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Proof. By Lemma 4, we have curl(Σh,0(Q)) = {0}. Therefore, it suffices to show that

Ker(div(Vh,0(Q))) ⊆ curl(Σh,0(Q)). Let v ∈ Ker(div(Vh,0(Q))), then v ∈ Vh,0(Q) and

div(v) = 0. This implies that v = curl(z) for some z ∈ H2
0 (Q) [24]. In addition, the

definitions of the spaces Vh(Q) and Σh(Q) imply that z ∈ Σh(Q). Thus, z ∈ Σh,0(Q). This

yields the desired inclusion.

Theorem 2. The mapping div : Vh,0(Q)→ Wh,0(Q) is bijective, i.e.,

div(Vh,0(Q)) = Wh,0(Q) and Ker(div(Vh,0(Q))) = {0}.

Proof. Lemmas 5-6 imply that it suffices to show that dim(div(Vh,0(Q))) = dim(Wh,0(Q))

to verify the bijectivity of the divergence map.

Since there are 5 linearly independent constraints imposed on the space Wh(Q) in the defi-

nition of Wh,0(Q), we have dim(Wh,0) = dim(Wh)− 5 = 4. Furthermore, by the rank-nullity

theorem, Lemma 6 and the definition of Vh,0, we have

dim(div(Vh,0(Q)) = dim(Vh,0(Q))− dim(Ker(div(Vh,0(Q)))

= dim(Vh,0(Q))− 0 = dim(P1,0 × P0,1)− 0 = 4. (2.1.1)

Hence, div(Vh,0(Q)) = Wh,0(Q), therefore, for any q ∈ Wh,0(Q), there exists v ∈ Vh,0(Q)

such that div(v) = q. Moreover, Ker(div(Vh,0(Q))) = {0} implies that v is unique. Thus,

div : Vh,0(Q)→ Wh,0 is bijective.

We define a reference element Q̂ and an affine transformation that maps Q̂ to a physi-

cal element Q. We utilize the unit square as the reference element Q̂ and consider the

transformation FQ : Q̂ → Q defined as FQ(x̂) = Bx̂ + b, where B ∈ R2×2, b ∈ R2 and

x̂ = (x̂, ŷ) ∈ R2. It is easy to see that DFQ = B.

An affine transformation maps points (resp. edges) to points (resp. edges), and preserves

parallelism, convexity and colinearity [32]. Moreover, the inverse of an affine transformation

is also an affine transformation. Therefore, we may write FQ as follows:

FQ(x̂, ŷ) = (x0 + x̂(x1 − x0), y0 + ŷ(y1 − y0)) = (x, y).

Setting hx := x1 − x0 and hy := y1 − y0 and using these in the definition of FQ, we write

B =

hx 0

0 hy

 , b =

x0

y0

 .
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The shape–regularity condition implies that hQ ≈ hx ≈ hy. We note that ‖B‖ ≤ chQ,

‖B−1‖ ≤ ch−1
Q , det(DFQ) ≤ ch2

Q and det(DF−1
Q ) ≤ ch−2

Q .

Then, we define the velocity space Vh,0(Q̂) on the reference element. Since B is diagonal,

v ∈ Vh,0(Q) implies that v̂ := v ◦ FQ ∈ Vh,0(Q̂).

Lemma 7. |‖v̂‖| = ‖d̂iv(v̂)‖L2(Q̂) defines a norm on Vh,0(Q̂).

Proof. The following arguments show that |‖ · ‖| defines a norm on Vh,0(Q̂).

1. (Positivity) Theorem 2 implies that |‖v̂‖| = ‖d̂iv(v̂)‖L2(Q̂) = 0 if and only if v̂ = 0.

2. (Scalar multiplication) |‖ĉv‖| = ‖d̂iv(ĉv)‖L2(Q̂) = c‖d̂iv(v̂)‖L2(Q̂) = c|‖v̂‖|.
3. (Triangle inequality) |‖v̂ + ω̂ωω‖| ≤ ‖d̂iv(v̂)‖L2(Q̂) + ‖d̂iv(ω̂ωω)‖L2(Q̂) = |‖v̂‖|+ |‖ω̂ωω‖|.

Lemma 8. For q ∈ Wh,0(Q), define q̂ through the relation q̂ = q ◦ FQ. Then, q̂ ∈ Wh,0(Q̂).

Proof. Since FQ is affine, q ∈ P2,2(Q) implies that q̂ ∈ P2,2(Q̂) and q(ai) = 0 yields q̂(âi) = 0.

Furthermore, by a change of variables, we have

0 =

∫
Q
q(x) =

∫
Q̂
q̂(x̂)|det(DFQ(x̂))|.

Since |det(DFQ(x̂))| is constant, this implies that∫
Q̂
q̂(x̂) = 0.

Hence, q̂ ∈ Wh,0(Q̂).

Theorem 3. For every q ∈ Wh,0(Q), there exists v ∈ Vh,0(Q) such that div(v) = q and

‖v‖H1(Q) ≤ c‖q‖L2(Q),

where c > 0 is a constant independent of the mesh size. Therefore, the (local) inf-sup

condition

inf
q∈Wh,0(Q)\{0}

sup
v∈Vh,0(Q)\{0}

∫
Ω
q div(v)

‖v‖H1(Q)‖q‖L2(Q)

≥ c > 0

holds. This implies that the Vh,0(Q)×Wh,0(Q) pair is locally stable.

Proof. By Theorem 2, for q ∈ Wh,0(Q), there exists v ∈ Vh,0(Q) that satisfies div(v) = q.

In addition, by scaling, we have

‖d̂iv(v̂)‖2
L2(Q) =

∫
Q̂
|d̂iv(v̂)|2 dx̂ ≤

∫
Q
h2
Q| div(v)|2 |det(DF−1

Q )| dx
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≤ c

∫
Q
| div(v)|2 dx = c‖div(v)‖2

L2(Q),

where c > 0 is an hQ-independent constant. Moreover, by Lemma 7 and the equivalence of

norms in finite dimensions, we have

‖v̂‖H1(Q̂) ≤ c‖d̂iv(v̂)‖L2(Q̂).

Then, again by scaling, we obtain

‖v‖H1(Q) ≤ c‖v̂‖H1(Q̂) ≤ c‖d̂iv(v̂)‖ ≤ c‖div(v)‖ = c‖q‖L2(Q).

2.2 THE GLOBAL FINITE ELEMENT SPACES

In this section, we introduce the global finite element spaces. With the help of the Scott-

Zhang interpolant [42], trace and inverse inequalities and the Nitsche’s method, we verify

the global conformity and stability constraints.

We denote by Q, V and E the sets of faces, vertices and edges in the mesh. In addition, we

let | · | stand for the cardinality measure of a set. For instance, |V| = card(V).

The local finite element spaces introduced in Section 2.1 induce the global spaces

• Σh ={z ∈ H2(Ω): z|Q ∈ Σh(Q), ∂2z
∂x∂y

(a) is C0, ∀a ∈ V , ∀Q ∈ Qh },
• Vh={v ∈ H1(Ω): v|Q ∈ Vh(Q), ∂vi

∂xi
(a) is C0, ∀a ∈ V , ∀Q ∈ Qh },

• Wh= {q ∈ L2(Ω) : q|Q ∈ Wh(Q), q(a) is C0, ∀a ∈ V , ∀Q ∈ Qh }.

Lemma 9. There holds

Ker(div(Vh)) = curl(Σh). (2.2.1)

Proof. If v ∈ curl(Σh), then there exists z ∈ Σh that satisfies curl(z) = v. It is easy

to see that v ∈ Ker(div(Vh)). On the other hand, if v ∈ Ker(div(Vh)), then v ∈ Vh

and div(v) = 0. Moreover, since Ω is simply-connected, there exists z ∈ H2(Ω) such that

v = curl(z) [22]. From the definition of the space Vh, it follows that v|Q ∈ P3,2(Q)×P2,3(Q)

and ∂vi
∂xi

is C0 at the vertices. As a result, z|Q ∈ P3,3(Q) and ∂2z
∂x∂y

is C0 at the vertices,

therefore, z ∈ Σh. Thus, Ker(div(Vh)) ⊆ curl(Σh).

Theorem 4. The Stokes complex (1.3.2) is exact provided Ω is simply–connected.
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Proof. By Lemma 9, it suffices to show that div : Vh → Wh is surjective. Clearly, div(Vh) ⊆
Wh, therefore, we need to show that dim(div(Vh)) = dim(Wh) to complete the proof.

By the rank-nullity theorem, and Lemmas 1 and 2, we have

dim(div(Vh)) = dim(Vh)− dim(curl(Σh)) = dim(Vh)− (dim(Σh)− 1)

= (2(2|Q|+ 2|V|) + |E|)− 4|V|+ 1

= 4|Q|+ 4|V|+ |E| − 4|V|+ 1

= 4|Q|+ |E|+ 1.

Thus, by Lemma 3 and the Euler’s identity on simply–connected domains (Lemma 4.41 in

[28]), we obtain

dim(Wh)− dim(div(Vh)) = (|V|+ 5|Q|)− 4|Q| − |E| − 1 = |V|+ |Q| − |E| − 1 = 0.

This implies that div(Vh) = Wh, and the result follows.

Lemma 10 (Lemma 2.2 in [22]). For any simply–connected domain S with piecewise smooth

boundary ∂S, there exists a constant c > 0 such that ‖v‖L2(∂S) ≤ c‖v‖1/2

L2(S)‖v‖
1/2

H1(S) for all

v ∈ H1(S).

By scaling, this implies that for every v ∈ H1(Q), the estimate

‖v‖2
L2(∂Q) ≤ c(h−1

Q ‖v‖2
L2(Q) + hQ‖v‖2

H1(Q)),

holds on every element Q ∈ Qh.

Lemma 11. For any q ∈ Wh, there exists v(1) ∈ Vh that satisfies (q−div(v(1)))|Q ∈ Wh,0(Q)

for all Q ∈ Qh. Moreover, ‖v(1)‖H1(Ω) ≤ c‖q‖L2(Ω).

Proof. For q ∈ Wh ⊂ L2(Ω), there exists ωωω ∈ H1(Ω) such that div(ωωω) = q and ‖ωωω‖H1(Ω) ≤
c‖q‖L2(Ω) (Lemma 2.2 in [9]). Let Ihωωω : H1(Ω)→ P2,2(Ω) be the Scott-Zhang interpolant of

ωωω [42].

Define v(1) = (v
(1)
1 , v

(1)
2 ) ∈ Vh that satisfies the following conditions:

(i) v(1)(a) = Ihωωω(a), ∀a ∈ V .

(ii)
∂v

(1)
1

∂x
(a) =

∂v
(1)
2

∂y
(a) = q(a)

2
, ∀a ∈ V .

(iii)
∫
Q v(1) · κκκ =

∫
Qωωω · κκκ, ∀κκκ ∈ P1,0 × P0,1, ∀Q ∈ Qh.

(iv)
∫
e
v(1) · n =

∫
e
ωωω · n, ∀e ∈ E .
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Note that condition (iv) yields
∫
∂Q v(1) · n =

∫
∂Qωωω · n for all Q ∈ Qh and condition (ii)

implies that div(v(1)(a)) = q(a) at all a ∈ V .

Then, by the divergence theorem and condition (iv), we deduce that∫
Q
q − div(v(1)) =

∫
Q
q −

∫
Q
div(v(1)) =

∫
Q
q −

∫
∂Q

v(1) · n

=

∫
Q
q −

∫
∂Q

ωωω · n =

∫
Q
q − div(ωωω) = 0.

Thus, (q − div(v(1)))|Q ∈ Wh,0(Q). Moreover, by the triangle inequality, we have

‖v(1)‖H1(Q) ≤ ‖v(1) − Ihωωω‖H1(Q) + ‖Ihωωω‖H1(Q). (2.2.2)

Since (v(1) − Ihωωω)|Q ∈ Vh(Q), by Lemma 2 and scaling, we obtain

‖v(1) − Ihωωω‖2
H1(Q) ≈

∑
aj∈VQ

(
|(v(1) − Ihωωω)(aj)|2 + h2

Q|∇(v(1) − Ihωωω)(aj)|2
)

+
∑
Li∈EQ

h−1
e |
∫
Li

(v(1) − Ihωωω) · n |2 + h−2
Q sup

r∈D
|
∫
Q

(v(1) − Ihωωω) · r |2,

where D = {r : r|Q ∈ P1,0(Q)× P0,1(Q), ‖r‖2
L2(Q) = 1}.

Combining this with the conditions stated in the construction of v(1), using scaling arguments

and the Cauchy Schwarz inequality, we obtain

‖v(1) − Ihωωω‖2
H1(Q) ≤c

( ∑
aj∈VQ

h2
Q(|q(aj)|2 + |∇Ihωωω(aj)|2) +

∑
Li∈EQ

h−1
e |
∫
Li

(ωωω − Ihωωω) · n |2

+ h−2
Q sup

r∈D
|
∫
Q

(ωωω − Ihωωω) · r |2
)

≤c
( ∑
aj∈VQ

h2
Q(|q(aj)|2 + |∇Ihωωω|2) + h−1

Q ‖ωωω − Ihωωω‖2
L2(∂Q)

+ h−2
Q ‖ωωω − Ihωωω‖2

L2(Q)

)
. (2.2.3)

Again by scaling, we have∑
aj∈VQ

h2
Q|∇Ihωωω(aj)|2 ≤ c‖Ihωωω‖2

H1(Q), and
∑
aj∈VQ

h2
Q|q(aj)|2 ≤ c‖q‖2

L2(Q). (2.2.4)

Moreover, by Lemma 10 and the approximation properties of the Scott–Zhang interpolant

[42], we obtain

h−1
Q ‖ωωω − Ihωωω‖2

L2(∂Q) ≤ c
(
h−2
Q ‖ωωω − Ihωωω‖2

L2(Q) + ‖ωωω − Ihωωω‖2
H1(Q)

)
≤ c‖ωωω‖2

H1(ω(Q)) (2.2.5)

where ω(Q) denotes the patch of rectangles that touch Q. Using (2.2.4), (2.2.5) and the

approximation and the stability properties of the Scott-Zhang interpolant [42] in (2.2.3), we
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derive the estimate

‖v(1) − Ihωωω‖2
H1(Q) ≤c

(
‖Ihωωω‖2

H1(Q) + ‖q‖2
L2(Q) + ‖ωωω‖2

H1(ω(Q))

)
≤ c
(
‖q‖2

L2(Q) + ‖ωωω‖2
H1(ω(Q))

)
(2.2.6)

Combining (2.2.2) and (2.2.6), and summing over Q ∈ Qh yields

‖v(1)‖H1(Ω) ≤ ‖ωωω‖H1(Ω) ≤ c‖q‖L2(Ω).

Corollary 1. Let v(1) and q be defined as in the proof of Lemma 11. Then, there exists

v(2) ∈ Vh that satisfies v(2)|Q = (q−div(v(1)))|Q and ‖v(2)‖H1(Ω) ≤ c(‖q‖L2(Ω) +‖v(1)‖H1(Ω)).

Proof. Since (q − div(v(1)))|Q ∈ Wh,0(Q), by Theorem 2, there exists v
(2)
Q ∈ Vh,0(Q) that

satisfies div(v
(2)
Q ) = (q − div(v(1)))|Q and it is easy to see that

‖v(2)
Q ‖H1(Q) ≤ c‖q − div(v(1))‖L2(Q) ≤ c(‖q‖L2(Q) + ‖v(1)‖H1(Q)). (2.2.7)

Let v(2) be such that v(2)|Q = v
(2)
Q . Since v

(2)
Q ∈ Vh,0(Q) ⊂ H1

0(Q),
∂v

(2)
1

∂x
and

∂v
(2)
2

∂y
vanish

at ∀a ∈ VQ. This implies that the partial derivatives
∂v

(2)
1

∂x
and

∂v
(2)
2

∂y
are continuous at

∀a ∈ V . As a result, v(2) ∈ Vh. Finally, summing (2.2.7) over Q ∈ Qh yields ‖v(2)‖H1(Ω) ≤
c(‖q‖L2(Ω) + ‖v(1)‖H1(Ω)).

Theorem 5. For any q ∈ Wh, there exists v ∈ Vh such that div(v) = q and

‖v‖H1(Ω) ≤ c‖q‖L2(Ω).

where c is a constant independent of the discretization parameter h. This implies the global

inf–sup stability condition

inf
q∈Wh\{0}

sup
v∈Vh\{0}

∫
Ω
q div(v)

‖v‖H1(Ω)‖q‖L2(Ω)

≥ c > 0.

Proof. For q ∈ Wh, let v(1) and v(2) be defined as in Lemma 11 and Corollary 1, respectively,

and set v := v(1) + v(2). Then, we note that v ∈ Vh and div(v) = q. Combining the results

of Lemma 11 and Corollary 1, we derive the desired estimate

‖v‖H1(Ω) ≤ c(‖v(1)‖H1(Ω) + ‖v(2)‖H1(Ω)) ≤ c(‖v(1)‖H1(Ω) + ‖q‖L2(Ω)) ≤ ‖q‖L2(Ω).
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2.3 THE GLOBAL FINITE ELEMENT SPACES WITH IMPOSED

BOUNDARY CONDITIONS

In this section, we impose homogeneous boundary conditions on the finite element spaces

defined in Section 2.2. We let Vb ⊂ V denote the boundary vertices and Vc denote the corner

vertices of the mesh. In addition, we denote by Eb the boundary edges, and we let Ebx ⊂ Eb

and Eby ⊂ Eb stand for the vertical and horizontal boundary edges of the mesh, respectively.

