Physics 212 Lecture 3 Today's Concepts: **Electric Flux and Field Lines** Gauss's Law

#### Introduce a new constant: $\varepsilon_0$



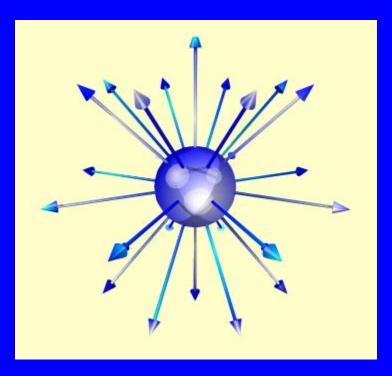
k = 9 x 10<sup>9</sup> N m<sup>2</sup> / C<sup>2</sup>  $\varepsilon_0$  = 8.85 x 10<sup>-12</sup> C<sup>2</sup> / N m<sup>2</sup>

$$ec{E} = rac{1}{4\piarepsilon_{
m o}} rac{q}{r^2} \hat{r}$$

# Plan for Today

- A little more about electric field lines
- Electric field lines and flux
  - An analogy
- Introduction to Gauss's Law
  - Gauss' Law will make it easy to calculate electric fields for some geometries.

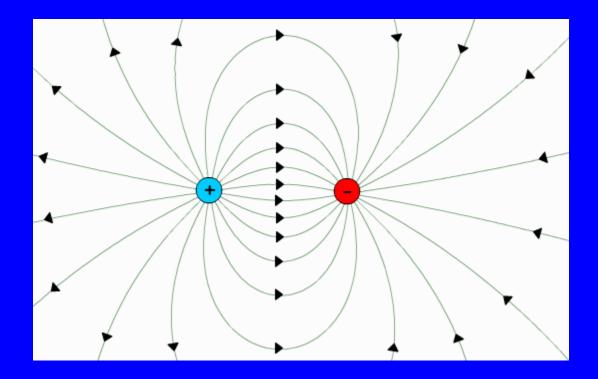
# **Electric Field Lines**



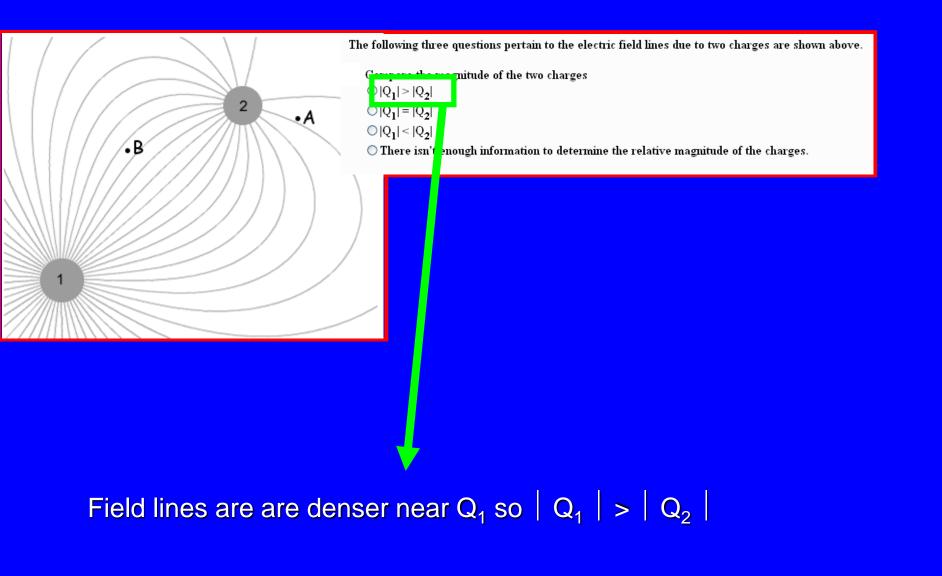
Direction & Density of Lines represent Direction & Magnitude of *E* 

