

<u>What graphs have small</u> <u>separators?</u>

Planar graphs: O(n^{1/2}) vertex separators 2d meshes, constant genus, excluded minors Almost planar graphs: the Internet, power networks, road networks <u>Circuits</u> need to be laid out without too many crossings <u>Social network graphs</u>: phone-call graphs, link structure of the web, citation graphs, "friends graphs" <u>3d-grids and meshes</u>: O(n^{2/3})

<u>separators</u>	
Hypercubes:	
O(n) edge separators O(n/(log n) ^{1/2}) vertex separators	
Butterfly networks:	
O(n/log n) separators	
<u>Expander graphs:</u>	
Graphs such that for any $U \subseteq V$, s.t. U	$ \leq \alpha V ,$
$ \text{neighbors}(U) \ge \beta U . (\alpha < 1, \beta > 0)$	
random graphs are expanders, with hig	h probability
It is exactly the fact that they don't hav separators that make these graphs use	e small :ful.
296.3	Page9

<section-header><text><text><text><text><text><text><text><text><text>

Other Variants of Separators

<u>k-Partitioning:</u>

Might be done with recursive partitioning, but direct solution can give better answers.

Weighted:

Weights on edges (cut size), vertices (balance) Hypergraphs:

Each edge can have more than 2 end points common in VLSI circuits

<u>Multiconstraint:</u>

Trying to balance different values at the same time.

296.3

Page14

296.3

Separator Trees **<u>Theorem</u>**: For S satisfying an (α,β) f(n) = n^{1- ε} edgeseparator theorem, we can generate a perfectly balanced separator with size $|C| \leq k \beta f(|G|).$ *Proof*: by picture $|C| \leq \beta n^{1-\varepsilon}(1 + \alpha + \alpha^2 + ...) \leq \beta n^{1-\varepsilon}(1/1-\alpha)$ 296.3 Page18

Kernighan-Lin Heuristic

Local heuristic for <u>edge-separators</u> based on "hill climbing". Will most likely end in a local-minima.

Two versions:

Original K-L: takes n² time per pass Fiduccia-Mattheyses: takes linear time per pass

296.3

Page20

Boundary Kernighan-Lin (or FM) Instead of putting all pairs (u,v) in Q (or all u and v in Q for FM), just consider the boundary vertices (i.e. vertices adjacent to a vertex in the other partition). Note that vertices might not originally be boundaries but become boundaries. In practice for <u>reasonable initial cuts</u> this can speed up KL by a large factor, but won't necessarily find the same solution as KL.

Suggested by many researchers around the same time (early 1990s).

Packages that use it:

- METIS
- Jostle
- TSL (GNU)
- Chaco

Best packages in practice (for now), but not yet properly analyzed in terms of theory.

Mostly applied to edge separators.

296.3

Page33

<u>MultilevelPartition(G)</u> If G is small, do <u>something brute force</u> Else <u>Coarsen the graph</u> into G' (Coarsen) A',B' = MultilevelPartition(G') Expand graph back to G and <u>project</u> the partitions A' and B' onto A and B <u>Refine the partition</u> A,B and return result

Many choices on how to do underlined parts

296.3

Page34

Power Method

Iterative method for finding first few eigenvectors. Every vector is a linear combination of its eigenvectors e_1 , e_2 , ... Consider: $p_0 = a_1 e_1 + a_2 e_2 + ...$ Iterating $p_{i+1} = Ap_i$ until it settles will give the principal eigenvector (largest magnitude eigenvalue) since $p_i = \lambda_1^i a_1 e_1 + \lambda_2^i a_2 e_2 + ...$ (Assuming all a_i are about the same magnitude) The more spread in first two eigenvalues, the faster it will settle (related to the rapid mixing of expander graphs)

296.3

Page57

<u>The second eigenvector</u> Assuming we have the principal eigenvector, after each iteration remove the component that is

aligned with the principal eigenvector.

 $\mathbf{n}_i = \mathbf{A} \mathbf{p}_{i-1}$ $\mathbf{p}_i = \mathbf{n}_i - (\mathbf{e}_1 \cdot \mathbf{n}_i)\mathbf{e}_1$ (assuming \mathbf{e}_1 is normalized)

296.3

Now

$$\mathbf{p}_{i} = \lambda_{2}^{i} a_{2} e_{2} + \lambda_{3}^{i} a_{3} e_{3} + ...$$

Can use random vector for initial \mathbf{p}_0

Page58

<section-header><section-header><section-header><section-header><text><text><text><text><text>