Moreover, we denote by Vb,x (resp. Vb,y) the non–corner boundary vertices where x (resp.

y) is constant. Hence, we may decompose the boundary vertices and the boundary edges as

follows: Vb = Vb,x ∪ Vb,y ∪ Vc and Eb = Ebx ∪ Eby .
A candidate list of global finite element spaces with boundary conditions is:

• Σ0
h = Σh ∩H2

0 (Ω),

• V0
h = Vh ∩H1

0(Ω),

• W 0
h = Wh ∩ L2

0(Ω).

We note that z ∈ Σh is in Σ0
h if and only if:

(i) z(a) = 0, ∀a ∈ Vb,
(ii) ∇z(a) = 0, ∀a ∈ Vb,

(iii) ∂2z
∂x∂y

(a) = 0, ∀a ∈ Vb.
The number of constraints imposed on Σh in (i)-(iii) is 4|Vb|. Thus, we have

dim(Σ0
h) = dim(Σh)− 4|Vb| = 4|V| − 4|Vb|.

Simiarly, we note that v ∈ Vh is in V0
h if and only if:

(i) v(a) = 0, ∀a ∈ Vb,
(ii) ∂v1

∂x
(a) = 0, ∀e ∈ Vb,y ∪ Vc,

(iii) ∂v2
∂y

(a) = 0, ∀e ∈ Vb,x ∪ Vc,
(iv)

∫
e
v1 = 0, ∀e ∈ Ebx,

(v)
∫
e
v2 = 0, ∀e ∈ Eby .

The number of constraints imposed on Vh in (i)-(v) is 3|Vb|+ |Vc|+ |Eb|. We then have

dim(V0
h) = dim(Vh)− 3|Vb| − |Vc| − |Eb| = (4|Q|+ 4|V|+ |E)|)− 3|Vb| − |Vc| − |Eb|.

On the other hand, there is only one constraint imposed on Wh in the definition of the space

W 0
h . Therefore, dim(W 0

h ) = dim(Wh)− 1 = (4|Q|+ |E|+ 1)− 1 = 4|Q|+ |E|.
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Lemma 12. There holds Ker(div(V0
h)) = curl(Σ0

h).

Proof. The inclusion curl(Σ0
h) ⊆ Ker(div(V0

h)) is trivial, thus, it suffices to prove the in-

clusion Ker(div(V0
h)) ⊆ curl(Σ0

h). If v ∈ Ker(div(V0
h)), then v ∈ V0

h and div(v) = 0.

Moreover, there exists z ∈ H2(Ω) such that v = curl(z). Since v|Q ∈ Vh(Q), we have

z|Q ∈ Σh(Q). In addition, the conditions (i)-(v) imposed on Vh in the definition of the

space V0
h imply that z satisfies the conditions (i)-(iii) imposed on Σh in the definition of the

space Σ0
h. Hence, z ∈ Σ0

h, and this implies that Ker(div(V0
h)) ⊆ curl(Σ0

h).

By Lemma 12 and the rank-nullity theorem, we have

dim(W 0
h )− dim(div(V0

h)) = dim(W 0
h )− (dim(V0

h)− dim(Ker(div(V0
h))))

= dim(W 0
h )− (dim(V0

h)− dim(curl(Σ0
h)))

= dim(W 0
h )− (dim(V0

h)− dim(Σ0
h)). (2.3.1)

From the dimension analysis, it is easy to see that (2.3.1) implies

dim(Σ0
h) + dim(W 0

h )− dim(V0
h) =(4|V| − 4|Vb|) + (4|Q|+ |E|)− 4|Q| − 4|V| − |E|

+ 3|Vb|+ |Vc|+ |Eb| = −|Vb|+ |Vc|+ |Eb|

=|Vc| > 0,

since |Eb| = |Vb|. As a result, (Σ0
h,V

0
h,W

0
h ) does not form an exact sequence. Moreover, this

result implies that the pressure space is larger than desired.

Therefore, we define the global finite element spaces as follows:

(i) Σh,0 = Σh ∩H1
0 (Ω),

(ii) Vh,0 = {vh ∈ Vh : (vh · n)|∂Ω = 0},
(iii) Wh,0 = Wh ∩ L2

0(Ω).

We note that z ∈ Σh is in Σh,0 if and only if:

(i) z(a) = 0, ∀a ∈ Vb,
(ii) ∂z

∂x
(a) = 0, ∀a ∈ Vb,y ∪ Vc,

(iii) ∂z
∂y

(a) = 0, ∀a ∈ Vb,x ∪ Vc.

Thus, the number of constraints imposed on Σh is: 2|Vb|+ |Vc|.
As a result, dim(Σh,0) = dim(Σh)− 2|Vb| − |Vc| = 4|V| − 2|Vb| − |Vc|.
Similarly, we note that vh ∈ Vh is in Vh,0 if and only if:
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(i) v1(a) = 0, ∀a ∈ Vb,x ∪ Vc,
(ii)

∫
e
v1 = 0, ∀e ∈ Ebx,

(iii) v2(a) = 0, ∀a ∈ Vb,y ∪ Vc,
(iv)

∫
e
v2 = 0, ∀e ∈ Eby .

The number of constraints imposed on Vh,0 is: |Vb|+ |Vc|+ |Eb|.
Thus, dim(Vh,0) = dim(Vh)− |Vb| − |Vc| − |Eb| = 4|Q|+ 4|V|+ |E| − |Vb| − |Vc| − |Eb|.

Lemma 13. There holds Ker(div(Vh,0)) = curl(Σh,0).

Proof. As in the proof of Lemma 12, the inclusion curl(Σh,0) ⊆ Ker(div(Vh,0)) is trivial.

Thus, it suffices to show that Ker(div(Vh,0)) ⊆ curl(Σh,0). Suppose v ∈ Ker(div(Vh,0)),

then v ∈ Vh,0 such that div(v) = 0. Moreover, there exists z ∈ H1(Ω) such that v = curl(z).

Since v|Q ∈ Vh(Q), we have z|Q ∈ Σh(Q). Furthermore, the continuity of the partial

derivatives of v ∈ Vh at the vertices implies that ∂2z
∂x∂y

is continuous at the vertices. The

conditions (i) and (iii) imposed on Vh in the definition of Vh,0 yield the conditions (ii) and

(iii) imposed on Σh in the definition of Σh,0. In addition, the conditions (ii)–(iv) imposed on

Vh imply that the condition (i) imposed on Σh holds. Therefore, z ∈ Σh,0, and this implies

that Ker(div(Vh,0)) ⊆ curl(Σh,0).

Remark 2. By Lemma 3 and the Euler’s formula [28],

dim(Wh,0) = dim(Wh)− 1 = |V|+ 5|Q| − 1

= |V|+ 5|Q| − (|V|+ |Q| − |E|)

= 4|Q|+ |E|.

(2.3.2)

Theorem 6. div : Vh,0 → Wh,0 is a surjective map.

Proof. Note that div(Vh,0) = {r : r|Q ∈ P2,2(Q), div(v) = r for v ∈ Vh,0}. Let r ∈
div(Vh,0). Then, there exists v ∈ Vh,0 such that div(v) = r. Then, by the divergence

theorem, ∫
Ω

r =

∫
Ω

div(v) =

∫
∂Ω

v · n = 0.

Moreover, r is continuous at the vertices since v ∈ Vh, therefore, r ∈ Wh,0. As a result,

div(Vh,0) ⊆ Wh,0. Furthermore, by the rank–nullity theorem and Lemma 13, we have

dim(div(Vh,0)) = dim(Vh,0)− dim(Ker(div(Vh,0)) = dim(Vh,0)− dim(Σh,0)
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= (4|Q|+ 4|V|+ |E| − |Vb| − |Vc| − |Eb|)− (4|V| − 2|Vb| − |Vc|)

= 4|Q|+ |Vb| − |Eb|+ |E|.

Thus, dim(div(Vh,0)) = 4|Q|+ |E|. From (2.3.2), it follows that div(Vh,0) = Wh,0.

Now, we define a discrete H1–type norm on Vh,0 by

‖v‖2
h := ‖∇v‖2

L2(Ω) +
∑
e∈Eb

he‖
∂v

∂ne
‖2
L2(e) +

∑
e∈Eb

1

he
‖v‖2

L2(e). (2.3.3)

Lemma 14. The finite element pair Vh,0 ×Wh,0 satisfies the inf-sup stability condition

inf
q∈Wh,0\{0}

sup
v∈Vh,0\{0}

∫
Ω
q div(v)

‖v‖h‖q‖L2(Ω)

≥ c > 0,

where c > 0 is an h-independent constant.

Proof. Let v, v(1), v(2), ωωω and Ihωωω be defined as in the proof of Lemma 11, Corollary 1 and

Theorem 5. Then, the proof is similar to that of Lemma (11). By the divergence theorem,

we note that ∫
∂Ω

v · n =

∫
∂Ω

v(1) · n +

∫
∂Ω

v(2) · n =

∫
Ω

div(v(1)) +

∫
Ω

div(v(2))

=

∫
Ω

div(v(1)) +

∫
Ω

(q − div(v(1))) =

∫
Ω

q = 0,

since q ∈ Wh,0. Therefore, v ∈ Vh,0. By the triangle inequality and scaling, we have

‖v‖2
h ≤ c(‖v(1)‖2

h + ‖v(2)‖2
h). (2.3.4)

Moreover, Corollary 1 and the equivalence of norms imply

‖v(2)‖h ≤ c‖v(2)‖H1(Ω) ≤ c(‖q‖L2(Ω) + ‖v(1)‖H1(Ω)) (2.3.5)

By using the following result of the trace inequality:∑
e∈Eb

he‖
∂v

∂ne
‖2
L2(e) ≤ c‖∇v‖2

L2(Ω) (2.3.6)

in the definition of the ‖ · ‖h norm given by (2.3.3), we derive a bound on the ‖ · ‖h norm

‖v‖2
h ≤ c(‖v‖2

H1(Ω) +
∑
e∈Eb

1

he
‖v‖2

L2(e)).

This implies that ‖v(1) − Ihωωω‖2
h ≤ c(‖v(1) − Ihωωω‖2

H1(Ω) +
∑
e∈Eb

1
he
‖v(1) − Ihωωω‖2

L2(e)).

Then, by the same arguments used in the proof of Lemma 11, we deduce that

‖v(1)‖2
h ≤ c‖ωωω‖2

H1(Ω) ≤ c‖q‖2
L2(Ω). (2.3.7)

Using (2.3.7) and (2.3.5) in (2.3.4) yields ‖v‖h ≤ c‖q‖L2(Ω). As a result, the inf–sup condition
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inf
q∈Wh,0\{0}

sup
v∈Vh,0\{0}

∫
Ω
q div(v)

‖v‖h‖q‖L2(Ω)

≥ c > 0

holds for an h-independent constant c > 0.

2.4 NITSCHE’S METHOD AND THE CONVERGENCE ANALYSIS

In this section, we apply Nitsche’s method [37] to prove the existence and the uniqueness

of the numerical solution (uh, ph) for the discrete problem and analyze the approximation

properties.

Recall the Stokes system

−ν∆u +∇p = f , in Ω, (2.4.1a)

div(u) = 0, in Ω, (2.4.1b)

u = 0, on ∂Ω. (2.4.1c)

Multiplying (2.4.1a) by vh ∈ Vh,0 and integrating over Ω, we obtain

ν

∫
Ω

∇u : ∇vh − ν
∫
∂Ω

∂u

∂n
· vh −

∫
Ω

p div(vh) +

∫
∂Ω

p (vh · n) =

∫
Ω

f · vh, (2.4.2)

where n denotes the (outward) unit normal vector of ∂Ω and : denotes the Frobenius inner

product which provides ∇u : ∇vh =
∑
i,j

(∇u)ij(∇vh)ij.

Since vh ∈ Vh,0, we have (vh · n)|∂Ω = 0, therefore,
∫
∂Ω
p (vh · n) = 0.

Let t denote the unit tangent vector to ∂Ω. Then, we may write vh = (vh ·n) ·n+(vh ·t) ·t =

(vh · t) · t. Moreover, we may write

(
∂u

∂n
· vh)|∂Ω =

∂u

∂n
· (vh · t)t = ((

∂u

∂n
· n)n + (

∂u

∂n
· t)t)(vh · t)t = (

∂u

∂n
· t)(vh · t).

Thus, (2.4.2) becomes:

ν

∫
Ω

∇u : ∇vh − ν
∫
∂Ω

(
∂u

∂n
· t)(vh · t) −

∫
Ω

p div(vh) =

∫
Ω

f · vh . (2.4.3)

Let b : H1(Ω)×L2(Ω)→ R denote the bilinear form and F : H1(Ω)→ R denote the bounded

linear functional defined by the following expressions:

b(vh, p) = −
∫

Ω

p div(vh),

F (vh) =

∫
Ω

f · vh.
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Then (2.4.3) can be written as:

ν

∫
Ω

∇u : ∇vh − ν
∫
∂Ω

(
∂u

∂n
· t)(vh · t) + b(vh, p) = F (vh). (2.4.4)

Since u|∂Ω=0, we may symmetrize and stabilize (2.4.4) as follows:

ν

∫
Ω

∇u : ∇vh − ν
∑
e∈Eb

∫
e

(
(
∂u

∂ne
· t)(vh · t) + (

∂vh
∂ne
· t)(u · t)− σ

he
u · vh

)
+ b(vh, q) = F (vh),

(2.4.5)

where σ is an h-independent penalization parameter.

Let ah : (H2(Ω) + Vh,0)× (H2(Ω) + Vh,0)→ R denote the bilinear form defined by

ah(v,ωωω) = ν
(∫

Ω

∇v : ∇ωωω −
∑
e∈Eb

∫
e

((
∂v

∂ne
· t)(ωωω · t) + (

∂ωωω

∂ne
· t)(v · t)− σ

he
v ·ωωω)

)
.

The weak formulation of (2.4.1) is given by

ah(u,vh) + b(vh, p) = F (vh), ∀vh ∈ H1
0(Ω), (2.4.6a)

b(u, qh) = 0, ∀qh ∈ L2
0(Ω). (2.4.6b)

The finite element method for (2.4.6) reads:

Find (uh, ph) ∈ Vh,0 ×Wh,0 that satisfies

ah(uh,vh) + b(vh, ph) = F (vh), ∀vh ∈ Vh,0, (2.4.7a)

b(uh, qh) = 0, ∀qh ∈ Wh,0. (2.4.7b)

To prove the existence and uniqueness of the solution to (2.4.7), we need to show that ah(·, ·)
is continuous and coercive on Vh,0.

Lemma 15. With respect to the H1–type norm given by (2.3.3), ah(·, ·) is a continuous

bilinear form on (H2(Ω) + Vh,0).

Moreover, ah(·, ·) is coercive on Vh,0 provided σ is sufficiently large.

Proof. To prove the coercivity of ah(·, ·) on Vh,0, we need to show that ah(v,v) ≥ cν‖v‖2
h

holds for every v ∈ Vh,0. By the definition of ah(·, ·), we have

ah(v,v) = ν
(∫

Ω

|∇v|2 − 2
∑
e∈Eb

∫
e

∂v

∂ne
v +

∑
e∈Eb

∫
e

σ

he
|v|2
)
.

Using (2.3.6), for any ε > 0, we have

2|
∑
e∈Eb

∫
e

∂v

∂ne
v| ≤ 2

∑
e∈Eb
|
∫
e

(h−1/2
e v)(h1/2

e

∂v

∂ne
)|

≤ 2(
∑
e∈Eb

h−1
e ‖v‖2

L2(e))
1/2(
∑
e∈Eb

he‖
∂v

∂ne
‖2
L2(e))

1/2
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≤ 2c(
∑
e∈Eb

h−1
e ‖v‖2

L2(e))
1/2‖∇v‖L2(Ω)

≤ 2c(
1

2ε

∑
e∈Eb

h−1
e ‖v‖2

L2(e) +
ε

2
‖∇v‖2

L2(Ω))

=
c

ε

∑
e∈Eb

h−1
e ‖v‖2

L2(e) + cε‖∇v‖2
L2(Ω).

Applying this estimate to the definition of ah(·, ·) yields

ah(v,v) ≥ ν
(
‖∇v‖2

L2(Ω) + σ
∑
e∈Eb

1

he
‖v‖2

L2(e) − 2|
∑
e∈Eb

∂v

∂ne
vds|

)
≥ ν

(
(1− cε)‖∇v‖2

L2(Ω) + (σ − c

ε
)
∑
e∈Eb

1

he
‖v‖2

L2(e)

)
.

If we choose ε = 1
2c

, then we have σ − c
ε

= σ − 2c2. Thus, for σ ≥ 4c2,

ah(v,v) ≥ ν
(1

2
‖∇v‖2

L2(Ω) + 2c2
∑
e∈Eb

1

he
‖v‖2

L2(e)

)
≥ ν min{1

2
, 2c2}(‖∇v‖2

L2(Ω) +
∑
e∈Eb

1

he
‖v‖2

L2(e))
)
≥ cν‖v‖2

h.

As a result, ah(·, ·) is coercive on Vh,0 provided σ is sufficiently large.

To prove the continuity of ah(·, ·) on Vh,0 + H2(Ω), we need to show that |ah(v,ωωω)| ≤
cν‖v‖h‖ωωω‖h for all v, ωωω ∈ Vh,0 + H2(Ω).

