
1

296.3 Page1

296.3:Algorithms in the Real World

Graph Separators

– Introduction

– Applications

296.3 Page2

Edge Separators

7

8

3

4

0
1

2

5

6

An edge separator : 
a set of edges E’ ⊆ E 
which partitions V into 
V
1
and V

2

Criteria:

|V
1
|, |V

2
| balanced

|E’| is small

V1

V2

E’

296.3 Page3

Vertex Separators

7

8

3

4

0
1

2

5

6

An vertex separator : 
a set of vertices V’ ⊆ V 
which partitions V into 
V
1
and V

2

Criteria:

|V
1
|, |V

2
| balanced

|V’| is small

V1

V2

296.3 Page4

Compared with Min-cut

s

t

Min-cut: as in the min-
cut, max-flow theorem.

Min-cut has no balance 
criteria.

Min-cut typically has a 
source (s) and sink (t).

Min-cut tends to find 
unbalanced cuts. 

V1

V2

E’



2

296.3 Page5

Other names

Sometimes referred to as 

– graph partitioning (probably more 
common than “graph separators”)

– graph bisectors

– graph bifurcators

– balanced  or normalized graph cuts

296.3 Page6

Recursive Separation

296.3 Page7

Recursive Separation

7
8

3

4

0
1

2

5
6

8

1
2

5
6

7

3

4

0

2

6
8

1

57
4

3

0

3 0 7 4

8
5

1 8 5 2 6 296.3 Page8

What graphs have small 
separators?

Planar graphs: O(n1/2) vertex separators

2d meshes, constant genus, excluded minors

Almost planar graphs:

the Internet, power networks, road networks

Circuits

need to be laid out without too many crossings

Social network graphs:

phone-call graphs, link structure of the web, 
citation graphs, “friends graphs”

3d-grids and meshes: O(n2/3)



3

296.3 Page9

What graphs don’t have small 
separators

Hypercubes: 
O(n) edge separators 
O(n/(log n)1/2) vertex separators

Butterfly networks:
O(n/log n) separators

Expander graphs:

Graphs such that for any U ⊆ V, s.t. |U| ≤ α |V|,
|neighbors(U)| ≥ β |U|.     (α < 1, β > 0)
random graphs are expanders, with high probability

It is exactly the fact that they don’t have small 
separators that make these graphs useful.

296.3 Page10

Applications of Separators

296.3 Page11

Applications of Separators

Circuit Layout (from 1960s)

VLSI layout

Solving linear systems 
(nested dissection)

n3/2 time for planar graphs

Partitioning for parallel algorithms

Approximations to NP hard problems

TSP, maximum-independent-set

Compact Routing and Shortest-paths

Clustering and machine learning

Machine vision

Out of core algorithms

Register allocation

Shortest Paths

Graph compression

Graph embeddings

296.3 Page12

Available Software

METIS: U. Minnesota

PARTY: University of Paderborn

CHACO: Sandia national labs

JOSTLE: U. Greenwich

SCOTCH: U. Bordeaux

GNU: Popinet

Benchmarks:

• Graph Partitioning Archive



4

296.3 Page13

Different Balance Criteria

Bisectors: 50/50
Constant fraction cuts: e.g. 1/3, 2/3
Trading off cut size for balance (vertex separators):

min cut criteria:   

min quotient separator:

All versions are NP-hard















⊂ 21'

'
min

VV

V

VV















⊂ ),min(

'
min

21' VV

V

VV

|E’|

|E’|

flux

isoperimetric
number

edge

= sparsity

296.3 Page14

Other Variants of Separators

k-Partitioning:
Might be done with recursive partitioning, but 
direct solution can give better answers. 

Weighted:
Weights on edges (cut size), vertices (balance)

Hypergraphs:
Each edge can have more than 2 end points
common in VLSI circuits

Multiconstraint:
Trying to balance different values at the same 
time.

