CS 563 - Advanced
Computer Security:

Froundations |

Professor Adam Bates
Fall 2018

Security & Privacy Research at lllinois (SPRAI)

Administrative

Learning Objectives:

« Explore how the security of Multics failed in practice

» Understand SCOMP and contrast its features to other
operating systems (past and present)

Announcements:

« E-Ink tablets approved for class use

« Reaction paper was due today (and all classes)
« Feedback for reaction papers soon

Reminder: Please put away
(backlit) devices at the start of class

(CS423: Operating Systems Design 2

]
J

s
/‘ ~/

B0

/‘WTMI?US

,__,))‘J

Security & Privacy Research at lllinois (SPRAI)

Multics: len Years In...

| 964: Multics project conceived as a collaboration between
MIT, General Electric, Bell Labs

1965: 6 papers on Multics are published at the Fall Joint
Computer Conference (we read one of them).

1965: Early versions of Multics launch

1969: MIT’s Multics deployment made publicly available to
paying customers; hundreds of accounts created.

1970: Second Multics deployment commissioned by Air Force
at the Rome Air Development Center (RADC).

1972: Karger and Schell begin vulnerability analysis, finalize this
report in 1974.

Security & Privacy Research at lllinois (SPRAI)

Vulnerability Analysis

* Evaluation of Multics system security 1972-1973
* Roger Schell and Paul Karger

* Schell: security kernel architecture, GEMSOS; architect of
Orange Book

* Karger: capability systems, covert channels, virtual
machine monitors

* Ciriteria: Multics is “securable” (1.3.3)
» Based on security descriptor mediation

* Ring protection

Security & Privacy Research at lllinois (SPRAI)

Vulnerability Analysis

* Ciriteria details
* Look for Multics vulnerabilities
* Is reference monitor practical for Multics!?
* ldentify necessary security enhancements
* Determine scope of a certification effort
+ Logistics
* Used MIT and RADC deployments
* Honeywell 645 running a Multics system (old HW)

 Limited Time: find one vulnerability per area,“not exhaustive or
systematic

Security & Privacy Research at lllinois (SPRAI)

Results Overview

* Design is sound, implementation is ad hoc

* One or more vulnerabilities uncovered at each of 3 layers:
|. hardware
2. software
3. procedure

* Vulnerabilities discovered at RADC, weaponized and validated
against the MIT deployment.

Security & Privacy Research at lllinois (SPRAI)

. Hardware Vulnerability |1

« Hypothesis: Hardware failures violate the assumptions that underpin the
security model, could violate reference monitor concept.

« Methodology:

* Run the system for a long time

* Each minute, invoke subverter to perform | of 22 probes to detect
component failures.

* Results
* Found one undocumented instruction discovered (not security critical?)

* Indirect Addressing vulnerability — passing an argument that includes a
reference to a second address (i.e., payload) bypasses access check on
second address

* Violates which Reference Monitor guarantee!

Security & Privacy Research at lllinois (SPRAI)

|. Hardware Vulnerability

- — re Access
0
How to attack? [ENTER |
_ ;
|. Execute instruction with R+E access in |st segment)
2. Obiject instruction in word 0 of 2nd segment with R 3 xec bpl0
permission 4
5
3. Word for reading or writing in a third segment | 6 TS
4. (Third segment must already be in the page table)'.f"" !
| \
‘I‘ I"..
Result: access checks for third segment are ignored o e
=
r access \, null access

Root Cause: How was the error introduced?
bpe >0 staq 6.,*

Field modification by MIT personnel... why?

Motivate need for correctness to be verified

Security & Privacy Research at lllinois (SPRAI)

2. Software Vulnerabillity

[Insufficient Argument Validation]

Origin of Vulnerability

* Early Multics did not have hardware-support for

protection rings; simulated in SVV instead. [EUSTR |, Aot
! HEADER

7S
I0C —{ [__[TALLY 7]

FIRST REFERENCE

“Solutions??”’

Ve wN

* Workaround for ring-crossing — create a ;
“gatekeeper” that validates user-supplied

SECOND REFERENC

argu me nts ARGUMENT
WRITABLE IN L] — IS |
. . RING 0 ONLY

* What if we forget to implement a handler for a ;.
: ? WRITABLE IN L—] . IS

certain argument type! USER RING
Result: No validation for second referent of argument pointers that containing an

IDC* modifier.

How to attack? Point second reference to an address only writable by ring 0!

The fix was ad hoc, patching IDC’s but not the broader issue of input validation.
*“Increment Address, Decrement Tally, and Continue”

Security & Privacy Research at lllinois (SPRAI)

2. Software Vulnerability |1

[Master Mode Transfer]

Origin of Vulnerability

* Multics ran all privileged code with ring O permission
 This requires a trap to ring 0
* Expensive, as some privileged operations occur frequently (page faults)

“Solution??”’