By the Cauchy-Schwarz inequality, for v, ωωω ∈ Vh,0 + H2(Ω), we have

|ah(v,ωωω)|2 ≤ cν2
(
|
∫

Ω

∇ωωω : ∇v|2 +
∑
e∈Eb
|
∫
e

(
∂ωωω

∂ne
v +

∂v

∂ne
ωωω +

σ

he
ωωω · v)|2

)
≤ cν2

(
‖∇v‖2

L2(Ω)‖∇ωωω‖2
L2(Ω) +

∑
e∈Eb
|
∫
e

∂ωωω

∂ne
v|2 +

∑
e∈Eb
|
∫
e

∂v

∂ne
ωωω|2

+
∑
e∈Eb
|
∫
e

σ

he
ωωω · v)|2

)
≤ cν2

(
(‖∇v‖2

L2(Ω)‖∇ωωω‖2
L2(Ω) +

∑
e∈Eb

(he‖
∂ωωω

∂ne
‖2
L2(e))(

1

h e
‖v‖2

L2(e))

+
∑
e∈Eb

(he‖
∂v

∂ne
‖2
L2(e))(

1

h e
‖ωωω‖2

L2(e)) +
∑
e∈Eb
| σ
he
|2‖w|‖2

L2(e)‖v‖2
L2(e))

)
≤ cν2(‖∇v‖2

L2(Ω) +
∑
e∈Eb

he‖
∂v

∂ne
‖2
L2(e) +

∑
e∈Eb

1

he
‖v‖2

L2(e))(‖∇ωωω‖2
L2(Ω)

+
∑
e∈Eb

he‖
∂ωωω

∂ne
‖2
L2(e) +

∑
e∈Eb

1

he
‖ωωω‖2

L2(e))

= cν2‖v‖2
h‖ωωω‖2

h.
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Thus, ah(·, ·) is continuous on Vh,0 + H2(Ω).

The equations (2.4.6b) and (2.4.7b) suggest that the systems of equations given by (2.4.6)

and (2.4.7) can be reduced by utilizing the continuous and discrete kernels of the bilinear

form b(·, ·). The continuous and discrete kernels of b(·, ·) are given by the following sets Z

and Zh:

Z = {v ∈ H1(Ω) : b(v, q) = 0, (v · n)|∂Ω = 0, ∀q ∈ L2
0(Ω)},

Zh = {vh ∈ Vh,0 : b(vh, qh) = 0, ∀qh ∈ Wh,0}.

Therefore, the system given by (2.4.7) reduces to the system:

ah(uh,vh) = F (vh), ∀vh ∈ Zh. (2.4.8)

Since ah(·, ·) is a symmetric, coercive and continuous bilinear form on Zh, and F is a contin-

uous linear form, by the Lax-Milgram theorem [10], there exists a unique solution uh ∈ Zh

satisfying (2.4.8).

Suppose u is the velocity solution of the system given by (2.4.1). Then, since Zh ⊂ Z, for

all vh ∈ Zh, we have ah(u− uh,vh) = 0. Furthermore, by the coercivity and the continuity

of ah(·, ·) on Zh, for arbitrary vh ∈ Zh, we have

‖u− uh‖2
h ≤ ah(u− uh,u− uh) = ah(u− uh,u− vh) + ah(u− uh,vh − uh)

= ah(u− uh,u− vh) ≤ c‖u− uh‖h‖u− vh‖h.

This implies that ‖u− uh‖h ≤ c‖u− vh‖h for all vh ∈ Zh. Therefore,

‖u− uh‖h ≤ c inf
vh∈Zh

‖u− vh‖h. (2.4.9)

From Lemma 14, it follows that [13],

‖u− uh‖h ≤ c inf
vh∈Zh

‖u− vh‖h ≤ c inf
vh∈Vh,0

‖u− vh‖h. (2.4.10)

Lemma 16. Suppose that the pair (u, p) that solves (2.4.6) satisfies the regularity condition

u ∈ H3(Ω) and p ∈ H2(Ω), and let (uh, ph) be the solution of the discrete problem (2.4.7).

Then, there holds

‖u− uh‖h ≤ ch2‖u‖H3(Ω), ‖p− ph‖L2(Ω) ≤ ch2( ‖p‖H2(Ω) + ν‖u‖H3(Ω)),

where ‖ · ‖h is the H1–type norm given by (2.3.3).

Proof. Let Πh : H3(Ω) → Vh,0(Ω) be the nodal interpolant and Ph : L2(Ω) → Wh,0 be the
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L2–projection operator. Then, the following holds [10].

‖u−Πhu‖H`(Ω) ≤ ch3−`|u|H3(Ω), 0 ≤ ` ≤ 3, (2.4.11)∫
Ω

Php q =

∫
Ω

p q , ∀q ∈ Wh,0, (2.4.12)

‖p− Php‖L2(Ω) ≤ chs‖p‖Hs(Ω), 1 ≤ s ≤ 2. (2.4.13)

By the definition of the H1–type norm given by (2.3.3), (2.3.6), the trace inequalities and

(2.4.11), we obtain

‖u−Πhu‖2
h =‖∇(u−Πhu)‖2

L2(Ω) +
∑
e∈Eb

he‖
∂(u−Πhu)

∂ne
‖2
L2(e) +

∑
e∈Eb

h−1
e ‖u−Πhu‖2

L2(e)

≤‖∇(u−Πhu)‖2
L2(Ω) + c‖∇(u−Πhu)‖L2(Ω)

+
∑
e∈Eb

h−1
e (h−1‖(u−Πhu)‖2

L2(Ω) + h|u−Πhu|2H1(Ω))

≤ch4‖u‖2
H3(Ω),

Thus, we have

‖u−Πhu‖h ≤ ch2‖u‖H3(Ω).

Since Πhu ∈ Vh,0, (2.4.10) implies that the error in the velocity approximation of this scheme

satisfies

‖u− uh‖h ≤ ch2‖u‖H3(Ω). (2.4.14)

On the other hand, by the triangle inequality and (2.4.13), we have

‖p− ph‖L2(Ω) ≤ ‖p− Php‖L2(Ω) + ‖Php− ph‖L2(Ω)

≤ chs‖p‖Hs(Ω) + ‖Php− ph‖L2(Ω), 1 ≤ s ≤ 2.
(2.4.15)

Then, Lemma 14 yields

c‖ph − Php‖L2(Ω) ≤ sup
vh∈Vh,0\{0}

b(vh, ph − Php)
‖vh‖h

. (2.4.16)

Since div(vh) ∈ Wh,0, (2.4.12) and (2.4.6a) imply

ah(u,vh) + b(vh, Php) = F (vh). (2.4.17)

Subtracting (2.4.7a) from (2.4.17) yields ah(u− uh,vh) + b(vh, Php− ph) = 0.

Thus, b(vh, Php− ph) = −ah(u− uh,vh).

By the continuity of ah(·, ·) in the H1–type norm, we obtain

|b(vh, Php− ph)| = |ah(u− uh,vh)| ≤ ν‖u− uh‖h‖vh‖h. (2.4.18)
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Using (2.4.18) in (2.4.16), by (2.4.14), we derive the following result:

‖Php− ph‖L2(Ω) ≤
cν‖u− uh‖h‖vh‖h

‖vh‖h
≤ cν‖u− uh‖h ≤ cνh2‖u‖H3(Ω)

Consequently, (2.4.15) with s = 2 yields ‖p− ph‖L2(Ω) ≤ ch2( ‖p‖H2(Ω) + ν‖u‖H3(Ω)).

2.5 NUMERICAL EXPERIMENTS

In this section, we perform some numerical experiments on the domain Ω = (0, 1)2. We

assume that the viscosity constant ν = 1.

2.5.1 Experiment 1

In this experiment, the exact solutions are given by

u(x, y) =

 2x2y(x− 1)2(y − 1)2 + x2y2(2y − 2)(x− 1)2

−2xy2(x− 1)2(y − 1)2 − x2y2(2x− 2)(y − 1)2

 ,

p = 0.

2.5.2 Experiment 2

This experiment is a modified version of Experiment 1. The exact solutions are given by

u(x, y) =

 2x2y(x− 1)2(y − 1)2 + x2y2(2y − 2)(x− 1)2

−2xy2(x− 1)2(y − 1)2 − x2y2(2x− 2)(y − 1)2

 ,

p = x− y.
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Table 2.1: Experiment 1, Convergence results on rectangular meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 3.44e− 05 1.13e− 03 1.77e− 05 2.7491

1/16 4.48e− 06 2.9408 2.79e− 04 2.0180 2.50e− 06 2.8237

1/32 5.70e− 07 2.9745 6.97e− 05 2.0010 3.35e− 07 2.8997

1/64 7.19e− 08 2.9867 1.74e− 05 2.0017 4.34e− 08 2.9489

Table 2.2: Experiment 2, Convergence results on rectangular meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/4 1.5166e− 04 4.5308e− 03 1.3212e− 03

1/8 1.8236e− 05 3.0560 1.1174e− 03 2.0196 3.7532e− 04 1.8157

1/16 2.2548e− 06 3.0157 2.7862e− 04 2.0038 7.2013e− 05 2.3818

1/32 2.8105e− 07 3.0041 6.9613e− 05 2.0009 1.3184e− 05 2.4495

2.5.3 Discussion

Numerical experiments show that the velocity solution has second-order convergence in H1–

norm as the theory suggests (See Lemma 16). However, the pressure solutions exhibit su-

perconvergence (See Table 2.1, Table 2.2).

For the case with mesh size h = 1
32

, the discrete solutions for the Experiment 2 are illustrated

in Figures 2.2–2.4.
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Figure 2.2: Velocity solution, u1. Figure 2.3: Velocity solution, u2.

Figure 2.4: Pressure solution.
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3.0 FEM FOR THE STOKES PROBLEM ON CUBICAL GRIDS

In this chapter, we extend the method we introduced in Chapter 2 to n–dimensions. We

assume that Ω ⊂ Rn is an open, bounded, simply–connected domain with boundary parallel

to the coordinate axes, and define a conforming cubical partitionQh of Ω. We further assume

that every element Q ∈ Qh has boundaries parallel to the coordinate axes. For Q ∈ Qh,
hQ denotes its diameter and �s(Q) stands for the set of its s-dimensional faces with (n− s)
coordinates equal to one of two constant values. We denote the subset of �s(Q) with xi

constant by �i
s(Q) and set �̂i

s(Q) := �s(Q) \�i
s(Q).

We write the space of polynomials on a domain D ⊂ Rn of degree less than or equal to ki in

xi as P~k(D) := Pk1,k2,...,kn(D) and set Λk(D) := P~k(D) with ki = k for all i. Then, we define

the vector–valued space

ΛΛΛ−k (Q) := {v ∈ (Λk(Q))n : v(i) ∈ P~k(Q), ki = k, kj = k − 1 for i 6= j}. (3.0.1)

For instance, for n = 3, ΛΛΛ−k (Q) = Pk,k−1,k−1(Q) × Pk−1,k,k−1(Q) × Pk−1,k−1,k(Q). Note that

for n = 2 and k = 3, ΛΛΛ−3 (Q) = P3,2(Q)× P2,3(Q) which is the polynomial space forming the

local velocity space defined in Section 2.1.

For Q ∈ Qh with face S ∈ �s(Q) for 1 ≤ s ≤ n, bS denotes the bubble function with respect

to S. We note that ∇bS 6= 0 on ∂S, however, ∇bS vanishes on (s− 2)–dimensional subfaces

of S.

Lemma 17 ([2]). A function q ∈ Λk(Q) is uniquely determined by

{
∫
S

q λ : λ ∈ Λk−2(S), S ∈ �s(Q), s = 0, 1, . . . , n},

where
∫
S
q with S ∈ �0(Q) stands for the value of q at the vertex S.
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n = 2

n = 3

n = 2

n = 3

Figure 3.1: Degrees of freedom on the cubical mesh.
Degrees of freedom of the velocity (left) and pressure (right) elements in two and three
dimensions (Top half). Degrees of freedom of the reduced velocity (left) and reduced pressure
(right) elements in two and three dimensions (Bottom half).
Solid circles indicate function evaluations and the lines indicate directional derivatives.
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3.1 THE LOCAL FINITE ELEMENT SPACES

In this section, we define the local velocity and pressure finite elements. Additionally, we

derive a characterization of the divergence operator acting on the local velocity space which

is an essential tool in the stability analysis of the global spaces.

Lemma 18. Suppose v = (v(1), v(2), . . . , v(n)) ∈ ΛΛΛ−3 (Q) satisfies∫
S

v(i) = 0,

∫
S

∂v(i)

∂xi
= 0, S ∈ �(i)

s (Q), s = 0, 1, . . . ,m, (3.1.1)

for all 1 ≤ i ≤ n and for some 0 ≤ m ≤ n − 2. Then, v = 0, ∂v(i)

∂xi
= 0 on �s(Q) for all

1 ≤ i ≤ n and 0 ≤ s ≤ m.

Also, if ∫
S

v(i) = 0, S ∈ �(i)
m+1(Q),

then v = 0 on �m+1(Q).

Proof. The proof is by mathematical induction on m. Note that �(i)
0 (Q) = �0(Q) for all

1 ≤ i ≤ n, therefore, the case m = 0 is trivial.

Assume that v = 0 and ∂v(i)

∂xi
= 0 on all S ∈ �m(Q) for some m ∈ {0, 1, . . . , n − 3} and

all 1 ≤ i ≤ n. Let S ∈ �m+1(Q). Then, by the induction hypothesis, we have v = 0 and

∂v(i)

∂xi
= 0 on ∂S for all 1 ≤ i ≤ n. If xj is constant on S, then by definition, S ∈ �(j)

m+1(Q)

and v(j)|S, ∂v(j)

∂xj
|S ∈ Λ2(S). Therefore, we may write v(j)|S = bSq

(j) and ∂v(j)

∂xj
|S = bSp

(j) for

some q(j), p(j) ∈ R, and (3.1.1) implies that v(j) = ∂v(j)

∂xj
= 0 on S.

If S ∈ �̂(j)
m+1(Q), then there exist exactly two m-dimensional faces S(1), S(2) ⊂ ∂S on which

xj is constant. We denote by ∇S and ∇S(i) the surface gradient of S and S(i), respectively.

Then, we have ∇S(·) = (∇S(i)(·), ∂(·)
∂xj

). Therefore, since v(j) and ∂v(j)

∂xj
vanish on S(1) and S(2),

we have ∇Sv
(j) = 0 on S(1) and S(2). In addition, since v(j)|S ∈ Λ3(S), and v(j)|∂S = 0, we

may write v(j)|S = bSq for some q ∈ Λ1(S). As a result,

0 = ∇Sv
(j)|S(i) = q∇SbS|S(i) . (3.1.2)

Therefore, q = 0 on S(i), and since q ∈ Λ1(S), q = 0 in S. Thus, v(j) = 0 and ∂v(j)

∂xj
= 0 on S.

Thus, the proof of the first assertion follows. The same arguments can be used to prove the

second assertion.
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3.1.1 The Velocity Space

Lemma 19. A unisolvent set of degrees of freedom of the local velocity space ΛΛΛ−3 (Q) are

given by

Sv = {
∫
S

v(i),

∫
S

∂v(i)

∂xi
: S ∈ �(i)

s (Q),

∫
S

v(i) : S ∈ �(i)
n−1(Q),

∫
Q

v · κκκ : κκκ ∈ ΛΛΛ−1 (Q)},

where 0 ≤ s ≤ n− 2 and 1 ≤ i ≤ n (See Figure 3.1).

Proof. The cardinality of Sv is

2n
n−2∑
s=0

|�(i)
s (Q)|+ n|�(i)

n−1(Q)|+ dim(ΛΛΛ−1 (Q)) = 2n
n−2∑
s=0

2n−s
(
n− 1

s

)
+ 2n+ 2n

= −4n+ 4n
n−1∑
s=0

2n−s−1

(
n− 1

s

)
+ 4n

= 4n3n−1 = ΛΛΛ−3 (Q),

by the binomial formula. Thus, it suffices to show that v nullifies Sv if and only if v = 0.

Suppose that v vanishes on Sv. Then, ∂v(i)

∂xi
= 0 on �n−2(Q) and v = 0 on �n−1(Q) by

Lemma 18. If we denote by bQ the bubble function of �n(Q) = {Q}, then we may write

v = bQq for some q ∈ ΛΛΛ−1 (Q). After we set κκκ = q in
∫
Q v · κκκ = 0, we deduce that v = 0 in

Q.

Remark 3. For S ∈ �s(Q), we define an orthonormal set of vectors {n(j)
S }n−sj=1 orthogonal

to the tangent space of S. Then, we may redefine the set of degrees of freedom as follows:

S?v = {
∫
S

v · n(j)
S ,

∫
S

∂v

∂n
(j)
S

· n(j)
S : S ∈ �s(Q), (3.1.3a)∫

S

v · nS : S ∈ �n−1(Q), (3.1.3b)∫
Q

v · κκκ : κκκ ∈ ΛΛΛ−1 (Q)}, (3.1.3c)

where 0 ≤ s ≤ n− 2 and 1 ≤ j ≤ n− s.

