

iOS Security Overview

Mathieu Desmeules
Marc-André Labrie
Kim Bouchard-Foster

Prepared by:
LTI Informatique & Génie
1305, blvd. Lebourgneuf, office #130
Quebec, QC,
G2K 2E4
Canada

PWGSC contract number: W7701-103091
CSA: Martin Salois, Defence Scientist, 418-844-4000 ext 4677

The scientific or technical validity of this contract report is entirely the responsibility of the contractor and the contents do
not necessarily have the approval or endorsement of the Department of National Defence of Canada.

Defence Research and Development Canada – Valcartier
Contract Report
DRDC Valcartier CR 2013-378

2013

IMPORTANT INFORMATIVE STATEMENTS

The scientific or technical validity of this contract report is entirely the responsibility of the contractor and
the contents do not necessarily have the approval or endorsement of the Department of National Defence of
Canada.

© Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2013.

© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale,
2013.

Abstract ……..

The main objective of this document, as part of the contract W7701-103091, is to overview security
concerns, risks and major benefits about the Apple iOS mobile operating system within in the
iPhone, iPad, iPod Touch and Apple TV product. In order to produce this document, over 220
vulnerabilities available in the public domain have been collected for iOS version 1.0 to 6.1.3.
Several exploits, jailbreaks as well as security flaws inherent in the creation of iOS application have
been analyzed beginning at iOS version 4.0. Conclusively, Apple quick response time and ongoing
security improvement processes make this operating system secure.

Résumé ….....

This page intentionally left blank.

iOS Security Overview
March 2013

Mathieu Desmeules
Marc-André Labrie
Kim Bouchard-Foster

Mr. Martin Salois - DRDC-Valcartier
W7701-103091-AT3

Table of Contents

1 Introduction ...

1.1 Methodology ...

2 iOS Security Features ... 10

2.1 Code signing .. 10

2.2 Address space layout randomization .. 11

2.2.1 Kernel address space layout randomization ... 11

2.3 Data execution protection ... 11

2.4 File system encryption ... 12

2.5 Sandboxing .. 12

3 Security Research .. 15

3.1 Discovering vulnerabilities .. 15

3.1.1 Fuzz testing .. 15

3.1.2 Kernel debugging ... 15

3.1.3 Return oriented programming .. 16

3.2 Jailbreaking .. 17

3.2.1 Jailbreaking typical process ... 17

3.2.2 Old jailbreaks (pre A5 era) ... 17

3.2.3 Evasi0n, the most complex jailbreak ever ... 18

3.3 iOS Timeline ... 19

4 Public Vulnerabilities ... 20

4.1 Common vulnerability exposure ... 20

4.2 Vulnerability life cycle ... 22

4.2.1 Undisclosed vulnerabilities .. 22

4.2.2 Apple response time .. 23

5 Exploited Vulnerabilities .. 24

5.1 Boot chain .. 25

5.1.1 Pwnage (1.0 et 2.0) .. 25

5.1.2 Limera1n .. 26

5.2 File system access .. 26

5.2.1 Mobile backup exploit ... 26

5.2.2 SSH Ramdrive .. 28

5.3 Kernel space .. 28

5.3.1 iOS 4 and before .. 28

5.3.2 iOS 5 ... 29

5.3.3 iOS 6 ... 29

5.4 User land.. 30

5.4.1 libTiff Buffer Overflow ... 30

5.4.2 SMS Arrival DoS ... 31

5.4.3 Malformed CFF Vulnerability ... 31

5.4.4 SMS Spoofing ... 32

5.4.5 Racoon configuration file .. 32

5.4.6 Skype XSS ... 32

5.4.7 Nonuse/Misuse of DataProtection API ... 33

5.4.8 LinkedIn Unencrypted Data Transfert .. 34

5.4.9 GPS Position tracking ... 34

5.4.10 Jailbreak default SSH password ... 35

5.5 Passcode .. 37

5.5.1 Passcode brute force attack .. 37

5.5.2 Passcode bypass .. 38

6 Conclusion ... 40

References ... 41

Appendix A .. 43

List of Figures

Figure 1: Encryption key management ... 12
Figure 2: An application privilege without and with sandbox. .. 13
Figure 3: ROP example. ... 16
Figure 4: JailbreakMe 3.0 web page .. 18
Figure 5: iOS CVE grouped by type .. 21
Figure 6: iOS CVE grouped by year .. 22
Figure 7: Normal boot chain .. 25
Figure 8: DFU mode boot chain ... 25
Figure 9: Skype XSS message vulnerability .. 33
Figure 10: LinkedIn clear-text JSON weakness .. 34
Figure 11: iPhoneTrackerWin 1.5 iOS GPS data visualization tool .. 35
Figure 12: ‘ikee.a’ infected iOS device displaying a Rick Astley wallpaper 36
Figure 13: ‘ikee.b’ infected iOS device modified wallpaper .. 37

List of Tables

Table 1: iOS timeline associated with jailbreaking tool. ... 19
Table 2: CVE vulnerability categories. ... 20
Table 3: Exploit categories. ... 24
Table 4: Passcode brute force attack duration. .. 37

1 Introduction

As part of a modernization process of Canadian Forces, DRDC-Valcartier has the mandate to
evaluate the possibility of introducing mobile devices, such as Apple iOS devices (iPhone and
iPad), in the Defence’s networks. As a preliminary stage regarding security of such material, an
exhaustive study of iOS vulnerabilities must be realized.

The main objective of this document, as part of the contract W7701-103091, is to overview
security concerns, risks and major benefits about the Apple iOS mobile operating system.

This document reviews publicly available sources of information, surrounding the latest versions
of iOS, such as books, papers, blog posts, videos and presentation slides created by security
researchers. Official sources such as Common Vulnerabilities and Exposures (CVE) publications
and Apple developer center documents have been reviewed as well.

This document has been separated in four major parts. More precisely, the first part of the
document covers the security mechanisms implemented by Apple. The second part is about
security research and jailbreaking. Finally, public vulnerabilities statistics and lifecycle are
described as well as some of the most exploited vulnerabilities.

