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This chapter is our first on electromagnetic waves. We begin with a discussion of mechanical, 
transverse waves on a string to get you use to the concept of a wave equation and wave parameters 
such as wave length, wave number and frequency. We also discuss wave reflection and transmission 
from the boundary of between a light and heavy string. A tool we use in the wave reflection is the use 
of the complex representation for sinusoidal functions. As an example we introduce complex 
impedances as an alternative to the phaser method for AC circuits that you used for RLC circuits in 
Physics 212. The complex impedance technique allows one to analyze any AC circuit (such as this 
parallel RLC circuit) as a resister network but with complex numbers as the resistances. Recall in 
Physics 212 we only analyzed the series RLC circuit. We next obtain the wave equation for 
electromagnetic waves traveling in a vacuum.  This is remarkably simple using the differential form of 
the four Maxwell’s Eq. and we get the same wave equation that describes waves on a string as well 
as a correct prediction for the speed of light in terms of the “lab” bench constants: epsilon_0 and 
mu0. This is perhaps the greatest triumph of 19th century physics.  The wave equation is not 
sufficient to describe EM waves since there are solutions to the wave equation with fields that that 
violate some Maxwell’s equations. Hence only transverse waves where the electric and magnetic 
field are perpendicular to the direction of propagation and perpendicular to each other are possible 
and the amplitude of the magnetic field wave is tied to the amplitude of the electric field wave. We 
conclude by discussing the energy density of an electromagnetic wave, its Poynting vector, and 
momentum density and pressure. 
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To get us use to the concept of waves, we consider classical transverse waves on a string. The 
mathematics of mechanical waves and electromagnetic waves are very similar– they essentially 
obey the same wave equation. The wave is described by a wave function that gives some property of 
the wave as a function of time and space.  For waves on a string, stretched (and traveling) along the 
z-direction, this would be the transverse displacement or the displacement in the y or x direction.  For 
electromagnetic waves this would be the electric or magnetic field (or possibly the vector potential). 
For ideal waves (which satisfy the wave equation) the wave keeps the same shape as it travels.  For 
mechanical waves traveling along the z-axis this means that the transverse displacement is a 
function of z and time and in fact is a function of z - vt for waves traveling along the positive z axis 
where v is the “velocity of propagation”. For x-displacements we write the wave as x = f(x-vt). As 
shown in the figure, the f(x-vt) form means one can essentially take a snap shot of the wave at t=0 
and superimpose it on the wave displacement at a later time.  They have exactly the same shape. 
We now discuss the dynamics (e.g. the wave equation) that causes idealized wave motion for the 
case of a wave on a string. The idea is to look at the forces and acceleration of segment of the string 
from z to z + delta z. The mass of this segment is mu delta z where mu is the linear mass density or 
kg/m. This segment will accelerate due to a net force.  The net force is due to a force imbalance – the 
force is the due to the string tension (T), and the imbalance is due to the curvature or double 
derivative of the displacement.  This means the “displacement” component of the force on the left of 
the segment is unequal to force in the displacement direction on the  the right.  These force 
components are proportional to the tension times the sin of the angle but for “small” displacements, 
the sine is equal to the tangent which is the slope or partial of f wrt z. Setting the force to the mass 
times the acceleration (or double time derivative of the displacement) , and canceling the segment 
length (delta Z) we get a wave equation where the double space derivative of f is proportional to the 
double time derivative of f.
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What is the solution of the wave equation?  We show that for transverse waves 
traveling along the z-axis. That any function of time and space of the form f(z-vt) will 
solve the wave equation where v is the velocity of propagation. We show this by 
taking formal time and space derivatives of f(u) where u = z-vt using the chain rule. 
Any function of u will work as long as v^2 = T/mu or v = +/- sqrt(T/mu). The + 
solution means the waves will travel along the +z direction and the – solution means 
the waves travel along the –z direction. The critical point is any f(u) or wave shape 
will work and the shape is perfectly preserved as the wave travels. This is true of 
waves that obey an ideal wave equation.  Any additional terms involving t or z will 
create “dispersion” and cause the shape to change (usually spread-out) as a 
function of time. One important class of examples is wave packet dispersion in 
quantum mechanics. An E&M example is dispersion of a pulse traveling along a 
lossy cable. Electromagnetic waves traveling in a vacuum obey a perfect wave 
equation and have no dispersion.
