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Abstract

Polya’s theorem can be used to enumerate objects under permutation groups. Using group

theory, combinatorics and some examples, Polya’s theorem and Burnside’s lemma are

derived. The examples used are a square, pentagon, hexagon and heptagon under their

respective dihedral groups. Generalization using more permutations and applications to

graph theory.

Using Polya’s Enumeration theorem, Harary and Palmer [5] give a function which

gives the number of unlabeled graphs n vertices and m edges. We present their work and

the necessary background knowledge.
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1 Introduction

Some of the most difficult problems in mathematics involve counting. There are several

reasons for this difficulty, some of which are technical and others more conceptual. A

frequently encountered technical difficulty is that the objects to be counted may not be

sequentially arranged (e.g., the school bus packed with jelly beans). A common concep-

tual difficulty occurs when different objects are identified (considered to be equal) for

enumeration purposes (e.g., it may only be of interest to know how many colors of jelly

beans are in the bus). In modern language, there may be an equivalence relation imposed

on the objects. The problem then is to enumerate equivalence classes.

Consider the following situation. Suppose D is a set of m objects which, for simpli-

fication, we take to be {1,2, ...,m}. Suppose further that we wish to color the objects in

D and that we have at our disposal a set C of k colors, C = {c1,c2, ...,ck}. We may think

of a coloring of D as a function f : D→ {c1,c2, ...,ck}. Let cm denote the set of all such

colorings.

So far, so good. But now we introduce the confusion of equivalent colorings. Suppose

G is a group of permutations on D[1]. We say that two colorings f1 and f2 of D are

equivalent (mod G) if there is a permutation σ ∈ G such that f1σ = f2. This equivalence

relation imposes a partion on the set of colorings of D. The equivalent classes so obtained

are called color patterns. The question then becomes: How many color patterns are there?

A very general and elegant theorem [2] due to George Polya supplies the answer.

The main aim of the thesis is to describe the enumeration method bases on Polya’s

Enumeration Theorem (PET). By using this method to compute the number of colorings

of geometric objects and non-isomorphic graphs.

The problem of counting the number of non-isomorphic graphs of a given order n is

perhaps one of the most obvious problems in any study of graphs. When the vertices are

labeled the answer is readily obtained as 2(n
2), since each of the

(
n
2

)
possible edges may be

either present or missing. On the other hand, when the vertices are unlabeled, the problem

becomes more interesting. For small values of n it is easy to determine.

For instance, when n = 2, there are two graphs; when n = 3, there are four, and when

n = 4, there are eleven distinct unlabeled graphs. The difficulty arises in determining how

many graphs are truly distinct for larger values of n.

In 1927, the first solution to the problem appeared in [8]. Subsequently the problem

was successfully solved by other mathematicians, including Polya, whose enumeration

theorem proves valuable in our approach to the problem. Throughout this portion, defini-

tions and theorems are taken from [7][4]. with the exception of the statement of Polya’s

theorem, which is taken from [9].

We start our thesis with the basic definitions in Sec 2 and 6, which are necessary to

understand before the proof of Polya’s Enumeration Theorem (PET) in Sec 3 and non-

isomorphic graphs in Sec 7 respectively. In order to find the number of colorings of

regular n-gons in Sec 5, we solve some examples of square and pentagon for different

number of colors in Sec 4.
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2 Preliminaries

In this section, we shall define some basic definitions with examples to prove the Polya’s

enumeration theorem.

2.1 Permutations

Let X be a set. By a permutation on X we mean a bijective mapping σ : X → X . We will

only study permutations in the case when the set X is finite.

A permutation on X = {a1,a2, ......am} will then be denoted by a 2×m matrix

σ =

(
a1 a2 ... am

σ(a1) σ(a2) ... σ(am)

)
.

Since σ is bijective, each element on X is mapped onto exactly one element in X by σ .

Therefore each element in X occures exactly once in the second row of the matrix above.

Example 2.1. Suppose X = {1,2,3} and that σ : X → X is fulfills σ(1) = 1, σ(2) = 3,

and σ(3) = 2. Then σ is a permutation on X, and we write

σ =

(
1 2 3

1 3 2

)
.

Definition 2.1. Let ρ and σ be permutations on X. Then the product ρσ of ρ and σ is

defined as the composite mapping ρ ◦σ . For each x∈ X we thus have

ρσ(x) = ρoσ(x) = ρ(σ(x)).

Example 2.2. Let

ρ =

(
1 2 3 4

4 3 2 1

)
and σ =

(
1 2 3 4

3 2 4 1

)
.

Then

ρσ(1) = ρ(σ(1)) = ρ(3) = 2

ρσ(2) = ρ(σ(2)) = ρ(2) = 3

ρσ(3) = ρ(σ(3)) = ρ(4) = 1

ρσ(4) = ρ(σ(4)) = ρ(1) = 4.

Hence

ρσ =

(
1 2 3 4

2 3 1 4

)
.

Example 2.3. The product σ1σ2σ3, where

σ1 =

(
1 2 3 4

4 1 2 3

)
, σ2 =

(
1 2 3 4

2 4 3 1

)
, and σ3 =

(
1 2 3 4

3 4 1 2

)
,

equals (
1 2 3 4

4 1 2 3

)(
1 2 3 4

2 4 3 1

)(
1 2 3 4

3 4 1 2

)
=

(
1 2 3 4

2 4 1 3

)
.
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Note that a product of permutations is read from right to left.

Let X be a set. Then we can form the set SX of all permutations on X. Since the product

of two permutations on X is again a permutation on X (the composition of two bijective

mappings is a bijective mapping), multiplication of permutations is a binary operation on

SX . Moreover, composition of mappings is associative, whence multiplication of permu-

tations is an associative binary operation. The identity mapping on X (i.e the mapping ε

:X→ X defined by ε(x) = x for all x ∈ X) is a permutation on X. This mapping is identity

mapping with respect to multiplication of permutations

σε = εσ = σ for all σ ∈ SX .

Since each permutation on X is a bijective mapping, it has an inverse, which is also a

bijective mapping (i.e a permutation).

Theorem 2.1. The set SX is a group under multiplication of permutations.

Definition 2.2. A group is called a permutation group, if all of its elements are permu-

tations on a set X, and if its binary operation is multiplication of permutations.

Example 2.4. Consider the permutations

ρ =

(
1 2 3 4

4 3 2 1

)
and σ =

(
1 2 3 4

3 2 4 1

)
.

From example 2.1, their inverses are given by

ρ−1 =

(
1 2 3 4

4 3 2 1

)
and σ−1 =

(
1 2 3 4

4 2 1 3

)
,

respectively.

2.2 Group action

Definition 2.3. Let X be a set and G a group. An action of G on X is a map ∗ : G×X →
X such that

1. ex = x for all x ∈ X,

2. (g1g2)(x) = g1(g2x) for all x ∈ X and all g1,g2 ∈ G.

Under these conditions X is a G-set.

Example 2.5. Let X be any set, and let H be a subgroup of the group Sx of all permutations

of X. Then X is an H-set, where the action of σ ∈ H on X is its action as an element of

Sx, so that σx = σ(x) for all x ∈ X. Condition 2 is a consequence of the definition of

permutation multiplication as function composition, and condition 1 is immediate from

the definition of the identity permutation as the identity function. Note that, in particular,

1,2,3, ...,n is an Sn set.
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Each permutation σ of a set X determines a natural partition of X into cells with the

property that a,b ∈ X are in the same cell if and only if b = σn(a) for some n ∈ Z. We

establish this partition using an appropriate equivalence relation:

For a,b ∈ X , let a∼ b if and only if b = σn(a) for some n ∈ Z. (2.1)

Theorem 2.2. The relation∼ defined by condition (2.1) is indeed an equivalence relation.

Proof. Clearly a ∼ a since a = ε(a) = σ0(a). So, ∼ is reflexive. If a ∼ b, then b = σn(a)
for some n ∈ Z. But then a = σ−n(b) and -n ∈ Z, so b ∼ a. Which shows that ∼ is

symmetric. Suppose a ∼ b and b ∼c, then b = σn(a) and c = σm(b) for some m,n ∈ Z.

Substituting, we find that c = σm(σn(a)) = σn+m(a), so a ∼ c. That is ∼ is transitive.

Hence the result.

Definition 2.4. Let σ be a permutation of a set X. The equivalence classes in X deter-

mined by the equivalence relation (2.1) are the orbits of σ .

Note: Since the identity permutation ε of X leaves each element of X fixed, the

orbits of ε are the singletons of X.

Example 2.6. Find the orbits of the permutation

σ =

(
1 2 3 4 5 6 7 8

2 8 6 7 4 1 5 3

)
,

in S8.

Solution:

For finding the orbit containing 1, we apply σ repeatedly, obtaining symbolically

1
σ→ 2

σ→ 8
σ→ 3

σ→ 6
σ→ 1

σ→ 2
σ→ 8

σ→ 3
σ→ 6

σ→ 1
σ→ 2

σ→ 8....

Since σ−1 would simply reverse the directions of the arrows in this chain, we see that

the orbit containing 1 is {1,2,8,3,6}. We now choose an integer from 1 to 8 not in

{1,2,8,3,6}, say 4, and similarly find that the orbit containing 4 is {4,7,5}. Since these

two orbits include all integers from 1 to 8, we see that the complete list of orbits of σ is

{1,2,8,3,6} , {4,7,5} .

