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By more ways than one: Rapid
convergence at hydrothermal vents
shown by 3D anatomical reconstruction
of Gigantopelta (Mollusca: Neomphalina)
Chong Chen1,2* , Katsuyuki Uematsu3, Katrin Linse4 and Julia D. Sigwart1,5

Abstract

Background: Extreme environments prompt the evolution of characteristic adaptations. Yet questions remain about
whether radiations in extreme environments originate from a single lineage that masters a key adaptive pathway, or if
the same features can arise in parallel through convergence. Species endemic to deep-sea hydrothermal vents must
accommodate high temperature and low pH. The most successful vent species share a constrained pathway to
successful energy exploitation: hosting symbionts. The vent-endemic gastropod genus Gigantopelta, from the
Southern and Indian Oceans, shares unusual features with a co-occurring peltospirid, the ‘scaly-foot gastropod’
Chrysomallon squamiferum. Both are unusually large for the clade and share other adaptive features such as a
prominent enlarged trophosome-like oesophageal gland, not found in any other vent molluscs.

Results: Transmission electron microscopy confirmed endosymbiont bacteria in the oesophageal gland of
Gigantopelta, as also seen in Chrysomallon. They are the only known members of their phylum in vent ecosystems
hosting internal endosymbionts; other vent molluscs host endosymbionts in or on their gills, or in the mantle cavity.
A five-gene phylogenetic reconstruction demonstrated that Gigantopelta and Chrysomallon are not phylogenetically
sister-taxa, despite their superficial similarity. Both genera have specialist adaptations to accommodate internalised
endosymbionts, but with anatomical differences that indicate separate evolutionary origins. Hosting endosymbionts in
an internal organ within the host means that all resources required by the bacteria must be supplied by the animal,
rather than directly by the vent fluid. Unlike Chrysomallon, which has an enlarged oesophageal gland throughout
post-settlement life, the oesophageal gland in Gigantopelta is proportionally much smaller in juveniles and the animals
likely undergo a trophic shift during ontogeny. The circulatory system is hypertrophied in both but the overall size is
smaller in Gigantopelta. In contrast with Chrysomallon, Gigantopelta possesses true ganglia and is gonochoristic.

Conclusions: Key anatomical differences between Gigantopelta and Chrysomallon demonstrate these two genera
acquired a similar way of life through independent and convergent adaptive pathways. What appear to be the
holobiont’s adaptations to an extreme environment, are driven by optimising bacteria’s access to vent nutrients. By
comparing Gigantopelta and Chrysomallon, we show that metazoans are capable of rapidly and repeatedly evolving
equivalent anatomical adaptations and close-knit relationships with chemoautotrophic bacteria, achieving the same
end-product through parallel evolutionary trajectories.
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Background
All “extreme” environments prompt the evolution of
characteristic anatomical and physiological features in
organisms that exploit them. Animals inhabiting deep-
sea hydrothermal vents face high pressure, strong gradi-
ents of pH and temperature, hydrogen sulfide, methane,
and heavy metals [1, 2]. The foundation of these ecosys-
tems is microbial chemosynthesis [3] and many endemic
vent metazoans host symbiotic bacteria either on the
body surface as epibonts (e.g., crustaceans Shinkaia,
Rimicaris), or within their tissues as endosymbionts (e.g.,
siboglinid tubeworms Riftia, and molluscs Calyptogena,
Bathymodiolus) [4]. Chemosynthesis generates energy
through the oxidation of sulfide and methane, the key
oxidant being oxygen in the surrounding water [5].
These animals usually present conspicuous physiological
and anatomical adaptations to serve the endosymbiont;
for example siboglinid tubeworms have a specialised
organ, the trophosome, to house their sulfur-oxidising
bacteria and have haemoglobin that binds both oxygen
and sulfur to supply the bacteria with its two key re-
sources [6]. Vent ecosystems fall into different faunal
provinces, with most species geographically restricted
to particular ridge systems [7–9]. Regardless of faunal
composition, in all biogeographic regions the dominant
vent metazoan species consistently have close relation-
ships with chemosynthetic bacteria [7, 9]. The current
understanding is that majority of vent endemic taxa have
evolved relatively recently and all dominant taxa are
highly modified for lifestyle specific to hydrothermal
vents [10, 11]. Yet, hosting symbiotic bacteria is the
unifying feature of vent-endemic primary consumers,
and thus appears to be the singular constrained evolu-
tionary pathway to successful exploitation of the energy
from vents.
Vent ecosystems are characterised by local concentra-

tions of biomass, matching that of tropical coral reefs
[1], but in vents that biomass is dominated by a few spe-
cies forming huge aggregations around fluid effluents
[7]. In many cases, the dominant species are molluscs,
which include at least seven phylogenetically independ-
ent origins of relationships with endosymbiotic bacteria
[12–14]. Vents on the East Scotia Ridge (ESR), Southern
Ocean, and the Southwest Indian Ridge (SWIR), for
example, are dominated by large members of the vent-
endemic gastropod family Peltospiridae [15], namely
Gigantopelta spp. and the ‘scaly-foot gastropod’ Chryso-
mallon squamiferum, which both live in high density
aggregations [9, 16, 17]. Chrysomallon is distinct for its
dermal armature of scales that cover the outer surface
of the foot, unique among living gastropods [18–20].
While Gigantopelta spp. lack scales, they share several

features with Chrysomallon that make both gastropod
genera unusual in context of their clade, such as a large

body size (>45 mm, compared to typical sizes in other
taxa of 10–15 mm [21]; meaning a 10–50 times increase
in body volume) and an enlarged oesophageal gland
[16]. Some gastropod limpets in other families found in
reducing environments have enlarged oesophageal
pouches [22, 23], but these species are not from hydro-
thermal vents, and the presence of symbionts within
their oesophageal structures has never been directly ob-
served except in the case of Lepetella [23]. Previous
studies of Chrysomallon reported sulfur-oxidising ɣ-pro-
teobacteria housed within the oesophageal gland [14,
24]. Stable isotope analyses using adult G. chessoia
specimens demonstrated likely reliance on endosymbionts
for nutrition [25, 26], but the existence of endosymbionts
had not been directly observed. One aim of the present
study was to confirm the presence of microbes in the
oesophageal gland tissues in Gigantopelta.
Chrysomallon and Gigantopelta are the only vent ani-

mals, except siboglinid tubeworms, that house endosym-
bionts within an enclosed part of the body not in direct
contact with vent fluid, an arrangement that implies all
resources required by the bacteria must be supplied by
the host animal [20]. In most vent taxa that host chemo-
autotrophic bacteria, including other molluscs such as
Alviniconcha snails and Calyptogena clams, endosymbi-
onts are contained within the gill (or mantle cavity, in
the case of Lurifax vitreus [27]), where they can more or
less directly access the chemical resources they require
[28]. The same is true in symbiotrophic molluscs from
other reducing ecosystems, ranging from intertidal muds
to methane seeps [29, 30]. All siboglinid worms have a
single evolutionary origin of their internal gut-based
endosymbiosis [31], yet it is unclear whether the peltos-
pirid gastropods Chrysomallon and Gigantopelta repre-
sent a single or separate acquisition of endosymbiosis.
Here, we present new evidence of key anatomical and

phylogenetic differences between Chrysomallon and
Gigantopelta that demonstrate these two genera acquired a
similar way of life through two different adaptive pathways.