296.3 Page15

Asymptotics

If S is a class of graphs closed under the 
subgraph relation, then

Definition: S satisfies an f(n) vertex-
separator theorem if there are constants 
α < 1 and β > 0 so that for every G∈∈∈∈S
there exists a vertex cut set V’ ⊆ V, with

1. |V’| ≤ β f(|G|) cut size

2. |V1| ≤ α |G|, |V2| ≤ α |G| balance

Similar definition for edge separators.
296.3 Page16

Edge vs. Vertex separators

If a class of graphs satisfies an f(n) edge-separator 
theorem then it satisfies an f(n) vertex-separator.

The other way is not true (unless degree is bounded)

|E’| = n/2



5

296.3 Page17

Separator Trees

7
8

3

4

0
1

2

5
6

8

1
2

5
6

7

3

4

0

2

6
8

1

57
4

3

0

3 0 7 4

8
5

1 8 5 2 6 296.3 Page18

Separator Trees

Theorem: For S satisfying an (α,β) f(n) = n1-ε edge-
separator theorem, we can generate a perfectly 
balanced separator with size 
|C| ≤ k β f(|G|).

Proof: by picture  |C| ≤ β n1-ε(1 + α + α2 + …) ≤ β n1-ε(1/1-α)

296.3 Page19

Algorithms for Partitioning

All are either heuristics or approximations

– Kernighan-Lin, Fiduccia-Mattheyses (heuristic)

– Planar graph separators
(finds O(n1/2) separators)

– Geometric separators
(finds O(n(d-1)/d) separators in Rd)

– Spectral (finds O(n(d-1)/d) separators in Rd)

– Flow/LP-based techniques 
(give log(n) approximations)

– Multilevel recursive bisection
(heuristic, currently most practical)

296.3 Page20

Kernighan-Lin Heuristic

Local heuristic for edge-separators based on “hill 
climbing”.  Will most likely end in a local-minima.

Two versions:

Original K-L: takes n2 time per pass

Fiduccia-Mattheyses: takes linear time per pass



6

296.3 Page21

High-level description for both

Start with an initial cut that partitions the vertices 
into two equal size sets V1 and V2

Want to swap two equal sized sets 
X ⊂ A and Y ⊂ B to reduce the cut size.

Note that finding the optimal subsets X and Y solves 
the optimal separator problem, so it is NP hard.

We want some heuristic that might help.

A B

YX

C

296.3 Page22

Some Terminology

C(A,B) : the weighted cut 
between A and B

I(v) : the number of edges 
incident on v that stay 
within the partition

E(v) : the number of edges 
incident on v that go to the 
other partition

D(v) : E(v) - I(v) 

D(u,v) : D(u) + D(v) - 2 w(u,v)

the gain for swapping u and v

A

B

C
v

u

296.3 Page23

Kernighan-Lin improvement step

KL(G,A0,B0) 
∀ u ∈ A0, v ∈ B0

put (u,v) in a PQ based on D(u,v)
for k = 1 to |V|/2 

(u,v) = max(PQ)
(Ak,Bk) = (Ak-1,Bk-1) swap (u,v)
delete u and v entries from PQ 
update D on neighbors (and PQ)

select Ak,Bk with best Ck

Note that can take backward steps 
(“gain” D(u,v) can be negative).

A

B

C
v

u

296.3 Page24

Fiduccia-Mattheyses’s improvement step

FM(G,A0,B0) 

∀ u ∈ A0 put u in PQA based on D(u)

∀ v ∈ B0 put v in PQB based on D(v)

for k = 1 to |V|/2 

u = max(PQA)

put u on B side and update D

v = max(PQb)

put v on A side and update D

select Ak,Bk with best Ck

A

B

C
v

u



7

296.3 Page25

Two examples of KL or FM

Consider following graphs with initial cut given in red.

296.3 Page26

A Bad Example for KL or FM

Consider following graph with initial cut given in red.

KL (or FM) will start on one side of the grid (e.g. the 
blue pair) and flip pairs over moving across the grid 
until the whole thing is flipped.

After one round the graph will look identical?