Definition 2.5. If the group G acts on the set X , then the subgroup

Gx = {g ∈ G | g.x = x}

is called the isotropy subgroup of x or stabilizer of x.

Now, we shall find a basic relationship between the order of an orbG(x) and the order

of the isotropy subgroup Gx.

Let G is a group of permutations of a set X , and let x be any element of X . The set T

of pairs (g,y) such that g(x) = y can be shown by means of a table as in Section 3.2[2].

4



. . . y ... Row total

.
√ √ √

.

. .

.
√ √ √

.

g
√

rg(T )

.
√

means that
√

.

. (g, y) is in T
√

.

.
√ √

.

Column

total . . . cy(T ) ...

The two ways of counting T , using the row totals rg(T ) and the column totals cy(T ),
provide the basis for the proof of Lemma 2.3.

Lemma 2.3. Let X be a set and G a group of permutations acting on X. Then Gx is a

subgroup of G, for each x ∈ X. If in addition G is finite, then

|orbG(x)|× |Gx|= |G|.
Proof. Let T denote the set of pairs described in the table above, that is

T = {(g,y) | g(x) = y} .

As g is a permutation there is just one y such that g(x) = y, for each g. In other words,

each row total rg(T ) is equal to 1.

The column total cy(T ) is the number of g such that g(x) = y, that is |G(x→ y)|. Then

if y is in the orbG(x) we have

cy(T ) = |G(x→ y)|= |Gx|.
On the other hand, if y is not in orbG(x) there are no permutations in G which take x to y,

and so cy(T ) = 0.

From the two methods for counting T , we have

∑
y∈X

cy(T ) = ∑
g∈G

rg(T ).

Where as on the left-hand side there are |orbG(x)| terms equal to |Gx| and the remaining

are zero, but on the right-hand side there are |G| terms equal to 1. Hence the result.

2.3 Cycle Index

Let G be a permutation group of degree n. Each permutation g in G has a unique decom-

position into disjoint cycles, say c1c2c3........ Let the length of a cycle c be denoted by |c|.
Now let jk(g) be the number of cycles of g of length k, where

0≤ jk(g)≤ 	n/k
 and
n

∑
k=1

k jk(g) = n.

5



We associate to g the monomial

∏
c∈g

a|c| =
n

∏
k=1

a
jk(g)
k

in the variables a1,a2, .......,an.

Definition 2.6. The cycle index of a permutation group G is the average of

a
j1(g)
1 a

j2(g)
2 a

j3(g)
3 ......

over all permutations g of the group, where jk(g) is the number of cycles of length k in

the disjoint cycle decomposition of g.

The cycle index Z(G) of G is given by

Z(G) =
1

|G| ∑
g∈G

n

∏
k=1

a
jk(g)
k .

2.4 Generating function

Definition 2.7. The generating function for the infinite sequence ( f0, f1, f2, f3, ...) is the

formal power series

F(x) = f0 + f1x+ f2x2 + f3x3 + ....

A generating function is a "formal" power series in the sense that we usually regard x

as a placeholder instead of a number. Only in rare cases will we let x be a real number

and actually evaluate a generating function, so we can largely forget about questions of

convergence. Not all generating functions are ordinary, but those are the only kind we

will consider here.

Example 2.7. Perhaps the best example of a generating function arises from the binomial

theorem. The formula

(1+ x)k =

(
k

0

)
+

(
k

1

)
x+

(
k

2

)
x2 + ...+

(
k

n

)
xn + ...,

can be regarded as saying that the generating function for the sequence defined by

fn =

(
k

n

)
where fn = 0 for n > k,

for any given integer k, is

F(x) = (1+ x)k.

3 Polya’s Enumeration Theorem

In this section, we shall prove Polya’s enumeration theorem and Burnside’s lemma.

Suppose G is a group of permutations of a set X , and let Ĝ be the induced group of

permutations of the set Ψ of colorings of X . Now each permutation g in G induces a

permutation ĝ of Ψ in the following way. Given a coloring ω , we define ĝ(ω) to be the

coloring in which the color assigned to x is the color ω assigns to g(x); that is,

(ĝ(ω))(x) = ω(g(x)).

6



We require the generating function KE(c1,c2, ...,ck), where E is a set of colorings con-

taining one representative of each orbit of Ĝ on Ψ. The coefficient of cs
1ct

2.... in KE will

be the number of distinguishable colorings in which color c1 is used s times, color c2 is

used t times, and so on.

Polya’s theorem state that KE is obtained from the cycle index ZG(a1,a2, ...,an) by sub-

stituting

ci
1 + ci

2 + ...+ ci
k

for ai (1≤ i≤ n). Before going to the proof, let us see how this works in the simple case

of the red-and-white colorings of the corners of a square.

Example 3.1. As an example, let us consider the number of ways of assigning one of the

colors red or white to each corner of a square. Since there are two colors and four corners

there are basically 24 = 16 possibilities. But when we take account of the symmetry of

the square we see that some of the possibilities are essentially the same. For example, the

first coloring as in figure below is the same as the second one after rotation through 1800.

Figure 3.1: Two indistinguishable colorings

From above, we regard two colorings as being indistinguishable if one is transformed into

the other by a symmetry of the square. It is easy to find the distinguishable colorings (in

this example) by trial and error: there are just six of them, as shown in the figure below.

Figure 3.2: The six distinguishable colorings

Let G be a group of permutations of a set X , where frequently we take X to be the set

{1,2, ...,n}. Each element g in G can be written in cycle notation with ji cycles of length

i (1≤ i≤ n), and we recall that the type of g is the corresponding partition

[1 j12 j2...n jn]

of n. Of course, we have j1 +2 j2 + ...+n jn = n. We shall associate with g an expression

Zg(a1,a2, ...,an) = a
j1
1 a

j2
2 ...a jn

n ,

where the ai (1≤ i≤ n) are, for the moment, simply formal symbols like the x in a polyno-

mial. For example, if G is the group of symmetries of a square, regarded as permutations

of the corners 1,2,3,4 then the expression Zg are given in Table 3.1. Note that although

the 1-cycles are conventionally omitted in the notation for g it is important to include them

in Zg.

7



g j1 j2 j3 j4 Zg

id 4 - - - a4
1

(1234) - - - 1 a4

(13)(24) - 2 - - a2
2

(1432) - - - 1 a4

(12)(34) - 2 - - a2
2

(14)(23) - 2 - - a2
2

(13) 2 1 - - a2
1a2

(24) 2 1 - - a2
1a2

Table 3.1:

The formal sum of the Zg, taken over all g in G, is a ‘polynomial’ in a1,a2, ...,an. Dividing

by |G| we obtain the cycle index of the group of permutations:

Zg(a1,a2, ...,an) =
1

|G| ∑
g∈G

Zg(a1,a2, ...,an).

For example, the cycle index of the group of the square is, as considered above, is

1

8
(a4

1 +2a2
1a2 +3a2

2 +2a4),

and we have to substitute

a1 = r +w, a2 = r2 +w2, a3 = r3 +w3, a4 = r4 +w4.

We get

KE(r,w) =
1

8
[(r +w)4 +2(r +w)2(r2 +w2)+3(r2 +w2)2 +2(r4 +w4)]

= r4 + r3w+2r2w2 + rw3 +w4. (By using Mathematica)

Definition 3.1. Suppose we have a group G of permutations of an n-set X , and every

element of X can be assigned one of r colors. Let we denote the set of colors by E, then

a coloring is simply a function ω from X to E. There are rn colorings in all, and we shall

denote the set of them by Ψ.

Now each permutation g in G induces a permutation ĝ of Ψ in the following way. Let

a coloring ω , we define ĝ(ω) to be the coloring in which the color assigned to x is the

color ω assigns to g(x); so,

(ĝ(ω))(x) = ω(g(x)).

The definition is described in Fig. 3.3, where g is the clockwise rotation through 900, and

ω is the coloring on the right-hand side.

8



Figure 3.3: Describing the definition of ĝ(ω)
.

Theorem 3.1. The number of orbits of G on X is

1

|G| ∑
g∈G

|F(g)| where, F(g) = {x ∈ X , g ∈ G | g(x) = x} .

Its weighted form is

∑
x∈D

I(x) =
1

|G| ∑
g∈G

∑
x∈F(g)

I(x).

Proof. Let G be a group of permutations of X , and let I(x) be an expression which is

constant on each orbit of G, so that

I(g(x)) = I(x) for all g ∈ G, x ∈ X .

Let D be a set of representatives, one from each orbit, and let E = {(g,x) | g(x) = x}, as

in the proof of Theorem 14.4[2]. By evaluating the sum

∑
(g,x)∈E

I(x)

in two different ways (as described in Lemma 2.3), show that

∑
x∈D

I(x) =
1

|G| ∑
g∈G

∑
x∈F(g)

I(x).

This is the required ’weighted’ version.

Suppose that the set X is to be colored, and that the set of available colors is U =
{c1,c2, ...,cn}. Associated with each coloring ω : X → U is a formal expression, the

indicator of ω , defined by

ind(ω) = c
hc1

1 c
hc2

2 ...c
hcn
n ,

where hc1
,hc2

, ...,hcn
are the numbers of members of X which receive colors c1,c2, ...,cn

respectively. Here, hc1
+hc2

+ ...+hcn
= h, and h = |X |.