1.1 Methodology

The subject covered by this review is very large and a lot of information is available. The first
step to conduct the security overview has been to identify information sources allowing to
obtain valuable information. Various central databases have been searched for papers and
books including ACM, IRIS catalogue, Google Scholar, IBM research, Apple developer center.

The jailbreaking community is the most active in regard to iOS security research and several
pieces of information have been found by inspecting its member blogs, github and by
monitoring their twitter account. Mobile security conference videos and presentations have also
been collected this way.

Finally, the National Vulnerability Database (NVD) and Open Source Vulnerability Database
(OSVDB) databases have been searched thoroughly for any iOS related product (iPhone, iPad,

iPod touch), built in application (Safari, Mail, Twitter and Facebook) as well as most popular
third party applications such as Skype, Google Chrome, Gmail, etc. This security coverage is
focused on recent versions of iOS such as 5.0 and 6.0, but most important information regarding
older versions have also been collected.

2 iOS Security Features

When compared to general-purpose computer, it is well known that Apple products are quite
secure. Obviously, devices are never completely secure but Apple is always trying to innovate to
counter and deceive hackers. This section presents various security strategies and data
protection models developed by Apple.

2.1 Code signing

Signing an application allows a system to 1) identify who signed the application and 2) verify
that the application has not been modified since it was signed. All application code needs to be
signed by a trusted certificate from Apple private key or from a provisioning profile signed by
Apple. A provisioning profile, created from the iOS Provisioning Portal, is made of:

an app ID that identifies the set of apps it authorizes to run;

a list of devices your team wants to use for testing; and

a list of developers permitted to sign the app.

The provisioning profile allows a developer to test his application on a real device (preliminary
tests being done using a simulator available with the development environment) during the
development phase.

The iOS Hacker’s Handbook (1) offers a full explanation of the code signing strategy. Every
binaries and libraries must be signed; otherwise, the kernel will not authorize their execution.
Notice that this mechanism prevents an application to download and execute files from a
remote source. Apple has several requirements that the application has to fulfill before giving
the final approval for the AppStore. It verifies that the application executes as featured by the
developers and that it does not make use of any forbidden Application Programming Interface
(API). Thus, as mentioned in (1), Apple is acting as an antivirus, responsible to protect devices
from malwares and virus.

The code signing mechanism has been defeated for each version of iOS. Charlie Miller gave a
very detailed description of the code signing process and how he defeated it in iOS 5.0 during
the SysCan 2011 conference (2). iOS 6.0 code signing have also been defeated for the evasi0n
jailbreak (see 5.3.3.3).

2.2 Address space layout randomization

Since iOS 4.3, Apple introduced the Address Space Layout Randomization (ASLR) protection that
randomizes the positions of the executable, libraries, heap, etc. in memory. A highly detailed
description of iOS ASLR has been conducted by Stefan Esser in its presentations given at the
CanSecWest Vancouver 2012 (3) and HITB Sec Conf Malaysia 2011 (4). This mechanism increase
the level of difficulty a hacker is facing since the addresses they need to target is changing each
time an app is loaded. This technique reduces significantly the exploitation of memory
corruption vulnerabilities: a vulnerability that reveals memory usage shall then be found.

Jailbreakers always managed to get around this protection by using variations based on his
work. In iOS 5.0, Apple improved the ASLR by fixing the dynamic library loader vulnerability
previously exploited in iOS 4 (see 5.3.1).

2.2.1 Kernel address space layout randomization

In iOS 6.0, Apple introduced the Kernel Address Space Layout Randomization (KASLR) protection
that prevents an attacker from accessing kernel data at known fixed address. This also blocks
kernel exploitation needed by jailbreakers and was defeated in the evasi0n jailbreaks by
exploiting the ARM Exception Vector Info Leak vulnerability (see 5.3.3.2).

2.3 Data execution protection

Since 2004, the Linux kernel 2.6.8 includes the Data Execution Protection (DEP) security feature
to prevent code execution from non-executable memory region. The mechanism allows making
a difference between executable code and data. This prevents hackers from injecting code in
memory (via a buffer overflow for example) and use a vulnerability to execute this code.

This security feature cannot be turned off which means that entire payload must be written in
Return-Oriented Programming (ROP). More details about ROP can be found in Section 3.1.3.

This feature alone is not sufficient to protect the device from all forms of attack and that’s why
Apple introduced other mechanisms such as ASLR and sandboxing. This is also a reason why an
attacker will work toward defeating the ASLR using kernel space attack and then simply work
around the DEP.

2.4 File system encryption

iOS devices file system is protected by three main components: a block-level (CBC) AES
encryption when the device is turned off; the Data Protection API when it is turned on and the
backup encryption through iTunes. The Data Protection API allows application developers to
encrypt sensitive information using a key derived from the passcode. Application developers
need to configure it for each file in order to benefit from this security measure. The Figure 1
shows a simplified approach of encryptions key management.

Figure 1: Encryption key management

Researchers Jean-Baptise Bédrune and Jean Sigwald, from the Sogeti, gave an in-depth
presentation on how these data protections are implemented during the HITB Amsterdam 2011
(5). This presentation describes some very powerful exploits (brute forcing passcode, ramdisk
data manipulation, etc.) useful to forensic experts. They have developed a complete set of tools
specialized at the exploitation of data protection in iOS (see 5.2.2 for details about how these
exploits can be used to execute code).

2.5 Sandboxing

A “sandbox” is a mechanism that provides a defined set of resources within a controlled
environment to execute code (see Figure 2). A sandbox is not only a restriction based on the file

system, it is also a limitation related to the user data stored, system services and the hardware.
Notice that iOS applications can use system interfaces to access some files (ex: music library)
outside of the sandbox.

Thus, a sandbox is useful to limit the damage that a compromised, i.e. hijacked, application can
cause to the system.

Figure 2: An application privilege without and with sandbox.

Applications developers have an important role regarding the security of a device. A buffer
overflow caused by an inappropriate input validation can be exploited by a hacker. However,
the sandbox should prevent the application from using other applications or system resource.

