
Adversarial Search
Chapter 5

Mausam

(Based on slides of Stuart Russell,
Andrew Parks, Henry Kautz,

Linda Shapiro)
1

Game Playing

2

Why do AI researchers study game playing?

1. It’s a good reasoning problem, formal and nontrivial.

2. Direct comparison with humans and other computer

 programs is easy.

What Kinds of Games?

Mainly games of strategy with the following
characteristics:

1. Sequence of moves to play

2. Rules that specify possible moves

3. Rules that specify a payment for each move

4. Objective is to maximize your payment

3

Games vs. Search Problems

• Unpredictable opponent  specifying a move
for every possible opponent reply

• Time limits  unlikely to find goal, must
approximate

4

5

Opponent’s Move

Generate New Position

Generate Successors

Game

Over?

Evaluate Successors

Move to Highest-Valued Successor

Game

Over?

no

no yes

yes

Two-Player Game

Games as Adversarial Search
• States:

– board configurations

• Initial state:

– the board position and which player will move

• Successor function:

– returns list of (move, state) pairs, each indicating a legal
move and the resulting state

• Terminal test:

– determines when the game is over

• Utility function:

– gives a numeric value in terminal states

(e.g., -1, 0, +1 for loss, tie, win)

 6

Game Tree (2-player, Deterministic,
Turns)

7

The computer is Max.

The opponent is Min.

At the leaf nodes, the

 utility function

is employed. Big value

means good, small is bad.

computer’s

turn

opponent’s

turn

computer’s

turn

opponent’s

turn

leaf nodes

are evaluated

Mini-Max Terminology

• move: a move by both players

• ply: a half-move

• utility function: the function applied to leaf nodes

• backed-up value

– of a max-position: the value of its largest successor

– of a min-position: the value of its smallest successor

• minimax procedure: search down several levels; at
the bottom level apply the utility function, back-up
values all the way up to the root node, and that node
selects the move.

8

Minimax

• Perfect play for deterministic games

• Idea: choose move to position with highest minimax value
 = best achievable payoff against best play

• E.g., 2-ply game:

9

© Patrick Winston

max

max

min

min

10

© Patrick Winston

max

max

min

min

11

© Patrick Winston

max

max

min

min

12

© Patrick Winston

max

max

min

min

13

© Patrick Winston

max

max

min

min

14

© Patrick Winston

max

max

min

min

15

© Patrick Winston

max

max

min

min

16

© Patrick Winston

max

max

min

min

17

© Patrick Winston

max

max

min

min

18

© Patrick Winston

max

max

min

min

19

max

max

min

min

© Patrick Winston

20

Minimax Strategy

• Why do we take the min value every other
level of the tree?

• These nodes represent the opponent’s choice
of move.

• The computer assumes that the human will
choose that move that is of least value to the
computer.

21

Minimax algorithm
Adversarial analogue of DFS

22

Properties of Minimax

• Complete?
– Yes (if tree is finite)

• Optimal?
– Yes (against an optimal opponent)

– No (does not exploit opponent weakness against suboptimal opponent)

• Time complexity?
– O(bm)

• Space complexity?
– O(bm) (depth-first exploration)

23

Good Enough?
• Chess:

– branching factor b≈35

– game length m≈100

– search space bm ≈ 35100 ≈ 10154

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

• Exact solution completely infeasible
24

Alpha-Beta Procedure

• The alpha-beta procedure can speed up a
depth-first minimax search.

• Alpha: a lower bound on the value that a max
node may ultimately be assigned

• Beta: an upper bound on the value that a
minimizing node may ultimately be assigned

25

v > 

v < 

max

max

min

min

26

max

max

min

min

27

max

max

min

min

28

© Patrick Winston

max

max

min

min

29

max

max

min

min

Do we need to check

this node?

?? 30

max

max

min

min

X

No - this branch is guaranteed to be

worse than what max already has

31

Alpha-Beta
MinVal(state, alpha, beta){

 if (terminal(state))

 return utility(state);

 for (s in children(state)){

 child = MaxVal(s,alpha,beta);

 beta = min(beta,child);

 if (alpha>=beta) return child;

 }

 return beta; }

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
32

Alpha-Beta
MaxVal(state, alpha, beta){

 if (terminal(state))

 return utility(state);

 for (s in children(state)){

 child = MinVal(s,alpha,beta);

 alpha = max(alpha,child);

 if (alpha>=beta) return child;

 }

 return beta; }

alpha = the highest value for MAX along the path

beta = the lowest value for MIN along the path
33

max

max

min

min α=-∞

β=84

α=-∞

β=∞

α=-∞

β=∞

α=-∞

β=∞
α - the best value

 for max along the path

β - the best value

 for min along the path

34

max

max

min

min α=-∞

β=-29

α=-29

β=∞

α=-∞

β=∞

α=-∞

β=∞

α=-29

β=∞

α - the best value

 for max along the path

β - the best value

 for min along the path

35

max

max

min

min α=-∞

β=-29

α=-29

β=∞

α=-∞

β=∞

α=-∞

β=∞

α=-29

β=-37

α - the best value

 for max along the path

β - the best value

 for min along the path

36

max

max

min

min α=-∞

β=-29

α=-29

β=∞

α=-∞

β=∞

α=-∞

β=∞

α=-29

β=-37

β < α

prune!

