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Administrative

Learning Objectives:

« Explore how the security of Multics failed in practice

» Understand SCOMP and contrast its features to other
operating systems (past and present)

Announcements:

« E-Ink tablets approved for class use

« Reaction paper was due today (and all classes)
« Feedback for reaction papers soon

Reminder: Please put away
(backlit) devices at the start of class

(CS423: Operating Systems Design 2
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Multics: len Years In...

| 964: Multics project conceived as a collaboration between
MIT, General Electric, Bell Labs

1965: 6 papers on Multics are published at the Fall Joint
Computer Conference (we read one of them).

1965: Early versions of Multics launch

1969: MIT’s Multics deployment made publicly available to
paying customers; hundreds of accounts created.

1970: Second Multics deployment commissioned by Air Force
at the Rome Air Development Center (RADC).

1972: Karger and Schell begin vulnerability analysis, finalize this
report in 1974.
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Vulnerability Analysis

* Evaluation of Multics system security 1972-1973
* Roger Schell and Paul Karger

* Schell: security kernel architecture, GEMSOS; architect of
Orange Book

* Karger: capability systems, covert channels, virtual
machine monitors

* Ciriteria: Multics is “securable” (1.3.3)
» Based on security descriptor mediation

* Ring protection
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Vulnerability Analysis

* Ciriteria details
* Look for Multics vulnerabilities
* Is reference monitor practical for Multics!?
* ldentify necessary security enhancements
* Determine scope of a certification effort
+ Logistics
* Used MIT and RADC deployments
* Honeywell 645 running a Multics system (old HW)

 Limited Time: find one vulnerability per area,“not exhaustive or
systematic

Security & Privacy Research at lllinois (SPRAI)



Results Overview

* Design is sound, implementation is ad hoc

* One or more vulnerabilities uncovered at each of 3 layers:
|. hardware
2. software
3. procedure

* Vulnerabilities discovered at RADC, weaponized and validated
against the MIT deployment.
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. Hardware Vulnerability |1

« Hypothesis: Hardware failures violate the assumptions that underpin the
security model, could violate reference monitor concept.

« Methodology:

* Run the system for a long time

* Each minute, invoke subverter to perform | of 22 probes to detect
component failures.

* Results
* Found one undocumented instruction discovered (not security critical?)

* Indirect Addressing vulnerability — passing an argument that includes a
reference to a second address (i.e., payload) bypasses access check on
second address

* Violates which Reference Monitor guarantee!
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|. Hardware Vulnerability

- — re Access
0
How to attack? [ ENTER |
_ ;
|. Execute instruction with R+E access in |st segment )
2. Obiject instruction in word 0 of 2nd segment with R 3 xec bpl0
permission 4
5
3. Word for reading or writing in a third segment | 6 TS
4. (Third segment must already be in the page table)'.f"" !
| \
‘I‘ I"..
Result: access checks for third segment are ignored o e
=
r access \, null access

Root Cause: How was the error introduced?
bpe >0 staq 6.,*

Field modification by MIT personnel... why?

Motivate need for correctness to be verified
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2. Software Vulnerabillity

[Insufficient Argument Validation]

Origin of Vulnerability

* Early Multics did not have hardware-support for

protection rings; simulated in SVV instead. [EUSTR |, Aot
! HEADER

7S
I0C —{ [__[TALLY 7]

FIRST REFERENCE

“Solutions??”’

Ve wN

* Workaround for ring-crossing — create a ;
“gatekeeper” that validates user-supplied

SECOND REFERENC

argu me nts ARGUMENT
WRITABLE IN L ] — IS |
. . RING 0 ONLY

* What if we forget to implement a handler for a ;.
: ? WRITABLE IN L— ] . IS

certain argument type! USER RING
Result: No validation for second referent of argument pointers that containing an

IDC* modifier.

How to attack? Point second reference to an address only writable by ring 0!

The fix was ad hoc, patching IDC’s but not the broader issue of input validation.
*“Increment Address, Decrement Tally, and Continue”
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2. Software Vulnerability |1

[Master Mode Transfer]

Origin of Vulnerability

* Multics ran all privileged code with ring O permission
 This requires a trap to ring 0
* Expensive, as some privileged operations occur frequently (page faults)

“Solution??”’

« Handle a page fault without a transition
* Justification: It has a restricted interface

* But inputs not checked!!