Results
The 'scaly-foot gastropod' Chrysomallon squamiferum,
and Gigantopelta spp. share key features that separate
them from all other known hydrothermal vent gastro-
pods. However, our analysis clearly demonstrated that
this suite of adaptations to a vent ecosystem has been
convergently acquired in the two genera (Fig. 1). Phylo-
genetic analysis of neomphaline gastropods demon-
strated that the two genera are not sister groups. We
confirmed that the oesophageal gland in Gigantopelta
chessoia does house endosymbiotic bacteria (Fig. 2), but
comparative anatomy (Fig. 3) also revealed substantial
differences that belie the potential homology of these
adaptive features.
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In our Bayesian phylogenetic analysis, Peltospiridae
was recovered as a monophyletic group (Bayesian Pos-
terior Probability, BPP = 0.82) within the fully-supported
monophyletic clade Neomphalina (BPP = 1.00) (Fig. 1).
Both Chrysomallon and Gigantopelta are within the
family Peltospiridae, confirming their systematic position
within the family. The other peltospirid taxa, Depressi-
gyra and Peltospira spp. retain the plesiomorphic con-
ditions (no dermal scales, no endosymbiont-housing
oesophageal gland, normal circulatory capacity), given
polarity inferred from non-peltospirid neomphalines
and all other gastropods [32–34]. While Chrysomallon
is sister to all other Peltospiridae, the distinctive ana-
tomical features of this species such as its dermal
scales, unganglionated nervous system, oesophageal
gland for endosymbionts, and enlarged circulatory
system, are all unequivocally derived features within
Neomphalina [35]. Gigantopelta, which appears to
share some of these features, was recovered sister to
Peltospira with full support (BPP = 1.00), and the
Gigantopelta-Peltospira clade was sister to Depressigyra
(BPP = 0.98). It is most parisomonious to infer that de-
rived anatomical characters in Gigantopelta were ac-
quired as independent autapomorphies, not from a
common peltospirid ancestor. Despite the similarities
between the two giant peltospirid genera, Gigantopelta
and the ‘scaly-foot gastropod’ Chrysomallon are actually

not the closest-related members among the known
Peltospiridae.
Features of the shell, radula, operculum and general

configuration of the soft parts of Gigantopelta chessoia
and the congener G. aegis were described by Chen et al.
[16]. The following description is drawn from observa-
tions of G. chessoia using dissection of adult specimens
(Fig. 4), including soft parts (Fig. 5) and shell (Fig. 6), as
well as and histology of a juvenile specimen (Fig. 7),
with tomographic reconstructions of the juvenile organ
systems (Figs. 8, 9 and 10). The ‘juvenile’ specimen ex-
amined in detail via serial sectioning had an intact
gonad, however the apparently ontogenetic allometry of
the oesophageal gland led us to maintain an explicit dif-
ferentiation of some ‘juvenile’ characters, meaning they
were observed in the histology of tomography of the
figured specimen. The features described here are gen-
erally applicable across ontogeny unless specifically
stated to apply differentially to juveniles and adults.
The authors have also examined adult specimens of the
congener G. aegis, which is similar in terms of gross
anatomy (CC, JDS, unpub. obs.), and some comparative
remarks are included where the two species differ. Ana-
tomical descriptions of specimens of both species are
limited to observations from material fixed in formalin
(G. chessoia n = 5, G. aegis n = 7, both fixed in 10%
formalin in phosphate-buffered seawater; [16]). The full

Fig. 1 Phylogenetic context and comparison of two hydrothermal vent endemic gastropods: Chrysomallon (upper) and Gigantopelta (lower).
a. Consensus tree reconstructed using Bayesian inference from a combined analysis of five standard markers (H3, COI, 16S, 18S, 28S), total
alignment length 2753-bp. Node values indicate Bayesian posterior probability. b. Chrysomallon squamiferum (Longqi field, Southwest Indian
Ridge) adult specimen in exterior ventral view and, c. transverse section showing internal oesophageal glad (og), scale bars 1 cm. d. Gigantopelta
chessoia (E2 Segment, East Scotia Ridge, Southern Ocean) adult specimen, and e. transverse section showing internal oesophageal glad (og), scale
bars 1 cm. Abbreviations: ct, ctenidium; pm, pedal muscle; og, oesophageal gland; sc, scales; si, blood sinus; te, testis
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interactive 3D anatomical model is provided as a PDF
file in Additional file 1.

External morphology and general features
Gigantopelta chessoia is a loosely coiled gastropod, the
head-foot and visceral mass occupy approximately two
whorls (Fig. 4). The snout is thick and broad, expanding
slightly towards the distal end. A pair of long and prom-
inent cephalic tentacles is present, about twice the
length of the snout, broad at the base and slowly taper-
ing to a fine tip. No eyes are present (confirmed via
histology) and the cephalic tentacles are of equal size in

both sexes. There are no copulatory organs on the head-
foot. The head is clearly separated from the rest of the
head-foot by a horizontal flap formed by the epipodium.
A large multispiral operculum is present at the metapo-
dium in both adults and juveniles, and fits well into the
aperture when the animal is retracted into the shell. The
foot is has no tentacles or other appendages on the ex-
posed surface, but a single row of epipodial tentacles are
present under the operculum, surrounding the opercular
attachment. The head-foot flesh is generally pinkish in
colouration, with patches of purplish blue when alive.
The shell muscle is U-shaped, with two thick lateral
parts on left and right, connected posteriorly by a narrow
attachment. The mantle edge is thick and smooth, the
mantle cavity is moderate in size, reaching two-thirds of
the body length. The mantle wall is often embedded with
unidentified crystalline deposits in G. aegis, although this
was not seen in specimens of G. chessoia preserved with
the same methods. The ctenidium is rather large and oc-
cupies the left side of the mantle cavity. In adults, a greatly
enlarged oesophageal gland occupies the floor of mantle
cavity as a smooth hump. The main visceral mass occu-
pies approximately 1.5 whorls (Figs. 4 and 9).
The hypobranchial gland is visible in the dorsal right

aspect of the mantle tissue, as an elongate pale diffuse
glandular material (the gland is visible in the proximal
mantle tissue in Fig. 5b; it is not visible in Fig. 4 because
the mantle tissue was removed to reveal the ctenidium).