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A very useful particular form for a wave is the “harmonic” wave where the function 
f(u) is a either a sine or cosine plus an offset called the phase. A harmonic wave is 
commonly described in terms of three constants.  The amplitude A multiplies the trig 
function and describes the maximum “size” of the displacement. The wave number 
(or later wave vector) multiplies z or the coordinate along the direction of 
propagation.  The (angular frequency) omega multiplies the time; and the phase 
delta is an offset to the trig function of the argument which is related when time is  
“zero-ed”. Our formulas are for a wave traveling along the positive z axis ; we could 
change the sign of the k or omega term to get waves traveling along the negative z 
axis.  Alternatively we could parameterize the wave in terms of the wavelength 
lambda (rather than k) and the period T (rather than omega).  I think of lambda as 
the “repeat” distance – if you shift your position from z to z + lambda you see the 
same wave shape.  Similarly the period T is the “repeat” time.
If we write the argument u = k z – omega t as u=k[z-(omega/k) t] we see we have a 
solution of the wave equation or a function of z – v t where v = omega/k – or v= 
lambda/T. We can write our “harmonic” traveling waves in terms of sines or cosines 
since one can get from sine to cosine by adding or subtracting pi/2 or 90 degrees.    
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We will frequently write sinusoidal functions such as traveling waves in “exponential” form. The 
exponential form is based on Euler’s identity which says exp(i phi) = cos(phi) + i sin(phi) where phi is 
a real variable and i is sqrt(-1) or the imaginary number.  It is easy to prove the identity using the 
(hopefully) well known Taylor expansion of an exponential which consists of the argument to the 
power n divided by n! ( or n factorial),  Odd powers of (i phi) will be imaginary and even powers of (i 
phi) will be real.  Both the real and imaginary parts will be alternating series in phi^n/n! with the real 
part being a even function and the imaginary part being an odd function.  The even and  odd 
functions of phi^n/n!  are the familiar cosine and sine functions of trigonometry.  One nice use of 
Euler’s identity is writing a complex number Z in “polar form” As shown in the figure we can plot the 
complex number Z = |Z|exp(i phi)  as a vector on an Argand diagram where the x coordinate  is the 
real part of the complex number Z and the y-coordinate is the imaginary part of the complex number 
Z.  If we expand | |Z|exp(i phi)  using Euler’s identity we see the modulus  |Z| is the length of the 
vector and phi is the angle of the vector with respect to the x-axis (sometimes called the phase). The 
principal advantage of the exponential form is based on the fact that the product of two exponentials 
is the exponential of the sum of their arguments.  This is also the basis of multiplying by adding 
logarithms on a slide rule. We write a traveling wave such as f = A cos(k z – omega t)  in exponential 
notation as ftilde=A exp( i k z – i omega t ). Here A can be a complex number which incorporates 
phase information as well as the magnitude of the amplitude.To go from ftilde to a meaningful 
transverse displacement we take the real part or f = Re{ ftilde}. After all the displacement for a 
transverse wave, or the electric field for an E&M wave is an intrinsically real function.  All classical 
theories are based on real numbers – only quantum theories are based on complex numbers.  We 
could switch from a cosine traveling wave to a sine traveling wave by taking the imaginary part of 
ftilde. We can choose to take the real or imaginary part of the “complex” wave function but will stick to 
taking the real part as an (arbitrary) convention. Under the “real” convention, one switch from cosine 
waves to sine waves by changing A to -i A  since Re {-i ftilde}= Re{ -i A exp(i k z – i omega t)}. We 
can write –i  in polar or “Eulerean form” as exp(-i pi/2) since the complex number –i has unit modulus 
and shows up at -90 degrees with respect to the real axis in an Argand plot. We then use slide-rule 
trick to write make the multiplication by (- i ) equivalent to adding a phase of – pi/2 to the argument.  
Essentially we have shown cos(k z –omega t - pi/2) = sin(k z – omega t) which can also be obtained 
using angular addition formulae but this illustrates some of them computational tricks of complex 
notation. 