On an iOS device, each application installed run within its own sandbox to prevent them from
accessing file system, forking or launching process or any kind of wrong doing with the operating
system. Application processes run under the reduced privilege “mobile” user and the sandbox is
created using the XNU kernel extension (called SeatBelt). If an attacker successfully achieve code
execution by defeating the DEP and the ASLR protections, the sandboxing add an extra layer of
security by preventing any illicit uses of the device.

Chapter 5 inside the iOS Hacker’s Handbook (1) offers a very detailed explication of the
sandboxing process implemented in iOS along with some interesting starting paths to sandbox
escaping.

Sandboxing is usually bypassed by exploiting “privilege escalation” vulnerability to executes
code as “root” user instead of “mobile”. Refer to the evasi0n (Section 5.3.3.3) for the latest
example of such exploit.

3 Security Research

3.1 Discovering vulnerabilities

Several papers and documents have been written on this subject and each offers different ideas
of proceeding to discover new vulnerabilities. This list contains some of the most well detailed
techniques of searching for vulnerabilities with some references explaining how to use it. This
document does not cover some more advanced methods or some others that are no longer
possible due to new security mechanisms added by Apple.

3.1.1 Fuzz testing

The fuzzing is a testing technique that consists of exploiting any means of supplying data to the
device (from SMS to kernel IOkit) by providing malformed and random input. The goal is to
trigger any crashes, memory leaks or exploitable conditions. Charlie Miller is well known for
having found several 0day exploits by using fuzzing (see 5.4.2 SMS Arrival DoS) and the process
of discovering user land vulnerabilities by fuzz testing is deeply covered in his presentation (6) as
well as in the iOS Hacker’s Handbook (1) chapter 6.

This technique is also widely used in kernel debugging for the same purpose that is to find
exploitable behavior in kernel extension. Xu Hao and Xiaobo Chen (7) have given a very detailed
presentation, which show, step-by-step, how several kernel extension vulnerabilities have been
discovered (see 5.3.1), and the process of discovering new vulnerabilities.

3.1.2 Kernel debugging

The kernel offers the strongest defense mechanisms against attackers successfully executing
code in user land and this is why it is so heavily targeted. Once again, the iOS Hacker’s Handbook
(1) (in chapter 9) covers this subject along with several techniques used to discover new
vulnerabilities. Most of the exploits rely on ROP technics (see 3.1.3) to put code in the kernel
space, which is executable.

The German security researcher Stefan Esser explains some advanced techniques about kernel
debugging, kernel stack buffer overflow and kernel patching that he used to jailbreak. He
produced a very detailed presentation about the subject for the Black Hat 2011 (8) event. These
methods of hacking the iOS kernel have been used recently in the iOS 6.1 jailbreak (evasi0n).

3.1.3 Return oriented programming

As mentioned before (see Section 2.3), data execution protection forces IOS exploits payload to
be fully written in return oriented programming. With ROP, there is no need to inject malicious
code: this technique chains together short instruction sequences (those located before a return
(RET) instruction) already present in a program. Of course, this implies that the attacker is able
to control the stack. For example, if an attacker needs to copy EAX value into ECX, he will search
for the MOV EAX,ECX; RET; in the code sequence. The address of MOV EAX,ECX; instruction
indicates the gadget's address, on which the attacker needs to branch. Figure 3 shows an
example of ROP.

Figure 3: ROP example.

The iOS Hacker’s Handbook (1) chapter 8 covers iOS ROP payload with some ARM basic and
Stephen Esser presentation One ROPe to bind them all (4) given for the HITB Sec Conf in 2011
explains method to break ASLR using it.

3.2 Jailbreaking

People jailbreak their iOS devices for many reasons. Some of them want an open platform for
which they can develop software, others like the idea of having total control over their device,
some require jailbreaks to install software like ultrasn0w to bypass cellular carrier locks, and
some use jailbreaks to pirate iPhone applications. Security researchers, on the other hand, are
normally motivated to jailbreak their own iOS devices for other reasons. The fact that normal
iPhones are locked down tightly and do not allow the execution of unsigned code is a big
roadblock when it comes to evaluating the security of a system, or trying to discover security
vulnerabilities within it.

3.2.1 Jailbreaking typical process

A jailbreak can either be partial (“tethered”) or complete (“untether”). Tethered jailbreaks
require an USB connection to boot using a jailbreaking tool (like redsn0w) in order to apply
kernel patches that deactivate security mechanisms each time the user shut down the device.
This kind of jailbreak is useful during the research and development of new exploits by experts.

To achieve untethered jailbreak, the tool needs to add persistence during boot to remove all
security features from the kernel. Here are the steps of a typical untethered jailbreak:

1. Inject code into the file system;

2. Trigger code execution at user land level (privilege escalation);

3. Kernel space exploits to patch security features; and

4. Install required exploit persistence.

3.2.2 Old jailbreaks (pre A5 era)

Currently all iOS versions have been jailbroken using several different exploits (see iOS
Timeline). The iPhone Wiki1 contains a very detailed grid for each iOS devices made so far with
the corresponding jailbreak tools. Figure 4 shows the JailbreakMe web page. Its visibility and
ease of installation made it one of the most famous jailbreak ever made.

1 http://theiphonewiki.com

Figure 4: JailbreakMe 3.0 web page

When Apple recently introduced the new A5 CPU architecture, it created an important
milestone invalidating old jailbreaking tools. Devices based on the A4 chip are vulnerable to an
important exploit described in the boot chain exploits section (5.1).

3.2.3 Evasi0n, the most complex jailbreak ever

In September 2012, Apple released iOS 6 with the iPhone 5. As Apple strengthens their iOS
platform, jailbreaks are getting increasingly complex and the iOS 6.0 to 6.1.2 jailbreak relies on
between 8 and 10 vulnerabilities (see Appendix A for more details concerning the “evasi0n”
jailbreak).

iOS 6.1.3, released on March 2013, breaks evasi0n jailbreak probably for the remaining of iOS 6
life since security experts behind jailbreaks plan to keep their secret vulnerabilities for the
upcoming iOS 7.