Shell microsculpture
The thin outer layer of the shell had a finely granular
microstructure, while the thicker inner layer is composed
of a cross-lamellar structure as is typical of Peltospiridae
[36, 37]. Numerous narrow shell pores are present at the
inner surface of the shell, these open to the inside and
gradually taper towards the outer surface though they do
not appear to infiltrate the outer granular layer (Fig. 6).
Similar proximal shell pores are apparently commonplace
but not universal within the clade Neomphalina [34, 38].
The shell microstructure and the presence of inward
facing shell pores are similar in Gigantopelta chessoia
and G. aegis (CC unpub. obs.). The periostracum of G.
aegis is overlaid with a thick layer of rusty deposits,
while G. chessoia lacked this (as reported in [16]).

Digestive and excretory systems
A ventral mouth opening on the snout leads to buccal
cavity containing the rhipidoglossate radula. The inner
lip is composed of columnar epithelial cells covered with
a thin cuticle. We could not locate any discrete jaws or
salivary glands. The radula has a width:length ratio of
about 1:10 in the specimen used for tomographic recon-
struction. The radula is supported by a single pair of prom-
inent cartilages, in contact with each other anteriorly and

Fig. 2 TEM micrographs of the oesophageal gland of Gigantopelta.
a. An entire bacteriocyte and endosymbionts within, scale bar
2 μm; b. Magnification of a cluster of three endosymbionts in the
oesophageal gland, scale bar 500 nm
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separating posteriorly. The radula sac is posterior to the
cartilages and ventral to the buccal mass (Figs. 7 and 10:
radula, r; radula cartilage, rc). The radula ribbon emerges
folded and is straightened at the cartilages. A portion of
the oesophagus enlarges to a blind-ended oesophageal
gland, extremely hypertrophied in the adults (Fig. 1)
but not so in the juveniles (Figs. 7 and 10: oesophageal

gland, og). The oesophageal gland in adults has a gener-
ally uniform texture except a complex network of semi-
enclosed tubes embedded within the gland mass, as well
as numerous crystals of unknown nature (Fig. 5e).
The digestive tract is relatively small and forms a sim-

ple loop (Fig. 10). The oesophagus runs posteriorly
straight into a distinct stomach in the midgut without

Fig. 3 Comparative 3D tomographic reconstructions of the internal anatomy. a. Chrysomallon squamiferum (redrawn from [35]). b. Gigantopelta
chessoia. Colour groups correspond to specific anatomical systems: grey/black, digestive tract; brown, oesophageal gland; translucent blue,
ctenidium; red, heart; yellow, gonad; green, nephridium; fuchsia/blue, nervous and sensory systems. Abbreviations: a, auricle; cg, cerebral
ganglia; ct, ctenidium; dg, digestive gland; g, gonad; ls, non-ganglionic lateral swelling [35], ne, nephridium; oe, oesophagus; og, oesophageal
gland; pg, pedal ganglia; ps, non-ganglionic pedal swelling [35]; r, radula; rc, radula cartilage; re, rectum; ss, statocysts; v, ventricle

Chen et al. BMC Evolutionary Biology  (2017) 17:62 Page 5 of 19



looping, running underneath the pericardium and the
gonad on the way. The stomach is clearly distinct from
the rest of the digestive tract, being much wider than the
foregut or hindgut. No gastric shields or styles were
present. At least three ducts connect the stomach to the
digestive gland; the digestive gland extends posteriorly to
fill most of the apex (Figs. 5 and 8: digestive gland, dg).
While apical in position, distal to the stomach and the
posterior-most part of the digestive loop, the digestive
gland can appear overgrown by gonad in adults (Fig. 6d).
The posterior intestine emerges from the right-posterior
end of the stomach and proceeds anteriorly into the
oesophageal gland. In adults the posterior intestine is
very fine (maximally 1.2 mm in width for a specimen
36 mm shell length; Fig. 5c) and its integument thin and
fragile, so where the digestive tract is embedded in the
hypertrophied oesophageal gland the path of the hindgut
was impossible to accurately trace via dissection. In ju-
veniles, where the oesophageal gland is proportionately
much smaller, the hindgut intestine exits the stomach
running anteriorly toward the mouth, then loops back to
the posterior just before reaching the buccal mass to re-
turn posteriorly towards the stomach, staying entirely
ventral of the pericardium and the gonads. Slightly an-
terior to the stomach, the digestive loop turns anteriorly
again for a final stretch running along the mantle wall,
entering into the mantle and emerging as the rectum.
Thus the rectum does not pass through the pericardium.
The anal opening is located on the right side of the body
on the mantle wall, dorsal of the genital opening. The
digestive tract posterior of the stomach is often filled by
a chalky material. This was seen in specimens across all

sizes and may represent sulphur granules produced by
the endosymbiont and represent a way for detoxing
hydrogen sulphide.
The nephridium is a mass of glandular tissue that starts

posterior to the oesophageal gland, and extends into the
visceral sac. It is of considerable size and occupies the
ventral side of the visceral sac, ending just before reaching
the apex (Figs. 7, 8 and 9; nephridium, ne). In adults, the
gonad surrounds the nephridium on both sides (Fig. 9a).

Circulatory system
A single, moderately large left ctenidium (Figs. 4, 7c and 8)
terminates at the posterior end of the mantle cavity. The
posterior end is fused to the mantle roof. The ctenidium
occupied 7.9% of the body volume in the serially sectioned
specimen. The gill is bipectinate, densely packed with fine
gill filaments on both sides. The filaments are supported
by skeletal rods. Sensory bursicles could not be confirmed.
Two to three prominent and semi-enclosed blood sinuses
are present under the left side of the gill. The blood
sinuses in Gigantopelta appear to be static and only
present under the gill. There is a complex network of
large enclosed blood vessels that run through the
mantle tissue (Fig. 5h).
The heart of Gigantopelta is monotocardian, composed

of a well separated ventricle and auricle, both of which
have closed, muscular walls (Fig. 5f, i, j: auricle, a, ventricle
v). The auricle is large and of a curved triangular shape
(Fig. 5i), positioned to the posterior of the ctenidium, and
the ventricle is of slightly smaller size (Fig. 5j) left and
ventral of the auricle contacting the auricle’s convex side
(Fig. 5f). A large pericardium encloses the heart with
tissue fused to the mantle roof. The auricle has walls and
interior space made of crossing muscle fibres, and a large
muscle bundle divides it into two unequal portions
(Fig. 5i). The ventricle has more muscular walls and even
thicker muscle bundles than the auricle (Fig. 5j), and
occupied approximately 1.9% of the body volume in the
serially sectioned specimen (Fig. 10c). In dissected speci-
mens, the auricle is larger than the ventricle; in the
serially-sectioned juvenile specimen the auricle was clearly
damaged so more detailed quantitative estimates about
comparative volume are not available. The haemocoel is
jelly-like and of a pale blue colouration in fixed specimens,
but the muscles of the heart, particularly the auricle are
dark red. The heart in G. aegis is much paler in colour-
ation and appear to have generally thinner walls. The
auricle, especially, is smaller in size and much softer in
texture (with less muscular walls) than G. chessoia.