« Handle a page fault without a transition
* Justification: It has a restricted interface

* But inputs not checked!!

I've made a’huge.mistake . w®
SO S,

Be careful regarding the security impact of performance improvements

Security & Privacy Research at lllinois (SPRAI)

2. Software Vulnerability |1

[Master Mode Transfer]
What did developers do wrong!?

* Move the master mode signaler to run in same ring as caller
* Signaler needs access to a privileged register
 Should audit this code (not done)

How to attack?

» Specify 0 to n-| entry points for master
mode

 Qut of bounds — transfers to mxerror

 mxerror believes that a register points to

Signa|er', but regiSter can be modified b)’ I've made a’hug%‘_mistake‘_}&
user (still in user’s ring) WA T

Be careful regarding the security impact of performance improvements

Security & Privacy Research at lllinois (SPRAI)

2. Software Vulnerabillity

[Unlocked Stack Base]

Origin of Vulnerability

* To reduce the complexity of Ring 0 code, designers locked the CPU register
responsible for pointing to the base of the current stack (sb); i.e., only Master
Mode code could modify sb.

* Simplified code because now sb doubles as a pointer to a valid writable
memory range for fault and interrupt handlers.

- Later, language designers wanted more control over the stack (think
interpretive languages like Java?)

“Solutions??”: Unlock stack base, then audit Ring 0 code to remove any old
assumptions about a locked sb

Hypothesis: The auditors missed a spot!

How to attack! The mxerror routine contained an unaudited assumption of a
locked sb... ultimately leads to arbitrary code execution in Ring 0.

Security & Privacy Research at lllinois (SPRAI)

3. Procedural Vulnerabillity

* Procedural Attacks

* Tamper with the configuration of the reference
validation mechanism and its dependencies

* A variety of attacks (many still used)
* Install malicious version of system utility (e.g., Dump, Patch)
* Forge user identities (e.g., sysadmin, security officer)
* Modify password file

 Hide existence of malware

 Erase audit trails

Security & Privacy Research at lllinois (SPRAI)

rinal Kernel Report

* Resultant system: two major problems (1974)

* Complex: 54K LOC of code touched by hundreds of
programmers

* Compare to today’s systems... ugh.
* Security mechanisms were ad hoc

* Multiple mechanisms, some overlapping semantics

* Security kernel design is possible

 Tackle later

Security & Privacy Research at lllinois (SPRAI)

What did Multics do right? T

* No buffer overflows: choice of language made a difference here

« Hardware support through execution bits to ensure data can’t
be directly executed

* Segmented virtual addresses
» Size: 628K for ring 0 supervisor*

« Compare to SELinux example policy alone (1767K)
* Security auditing (though could be bypassed)

* How to better assure the integrity of audits and collected
data!

* Motivates recent work in securing data provenance

Security & Privacy Research at lllinois (SPRAI)

Securrty Kernels

* Goals
|. Implement a specific security policy

2. Define a verifiable protection behavior of the
system as a whole

3. Must be shown to be faithful to the security
model’s design

* Recommended reading:

 |[EEE Computer, 16(7), July 1983
(can find in IEEE Xplore)

ivacy Research at lllinois (SPRAI)

SCOMP

Honeywell's Secure Communications Processor (SCOMP)

Applications (6.2.5) Scomp Kernel Interface Package (6.2.4)

(Libraries) Ring 3 (untrusted)

Scomp Kernel Interface Package (6.2.4)

(Trusted Functions) Ring 2 (trusted)

Scomp Trusted Scomp Trusted Operating System (6.2.3) . .
Computing Base (Scomp Trusted Software) Ring 1 (trusted)

Scomp Trusted Operating System (6.2.3)

(Security Kernel) Ring 0 (trusted)

Scomp Hardware (6.2.2)

Figure 6.1: The Scomp system architecture consists of hardware security mechanisms, the Scomp Trusted
Operating System (STOP), and the Scomp Kernel Interface Package (SKIP). The Scomp trusted com-

puting base consists of code in rings 0 to 2, so the SKIP hibraries are not trusted.

Security & Privacy Research at lllinois (SPRAI)

SCOMP

Like Multics...

* Access is control via segments

* Memory segments and I/O segments
* Files are defined at a higher level
* Security Goals

* Secrecy: MLS
* Integrity: Ring brackets

Security & Privacy Research at lllinois (SPRAI)

Unlike Multics...

* Mediation on Segments

 Although all access control and rings are implemented in
hardware

* Formal verification
* Verify that a formal model enforces the MLS policy

 Trusted software outside the kernel is verified using a
procedural specification

* Separate kernel from system API functions

* In different rings (e.g., for file access)

Security & Privacy Research at lllinois (SPRAI)

SCOMP

Security 1O Controller Memory
CPU Protection
Module
.+
Virtual
Jemory
Unit
CPU
Bus
Logic
VO Bus

Figure 6.2: The Scomp security protection module (SPM) mediates all accesses to 'O controlless and
memory by mediating the I/O bus. The SPM also translates virtual addresses to physical segment addresses

for authorizaton.