Let any subset B of the set Ψ of all colorings, we define the generating function KB to

be the formal sum

KB(c1,c2, ...,cn) = ∑
ω∈B

ind(ω).

Clearly, when the terms of KB are collected in the normal way, the coefficient of the term

cs
1ct

2... is just the number of colorings in B in which color c1 is used s times, color c2 is

used t times, and so on.

Now, we are able to prove Polya’s Enumeration Theorem (PET).

9



Theorem 3.2. Let ZG(a1,a2, ...,an) be the cycle index for a group G of permutations of

X. The generating function KE(c1,c2, ...,cn) for the numbers of inequivalent colorings of

X, when the colors available are c1,c2, ...,cn, is given by

KE(c1,c2, ...,cn) = ZG(τ1,τ2, ...,τn),

where

τi = ci
1 + ci

2 + ...+ ci
n (1≤ i≤ n).

Proof. We shall begin by finding an alternative formula for

KE(c1,c2, ...,cn) = ∑
ω∈E

ind(ω),

where E is a set of colorings containing one representative of each orbit of Ĝ on Ψ. We

will do this by using ’weighted’ form of the Theorem 3.1.

Applying this result to the action of Ĝ on Ψ, we get

∑
ω∈D

ind(ω) =
1

ˆ|G| ∑
ĝ∈Ĝ

[
∑

ω∈F(ĝ)

ind(ω)

]
.

Now the sum in the bracket is just KF(ĝ), by definition. Further more, a coloring ω is in

F(ĝ) if and only if it is constant on each cycle of g. Hence the explicit form of KF(ĝ) is

given by

KF(ĝ)(c1,c2, ...,cn) = (cm1

1 + ...+ cm1
n ) · ... · (cmk

1 + ...+ cmk
n )

= τm1
...τmk

,

where m1,m2, ...,mk are the lengths of the cycles of g. In other words, if g has ji cycles of

length i (1≤ i≤ n) then

KF(ĝ)(c1,c2, ...,cn) = τ
j1

1 τ
j2

2 ...τ jn
n

= Zg(τ1,τ2, ...,τn).

Since the representation g → ĝ is a bijection, we have |G| = |Ĝ|, and substituting for

KF(ĝ)above we get

KE(c1,c2, ...,cn) = Zg(τ1,τ2, ...,τn),

as required.

3.1 Burnside’s lemma

Theorem 3.3. Let G be a finite group that acts on the finite set X. Let r denote the number

of orbits in X under the action of G. Then

r =
1

|G| ∑
g∈G

|Xg|.

Proof. Suppose the set M = {(g,x) ∈ G×X | g.x = x} contains m elements. The idea

is to count the elements of M in two different ways, and thereby obtain two different

expressions, both equal to m. Combining these expressions will yield Burnside’s Lemma.

Now M contains all pairs (g,x) such that g.x = x. We recall that the set Xg for each fixed

10



g ∈ G contains all x ∈ X such that g.x = x. Thus, for each fixed g ∈ G, there must be |Xg|
elements x that fulfills g.x = x. Therefore

m = ∑
g∈G

|Xg|.

The isotropy subgroup Gx contains, on the other hand, those elements g ∈ G fulfilling

g.x = x, for each fixed x ∈ X . So for each fixed x, there are |Gx| elements g such that

g.x = x. This yields

m = ∑
x∈X

|Gx|.

According to the Lemma 2.3, |orbG(x)|= |G|/|Gx|. Thus

∑
x∈X

|Gx|= ∑
x∈X

|G|
|orbG(x)| = |G|∑

x∈X

1

|orbG(x)| .

Let B1,B2, ...,Br denote all orbits in X . For each x ∈ X we thus have orbG(x) = Bi for

some i. Since X = B1∪B2∪ ...∪Br and Bi∩B j = φ on i = j (the orbits are equivalence

classes), we find that

∑
x∈X

1

|orbG(x)| = ∑
x∈B1

1

|B1| + ∑
x∈B2

1

|B2| + ...+ ∑
x∈Br

1

|Br| .

But for each i,

∑
x∈Bi

1

|Bi| = |Bi|. 1

|Bi| = 1,

and therefore

m = |G|∑
x∈X

1

|orbG(x)| = |G|(1+1+ ...+1) = |G|.r.

In the beginning of proof we also found that m = ∑g∈G |Xg|. If we combine these expres-

sions for m, we obtain an equation which we solve for r, in order to obtain Burnside’s

Formula.

Which is

r =
1

|G| ∑
g∈G

|Xg|.

Remark:

The number of colorings by Burnside’s lemma is the same as the number of colorings by

Polya’s enumeration theorem, if we put 1 instead of a color in generating function of PET.

We will show this in the next examples.

4 Colorings of the square and the regular pentagon

In this section, we use Burnside’s lemma and PET to investigate the number of colorings

of the square and the regular pentagon.

11



4.1 Colorings of corners of a square

Example 4.1. In how many ways, can we color the corners of the square with two colors.

Figure 4.1: Square

Here the permutation group is D4.

We have two colors. First we find all possible permutations under the action of rotation

and reflection, and set of all permutations are isomorphic to D4.

So,

ε =

(
1 2 3 4

1 2 3 4

)
= (1)(2)(3)(4).

Possible ways (Number of coloring of square’s corners) under action ε are

|Xε |= 24 = 16.

We have

ρ1 =

(
1 2 3 4

2 3 4 1

)
= (1 2 3 4) (900 counter clockwise)

ρ2 =

(
1 2 3 4

3 4 1 2

)
= (1 3)(2 4) (1800 counter clockwise)

ρ3 =

(
1 2 3 4

4 1 2 3

)
= (1 4 3 2) (900 clockwise).

So, possible ways (Number of coloring of square’s corners) under action ρ1,ρ2,ρ3 are

|Xρ1
|= |Xρ3

|= 21 = 2

|Xρ2
|= 22 = 4.

By reflections of square along axis, we have

σx =

(
1 2 3 4

4 3 2 1

)
= (1 4)(2 3) (rotation along x-axis)

σy =

(
1 2 3 4

2 1 4 3

)
= (1 2)(3 4) (rotation along y-axis).

So, possible ways (Number of coloring of square’s corners) under action σx and σy are

|σx|= |σy|= 22 = 4.

12



By reflections of square along digonals, we have

σd1
=

(
1 2 3 4

3 2 1 4

)
= (1 3)(2)(4) (rotation along d1 diagonal)

σd2
=

(
1 2 3 4

1 4 3 2

)
= (1)(3)(2 4) (rotation along d2 diagonal).

So, possible ways (Number of coloring of square’s corners) under action σd1
and σd2

are

|σd1
|= |σd2

|= 23 = 8.

Then by Theorem 3.3, we have

required number of colorings =
1

8
(16+2 ·2+4+2 ·4+2 ·8)

=
1

8
(16+4+4+8+16)

=
1

8
(24+24)

=
1

8
(48)

= 6

Now, we are going to use PET for two colors in a square.

From above, we have the following cycle structures of permutations

(1)(2)(3)(4)

(1 2 3 4)

(1 3)(2 4)

(1 4 3 2)

(1 4)(2 3)

(1 2)(3 4)

(1 3)(2)(4)

(1)(3)(2 4)

Table 4.1: Cycle structure of D4

so the cycle index of D4 is

Z(D4) =
1

8
(1 ·a4

1 +3a2
2 +2a2

1a2 +2a4). (4.1)

Generating function coloring one corner is

F(X ,Y ) = 1 ·X +1 ·Y.

We can use color X or Y to color a corner in the square.

By Polya’s Enumeration Theorem (PET), we have

Z(D4)(X ,Y ) =
1

8
[((X +Y )4 +3(X2 +Y 2)2 +2(X +Y )2(X2 +Y 2)+2(X4 +Y 4)].

Generating function for the colorings of the square. By using Mathematica we have

Z(D4)(X ,Y ) = X4 +Y 4 +X3Y +XY 3 +2X2Y 2

Z(D4)(1,1) = 1+1+1+1+2 = 6. (replacing colors by 1)

13



So, total number of colorings = 6.

Hence, the possible colorings are:

1- All corners have color X

1- All corners have color Y

1- Three corners have color X and one has Y

1- One corner has color X and three have Y

2- Two corners have color X and two have Y.

Example 4.2. Now we solve Example 4.1 for 3 colors.

We have 2 colors in Example 4.1 but here we have 3 colors, so replacing 2 by 3 in the

base of number of colorings, we have

|Xε |= 34 = 81

|Xρ1
|= |Xρ3

|= 31 = 3

|Xρ2
|= 32 = 9

|σx|= |σy|= 32 = 9

|σd1
|= |σd2

|= 33 = 27.

Then by Theorem 3.3, we have

required number of colorings =
1

8
(81+2 ·3+9+2 ·9+2 ·27)

=
1

8
(81+6+9+18+54)

=
1

8
(168)

= 21.