Reproductive system
Gigantopelta chessoia is gonochorostic, the level of de-
velopment of either testes or ovary varied among indi-
viduals of each sex. (All known specimens of both G.

Fig. 4 Gross anatomy of Gigantopelta chessoia (shell and mantle
tissue partially removed). Scale bar, 1 cm
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Fig. 5 (See legend on next page.)

Chen et al. BMC Evolutionary Biology  (2017) 17:62 Page 7 of 19



chessoia and G. aegis were collected in several events in
different years but all in austral summer, November-
December.) The testes were only observed in specimens
that were preserved in ethanol but appear relatively paler
than the ovae; the ovary is pinkish-brown. The gonad is
largely posterior of the pericardium, except a thin leaf of
mature gonad extending to dorsally overlap the pericar-
dium (Fig. 9c). In G. aegis, this extension was not
present and the gonad was entirely contained posterior
of the pericardium (Chen et al. 2015a: Fig. 7). The gonad
is connected to a pouch within the mantle roof (Fig. 5a)
via a gonopore presenting as a simple slit on the prox-
imal right mantle wall (Fig. 5b). A pocket surrounds the
gonopore and extends along the right mantle wall.
Within the mantle-cavity, a cresent-shaped flap opening
into this pouch is located anterior to the anus (Fig. 8a).
The pouch is located on the left side body; it takes up
considerable space and is visible as thicker tissue some-
times containing gonad material embedded within the
left side and posterior mantle tissue, tilting toward the
posterior where it connects to the visceral mass via the
gonopore. The pouch within G. aegis is lined with mus-
cular folds that make the pouch or flap appear exten-
sible, though the direction of expansion is unclear. The

gonoduct is not associated with any specialised copula-
tory organs or appendages, the gonad is well contained
within the mantle and there is no penis modified from
cephalic tentacles. No external sexual dimorphism could
therefore be detected. Each of the individuals examined
had only a single type of gonad present. The serially sec-
tioned juvenile specimen already had a sizeable gonad
(Figs. 7d, 8 and 9), taking up 11.4% of the body volume
in the same position as the adults.

Nervous system and sensory structures
Our descriptions follow the standard ontology proposed
by Richter et al. [39]. The nervous system is rather
voluminous (Figs. 8, 9 and 10) and occupies approxi-
mately 3.8% of body volume in the serially sectioned
juvenile specimen, proportionately smaller in adults.
Both cephalic tentacles are innervated with prominent
tentacular nerves. The nervous system is ganglionic,
with an oesophageal nerve ring containing distinct
cerebral and pedal ganglia pairs.
The pair of cerebral ganglia are large, flat and round,

the edge of the discs oriented anterior-posteriorly. These
are interconnected by a horseshoe-shaped cerebral
commissure. The medullary cords (sensu [39]) in the

(See figure on previous page.)
Fig. 5 Gigantopelta chessoia, photographs from dissection of adult specimens. a. Inside face of the right-posterior part of the mantle with gonad
‘flap’ removed to reveal the gonopore. b. A section of the right-posterior mantle wall showing the gonad ‘flap’ and anus. Arrowhead indicates
the gonad ‘flap’ opening. c. Transverse section through a female, showing relative positions of ovary and nephridium. d. Transverse section
through a male, showing stomach and digestive gland. e. Close-up of granular crystalline material (arrowhead) within the oesophageal gland.
f. Posterior view with the pericardium removed to reveal the auricle and the ventricle. g. Transverse section through the ctenidium showing
the large blood sinuses underneath. h. Transverse section through the mantle roof showing large blood vessel (arrowhead). i. Sagittal section
through the ventricle, with blood clot removed to show muscle bundles. j. Sagittal section through the auricle. Abbreviations: a, auricle; an,
anus; hp, hypobranchial gland; ct, ctenidium; dg, digestive gland; gf, gonad ‘flap’; gp, gonopore; i, intestine; ne, nephridium; pe, pericardium;
og, oesophageal gland; ov, ovary; s, stomach; si, blood sinus; te, testis; v, ventricle. Scale bars of a–b, e, i–j: 1 mm; f–g, h: 5 mm; c–d: 2 mm

Fig. 6 Cross section of Gigantopelta chessoia shell showing microstructure and proximal shell pores (white arrowhead) spread evenly across inner
surface. Abbreviations: cl, cross lamellar layer; gl, granulose layer; pe, periostracum; sh, shell. Scale bar 100 μm
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cephalic tentacles emerge from the central anterior mar-
gin of the cerebral ganglia. Other neural projections
emerge from the anterio-ventral side that innervate the
buccal mass though no ganglia could be identified. Dir-
ectly below the cerebral ganglia, slightly posterior to the
buccal nerve projections, are the pedal ganglia. The two
pedal and cerebral ganglion pairs are not fused but closely
connected. The pedal ganglia are teardrop-shaped, taper-
ing to the posterior and connected to the medullary ven-
tral (pedal) nerve cords which extend ventrally and
laterally into the foot with numerous large branches.