3.1.2 The Pressure Space

We form the local pressure space by the tensor–product quadratic polynomials Λ2(Q). By

Lemma 17, any function q ∈ Λ2(Q) is uniquely determined by the set

{
∫
S

q : S ∈ �s(Q), s = 0, 1, . . . , n}.
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We define a subspace of Λ2(Q) by

Λ̆2(Q) := {q ∈ Λ2(Q) : q = 0 on all (n− 2) dimensional faces of Q}. (3.1.4)

Remark 4. (3.1.4) implies that a function q ∈ Λ̆2(Q) is uniquely determined by its average

over each (n−1) dimensional face and its average over Q, therefore, dim(Λ̆2(Q)) = (2n+1).

Lemma 20 (Lemma 3.4 in [35]). Any function q ∈ Λ2(Q) is uniquely determined by the set

of values

{
∫
S

q : S ∈ �s(Q), s = 0, 1, . . . , (n− 2),

∫
Q
q λ : λ ∈ Λ̆2(Q)}.

3.1.3 A Local Characterization of the Divergence Operator

Lemma 21. Let v ∈ ΛΛΛ−3 (Q). If div(v) = 0 and v|∂Q = 0, then v = 0 in Q.

Proof. Let v̄ denote the (n− 1)-form with the vector proxy v = (v(1), v(2), . . . , v(n)), i.e.,

v̄ =
n∑
i=1

v(i)dx1 ∧ · · · ∧ d̂xi ∧ . . . dxn,

where the hat indicates a suppressed argument. Moreover, for a vector-valued function κκκ,

denote by κ the one-form given by

κ =
n∑
i=1

κ(i)dxi.

We may state the divergence–free condition on v as dv̄ = 0, where d denotes the exterior

differentiation operator. Additionally, the boundary condition v|∂Q = 0 implies that v̄|∂Q =

0. Moreover, by the exactness of the complex (1.3.3), we deduce that there exists φ ∈
H̊Λn−2(Q) such that v̄ = dφ [4, 5], where H̊Λn−2(Q) denotes the space of L2(Q) (n − 2)-

forms with exterior derivative in L2(Q) and vanishing trace. By the Stokes Theorem, for

any κκκ ∈ ΛΛΛ−1 (Q), we have∫
Q

v · κκκ =

∫
Q
v̄ ∧ κ =

∫
Q
dφ ∧ κ = (−1)n−1

∫
Q
φ ∧ dκ = 0. (3.1.5)

since dκ = 0 for κκκ ∈ ΛΛΛ−1 (Q) as shown by the following:

dκ =
n∑
k=1

n∑
j=1

∂κ(j)

∂xk
dxk ∧ dxj =

n∑
k=1

n∑
j=1
j 6=k

∂κ(j)

∂xk
dxk ∧ dxj = 0.

Thus, (3.1.5) and Lemma 19 imply that v = 0 in Q.

Theorem 7. Define

Vh,0(Q) = ΛΛΛ−3 (Q) ∩H1
0(Q), Wh,0(Q) = Λ̆2(Q) ∩ L2

0(Q)

37



Then, div : Vh,0(Q)→ Wh,0(Q) is bijective. Moreover,

‖v‖H1(Q) ≤ c‖q‖L2(Q),

where c > 0 is a constant independent of hQ.

Therefore, Vh,0(Q)×Wh,0(Q) forms a locally inf–sup stable pair.

Proof. The definitions of Vh,0(Q) and Wh,0(Q) imply that div(Vh,0(Q)) ⊆ Wh,0(Q). There-

fore, it suffices to show that dim(div(Vh,0(Q))) = dim(Wh,0(Q)) to prove the bijectivity of

the divergence operator. By Lemma 21, dim(Ker(div(Vh,0(Q)))) = 0.

Then, by the rank nullity theorem, we have

dim(div(Vh,0(Q))) = dim(Vh,0(Q)) = dim(ΛΛΛ−1 (Q)) = 2n

On the other hand, by Remark 4 we have dim(Wh,0(Q)) = dim(Λ̆2(Q)) − 1 = 2n. Thus,

dim(div(Vh,0(Q))) = dim(Wh,0(Q)). Therefore, for every v ∈ Vh,0, there exists a unique

q ∈ Wh,0 that satisfies div(v) = q.

Now, we define an affine transformation F : Q̂ → Q by F(x̂) = Bx̂+b, where Q̂ = (0, 1)n is

the reference element, b ∈ Rn and B ∈ Rn×n is a diagonal matrix with entries proportional

to hQ. We define the velocity functions v̂ : Q̂ → Rn on the reference element by the Piola

transform v̂ := B−1(v ◦ F)det(B) [33]. This definition yields d̂iv(v̂) = div(v ◦ F)det(B).

Then, by Lemma 21, scaling and the equivalence of norms in finite dimensions, we deduce

that

‖v‖H1(Q) ≤ ch
−n

2
Q ‖v̂‖H1(Q̂) ≤ ch

−n
2
Q ‖d̂iv(v̂)‖L2(Q̂) ≤ c‖div(v)‖L2(Q) = c‖q‖L2(Q).

3.2 THE GLOBAL FINITE ELEMENT SPACES

In this section, we define the global finite element spaces and derive the inf–sup stability

condition needed for the well–posedness of the discrete problem.

By Lemma 19 and Lemma 20, the induced global finite element spaces are given by

Vh = {v ∈ H1(Ω) : v|Q ∈ ΛΛΛ−3 (Q) : Q ∈ Qh,
∂vi
∂xi
∈ C0 across (n− 2) dimensional faces},

Wh = {q ∈ L2(Ω) : q|Q ∈ Λ2(Q) : Q ∈ Qh, q ∈ C0 across (n− 2) dimensional faces}.
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Lemma 22. For any q ∈ Wh, there exists v1 ∈ Vh such that (q − div(v1))|Q ∈ Wh,0(Q) for

all Q ∈ Qh. Moreover, ‖v1‖H1(Ω) ≤ c‖q‖L2(Ω).

Proof. Let ωωω ∈ H1(Ω) satisfy div(ωωω) = q and ‖ωωω‖H1(Ω) ≤ c‖q‖L2(Ω)[24]. We denote by Ihωωω

the Scott-Zhang interpolant [42] of ωωω such that Ihωωω|Q ∈ ΛΛΛ1(Q). Then, the error of the

interpolant in Hm-norm satisfies

‖ωωω − Ihωωω‖Hm(Q) ≤ ch2−m
Q ‖ωωω‖H1(wQ), m = 0, 1,

where wQ denotes the patch of elements that touch Q. Then, we define v1 ∈ Vh uniquely

by the following iterative process. At the vertices, we set

v1(S) = Ihωωω(S),
∂v

(i)
1

∂xi
(S) =

q(S)

n
, for S ∈ �0, 1 ≤ i ≤ n. (3.2.1)

Then, we build v1 that satisfies∫
S

v1 · n(j)
S =

∫
S

Ihωωω · n(j)
S ,

∫
S

∂v1

∂n
(j)
S

· n(j)
S =

1

n−m− 1

∫
S

(q −
m+1∑
i=1

∂v1

∂t
(i)
S

· t(i)
S ), S ∈ �m+1,

where 1 ≤ j ≤ n − m − 1 and t
(i)
S denotes the unit tangent vector to the surface S with

1 ≤ i ≤ m+ 1. Repeating this process up to m = n− 3, we deduce that∫
S

v1 · n(j)
S =

∫
S

Ihωωω · n(j)
S ,

∫
S

div(v1) =

∫
S

q, S ∈ �S, 0 ≤ s ≤ n− 2. (3.2.2)

After that, we impose the last set of conditions on v1:∫
S

v1 · nS =

∫
S

ωωω · nS, S ∈ �n−1, (3.2.3)∫
Q

v1 · κκκ =

∫
Q

Ihωωω · κκκ, κκκ ∈ Λ−1 (Q), Q ∈ Qh. (3.2.4)

By Lemma 19, (3.2.1)–(3.2.4) uniquely define v1 ∈ Vh. Moreover, by the second identity in

(3.2.2), we have div(v1) = q on (n− 2)-dimensional faces. Also, by the Stokes theorem and

(3.2.3), we have ∫
Q
div(v1) =

∫
Q
div(ωωω) =

∫
Q
q, ∀Q ∈ Qh. (3.2.5)

As a result, (q − div(v1))|Q ∈ Wh,0(Q) for all Q ∈ Qh. It remains to derive the stability

estimate ‖v1‖H1(Ω) ≤ ‖q‖L2(Ω).

Since S?v unisolves ΛΛΛ−3 (Q) and (v1 − Ihωωω)|Q ∈ ΛΛΛ−3 (Q), we may write

‖v1 − Ihωωω‖2
H1(Q) ≈

n−2∑
s=0

∑
S∈�s(Q)

n−s∑
j=1

hn−2s
Q |

∫
S

(
∂v1

∂n
(j)
S

· n(j)
S −

∂Ihωωω

∂n
(j)
S

· n(j)
S )|2

+
∑

S∈�n−1(Q)

h−nQ |
∫
S

(v1 − Ihωωω) · nS|2
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Then, by scaling arguments, we have

‖v1 − Ihωωω‖2
H1(Q) ≤

n∑
s=0

∑
S∈�s(Q)

hn−2s
Q |

∫
S

q|2 +
n−2∑
s=0

∑
S∈�s(Q)

n−s∑
j=1

hn−2s
Q |

∫
S

∂Ihωωω

∂n
(j)
S

· n(j)
S |2

+
n−2∑
s=0

s∑
i=1

hn−2s
Q |

∫
S

∂v1

∂t
(i)
S

· t(i)
S |2 +

∑
S∈�n−1

h−nQ |
∫
S

(ωωω − Ihωωω) · nS|2.
(3.2.6)

For a face S ∈ �s(Q) with 1 ≤ s ≤ n − 2 and unit tangent vector t
(i)
S with 1 ≤ i ≤ s,

let S1, S2 ∈ �s−1(Q) be the unique (s − 1) dimensional faces such that t
(i)
S = ±n

(j1)
S1

and

t
(i)
S = ±n

(j2)
S2

for some 1 ≤ j1, j2 ≤ n−s+1. Then, by the Fundamental Theorem of Calculus

and (3.2.2), we have∫
S

∂v1

∂t
(i)
S

· t(i)
S = ±

∫
S1

v1 · n(j1)
S1
±
∫
S2

v1 · n(j2)
S2

= ±
∫
S1

Ihωωω · n(j1)
S1
±
∫
S2

Ihωωω · n(j2)
S2

=

∫
S

∂Ihωωω

∂t
(i)
S

· t(i)
S . (3.2.7)

By applying (3.2.7) to (3.2.6) and scaling, we obtain

‖v1 − Ihw‖2
H1(Q) ≤

n∑
s=0

∑
S∈�s(Q)

hn−2s
Q |

∫
S

q|2 +
n−2∑
s=0

∑
S∈�s(Q)

n−s∑
j=1

hn−2s
Q |

∫
S

∂Ihωωω

∂n
(j)
S

· n(j)
S |2

+
n−2∑
s=0

s∑
i=1

hn−2s
Q |

∫
S

∂Ihωωω

∂t
(i)
S

· t(i)
S |2 +

∑
S∈�n−1(Q)

h−nQ |
∫
S

(ωωω − Ihωωω) · nS|2

≤ c(‖q‖2
L2(Q) + ‖Ihωωω‖2

H1(Q) + h−1
Q ‖ωωω − Ihωωω‖2

L2(∂Q) ≤ c‖ωωω‖2
H1(ωQ).

(3.2.8)

Finally, by the triangle inequality, the stability of the interpolant and summing over Q ∈ Qh,
we deduce that

‖v1‖H1(Ω) ≤ c(‖Ihωωω‖H1(Ω) + ‖ωωω‖H1(Ω)) ≤ c‖ωωω‖H1(Ω) ≤ c‖q‖L2(Ω).

Theorem 8. For any q ∈ Wh, there exists v ∈ Vh such that div(v) = q and ‖v‖H1(Ω) ≤
c‖q‖L2(Ω). As a result, we derive the inf–sup stability condition

sup
v∈Vh\{0}

∫
Ω
q div(v)

‖v‖H1(Ω)

≥ c‖q‖L2(Ω), ∀q ∈ Wh.

Proof. By Lemma 22, for any q ∈ Wh, there exists v1 ∈ Vh that satisfies (q − div(v1))|Q ∈
Wh,0(Q) for all Q ∈ Qh and ‖v1‖H1(Q) ≤ c‖q‖L2(Q). Therefore, by Theorem 7, for every Q ∈
Qh, there exists v2,Q ∈ Vh,0(Q) that satisfies div(v2,Q) = (q− div(v1))|Q and ‖v2,Q‖H1(Q) ≤
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c‖q−div(v1)‖L2(Q). We define v2 such that v2|Q = v2,Q, and set v := v1+v2. Note that since

v2|Q ∈ Vh,0(Q) for all Q ∈ Qh, v2|Q ∈ H1
0(Q) and this implies that ∇v2|S = 0 on all S ∈ �s

with 0 ≤ s ≤ n−2. Thus, v ∈ Vh with div(v) = div(v1)+div(v2) = q. As a result, we obtain

the stability estimate ‖v‖H1(Ω) ≤ ‖v1‖H1(Ω)+‖v2‖H1(Ω) ≤ c(‖v1‖H1(Ω)+‖q−div(v1)‖H1(Ω)) ≤
c‖q‖L2(Ω).

3.3 THE GLOBAL FINITE ELEMENT SPACES WITH IMPOSED

BOUNDARY CONDITIONS

Imposing boundary conditions on finite element spaces while preserving the surjectivity of

the divergence is a significant matter [22]. For instance, if v is a globally continuous function

on Ω and vanishes on ∂Ω, then the derivatives of v vanish at the corners (if n = 2) and the

edges (if n = 3) of ∂Ω. Thus, the divergence operator is not surjective from Vh ∩H1
0(Ω) to

Wh ∩ L2
0(Ω), and this violates the inf–sup condition.

On simplicial meshes, by imposing mesh and regularity conditions locally on the boundary,

this issue may be eased [22]. However, on cubical meshes, such procedures are not applicable.

For instance, in two–dimensions, there will always be elements in Qh that have at least two

boundary edges. Therefore, we impose the weaker boundary condition v · n = 0 on the

velocity finite element space and impose the tangential boundary condition weakly in the

finite element method via the Nitsche’s method [37] as we did in Chapter 2. As a result, we

specify the boundary conditions on the global finite element spaces as follows:

Vh,0 = {v ∈ Vh : (v · n)|∂Ω = 0},

Wh,0 = Wh ∩ L2
0(Ω).

3.4 INF–SUP STABILITY

In this section, we define a discrete norm on Vh,0 and prove the inf-sup stability condition.

We denote by �l
s the set of open s-dimensional faces that do not intersect with ∂Ω and set
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�b
s := �s \�l

s. Then, we define the discrete H1–type norm as follows:

‖v‖2
h := ‖∇v‖2

L2(Ω) +
∑

S∈�b
n−1

(hS‖
∂v

∂nS
‖2
L2(S) +

1

hS
‖v‖2

L2(S)). (3.4.1)

Theorem 9. The inf–sup condition

c‖q‖L2(Ω) ≤ sup
v∈Vh,0\{0}

∫
Ω
div(v)q

‖v‖h
, ∀q ∈ Wh,0, (3.4.2)

holds for a constant c > 0 independent of h.

Proof. As in the proof of Theorem 8, for any q ∈ Wh,0 given, we use the degrees of freedom of

Vh to construct v ∈ Vh,0 that satisfies div(v) = q and ‖v‖H1(Ω) ≤ c‖q‖L2(Ω). By Theorem 1,

for any q ∈Wh,0 ⊆ L2
0(Ω), there exists ωωω ∈ H1

0(Ω) that satisfies div(ωωω) = q and ‖ωωω‖H1(Ω) ≤
c‖q‖L2(Ω). We set Ihωωω as the Scott-Zhang interpolant [41] of ωωω that satisfies Ihωωω|Q ∈ ΛΛΛ1(Q) on

each Q ∈ Qh. Note that Ihωωω ∈ H1
0(Ω), in particular, Ihωωω|S = 0 for all boundary faces S ∈ �b

s

where 0 ≤ s ≤ n− 1. Then, by repeating the procedure followed in the proof of Lemma 22,

we determine v1 ∈ Vh uniquely via the conditions (3.2.1)-(3.2.4). This construction yields

(q − div(v1))|Q ∈ Wh,0(Q) for all Q ∈ Qh and ‖v1‖H1(Ω) ≤ c‖q‖L2(Ω).

Furthermore, we let S ∈ �b
n−1, and denote by �s(S) with 0 ≤ s ≤ n − 1 the set of s–

dimensional subfaces of S. Then, for a subface S ′ ∈ �s(S), we have S ′ ∈ �b
s. Moreover, the

(outward) unit normal of S is an (outward) unit normal of S ′ (up-to-sign), i.e., nS = ±n
(j)
S ,

for some j ∈ {1, 2, . . . , n− s}. Therefore, by (3.2.1)-(3.2.4), we have∫
S′

v1 · nS =

∫
S′

Ihωωω · nS = 0, ∀S ′ ∈ �s(S), 0 ≤ s ≤ n− 1.

Since (v1 · nS) ∈ Λ2(S) on S, Lemma 17 implies that v1 · nS = 0 on S ∈ �b
n−1. Thus,

v1 ∈ Vh,0.