The iPhone Wiki (9) contains updated information about vulnerabilities exploited in evasi0n and
it has been reverse-engineer by Azimuth Security (10) and Accuvant Labs (11).

3.3 iOS Timeline

Table 1: iOS timeline associated with jailbreaking tool.

Date iOS
Version

Jailbreak Date Jailbreak Version Days
Waiting

June 29th, 2007 1.0 October 7th, 2007 JailbreakMe 1.0 100
July 11th, 2008 2.0 July 20th, 2008 PwnageTool 2.0 9
March 17th, 2009 3.0 June 19th, 2009 PwnageTool 3.0 94

July 3rd, 2009 Purplera1n 108
September 9th, 2009 3.1.x October 11th, 2009 Blackra1n 32

October 13th, 2009 PwnageTool 3.1.4 34
January 16th, 2010 Sn0wbreeze 129

February 2nd, 2010 3.1.3 May 2nd, 2010 Spirit 89
June 21st, 2010 4.0 Same day Updated Redsn0w 0
July 16th, 2010 4.0.1 August 1st, 2010 JailbreakMe 2.0 16
August 11th, 2010 4.0.2
September 8th, 2010 4.1 October 7th, 2010 Greenpois0n announced 29

October 9th, 2010 Limera1n 31
October 12th, 2010 Greenpois0n 34
October 20th, 2010 PwnageTool 4.1 42
November 1st,
2010

Redsn0w 0.9.6b2 54

November 13th,
2010

Sn0wbreeze 2.1 66

November 22nd, 2010 4.2.1 Same day Redsn0w 0.9.6b3 0
March 29th, 2011 4.3.1 April 3rd, 2011 Redsn0w 0.9.6rc9 4

PwnageTool 4.3 4
May 4th, 2011 4.3.3 May 6th, 2011 Redsn0w 0.9.6rc15 3

PwnageTool 4.3.3 3
July 16th, 2011 4.3.4 Same day PwnageTool 4.3.3.1 0

Redsn0w 0.9.8b3 0
October 12th, 2011 5.0 Same day Redsn0w 0.9.9b4 0
Nov-Dec 2011 5.0.1 January 2012 Absinthe
May 7th, 2012 5.1.1 May 25th, 2012 Absinthe 2.0 18
September 19th, 2012 6.x Febuary 4th, 2013 Evasi0n 1.0 138

Febuary 4th, 2013 Sn0wbreeze 2.9.8 0
Febuary 28th, 2013 6.1.3 No jailbreak available

4 Public Vulnerabilities

4.1 Common vulnerability exposure

As of January 2013, there are 228 public vulnerabilities (CVE) filled in the national vulnerability
database categorized in 8 different categories (12).

Table 2 presents the CVE categorization (the same is used by cvedetails.com) that will be used
throughout this review when exposing known vulnerabilities. It is important to note that these
categories are not mutually exclusive: vulnerability usually falls in multiple categories.

Table 2: CVE vulnerability categories.

Vulnerability Type Definition
Denial of Service (DoS) Possibility to make the device unavailable to its

intended uses.
Code Execution Gives an attacker a way to execute arbitrary

machine code that was not intended by the
software.

Overflow Possibility to put more data in a memory buffer
than the buffer can hold, or when a program
attempts to put data in a memory area outside
of the boundaries of the buffer.

Memory Corruption Gives an attacker a way to intentionally modify
the content of memory location due to
programming errors.

XSS (Cross-site scripting) Improper neutralization of input during web
page generation, which could lead to unintended
Javascript code execution by WebKit.

Bypass something A security mechanism can be bypassed.
Gain Information Improper protection of information, which could

lead in a way to access it.
Gain Privileges Capability to escalate privilege.

As show in Figure 5, the most common vulnerability types are Denial of Service, Code execution
and buffer overflow. Some of these vulnerabilities are found in third party applications such has
Google Chrome, Skype, etc.

Figure 5: iOS CVE grouped by type

125
115

90 89

33
28

16

4

0

20

40

60

80

100

120

140

DoS Code
Execution

Overflow Memory
corruption

Gain
Information

Bypass
something

XSS Gain
Privileges

Vulnerability by Type

Figure 6: iOS CVE grouped by year

4.2 Vulnerability life cycle

Apple fixes native iOS vulnerabilities when they release a new iOS version while third party
applications are corrected by issuing an application update through the AppStore. Many are
discovered by Apple (while reverse-engineering latest jailbreak, for example) and some are
reported by various organizations and users. Security Trackers associates CVE numbers and
security researchers having reported the vulnerability.

4.2.1 Undisclosed vulnerabilities

In order to develop new jailbreaks, security experts need to find new vulnerabilities each time
Apple release an update of iOS. Discovering a new vulnerability usually requires a jailbroken
device in order to be able to inspect, reverse engineer and fuzz-test core libraries and kernel
modules. That’s why they need to keep some exploits secret to ensure they can still get inside
the devices when a new version arrives. A study conducted by Symantec explains that most
platform hackers hold on their vulnerability as long as possible during an average of 10 months.

5

17

27
32

37

106

16

0

20

40

60

80

100

120

2007 2008 2009 2010 2011 2012 2013

iOS Vulnerabilities by Year

4.2.2 Apple response time

Like many other closed platforms, Apple operating systems react differently to vulnerabilities
than open platforms like Android. The vulnerabilities in iOS are usually corrected very quickly. It
takes only a few days before Apple fixes a vulnerability that took months to find by security
experts. Once vulnerability has been patched, Apple releases the information and issue a CVE
number.

These are the main reasons why there are so few iOS security experts and the community is very
tight. Information regarding a new vulnerability and a new exploit are always kept secret to
ensure that Apple won’t compromise the next jailbreaking effort.