2 2 2

1 1 1

2

296.3 Page27

Boundary Kernighan-Lin (or FM)

Instead of putting all pairs (u,v) in Q (or all u and v in 
Q for FM), just consider the boundary vertices 
(i.e. vertices adjacent to a vertex in the other 
partition).

Note that vertices might not originally be boundaries 
but become boundaries.

In practice for reasonable initial cuts this can speed 
up KL by a large factor, but won’t necessarily find 
the same solution as KL.

296.3 Page28

Performance in Practice

In general the algorithms do very well at smoothing a 
cut that is approximately correct.

Works best for graphs with reasonably high degree.

Used by most separator packages either

1. to smooth final results

2. to smooth partial results during the algorithm



8

296.3 Page29

Separators Outline

Introduction:

Algorithms:

– Kernighan Lin

– BFS and PFS

– Multilevel

– Spectral

296.3 Page30

Breadth-First Search Separators

1 2 3
4

5

6

Run BFS and as soon as 
you have included half 
the vertices return 
that as the partition.

Won’t necessarily be 
50/50, but can 
arbitrarily split 
vertices in middle level.

Used as substep in Lipton-
Tarjan planar 
separators.

In practiced does not 
work well on its own.

296.3 Page31

Picking the Start Vertex

1. Try a few random starts and select best partition 
found

2. Start at an “extreme” point.   
Do an initial DFS starting at any point and select 
a vertex from the last level to start with.

3. If multiple extreme points, try a few of them. 

296.3 Page32

Priority-First Search Separators

11

6

9

7

10

8

3

4

5

2

1

Prioritize the vertices 
based on their gain (as 
defined in KL) with the 
current set.

Search until you have half 
the vertices.



9

296.3 Page33

Multilevel Graph Partitioning

Suggested by many researchers around the same 
time (early 1990s).

Packages that use it:

– METIS

– Jostle

– TSL (GNU)

– Chaco

Best packages in practice (for now), but not yet 
properly analyzed in terms of theory.

Mostly applied to edge separators.

296.3 Page34

High-Level Algorithm Outline

MultilevelPartition(G)

If G is small, do something brute force

Else

Coarsen the graph into G’ (Coarsen)

A’,B’ = MultilevelPartition(G’)

Expand graph back to G and project the
partitions A’ and B’ onto A and B

Refine the partition A,B and return result

Many choices on how to do underlined parts

296.3 Page35

MGP as Bubble Diagram

G

Coarsen
Expand, Project
and Refine

“Brute Force”

296.3 Page36

How to Coarsen

Goal is to pick a sample G’ such that when we find its 
partition it will help us find the partition of G.

Possibilities?



10

296.3 Page37

Random Sampling

Pick a random subset 
of the vertices.

Remove the unchosen
vertices and their 
incident edges

296.3 Page38

Random Sampling

Pick a random subset 
of the vertices.

Remove the unchosen
vertices and their 
incident edges

Graph falls apart if it 
is not dense enough.

296.3 Page39

Maximal Matchings

A maximal matching is a pairing of neighbors so that 
no unpaired vertex can  be paired with an unpaired 
neighbor.

The idea is to contract pairs into a single vertex.

296.3 Page40

A Maximal Matching

Can be found in linear time greedily.



11

296.3 Page41

A side note

Compared to a maximum matching: a pairing such 
that the number of covered nodes is maximum

296.3 Page42

Coarsening

296.3 Page43

Collapsing and Weights

New vertices become 
weighted by sum of 
weights of their 
pair.

New edges (u,v) 
become weighted by 
sum of weights of 
multiple edges (u,v) 

We therefore have to 
solve the weighted 
problem.

1

2

2
1

Why care about weights?

296.3 Page44

Heuristics for finding the Matching

Random : randomly select edges.

Prioritized: the edges are prioritized by weight.

Visit vertices in random order, but pick highest 
priority edge first.

– Heaviest first: Why might this be a good 
heuristic?

– Lightest first: Why might this be a good 
heuristic?

