
VLIW Processors

VLIW (“very long instruction word”) processors
• instructions are scheduled by the compiler
• a fixed number of operations are formatted as one big instruction 

(called a bundle)
• usually LIW (3 operations) today
• a change in the instruction set architecture,

i.e., 1 program counter points to 1 bundle (not 1 operation)
• want operations in a bundle to issue in parallel

• fixed format so could decode operations in parallel
• enough FUs for types of operations that can issue in parallel
• pipelined FUs

Spring 2008 CSE 471 - VLIW 1



VLIW Processors

Roots of modern VLIW machines
Multiflow & Cydra 5 (8 to 16 operations) in the 1980’s

Today’s VLIW machines
Itanium (3 operations)
Transmeta Crusoe (4 operations)
Trimedia TM32 (5 operations)

Spring 2008 CSE 471 - VLIW 2



VLIW Processors

Goal of the VLIW design: reduce hardware complexity
• less design & test time
• shorter cycle time
• reduced power consumption
• better performance

How VLIW designs reduce hardware complexity
• less multiple-issue hardware

• no dependence checking for instructions within a bundle
• can be fewer paths between instruction issue slots & FUs

• simpler instruction dispatch
• no out-of-order execution, no instruction grouping

• ideally no structural hazard checking logic

Spring 2008 CSE 471 - VLIW 3



VLIW Processors

Compiler support to increase ILP
• compiler creates each VLIW word
• need for good code scheduling greater than with in-order issue 

superscalars
• instruction doesn’t issue if 1 operation can’t

Spring 2008 CSE 471 - VLIW 4



VLIW Processors

More compiler support to increase ILP
• detects structural hazards

• no 2 operations to the same functional unit
• no 2 operations to the same memory bank

• detects data hazards
• no data hazards among instructions in a bundle

• detects control hazards
• predicated execution
• static branch prediction

• hides latencies
• data prefetching
• hoisting loads above stores

Spring 2008 CSE 471 - VLIW 5



VLIW Processors

Compiler optimizations that increase ILP
• loop unrolling
• aggressive inlining: function becomes part of the caller code
• software pipelining: schedules instructions from different iterations 

together 
• trace scheduling & superblocks: schedule beyond basic block 

boundaries

Spring 2008 CSE 471 - VLIW 6



Iteration n-2 Iteration n-1 Iteration n

ld R0,0(R1)

add R4,R0,R2 ld R0,0(R1)

st R4,0(R1) add R4,R0,R2 ld R0,0(R1)

st R4,0(R1) add R4,R0,R2

st R4,0(R1)

VLIW Processors

Compiler optimizations that increase ILP
• software pipelining: schedules instructions from different 

iterations together

decrement index
termination test
conditional branch

Spring 2008 CSE 471 - VLIW 7



VLIW Processors

Compiler optimizations that increase ILP
• software pipelining: memory accesses

st R0, 16(R1) stores into mem[i]
add R4, R0, R2 computes on mem[i-1]
ld R4, 0(R1) loads from mem[i-2]

• performance advantages: increasing ILP

• performance disadvantages: still executing loop control instructions

Spring 2008 CSE 471 - VLIW 8



VLIW Processors

Compiler optimizations that increase ILP
• global scheduling (trace scheduling & superblocks): schedule 

beyond basic block boundaries

A[i] = A[i] + B[i]
A[i] = 0?

B[i] = .. other code

C[i] = ..

• select a trace
• compact instructions on it

Spring 2008 CSE 471 - VLIW 9



IA-64 EPIC

Explicitly Parallel Instruction Computing, aka VLIW
1.67 GHz Itanium 2 implementation, IA-64 architecture

Bundle of instructions
• 128 bit bundles
• 3 instructions/bundle
• 2 bundles can be issued at once

• if issue one, get another

Spring 2008 CSE 471 - VLIW 10



IA-64 EPIC

Registers
• 128 integer & FP registers

• implications for architecture?
• 128 additional registers for loop unrolling & similar optimizations

• implications for hardware?
• miscellaneous other registers
• implications for performance?

+

+

-

-

Spring 2008 CSE 471 - VLIW 11



IA-64 EPIC

Full predicated execution
• supported by 64 one-bit predicate registers

• instructions can set 2 at once (comparison result & 
complement)

• example
cmp.eq r1, r2, p1, p2

(p1) sub 59, r10, r11

(p2) add r5, r6, r7

Spring 2008 CSE 471 - VLIW 12



IA-64 EPIC

Full predicated execution
• implications for architecture?

• implications for the hardware?