5 Exploited Vulnerabilities

Some of the most famous exploits are described thoroughly in this section. Some are used by
jailbreaks to gain file system access or to bypass some security measures (see 2) and others are
composed of multiple underlying vulnerabilities. Several exploits are not covered in this
document (from older jailbreak, meaningfulness of the study). Table 2 presents the exploit
categories based on the purpose of the exploit. For each, vulnerability observed, the CVE
classification will also be provided.

Table 3: Exploit categories.

Vulnerability Type Definition
Boot chain Boot chain exploits usually target the ROM binary code in

order to abuse the chain of trust enforced by Apple.
File system access These exploits exist with the sole purpose of giving read

and/or write access to the file system of the device. They
can be used as an entry point for a jailbreak or forensic
activities.

Kernel space This category includes any exploit targeting the kernel,
usually to bypass a security feature of iOS such as code
signing, ASLR / KASLR and boot untethering. Note that
these exploits can be triggered from user land
applications.

User land Any exploits involving native application bundled with the
device or third party application (Facebook, Twitter,
Google, etc.). This kind of attack can be used to evade the
sandbox or execute code.

Passcode related This category includes any exploit and attack toward the
passcode protection protecting access to important parts
of the file system and sensitive information.

5.1 Boot chain

The boot chain developed by Apple, shown in Figure 7, is a chain of trust where each
component verifies the signature of the previous component. The BootROM is the initial binary
code executed; it calls the low-level boot loader (LLB). The LLB then calls iBoot, a high-level boot
loader (similar to OSX boot loader and Linux GRUB) that loads the specific kernel.

Figure 7: Normal boot chain

Figure 8 show the DFU mode used to restore a signed firmware. This low-level mechanism
protects the device from any software problem breaking the normal boot (it also increases
confidence in using jailbreaking tools for end users). The user can enter DFU mode by using this
special buttons sequence:

1. Plug the device in a computer using USB cable;

2. Turn off the device;

3. Hold the Power button for 3 seconds;

4. Hold the Home button without releasing the Power button for 10 seconds;

5. Release the Power button without releasing the Home button;

6. Keep holding the Home button until iTunes (or any other tools) alert.

Figure 8: DFU mode boot chain

5.1.1 Pwnage (1.0 et 2.0)

The first version of this vulnerability exists in early devices (iPhone 1 and iPod Touch 1). This
exploit uses a boot sequence vulnerability (bad chain of trust) where Apple assumes that if data
is in the “NOR” (flash chip the application processor boots from), it is secure.

iBoot signature checks everything it runs, but since the low-level boot loader (LLB) does not
check iBoot and the boot ROM does not check LLB, once the device is booted in secure
environment, Apple supposes that everything is secure.

In the next device generation (iPhone 3G), Apple modified the chain of trust so that images
written to NOR could verify one other. LLB would verify iBoot, making the exploit unusable, but
the boot rom also had vulnerabilities (exploited in Pwnage 2.0).

 The iPhoneWiki (9) contains a very detailed description of these exploits.

5.1.2 Limera1n

iOS version All
Related CVE -
Related Jailbreak Multiple

Presents in many devices (iPhone 3G, 3GS, 4 (GSM), iPad 1G, iPod touch 3G and 4G, Apple TV
2G), this exploit permits untethered jailbreak. It has been released mainly to pressure another
hacker team into not releasing the SHAtter (another very similar boot rom exploit) so they could
save it for the next iOS release, since Apple had already found Limera1n’s vulnerability through
internal testing.

Limera1n uses a null pointer dereference vulnerability (called usb_control_msg(0x21, 2), a
vulnerability giving access to the first 0x2000 bytes in iBoot) to load two different payloads at
two different stages (in DFU and then in recovery mode). Even though the main boot rom
exploit is undisclosed, it is known to use an exploit (same as Pwnage, see 5.1.1) where a
segment overflow allows bypassing signature checks on the LLB. Since it is hardware related,
this vulnerability is not “fixable” through iOS update, which means that affected devices will
have a tether jailbreak forever.

5.2 File system access

5.2.1 Mobile backup exploit

The MobileBackup service is used to create file system backup and to restore them directly from
the device. The service is trigger by Apple iTunes software or within the device using online
backup (iCloud). Various MobileBackup exploits have been developed by jailbreakers in order to
achieve code injection or to alter files without having privilege. Directories that can be handled
by MobileBackup are separated by “domain”.

Library/Preferences/SystemConfiguration/../../../../../var/db/launchd.db/com.apple.launchd/overrides.
plist

Finally, security experts have developed the “libiMobileDevice” tool that offers a complete
MobileBackup interface (and lots of features). It has been integrated into several open source
projects involving iPhone on Linux and OS X.

5.2.1.1 Mobile backup Copy

iOS version 1.0 to 3.2.1 / 4.0
Related CVE -
Related Jailbreak Spirit

This vulnerability is probably one of the simplest ever discovered. It implies that when restoring
files to relative path (i.e. containing “..”) using MobileBackup service (see 5.2.1), you get to the
previous folder. Of course, Apple checks for this and ensure there is no relative path when
copying files trough the restore process. For unknown reasons, this check is omitted for some
particular paths/files. The Spirit jailbreak, for example, exploits this vulnerability by restoring to
this path:

It can therefore write almost anywhere on the device file system. This is comparable to the
symbolic link vulnerability.

5.2.1.2 Symbolic Link Vulnerability

iOS version 1.0 to 6.1.2
Related CVE CVE-2013-0979
Related Jailbreak Evasi0n

This vulnerability is somehow related and almost as simple as the mobile backup copy
vulnerability (see 5.2.1.1). It works by using the same MobileBackup service and getting access
to the file system through a very basic trick.

By creating and using a symbolic link in the “MediaDomain” directory pointing to the root of the
file system, for example, evasi0n’s jailbreak gets access to anywhere it wants in the file system.
This is pretty simple, and has been used extensively to achieve evasi0n’s jailbreak code injection.

5.2.2 SSH Ramdrive

This “tool” supports all devices up to the A4 processor, and is impossible to fix through updates
(independent of iOS version). It uses a boot rom exploit (both Pwnage and Limera1n, see 5.1) to
gain root access in DFU mode, loads and boot a ram drive and then launch an SSH server. This
gives the user full shell access to the device, including access to both file system partitions.