There are at least two lateral interconnectives joining the
two ventral nerve cords within the foot muscle, but the
posterior ends of the ventral nerve cords are not joined.
The pedal nerve cords are fully embedded within the foot
muscle; these nerves are very large and visible without
magnification in adult specimens.
On the distal side of each pedal ganglion, a distinct

interconnective extends dorsally to connect with the
lateral nerve cord immediately posterior to the cerebral
ganglion. This point on the lateral nerve cord is pos-
itionally homologous to the pleural ganglia in other

Fig. 7 Transverse semi-thin sections from Gigantopelta chessoia. a. Posterior part of the head showing radula apparatus, pedal ganglion, and
statocysts. b. Mid-body section showing the start of oesophageal gland. c. Mid-body section showing the oesophageal gland, sections through
the digestive tract, and ctenidium. d. Section through the anterior part of the visceral sac showing the gonad, the ventricle and the digestive
glands. Abbreviations: ct, ctenidium; dg, digestive gland; g, gonad; i, intestine; ln, lateral nerve cord; ne, nephridium; oe, oesophagus; og,
oesophageal gland; pg, pedal ganglion; pm, pedal musculature; r, radula; rc, radula cartilage; re, rectum; s, stomach; sl, statolith; ss, statocyst;
tt, cephalic tentacle; v, ventricle. Scale bars all 200 μm
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molluscs but there is no discrete ganglion in this pos-
ition in G. chessoia. At the same point on the lateral
nerve cords, another nerve emerges extending dorsally
into the mantle edge.
The nervous system is torted, resulting in a typical

figure-of-eight shape in the lateral nerve cords. The
body left side lateral nerve emerged from the posterior
aspect of the cerebral ganglion; immediately behind the
ganglion is a swelling equivalent to the pleural position,
with distal lateral connectives to the pedal ganglion and
mantel nerves as described. Posterior to the pleural area,
the nerve cord extends posteriorly and tilting to the right,
passing ventrally under the intestine and oesophageal
gland. Posterior to the oesophageal gland the lateral nerve
loop turns to the dorsal and comes forward over the intes-
tine and oesophageal gland, passing under the gill. There
is a large neural mass at the base of the gill rachis which is
positionally equivalent to the position of the osphradial
ganglion in other taxa though no pigmentation corre-
sponding to an ‘osphradium’ was consistently observed on
the gill epithelium in preserved specimens. Another nerve
emerges anterior from this neural swelling and extends to
the right as another mantle nerve. The lateral nerve cord
loop continues after the point of this neural swelling
(positionally similar to the osphradium in other taxa),
turning to the right and crossing the body to then join
the right side cerebral ganglion in a pleural-area swelling
nearly symmetrical to the left side.
A pair of statocysts are located medially, more or less

central in the body (Fig. 10d: statocysts, ss). These are
situated on the inner dorsal side of pedal ganglia and
apparently innervated by them. Each statocyst contains
a single statolith (Fig. 6a).

Discussion
The phylogenetic context suggests independent evolu-
tionary origins of the respective autapomorphies of the
two genera Chrysomallon and Gigantopelta; a comparative
anatomical approach can illuminate which aspects have a
common origin and the potential evolutionary constraint
of adaptations to extreme conditions at hydrothermal
vents. The anatomy of Gigantopelta broadly agrees with
other members of Neomphalina, having a single left
bipectinate ctenidium, non-papillate tentacles, a single left

auricle, rectum that does not penetrate the pericardium,
statocysts with statolith, and one pair of radula cartilages
[32, 34], but with a number of distinctive modifications
(Fig. 3). Here, we consider five key character sets in
Gigantopelta that were previously identified as adaptive
features in Chrysomallon [35]: armature, nervous sys-
tem, endosymbiont-housing oesophageal gland, circula-
tory system, and reproduction (Table 1).
The most striking features of the ‘scaly-foot gastropod’

Chrysomallon squamiferum is the dermal scales on its
foot, grown as mineralised outpockets of epithelium that
may originate from structures similar to the dermal ten-
tacles seen in all other known Peltospiridae [20]. At the
Southwest Indian Ridge, Chrysomallon and Gigantopelta
co-occur, with colonies of snails side-by-side [16]. While
the shell of Gigantopelta is robust and well calcified
compared to other large vent endemic gastropods such
as Alviniconcha [40, 41], the foot epithelium of Giganto-
pelta is normal and unarmoured.
The nervous systems of these two genera show some

critically important differences. Descriptions of inverte-
brate nervous systems are hampered by terminology that
sometimes does not facilitate comparisons among
groups [42]. In Chrysomallon, the nervous system is
unganglionated (specifically meaning it lacked any areas
were the neuropil of the medullary cords was clearly sur-
rounded in three dimensions by a cell cortex of neural
somata [39]), reduced into a series of nonetheless
massive medullary cords [35]. This lack of neural organ-
isation could be interpreted as indicative of a lack of any
higher processing in the snail, or that complex behaviour
does not provide any selective advantage to an animal
primarily dependent on maintaining an optimal environ-
ment for its endosymbiont microbes. The ventral nerve
cords of Chrysomallon are so enlarged, they sit outside
the foot musculature, within the visceral mass, in direct
contact with the oesophageal gland [35]. By contrast,
the nervous system of Gigantopelta possesses the true
ganglia of a typical molluscan nervous system and a
neural architecture similar to that described in some
vetigastropods [43].
One striking feature shared by Gigantopelta and

Chrysomallon is their large size. Yet most vent-endemic
gastropods that have acquired endosymbionts have a

(See figure on previous page.)
Fig. 8 3D tomographic reconstruction of Gigantopelta chessoia, the full anatomical model in various views. Soft body outline (mantle and foot)
shown in transparency for context. Ctenidium, anterior oesophagus, and digestive gland are rendered semi-transparent to show the structures
underneath. For all parts, the tomographic model is shown to left and a second copy of the same view with labelled parts shown to right.
a. Dorsal view; b. Ventral view. Colour groups correspond to specific anatomical systems: grey/black, digestive tract; brown, oesophageal gland;
translucent blue, ctenidium; red, heart; yellow, gonad; green, nephridium; fuchsia/blue, nervous and sensory systems. Abbreviations: a, auricle;
cc, cerebral commissure; cg, cephalic ganglion; ct, ctenidium; dg, digestive gland; g, gonad; i, intestine; ln, lateral nerve cord; ne, nephridium;
oe, oesophagus; og, oesophageal gland; pg, pedal ganglion; r, radula; rc, radula cartilage; re, rectum; s, stomach; si, blood sinus; ss, statocyst;
tn, tentacular nerves; v, ventricle; vn, ventral nerve cord. Scale bars, all 250 μm
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tendency towards gigantism, including Alviniconcha
and Ifremeria in Provannidae [21].
All other known hydrothermal vent-endemic molluscs

that house chemosymbionts, do so in their gills [28].
Although the oesophageal gland is a common structure
among the plesiomorphic gastropod clades such as
Vetigastropoda, Neomphalina, and Cocculiniformia [44],
only in Gigantopelta and Chrysomallon is the oesophageal
gland known to be hypertrophied to fill the entire ventral
side of mantle cavity [18, 35]. Though we cannot entirely
dismiss that other peltospirids may host a low density of
bacteria perhaps for detoxification, it is clear that their
glands are not enlarged and do not play important nutri-
tional role [32]. It is worth mentioning that large mono-
placophoran species also have hypertrophied oesophageal
glands, although all extant monoplacophorans studies so
far have proved to be detritivorous [45].
The digestive tract of Gigantopelta is similar in length