I've made a’huge.mistake . w®
SO S,

Be careful regarding the security impact of performance improvements
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2. Software Vulnerability |1

[Master Mode Transfer]
What did developers do wrong!?

* Move the master mode signaler to run in same ring as caller
* Signaler needs access to a privileged register
 Should audit this code (not done)

How to attack?

» Specify 0 to n-| entry points for master
mode

 Qut of bounds — transfers to mxerror

 mxerror believes that a register points to

Signa|er', but regiSter can be modified b)’ I've made a’hug%‘_mistake‘_}&
user (still in user’s ring) WA T

Be careful regarding the security impact of performance improvements
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2. Software Vulnerabillity

[Unlocked Stack Base]

Origin of Vulnerability

* To reduce the complexity of Ring 0 code, designers locked the CPU register
responsible for pointing to the base of the current stack (sb); i.e., only Master
Mode code could modify sb.

* Simplified code because now sb doubles as a pointer to a valid writable
memory range for fault and interrupt handlers.

- Later, language designers wanted more control over the stack (think
interpretive languages like Java?)

“Solutions??”: Unlock stack base, then audit Ring 0 code to remove any old
assumptions about a locked sb

Hypothesis: The auditors missed a spot!

How to attack! The mxerror routine contained an unaudited assumption of a
locked sb... ultimately leads to arbitrary code execution in Ring 0.
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3. Procedural Vulnerabillity

* Procedural Attacks

* Tamper with the configuration of the reference
validation mechanism and its dependencies

* A variety of attacks (many still used)
* Install malicious version of system utility (e.g., Dump, Patch)
* Forge user identities (e.g., sysadmin, security officer)
* Modify password file

 Hide existence of malware

 Erase audit trails
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rinal Kernel Report

* Resultant system: two major problems (1974)

* Complex: 54K LOC of code touched by hundreds of
programmers

* Compare to today’s systems... ugh.
* Security mechanisms were ad hoc

* Multiple mechanisms, some overlapping semantics

* Security kernel design is possible

 Tackle later
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What did Multics do right? T

* No buffer overflows: choice of language made a difference here

« Hardware support through execution bits to ensure data can’t
be directly executed

* Segmented virtual addresses
» Size: 628K for ring 0 supervisor*

« Compare to SELinux example policy alone (1767K)
* Security auditing (though could be bypassed)

* How to better assure the integrity of audits and collected
data!

* Motivates recent work in securing data provenance
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Securrty Kernels

* Goals
|. Implement a specific security policy

2. Define a verifiable protection behavior of the
system as a whole

3. Must be shown to be faithful to the security
model’s design

* Recommended reading:

 |[EEE Computer, 16(7), July 1983
(can find in IEEE Xplore)
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SCOMP

Honeywell's Secure Communications Processor (SCOMP)

Applications (6.2.5) Scomp Kernel Interface Package (6.2.4)

(Libraries) Ring 3 (untrusted)

Scomp Kernel Interface Package (6.2.4)

(Trusted Functions) Ring 2 (trusted)

Scomp Trusted Scomp Trusted Operating System (6.2.3) . .
Computing Base (Scomp Trusted Software) Ring 1 (trusted)

Scomp Trusted Operating System (6.2.3)

(Security Kernel) Ring 0 (trusted)

Scomp Hardware (6.2.2)

Figure 6.1: The Scomp system architecture consists of hardware security mechanisms, the Scomp Trusted
Operating System (STOP), and the Scomp Kernel Interface Package (SKIP). The Scomp trusted com-

puting base consists of code in rings 0 to 2, so the SKIP hibraries are not trusted.
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SCOMP

Like Multics...

* Access is control via segments

* Memory segments and I/O segments
* Files are defined at a higher level
* Security Goals

* Secrecy: MLS
* Integrity: Ring brackets
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Unlike Multics...

* Mediation on Segments

 Although all access control and rings are implemented in
hardware

* Formal verification
* Verify that a formal model enforces the MLS policy

 Trusted software outside the kernel is verified using a
procedural specification

* Separate kernel from system API functions

* In different rings (e.g., for file access)
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SCOMP

Security 1O Controller Memory
CPU Protection
Module
.+
Virtual
Jemory
Unit
CPU
Bus
Logic
VO Bus

Figure 6.2: The Scomp security protection module (SPM) mediates all accesses to 'O controlless and
memory by mediating the I/O bus. The SPM also translates virtual addresses to physical segment addresses

for authorizaton.
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SCOMP Drivers I

e |/O Device Drivers in Scomp can be run in user-space
e Why can't we do that in a normal O%!

e How can we do that in Scomp!?