To validate the stability estimate ‖v1‖h ≤ c‖q‖L2(Ω), we set v̂(x̂) = v(x), where x = F(x̂)

and F : Q̂ → Q denotes an affine transformation for Q ∈ Qh.
Then, by scaling, we have

‖∇(v1 − Ihωωω)‖2
L2(Q) +

∑
S∈�b

n−1∩�n−1(Q)

1

hS
‖v1 − Ihωωω‖L2(S) ≤ Chn−2

Q

(
‖∇̂(v̂1 − Îhωωω)‖2

L2(Q̂)

+
∑

Ŝ∈�n−1(Q̂)

‖v̂1 − Îhωωω‖2
L2(Ŝ)

)
≤ Chn−2

Q ‖v̂1 − Îhωωω‖2
H1(Q̂)

≤ C‖v1 − Ihωωω‖2
H1(Q)

(3.4.3)
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Therefore, since Ihωωω|∂Ω = 0, (3.2.8) yields

‖∇v1‖2
L2(Q) +

∑
S∈�n−1(Q)∩�b

n−1

1

hS
‖v1‖2

L2(S) ≤ c‖ωωω‖2
H1(ωQ).

Finally, summing over Q ∈ Qh, we obtain∑
Q∈Qh

‖∇v1‖2
L2(Q) +

∑
S∈�b

n−1

1

hS
‖v1‖2

L2(S) ≤ c‖ωωω‖2
H1(Ω) ≤ c‖q‖L2(Ω).

By scaling and the equivalence of norms in finite–dimensions, this implies that ‖v1‖h ≤
c‖q‖L2(Ω). Then, we consider v2,Q ∈ Vh,0(Q) that satisfies div(v2,Q) = (q − div(v1))|Q and

define v2 ∈ Vh such that v2|Q = v2,Q on each Q ∈ Qh. Note that v2 ∈ Vh ∩ H1
0(Ω),

therefore, v2 ∈ Vh,0. Then, setting v := v1 + v2 ∈ Vh,0 and using the properties of v1 and

v2, we deduce that div(v) = q and ‖v‖H1(Ω) ≤ c‖q‖L2(Ω).

3.5 THE REDUCED ELEMENTS WITH CONTINUOUS PRESSURE

APPROXIMATIONS

In this section, we reduce the global degrees of freedom of our finite element pair by restricting

the range of the divergence operator. In forming the reduced finite element spaces, we denote

by Bs(Q) ⊂ Λ2(Q) the space spanned by the bubble functions associated with �s(Q), i.e.,

Bs(Q) =
⊕

S∈�s(Q)

< bS >,

where < bS > denotes the span of bS. By Lemma 17, we have

Λ2(Q) = Λ1(Q)⊕
n⊕
s=1

Bs(Q).

Then, we define the reduced local pressure space Wr,h(Q) by removing the (n−1) dimensional

face bubbles of Λ2(Q) as follows:

Wr,h(Q) := Λ1(Q)⊕
( n−2⊕
s=1

Bs(Q)
)
⊕Bn(Q).

Note that in two–dimensions, Wr.h(Q) is the space of bilinear polynomials enriched with face

bubbles, whereas in three dimensions, Wr,h(Q) is the space of trilinear polynomials enriched

with edge and volume bubbles.

By Lemma 17, the dimension of Wr,h(Q) is (3n−2n), and a function q ∈ Wr,h(Q) is uniquely
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determined by the set of values

{
∫
S

q : S ∈ �s(Q), s = 0, 1, . . . , n− 2, n}.

We define the reduced local velocity element as

Vr,h(Q) := {v ∈ ΛΛΛ−3 (Q) : div(v) ∈ Wr,h(Q)}. (3.5.1)

Lemma 23. A function v ∈ Vr,h(Q) is uniquely determined by the set of values (See Fig-

ure 3.1).

Srv = {
∫
S

v(i),

∫
S

∂v(i)

∂xi
: S ∈ �(i)

s (Q), 0 ≤ s ≤ n− 2,

∫
S

v(i) : S ∈ �(i)
n−1(Q)},

where 1 ≤ i ≤ n.

Proof. Note that the number of constraints imposed on ΛΛΛ−3 (Q) in the definition of the space

Vr,h(Q) is 2n, therefore, dim(Vr,h(Q)) = dim(Vr,h(Q))− 2n = 4n3n−1 − 2n = |Srv |. There-

fore, it suffices to show that if v ∈ Vr,h(Q) nullifies Srv , then v = 0 in Q.

If v ∈ Vr,h(Q) ⊂ ΛΛΛ−3 (Q) nullifies the functionals in Srv , then v ∈ H1
0(Q) by Lemma 19.

Moreover, Lemma 19 also implies that div(v)|S = 0 for all S ∈ �s(Q) with 0 ≤ s ≤ n − 2.

Since Wr,h(Q) ⊂ Λ2(Q), this implies that div(v) = c bQ for some c ∈ Rn. Then, integration

by parts yields

c

∫
Q
bQ =

∫
Q
div(v) =

∫
∂Q

v · n = 0

Thus, div(v) = 0 and therefore by Lemma 21, we have v = 0 in Q.

Let H1(div; Ω) := {v ∈ H1(Ω) : div(v) ∈ H1(Ω)}. Then, we define the reduced global

spaces as follows:

Vr,h := {v ∈ H1(div; Ω) ∩Vh : v|Q ∈ Vr,h(Q), (v · n)|∂Ω = 0},

Wr,h := {q ∈ H1(Ω) ∩ L2
0(Ω) : q|Q ∈ Wr,h(Q)}.

Theorem 10. For every q ∈ Wr,h there exists v ∈ Vr,h that satisfies div(v) = q and

‖v‖H1(Ω) ≤ C‖q‖L2(Ω).

Moreover, div(Vr,h) = Wr,h. Therefore, the reduced pair Vr,h ×Wr,h is inf–sup stable.

Proof. By Theorem 9, for q ∈ Wr,h ⊂ Wh,0 given, there exists v ∈ Vh,0 such that div(v) = q

and ‖v‖H1(Ω) ≤ C‖q‖L2(Ω). Since q ∈ Wr,h, v|Q ∈ Vr,h(Q) on all Q ∈ Qh, and div(v) ∈
H1(Ω). Therefore, v ∈ Vr,h. This implies that Wr,h ⊆ div(Vr,h). Thus, the second assertion

follows from the inclusion div(Vr,h) ⊆ Wr,h.
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3.6 CONVERGENCE ANALYSIS

Let Xh,0 × Yh,0 denote either the pair Vh,0 ×Wh,0 or the reduced pair Vr,h ×Wr,h. Then,

the finite element method reads: Find (uh, ph) ∈ Xh,0 × Yh,0 that satisfies

ah(uh,v)−
∫

Ω

div(v) ph =

∫
Ω

f · v , ∀v ∈ Xh,0∫
Ω

div(uh) q = 0, ∀q ∈ Yh,0,
(3.6.1)

where the bilinear form ah(·, ·) : H1(Ω)×H1(Ω)→ R is defined as

ah(v,ωωω) = ν

∫
Ω

∇v : ∇ωωω − ν
∑

S∈�b
n−1

∫
S

(
∂v

∂nS
ωωω +

∂ωωω

∂nS
v − σ

hS
v ·ωωω),

where σ > 0 is an h–independent penalty parameter.

Theorem 11. There exists a unique pair (uh, ph) ∈ Xh,0×Yh,0 satisfying (3.6.1). Moreover,

for 1 ≤ s ≤ 2, there holds

‖u− uh‖h ≤ chs‖u‖Hs+1(Ω), ‖p− ph‖L2(Ω) ≤ chs( ‖p‖Hs+1(Ω) + ν‖u‖Hs+1(Ω)).

where the constant C > 0 is independent of h or the viscosity ν.

Proof. Following the same procedure described in Section 2.4, it is easy to show that if σ

is sufficiently large, then ah(·, ·) is coercive on Xh,0 with respect to the discrete H1–type

norm given by (3.4.1). In addition, ah(·, ·) is continuous on (H2(Ω) + Vh,0). Thus, there

exists a unique (uh, ph) pair that satisfies (3.6.1) by Theorem 9, Theorem 10 and standard

theory [9, 24]. Moreover, the velocity approximation uh is independent of the choice of the

finite element space Xh,0 = Vh,0 or Xh,0 = Vr,h since the kernel of the divergence operator

acting on each of these spaces is Zh = {v ∈ Xh,0 : div(v) = 0}. Restricting (3.6.1) to the

divergence–free space Zh, and using the consistency of the bilinear form ah(·, ·), we deduce

by Cea’s Lemma, ‖u − uh‖h ≤ c inf
v∈Zh

‖u − v‖h provided u ∈ Hs(Ω) for s > 3/2. As in

Chapter 2, we estimate the approximation properties of Zh by following the arguments given

in Theorem 12.5.17 in [10]. To this end, for an arbitrary function v ∈ Xh,0, we let ωωω ∈ Xh,0

satisfy div(ωωω) = −div(v) ∈ Yh,0, therefore, ωωω + v ∈ Zh. Moreover, ‖ωωω‖h ≤ c‖div(v)‖L2(Ω) =

‖div(u−v)‖L2(Ω) ≤ c‖u−v‖h. This yields ‖u− (ωωω+ v)‖h ≤ ‖u−v‖h + ‖ωωω‖h ≤ c‖u−v‖h.
As a result,

‖u− uh‖h ≤ c inf
v∈Zh

‖u− v‖h ≤ c inf
v∈Xh,0

‖u− v‖h.
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Thus, the velocity error estimate is decoupled from the pressure error estimate and indepen-

dent of the viscosity. By standard approximation theory and scaling arguments, we derive

the estimate

‖u− uh‖h ≤ c inf
v∈Xh,0

‖u− v‖h ≤ chs‖u‖Hs+1(Ω)

for 1 ≤ s ≤ 2. Note that since uh is independent of the choice of the global velocity finite

element space, ‖u − uh‖h satisfies the same estimate in both of the cases Xh,0 = Vr,h and

Xh,0 = Vh,0. To derive an error estimate on the pressure solution, we define the L2–projection

Ph : L2(Ω) → Yh,0. Since div(Xh,0) = Yh,0, it follows from Theorem 9, Theorem 10 and the

properties of Ph that

c‖ph − Php‖L2(Ω) ≤ sup
v∈Vh,0\{0}

∫
Ω
div(v)(ph − Php)

‖v‖h
= sup

v∈Vh,0\{0}

∫
Ω
div(v)(ph − p)
‖v‖h

= sup
v∈Vh,0\{0}

ah(u− uh,v)

‖v‖h
≤ cν‖u− uh‖h.

Therefore, we have

‖p− ph‖L2(Ω) ≤ ‖p− Php‖L2(Ω) + cν‖u− uh‖h ≤ chs(‖p‖Hs(Ω) + ν‖u‖Hs+1(Ω))

for 1 ≤ s ≤ 2.

Remark 5. The velocity error estimate has optimal order of convergence whereas the pres-

sure error estimate is of optimal order provided Yh,0 = Wr,h.
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4.0 FEM FOR THE STOKES PROBLEM ON QUADRILATERAL

MESHES

In Chapter 2, we propose a finite element method that is based on building solution spaces

on rectangular meshes. However, the domains that could be considered in that framework

are limited since we assume that the boundaries of both the domain and the mesh elements

are parallel to the coordinate axes. In this chapter, we propose a method that gives a pair

of stable and conforming finite element spaces yielding pointwise divergence–free velocity

approximations on general shape–regular quadrilateral meshes [36].

Conforming finite element pairs that yield divergence–free approximations tend to be

high-order or conforming and stable only on certain meshes. Moreover, the construction

of conforming finite elements that yield divergence–free approximations are not extended to

general convex quadrilaterals defined by bilinear mappings. In this chapter, we address some

of these issues by introducing a low-order, conforming and stable finite element pair yield-

ing divergence–free approximations on general shape–regular quadrilateral meshes. First,

we define the H2 finite element space Σh as the de Veubeke–Sanders macro element, which

is a globally C1 piecewise–cubic spline [16, 14, 28, 39]. Then, via the subcomplex given by

(1.3.2), we induce a piecewise–quadratic macro velocity space and a piecewise–constant pres-

sure space. The dimension of our global spaces is comparable to the lowest–order serendipity

Taylor–Hood spaces [43]. Our analysis shows that the velocity error is decoupled from the

pressure error and a locally–computed, post–processed pressure solution has the same rate

of convergence as the velocity solution.

A nonconforming finite element method that enforce the divergence–free constraint point-

wise on each quadrilateral element has recently been done in [48]. The method proposed

there is low-order and applicable to convex quadrilaterals. However, the error estimates are
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still coupled with a negative scaling of the viscosity as a consequence of its nonconformity.

Macro elements have recently been used on simplicial partitions in [1, 12]. Here, we present

a study that complements and extends these results to quadrilateral meshes.

4.1 THE QUADRILATERAL MESH

In this chapter, Qh denotes a shape-regular quadrilateral partition of Ω ⊂ R2 consisting

of convex quadrilateral elements. For each quadrilateral element Q ∈ Qh, KQr = {KQi }4
i=1

denotes the triangular partition of Q obtained by drawing in the two diagonals of Q. In

addition, cQ denotes the point of intersection of these two diagonals. We assume that

the triangular elements in the partition KQr are ordered in a counterclockwise fashion (See

Figure 4.1). As in the previous chapters, the sets of vertices and boundary vertices are given

by V and Vb, respectively, and the set of vertices (resp. edges) of an element Q is given by VQ
(resp. EQ). Moreover, for a vertex a ∈ V , Qa (resp. Ea) stands for the set of quadrilaterals

(resp. edges) that share a. Furthermore, we let Eba denote the set of boundary edges in Ea.
The space of piecewise polynomials with respect to the triangular partition of Q is given by

Pk(K
Q
r ). For example, p ∈ Pk(KQr ) if and only if p|KQi ∈ Pk(K

Q
i ) for every KQi ∈ KQr . We

set Pk(K
Q
r ) :=

4∏
i=1

Pk(K
Q
i ) and Pk(Qh) :=

∏
Q∈Qh

Pk(Q) .

LetQ± ∈ Qh be two elements in the mesh sharing an edge e = ∂Q+∩∂Q−. For a function

v, we set v± = v|Q± . Assuming that the global labeling number of Q+ is smaller than that

of Q−, we define the jump of a scalar or a vector-valued function v as [v]|e := v+ − v−. For

a boundary edge e = ∂Q+ ∩ ∂Ω, we set [v]|e = v+.

Additionally, we define the local L2–projection Ph,Q : L2(Q) → P1(Q) and introduce Ph :

L2(Ω)→ P1(Qh) via the relation Ph|Q = Ph,Q for every Q ∈ Qh.
By definition, Ph,Q satisfies∫

Q
Ph,Qv ·ωωω =

∫
Q

v ·ωωω , for all ωωω ∈ P1(Q).

For v ∈ Hs(Q) and ` = min{2, s}, the L2–projection Ph,Q satisfies [18]

‖v − Ph,Qv‖L2(Q) ≤ ch`Q|v|H`(Q). (4.1.1)
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Lemma 24. The local L2–projection Ph,Q : L2(Q)→ P1(Q) satisfies

‖∇(v − Ph,Qv)‖L2(Q) ≤ Chs−1
Q |v|Hs(Q), ∀v ∈ Hs(Q), s = 1, 2. (4.1.2)

Proof. By the triangle inequality and inverse estimates, for an arbitrary ωωω ∈ P1(Q), there

holds

‖∇(v − Ph,Qv)‖L2(Q) ≤ ‖∇(v −ωωω)‖L2(Q) + Ch−1
Q ‖ωωω − Ph,Qv‖L2(Q)

≤ ‖∇(v −ωωω)‖L2(Q) + Ch−1
Q
(
‖v −ωωω‖L2(Q) + ‖v − Ph,Qv‖L2(Q)

)
.

Let w be an interpolant of v. Then, standard approximation theory [18, 13] and (4.1.1)

yield (4.1.2).

Lemma 25. Ph is piecewise H1–stable on H1(Ω).

Proof. By the definition of the H1–norm and the L2–projection, we have

‖Ph,Qv‖2
H1(Q) = ‖Ph,Qv‖2

L2(Q) + |Ph,Qv|2H1(Q), (4.1.3)

‖Ph,Qv‖2
L2(Q) ≤ ‖v‖2

L2(Q). (4.1.4)

In addition, using the triangle inequality and Lemma 24 with s = 1, we obtain

|Ph,Qv|2H1(Q) ≤ (|Ph,Qv − v|H1(Q) + |v|H1(Q))
2 ≤ c(|Ph,Qv − v|2H1(Q) + |v|2H1(Q)),

≤ c|v|2H1(Q). (4.1.5)

Combining (4.1.3), (4.1.4) with (4.1.5) yields

‖Ph,Qv‖H1(Q) ≤ c‖v‖H1(Q). (4.1.6)

Summing over Q ∈ Qh, we deduce the H1–stability condition ‖Phv‖H1(Ω) ≤ c‖v‖H1(Ω).

4.2 THE LOCAL FINITE ELEMENT SPACES

In building a divergence–free conforming finite element pair, we utilize the local C1 macro

element constructed by de Veubeke and Sander [16, 39]

Σh(Q) = {ψ ∈ P3(KQr ) ∩H2(Q)} = {ψ ∈ P3(KQr ) ∩ C1(Q)}.

Lemma 26. The dimension of Σh(Q) is 16, and its degrees of freedom are given by

SΣ = {Dαψ(a) : |α| ≤ 1, a ∈ VQ,
∫
e

∂ψ

∂ne
: e ∈ EQ}, (4.2.1)

where ne denotes the (outward) unit normal of e (See Figure 4.1).
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a1 a2

a3a4

K4

K1cQ

K2

K3

Figure 4.1: Degrees of freedom of the macro element Σh(Q). Solid circles indicate function
evaluations, larger circles indicate gradient evaluations and the lines indicate the means of
the normal derivative.