to Chrysomallon, being short and consisting of a single
loop, consistent with reliance on bacteria for primary
nutrition. In G. chessoia, the oesophageal gland is pro-
portionately much smaller in juveniles (only 0.6% body
volume) compared to adults, indicating a shift of diet
during ontogeny. This heterochrony is in stark contrast
to Chrysomallon, in which the oesophageal gland scales
isometrically with growth (9% body volume [35]). The
radula (1.4% body volume) and radula cartilages (2.6%
body volume) are both much larger in Gigantopelta
compared to Chrysomallon (0.4% and 0.8% body volume,
respectively) at juvenile stages. While Chrysomallon is
an obligate symbiotroph throughout post-settlement life,
Gigantopelta may be a mixotroph in juvenile life and
shifting to obligate symbiotrophy as an adult.
Observations via TEM confirmed that Gigantopelta

chessoia houses intracellular bacteria in the enlarged
oesophageal gland (microbes approximately 1 μm cell size,
Fig. 2). The most common type is likely sulfur-oxidising,
as we could not observe any membrane stacks that would
be characteristic of methane-oxidising bacteria [46, 47].
Characterisations using 16S rRNA have shown that the
most common endosymbiont in this tissue is a ɣ-proteo-
bacteria (Jane Heywood, pers. comm.). In TEM we also
observed possible additional methane-oxidising bacteria
(approximately 1.5 μm cell size) occurring at low density.

Chrysomallon has an oesophageal gland housing sulfur-
oxidising ɣ-proteobacteria (cell size approximately
1.5 μm) living at high density [24]. The presence of bacter-
iocytes within the oesophageal gland of Gigantopelta, in
context of a hydrothermal vent endemic lifestyle, is strong
evidence that this part of the body is specialised to pro-
mote chemoautotrophic endosymbionts. The oesophageal
gland tissue is much denser in Chrysomallon, and the con-
nection of the oesophageal gland to the circulatory system
and nervous system is different between the two genera
(Fig. 1).
All other vent molluscs with endosymbionts house them

on the gill surface, in constant contact with vent fluid. An
oesophageal gland is a closed sac and thus the host must
supply resources through its bloodstream, much like the
trophosome in siboglinid tubeworms [28, 31, 48]. The
whole circulatory system in both Gigantopelta and Chry-
somallon is enlarged, with a disproportionately large and
muscular heart, closed blood vessels and massive blood si-
nuses. The hearts in small individuals of these two genera
are three to six times larger than in other neomphaline
gastropods of similar size [32, 49] (Table 1), as well as re-
markably muscular compared to all other gastropods,
formed of massive intercrossing muscle bundles capable
of active pumping [35]. Yet there are important differ-
ences between the two lineages. The gill in Gigantopelta is
proportionately quite large, but relatively smaller in size
compared to Chrysomallon (15.5% of body volume, com-
pared to 7.9% in Gigantopelta), which also has a more en-
larged mantle space ([35]: Fig. 1). Although the circulatory
system in Chrysomallon is mostly closed, the prominent
blood sinuses appear to be transient, and occur in differ-
ent areas of the body in different individuals. By contrast,
the blood sinuses of Gigantopelta appear to be static, and
consistently occur under the left side of the ctenidium
(Fig. 1). In both genera, this large blood volume is inter-
preted as adaptive to supply the endosymbionts with nu-
trients required for chemosynthesis, such as hydrogen
sulfide and oxygen, but this is relatively more developed in
Chrysomallon than Gigantopelta.
Chrysomallon is a simultaneous hermaphrodite [35],

but all other members of Peltospiridae including Gigan-
topelta are gonochoristic [32, 34]. In Gigantopelta the
gonad is mostly on the left side of the body, though

(See figure on previous page.)
Fig. 9 3D tomographic reconstruction of Gigantopelta chessoia, the full anatomical model in various views (continued). Soft body outline (mantle
and foot) shown in transparency for context. Ctenidium, anterior oesophagus, and digestive gland are rendered semi-transparent to show the
structures underneath. For all parts, the tomographic model is shown to left and a second copy of the same view with labelled parts shown to
right. a. Right side view; b. Left side view; c. Anterior view. Colour groups correspond to specific anatomical systems: grey/black, digestive tract;
brown, oesophageal gland; translucent blue, ctenidium; red, heart; yellow, gonad; green, nephridium; fuchsia/blue, nervous and sensory systems.
Abbreviations: a, auricle; cc, cerebral commissure; cg, cephalic ganglion; ct, ctenidium; dg, digestive gland; g, gonad; i, intestine; ln, lateral
nerve cord; ne, nephridium; oe, oesophagus; og, oesophageal gland; pg, pedal ganglion; r, radula; rc, radula cartilage; re, rectum; s, stomach;
si, blood sinus; ss, statocyst; tn, tentacular nerves; v, ventricle; vn, ventral nerve cord. Scale bars, all 250 μm
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connecting into a distinctive pouch embedded within
the right body mantle, whereas in Chrysomallon the
gonad mass is to the right side and the male reproductive
system includes complex twisted ducts. Neither Gigan-
topelta nor Chrysomallon have specialised cephalic
copulatory appendages, although the expandable pocket
outside the gonopore seen in G. aegis may represent a
copulatory organ. Sexual maturity is present at smaller
body sizes in Gigantopelta, but not Chrysomallon, indi-
cating different strategies to optimise fecundity.

Conclusions
Anatomy is a key aspect of understanding organism
function, and provides insights to adaptive pathways that
cannot be inferred from molecular phylogenetic ap-
proaches alone. There are distinctive features of these
two hydrothermal vent endemic genera that appear gen-
rally similar, but detailed consideration of comparative
anatomy shows substantial differences in every import-
ant aspect. The enlarged oesophageal gland in these gas-
tropods is a key adaptation to optimising microbial
chemosymbiosis, and other major organ systems also

show modifications to support this co-option. Yet the
nature of these adaptations and the configuration of
organ systems do differ substantially in the two genera.
Autapomorphies and heterochronic shifts that differ-

entiate the two lineages, are evidence of independent
and convergent pathways to acquire a similar mode of
life. As the two genera are not sister-taxa, a single com-
mon origin for these features would require the less
plausible scenario that an enlarged oesophageal gland
and giant size are plesiomorphic among peltospirids,
and the other genera have all lost these characters.
Within the short history of this family, adaptive novelties
originated independently in two lineages for housing in-
ternal endosymbionts and for gigantism.
Recent hydrothermal-vent taxa mainly date to Cenozoic

radiations [11]. The common ancestor of Peltospiridae
was probably Late Cretaceous in age, with Neomphalina
probably dating to Middle Jurassic, from both molecular
clock reconstruction [50] and the fossil record [51].
Chrysomallon and Gigantopelta independently acquired
convergent features specialised for a vent habitat, such as
an enlarged oesophageal gland to house endosymbionts