NOT SUREIFIT'S A BAD DRIVER
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SCOMP vs. LSM

SCOMP: Linux Security Modules:

Securi 'O Controller Memor
CPU S cﬁ’gn ¥ User Level process User space
Module
A - - - - - -""—-"" -7 — = =
v open system call Kernel space
Virtual i’
Memor: -+ >
Unit Y Look up inode
v
error chacks
v
v LSM Module

cPU DAC chacks Policy Engine

Bus 2 "OK with you™ Examine context

Logic LSM hook Does request pass policy?
T Yes or No Grant or deny

A A A A
Complete reguest
A A A4 A4 Access
/O Bus
inode

Figure 6.2: The Scomp security protection module (SPM) mediates all accesses to 'O controlless and
memory by mediating the I/0 bus. The SPM also translates virtual addresses 1o physical segment addresses

for authorization.

LSM mediation occurs in software, not hardware. Affect on completeness?
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SCOMP OS I

* Whole thing is called Scomp Trusted Operating Program (STOP)
* Lives on in BEA Systems XTS5-400
* Security Kernel in ring O

* Provides limited basic functionality: “memory management,
process scheduling, interrupt management, auditing, and
reference monitoring functions”

* In IOK lines (!!!) of Pascal (!!!)
* Ring transitions controlled by 38 gates (APlIs)

* Can malicious user escalate privilege using gates?

No! The kernel doesn’t even need to validate user arguments!
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SCOMP Trusted Software | [

» Officially part of STOP
Ttrusted Path CPU

* But runs outside ring 0 7
 Software trusted with system security goals \

* Like process loader o D
* System policy management and use termé semn-ty/ lernel or

. . . reference monitor
 Such as authentication services

23 such processes, consisting of | IK lines of C code

 All interaction requires a trusted path

How does MLS inform the structure of the hierarchical file system?
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SCOMP Kernel Interface | I[

* Like a system call interface for user processes

* Trusted operations on user-level objects (e.g., files, processes,
and 1/O)

* Still trusted not to violate MLS requirements
* |s accessible via a SKIP library

* But that library runs in user space (ring 3)
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SCOMP Evaluation

* Complete Mediation: Correct!?
* In hardware
* InTrusted programs!?
* Complete Mediation: Comprehensive!
* At segment level
 For files!?
* Complete Mediation:Verified!?

* Hardware; Trusted programs?! Mail guards!?
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SCOMP Evaluation

Tamperproof: Reference Monitor?

* In hardware, in kernel, in guard

Tamperproof: TCB!?
* TCB is well-defined in rings, and protected by gates
Verify: Code?

* Performed verification on implementation using semi-automated
methods

* Led to assurance criteria and approach

Verify: Policy?

« MLS is security goal; Integrity is more difficult

Security & Privacy Research at lllinois (SPRAI)



Security & Privacy Research at lllinois (SPRAI)




Foundations Topic: Looking Forward

* “Where does the quest for a security kernel pick-up after
SCOMP??”

« e.g., GEMSOS (the SCOMP of x86 architectures),
* “What other primitives have been proposed for OS security?”
« a.k.a.“What DIDN’T Multics do first?”
+ e.g., Capability systems like ICAP, Capsicum,
 e.g.,Virtual Machine Monitors like VAXVMM
* e.g., DIFC systems like Flume, Asbestos, HiStar
* “Where is the security kernel today?”

* e.g., LSM, Subdomains, SELinux, seL4, Nested Kernels
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Foundations Topic: Looking Forward

* “Why should | go out of my way to read old esoteric papers?”

* Answer: Combat the evils of Technological Manifest Destiny!!

usenix
The Assumptions of

Technological Manifest Destiny LI

1) Technology is VALUE-NEUTRAL, and will therefore  [RNNININANARTUINITY
automatically lead to good outcomes for everyone.
2) Thus, new kinds of technology should be deployed

as quickly as possible, even if we lack a general
idea of how the technology works, or what the

Understanding classical security concepts will make your research better.

Without foundational knowledge, you’ll spend your career just following shallow trends.
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