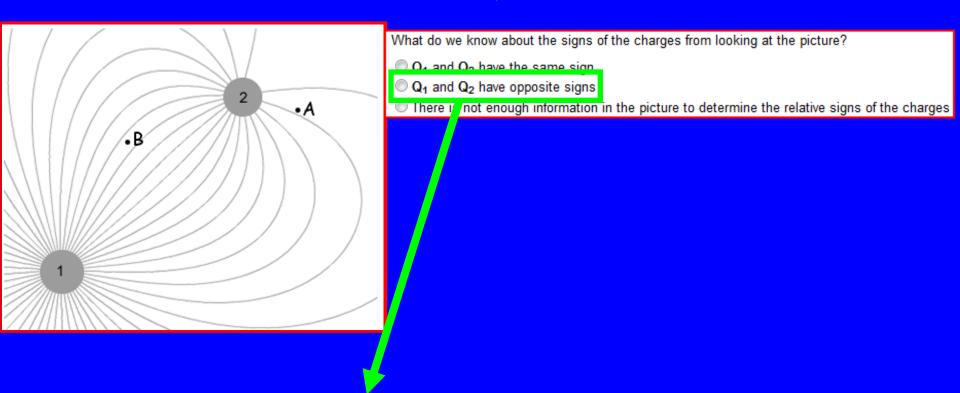
Point Charge: Direction is radial Density α 1/R<sup>2</sup>

# **Electric Field Lines**

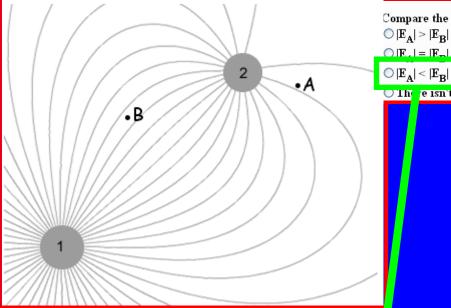


Dipole Charge Distribution: Direction & Density





The electric field lines connect the charges. A test charge will move towards one charge and away from the other. So charges 1 and 2 have opposite signs.



Compare the magnitude of the electric field at points A and B.

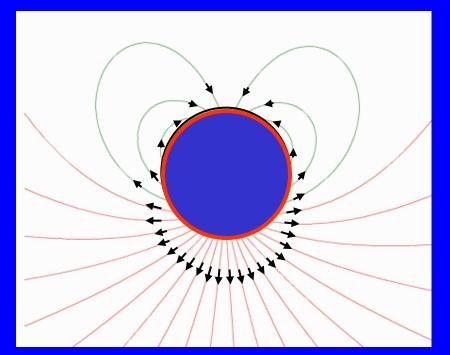
 $\bigcirc |\mathbf{E}_{\mathbf{A}}| > |\mathbf{E}_{\mathbf{B}}|$ 

 $\bigcirc$  |**E**\_{+}| = |**E**\_{-}|

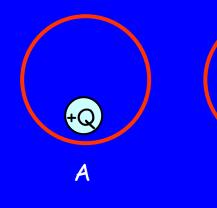
igcup The reasonable to the relative magnitude of the electric field at points A and B..

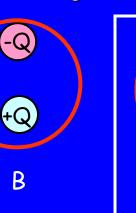
Density of lines is greater at B than at A. Therefore, magnitude of field at B is greater than at A.

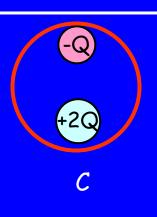
# **Point Charges**

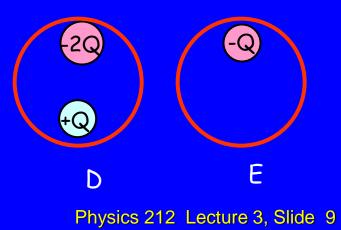


What charges are inside the red circle?