• implications for exploiting ILP?

Spring 2008 CSE 471 - VLIW 13



IA-64 EPIC

Template in each bundle that indicates:
• type of operation for each instruction
• instruction order in bundle
• examples (2 of 24)

• M: load & manipulate the address (e.g., increment an index)
• I: integer ALU op
• F: FP op
• B: transfer of control
• other, e.g., stop (see below)

• restrictions on which instructions can be in which slots
• schedule code for functional unit availability (i.e., template 

types) & latencies

Spring 2008 CSE 471 - VLIW 14



IA-64 EPIC

Template, cont’d.
• a stop bit that delineates the instructions that can execute in 

parallel
• all instructions before a stop have no data dependences

• implications for hardware:
• simpler issue logic, no instruction slotting, no out-of-order issue
• potentially fewer paths between issue slots & functional units
• potentially no structural hazard checks
• hardware not have to determine intra-bundle data dependences

Spring 2008 CSE 471 - VLIW 15



IA-64 EPIC

Branch support
• full predicated execution

• hierarchy of branch prediction structures in different pipeline stages
• 4-target BTB for repeatedly executed taken branches

• an instruction puts a specific target in it (i.e., the BTB is 
exposed to the architecture)

• larger back-up BTB
• correlated branch prediction for hard-to-predict branches

• instruction hint that branches that are statically easy-to-
predict should not be placed in it

• 4 history bits, shared PHTs
• separate structure for multi-way branches

• branch prediction instruction for target forecasting
• branch prediction instruction for storing a prediction

Spring 2008 CSE 471 - VLIW 16



IA-64 EPIC

ISA & microarchitecture seem complicated (some features of out-of-order 
processors)

• not all instructions in a bundle need stall if one stalls (a scoreboard 
keeps track of produced values that will be source operands for 
stalled instructions)

• branch prediction hierarchy
• dynamically sized register stack, aka register windows

• special hardware for register window overflow detection
• special instructions for saving & restoring the register stack

• register remapping to support rotating registers on the “register 
stack” which aid in software pipelining

• array address post-increment & loop control

Spring 2008 CSE 471 - VLIW 17



IA-64 EPIC

More complication
• speculative values cannot be stored to memory

• special instructions check integer register poison bits to detect 
whether value is speculative

• OS can override the ban on storing (e.g., for a context switch)
• different mechanism for speculative floating point values

• backwards compatibility
• x86 (IA-32)
• PA-RISC compatible memory model (segments)

Spring 2008 CSE 471 - VLIW 18



Trimedia TM32

Designed for the embedded market
Classic VLIW

• no hazard detection in hardware
• nops “guarantee” that dependences are followed

• instructions decompressed on fetching

Spring 2008 CSE 471 - VLIW 19



Superscalars vs. VLIW

Superscalar has more complex hardware for instruction scheduling
• instruction slotting or out-of-order hardware
• more paths or more complicated paths between instruction issue 

structure & functional units
• dependence checking logic between parallel instructions
• functional unit hazard checking
• possible consequences:

• slower cycle times
• more chip real estate
• more power consumption

Spring 2008 CSE 471 - VLIW 20



Superscalars vs. VLIW

VLIW has more functional units if supports full predication
• paths between instruction issue structure & more functional units
• possible consequences:

• slower cycle times
• more chip real estate
• more power consumption

Spring 2008 CSE 471 - VLIW 21



Superscalars vs. VLIW

VLIW has larger code size
• estimates of IA-64 code of up to 2X - 4X over x86

• 128b holds 4 (not 3) instructions on a RISC superscalar
• sometimes nops if don’t have an instruction of the correct type
• branch targets must be at the beginning of a bundle
• predicated execution to avoid branches
• extra, special instructions

• check for exceptions
• check for improper load hoisting (memory aliases)
• allocate register windows on the register stack for local variables
• branch prediction

• consequences:
• increase in instruction bandwidth requirements
• decrease in instruction cache effectiveness

Spring 2008 CSE 471 - VLIW 22



Superscalars vs. VLIW

VLIW requires a more complex compiler
• consequence: more design effort or poor quality code if good 

optimizations aren’t implemented

Superscalars can more efficiently execute pipeline-dependent code
• consequence: don’t have to recompile if change the implementation

What else?

Spring 2008 CSE 471 - VLIW 23


	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	VLIW Processors
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	IA-64 EPIC
	Trimedia TM32
	Superscalars vs. VLIW
	Superscalars vs. VLIW
	Superscalars vs. VLIW
	Superscalars vs. VLIW