X

α - the best value

 for max along the path

β - the best value

 for min along the path

37

max

max

min

min α=-∞

β=-29

α=-29

β=∞

α=-∞

β=-29

α=-∞

β=∞

α=-29

β=-37

X

α=-∞

β=-29

α=-∞

β=-29

α - the best value

 for max along the path

β - the best value

 for min along the path

38

max

max

min

min

X

α=-∞

β=-29

α=-29

β=∞

α=-∞

β=-29

α=-∞

β=∞

α=-29

β=-37

α=-∞

β=-29

α=-∞

β=-29

α - the best value

 for max along the path

β - the best value

 for min along the path

39

max

max

min

min

X

α=-∞

β=-29

α=-29

β=∞

α=-∞

β=-29

α=-∞

β=∞

α=-29

β=-37

α=-43

β=-29

α=-∞

β=-43

α=-43

β=-29

α - the best value

 for max along the path

β - the best value

 for min along the path

40

max

max

min

min

X

α=-∞

β=-29

α=-29

β=∞

α=-∞

β=-29

α=-∞

β=∞

α=-29

β=-37

α=-43

β=-29

α=-∞

β=-43

α=-43

β=-75

β < α

prune!

X

α - the best value

 for max along the path

β - the best value

 for min along the path

41

max

max

min

min

X

α=-∞

β=-29

α=-29

β=∞

α=-∞

β=-43

α=-43

β=∞

α=-29

β=-37

α=-43

β=-29

α=-∞

β=-43

α=-43

β=-75

X

α - the best value

 for max along the path

β - the best value

 for min along the path

42

X X

α=-43

β=∞

α=-43

β=∞

α=-43

β=∞

α=-43

β=-21

α=-43

β=58

max

max

min

min

α - the best value

 for max along the path

β - the best value

 for min along the path

43

X X

max

max

min

min

α=-43

β=∞

α=-43

β=-46

α=-43

β=∞

α=-43

β=-21

α=-43

β=-46

β < α

prune!

X

X X

X X X X

α - the best value

 for max along the path

β - the best value

 for min along the path

44

Properties of α-β

• Pruning does not affect final result. This means that it gets the
exact same result as does full minimax.

• Good move ordering improves effectiveness of pruning

• With "perfect ordering," time complexity = O(bm/2)
 doubles depth of search

• A simple example of reasoning about ‘which computations are
relevant’ (a form of metareasoning)

45

Shallow Search Techniques

1. limited search for a few levels

2. reorder the level-1 sucessors

3. proceed with - minimax search

46

Good Enough?
• Chess:

– branching factor b≈35

– game length m≈100

– search space bm/2 ≈ 3550 ≈ 1077

• The Universe:

– number of atoms ≈ 1078

– age ≈ 1018 seconds

– 108 moves/sec x 1078 x 1018 = 10104

The universe

can play chess

- can we?

47

Cutting off Search

MinimaxCutoff is identical to MinimaxValue except
1. Terminal? is replaced by Cutoff?
2. Utility is replaced by Eval

Does it work in practice?
 bm = 106, b=35  m=4

4-ply lookahead is a hopeless chess player!

– 4-ply ≈ human novice
– 8-ply ≈ typical PC, human master
– 12-ply ≈ Deep Blue, Kasparov

48

max

max

min

min

Cutoff

49

Evaluation Functions
Tic Tac Toe

• Let p be a position in the game

• Define the utility function f(p) by

– f(p) =
• largest positive number if p is a win for computer

• smallest negative number if p is a win for opponent

• RCDC – RCDO

– where RCDC is number of rows, columns and diagonals in
which computer could still win

– and RCDO is number of rows, columns and diagonals in
which opponent could still win.

50

Sample Evaluations

• X = Computer; O = Opponent

51

 O

 X

 X O

rows

cols

diags

O O X

X X

 X O

rows

cols

diags

Evaluation functions

• For chess/checkers, typically linear weighted sum of features

Eval(s) = w1 f1(s) + w2 f2(s) + … + wn fn(s)

e.g., w1 = 9 with

 f1(s) = (number of white queens) – (number of black queens),
etc.