Proof. First, we note that the cardinality of SΣ is 28 and the dimension of P3(KQi ) is 10 for

every 1 ≤ i ≤ 4, therefore, the dimension of P3(KQr ) is 40. Since the point cQ is a singular

vertex with respect to the partition KQr , C1–continuity at this point imposes 8 constraints

on P3(KQr ) [34]. In addition, C1–continuity imposed at the interior edge midpoints yield

4 more constraints on P3(KQr ). As a result, SΣ and the C1–continuity constraints provide

40 equations in total. Hence, it suffices to show that φ ∈ Σh(Q) nullifies SΣ if and only

if φ = 0. Let µ ∈ P1(KQr ) ∩ H1
0 (Q) be the unique continuous, piecewise–linear polynomial

that takes the value one at cQ. If φ ∈ Σh(Q) vanishes on SΣ, then φ = µ2p for some

p ∈ P1(KQr )∩H1(Q). Let µi, pi ∈ P1(KQi ) denote the restrictions of µ and p to KQi . Denote

by `i = ∂Ki ∩ ∂Ki+1 the interior edge shared by the triangles Ki and Ki+1. Then, the

C1–continuity of φ yields

∇φ|`i = 2µp∇µi + µ2∇pi = 2µp∇µi+1 + µ2∇pi+1.

Note that µ = 0 at the vertices of Q and ∇µi is parallel to the normal direction of the edge

∂Q ∩ ∂Ki, especially, ∇µi 6= ∇µi+1. Then,
(
2p∇(µi − µi+1) + µ∇(pi − pi+1)

)
|`i = 0 implies

that p vanishes at the vertices of Q, therefore, p = cµ for some c ∈ R. Thus, φ = cµ3.
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However, since µ3 6∈ C1(Q), we have c = 0. As a result, φ = 0.

Alternative proofs of Lemma 26 are provided in [16, 39].

Corollary 2. There holds Σh(Q) ∩H2
0 (Q) = {0}.

Proof. If φ ∈ Σh(Q)∩H2
0 (Q), then φ vanishes on the degrees of freedom. By Lemma 26, we

deduce that φ = 0.

The smooth de Rham complex and the local space Σh(Q) suggests that a natural candidate

for the local Stokes pair is (P2(KQr )∩H1(Q))×P1(KQr ). Indeed, it is clear that div(P2(KQr )∩
H1(Q)) ⊆ P1(KQr ), and curl(Σh(Q)) ⊆ P2(KQr )∩H1(Q). However, the dimension arguments

we state in Lemma 27 below show that (P2(KQr ) ∩H1(Q)) × P1(KQr ) is not inf-sup stable,

therefore, the global pair induced by this local pair is also not inf-sup stable.

Lemma 27. The space div(P2(KQr ) ∩H1(Q)) has dimension 11.Therefore, div : P2(KQr ) ∩
H1(Q)→ P1(KQr ) is not surjective.

Proof. Let Z? denote the kernel of the divergence operator acting on P2(KQr )∩H1(Q), i.e.,

Z? = {v ∈ P2(KQr ) ∩H1(Q) : div(v) = 0}.

If v ∈ Z?, then v = curl φ for some φ ∈ H2(Q). Since v is a piecewise–quadratic polynomial,

φ is a piecewise–cubic polynomial. As a result, φ ∈ Σh(Q). Therefore, Z? = curl(Σh(Q)).

Then, the rank–nullity theorem and Lemma 26 yield

dim(div(P2(KQr ) ∩H1(Q)) = dim(P2(KQr ) ∩H1(Q))− dim(Z?)

= dim(P2(KQr ) ∩H1(Q))− dim(curl(Σh(Q)))

= dim(P2(KQr ) ∩H1(Q))− dim(Σh(Q)) + 1

= 2 dim(P2(KQr ) ∩H1(Q))− 16 + 1 = 11.

However, dim(P1(KQr )) = 12 > dim(div(P2(KQr ) ∩H1(Q)). This implies that there exists

q ∈ P1(KQr ) \ {0} such that
∫
K
div(v) q = 0 for all v ∈ P2(KQr ) ∩H1(Q). Therefore, the

divergence operator mapping P2(KQr )∩H1(Q) to P1(KQr ) is not surjective and the pressure

solution is not unique.

Remark 6. (Proposition 2.1 in [44]) The range of the divergence operator is characterized

as

div(P2(KQr ) ∩H1(Q)) = {q ∈ P1(KQr ) :
4∑
i=1

(−1)iq|Ki
(cK) = 0}.
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Lemma 27 implies that the dimension of the candidate pressure space P1(KQr ) is larger than

the dimension of the range of the divergence operator acting on the candidate velocity space

P2(KQr ) ∩H1(Q). Therefore, we restrict the range of the divergence operator by defining

the velocity space as

Vh(Q) := {v ∈ P2(KQr ) ∩H1(Q) : div(v) ∈ P0(Q)}.

Lemma 28. The dimension of Vh(Q) is 16, and a function v ∈ Vh(Q) is uniquely deter-

mined by the values (See Figure 4.2)

Sv = {v(a) : a ∈ VQ,
∫
e

v : e ∈ EQ}. (4.2.2)

Proof. It is easy to see that the kernel of the divergence operator acting on Vh(Q) satisfies

Ker(div(Vh(Q)) = curl(Σh(Q)). Therefore, by the rank nullity theorem, we have

dim Vh(Q) = dim(curl(Σh(Q))) + dimP0(Q) = dim Σh(Q)− 1 + dimP0(Q) = 16.

Since the cardinality of Sv is also 16, it suffices to show that if v ∈ Vh(Q) vanishes on Sv,

then v = 0 in Q. If v ∈ Vh(Q) vanishes on Sv, then v ∈ Vh(Q) ∩ H1
0(Q) since v is a

piecewise–quadratic polynomial. Therefore, by the divergence theorem, we have∫
Q
div(v) =

∫
∂Q

v · n = 0.

Since div(v) ∈ P0(Q), this result implies that v is divergence–free. Thus, v = curl φ for

some φ ∈ Σh(Q), and since v ∈ H1
0(Q), we may assume that φ ∈ Σh(Q)∩H2

0 (Q). However,

Corollary 2 implies that φ = 0 in Q, therefore, v = 0 in Q.

We define the local pressure space as Wh(Q) := P0(Q) to ensure that the velocity approxi-

mations are pointwise divergence–free.

4.3 THE GLOBAL FINITE ELEMENTS WITH IMPOSED BOUNDARY

CONDITIONS

The local spaces defined in Section 4.2 induce the following global finite element spaces:

Σh := {z ∈ H2
0 (Ω) : z|Q ∈ Σh(Q), ∀Q ∈ Qh},

Vh := {v ∈ H1
0(Ω) : v|Q ∈ Vh(Q), ∀Q ∈ Qh},

Wh := {q ∈ L2
0(Ω) : q|K ∈ Wh(Q), ∀Q ∈ Qh}.
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Figure 4.2: Degrees of freedom of the macro velocity element Vh(Q). Solid circles indicate
function evaluations.

Lemma 29. The sequence stated in (1.3.2) is exact provided Ω is a simply–connected domain.

Proof. Clearly, the definitions of the finite element spaces imply that Ker(div(Vh)) =

curl(Σh). We denote by |V̊|, |E̊ | and |Q| the number of interior vertices, interior edges and

quadrilaterals in the mesh. Then, by Lemma 26, dim(Σh) = 3 ˚|V| + |̊E|, and by Lemma 28,

dim(Vh) = 2 ˚|V|+ 2|̊E|. Therefore, the rank–nullity theorem yields

dim(div(Vh)) = dim(Vh)− dim(curl(Σh)) = dim(Vh)− dim(Σh) = |̊E| − ˚|V|.

Moreover, by the Euler identity [28], we have |̊E| = |Q| + ˚|V| − 1, and the definition of

Wh implies that dim(Wh) = |Q| − 1. Thus, we obtain dim(div(Vh)) = dim(Wh). Since

div(Vh) ⊆ Wh, this implies that div(Vh) = Wh. As a result, the complex (1.3.2) is exact.

4.4 INF-SUP STABILITY

In this section, we carry out the stability analysis and verify the well–posedness of the discrete

problem and the uniqueness of the numerical solution. We show that the finite element pair

Vh ×Wh forms an inf–sup stable finite element pair, therefore, the proposed method yields
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a unique solution.

For Q ∈ Qh, we define

‖v‖2
h,Q :=

∑
a∈VQ

|v(a)|2 +
∑
e∈EQ

h−2
e |
∫
e

v|2. (4.4.1)

Lemma 30. ‖ · ‖h,Q is a H1–type norm on Vh(Q).

Proof. The result follows by the unisolvency of Sv over Vh(Q) (See Lemma 28).

Lemma 31. Let PW : L2
0(Ω) → Wh denote the L2–projection onto Wh. Then, there exists

a Fortin operator Πh : H1
0(Ω) → Vh such that div(Πhv) = PWdiv(v) and ‖Πhv‖H1(Ω) ≤

C‖v‖H1(Ω) for all v ∈ H1
0(Ω). Consequently, Vh×Wh forms an inf–sup stable finite element

pair. Moreover, the error of the Fortin interpolant satisfies

|Πhv − v|H1(Ω) ≤ Ch|v|H2(Ω). (4.4.2)

Proof. Define Πh : H1
0(Ω)→ Vh such that it satisfies the following conditions:∫

e

Πh v =

∫
e

v, ∀e ∈ EQ, (4.4.3a)

Πh(v)(a) =
1

|Qa|
∑
Q′∈Qa

Ph,Q′v(a), ∀a ∈ V \ Vb, (4.4.3b)

Πh(v)(a) = 0, ∀a ∈ Vb, (4.4.3c)

where |Qa| denotes the cardinality of the set Qa.
To prove the inf–sup stability, it suffices to show that Πh is a Fortin operator, that is, it

suffices to verify that Πh satisfies [9]:∫
Ω

div(v) =

∫
Ω

div(Πhv) , ∀v ∈ H1
0(Ω), (4.4.4a)

‖Πhv‖H1(Ω) ≤ c‖v‖H1(Ω), ∀v ∈ H1
0(Ω). (4.4.4b)

By the divergence theorem and (4.4.3a),∫
Q
div(Πh v) =

∫
∂Q

(Πh v · n) =

∫
∂Q

(v · n) =

∫
Q
div(v) , ∀Q ∈ Qh.

Thus, (4.4.4a) holds. This implies that div(Πhv) = PWdiv(v).

By the triangle inequality and (4.1.6), we have

‖Πhv‖2
H1(Ω) ≤ c

∑
Q∈Qh

(‖Πhv − Ph,Qv‖2
H1(Q) + ‖Ph,Qv‖2

H1(Q))

≤ c
∑
Q∈Qh

(‖Πhv − Ph,Qv‖2
H1(Q) + ‖v‖2

H1(Q)). (4.4.5)
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Since P1(Q) ⊂ Vh(Q), Lemma 30 implies

‖Πhv − Phv‖2
H1(Q) ≈ ‖Πhv − Phv‖2

h,Q

=
∑
a∈VQ

|Πhv(a)− Ph,Qv(a)|2 +
∑
e∈EQ

h−2
e |
∫
e

(Πhv − Ph,Qv)|2. (4.4.6)

For a ∈ VQ \ Vb, applying the triangle inequality to the first expression in (4.4.6) and using

(4.4.3b), we obtain

|Πhv(a)− Ph,Qv(a)|2 = | 1

|Qa|
∑
Q′∈Qa

(Ph,Q′v(a)− Ph,Qv(a))|2

≤ C

|Qa|2
∑
Q′∈Qa

|Ph,Q′v(a)− Ph,Qv(a)|2, (4.4.7)

where C > 0 depends only on the shape–regularity of the mesh.

Then, for Q,Q′ ∈ Qa, there exists {Qi}mi=0 ⊂ Qa such that Qi and Qi+1 share a common

edge. Setting Q0 = Q, Qm = Q′, and using the inverse inequality, we obtain

|Ph,Q′v(a)− Ph,Qv(a)|2 ≤
m∑
i=0

|Ph,Qi+1
v(a)− Ph,Qi

v(a)|2

≤
∑
e∈Ea

‖[Phv]‖2
L∞(e)

≤
∑
e∈Ea

h−1
e ‖[Phv]‖2

L2(e), (4.4.8)

where [Phv]|e = |(Ph,Qi+1
v)|e − (Ph,Qi

v)|e| for e ∈ Ea with e = ∂Qi+1 ∩ ∂Qi. We note that∑
e∈Ea

h−1
e ‖[Phv]‖2

L2(e) ≤
∑
e∈Ea

h−1
e ‖[Phv − v]‖2

L2(e). (4.4.9)

Finally, combining (4.4.7)-(4.4.9), we obtain

|Πhv(a)− Ph,Qv(a)|2 ≤ C
∑
e∈Ea

h−1
e ‖v − Ph,Qv‖2

L2(e). (4.4.10)

For a ∈ Vb, since Πhv(a) = 0 at all a ∈ Vb, (4.4.8) and (4.4.9) yield

|Πhv(a)− Ph,Qv(a)|2 = |Ph,Qv(a)|2 ≤
∑
e∈Eba

h−1
e ‖Ph,Qv‖2

L2(e),

≤
∑
e∈Eba

h−1
e ‖v − Ph,Qv‖2

L2(e). (4.4.11)

Combining (4.4.10)-(4.4.11) and using the trace inequality, for a ∈ VQ, we obtain

|Πhv(a)− Ph,Qv(a)|2 ≤ C
∑
Q∈Qa

(|v − Ph,Qv|2H1(Q) + h−2‖v − Ph,Qv‖2
L2(Q)). (4.4.12)

55



Then, (4.1.1) and (4.1.2) imply∑
a∈VQ

|Πhv(a)− Ph,Qv(a)|2 ≤ C|v|2H1(ωQ), (4.4.13)

where ωQ =
⋃

a∈VQ

⋃
Q′∈Qa

Q′. Now consider the second expression in (4.4.6).

By (4.4.3a), the Cauchy-Schwarz, the trace inequality, (4.1.1) and (4.1.2), respectively, we

have ∑
e∈Ea

h−2
e |
∫
e

(Πhv − Phv)|2 =
∑
e∈Ea

h−2
e |
∫
e

(v − Phv)|2 ≤
∑
e∈Ea

h−1
e ‖v − Phv‖2

L2(e)

≤ c
∑
Q∈Qa

(‖∇(v − Ph,Qv)‖2
L2(Q) + h−2‖v − Ph,Qv‖2

L2(Q))

≤ c|v|2H1(ωQ). (4.4.14)

Using (4.4.13) and (4.4.14) in (4.4.6) yields

‖Πhv − Phv‖2
H1(Q) ≤ C|v|2H1(ωQ). (4.4.15)

Consequently, summing over Q ∈ Qh, then using (4.4.5), we deduce that

‖Πhv‖H1(Ω) ≤ c‖v‖H1(Ω).

Thus, (4.4.4b) holds. As a result, Πh is a Fortin operator. It suffices to prove the estimate

(4.4.2) to complete the proof.

For v ∈ H2(Q), (4.1.2) and (4.1.1) yield

|v − Ph,Qv|H1(Q) ≤ ch|v|H2(Q) (4.4.16a)

‖v − Ph,Qv‖L2(Q) ≤ ch2|v|H2(Q) (4.4.16b)

Using (4.4.16) in (4.4.12) and (4.4.14), then summing (4.4.6) over Q ∈ Qh, we obtain

‖Πhv − Phv‖H1(Ω) ≤ ch|v|H2(Ω). (4.4.17)

Then, by the triangle inequality and scaling, we have

|Πhv − v|2H1(Ω) ≤ c(|Πhv − Phv|2H1(Ω) + |Phv − v|2H1(Ω))

≤ c(‖Πhv − Phv‖2
H1(Ω) + |Phv − v|2H1(Ω)) (4.4.18)

Therefore, using (4.1.2) and (4.4.17) in (4.4.18) yield

|Πhv − v|H1(Ω) ≤ ch|v|H2(Ω).
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4.5 CONVERGENCE ANALYSIS

Recall the weak formulation of the Stokes system (1.0.1)

ν

∫
∇u : ∇v −

∫
div(v) p =

∫
f · v, ∀v ∈ H1

0(Ω),∫
div(u) q = 0, ∀q ∈ L2

0(Ω),

(4.5.1)

and the discretized version of (4.5.1) given by

ν

∫
∇uh : ∇vh −

∫
div(vh) ph =

∫
f · vh, ∀vh ∈ Vh,∫

div(uh) qh = 0, ∀qh ∈ Wh,

(4.5.2)

As a consequence of Lemma 31, the discrete problem (4.5.2) is well-posed.

We define the continuous and the discrete divergence–free spaces

Z = {v ∈ H1
0(Ω) : div(v) = 0}. (4.5.3a)

Zh = {v ∈ Vh : div(v) = 0}. (4.5.3b)

Restricting the domains of the velocity spaces in (4.5.1) and (4.5.2) to Z and Zh reduces the

systems of equations given by (4.5.1) and (4.5.2) to the equations (4.5.4a) and (4.5.4b) as

follows:

ν

∫
∇u : ∇v =

∫
f · v, ∀v ∈ Z, (4.5.4a)

ν

∫
∇uh : ∇vh =

∫
f · vh, ∀vh ∈ Zh. (4.5.4b)

Theorem 12. Suppose that (u, p) solves (4.5.4a) and (uh, ph) solves (4.5.4b), then for a

convex polygonal domain Ω, the error estimates satisfy the following:

‖u− uh‖H1(Ω) ≤ chs|u|Hs+1(Ω), ‖u− uh‖L2(Ω) ≤ chs+1‖u‖Hs+1(Ω),

‖p− ph‖L2(Ω) ≤ ch(|p|H1(Ω) + νhs−1|u|Hs+1), for s = 1, 2,

where the constant c > 0 is independent of the discretization parameter and the viscosity.

