Homotopy and Homology Functors Commute with Direct Limits

Lemma 1 Let $\{X_{\alpha}, \phi_{\alpha\beta}\}$ be a directed system(on a poset (I, \leq)) of Hausdorff topological spaces. Suppose that $C \subset \lim_{\rightarrow} X_{\alpha}$ is compact. Then $C \subset i_{\alpha}(X_{\alpha})$ for some $\alpha \in I$, where $i_{\alpha}: X_{\alpha} \rightarrow \lim X_{\alpha}$ denotes the canonical map.

Proof Suppose not. Then we have a sequence of elements $\{x_n\}$ on $C \subset X = \lim_{r \to \infty} X_{\alpha}$ such that $x_n \in i_{\alpha_n}(X_{\alpha_n}) \setminus i_{\alpha_{n-1}}(X_{\alpha_{n-1}})$ and $\alpha_1 < \alpha_2 < \alpha_3 < \cdots$. This sequence is contained in a compact set C, and does not have a limit, thus compact and discrete, hence finite. Contradiction.

Lemma 2 Let *R* be a commutative ring and $Cplx_R$ be the category of chain complexes of *R*-modules. Let $\{C_{\alpha}, \phi_{\alpha\beta}^n\}$ be a directed system in $Cplx_R$. Then we have $\lim_{\alpha \to \infty} H_*(C_{\alpha}) = H_*(\lim_{\alpha \to \infty} C_{\alpha}).$

Proof We have a natural map $i_{\alpha}: C_{\alpha} \rightarrow \lim_{I \to C_{\alpha}} C_{\alpha}$. This induces a natural map $(i_{\alpha})_{*}: H_{*}(C_{\alpha}) \rightarrow H_{*}(\lim_{I \to C_{\alpha}} C_{\alpha})$. The system of such maps satisfies the direct system condition, so we have a natural map $i_{*}: \lim_{I \to T} H_{*}(C_{\alpha}) \rightarrow H_{*}(\lim_{I \to T} C_{\alpha})$. This map is clearly bijective.

Theorem 3 Let $\{X_{\alpha}, \phi_{\alpha\beta}\}$ be a directed system of Hausdorff topological spaces. Let H_* denote the singular homology functor on a commutative ring R. Then $H_*(\lim X_{\alpha}) = \lim H_*(X_{\alpha}).$

Proof By Lemma 1, every compact subset of $X = \lim_{\rightarrow} X_{\alpha}$ is contained in some $X_{\alpha'}$ so $\overline{C(X)} = \lim_{\rightarrow} C(X_{\alpha})$. By Lemma 2, this directed system induces an isomorphism on homology modules. Therefore $H_* \lim_{\rightarrow} = \lim_{\rightarrow} H_*$.

Theorem 4 Let $\{X_{\alpha}, \phi_{\alpha\beta}\}$ be a directed system of Hausdorff topological spaces. Let π_n denote the *n*th homotopy group functor. Then $\pi_n \lim_{\alpha \to \infty} (X_{\alpha}) = \lim_{\alpha \to \infty} \pi_n(X_{\alpha})$.

Proof By definition, an element in $\Omega_n(X)(n$ th loop space) is a map $S^n \to X$. Since S^n is compact, the image is contained in some X_α by Lemma 1. A homotopy is by definition a map $S^n \times I \to X^n$. Since $S^n \times I$ is also compact, its image is contained in some X_α by Lemma 1. Hence $\Omega_n(X) = \lim_{\to} \Omega_n(X_\alpha)$ and the homotopy relation on $\Omega_n(X)$ is the direct limit of the homotopy relations on $\Omega_n(X_\alpha)$. Therefore $\pi_n \lim = \lim_{\to} \pi_n$.