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The use of complex impedances in analyzing passive AC circuits is another example of the 
advantages of complex notation of sinusoidal functions. The basic idea is that in an AC circuit the 
voltage across a passive circuit element such as a resistor, capacitor, or inductor has a magnitude 
proportional to the current flowing through the element but has a possibly different phase.  In the 
complex notation, we can accommodate both the change in magnitude and phase by writing -delta E-
tilde  = Z i-tilde where Z and the current i-tilde are both complex numbers. Here –delta E-tilde is the 
voltage change in the direction of the current.  We can get the Z expression for resistors, capacitors, 
or inductors by considering the basic physic relating the current to the voltage drop. The simplest 
case is a resistor where Ohm’s law tells us voltage drop= -delta E = i R and hence Z = R and here 
the impedance is real. A positive voltage drop, means the potential of the current entering the 
resistor is larger than the potential exiting the resister – ie the current flows from a high potential to a 
low potential. The voltage change is the opposite of the voltage drop.  Kirchoff’s law says the sum of 
all voltage changes when walks along a circuit loop in the direction of assumed current flow sums to 
zero. Another example is the voltage drop across an inductor. Here the physics is Faraday’s law 
which tells us the EMF across the inductor is given by the negative rate of change of the magnetic 
flux. The magnetic flux is the self inductance L times the current so the EMF is given by L times the 
rate of change of the current.  Lenz’s law provides the (–) sign so we know we the voltage change is 
also a voltage drop.  If we insert the complex form for the sinusoidally varying current we find  the 
voltage drop is i omega L times the complex current.  Hence Z = i omega L.  The voltage drop is thus 
90 degrees advanced in phase with respect to the current implying a purely imaginary impedance.  
Finally for capacitors, the physics is the current is rate of change of on a capacitor plates and the 
voltage drop is the charge over the capacitance.  We write the complex current through the capacitor 
as the rate of change of the complex charge Q.  The charge is the capacitance times the voltage drop 
which implies a complex impedance of Z= 1/(i omega C).  These are the same basic impedance 
rules you learned for “phasors” in series RLC circuits. The voltage drop across a resistor is in phase 
with the current; the voltage drop across an inductor is 90 degree phase ahead of the current’ and the 
voltage across an inductor in 90 degrees behind the phase of the current. For a series RLC circuit, 
we can write the impedance as the resistance + i times [omega L – 1/(omega C)].  At the resonant 
frequency where omega = 1/sqrt(LC), the impedance is just R and the inductive reactance cancels 
the capacitive reactance. In general the voltage will lead the current by a phase of Arctan{ [omega L 
– 1/(omega C)]/R}.
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The application of AC circuit laws you are probably most familiar with is the use of phasors in series 
RCL circuit.  If we apply the voltage changes using the complex impedance we have a single 
complex current i-tilde that flows through each element. The sum of the voltage changes around the 
complete circuit is zero ; we take a clockwise path from point A back to point A. The first change is E-
twiddle due to the AC generator, the remaining three changes are – i-twiddle Z where we use the 
complex impedances of the resistor, capacitor, and inductor. Hence the E-twiddle supplied by the 
generator equals the sum of the complex voltage drops.  I also show the complex voltage changes 
can be viewed on an Argand plot. The construction is essentially identical to the construction for the 
EMF used in a Physics 212 phasor diagram. You can easily find the amplitude of the EMF provided 
by the generator as well phase by which the generator EMF leads the current by solving the 
reactance triangle with a base of i-tilde R and a height of i-tilde [omega L – 1/(omega L)]. The critical 
realization is we essentially solve the AC circuit just like we would solve an equivalent  resistor 
network– the only difference is we use the complex impedance Z rather than the resistance R for 
each element.  We turn next to the parallel RLC circuit which is generally not done using phasor 
methods in Physics 212 but can easily be done using Kirchoff laws for “resistors” except we use 
complex impedance Z for the inductors and capacitors. Say we know the complex generator EMF ( 
E-tilde) and we want to know the complex current  i-tilde which flows through the generator.  We can 
think of the generator as driving a load with three “resistors” in parallel.  We can find the equivalent 
impedance of this load by borrowing the familiar parallel resistor law 1/R_eq = 1/R_1 + 1/R_2 + 
1/R_3 but modified to complex impedances to 1/Zeq = 1/Z_R + 1/Z_L+1/Z_C.  We thus have a fairly 
simple expression for the complex current as the product of the generator EMF [ 1/R + 1/(i L omega) 
+ (i omega C)]  We can compute the current amplitude by taking the modulus of the complex current.  