From equation 4.1 cycle index of D4 is

Z(D4) =
1

8
(1 ·a4

1 +3a2
2 +2a2

1a2 +2a4)

Generating function coloring one corner is

F(X ,Y,Z) = 1 ·X +1 ·Y +1 ·Z
This means that, we can use color X, Y or Z to color a corner of the square.

By Polya’s Enumeration Theorem (PET), we have

Z(D4)(X ,Y,Z) =
1

8
[(X +Y +Z)4+3(X2+Y 2+Z2)2+2(X +Y +Z)2(X2+Y 2+Z2)+2(X4+Y 4+Z4)].

Generating function for the colorings of the square. By using Mathematica we have

Z(D4)(X ,Y,Z) =X4 +X3Y +2X2Y 2 +XY 3 +Y 4 +X3Z +2X2Y Z +2XY 2Z +Y 3Z+

2X2Z2 +2XY Z2 +2Y 2Z2 +XZ3 +Y Z3 +Z4.

Z(D4)(1,1,1) = 1+1+2+1+1+1+2+2+1+2+2+2+1+1+1 = 21.

So total number of colorings = 21.

Hence from above we can say that, when we use two colors at a time, the possible color-

ings are 12.
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Example 4.3. Now, we solve Example 4.1 for 4 different colors.

We have 2 colors in Example 4.1 but here we have 4 colors, so replacing 2 by 4 in the

base of number of colorings, we have

|Xε |= 44 = 256

|Xρ1
|= |Xρ3

|= 41 = 4

|Xρ2
|= 42 = 16

|σx|= |σy|= 42 = 16

|σd1
|= |σd2

|= 43 = 64.

Then by Theorem 3.3, we have

Required number of colorings =
1

8
(256+2 ·4+16+2 ·16+2 ·64)

=
1

8
(440)

= 55.

From equation 4.1 cycle index of D4 is

Z(D4) =
1

8
(1 ·a4

1 +3a2
2 +2a2

1 ·a2 +2a4)

Generating function coloring one corner is

F(X ,Y,Z,U) = 1 ·X +1 ·Y +1 ·Z +1 ·U

we can use color X, Y, Z or U to color a corner of the square.

By Polya’s Enumeration Theorem(PET), we have

Z(D4)(X ,Y,Z,U) =
1

8
[(X +Y +Z +U)4 +3(X2 +Y 2 +Z2 +U2)2+

2(X +Y +Z +U)2(X2 +Y 2 +Z2 +U2)+2(X4 +Y 4 +Z4 +U4)].

Generating function for the colorings of the square. By using Mathematica we have

Z(D4)(X ,Y,Z,U) =U4 +U3X +2U2X2 +UX3 +X4 +U3Y +2U2XY +2UX2Y+

X3Y +2U2Y 2 +2UXY 2 +2X2Y 2 +UY 3 +XY 3 +Y 4+

U3Z +2U2XZ +2UX2Z +X3Z +2U2Y Z +3UXY Z +2X2Y Z+

2UY 2Z +2XY 2Z +Y 3Z +2U2Z2 +2UXZ2 +2X2Z2+

2UY Z2 +2XY Z2 +2Y 2Z2 +UZ3 +XZ3 +Y Z3 +Z4.

Z(D4)(1,1,1,1) =55.

So total number of colorings = 55.
Hence from above we can say that, when we use three colors at a time, the possible

colorings are 24.
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4.2 Colorings of sides of a pentagon

Example 4.4. In how many ways, we can color sides of a pentagon with three colors.

Solution

We let the dihedral group D5 act on the set of all colorings.

Figure 4.2: pentagon

Then

ρk =rotation clockwise by k.720, k = 0,1,2,3,4
μk =reflection in the line of symmetry that passes through the mid point of side, k =
1,2,3,4,5.
So

|Xρ0
|= 35 (no rotation)

|Xρk
|= 3 (all sides must have same color), k = 1,2,3,4

|Xμk
|= 33.

By Theorem 3.3, we have

required number of colorings =
1

10
(35 +4 ·3+5 ·33)

=
1

10
(243+12+135)

=
1

10
(390)

= 39.

From above, we have the following cycle structures of permutations.
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ρ0 =

(
1 2 3 4 5

1 2 3 4 5

)
= (1)(2)(3)(4)(5).

ρ1 =

(
1 2 3 4 5

5 1 2 3 4

)
= (1 5 4 3 2).

ρ2 =

(
1 2 3 4 5

4 5 1 2 3

)
= (1 4 2 5 3).

ρ3 =

(
1 2 3 4 5

3 4 5 1 2

)
= (1 3 5 2 4).

ρ4 =

(
1 2 3 4 5

2 3 4 5 1

)
= (1 2 3 4 5).

μ1 =

(
1 2 3 4 5

5 4 3 2 1

)
= (1 5)(2 4)(3).

μ2 =

(
1 2 3 4 5

1 5 4 3 2

)
= (1)(2 5)(3 4).

μ3 =

(
1 2 3 4 5

3 2 1 5 4

)
= (1 3)(2)(4 5).

μ4 =

(
1 2 3 4 5

2 1 5 4 3

)
= (1 2)(3 5)(4).

μ5 =

(
1 2 3 4 5

4 3 2 1 5

)
= (1 4)(2 3)(5).

Table 4.2: Cycle structure of D5

so the cycle index of D5 is

Z(D5) =
1

10
(1 ·a5

1 +4a5 +5a2
2a1).

Generating function coloring one cornor is

F(X ,Y,Z) = 1 ·X +1 ·Y +1 ·Z .

We can use color x, y or z to color a corner of the pentagon.

By Polya’s Enumeration Theorem (PET), we have

Z(D5)(X ,Y,Z) =
1

10
[(X +Y +Z)5 +4(X5 +Y 5 +Z5)+5(X2 +Y 2 +Z2)2(X +Y +Z)].

By using Mathematica, we have

Z(D5)(X ,Y,Z) =X5 +X4Y +2X3Y 2 +2X2Y 3 +XY 4 +Y 5 +X4Z +2X3Y Z +4X2Y 2Z+

2XY 3Z +Y 4Z +2X3Z2 +4X2Y Z2 +4XY 2Z2 +2Y 3Z2+

2X2Z3 +2XY Z3 +2Y 2Z3 +XZ4 +Y Z4 +Z5.

Z(D5)(1,1,1) =1+1+2+2+1+1+1+2+4+2+1+2+4+4+

2+2+2+2+1+1+1.

Z(D5)(1,1,1) =39.
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5 Colorings of regular n-gons

Now, we investigate the cycle structure of the rotations in D6,D7,D8,D9,D10. Then we

will find the general expression for Dn.

5.1 Cycle index for the group of rotations of n-gons

Definition 5.1. The Euler totient φ(n) of a positive integer n is defined to be the number

of positive integers less than or equal to n that are relatively prime to n (i.e having no

common positive factors other than 1). In particular φ(1) = 1 since 1 is coprime to itself

(1 being the only natural number with this property).

i.e

φ(n) =Euler’s totient function.

φ(n) =The number of integers in {1,2,3, ...,n} that are relatively prime to n.

or

φ(n) = |{x ∈ {1,2,3, ...,n} : gcd(x,n) = 1}|.
For example

φ(5) = |{x ∈ {1,2,3,4,5} : gcd(x,5) = 1}|= |{1,2,3,4}|= 4.
φ(9) = |{x ∈ {1,2,3,4,5,6,7,8,9} : gcd(x,9) = 1}|= |{1,2,4,5,7,8}|= 6.

Rotations for D6

Figure 5.1: Hexagon

Cycle structure of permutations of rotations for D6 is

ε = (1)(2)(3)(4)(5)(6)
ρ1 = (1 2 3 4 5 6)
ρ2 = (1 3 5)(2 4 6)
ρ3 = (1 4)(2 5)(3 6)
ρ4 = (1 5 3)(2 6 4)
ρ5 = (1 6 5 4 3 2)

Table 5.1: Cycle structure for D6

Comparing, we have

Cycle index= 1 ·a6
1 +1 ·a3

2 +2 ·a2
3 +2 ·a6 = ∑d/6 a

6/d

d .

Cycle index= φ(1)a6
1 +φ(2)a3

2 +φ(3)a2
3 +φ(6)a6.
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Since

φ(1) = |{x ∈ {1} : gcd(x,1) = 1}|= |{1}|= 1.
φ(2) = |{x ∈ {1,2} : gcd(x,2) = 1}|= |{1}|= 1.
φ(3) = |{x ∈ {1,2,3} : gcd(x,3) = 1}|= |{1,2}|= 2.
φ(6) = |{x ∈ {1,2,3,4,5,6} : gcd(x,6) = 1}|= |{1,5}|= 2.
Hence

Zc6
= 1 ·a6

1 +1 ·a3
2 +2 ·a2

3 +2 ·a6.

Rotations for D7

Figure 5.2: Heptagon

Cycle structure of permutations of rotations for D7 is

ε = (1)(2)(3)(4)(5)(6)(7).
ρ1 = (1 2 3 4 5 6 7).
ρ2 = (1 3 5 7 2 4 6).
ρ3 = (1 4 7 3 6 2 5).
ρ4 = (1 5 2 6 3 7 4).
ρ5 = (1 6 4 2 7 5 3).
ρ6 = (1 7 6 5 4 3 2).