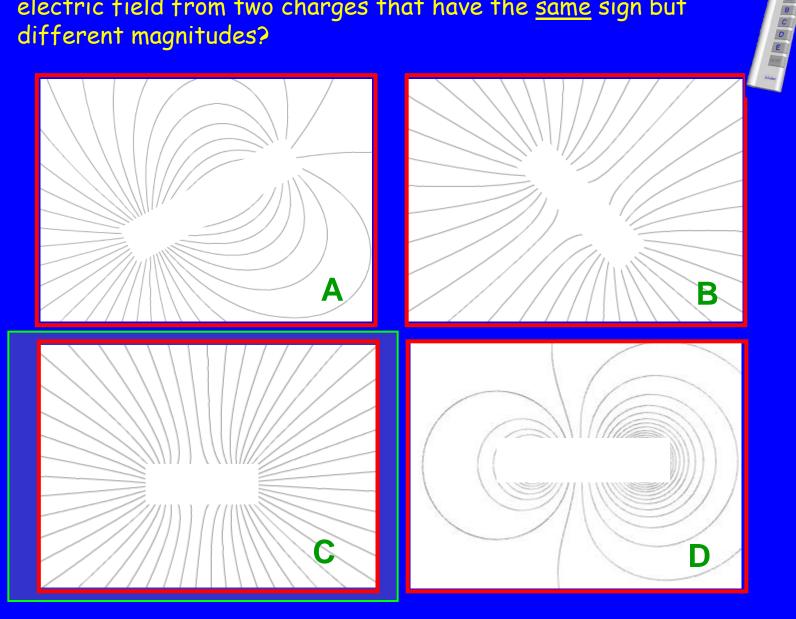




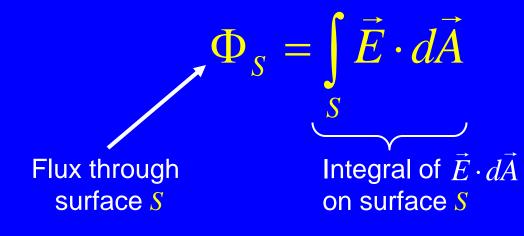


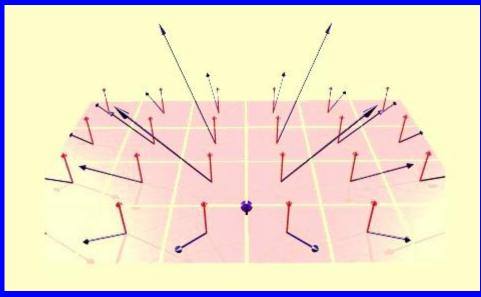


Which of the following field line pictures best represents the electric field from two charges that have the same sign but different magnitudes?



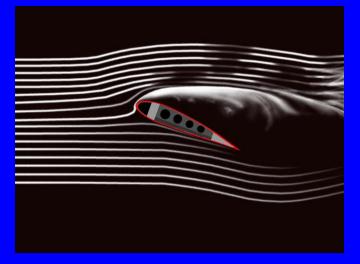
# Electric Flux "Counts Field Lines"





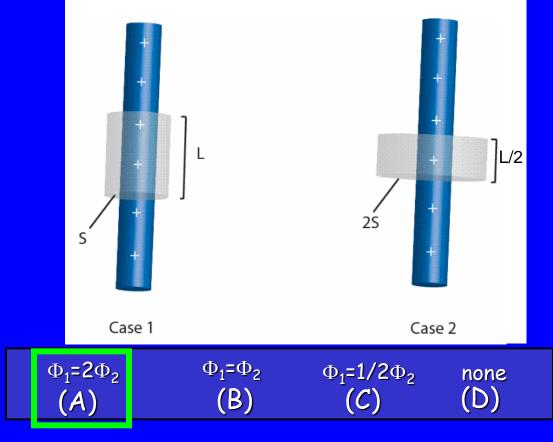
# Electric Field/Flux Analogy: Velocity Field/Flux

$$\Phi_{S} = \int \vec{v} \cdot d\vec{A} = flow rate$$
Flux through Integral of  $\vec{v} \cdot d\vec{A}$  on surface  $\vec{S}$ 





An infinitely long charged rod has uniform charge density  $\lambda$  and passes through a cylinder (gray). The cylinder in Case 2 has twice the radius and half the length compared with the cylinder in Case 1.