Highly connected components: (or heavy clique 
matching).  Looks not only at two vertices but the 
connectivity of their own structure.



12

296.3 Page45

Finding the Cut on the 
Coarsened Graph

296.3 Page46

Exanding and “Projecting”

296.3 Page47

e.g. by using 
Kernighan-Lin

Refining

296.3 Page48

After Refinement



13

296.3 Page49

METIS

Coarsening: “Heavy Edge” maximal matching.

Base case: Priority-first search based on gain.  
Randomly select 4 starting points and pick best 
cut.

Smoothing: Boundary Kernighan-Lin

Has many other options.   e.g., Multiway separators.

296.3 Page50

Separators Outline

Introduction:

Algorithms:

– Kernighan Lin

– BFS and PFS

– Multilevel

– Spectral

296.3 Page51

Spectral Separators

Based on the second eigenvector of the “Laplacian”
matrix for the graph.

Let A be the adjacency matrix for G.

Let D be a diagonal matrix with degree of each 
vertex.

The Laplacian matrix is defined as L = D-A

296.3 Page52

Laplacian Matrix: Example

Note that each row sums to 0.

3

1 2

4

5






















−−−
−−−

−−
−
−−−

=

31011

13101

01201

10010

11103

L



14

296.3 Page53

Fiedler Vectors

Eigenvalues λ1≤ λ2 ≤ λ3 ≤ ... ≤ λn, real, non-negative.

Find eigenvector corresponding to the second 
smallest eigenvalue:   L x2 = λ2 x2

This is called the Fiedler vector.

What is true about the first eigenvector?

296.3 Page54

Modes of Vibration

(Picture from Jim Demmel’s CS267 course at Berkeley.)

x2

296.3 Page55

Fiedler Vector: Example

Note that each row sums to 0.

If graph is not connected, what is the second 
eigenvalue?

3

1 2

4

5 





















−−−
−−−

−−
−
−−−

=

31011

13101

01201

10010

11103

L























−
−

−

=

13.

26.

44.

81.

26.

2x

22 83. xLx =

296.3 Page56

Finding the Separator

Sort Fiedler vector by value, and split in half.

3

1 2

4

5























−
−

−

=

13.

26.

44.

81.

26.

2x

sorted vertices: [3, 1, 4, 5, 2]



15

296.3 Page57

Power Method

Iterative method for finding first few eigenvectors.

Every vector is a linear combination of its eigenvectors 
e1, e2, …

Consider: p0 = a1 e1 + a2 e2 + …

Iterating pi+1 = Api until it settles will give the principal 
eigenvector (largest magnitude eigenvalue) since

pi = λλλλ1
i a1 e1 + λλλλ2

i a2 e2 + …

(Assuming all ai are about the same magnitude)

The more spread in first two eigenvalues, the faster it 
will settle  (related to the rapid mixing of expander 
graphs)

296.3 Page58

The second eigenvector

Assuming we have the principal eigenvector, after 
each iteration remove the component that is 
aligned with the principal eigenvector.

ni = A pi-1

pi = ni – (e1 •••• ni)e1 (assuming e1 is normalized)

Now

pi = λλλλ2
i a2 e2 + λλλλ3

i a3 e3 + …

Can use random vector for initial p0

296.3 Page59

Power method for Laplacian

To apply the power method we have to shift the 
eigenvalues, since we are interested in eigenvector 
with eigenvalue closest to zero.

How do we shift eigenvalues by a constant amount?

Lanczos’ algorithm is faster in practice if starting 
from scratch, but if you have an approximate 
solution, the power method works very well.

296.3 Page60

Multilevel Spectral

MultilevelFiedler(G)
If G is small, do something brute force
Else

Coarsen the graph into G’
e’2 = MultilevelFiedler(G’)
Expand graph back to G and project e’2 onto e2

Refine e2 using power method and return

To project, you can just copy the values in location i 
of e’2 into both vertices i expands into.

This idea is used by Chaco.