We can compute this as |i-tilde| = sqrt{(i-tilde)* (i-tilde)} which is essentially the sqrt of the real part 
squared + the imaginary part squared.  We can also find the phase by which the current leads the 
voltage by taking the arc tangent of the imaginary part divided by the real part.
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For AC circuits and for light or radio waves we are often interested in the time 
average of useful quantities.  After all EM light waves oscillate with essentially 
immeasurable frequencies. Often these systems involve sinusoidal oscillations and 
the standard time average is over a complete period.  I show three frequently used 
sinusoidal time averages which can either be obtained by doing the integral or 
thinking “graphically” about the time dependence.  We use these sinusoidal 
averages to calculate the time average power in an AC circuit where the current has 
a phase of delta_I and the EMF has a phase of delta_E.  We just expand the 
cosines using the angular additional formulae and use our sinusoidal averages.  We 
find that the average power expression involves the product of the emf and current 
amplitude and the cosine of the phase difference  between current and emf. In 
Physics 212 , this cosine was called the “power factor” .  A much simpler way uses 
the complex notation.  The time average is just ½ of the Real part of the complex 
conjugate of the emf times the current. We can use the same trick to time-average 
the Poynting vector for the case where both the electric and magnetic fields have 
sinusoidal time variation and can thus be written in complex form.  The “length” of 
the time average Poynting vector is called the intensity. It is also worth noting that 
the “time averaged” Poynting theorem becomes simpler since a time-averaged 
quantity has no remaining time dependence – all of the time was integrated out. 
Hence the time averaged Poynting theorem has no rate of change of the 
electromagnetic energy density. If the E, B, and J terms undergo sinusoidal 
oscillates (i.e. harmonic variation),  we can compute these time averages as ½ Re 
E*B and ½ Re E*J. We will frequently use these complex averaging techniques in 
Physics 436.
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Here is another demonstration of the power of the complex representation for traveling waves.  Here 
we add two harmonic traveling waves with different amplitudes and phases.  We write the sum of the 
two waves as A_3-tilde exp(I delta_3) exp(i kz –i omega t). Since we have explicitly written the 
phases as exp(i delta) we are thinking of A1, A2, and A3 as real numbers.  The amplitude of this 
wave is |A_3-tilde| which we compute by sqrt{(A1+A2)*(A1+A2)}. We distribute this product and note 
that A1*(A2) + A1(A2*)  = 2 Re{(A1*)A2} since the two terms being summed are complex conjugates 
of each other. We thus are able to work through the amplitude of the modulus of  A1 + A2 in terms of 
the moduli of 1 and 2 complex waves and and the cosine of the 1 and 2 phase difference. The same 
technique can be used to compute the r.m.s average displacement for the sum of the two harmonic 
waves. Since the actual time average of a sinusoidal varying displacement is zero – we use the r.m.s 
average which is the sqrt of the average of the square of the displacement. We can easily do the 
math by writing f(z,t) in complex form and then borrow the time average power method which 
involves the Real part of A*A.  We essentially did this math to calculate the A3 amplitude and can just 
steal the result. We find that the r.m.s. amplitude is just the A3 amplitude/ sqrt(2).  Although our r.m.s. 
average is just an average over time -- the result does not depend on the position z.  One can 
mistakenly get the impression we are averaging over z as well as time. In homework you will show 
using trig explicitly that “ a miracle occurs” and the time average eliminates all z dependence as well 
for the traveling string waves and the E&M waves that we will discuss shortly. Complex methods 
based on Euler’s identity is significantly easier than computing the phase , modulus, and  r.m.s. 
averages using trigonometry and calculus.  
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Here is a dry run of some of the techniques we will use to understand reflections of electromagnetic 
waves from a dielectric boundary.  We consider the reflections of a traveling wave from the junction 
between a light and heavy string which join at z=0.  The string in the region z<0 will satisfy a wave 
equation with a string velocity v1 = sqrt{T/mu_1} and the region z>0 will have a string velocity 
v2=sqrt{T/mu_2}. The two halves have the same string tension T but different mass densities per unit 
length. We think of the incident wave as having a transverse displacement of A_i exp( i k z – i omega 
t) If A_i is real, this means the incident wave is a cosine wave of the form A_i cos(kz-omega t).  