Definition of Flux:  $\Phi \equiv \int \vec{E} \cdot d\vec{A}$  *surface* 

E constant on barrel of cylinder E perpendicular to barrel surface (E parallel to dA)

$$\Rightarrow$$

 $2\pi\varepsilon_0 s$ 

 $\overline{A}_1 = (2\pi s)L$ 

Case

 $E_1$ 

26

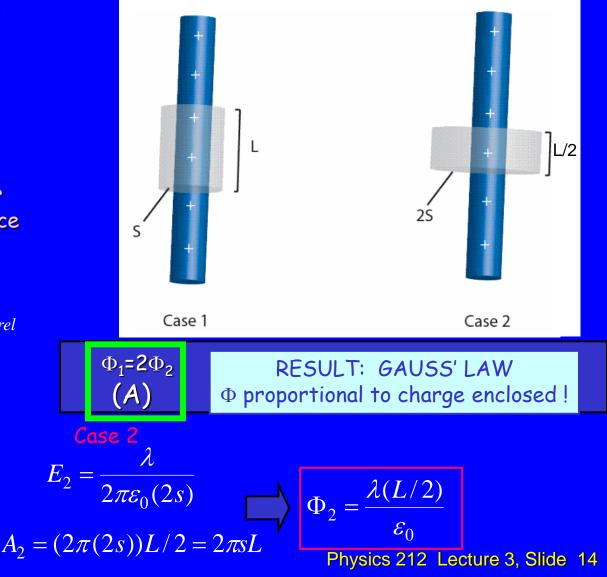
$$\Phi = E \int d\vec{A} = EA_{barre}$$

 $\Phi_1$ 

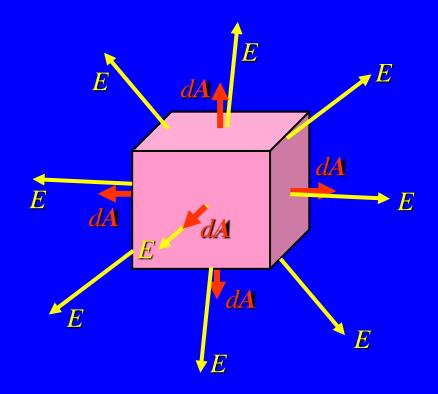
 $\lambda L$ 

 $\mathcal{E}_0$ 

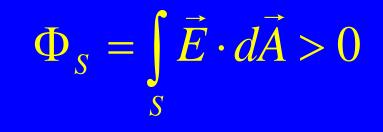
An infinitely long charged rod has uniform charge density I and passes through a cylinder (gray). The cylinder in Case 2 has twice the radius and half the length compared with the cylinder in Case 1.