Proof. Since Zh is divergence–free conforming, by Cea’s Lemma, we have

‖∇(u− uh)‖L2(Ω) ≤ inf
vh∈Zh

‖∇(u− vh)‖L2(Ω). (4.5.5)

Additionally, since Zh = curl(Σh), there exists σh ∈ Σh for every vh ∈ Zh such that

curl(σh) = vh. Thus, (4.5.5) is equivalent to

‖∇(u− uh)‖L2(Ω) ≤ inf
σh∈Σh

‖∇(u− curl(σh))‖L2(Ω). (4.5.6)
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Writing u in terms of its stream function ψh ∈ H2
0 (Ω), we have u = curl(ψh). Then, (4.5.6)

becomes

‖∇(u− uh)‖L2(Ω) ≤ inf
σh∈Σh

‖∇(curl(ψh)− curl(σh))‖L2(Ω) = inf
σh∈Σh

|ψh − σh|H2(Ω). (4.5.7)

By Theorem 6.18 in [28], for every ψh ∈ Hm+1(Ω), there exists σh ∈ Σh that satisfies

‖Dα(σh − ψh)‖L2(Ω) ≤ chm+1−α|ψh|Hm+1(Ω), 0 ≤ m ≤ 3, 0 ≤ α ≤ m, (4.5.8)

where c is an h–independent constant. Since (4.5.7) implies that α = 2, m ≥ 2 in (4.5.8),

and we may rewrite (4.5.7) as

‖∇(u− uh)‖L2(Ω) ≤ inf
σh∈Σh

|ψh − σh|H2(Ω) ≤ chs|ψh|Hs+2(Ω)

= chs|u|Hs+1(Ω), s = 1, 2.

(4.5.9)

To derive an error estimate for the velocity solution in the L2-norm, we use the Aubin–

Nitsche duality technique [10]. Setting e = u− uh and letting γγγ ∈ H2(Ω) be the solution of

the dual problem on the convex polygonal domain Ω corresponding to (4.5.4b), we obtain

ν(∇e,∇γγγ) = −ν(e,∆γγγ) = (e, e). (4.5.10)

Since Πhγγγ ∈ Zh ⊆ Z, (4.5.4) implies

ν(∇e,∇Πhγγγ) = 0. (4.5.11)

Therefore, we have

ν(∇e,∇γγγ) = ν(∇e,∇(γγγ − Πhγγγ)). (4.5.12)

By (4.4.2) and (4.5.9)–(4.5.12), we have

‖e‖2
L2(Ω) ≤ |e|H1(Ω)|γγγ − Πhγγγ|H1(Ω) ≤ c|e|H1(Ω)h|γγγ|H2(Ω).

Since Ω is convex [9], the regularity estimate ‖γγγ‖H2(Ω) ≤ c‖e‖L2(Ω) holds, and this yields

‖e‖L2(Ω) ≤ ch|e|H1(Ω). Combining this result with (4.5.9), we obtain the L2 error estimate

‖u− uh‖L2(Ω) ≤ chs+1‖u‖Hs+1(Ω) (4.5.13)

In addition, by the inf–sup condition and standard arguments [9], we have

‖ph − PWp‖L2(Ω) ≤ ν‖∇(u− uh)‖L2(Ω) ≤ Cνhs|u|Hs+1(Ω), s = 1, 2. (4.5.14)

Then, the triangle inequality and the properties of the L2–projection imply that the error in

the pressure approximation satisfies

‖p− ph‖L2(Ω) ≤ ‖p− PWp‖L2(Ω) + ‖ph − PWp‖L2(Ω)

≤ ch(|p|H1(Ω) + νhs−1|u|Hs+1(Ω)), s = 1, 2.
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4.5.1 Convergence Analysis for the Post-Processed Pressure Solution

Theorem 12 shows that the velocity and pressure approximations have different orders of

convergence. In this section, we develop a locally–computed, post–processed pressure so-

lution that has the same quadratic convergence as the velocity error by making use of the

super convergence property (4.5.14).

For Q ∈ Qh, we define p∗Q ∈ P1(Q) that satisfies∫
Q
∇p∗Q · ∇q = ν

∫
Q

∆huh · ∇q +

∫
Q

f · ∇q, ∀q ∈ P1(Q), (4.5.15a)∫
Q
p∗Q =

∫
Q
ph, (4.5.15b)

where the discrete laplacian operator ∆h is defined piecewise with respect to Q, that is,

∆huh|Ki
= ∆uh|Ki

for 1 ≤ i ≤ 4 and Ki ∈ KQr . Since ∇p∗Q and ∇q are both constant,

(4.5.15a) yields

∇p∗Q · ∇q =
1

|Q|

∫
Q

(ν∆huh + f) · ∇q , ∀q ∈ P1(Q). (4.5.16)

By letting q = xi, we derive a formula for the post-processed pressure solution

p∗Q = c∗Q +
x

|Q| ·
∫
Q

(ν∆huh + f) , (4.5.17)

with the constant c∗Q chosen such that (4.5.15b) is satisfied.

Theorem 13. Suppose that the solution of the weak problem (u, p) ∈ H3(Ω) ×H2(Ω). Let

p∗ ∈ P1(Qh) satisfy (4.5.15) on each Q ∈ Qh, i.e., p∗|Q = p∗Q, where p∗Q is defined by

(4.5.17). Then, there holds

‖p− p∗‖L2(Ω) ≤ ch2(ν‖u‖H3(Ω) + ‖p‖H2(Ω)).

Proof. Since p, PWp ∈ L2
0(Ω), we have∫

Ω

(p− PWp) = 0.

Fix Q1 ∈ Qh and choose Q ∈ Qh with Q 6= Q1. Let q|Q1 = 1, q|Q = − |Q1|
|Q| , and q = 0

otherwise. Thus, q ∈ Wh ⊂ L2
0(Ω), and by the definition of the L2–projection,∫
Q

(p− PWp) =
|Q|
|Q1|

∫
Q1

(p− PWp).

This identity holds for all Q ∈ Qh, and it follows that

0 =

∫
Ω

(p− PWp) =
∑
Q∈Qh

∫
Q

(p− PWp)
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=
∑
Q∈Qh

|Q|
|Q1|

∫
Q1

(p− PWp) =
|Ω|
|Q1|

∫
Q1

(p− PWp) .

Thus, we have
∫
Q(p − PWp) = 0 for all Q ∈ Qh. Then, applying Poincaré–Friedrich’s

inequality on Q ∈ Qh, we obtain

‖p− p∗Q‖L2(Q) ≤ c(‖p− p∗Q‖L2(Q) + hQ‖∇(p− p∗Q)‖L2(Q)), (4.5.18)

where (p− p∗Q) denotes the mean of (p − p∗Q) over Q. The definition of PWp and (4.5.15b)

imply

p− p∗Q = p− p∗Q = PWp− ph = PWp− ph.

Therefore,

‖p− p∗Q‖L2(Q) = ‖PWp− ph‖L2(Q) ≤ ‖PWp− ph‖L2(Q). (4.5.19)

By the triangle inequality, (4.5.15a) and the Cauchy-Schwarz inequality, we obtain

‖∇(p− p∗Q)‖2
L2(Q) =

∫
Q
∇(p− p∗Q) · ∇(p− q) +

∫
Q
∇(p− p∗Q) · ∇(q − p∗Q) (4.5.20)

=

∫
Q
∇(p− p∗Q) · ∇(p− q) + ν

∫
Q

∆h(u− uh) ∇(q − p∗Q)

≤‖∇(p− p∗Q)‖L2(Q)‖∇(p− q)‖L2(Q)

+ ν‖∆h(u− uh)‖L2(Q)‖∇(q − p∗Q)‖L2(Q),

for all q ∈ P1(Q). Again, by the triangle inequality, we have

‖∇(q − p∗Q)‖L2(Q) ≤ ‖∇(q − p)‖L2(Q) + ‖∇(p− p∗Q)‖L2(Q) (4.5.21)

Note that PWp|Q ∈ P0(Q) ⊂ P1(Q) and letting q = PWp in (4.5.21) yields:

‖∇(q − p∗Q)‖L2(Q) ≤ ‖∇(p− p∗Q)‖L2(Q). (4.5.22)

Using (4.5.22) in (4.5.20), we obtain

‖∇(p− p∗Q)‖L2(Q) ≤ c(‖∇(p− q)‖L2(Q) + ν‖∆h(u− uh)‖L2(Q)). (4.5.23)

Combining (4.5.18), (4.5.19) and (4.5.23) results in

‖p− p∗Q‖L2(Q) ≤c(‖ph − PWp‖L2(Q) + νhQ‖∆h(u− uh)‖L2(Q)

+ inf
q∈P1(Q)

hQ‖∇(p− q)‖L2(Q)). (4.5.24)

In addition, by the Bramble-Hilbert lemma and the regularity of p, we have

inf
q∈P1(Q)

hQ‖∇(p− q)‖L2(Q) ≤ ch2
Q‖p‖H2(Q). (4.5.25)

Furthermore, by the inverse inequality and the triangle inequality, for any v ∈ P2(KQr ) ∩

60



H1(Q), there holds

hQ‖∆h(u− uh)‖L2(Q) ≤ hQ‖∆h(u− v)‖L2(Q) + c‖uh − v‖H1(Q)

≤ c(hQ‖∆h(u− v)‖L2(Q) + ‖u− v‖H1(Q) + ‖u− uh‖H1(Q)).
(4.5.26)

Let v be the nodal interpolant of u. Then, (4.5.26) yields

hQ‖∆(u− uh)‖L2(Q) ≤ c(h2
Q‖u‖H3(w(Q)) + ‖u− uh‖H1(Q)), (4.5.27)

where w(Q) denotes the set of quadrilaterals that intersect with Q.

Applying (4.5.27) and (4.5.25) to (4.5.24), we obtain

‖p− p∗Q‖L2(Q) ≤ c(‖ph − PWp‖L2(Q) + ν‖u− uh‖H1(Q) + h2
Q(ν‖u‖H3(Q) + ‖p‖H2(Q))).

Summing over Q ∈ Qh and using (4.5.9),

‖p− p∗‖L2(Ω) ≤ c(ν‖u− uh‖H1(Ω) + h2
Q(ν‖u‖H3(Ω) + ‖p‖H2(Ω)))

≤ ch2
Q(ν‖u‖H3(Ω) + ‖p‖H2(Ω)).

4.6 IMPLEMENTATION

In this section, we describe how we build the velocity space Vh(Q) in detail. More precisely,

we present the computation and the implementation of a basis of Vh(Q). We note that, unlike

the serendipity Taylor-Hood pair, our local velocity space is defined on a physical element of

the mesh, and it is not invariant under bilinear maps. These restrictions may suggest that

the basis must be solved locally on each quadrilateral Q ∈ Qh, and this leads to solving a

(16× 16) linear system for each element. Here, we discuss an alternative construction which

is more efficient and may possibly be extended to isoparametric elements.

4.6.1 Construction of a Canonical Basis

Our goal is to construct an affine, bijective map between a physical elementQ and a reference

element. In Chapter 2, we have used the unit square as the reference element. However,

since there does not exist an affine map between a quadrilateral and the unit square, here we

can not use the unit square as the reference element, therefore, we define a skewed version
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of the unit square as the reference element and denote it by Q̂Â [23]. In the construction of

Q̂Â, we employ three vertices of Q to build an affine map and then we use this affine map

to identify Â that characterizes Q̂Â.

For a quadrilateral Q ∈ Qh, denote by T1, T2 the two triangles obtained by splitting Q
from opposite vertices. Let A = (A1, A2) be the unique vertex of T2 that is not a vertex

of T1 and denote by T̂ the reference triangle with the vertices (0, 0), (1, 0), (0, 1). Then,

define an affine bijection F : T̂ → T1, and set T̂2 = F−1(T2) and Â = (Â1, Â2) := F−1(A).

Moreover, set T̂1 := T̂ . Then, the union T̂1∪ T̂2 gives a convex quadrilateral with the vertices

(0, 0), (1, 0), (0, 1) and (Â1, Â2) (See Figure 4.3). We define the skewed reference element as

Q̂Â := T̂1 ∪ T̂2. We further note that F : Q̂Â → Q is an affine, bijective transformation.

Let V(Q̂Â) denote the velocity space defined on the reference quadrilateral Q̂Â. Denote

the set of vertices and edge midpoints of Q̂Â by {âj}8
j=1 as shown in Figure 4.4. Then,

define {v̂(k)
i } ⊂ V(Q̂Â) that satisfy v̂

(k)
i (âj) = δi,jek, where e1 = (1, 0)t and e2 = (0, 1)t, for

1 ≤ i, j ≤ 8 and 1 ≤ k ≤ 2. Thus, {v̂(k)
i } forms a canonical basis of V(Q̂Â).

By using a modified Piola transform, we define the following velocity functions on Q:

v
(k)
i = B(β

(k)
1 v̂

(1)
i + β

(k)
2 v̂

(2)
i ),

where β(k)
1

β
(k)
2

 := B−1ek, x = F(x̂), x̂ ∈ Q̂.

Clearly, v
(k)
i ∈ P2(KQr ) ∩H1(Q). Moreover, the divergence of v

(k)
i satisfies

div(v
(k)
i ) = β

(k)
1 d̂ivv̂

(1)
i + β

(k)
2 d̂ivv̂

(2)
i .

Furthermore, at aj = F(âj) with âj ∈ Q̂, we have

v
(k)
i (aj) = B(β

(k)
1 v̂

(1)
i (âj) + β

(k)
2 v̂

(2)
i (âj))

= B(β
(k)
1 δi,je1 + β

(k)
2 δi,je2)

= δi,jB

β(k)
1

β
(k)
2


= δi,jek.

Thus, {v(k)
i } is a canonical basis for Vh(Q).
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(0, 0) (1, 0)

(0, 1)

T̂

A

(0, 0) (1, 0)

(0, 1)

T̂1

T̂2

T1

T2

F

F

Â

Figure 4.3: Construction of the skewed reference element. Affine transformation F mapping
the reference element Q̂Â (right) to the physical element Q (middle).

4.6.2 Derivation of the Reference Basis Functions

In this section, we describe an efficient way of computing the basis on the skewed reference

element Q̂Â. In the two–diagonal split of Q̂Â, we let {ĉj}4
j=1 denote the midpoints of the

interior edges and ĉ5 be the point of intersection of the two diagonals (See Figure 4.4).

Moreover, we let {ŵi}5
i=1 ⊂ P2(K̂Q̂r ) ∩H1(Q̂Â) satisfy ŵi(ĉj) = δi,j and ŵi(âj) = 0, and

{v̂i}8
i=1 ⊂ P2(K̂Q̂r ) ∩ H1(Q̂Â) satisfy v̂i(ĉj) = 0 and v̂i(âj) = δi,j. Thus, {ŵi, v̂i} form the

canonical basis of P2(K̂Q̂r )∩H1(Q̂). Note that ŵi|∂Q̂ = 0, therefore, ŵi are quadratic bubble

functions. Furthermore, {ŵiek, v̂iek} forms the canonical basis for P2(K̂Q̂r ) ∩H1(Q̂).
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â7 â1

â3 = Â

â5

â6

â8

â4

â2

ĉ5

ĉ4 ĉ1

ĉ3

ĉ2

Figure 4.4: Labeling of the skewed reference element.

The basis of V(Q̂Â) is regarded as the Lagrange subbasis {v̂iek} corrected by the functions

{ŵi} to enforce the constant divergence constraint. In particular, the degrees of freedom and

the definition of V(Q̂Â) yield the following result.

Lemma 32. Let v̂
(k)
i ⊂ V(Q̂Â) denote the canonical basis of V(Q̂Â). Then, for each i and

k, there exist unique vectors {b(k)
i,j }5

j=1 ⊂ R2 such that v̂
(k)
i = ekv̂i +

5∑
j=1

b
(k)
i,j ŵj. In particular,

the vectors are uniquely determined by the following constraint, which represents a (10× 10)

system.

d̂iv(v̂
(k)
i ) = ek · ∇̂v̂i +

5∑
j=1

b
(k)
i,j · ∇̂ŵj ∈ P0(Q̂Â). (4.6.1)

Remark 7. The Lagrange basis {v̂i, ŵi} are easily computable, even on the skewed quadri-

lateral Q̂Â. The (10× 10) system given in (4.6.1) can be solved symbolically in terms of the

point Â. We assume that Â is opposite to the origin as shown in Figure 4.3.

Remark 8. The condition d̂iv(v̂
(k)
i )|T̂i ∈ P0(T̂i) imposes two linearly–independent constraints

for each T̂i, therefore, yields 8 constraints in total. The additional continuity condition

d̂iv(v̂
(k)
i ) ∈ P0(Q̂Â) only adds 2 constraints due to the singular vertex.
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4.7 NUMERICAL EXPERIMENTS

In this section, we present some numerical results supporting the theoretical results and

compare the convergence rates of the divergence–free macro elements with the convergence

rates of the serendipity elements for some test cases on both tensor–product and general

convex quadrilateral meshes (See Figure 4.5). We note that the degrees of freedom on

quadrilateral meshes are less than the degrees of freedom on tensor–product meshes (See

Tables 4.2, 4.3).