When this wave strikes the heavy-light junction at z = 0 there will be a reflected traveling wave 
moving along the negative z axis of the form A_r exp( -i k z –i omega t) as well as a single 
transmitted wave along the positive z axis of the form A_t exp (i k_2 z – i omega t).  Note all three 
waves are given the same time dependence of exp (-i omega t).  The left going transmitted wave has 
a negative k while the incident and transmitted wave have a positive k. The waves for z < 0 (the 
incident and reflected wave) are assigned the same magnitude |k_1| but the transmitted wave has 
different magnitude of |k_2|. They must have a different magnitude since v_1=omega/k_1 and v_2 = 
omega/k_2 and v1 ne v2. Assuming we know the incident amplitude and phase (or A_i), the two 
unknowns  are the complex amplitudes A_R and A_T. Two solve for these two unknowns we need 
two complex equations which we we will call boundary conditions since the follow from comparing 
the displacements on either side of the z=0 boundary. Our first BC is that the string is continuous 
across the boundary and thus we require that f(0-,t) = f(0+,t) where z=0- is a point just to the left of 
z=0, and 0+ is a point just to the right.  This “continuity” BC must be true for all times which implies 
A_I + A_R = A_T. The second equation that we need follows from “derivative continuity” across the 
boundary. Derivative discontinuity follows from F=ma applied to the point at z=0. This point has zero 
mass which implies the displacement-direction component of force just left of z=0 must equal the 
displacement component to the right to avoid infinite acceleration.  As we discussed in our derivation 
of the wave equation, the force component is essentially T (partial f/partial z) and since T is the same 
for z<0 as z>0, our F=ma argument concludes that the slope of the string (or derivative of the 
displacement with respect to z) is continuous as well as the displacement. We an manipulate the two 
continuity conditions to get an equation for A_R in terms of A_I. It is customary to solve for the 
reflection amplitude ratio r = A_R/A_I and rather than A_R. We get a simple expression for r in terms 
of K_1 and K_2 . Defining the transmission amplitude ratio as t = A_T/A_I, and using the continuity 
condition A_R + A_I = A_T, we can get a simple expression for t as well. We can also cast this 
expression in terms of velocity ratios rather than wave vector ratios. Sorry for double booking the t 
symbol as time and transmission coefficient!
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We note that r and t are just real functions of the wave velocities and are independent of frequencies.  
If v_2 < v_1  (such that the light string is on the left and the heavy string is on the right) , t will be 
positive and r will be negative. We can write any shape incident wave f_I(z, t=0) as a combination of 
harmonic waves using Fourier methods.  Since r and t are independent of frequency, the same 
harmonic components with the same relative amplitudes will be present in the transmitted and 
reflected waves.  Hence all three waves will have the same shape as the incident wave, apart from 
the velocity differences, but the reflected and transmitted waves will be smaller and the reflected 
wave will be inverted in displacement and in z as shown in the figure.  You will soon see the same 
mathematics used for the reflection and transmission coefficients for E&M waves striking dielectric 
boundaries (such as glass) and much later for the scattering of electron waves from potential barriers 
in quantum mechanics.
We next consider the case where the light and heavy strings are joined by a knot which we model as 
a point with mass m at z=0. We still have continuity (or A_I + A_R = A_T) but now we need to modify 
the derivative discontinuity condition which was predicated on the idea that the light and heavy 
strings were joined at a massless point. The modified expression follows from F=ma where F is the 
difference between partial f/partial z slopes on either side of the boundary times the tension, m is the 
mass of the point, and a is the double time derivative of f at z = 0. The continuity and discontinuity 
equations are easy to solve, except now the r (and t) coefficients are complex ratios which depend on 
the frequency omega as well as the heavy and light string wave numbers (k_1 and k_2) or string 
velocities (v1 and v2). The fact that the r coefficient has real and imaginary parts means the reflected 
wave will have a different phase for the case of a pure, harmonic incident wave.  The frequency 
dependence of r means that the reflected wave will not have the same shape as the incident wave. 