Table 5.2: Cycle structure for D7

Comparing, we have

Cycle index= 1 ·a7
1 +6 ·a1

7 = ∑d/7 a
7/d

d .

Cycle index= φ(1)a7
1 +φ(7)a7.

Since

φ(1) = |{x ∈ {1} : gcd(x,1) = 1}|= |{1}|= 1.
φ(7) = |{x ∈ {1,2,3,4,5,6,7} : gcd(x,7) = 1}|= |{1,2,3,4,5,6}|= 6.
Hence

Zc7
= 1 ·a7

1 +6 ·a7.
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Rotations for D8

Cycle structure of permutations of rotations for D8 is

ε = (1)(2)(3)(4)(5)(6)(7)(8).
ρ1 = (1 2 3 4 5 6 7 8).
ρ2 = (1 3 5 7)(2 4 6 8).
ρ3 = (1 4 7 2 5 8 3 6).
ρ4 = (1 5)(2 6)(3 7)(4 8).
ρ5 = (1 6 3 8 5 2 7 4).
ρ6 = (1 7 5 3)(2 8 6 4).
ρ7 = (1 8 7 6 5 4 3 2).

Table 5.3: Cycle structure for D8

Comparing, we have

Cycle index= 1 ·a8
1 +1 ·a4

2 +2 ·a2
4 +4 ·a8 = ∑d/8 a

8/d

d .

Cycle index= φ(1)a8
1 +φ(2)a4

2 +φ(4)a2
4 +φ(8)a8.

Since

φ(1) = |{x ∈ {1} : gcd(x,1) = 1}|= |{1}|= 1.
φ(2) = |{x ∈ {1,2} : gcd(x,2) = 1}|= |{1}|= 1.
φ(4) = |{x ∈ {1,2,3,4} : gcd(x,4) = 1}|= |{1,3}|= 2.
φ(8) = |{x ∈ {1,2,3,4,5,6,7,8} : gcd(x,8) = 1}|= |{1,3,5,7}|= 4.
Hence

Zc8
= 1 ·a8

1 +1 ·a4
2 +2 ·a2

4 +4 ·a8 .

Rotations for D9

Cycle structure of permutations of rotations for D9 is

ε = (1)(2)(3)(4)(5)(6)(7)(8)(9).
ρ1 = (1 2 3 4 5 6 7 8 9).
ρ2 = (1 3 5 7 9 2 4 6 8).
ρ3 = (1 4 7)(2 5 8)(3 6 9).
ρ4 = (1 5 9 4 8 3 7 2 6).
ρ5 = (1 6 2 7 3 8 4 9 5).
ρ6 = (1 7 4)(2 8 5)(3 9 6).
ρ7 = (1 8 6 4 2 9 7 5 3).
ρ8 = (1 9 8 7 6 5 4 3 2).

Table 5.4: Cycle structure for D9

Comparing, we have

Cycle index= 1 ·a9
1 +2 ·a3

3 +6 ·a9 = ∑d/9 a
9/d

d .

Cycle index= φ(1)a9
1 +φ(3)a3

3 +φ(9)a9.

Since

φ(1) = |{x ∈ {1} : gcd(x,1) = 1}|= |{1}|= 1.
φ(3) = |{x ∈ {1,2,3} : gcd(x,3) = 1}|= |{1,2}|= 2.
φ(9) = |{x ∈ {1,2,3,4,5,6,7,8,9} : gcd(x,9) = 1}|= |{1,2,4,5,7,8}|= 6.
Hence

Zc9
= 1 ·a9

1 +2 ·a3
3 +6 ·a9 .
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Rotations for D10

Cycle structure of permutations of rotations for D10 is

ε = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10).
ρ1 = (1 2 3 4 5 6 7 8 9 10).
ρ2 = (1 3 5 7 9)(2 4 6 8 10).
ρ3 = (1 4 7 10 3 6 9 2 5 8).
ρ4 = (1 5 9 3 7)(2 6 10 4 8).
ρ5 = (1 6)(2 7)(3 8)(4 9)(5 10).
ρ6 = (1 7 3 9 5)(2 8 4 10 6).
ρ7 = (1 8 5 2 9 6 3 10 7 4).
ρ8 = (1 9 7 5 3)(2 10 8 6 4).
ρ9 = (1 10 9 8 7 6 5 4 3 2).

Table 5.5: Cycle structure for D10

Comparing, we have

Cycle index= 1 ·a10
1 +1 ·a5

2 +4 ·a2
5 +4 ·a10 = ∑d/10 a

10/d

d .

Cycle index= φ(1)a10
1 +φ(2)a5

2 +φ(5)a2
5 +φ(10)a10. Since

φ(1) = |{x ∈ {1} : gcd(x,1) = 1}|= |{1}|= 1.
φ(2) = |{x ∈ {1,2} : gcd(x,2) = 1}|= |{1}|= 1.
φ(5) = |{x ∈ {1,2,3,4,5} : gcd(x,5) = 1}|= |{1,2,3,4}|= 4.
φ(10) = |{x ∈ {1,2,3,4,5,6,7,8,9,10} : gcd(x,10) = 1}|= |{1,3,7,9}|= 4.
Hence

Zc10
= 1 ·a10

1 +1 ·a5
2 +4 ·a2

5 +4 ·a10 .

Now, we are in position to find the general expression for Dn.

Theorem 5.1. Let Cn be the cycle group of permutations generated by π = (1 2 3.....n).
Then for each divisor d of n there are φ(d) permutations in Cn which have n/d cycles of

length d, and hence the cycle index of Cn is

Z(Cn) =
1

n
∑
d/n

φ(d)x
n/d

d .

Proof. We know by a theorem (if G is a cyclic group of order n≥ 2 then for each divisor

d of n the number of elements x in G which have order d is φ(d)) that a cyclic group of

order n having exactly φ(d) elements of order d, for each divisor d of n. For this, the

φ(d) permutations are those of the form πkn/d , where 1≤ k ≤ d and gcd(k,d) = 1. Now,

only left to show that these permutations have n/d cycles of length d.

Let m be the length of a shortest cycle of the permutation π i (1 ≤ i ≤ n− 1), and

suppose x is in a cycle of length m. Then

π im(x) = (π i)m(x) = x.

For any y in {1,2,3, ....,n} both x and y are in the single cycle of π , so y = πr(x) for some

r. Now

(π i)m(y) = π imπr(x) = πrπ im(x) = πr(x) = y,

so that y is in a cycle of π i whose length divides m. But m is the minimum length of a

cycle, so this cycle has length m. Thus all cycles of π i have the same length m. If the order

of π i is d we must have d = m, and so there are n/d cycles of length d as claimed.
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In the study of general problems, the most important tool is a compact notation which

records information about the cycle structures of permutations in a group. Let G be a

group of permutations of a set X , where frequently we take X to be the set {1,2, ...,n}.
Each element g in G can be written in cycle notation with ji cycles of length i (1≤ i≤ n),
and the type of g is the corresponding partition

[1 j12 j2...n jn]

of n. Of course, we have j1 +2 j2 + ...+n jn = n. We shall associate with g an expression

Zg(a1,a2, ...,an) = a
j1
1 a

j2
2 ... a jn

n ,

where the ai (1 ≤ i ≤ n) are, for the moment, simply formal symbols like the x in a

polynomial.

5.2 Cycle index of Dn

Theorem 5.2. The cycle index of Dn is

1

2
Z(Cn)+

{
1
4
(a

n/2
2 +a2

1a
n/2−1
2 ) if n is even,

1
2

a1a
(n−1)/2
2 if n is odd.

Proof. Here, we want to prove the case in which mirror-image symmetry is allowed. First,

suppose that n is even and n≥ 4, and let n
′
= 1

2
n, so that the corners of n-gon are labeled

as 1,2, ......,n
′
,n
′
+1, .....,n. To the n-gon about the perpendicular bisector of the side 1n

is the same as taking its ’reflection’ in that axis and

Figure 5.3: Symmetry of an even polygon.

the corresponding permutation is

σ = (1 n)(2 n−1).......(n
′
n
′
+1).

Taking π = (1 2 3......n) as in previous theorem, we find that

σπ = (1 n−1)(2 n−2).......(n
′ −1 n

′
+1)(n

′
)(n),

which represents a reflection in the axis nn
′
.

Clearly, there are n
′
= 1

2
n reflections in the perpendicular bisectors of the sides; these

correspond to the permutations
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σ ,σπ2,σπ4, ......,σπn−2.

Also, there are n
′
= 1

2
n reflections in the axis joining opposite corners, and these corre-

spond to the permutations

σπ,σπ3,σπ5, ......,σπn−1.

Thus we have a group of 2n permutations, the n rotations π i and the n reflections σπ i (0≤
i≤ n−1). It is called the dihedral group of order 2n, and we shall denote it by Dn.

When n is odd, say n = 2n
′
+ 1, there are again n reflections, but now they are all of

the same type, since each one is a reflection in an axis joining a corner to the mid-point

of the opposite side. For example, choosing the corner n
′
as in figure below, we get

σ = (1 n)(2 n−1).....(n
′ −1 n

′
+1)(n

′
).

Figure 5.4: Symmetry of an odd polygon.

Here again we have a dihedral group of order 2n consisting of the n rotations π i and the n

reflections σπ i (0≤ i≤ n−1).
Now, we come to the final part of the proof.