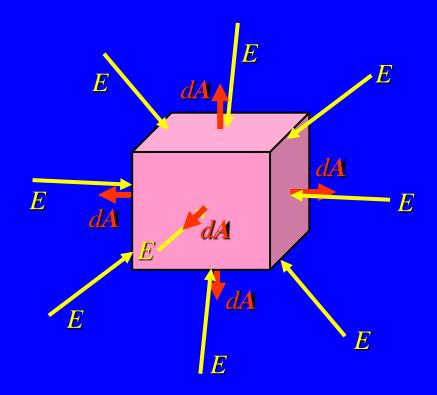
# **Direction Matters:**



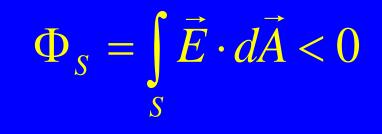
For a closed surface, A points outward

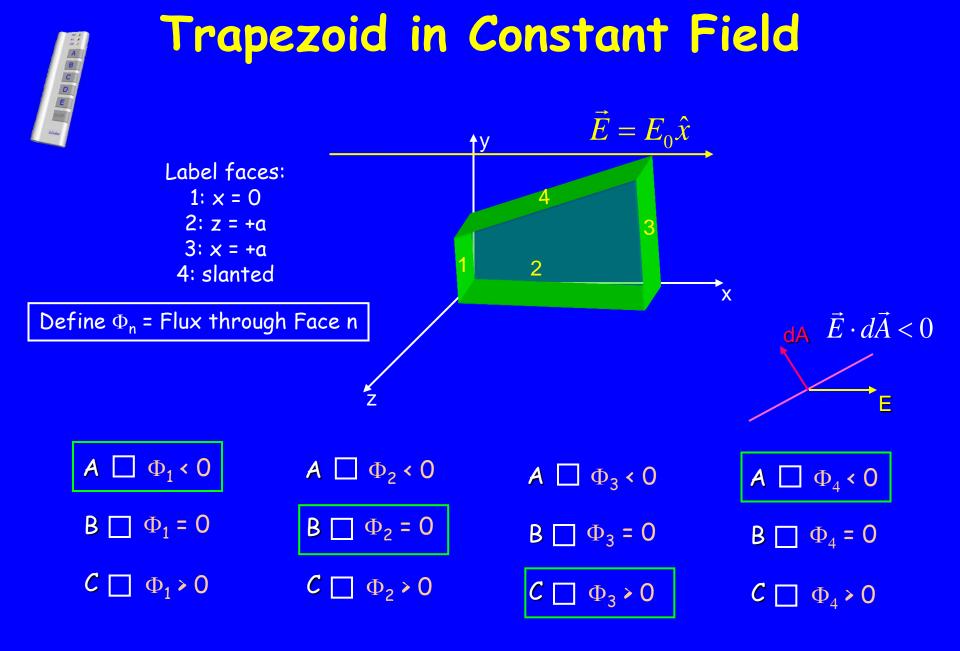


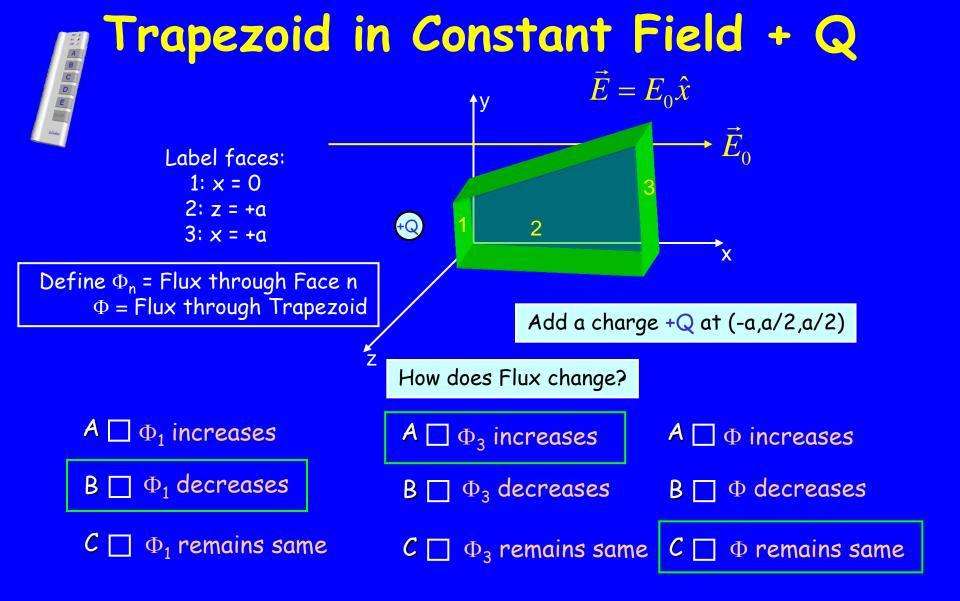
# **Direction Matters:**



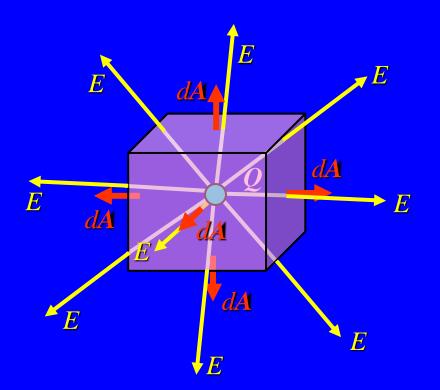
For a closed surface, A points outward



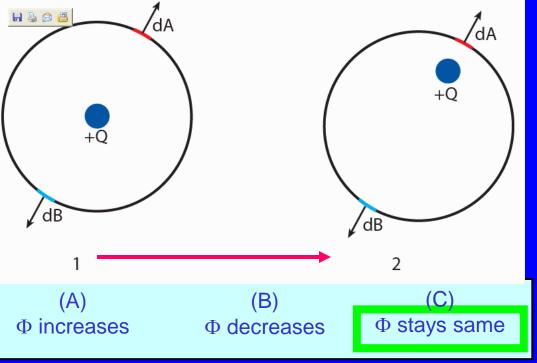








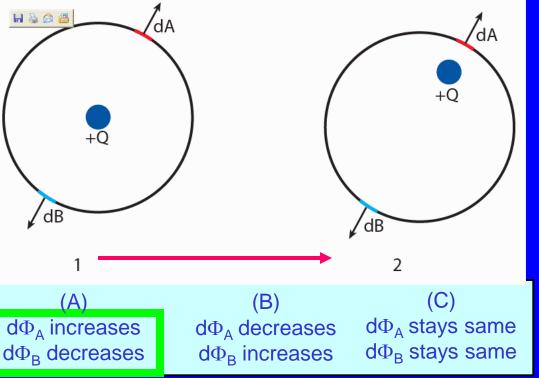
 $\Phi_{S} \equiv \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{o}}$ closed
surface



What happens to total flux through the sphere as we move Q ?

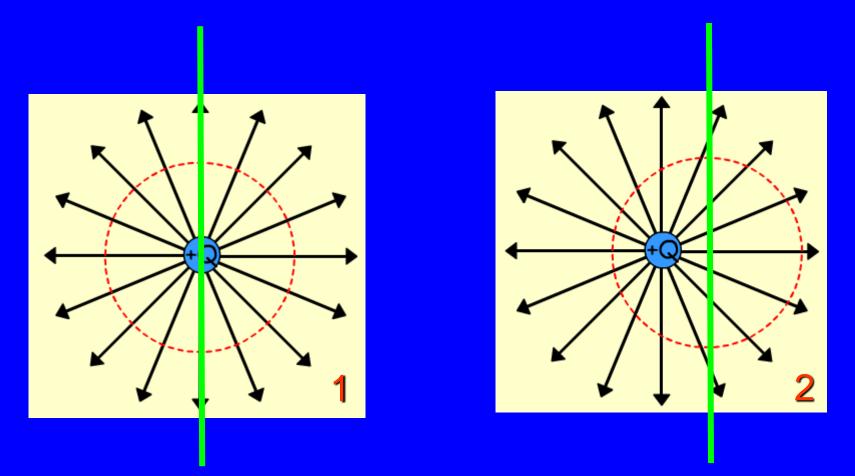
The same amount of charge is still enclosed by the sphere, so flux will not change.

### <u>Checkpoint</u>



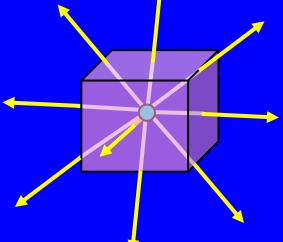


#### Think of it this way:



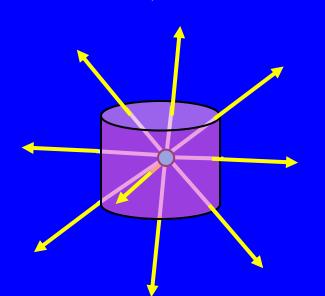
The total flux is the same in both cases (just the total number of lines) The flux through the right (left) hemisphere is smaller (bigger) for case 2. 45

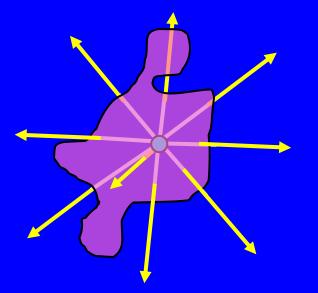
# Things to notice about Gauss's Law $\Phi_{S} \equiv \oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{Q_{enclosed}}$



 $\Phi_{S} \equiv \int \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_{o}}$   $closed \\ surface$ If  $Q_{enclosed}$  is the same, the flux has to be the same, which means that the

integral must yield the same result for any surface.





# Things to notice about Gauss's Law

$$\oint \vec{E} \cdot d\vec{A} = \frac{Q_{enclosed}}{\varepsilon_o}$$
closed
surface

In cases of high symmetry it may be possible to bring E outside the integral. In these cases we can solve Gauss Law for E

So - if we can figure out  $Q_{enclosed}$  and the area of the surface *A*, then we know *E* !

This is the topic of the next lecture...

- Prelecture 4 and Checkpoint 4 due Thursday
- Homework 2 due next Monday