(See figure on previous page.)
Fig. 10 3D tomographic reconstruction of Gigantopelta chessoia, organ groups. Soft body outline (mantle and foot) shown in transparency.
Anterior oesophagus, and digestive gland are rendered semi-transparent to show the structures underneath. a-b. Digestive system; c. Heart; d.
Nervous system with mid- and hindgut shown semi-transparent for positional reference; e. Side view of the nervous system; f. Radula and radula
cartilage. Abbreviations: a, auricle; cc, cerebral commissure; cg, cephalic ganglion; dg, digestive gland; i, intestine; ln, lateral nerve cord; ne, nephridium;
oe, oesophagus; og, oesophageal gland; pg, pedal ganglion; r, radula; rc, radula cartilage; re, rectum; s, stomach; ss, statocyst; v, ventricle; vn, ventral
nerve cord. Scale bars, all 250 μm

Table 1 Characteristics of the giant peltospirids, Gigantopelta and Chrysomallon, in comparison to other species that retain plesiomorphic
character states for the family Peltospiridae (Peltospira delicata) and the parent clade Neomphalina (Melanodrymia aurantica)

Neomphalina

Peltospiridae

Melanodrymia
aurantica

Peltospira delicata Gigantopelta chessoia Chrysomallon squamiferum

Body size adult 2 mm adult 6 mm juvenile (2 mm) adult (50 mm) juvenile (2.2 mm) adult (45 mm)

Dermal
armature

none none none scales in few rows dense and
asymmetric scales

Nervous system ganglionate ganglionate ganglionate non-ganglionate

Oesophageal
gland

symmetrical
foregut pouches
without glandular
material

small, symmetrical
foregut glands

fused, enlarged
gland, occupying
0.6% of visceral
mass volume

fused, enlarged
gland, increasing
allometrically up to 9%
of visceral mass volume

fused, enlarged gland,
occupying 9% of
visceral mass volume

fused, enlarged
gland, increasing
isometrically with
growth

Heart heart not enlarged
(ventricle 0.10 mm
in animal length
2.1 mm)

heart not enlarged
(ventricle 0.65 mm
in animal length
6 mm)

heart greatly
enlarged (ventricle
0.42 mm in animal
length 2.0 mm)

heart greatly
enlarged and
muscular
(ventricle 6 mm)

heart greatly enlarged
and muscular (ventricle
0.64 mm in animal
length 2.2 mm)

heart greatly
enlarged and
muscular
(ventricle 8 mm)

Blood sinuses thin thin large, but few and fixed position many large and mobile blood sinuses

Reproduction gonochoristic gonochoristic gonochoristic, fully
developed gonad
at body size 2.0 mm

gonochoristic no gonad present at
body size 2.2 mm

simultaneous
hermaphrodite

These characters are drawn from published observations and new data herein [32, 35, 49]. Separate observations of juvenile and adult specimens for the giant
peltospirids provides insights into heterochronic shifts, particularly the late development of the endosymbiont-housing oesophageal gland in Gigantopelta
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and hypertrophied circulatory system to supply nutrients
to them, which are absent in other neomphalines (Table 1).
However, as Gigantopelta is less dramatically derived than
Chrysomallon and only possesses a subset of its modifica-
tions, we infer its adaptive trajectory may have begun
more recently. Housing endosymbionts promotes gi-
gantism [21, 52].
Housing them internally appears to promote add-

itional adaptations in gastropods such as fusion of the
nervous system and increased circulatory capacity.
What appear to be the holobiont’s adaptations to an ex-
treme environment, may also be interpreted as driven by
optimising bacteria’s access to vent nutrients. By compar-
ing Gigantopelta and Chrysomallon, we show that meta-
zoans are capable of repeatedly evolving close-knit
relationships with chemoautotrophic bacteria, achieving
the same end-product through parallel evolution.

Methods
Specimen material
We examined material of both species in the genus
Gigantopelta: G. chessoia occurs on the East Scotia
Ridge (56° 05.31′ S, 30° 19.10′ W, depth 2644 m; collected
on RRS James Cook expedition JC80), G. aegis at Longqi
vent field (37° 47.03′ S 49° 38.97′ E, depth 2785 m; RRS
James Cook expedition JC67). There are only three re-
ported collections of these two species. Anatomical de-
scriptions of G. chessoia herein are possible through
material re-collected from the type locality ([16]), now de-
posited at the California Academy of Sciences (CASIZ
220235).
Each of the two species has been reported only from

its type locality, and collections have been reported
from one expedition from G. aegis and two occasions
for G. chessoia; while high local abundance enabled the
collection of relatively large numbers of specimens, it is
relevant to summarise the limitations of presently avail-
able material.
Gigantopelta chessoia was initially discovered on-board

RRS James Cook cruise JC42 in 2010, on segments E2
(type locality) and E9 of the East Scotia Ridge (Chen et al.,
2015a). Approximately 1400 specimens were collected, of
which about 40% were fixed and stored in 99% ethanol,
30% were fixed in 10% buffered formalin, and 20% were
frozen in−80 °C. Segment E2 was revisited in 2012 during
the RRS James Cook cruise JC80. During that cruise ap-
proximately 500 specimens were collected, of which about
40% were preserved in 99% ethanol, 30% of material in
10% buffered formalin, and 20% in−80 °C freezer. A subset
of the−80 °C frozen specimens from both cruises were
subjected to stable isotope analyses [26].
Gigantopelta aegis has only been collected once, dur-

ing the RRS James Cook cruise JC67 from the type local-
ity, Longqi vent field in the Southwest Indian Ridge [16].

Approximately 900 specimens were collected, of which
about 45% were fixed and stored in 99% ethanol, 40% in
10% buffered formalin, and 15% in−80 °C freezer.
The Longqi vent field is currently under a license for

mining exploration granted by the International Seabed
Authority to the China Ocean Mineral Resources Research
and Development Association. Additional collections have
been made and reported in the popular press that remain
unpublished in the scientific literature.
The type series of each of the two species is housed

in public repositories while the remainder at time of
writing are still held by the lab groups associated with
the cruises, including mainly National Oceanography
Centre Southampton, British Antarctic Survey, Univer-
sity of Oxford, and University of Newcastle. The type
series of each species includes a holotype (both in 99%
ethanol, NHMUK) and paratype specimens distributed
among 4 public museums [16]. Additional specimens of
G. chessoia re-collected from the type locality during
cruise JC80, and used for anatomical descriptions here,
have been deposited in the California Academy of Sci-
ences (CASIZ) and the Zoologische Staatssammlung
Munchen (ZSM).