In the even case, Dn having n elements of Cn, together with 1
2
n permutations (like σ ) of

type [2n/2] and 1
2
n permutations (like σπ) of type [12 2n/2−1]. Hence

Z(Dn) =
1

2n
(∑

d/n

φ(d)a
n/d

d +
n

2
a

n/2
2 +

n

2
a2

1a
n/2−1
2 ) if n is even. (5.1)

which reduces to the form given.

In the odd case we have the n permutations of Cn together with n permutations of type

[1 2n/2−1]. Hence

Z(Dn) =
1

2n
(∑

d/n

φ(d)a
n/d

d +na1a
(n−1)/2
2 ) if n is odd. (5.2)

From equations (5.1) and (5.2), we have

1

2
Z(Cn)+

{
1
4
(a

n/2
2 +a2

1a
n/2−1
2 ) if n is even,

1
2

a1a
(n−1)/2
2 if n is odd.

Hence the result.
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5.3 How to use PET to calculate the number of possible colorings of regular n-gons

Polya’s theorem provides a mechanical way of computing numbers of inequivalent col-

orings of various types. In general, the major task is to calculate the cycle index for

the relevant group, and it is for this reason that we have prepared ourself with a small

list of useful cycle indexes. The secondary task is to expand the expression obtained by

substituting for ai in the cycle index, and hence find the required coefficients.

24



6 Graphs

6.1 Definitions and Examples

Definition 6.1. A graph G consists of a finite set V , whose members are called ver-

tices, and a set E of 2-subsets of V , whose members are called edges. We usually write

G = (V,E) and say that V is the vertex-set and E is the edge-set.

For a graph G(V,E), the order of G = |V | and size of G = |E| .

Example 6.1. Let the graph on V = {A,B,C,D,E}with edge set E = {{A,B} ,{A,E} ,{E,C} ,{B,D}}.
Then the order of G = |V |= 5 and the size of G = |E|= 4.

Figure 6.1: Graph of order 5 with size 4.

Definition 6.2. Let G = (V,E) and G′(V ′,E ′) be two graphs. We call G and G′ iso-

morphic, and write G ∼= G′, if there exists a bijection φ : V → V ′ with {xy} ∈ E ⇔
{φ(x)φ(y)} ∈ E ′ ∀x,y ∈V.
Such a map φ is called an isomorphism of graphs; if G = G′, it is called an automor-

phism of graphs.

Example 6.2. The two graphs in figure 6.2 are isomorphic under the following transfor-

mation: φ(1)=A, φ(2)=B, φ(3)=C, φ(4)=D.

The edge lists of both the graphs on the left and the right are (1,2), (1,4), (2,3), (3,4) and

(A,B),(A,D),(B,C),(C,D) respectively.

Figure 6.2: Two Isomorphic graphs.
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Definition 6.3. As opposed to a multi graph, a simple graph is a graph in which each is

a pair of distinct vertices and edges do not repeat.

Example 6.3. Let V = {1,2,5,7} and let E = {{1,2} ,{1,5} ,{2,5} ,{3,4} ,{5,7}} we

see no unordered pairs are repeated. This shows that it is a simple graph.

Definition 6.4. A multi graph is a graph in which each edge is a pair of distinct vertices

and edges may repeat.

Example 6.4. Let V = {a,b,c,d,e} and let E = {{a,b} ,{a,b} ,{a,e} ,{b,d} ,{c,e}} we

see in the edge set E the first two pairs are repeated. Hence, it is a multi graph.

6.2 Labeled and Unlabeled Graphs

The issue here is whether the names of the vertices matter in deciding whether two graphs

are the same. In generation labeled graphs, we seek to construct all possible labellings of

all possible graphs topologies. In generating unlabeled graph, we seek only one represen-

tative for each topology and ignore labellings.

For example, there are only two connected unlabeled graphs on three vertices- a triangle

and a simple path. However, there are four connected labeled graphs on three verticec-

one triangle and three 3-vertex paths, each distinguished by the name of their central ver-

tex. In general, labeled graphs are much easier to generate. However, there are so many

more of than that we quickly swamped with isomorphic copies of the same few graphs.

Definition 6.5. A vertex-labeled graph is a graph in which each vertex is distinguishable

from the other by virtue of the underlying system they model. An edge-labeled graph

can be similarly defined. In an unlabeled graph vertices are indistinguishable from each

other. It may be possible to distinguish vertices by using the structural properties of the

graph. e.g. degree of vertices. Also an unlabeled graph has many labeled graph represen-

tations.

6.3 Counting Simple Graphs and Multi Graphs

Definition 6.6. A labeled graph is a graph with labels, typically 1,2, .......n, assigned to

the vertices. Two labeled graphs with the same set of labels are considered the same only

if there is an isomorphism from one to the other that preserves the labels.
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Example 6.5. How many labeled graphs with three vertices?

There are eight different labeled graphs with three vertices as shown in the figure 6.3.

Figure 6.3: All eight labeled graphs on three vertices.

Note: To obtain the number of labeled graphs with n points, we need only observe that

each of the
(

n
2

)
possible lines is either present or absent.

Theorem 6.1. : The number of labeled graphs with n points is 2(n
2).

Proof. Consider a graph with its vertices labeled 1,2, .....,n. In any such graph, each of

the
(

n
2

)
possible edges is either present or absent.

Hence the result.

Example 6.6. How many labeled graphs with two vertices can you construct?

The number of edges with 2 vertices =
(

2
2

)
Hence total number of labeled graphs = 2(2

2) = 21 = 2

Theorem 6.2. How many labeled graphs with n vertices and m edges can we construct?

Proof. Since the number of distinct edges with n vertices is
(

n
2

)
.

Therefore, the number of labeled graphs with n vertices and m edges is the binomial

coefficient
((n

2)
m

)
.

Example 6.7. How many labeled graphs with three vertices and two edges can we con-

struct?

If we put n=3 and m=2 in the theorem 6.2, then number of labeled graphs=
((3

2)
2

)
=

(
3
2

)
=

3.
Hence we can construct only 3 labeled graphs with 2 edges.

Example 6.8. How many different unlabeled graphs are there with three vertices?

We can construct only four unlabeled graphs with three vertices, as shown in the figure

6.4.
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Figure 6.4: All four unlabeled graphs with three vertices.

Definition 6.7. The symmetric group Sn is the group of all permutations acting on the set

Xn = {1,2,3......n} .

Definition 6.8. The pair-permutation α ′ induced by the permutation α acting on the set

Xn is the permutation acting on unordered pairs of elements of Xn defined by the rule

α ′ : {x,y}→ {α(x),α(y)}. The symmetric pair group S2
n induced by the symmetric group

Sn is the permutation group {α ′ : α ∈ Sn} .

7 Use PET to find non-isomorphic graphs

7.1 Graphical enumeration

It is often important to know how many graphs there are with some desired property.

Indeed, any time that graphs are used to model some form of physical structure, the

techniques of graphical enumeration are extremely valuable. Many of the techniques

for counting graphs are based on the master theorem of George Ploya. Frank Harary and

other exploited this master theorem in counting simple graphs, multi graphs, digraph and

similar graphical structures.

7.2 Construct a polynomial for counting the number of non-isomorphic graphs

To effectively count graphs, we must define what it means for two graphs to be distinct.

The natural definition would be that two graphs G and G′ are distinct if there is no permu-

tation of the vertices mapping the edges of G to the edges of G′. The group of permutation

on the vertices of a graph of order n is precisely the symmetric group Sn. This group in-

duces a permutation group acting on the edges of Kn in the natural way, which we denote

as S
(2)
n . Distinct graphs, then, are represented by distinct equivalence classes under the

action of S
(2)
n .

7.3 To find cycle structure of different pair group of type S
(2)
n

Example 7.1. Find the cycle structure of S3 and S
(2)
3 . Also compare them.

Let V = {1,2,3} be the vertex set, then Sv is usually denoted by S3. Let S3 be a permuta-

tion group for V and S
(2)
3 permutation group for V (2)={(i, j) : i, j ∈V, i = j} .

Then, ∣∣∣V (2)
∣∣∣ =

(
3

2

)
= 3.

If we number the elements of

∣∣∣V (2)
∣∣∣ in dictionary order, we get {1,2}{1,3}{2,3}.

The group S
(2)
3 is induced by the vertex permutations, then for each α ∈ S3, there is α ′ ∈

S
(2)
3 , such that α ′ {i, j}= {αi,α j} .

We know that the cycle structure of S3 is,
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ρ0 =

(
1 2 3

1 2 3

)
= (1)(2)(3)

ρ1 =

(
1 2 3

2 3 1

)
= (123)

ρ2 =

(
1 2 3

3 1 2

)
= (132)

μ1 =

(
1 2 3

1 3 2

)
= (1)(23)

μ2 =

(
1 2 3

3 2 1

)
= (13)(2)

μ3 =

(
1 2 3

2 1 3

)
= (12)(3)

Table 7.1: Cycle structure of S3

Now we find the cycle structure for the elements of S
(2)
3

Let

ρ0 =

(
1 2 3

1 2 3

)
∈ S3

Since

ρ0
′ ∈ S

(2)
3

Let

ρ0
′ {i, j}= {ρ0i,ρ0 j}

So,

ρ0
′ {1,2}= {1,2}

ρ0
′ {1,3}= {1,3}

ρ0
′ {2,3}= {2,3}

This gives,

ρ0
′ =

(
12 13 23

12 13 23

)
= (12)(13)(23).