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Having discussed the use of BC and complex representation tools, we are ready to 
obtain and solve the wave equation for  E&M waves.  These are in some sense 
more complicated than transverse waves on a string since we need to describe all 
three components of the electric and magnetic field or two vectors rather than a 
simple scalar displacement. In this chapter we will discuss propagation in a vacuum 
and leave propagation in material (such as a transparent dielectric like glass) for 
next chapter. Since we are in vacuum there are is no rho which means the 
divergence of the E-field is zero (and, of course, the divergence of the B-field is 
always zero). Since there is no current density (J),  either the Ampere’s law piece of 
the magnetic curl vanishes and we have a simplified form where the curl of E is 
related to the rate of change of B and vice versa. Our approach is to solve for E and 
B using the two curl equations (iii and iv), and refine our answers by throwing out 
any bogus solutions where either the E and B field has a non-zero divergence. The 
first step is to decouple the E-field and B-field equations.  This is remarkably simple 
to do by taking the curl of (iii) and (iv).  The curl of a curl is the gradient of a 
divergence minus the Laplacean and of course the divergence piece vanishes.  We 
thus a wave equation for E and B which is identical to the wave equation for the 
transverse wave on a string.  The only difference is we have a separate wave 
equation for each of the six E,B components and the partial^2/partial z => the 
Laplacean.  This means the electromagnetic wave can propagate in any direction –
not just the string direction.  Again the physics gives the wave velocity.  In the case 
of the electromagnetic wave the wave velocity is 1/sqrt(epsilon_0 mu_0) which are 
the static electric and magnetic Coulomb and Biot-Savart constants.
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One can thus use the experimental values of Faraday’s constant and the Ampere 
constant that defines the magnetic field in terms of the current to predict the velocity 
of an E&M wave or the velocity of light! We get a prediction of very nearly 3 x 10^8 
m/s – a very fast but measurable velocity which is usually given the symbol c 
because of its paramount importance in physics.  Lets define the z – direction as 
direction of E&M wave propagation. Since we have three wave equations for each 
component we expect to find three, harmonic electric field solutions which could be 
E_x , E_y , E_z propto cos(k z-omega t). We think of E_x and E_y as transverse 
waves since fields in the x or y direction are transverse to the z-propagation 
direction just like for the transverse string waves we had x or y displacements which 
were transverse the string axis. E_z propto cos(k z –omega t) would be a 
longitudinal wave closer to a mechanical wave on a slinky where the displacement 
is along the slinky axis. But the E_z propto cos(k z –omega t)  has a non-zero 
divergence since the field component is in the direction where E_z varies at fixed 
time. This would imply a non-zero charge density according to Gauss’s law but we 
are in a vacuum with zero charge density.  Hence the longitudinal waves are bogus 
solutions.  The electric (and magnetic fields) must be pointed transverse to the 
propagation direction.
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Perhaps the most stunning prediction of the electromagnetic wave nature of light is 
that the speed of light is predicted to be 1/sqrt(epsilon_0 mu_0) where the Faraday 
and Ampere constant had well measured values. The speed of light had been 
measured with reasonable accuracy about 15 years before Maxwell’s 
electromagnetic theory by Hippolyte and Fizeau in the best 19th century tradition. A 
beam of light was reflected from a mirror on a mountain that had traveled 70 km. 
Light travels so fast that the 70 km round trip took only 230 microseconds.  In the 
19th century this is a small interval to measure accurately. H and F devised a 
mechanical chopper to measure the time interval. Basically the light from the source 
had to pass between the teeth of a rapidly rotating gear in order to be sent to the 
mountain.  The light reflected from the mountain mirror had to pass through the next 
gap between the teeth to be seen by an observer through a ½ silvered mirror.  The 
observer increased the gear rotation until he could first clearly see the reflected light 
and noted the rpm of the gear.  After a little simple algebra one obtains a reasonably 
accurate measurement of the speed of light that later was used to confirm Maxwell’s 
prediction. Now one could easily measure the speed of light using a modern 
oscilloscope and a phototube on a lab bench!