52

Example: Samuel’s Checker-Playing
Program

• It uses a linear evaluation function

 f(n) = a1x1(n) + a2x2(n) + ... + amxm(n)

 For example: f = 6K + 4M + U

– K = King Advantage

– M = Man Advantage

– U = Undenied Mobility Advantage (number of
moves that Max where Min has no jump moves)

53

Samuel’s Checker Player

• In learning mode

– Computer acts as 2 players: A and B

– A adjusts its coefficients after every move

– B uses the static utility function

– If A wins, its function is given to B

54

Samuel’s Checker Player

• How does A change its function?
1. Coefficent replacement

 (node) = backed-up value(node) – initial value(node)

 if > 0 then terms that contributed positively are
 given more weight and terms that contributed
 negatively get less weight

 if < 0 then terms that contributed negatively are
 given more weight and terms that contributed
 positively get less weight

55

Samuel’s Checker Player

• How does A change its function?
2. Term Replacement
 38 terms altogether
 16 used in the utility function at any one time

 Terms that consistently correlate low with the function

value are removed and added to the end of the term
queue.

 They are replaced by terms from the front of the term

queue.

56

Additional Refinements

• Waiting for Quiescence: continue the search until no
drastic change occurs from one level to the next.

• Secondary Search: after choosing a move, search a
few more levels beneath it to be sure it still looks
good.

• Openings/Endgames: for some parts of the game
(especially initial and end moves), keep a catalog of
best moves to make.

57

Horizon Effect

 The problem with abruptly stopping a search at a fixed

depth is called the 'horizon effect'

58

Chess: Rich history of cumulative ideas

 Minimax search, evaluation function learning (1950).

 Alpha-Beta search (1966).

Transposition Tables (1967).

Iterative deepening DFS (1975).

End game data bases ,singular extensions(1977, 1980)

Parallel search and evaluation(1983 ,1985)

Circuitry (1987)

59

Chess game tree

60

Problem with fixed depth Searches

if we only search n moves ahead,

it may be possible that the

catastrophy can be delayed by a

sequence of moves that do not

make any progress

also works in other direction

(good moves may not be found)

61

Quiescence Search

 This involves searching past the terminal search nodes

(depth of 0) and testing all the non-quiescent or 'violent'

moves until the situation becomes calm, and only then apply

the evaluator.

 Enables programs to detect long capture sequences

and calculate whether or not they are worth initiating.

 Expand searches to avoid evaluating a position where

tactical disruption is in progress.

62

End-Game Databases

• Ken Thompson - all 5 piece end-games

• Lewis Stiller - all 6 piece end-games

– Refuted common chess wisdom: many
positions thought to be ties were really
forced wins -- 90% for white

– Is perfect chess a win for white?

63

The MONSTER

White wins in 255 moves
(Stiller, 1991)

64

Deterministic Games in Practice

• Checkers: Chinook ended 40-year-reign of human world champion Marion
Tinsley in 1994. Used a precomputed endgame database defining perfect
play for all positions involving 8 or fewer pieces on the board, a total of
444 billion positions. Checkers is now solved!

• Chess: Deep Blue defeated human world champion Garry Kasparov in a
six-game match in 1997. Deep Blue searches 200 million positions per
second, uses very sophisticated evaluation, and undisclosed methods for
extending some lines of search up to 40 ply. Current programs are even
better, if less historic!

• Othello: human champions refuse to compete against computers, who are
too good.

• Go: human champions refuse to compete against computers, who are too
bad. In Go, b > 300, so most programs use pattern knowledge bases to
suggest plausible moves, along with aggressive pruning.

65

Game of Go

human champions refuse to compete
against computers, because software is
too bad.

Chess Go
Size of board 8 x 8 19 x 19

Average no. of

moves per game
100 300

Avg branching

factor per turn
35 235

Additional

complexity

Players can

pass

66

Recent Successes in Go

• MoGo defeated a human expert in 9x9 Go

• Still far away from 19x19 Go.

• Hot area of research

• Leading to development of novel techniques

– Monte Carlo tree search (UCT)

67

Other Games

deterministic chance

perfect

information

chess,

checkers, go,

othello

backgammon,

monopoly

imperfect

information
stratego

bridge, poker,

scrabble

68

Games of Chance

• What about games that involve chance, such
as

– rolling dice

– picking a card

• Use three kinds of nodes:

– max nodes

– min nodes

– chance nodes

69

   min

chance

max

Games of Chance
Expectiminimax

70

c

d1
di dk

S(c,di)

chance node with

max children

expectimax(c) = ∑P(di) max(backed-up-value(s))

 i s in S(c,di)

expectimin(c’) = ∑P(di) min(backed-up-value(s))

 i s in S(c,di)

Example Tree with Chance

71

 

3 5 1 4 1 2 4 5

.4 .6 .4 .6

.4 .6

max

chance

min

chance

max

leaf

1.2

Complexity

• Instead of O(bm), it is O(bmnm) where n is the
number of chance outcomes.

• Since the complexity is higher (both time and
space), we cannot search as deeply.

• Pruning algorithms may be applied.

72

Imperfect Information

• E.g. card games, where
opponents’ initial cards are
unknown

• Idea: For all deals consistent with what
you can see

–compute the minimax value of available
actions for each of possible deals

–compute the expected value over all deals

73

Summary

• Games are fun to work on!

• They illustrate several important points about AI.

• Perfection is unattainable  must approximate.

• Game playing programs have shown the world what
AI can do.

74