This exploit is particularly interesting to transfer information back and forth with the device. It is
possible to load different tools at will by uploading files trough SFTP and executing them
through an SSH client. It is a very powerful forensics tool, giving access - including but not
exclusively – to all the users databases (contacts, agenda, messages sent/received, phone
history, etc.), and everything that is stored on the device. Note that the databases are in SQlite
format, which is widespread among Apple products and therefore easy to process.

5.3 Kernel space

5.3.1 iOS 4 and before

5.3.1.1 IOSurfaceRoot integer overflow

iOS version 4.0 to 4.0.1
Related CVE CVE-2010-2973
Related Jailbreak JailbreakMe 2.0 (Star)

This vulnerability has been used in the JailbreakMe 2.0 tools in order to create the privilege
escalation stage by using memcpy() function to overwrite (integer overflow) some important
structures of the Kernel and deactivate protections. The exploit could be initiated through the
browser’s process (MobileSafari) which runs as “mobile” user. The user simply needs to
navigates a web page and slides the JailbreakMe slider. A very detailed description and exploit
source code has been presented by Chen Xiaobo and Xu Hao (7).

5.3.1.2 IOMobileFrameBuffer Type conversion issue

iOS version 4.2.9 to 4.3.3
Related CVE CVE-2011-0227
Related Jailbreak JailbreakMe 3.0 (Saffron)

Before the release of iOS 4.3.3, the kernel would allow bad type conversion of
IOMobileFrameBuffer object. The user can control a “vtable” function pointer in order to
achieve code execution. This vulnerability has been used to apply several patches to the kernel
by using the ROP technic.

Like for the IOSurface vulnerability, Chen Xiaobo and Xu Hao (7) have documented a detailed
process of the exploit.

5.3.2 iOS 5

5.3.2.1 HFS buffer overflow

iOS version 3.0 to 5.0.1
Related CVE CVE-2010-0642
Related Jailbreak Absynthe

This vulnerability has been found by using the fuzz-testing method (see 3.1.1) over the HFS
btree parser on iOS 5. Using a crafted catalog file in an HFS disk image, remote attackers could
execute arbitrary code or cause a denial of service (device crash). It has been exploited to create
the kernel space part of the Absynthe jailbreak. Like the Racoon vulnerability, the author has
disclosed very detailed information about the process involved for his exploit (see 5.4.5).

5.3.3 iOS 6

5.3.3.1 IOUSBDeviceFamily Vulnerability

iOS version 6.0 to 6.1.3
Related CVE CVE-2013-0981
Related Jailbreak Evasi0n

Used in evasi0n, this vulnerability allows a user space controlled application to execute arbitrary
code through a malformed pipe object pointer. Since the object is not validated (as long as it is
not null), the application can call IOUSBDeviceInterface via USB (com.apple.security.device.usb).
This vulnerability has been fixed in iOS 6.1.3

_kMISValidationOptionValidateSignatureOnly
(_kCFUserNotificationTokenKey from CoreFoundation)

_kMISValidationOptionExpectedHash (_kCFUserNotificationTimeoutKey from CoreFoundation)

_MISValidateSignature (_CFEqual from CoreFoundation)

5.3.3.2 ARM Exception Vector Info Leak

iOS version 6.0 to 6.1.2
Related CVE CVE-2013-0978
Related Jailbreak Evasi0n

Used to bypass Kernel Address Space Layout Randomization (KASLR), this vulnerability uses the
ARM vector table residing at a fixed address. By calling the instruction “Data Abort” in this
vector table, evasi0n could catch the exception thrown and grab the kernel base address (since
the exception was called from IOUSBDeviceFamily). This effectively renders the iOS 6 KASLR
useless, even if the kernel base address position is randomized to 29 possibilities.

5.3.3.3 AMFID code signing evasion

iOS version 1.0 to 6.1.2
Related CVE CVE-2013-0977
Related Jailbreak Evasi0n

This widespread method for evading code signing has been used by developers who wanted to
avoid certification while being able to deploy on test devices. It redefines the code verification
functions called by the kernel to always return “ok”. Using an empty library (which only
redefines the signed code verification function) and lazy bindings, the entire code signing
function is rendered useless

 Evasi0n redefines these functions in its “amfi.dylib” file:

5.4 User land

5.4.1 libTiff Buffer Overflow

iOS version 1.0 to 1.1.1

Related CVE CVE-2006-3459 / 3461
Related Jailbreak JailbreakMe 1.0

One of the first publicly known and exploited vulnerability is the libTiff library (version 3.4 to
3.8.1), present in MobileMail and MobileSafari. Opening a maliciously crafted file (TIFF image)
could lead to an application crash or arbitrary code execution (privilege escalation). This exploit
is available in MetaSploit 3.7 (free penetration testing tool).

For more details, see the complete review of this vulnerability and its exploitations in the
document iPhone Security Analysis, 2008 (13).

5.4.2 SMS Arrival DoS

iOS version 1.0 to 3.0
Related CVE CVE-2008-2815
Related Jailbreak JailbreakMe 1.0

This vulnerability has been discovered through fuzz testing by a security expert during the early
days of iOS by using a custom SMS generator. The problem comes from the fact that the
“CommCenter” service, responsible for handling SMS in iOS, runs under super user privilege.
The exploit generates a null pointer dereference allowing code execution with escalated
privilege. The user can have his iOS device hacked by receiving a single SMS message.