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Another class of bogus solutions are cases where the B field is not perpendicular to 
the E-field. We can show this violates the Maxwell displacement term in Ampere’s 
law. For example lets say the wave has an electrical field which is polarized in the x 
direction.  If we assume that there is a B_x propto f(k z –omega t), we find that the 
curl of B is not proportional to the time derivative of the E field and thus violates the 
Ampere-Maxwell law since the curl will be in y direction and the time derivative of E 
will lie in the x direction. We illustrate this with two cosine waves but we will get the 
violation with any phase choice. The only way we get consistency with the Ampere-
Maxwell law is to put the B field in the y direction so that it is transverse to both the 
E-field and the direction of propagation along the z axis, and both fields must have 
the same phase (in this case they are cosine waves) If we put B perpendicular to E, 
the Ampere-Maxwell law relates the magnetic and electric amplitudes.  The 
magnetic amplitude has to be the electric amplitude divided by the speed of light c.  
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The moral of the story is that the finding solutions to the electric or magnetic wave 
equations is not enough.  Once must check that the solutions satisfy all four 
Maxwell’s equations.  To see what this implies we replace the concept of a wave 
number k by a wave vector vec-k. The wave vector is (2 pi/lambda) times a unit 
vector k-hat which points in the direction of propagation. This allows you to 
generalize the argument of a cosine or sine harmonic wave from k z – omega t to 
vec k dot vec r – omega t where r = (x,y,z) is the displacement vector to the point 
where the field is observed. We also generalize the polarization direction (which by 
convention is taken to be the direction of the electrical field). The n-hat direction is 
the polarization direction and n-hat multiplies complex amplitude E_0. The condition 
that del dot E =0 means n-vec dot k-vec = 0 which implies that the polarization (n-
vec) is always perpendicular to the propagation vec k).  As shown in the slide it is 
very easy to find B using Faraday’s law and complex notation if we assume the 
same exponential time space dependence. The magnetic field at any point and time 
is the cross product of the propagation unit vector (k-hat) and the electric field 
divided by the speed of light.  This means E and B are always in phase, are always 
perpendicular and the B field is down from the E-field by a factor of 1/c.  The 
magnetic field is also perpendicular to k-vec since the vanishing of the B divergence 
implies k-vec dot vecB =0.
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Now that we know how to get the B-field from the E-field, we can write general expressions for the 
electric and magnetic energy densities u_e and u_m and the Poynting vector for the general 
harmonic wave.  We write the general electrical field in the form E-vec = n-hat E_0 exp(i vec k dot 
vec r – i omega t) where n-hat is the direction of polarization  and vec k is parallel to the direction of 
propagation. Any phase shift relative to the cosine wave can be accommodated  by putting an 
imaginary piece in the complex amplitude E_0. This is not really the most general harmonic wave but 
assumes that n-hat or polarization direction is constant so it is the most general plane polarized
harmonic wave. We begin by calculating the electric and magnetic energy density using the formulae 
we developed in the Conservation chapter. We are calculating the time averaged u_e and u_m. We 
write these time averages with averaging brackets < u_e> and we mean the time average over a 
complete cycle. Our result gives <u_e> and <u_m> in terms of |E_o|^2 which is the squared modulus 
of the complex electric amplitude E_0. The averaging over the cos^2 ( vec-k dot vec-r – omega t) is 
½ for any observer coordinate vec-r which you show in HW. Alternatively we can get the harmonic 
average using ½ Re{E*E} or ½ Re{B*B}.  We reach the interesting conclusion that the energy density 
stored in the electric fields of the E&M wave are always equal to the magnetic fields stored in the 
waves. We next compute the Poynting vector for the plane polarized E&M wave. We simplify the 
vector parts of E cross B which is n-hat cross (k-vec cross h-hat) using the BAC – CAB rule and get 
the simple answer that S points in the k-hat direction. We either use the average of cos^2 = ½ or 
better yet the complex algebra expression for the time average Poynting vector. We find that < vec-
S> is proportional to |E_0|^2 and involves the constant sqrt{epsilon_0/ mu_0}. This is 1/377 Ohms 
which you show in HW. We further note that <S> is a constant and thus has zero divergence. This 
agrees with the our previous statement of the time average Poynting theorem which relates the 
divergence of <S> to <E dot J> but there is no J in the vacuum so <E dot J>=0 as is our divergence.