Molecular phylogeny
In order to test the hypothesis that the two genera,
Gigantopelta spp. and the scaly-foot gastropod Chryso-
mallon squamiferum, are sister-groups, we assembled a
molecular dataset for these three species and other se-
lected relevant candidate sister-taxa, chiefly Depressigyra
and Peltospira. Our analysis included eight ingroup taxa
in Neomphalina (Chrysomallon squamiferum, Cyathermia
naticoides, Depressigyra globulus, Gigantopelta chessoia,
G. aegis, Melanodrymia aurantiaca, Peltospira delicata,
P. smaragdina), and seven additional species spanning
gastropod diversity, rooted with a patellogastropod as
the outgroup (Patellogastropoda: Lottia gigantea; Veti-
gastropoda: Fissurella barbadensis, Gibbula cineraria,
Lepetodrilus elevatus, Pyropelta sp.; Cocculiniformia:
Cocculina messingi; Caenogastropoda: Littorina littorea).
Our analysis incorporated previously published se-
quences plus new sequence data for G. aegis and G ches-
soia, using five standard markers: COI, histone 3 (H3),
16S rRNA, 18S rRNA and 28S rRNA. All five fragments
were included for all taxa. COI sequences for the same
individual specimens of Gigantopelta spp. were previ-
ously published as part of the species descriptions (Gen-
Bank accession numbers KR024336 for G. chessoia,
KR024376 for G. aegis; [16]). New sequences generated
from this study, for four fragments for each of the two
Gigantopelta species are deposited in GenBank under
accession numbers KX966246–KX966253.
The procedures for DNA extraction, amplification,

purification, and sequencing are as detailed in Chen

Chen et al. BMC Evolutionary Biology  (2017) 17:62 Page 16 of 19



et al. [17]. The most suitable evolutionary model was
tested using program PartitionFinder v. 1.0.1 [53], using
scores for the Akaike information criterion. The models
selected were as follows: H3, COI (first and second
codons), 16S, 28S = GTR + I + G; COI (third codon) =
HKY + I + G; 18S = K80 + G. The total concatenated se-
quence length used was 2753 bp.
Phylogenetic reconstruction was carried out with

Bayesian inference using MrBayes v. 3.2 [54]. Metropolis-
coupled Monte Carlo Markov Chains were run for five
million generations. Convergence topologies were sam-
pled every 100 generations and the first 25% were a priori
discarded as burn-in after ensuring that chains sampled a
stationary position. The software Tracer v. 1.6 [55] was
used to check for convergence and to calculate adequate
burn-in values.

Anatomy
Observations from a combination of adult and juvenile
specimens of Gigantopelta were compared with previous
observations of other peltospirid taxa. One of the smallest
juvenile specimens available for Gigantopelta chessoia
(shell length ca. 3 mm) was selected for serial sectioning
and the following 3D tomographic reconstruction. It was
decalcified in 2% EDTA (pH 7.2) for 48 h, followed by
subsequent dehydration in acetone series.
Prior to embedding, the specimen was stored in di-

luted Epon epoxy resin mixture (1:1 with 100% acetone)
left uncovered overnight at room temperature, allowing
acetone to evaporate. The specimen was then embed-
ded in Epon with DPM-30 accelerator and hardened
with the following protocol: 37 °C for 12 h, 45 °C for
12 h, and a further 24 h at 60 °C, according to the man-
ufacturer’s instructions (Nissin EM, Japan). Samples
were serially sectioned at a thickness of 1.5 μm using
an ultramicrotome (Reichert Ultracut S; Leica, Wetzlar,
Germany) fitted with a diamond knife (HistoJumbo
6 mm, DiATOME, Switzerland). Sections were stained
using 0.1% toluidine blue and cover-slipped using
Entellan New resin (Merk, Damstadt, Germany).
The serial semithin sections of the complete animal in-

cluded 1332 sections; a subsample of every third section
throughout the entire specimen was digitally captured
using a camera unit mounted to a compound microscope
trinocular (Olympus BX541), at an appropriate magnifica-
tion to maximise specimen visibility. The resulting images
were processed in Adobe Photoshop CC for contrast en-
hancement, size reduction, and converted to greyscale.
The processed images were imported into Amira v5.3.3
(FEI Visualisation Sciences Group) and aligned into a sin-
gle stack. In digital processing, materials of interest were
highlighted throughout a subsampled image stack (444
section images) followed by post-processing included
surface rendering and smoothing to generate the final

tomographic model following previously published
methods [45, 56, 57]. The slide-mounted serial sections
are deposited in Zoologische Staatssammlung München
(Munich, Germany) (ZSM Mol 20170157).
To generate a PDF file with the resulting full 3D ana-

tomical model embedded, rendered surface (.surf ) files
were exported from Amira as.obj files and imported into
DAZ Studio v4.9 (DAZ 3D). As colouration and transpar-
ency assignment were lost during export/import, identical
values were copied from Amira and re-entered in DAZ
Studio. After lighting and texture adjustments the full 3D
model was exported as a single.u3d file. Adobe Acrobat
XI Pro was used to import and embed this .u3d file in a
blank PDF file. Finally, pre-set views were saved in
Acrobat XI to complete the process.

Electron microscopy
To investigate the shell microstructure, the shell of one
adult specimen of G. chessoia and G. aegis each were
broken from the aperture to produce shell pieces with
fresh fractures. These were then observed uncoated with
a Hitachi TM-3000 SEM.
To confirm the presence of intracellular microbes,

a small sample from the central portion of the
oesophageal gland of an adult Gigantopelta chessoia
specimen was dehydrated in a graded acetone series and
embedded in Epon resin (Sigma-Aldrich). Ultrathin sec-
tions (70 nm) were taken with an ultramicrotome (Reichert
Ultracut S, Leica), and stained with 2% aqueous uranyl
acetate and lead stain solution (0.3% lead nitrate and 0.3%
lead acetate, Sigma-Aldrich). Transmission Electron
Microscopy (TEM) was done at an acceleration voltage
of 120 kV using a Tecnai 20 TEM (FEI).

Additional file

Additional file 1: Interactive 3D Model. Description: 3D tomographic
reconstruction of Gigantopelta chessoia, full interactive model. The
interactive model can be enabled by clicking the figure (Adobe Acrobat
Reader v7 or higher). Mouse left click and drag to rotate, hold down ctrl
while doing so to move, and hold down shift while doing do to zoom
(alternatively use mouse right click and drag or use the mouse wheel).
Switch between pre-saved views using the dropdown menu in the floating
window or click on the view pane in the model tree. Components can also
be activated or deactivated by toggling the checkbox in the model tree.
(PDF 7344 kb)
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