5.4.3 Malformed CFF Vulnerability

iOS version 1.0 to 4.0.1
Related CVE CVE-2010-1797
Related Jailbreak JailbreakMe 2.0

Similarly to the libTiff vulnerability (see 5.4.1), the Malformed CFF Vulnerability can be exploited
to achieve code execution simply by opening a custom crafted PDF document that renders a
specific font. It has a very high potential of malware and the author of the exploit publicly
released the patch for this vulnerability along with its JailbreakMe 2.0 software (installing the
jailbreak actually patch the vulnerability). By using the ROP method (see 3.1.3), the jailbreak
could inject code and patch the kernel.

racoon –f racoon-exploit.conf

<iframe id=m src=http:example.com/r onload=eval(/j.*/(m.location)[0])>

5.4.4 SMS Spoofing

iOS version 1.0 to 5.1.1
Related CVE CVE-2012-3744
Related Jailbreak -

SMS spoofing has been around for a long time and it is not related to iOS only. The user data
header section (UDH) of SMS messages can be forged by using simple tools (ex: ‘sendrawpdu’
python tool for iOS 5). iOS does not validate the message origin by verifying the “reply-to” field
(which is why this weakness has been included in this document as an iOS vulnerability).
Replying to such crafted messages could lead to the divulgation of personal information to a
malicious person/organisation.

5.4.5 Racoon configuration file

iOS version 1.0
Related CVE CVE-
Related Jailbreak Absynthe

Racoon is an open source IPsec daemon that isenabled by default on iOS and used when the
user setup an IPsec connection. By fuzz-testing (see 3.1.1) security experts discovered a string
format overflow in its configuration file, similar to another one found in the same library in
2001. The Corona is based on this exploit as the jailbreak is applied on every boot by launching
the daemon with this command:

The format string is used to copy and execute more than 600k of ROP payload instructions and
then it proceeds to trigger a Kernel exploit (see 5.3.2.1). Very detailed explanation of this exploit
is available through its author's blog (14) and he also commented it at the WWJC 2012
conference (15).

5.4.6 Skype XSS

Discovered in 2011, this user land vulnerability is present in Skype 3.0.1 and has been fixed with
iOS 3.5.84. It allows an attacker to use javascript cross-scripting to access various sandboxed
data such has the address book, the user pictures and other documents.

The exploit use the following HTML / Javascript as the attacker “Full Name”.

/var/mobile/Library/AddressBook/AddressBook.sqlitedb

The ‘WebKit’ engine will execute this code when the target tries to display the full name of the
attacker upon receiving a message, shown in Figure 9.

Figure 9: Skype XSS message vulnerability

Example of a file that can be accessed:

5.4.7 Nonuse/Misuse of DataProtection API

When the user locks the device, the DataProtection API enforces file system encryption for
sensitive files on a “per application” basis (see 2.4). The problem lies in the fact that this
mechanism needs to be activated by the application developer. This weakness has been
observed in major applications (Facebook, Dropbox, etc.) and could leak very sensitive data
through various ways such has:

File system access (ex: Backup, SSH Ramdrive, etc.);

AFC services (ex: iTunes, iExplorer, DiskAid, dock usb, etc.);

MobileBackup services (ex: iTunes, libiMobileBackup).

For example, the Facebook application in 2012 did not encrypt information such as:

com.Facebook.Facebook.plist (important configuration file);

Complete “oAuth” keys;

The whole image cache (image of friends, photos of the user, etc.).

/private/var/root/Library/Caches/locationd/consolidated.db

5.4.8 LinkedIn Unencrypted Data Transfert

Reported in June 2012 by an independent security firm and fixed shortly after, LinkedIn
application transferred private calendar events to its servers by using JSON format. The
vulnerability in this case was in fact the absence of security as the information was not
encrypted by any mean (not even HTTPS) like shown in the IMAGEX, exposing the user's private
information to “man in the middle” attacks. Surprisingly, using unencrypted JSON format seems
to be common has it has been noted in other popular applications as well.

Figure 10: LinkedIn clear-text JSON weakness

5.4.9 GPS Position tracking

Many of the iPhone's features required GPS data to be cached for a while to operate correctly
(the compass, Map application, etc.). Affected iOS versions silently recorded latitude, longitude
and timestamp in a SQLite database saved at this location:

Attackers and forensic investigators (having full file system access or an unencrypted iTunes
backup) could retrieve this file easily and retrace the user's itinerary trough all GPS coordinates
recorded. Apple mitigated this issue by reducing the time frame of saved GPS coordinates to
one week. It also stopped collecting GPS data when it is not required.

Tools have been created to easily visualize the latitude and longitude over a map as shown in
Figure 11.

Figure 11: iPhoneTrackerWin 1.5 iOS GPS data visualization tool

5.4.10 Jailbreak default SSH password

Jailbroken devices always define the same password (‘alpine’) for the ‘root’ account and most
users do not change this password for lack of knowledge. Moreover, previous jailbreaks installed
‘sshd’ (SSH Daemon) by default, rendering almost all security features of iOS useless. Since
exploiting this vulnerability has permitted the creation of various worms, recent jailbreaks no
longer install ‘sshd’ by default.

The ‘ikee.a’ worms (four variants exist), created by an Australian hacker in 2009, changes the
wallpaper of the device as shown in Figure 12. It replicates it-self among devices by scanning
neighborhood 3G IP range for other jailbroken phone with port 22 (SSH) open.

Figure 12: ‘ikee.a’ infected iOS device displaying a Rick Astley wallpaper

Another more nefarious variant of this worm, the ‘ikee.b’ variant, has been spread in late 2009
in Europe (it scanned specifics European IP ranges). This worm was controlled by a botnet and
asked the user for a 5$ money transfer (via Paypal). Figure 13 shows the wallpaper set by
‘ikee.b’.

Figure 13: ‘ikee.b’ infected iOS device modified wallpaper

5.5 Passcode

5.5.1 Passcode brute force attack

Since iOS 4, the user passcode is used for encryption (for example, using DataProtection API). It
has been demonstrated that weak passcode can be brute forced using advanced technique. The
Sogeti team has developed the iphone-dataprotection tools and presented their brute-froce
attack during the HITB Amsterdam 2011 (5). The Table 4 present time required to brute force
various passcode lengths.

Table 4: Passcode brute force attack duration.