Security & Privacy Research at lllinois (SPRAI)

SCOMP Drivers I

e |/O Device Drivers in Scomp can be run in user-space
e Why can't we do that in a normal O%!

e How can we do that in Scomp!?

NOT SUREIFIT'S A BAD DRIVER

Security & Privacy Research at lllinois (SPRAI)

SCOMP vs. LSM

SCOMP: Linux Security Modules:

Securi 'O Controller Memor
CPU S cﬁ’gn ¥ User Level process User space
Module
A - - - - - -""—-"" -7 — = =
v open system call Kernel space
Virtual i’
Memor: -+ >
Unit Y Look up inode
v
error chacks
v
v LSM Module

cPU DAC chacks Policy Engine

Bus 2 "OK with you™ Examine context

Logic LSM hook Does request pass policy?
T Yes or No Grant or deny

A A A A
Complete reguest
A A A4 A4 Access
/O Bus
inode

Figure 6.2: The Scomp security protection module (SPM) mediates all accesses to 'O controlless and
memory by mediating the I/0 bus. The SPM also translates virtual addresses 1o physical segment addresses

for authorization.

LSM mediation occurs in software, not hardware. Affect on completeness?

rch at lllinois (SPRAI)

SCOMP OS I

* Whole thing is called Scomp Trusted Operating Program (STOP)
* Lives on in BEA Systems XTS5-400
* Security Kernel in ring O

* Provides limited basic functionality: “memory management,
process scheduling, interrupt management, auditing, and
reference monitoring functions”

* In IOK lines (!!!) of Pascal (!!!)
* Ring transitions controlled by 38 gates (APlIs)

* Can malicious user escalate privilege using gates?

No! The kernel doesn’t even need to validate user arguments!

Security & Privacy Research at lllinois (SPRAI)

SCOMP Trusted Software | [

» Officially part of STOP
Ttrusted Path CPU

* But runs outside ring 0 7
 Software trusted with system security goals \

* Like process loader o D
* System policy management and use termé semn-ty/ lernel or

. . . reference monitor
 Such as authentication services

23 such processes, consisting of | IK lines of C code

 All interaction requires a trusted path

How does MLS inform the structure of the hierarchical file system?

Security & Privacy Research at lllinois (SPRAI)

SCOMP Kernel Interface | I[

* Like a system call interface for user processes

* Trusted operations on user-level objects (e.g., files, processes,
and 1/O)

* Still trusted not to violate MLS requirements
* |s accessible via a SKIP library

* But that library runs in user space (ring 3)

Security & Privacy Research at lllinois (SPRAI)

SCOMP Evaluation

* Complete Mediation: Correct!?
* In hardware
* InTrusted programs!?
* Complete Mediation: Comprehensive!
* At segment level
 For files!?
* Complete Mediation:Verified!?

* Hardware; Trusted programs?! Mail guards!?

Security & Privacy Research at lllinois (SPRAI)

SCOMP Evaluation

Tamperproof: Reference Monitor?

* In hardware, in kernel, in guard

Tamperproof: TCB!?
* TCB is well-defined in rings, and protected by gates
Verify: Code?

* Performed verification on implementation using semi-automated
methods

* Led to assurance criteria and approach

Verify: Policy?

« MLS is security goal; Integrity is more difficult

Security & Privacy Research at lllinois (SPRAI)

Security & Privacy Research at lllinois (SPRAI)

Foundations Topic: Looking Forward

* “Where does the quest for a security kernel pick-up after
SCOMP??”

« e.g., GEMSOS (the SCOMP of x86 architectures),
* “What other primitives have been proposed for OS security?”
« a.k.a.“What DIDN’T Multics do first?”
+ e.g., Capability systems like ICAP, Capsicum,
 e.g.,Virtual Machine Monitors like VAXVMM
* e.g., DIFC systems like Flume, Asbestos, HiStar
* “Where is the security kernel today?”

* e.g., LSM, Subdomains, SELinux, seL4, Nested Kernels

Security & Privacy Research at lllinois (SPRAI)

Foundations Topic: Looking Forward

* “Why should | go out of my way to read old esoteric papers?”

* Answer: Combat the evils of Technological Manifest Destiny!!

usenix
The Assumptions of

Technological Manifest Destiny LI

1) Technology is VALUE-NEUTRAL, and will therefore [RNNININANARTUINITY
automatically lead to good outcomes for everyone.
2) Thus, new kinds of technology should be deployed

as quickly as possible, even if we lack a general
idea of how the technology works, or what the

Understanding classical security concepts will make your research better.

Without foundational knowledge, you’ll spend your career just following shallow trends.

Security & Privacy Research at lllinois (SPRAI)