Similarly, if

ρ1 =

(
1 2 3

2 3 1

)
This gives,

ρ1
′ =

(
12 13 23

23 12 13

)
= (12 23 13).

Let

ρ2 =

(
1 2 3

3 1 2

)
This gives,

ρ2
′ =

(
12 13 23

13 23 12

)
= (12 13 23).

Let

μ1 =

(
1 2 3

1 3 2

)

29



This gives,

μ1
′ =

(
12 13 23

13 12 23

)
= (12 13)(23).

Let

μ2 =

(
1 2 3

3 2 1

)
This gives,

μ2
′ =

(
12 13 23

23 13 12

)
= (12 23)(13).

Let

μ3 =

(
1 2 3

2 1 3

)
This gives,

μ3
′ =

(
12 13 23

12 23 13

)
= (12)(13 23).

Now we can compare cycle structures of S3 and S
(2)
3 , see Table 7.2.

S3 Cycle Structure S
(2)
3 Cycle Structure

(1)(2)(3) a3
1 (12)(13)(23) a3

1

(123) a3 (12 23 13) a3

(132) a3 (12 13 23) a3

(1)(23) a1a2 (12 13)(23) a1a2

(13)(2) a1a2 (12 23)(13) a1a2

(12)(3) a1a2 (12)(13 23) a1a2

Table 7.2: Comparison between S3 and S2
3

We now use only a few basic facts about permutations and permutation groups.The

elements of the latter are permutations and the multiplication operation is permutation

composition. There must not be any permutations whose product is not in the group.

The cycle index Z(S) of a permutation group S is the average of ∏
p
k=1 a

jk
k over all

permutation in the group.

Therefore, the cycle indices of the symmetric group S3 and the pair group S
(2)
3 are obtained

from the table 7.2.

Z(S3) = Z(S
(2)
3 ) =

1

6
a3

1 +
1

2
a1a2 +

1

3
a3.

The permutation group is S
(2)
3 (pair group acting on the vertices), when we enumerate

graphs and the generating function of the objects is 1 + z, indicating whether an edge is

present (size one z) or not (1).

Substitute ak = 1+ zk into Z(S
(2)
3 ) to obtain,

=
1

6
(1+ z)3 +

1

2
(1+ z)(1+ z2)+

1

3
(1+ z3)

Expanding by Mathematica we get,

=
1

6
z3 +

1

2
z2 +

1

2
z+

1

6
+

1

2
z3 +

1

2
z2 +

1

2
z+

1

2
+

1

3
z3 +

1

3

= z3 + z2 + z+1
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Which says that there is one graph with three edges, one with two, one with one edge, and

one with no edges.

Hence all non-isomorphic graphs on three vertices are four as shown in figure 7.1.

Figure 7.1: All four non-isomorphic graphs on three vertices.

Example 7.2. Find the cycle structure of S4 and S
(2)
4 . Also compare them.

Let V = {1,2,3,4}, then Sv is usually denoted by S4. Let V (2) = {a,b,c,d,e, f}, then∣∣∣V (2)
∣∣∣ =

(
4
2

)
= 6.

If we number the elements of V (2) in dictionary order, we have,

a = {1,2} ,b = {1,3} ,c = {1,4} ,d = {2,3} ,e = {2,4} , f = {3,4} .

Then each α ′ ∈ S
(2)
v can be identified with a permutation in S6.

Suppose, for example α = (154) ∈ S4. Then the disjoint cycle factorization of α ′ ∈ S
(2)
v

is computed as follows,

α ′(a) = α ′ {1,2}= {α(1),α(2)}= {4,2}= e

α ′(e) = α ′ {2,4}= {α(2),α(4)}= {2,3}= d

α ′(d) = α ′ {2,3}= {α(2),α(3)}= {2,1}= a

So (aed) is one of the cycle in the disjoint cycle factorization of α ′.
Continuing,

α ′(b) = α ′ {1,3}= {α(1),α(3)}= {4,1}= c

α ′(c) = α ′ {1,4}= {α(1),α(4)}= {4,3}= f

α ′( f ) = α ′ {3,4}= {α(3),α(4)}= {1,3}= b

Thus α ′ = (aed)(bc f ).

Similar computation lead to the table 7.3, where each α ′ ∈ S
(2)
v has been identified with

an element of S6.
Note that

∣∣S2
v

∣∣ = |Sv|= 4! = 24 a small factor fraction of the 6! = 720 permutation in S6.

Since, S4 and S
(2)
4 ⊂ S6 for V = {1,2,3,4}.

The table 7.3 also shows the comparison between S4 and S
(2)
4 . The cycle index of the

edge permutation group for graphs on four vertices, which has degree six (there are six

edges) and order twenty-four (each vertex permutation of the four vertices induces an

edge permutation).
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α α ′ α α ′

ε4 ε6 (142) (ace)bfd

(12) (bd)(ce) (143) (aed)(bcf)

(13) (ad)(cf) (234) (abc)(dfe)

(14) (ae)(bf) (243) (acb)(def)

(23) (ab)(ef) (1234) (adfc)(be)

(24) (ac)(df) (1243) (aefb)(cd)

(34) (bc)(de) (1324) (af)(bdec)

(13)(24) (af)(cd) (1342) (abfe)(cd)

(123) (adb)(cef) (1423) (af)(bced)

(124) (aec)(bdf) (1432) (acfd)(be)

(132) (abd)(cfe) (12)(34) (be)(cd)

(134) (ade)(bfc) (14)(23) (af)(be)

Table 7.3: Comparison between S4 and S2
4

It contains ,

Six 2-cycles

(12),(13),(14),(23),(24),(34)

Eight 3-cycles

(123),(124),(134),(234),

(132),(142),(143),(243),

Six 4-cycles

(1234),(1243),(1324),

(1342),(1423),(1432),

This accounts for 20 of the elements of S4. The remaining 4 elements include the identity

element ε4 which can be thought as a 1-cycle (1) and three elements (13)(24),(12)(34)

and (14)(23) which are not cycles.

Therefore, the cycle indices of the symmetric group S4 and the pair group S
(2)
4 are obtained

from the table 7.3.

Z(S4) =
1

24
(a4

1 +6a2
1a2 +8a1a3 +3a2

2 +6a4). (7.1)

From table 7.3, to see how S4 can be modified to obtain the cycle index polynomial

for the pair group S
(2)
4 . Observe that ε4=ε6 the polynomial of a4

1 in S4 should be replaced

with a6
1. Because from the figure 7.3 the induced action on V (2) of α = (12)(34) is α ′ =

(be)(cd), the term 3a2
2 in S4, corresponding to the three permutation in S4 of cycle type

[22], is replaced with 3a2
1a2

2. For the same reason, 6a4 is replaced with 6a2a4 and 6a2
1a2

2.
When 8a2

3 is substituted for 8a1a3 and like terms are combined, the transformation of

equation (7.2) into equation (7.1) is complete.

Thus, from table 7.3,

Z(S
(2)
4 ) =

1

24
(a6

1 +9a2
1a2

2 +8a2
3 +6a2a4). (7.2)

The permutation group is S
(2)
4 (pair group acting on the vertices), when we enumerate

graphs and the generation function of the objects is 1 + z, indicating weather an edge is
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present (size one z) or not (1).

Substitute ak = 1+ zk into Z(S
(2)
4 ) to obtain,

=
1

24
((1+ z)6 +9(1+ z)2(z2 +1)2 +8(z3 +1)2 +6(z2 +1)(z4 +1))

Expanding by Mathematica we get,

Z(S
(2)
4 ) = z6 + z5 +2z4 +3z3 +2z2 + z+1

Which says that there is one graph with six edges, one with five, two with four edge, three

with three edges, two with two edges, one with one edge and one with no edge.

Hence all non-isomorphic graphs on four vertices are 11 as shown in figure 7.2.

Figure 7.2: All eleven non-isomorphic graphs on four vertices.

Theorem 7.1. The cycle index of Z(S4) is,

Z(S4) =
1

24
(a4

1 +6a2
1a2 +8a1a3 +3a2

2 +6a4).

Proof. The 24 vertex-permutation in Z(S4) are naturally partitioned according to the five

possible cycle structures: a4
1, a2

1a2, a1a3, a2
2, a4. Each cell in this partition is to be

counted.

a4
1: Only the identity permutation has this cycle structure.

a2
1a2: There are

(
4
2

)
= 6 way to choose two vertices for the 2-cycle.

a1a3: There are
(

4
3

)
= 4 ways to choose three vertices for the 3-cycle and (3− 1)! = 2

ways to arrange them in a cycle. Hence there are 4×2 = 8 permutations with this cycle

structure.

a2
2: There are three ways to group four objects into two cycle, when it does not matter

which cycle is written first.

a4: They correspond to the (4− 1)! = 6 ways that four objects can be arranged in a

cycle.

Theorem 7.2. The cycle index of Z(S
(2)
4 ) is,

Z(S
(2)
4 ) =

1

24
(a6

1 +9a2
1a2

2 +8a2
3 +6a2a4).
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Proof. The cyclic index of the edge permutation group for graphs on four vertices can be

find on the light of following five cases. These are the vertex permutation and the edge

permutation that they include.