Many of the same factors in <S>  show up in the total, time-averaged energy density formula and 
hence <vec-S> = c <u> k-hat.  The lower illustration explains why you can get this relation between 
vec-S and u by imagining a cylinder of light piercing a plane.  After an interval delta t, the light has 
moved a distance c delta t and the total energy that passed through the plane is the volume times the 
energy density where the volume is area*length = area*c delta t. The Poynting vector is the power 
per transverse area which is the energy / delta t divided by the area which gives us <S> = c < u> 
using a very simple argument.  The magnitude of the time average Poynting vector is called the 
intensity of the light which has a very memorable form of the square of the rms E divided by 377 
Ohms.
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We next compute the pressure of light by using the momentum density that we first encountered in the 
conservation chapter. We again consider a cylinder of light that has penetrated a plane after delta t seconds.  In 
the Conservation chapter we showed the momentum density was the epsilon_0 mu_0 times the Poynting vector 
and we now know epsilon_0 mu_0 = 1/c^2.  This allows us to write the total momentum contained in the 
cylinder as the momentum density times the volume which is area c delta t. If this energy is totally absorbed 
from the material bounded by the plane, the material will also absorb all of the momentum and will experience a 
force of delta vec-p/ delta t.  The pressure will be this force divided by the area of the cylinder we are 
considering.  If we write the Poynting vector as c<u> we reach the very interesting conclusion that the pressure 
equals the energy density. We obtained the same conclusion that pressure = energy density for an electrostatic 
conductor using a very different argument in Physics 435.  Of course if only 90% of the energy is absorbed in 
the material slab and the rest is transmitted the absorbed momentum , force, and pressure will also by down by 
a factor of 0.90.  If 100% of the energy is reflected from the slab the pressure on the slab will double since 
change of momentum due to the slab will be double the momentum of the beam – if the beam travels in the z-
hat direction  P_slab = (delta P - - delta P) z-hat = 2 delta P z-hat. 
We now show  a very simple way of getting the relationship between pressure and Poynting vector by 
considering the force over the power ratio absorbed by say electrons in the slab material. Assume the electrons 
have absorbed some energy and are traveling with a velocity vec-v. The absorbed power is vec-v dot force and 
the force is the both electric and magnetic in origin.  But the magnetic force (eg Lorentz force) is perpendicular 
to vec-v and does no work and creates no power. In calculating vec-F , you can see I am using just the Lorentz 
force and neglecting the electric force.  This is because the electric force which is proportional to the E-field 
changes direction every half cycle and thus averages to zero. Interestingly enough the Lorentz force is always 
in the direction of the charge times the k-hat vector since we are assuming v is parallel to E and thus changes 
direction every ½ period, but so does B.  The figure is drawn assuming q > 0.We thus obtain the result that 
Force/power is B/E which is 1/c for an E&M wave. Dividing the numerator and denominator by the area of the 
beam we get that the pressure / intensity is 1/c assuming complete absorption of the beam and hence the 
pressure of the beam is the intensity /c as long as the beam is totally absorbed with no reflection. As a practical 
matter, since c is large the pressure is small and hence you don’t get flung against a wall when you turn on a 
light in a dark room. Finally we give a quantum view of the light slab which consists of a density (eta) of photons 
each of which carries an energy of hbar omega.  We can determine the momentum carried by the photon using 
our expressions for the momentum density in terms of the Poynting vector and the Poynting vector in terms of 
the energy density. This means if an electromagnetic volume carries an energy of E , it also carries a 
momentum of E/c. Hence the momentum of each photon is hbar omega/c.  This allows us to think of the light 
beam as a density of photons which carries momentum and energy given by eta times the energy and 
momentum of each monochromatic photon. We will reach the same conclusion that p=E/c using relativity 
toward the end of the course where we think of the photon as a bullet-like projectile that travels at the speed of 
light. 
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Here is a summary of what we learned about E&M waves.  We give the forms of the 
electrical and magnetic fields. We concluded that the magnetic energy density 
equals the electric energy density. The total time averaged energy density is the 
same expression as the energy stored in an electric field.  We conclude with 
expressions for the Poynting vector, light pressure, and the momentum density.  
Most of these expressions were covered in Physics 212 so this is meant as a 
review.