4.7.1 Experiment 1: Stokes Problem

We compute the finite element method (4.5.2) on a sequence of refined meshes obtained

from tensor–product and quadrilateral grids. In this experiment, we consider the domain

Ω = (0, 1)2 and take the viscosity constant as ν = 1. We choose the data such that the

velocity solution u and the pressure solution p are as follows:

u(x, y) =

 2x2y(2y − 1)(y − 1)(x− 1)2

−2xy2(y − 1)2(2x− 1)(x− 1)

 ,

p(x, y) = x2 − y2.

The error estimates with the rates of convergence on the tensor–product and quadrilateral

meshes are listed in Tables 4.4, 4.5 and Tables 4.6, 4.7, respectively. Moreover, for compar-

ison, we list the errors obtained by using the serendipity elements on the same sequence of

meshes in Tables 4.8, 4.9.

4.7.2 Discussion on the Experimental Results for the Stokes Problem

Experiment 1 shows that the velocity solution obtained from the divergence–free macro

element method have optimal order convergence on both the tensor-product and quadrilateral

meshes (See Tables 4.4, 4.6). In addition, second–order convergent pressure solutions are

derived via post-processing (See Tables 4.5, 4.7). These results support the theoretical results

stated in Section 4.5. On the other hand, we observe that the velocity solutions obtained

by using serendipity elements on the quadrilateral meshes are suboptimal and the pressure

solutions are only first–order convergent (See Table 4.9).
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(a) Tensor-product mesh. (b) Quadrilateral mesh.

Figure 4.5: Mesh with h = 0.125.

Table 4.1: Mesh statistics for h = 0.125.

Mesh Type Tensor-Product Quadrilateral

Elements 64 486

Vertices 81 523

Boundary Vertices 32 72

Edges 144 1008

Boundary Edges 32 72
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Table 4.2: Node statistics for the tensor–product mesh with h = 0.125.

FEM Div–Free Macro Serendipity

Nodes 514 531

Interior nodes (dofs) 385 402

Velocity nodes 450 450

Pressure nodes 64 81

Interior velocity nodes (dofs) 322 322

Interior pressure nodes (dofs) 63 80

Table 4.3: Node statistics for the quadrilateral mesh with h = 0.125.

FEM Div–Free Macro Serendipity

Nodes 3548 3585

Interior nodes (dofs) 3259 3296

Velocity nodes 3062 3062

Pressure nodes 486 523

Interior velocity nodes (dofs) 2774 2774

Interior pressure nodes (dofs) 485 522
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Table 4.4: Experiment 1, Convergence results for the Div–Free Macro Stokes elements on
tensor–product meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖div(uh)‖L∞(Ω)

1/8 2.4205E − 05 1.4663E − 03 3.0531E − 16

1/16 3.0107E − 06 3.0071 3.6793E − 04 1.9947 6.9562E − 16

1/32 3.7554E − 07 3.0031 9.2048E − 05 1.9990 1.5838E − 15

1/64 4.6913E − 08 3.0009 2.3016E − 05 1.9997 3.0271E − 15

Table 4.5: Experiment 1, Convergence results for the Div–Free Macro Stokes elements on
tensor–product meshes.

h ‖p− ph‖L2(Ω) Rate ‖p− p∗‖L2(Ω) Rate

1/8 5.8833E − 02 1.7754E − 03

1/16 2.9451E − 02 0.9983 4.2075E − 04 2.0771

1/32 1.4730E − 02 0.9996 1.0351E − 04 2.0232

1/64 7.3655E − 03 0.9999 2.5770E − 05 2.0060
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Table 4.6: Experiment 1, Convergence results for the Div–Free Macro Stokes elements on
quadrilateral meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖div(uh)‖L∞(Ω)

1/8 5.5600E − 06 5.3695E − 04 5.6483E − 15

1/16 8.2511E − 07 2.7524 1.4937E − 04 1.8459 7.2720E − 15

1/32 1.1228E − 07 2.8775 3.9240E − 05 1.9285 2.1866E − 14

1/64 1.4632E − 08 2.9399 1.0043E − 05 1.9661 8.8635E − 14

Table 4.7: Experiment 1, Convergence results for the Div–Free Macro Stokes elements on
quadrilateral meshes.

h ‖p− ph‖L2(Ω) Rate ‖p− p∗‖L2(Ω) Rate

1/8 2.7710E − 02 4.7204E − 04

1/16 1.4674E − 02 0.9172 1.2760E − 04 1.8873

1/32 7.5599E − 03 0.9568 3.2827E − 05 1.9587

1/64 3.8382E − 03 0.9779 8.2920E − 06 1.9851
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Table 4.8: Experiment 1, Convergence results for the Serendipity elements on tensor–product
meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 2.25254e− 05 1.18497e− 03 1.65257e− 03

1/16 2.70148e− 06 3.0597 2.81811e− 04 2.0721 4.11852e− 04 2.0045

1/32 3.35915e− 07 3.0076 6.97705e− 05 2.0140 1.02940e− 04 2.0003

1/64 4.19576e− 08 3.0011 1.74091e− 05 2.0028 2.57347e− 05 2.0000

Table 4.9: Experiment 1, Convergence results for the Serendipity elements on quadrilateral
meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 5.20096e− 06 6.47006e− 04 2.63414e− 04

1/16 1.06298e− 06 2.2907 2.74659e− 04 1.2361 8.40444e− 05 1.6481

1/32 2.42658e− 07 2.1311 1.29238e− 04 1.0876 2.84605e− 05 1.5622

1/64 5.94236e− 08 2.0298 6.37548e− 05 1.0194 1.09533e− 05 1.3776
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4.7.3 Experiment 2: NSE with Homogeneous Boundary Conditions

In this experiment, we approximate a finite element solution for the NSE given by (4.7.1)

defined on Ω = (0, 1)2 with the viscosity constant ν = 1.

−ν∆u + (u · ∇)u +∇p = f , in Ω,

div(u) = 0, in Ω,

u = 0, on ∂Ω.

(4.7.1)

We choose the data such that the velocity solution u and the pressure solution p are as

follows:

u(x, y) =

 2aπ sin2(aπx) sin(aπy) cos(aπy)

−2aπ sin(aπx)sin2(aπy) cos(aπx)

 ,

p(x, y) = 5000 (x2 − y2).

The error estimates with the rates of convergence on the tensor–product and quadrilateral

meshes are listed in Table 4.10 and Table 4.11, respectively. Moreover, for comparison, we

list the errors obtained by using the serendipity elements on the same sequence of meshes in

Tables 4.12, 4.13.

4.7.4 Experiment 3: NSE with Nonhomogeneous Boundary Conditions

In this experiment, homogeneous boundary conditions are not imposed on the velocity of

the fluid. We provide a finite element solution for the NSE defined on Ω = (0, 1)2 with the

viscosity constant ν = 1. We choose the data such that the velocity solution u and the

pressure solution p are as follows:

u(x, y) =

4x
(
π(y + 0.5)cos(2πy) + 0.5sin(2πy)

)
(−2y − 1)sin(2πy)

 ,

p(x, y) = 100 (x4 − 3y2

5
).

The error estimates with the rates of convergence on the tensor–product and quadrilateral

meshes are listed in Table 4.14 and Table 4.15, respectively. Moreover, for comparison, we

list the errors obtained by using the serendipity elements on the same sequence of meshes in

Tables 4.16, 4.17.
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Table 4.10: Experiment 2, Convergence results for the Div–Free Macro elements on tensor–
product meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 3.8053E − 01 2.3205E + 01 2.9417E + 02

1/16 5.2011E − 02 2.8711 6.2894E + 00 1.8834 1.4726E + 02 0.9983

1/32 6.7061E − 03 2.9553 1.6108E + 00 1.9651 7.3650E + 01 0.9996

1/64 8.4546E − 04 2.9877 4.0524E − 01 1.9910 3.6828E + 01 0.9999

Table 4.11: Experiment 2, Convergence results for the Div–Free Macro elements on quadri-
lateral meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 8.7070E − 02 8.7116E + 00 1.3856E + 02

1/16 1.4875E − 02 2.5493 2.6659E + 00 1.7083 7.3372E + 01 0.9172

1/32 2.1467E − 03 2.7927 7.2930E − 01 1.8701 3.7800E + 01 0.9568

1/64 2.8518E − 04 2.9122 1.8935E − 01 1.9455 1.9191E + 01 0.9780
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Table 4.12: Experiment 2, Convergence results for the Serendipity elements on tensor–
product meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 6.8818E − 01 3.3271E + 01 1.5469E + 01

1/16 6.2157E − 02 3.4688 6.7530E + 00 2.3007 2.0737E + 00 2.8990

1/32 7.8048E − 03 2.9935 1.6346E + 00 2.0466 5.1515E − 01 2.0092

1/64 9.7815E − 04 2.9962 4.0662E − 01 2.0071 1.2868E − 01 2.0012

Table 4.13: Experiment 2, Convergence results for the Serendipity elements on quadrilateral
meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 7.1858E − 02 8.2505E + 00 1.4904E + 00

1/16 1.2636E − 02 2.5077 2.7464E + 00 1.5869 4.4017E − 01 1.7595

1/32 2.1439E − 03 2.5592 9.8155E − 01 1.4844 1.5426E − 01 1.5127

1/64 4.1461E − 04 2.3704 4.1411E − 01 1.2450 6.4232E − 02 1.2640
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Table 4.14: Experiment 3, Convergence results for the Div–Free Macro elements on tensor–
product meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 1.7628E − 02 9.5541E − 01 5.9564E + 00

1/16 2.2195E − 03 2.9896 2.4098E − 01 1.9872 2.9949E + 00 0.9919

1/32 2.7824E − 04 2.9958 6.0397E − 02 1.9964 1.4995E + 00 0.9980

1/64 3.4809E − 05 2.9988 1.5109E − 02 1.9990 7.5004E − 01 0.9995

Table 4.15: Experiment 3, Convergence results for the Div–Free Macro elements on quadri-
lateral meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 1.4531E − 03 1.8033E − 01 2.6512E + 00

1/16 2.1610E − 04 2.7494 5.0425E − 02 1.8384 1.4054E + 00 0.9157

1/32 2.9512E − 05 2.8723 1.3351E − 02 1.9172 7.2423E − 01 0.9564

1/64 3.8567E − 06 2.9359 3.4360E − 03 1.9582 3.6772E − 01 0.9778
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Table 4.16: Experiment 3, Convergence results for the Serendipity elements on tensor–
product meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 1.8497E − 02 9.5349E − 01 3.2482E − 01

1/16 2.3105E − 03 3.0010 2.3925E − 01 1.9947 8.0246E − 02 2.0171

1/32 2.8879E − 04 3.0001 5.9869E − 02 1.9986 2.0024E − 02 2.0027

1/64 3.6098E − 05 3.0000 1.4971E − 02 1.9997 5.0041E − 03 2.0006

Table 4.17: Experiment 3, Convergence results for the Serendipity elements on quadrilateral
meshes.

h ‖u− uh‖L2(Ω) Rate ‖u−uh‖H1(Ω) Rate ‖p− ph‖L2(Ω) Rate

1/8 2.0689E − 03 2.8715E − 01 6.8657E − 02

1/16 4.6722E − 04 2.1467 1.2884E − 01 1.1562 2.4849E − 02 1.4662

1/32 1.1389E − 04 2.0365 6.2162E − 02 1.0515 9.5961E − 03 1.3727

1/64 2.8575E − 05 1.9948 3.0851E − 02 1.0107 3.9694E − 03 1.2735
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4.7.5 Discussion on the Experimental Results for the NSE

Experiment 2 shows that the divergence–free macro element method provides optimal rates

of convergence for the velocity solution of the NSE with homogeneous boundary condi-

tions on both the tensor–product and quadrilateral meshes (See Table 4.10, 4.11). We note

that these rates coincide with the rates we obtained for the Stokes problem (See Table 4.4,

4.5, 4.6, 4.7). Although the serendipity element method exhibit optimal convergence on

tensor–product meshes (See Table 4.12), the convergence of this method is suboptimal on

quadrilateral meshes (See Table 4.13).

In Experiment 3, we see that for the NSE with nonhomogeneous boundary conditions,

divergence–free macro element method yields optimally–convergent velocity solutions on

both kinds of meshes as in the case of non–slip boundary conditions (See Table 4.14, 4.15).

Moreover, the serendipity element method yields velocity solutions with suboptimal conver-

gence rates as in Experiment 3 (See Table 4.17).
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5.0 CONCLUSION

In this dissertation, we built conforming finite elements that yield divergence–free veloc-

ity solutions for the steady Stokes problem on cubical and quadrilateral meshes of open,

bounded, simply–connected polygonal domains. First, we constructed the finite element

spaces with the desired properties for the two-dimensional problem on rectangular meshes.

Then, we extended these spaces to spaces on n-dimensional cubical meshes. We proved the

stability, the conformity of the methods we propose and the solenoidality of the velocity

solutions through the use of discrete differential forms and smooth de Rham complexes. We

also developed macro elements for the two–dimensional problem on quadrilateral meshes. By

utilizing the tools of differential calculus, we showed that our method yields divergence–free

velocity solutions, and with the construction of a Fortin operator, we validated the stability

of our method. We verified that the methods we develop here yield optimal convergence rates

and present some numerical experiments which are supportive of these theoretical results.

Furthermore, we applied our divergence–free macro element method to the Navier-Stokes

equations and provided numerical experiments which show that the convergence rates are

preserved.
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[14] J. F. Ciavaldini, and J. C. Nédélec. Sur l’élément de Fraeijs de Veubeke et Sander.
R.A.I.R.O. Analyse Numérique, 8(R-2):29–46, 1974.

[15] M. Crouzeix and P. A. Raviart. Conforming and nonconforming finite element methods
for solving the stationary Stokes equations. Rev. Française Automat. Informat. Recherche
Opérationnelle Sér. Rouge, 7(R-3):33–75, 1973.

[16] B. F. de Veubeke. A conforming finite element for plate bending. International Journal
of Solids and Structures, 4(1):95–108, 1968.

[17] D. B. Dusenbery. Living at micro scale. Harvard University Press, 2011.

[18] A. Ern and J. L. Guermond. Theory and practice of finite elements, Vol. 159 of Applied
Mathematical Sciences. Springer-Verlag, New York, 2004.

[19] J. A. Evans. Divergence-free B-spline discretization for viscous incompressible flows,
PhD thesis, University of Texas at Austin, 2011.

[20] J. A. Evans and T. J. R. Hughes. Isogeometric divergence–conforming B–splines for
the Darcy-Stokes-Brinkman equations. Math. Models Methods Appl. Sci., 23(4):671–741,
2013.

[21] J. A. Evans and T. J. R. Hughes. Isogeometric divergence conforming B-splines for the
unsteady Navier-Stokes equations. Math. Models Methods Appl. Sci., 241:141–167, 2013.

[22] R. S. Falk and M. Neilan. Stokes complexes and the construction of stable finite elements
with pointwise mass conservation. SIAM J. Numer. Anal., 51(2):1308–1326, 2013.

[23] V. Girault and P. A. Raviart. Finite element methods for Navier-Stokes equations: The-
ory and algorithms, Vol. 5 of Computational Mathematics. Springer Science and Business
Media, 2012.

[24] V. Girault and P. A. Raviart. Finite element methods for Navier-Stokes equations.
Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986.

[25] J. Guzmán and M. Neilan. Conforming and divergence-free Stokes elements on general
triangular meshes. Math. Comp., 83(285):15–36, 2014.

[26] Y. Huang and S. Zhang. A lowest order divergence-free finite element on rectangular
grids. Front. Math. China, 6(2):253–270, 2011.

[27] B. J. Kirby. Micro and Nanoscale Fluid Mechanics. Cambridge University Press, Reprint
edition, 2013.

79



[28] M. J. Lai and L. L. Schumaker. Spline functions on triangulations, Vol. 110 of Encyclo-
pedia of Mathematics and Its Applications. Cambridge University Press, 2007.

[29] W. E. Langlois and M. O. Deville. Slow viscous flow. Springer, C., Second edition, 2014.

[30] B. Lautrup. Physics of continuous matter. Exotic and Everyday Phenomena in the
Macroscopic World. CRC Press, Second edition, 2011.

[31] W. Li and J. Robinson. Automated generation of finite element meshes for aircraft
conceptual design. American Institute of Aeronautics and Astronautics, 2016.

[32] P. S. Modenov and A. S. Parkhomenko. Euclidean and affine transformations: Geomet-
ric transformations, Vol. 1 of Geometric Transformations. Academic Press, 2014.

[33] P. Monk. Finite element methods for Maxwell’s equations, Numerical Mathematics and
Scientific Computation. Oxford University Press, New York, 2003.

[34] J. Morgan, and R. Scott. A nodal basis for C1 piecewise polynomials of degree n ≥
5. Math. Comp., 29(131):736–740, 1975.

[35] M. Neilan and D. Sap. Stokes elements on cubic meshes yielding divergence-free approx-
imations. Calcolo, 53(3):263–283, 2016.

[36] M. Neilan and D. Sap. Macro Stokes elements on quadrilaterals. International Journal
of Numerical Analysis and Modeling, (to appear).
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