Case 1

The identity. This permutation mapes all vertices (also edges) to themselves and the con-

tribution is a6
1.

Case 2

Six permutations that exchange two vertices. These permutations preserve the edge that

connects the two vertices as well as the edge that connects the two vertices not exchanged.

The remaining edges form two two-cycles and the contribution is 6a2
1a2

2.
Case 3

Eight permutations that fix one vertex and produce a three-cycle for the three vertices

not fixed. These permutations create two three-cycles of edges, one containing those not

incident on the vertices, and another one containing those incident on the vertex and the

contribution is 8a2
3.

Case 4

Three permutation that exchange two vertex pairs at the same time. These permutation

preserve the two edges that connect the two pairs. The remaining edges form two-cycles

and the contribution is 3a2
1a2

2.
Case 5

Six permutation that rotate the vertices along a four cycle. These permutations create a

4-cycle of edges and exchange the remaining two edges, the contribution is 6a2a4.

Hence the cycle index of Z(S
(2)
4 ) is,

Z(S
(2)
4 ) =

1

24
(a6

1 +9a2
1a2

2 +8a2
3 +6a2a4).

Enumeration of Multi graphs: Suppose that we are interested in counting multi

graphs of n vertices, in which at most two edges are allowed between a pair of vertices.

In this case the domain and the permutation group are the same as they were for simple

graphs. The range, however, is different. A pair of vertices may be joined 1: no edge, 2:

one edge, or 3: two edges. Thus range R contains three elements, say s, t and u with

contents, a0,a1 and a2 respectively; that is, ai indicates the presence of i edges between a

vertex pair, for i = 0,1,2. Therefore, the figure-counting series becomes

1+a+a2.
Substituting of 1 + ar + a2r for yr in Z(Rn) will yield the desired configuration-counting

series.

Example 7.3. Find the number of simple multi graphs on four vertices.

Let S = {1,2,3,4} and D = {present once,absent, present twice} . Let S
(2)
4 be the pair

group on the set of unorder pairs defined on the set S. Again, the cycle index of S
(2)
4 is,

Z(S
(2)
4 )(a1, ......,a4) =

1

24
(a6

1 +9a2
1a2

2 +8a2
3 +6a2a4).

Clearly,

f (a) = 1+a+a2.

So, the figure-counting series is given by replacing ai by,

f (zi) = 1+ zi + z2i.
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Hence, we have,

Z(S
(2)
4 ) =

1

24
[(1+ z+ z2)6 +9(1+ z+ z2)2(1+ z2 + z4)2 +8(1+ z3 + z6)2+

6(1+ z2 + z4)(1+ z4 + z8)].

=1+ z+3x2 +5z3 +8z4 +9z5 +12z6 +9z7 +8z8 +5z9 +3z10 + z11 + z12.

Again, the coefficient of a j for 0≤ j≤ 12 is the number of simple graphs on four vertices

with j edged.

7.4 Find cyclic index or polynomial for the pair group induced by Sn.

Lemma 7.3. The cycle index of the symmetric group Sn is given by

Z(Sn) = ∑
( j)

1

∏
n
k=1 jk!k

jk ∏a
jk(g)
k

Where the summation is taken over all partitions (j) of n.

Proof. Consider some partition ( j) of n, where ( j) = ( j1, j2, ..... jn). Assume that the

cycles of some permutation having cycles given by ( j) are order from largest to smallest.

The n elements of the object set can be order in n!. different ways. However, for each k,

the jk cycles can be ordered in jk! different ways, and can begin in k different elements.

Thus, any permutation is represented ∏a
jk(g)
k ! times, so that there are a total of n!

∏
p
k=1 jk!k

jk

permutation with cycle structure given by ( j). This allows us to re-index over ( j) rather

than over the individual permutation obtaining the cycle structure as stated in the theorem.

The cycle index polynomial Z(S
(2)
p ) used for counting simple graph by Harry [5]. It is

Z(S
(2)
p ) =

1

p!
∑
( j)

p!

∏
p
k=1 jk!k

jk

[p/2]

∏
k=1

(akak−1
2k ) j2k

[p−1/2]

∏
k=0

a
k j2k+1

2k+1

[p/2]

∏
k=1

a
k(2 jk)
k ∏

1≤r<s≤p−1

a
gcd(r,s) jr js
lcm(r,s)

Here gcd(r,s) and lcm(r,s) are the least common multiple and greatest common deviser

or r and s, respectively. We consider edges between cycles of different lengths r and s,

with r < s. There are rs such edges, and each edge lies in an induced cycles of length

[r,s]. Each vertex must be mapped to itself,so that r and s must both divide the length of

this cycle,so that [r,s] is a lower bound on the length of such a cycle. On the other hand,

at [r,s] applications of α , such an edge is mapped to itself. Since each cycle has length

[r,s], there must be exactly (r,s) such cycles for each choice of r and s. Clearly, there are

jr js choices of r and s, so that the contribution for given values of r and s is a
gcd(r,s) jr js
lcm(r,s)

.

Also j denotes summation for 1 j1 +2 j2 + ...+n jn = n. From the product ∏
[p−1/2]
k=0 a

k j2k+1

2k+1

we see that, with one exception, j2k+1 = 0, since otherwise f2k+1 occurs. The exception

is that we may have 4 j1 = 1, since in this case the power of a1 is zero. From the product,

[p/2]

∏
k=1

ak
k(2

jk)(akak−1
2k ) j2k .

We see that j2k
= 0 if k is odd, since otherwise ak occurs. So for non zero terms we have

Ji = 0 unless i = 1 (in which case J1 = 1).
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Example 7.4. Write down the cycle index for the pair group Z(S
(2)
p ) .

Polya enumeration involves permutations ( j) of the set Xn = {1,2, ....n} jk denotes the

number of k-cycles in (j) for k = 1,2, .....n.
For example, if ( j) = (12)(34)(567) then j2 = 2, j3 = 1, j1 = j4 = j5 = j6 = j7 = 0.
Now, for 5 vertices, we obtain the following option for,

( j) =( j1, j2, j3, j4, j5).

(0,0,0,0,1)(1,0,0,1,0)

(0,1,1,0,0)(2,0,1,0,0)

(1,2,0,0,0)(3,1,0,0,0)

(5,0,0,0,0).

Then give the following summands.

For j = (0,0,0,0,1), we have

1

511!
(a5)

2(1)(1)(1) =
1

5
a2

5

For j = (1,0,0,1,0), we have

1

411!111!
(1)(a2a4)(1)(a4) =

1

4
a2a2

4.

For j = (0,1,1,0,0), we have

1

3!1!211!
(a3)(a1a0

2)(1)(a6) =
1

6
a1a3a6.

For j = (2,0,1,0,0), we have

1

311!122!
(a3)(1)(a1)(a

2
3) =

1

6
(a1)(a

3
3).

For j = (1,2,0,0,0), we have

1

111!222!
(1)(a1a0

2)
2(a2

2)(a
2
2) =

1

8
a2

1a4
2.

For j = (3,1,0,0,0), we have

1

133!211!
(1)(a1a0

2)(a
3
1)(a

3
2) =

1

12
a4

1a3
2.

For j = (5,0,0,0,0), we have

1

155!
(1)(1)(a10

1 )(1) =
1

120
a10

1 .

Therefor, the cycle index of the pair group Z(S
(2)
p ) is,

Z(S
(2)
p ) =

1

120
(a10

1 +10a4
1a3

2 +20a1a3
3 +15a2

1a4
2 +30a2a2

4 +20a1a3a6 +24a2
5).
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Summing and substituting (1+ zk) for ak yields.

Z(S2
5) =

1

5
(1+ z5)2 +

1

4
(1+ z2)(1+ z4)2 +

1

6
(1+ z)(1+ z3)(1+ z6)+

1

6
(1+ z)(1+ z3)3 +

1

8
(1+ z)2(1+ z2)4+

1

12
(1+ z)4(1+ z2)3 +

1

120
(1+ z)10.

By using Mathematica, we have

1+ z+2z2 +4z3 +6z4 +6z5 +6z6 +4z7 +2z8 + z9 + z10.

So there is one graph on five vertices with each of zero, one, nine, or ten edges, two graphs

with each of two or eight edges, for graph with each of 3 or 7 edges and 6 graphs with

each of 5,6, or 7 edges for a table of 34 graphs on 5 vertices.

7.5 Discussion and Conclusion

In section 6 and 7 of this thesis, we only talked about simple, labeled and unlabeled

graphs. We discussed a way for finding these graphs on three, four, and five vertices to use

PET and took a look at some theorem and examples. We concerned with the algorithmics

rather than the mathematics. For the application to counting the non-isomorphic types of

the n-vertex simple graphs, we can determine the number of non-isomorphic types having

each possible number of edges. Polya Enumeration Theorem, provides an elegant method

for determining the number of non-isomorphic graphs. Generally, the major task is to find

the cycle index for the relevant group, and that is the reason that we have armed ourself

with a small list of useful cycle indexes. The secondary task is to expand the expression

obtained by substituting for ai in the cycle index, and hence find the required coefficients.
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