Passcode Complexity Time to brute force
4 digits 18 minutes
4 characters 51 hours
5 characters 8 years

8 characters 13000 years

The attack can’t be executed through the Spring Board because the default security
configuration is to wipe the entire device after 10 failed attempts (this configuration can’t be
known in advance). The attack needs to be executed by the device (using SSHD ramdrive, see
5.2.2) by calling the “AppleKeyStore” kernel function. This function uses various ID (device ID,
user ID, file ID, etc.) all derived either from hardware, file header, or the passcode. This protects
the device against pre-computed rainbow tables.

5.5.2 Passcode bypass

Each iOS versions released so far has been found vulnerable to passcode bypass from an
attacker with physical proximity. When the attacker has gained access to the ‘Phone’
application, it also has access to the user’s photos, contacts, sending email and SMS message.
Furthermore, the USB connection protection is also circumvented, which allows the transfer of
non-protected files through AFC services and MobileBackup.

With iOS 3, the worst case of such vulnerability has proven possible to gain access to the full
‘Spring Board’ application and thus, removing any protection to the user’s privacy (especially
since the DataProtection API was introduced with iOS 4.0).

5.5.2.1 iOS 4.0

iOS version 4.0 to 4.1
Related CVE CVE-2010-4012
Related Jailbreak -

Steps to by bypass the lock screen on iOS 4.0 to 4.1:

1. Starting with a properly locked iPhone, activate the ‘Slide To Unlock’ slider;

2. Touch ‘Emergency Call’;

3. Compose ‘###’ and touch ‘Call’;

4. Immediately press the lock button, timing is very important; and

5. If succeed, you have gain access to the phone application.

5.5.2.2 iOS up to 6.1.2

iOS version 1.0 to 6.1.2 (after iPhone 3GS)
Related CVE CVE-2013-0980
Related Jailbreak -

Steps to by bypass the lock screen on iOS up to 6.1.2:

1. Start with a properly locked device, then ‘Slide to Unlock’;

2. Touch ‘Emergency Call’;

3. Hold the lock button 3 seconds, when asked to shut the device down, touch ‘Cancel’;

4. Compose either ‘112’, ‘911’ or any other emergency number;

5. Touch ‘Call’ and immediately ‘Cancel’ (do not actually make the call);

6. Press the lock button (without holding it);

7. Press the home button (to bring the lock screen again) and slide to unlock;

8. Hold the lock button 3 seconds and touch ‘Emergency call’ (this is the tricky part);

9. If succeed, you have gain access to the phone application.

6 Conclusion

During this project, iOS security model and its main vulnerabilities, mostly related to recent
versions of iOS, were studied. Despite all the efforts put by Apple to develop a solid
ecosystem, multiple vulnerabilities were exploited over time. However, a general
observation is that Apple is doing a lot of work to constantly enhance the security
surrounding its products. Various update are produce when critical vulnerabilities are
exploited. Within a couple of days or weeks, patches are available to update the iOS system.

Throughout this work, jailbreaks were also studied as jailbreakers are the most proactive
players related to vulnerabilities discovery. Given that jailbreakers intents are not to
produce virus or malwares, they are also open to put interesting material on Internet (blog,
GitHub, etc.).

Jailbreakers have to be more and more creative, imaginative (and lucky), during their
vulnerabilities research. To bypass all the security layers, jailbreaks have become very
complex and are composed of multiple exploited vulnerabilities. The process has become so
complex that hackers have to team up to take advantage of each member’s skills to develop
a jailbreak.

A major version of iOS (version 7) is awaited within a few months. It will be interesting to
examine if Apple has change iOS security model to add new layers or simply enhance
existing one, in an attempt to deceive hackers.

References
1. Miller, Charlie, et al., et al. IOS Hacker's Handbook. New York : John Wiley & Sons Inc, 2012.

2. Miller, Charlie (Accuvant Labs). SyScan. Don't Hassle The Hoff: Breaking iOS Code Signing.
Taipei : s.n., 2011.

3. Esser, Stefan (SektionEins). CanSecWest. iOS 5 - An Exploitation Nightmare? Vancouver : s.n.,
2012.

4. Esser, Stefan (SektionEins). HITBSecConf. iPhone Exploitation: One ROPe to Bind Them All?
Malaysia : s.n., 2011.

5. Bédrune, Jean-baptiste, Sigwald, Jean (Sogeti). HITBSecConf. iPhone Data Protection in-
Depth. Amsterdam : s.n., 2011.

6. Mulliner, Collin, Miller, Charlie. Fuzzing the Phone in your Phone. Berlin : s.n., 2009.

7. Xiaobo, Chen, Hao, Xu. SyScan+360. Find Your Own iOS Kernel Bugs. Beijing : s.n., 2012.

8. Esser, Stefan (SektionEins). Black Hat. iOS Kernel Exploitation. Las Vegas : s.n., 2011.

9. evasi0n. The iPhone Wiki. [Online] http://theiphonewiki.com/wiki/Evasi0n.

10. Mandt, Tarjei. From USR to SVC: Dissecting the 'evasi0n' Kernel Exploit. Azimuth Security
Blog. [Online] Azimuth Security, Febuary 13, 2013.
http://blog.azimuthsecurity.com/2013/02/from-usr-to-svc-dissecting-evasi0n.html.

11. Morgan, Peter, Smith, Ryan, Thomas, Braden, Thomas, Josh. Evasi0n Jailbreak's Userland
Component. Accuvant Labs RawTech blog. [Online] Accuvant Labs, Febuary 4, 2013.
http://blog.accuvantlabs.com/blog/bthomas/evasi0n-jailbreaks-userland-component.

12. CVE Details: The Ultimate Security Vulnerability Datasource. [Online]
http://www.cvedetails.com/.

13. Pandya, Vaibhav Ranchhoddas. iPhone Security Analysis. 2008.

14. Cyrill, (pod2g). Details on Corona. pod2g's iOS blog. [Online] 1 2, 2012.
http://www.pod2g.org/2012/01/details-on-corona.html.

15. Cyrill, (pod2g). WWJC. Jailbreak Techniques. 2012.

16. Greenberg, Andy. Inside Evasi0n, The Most Elaborate Jailbreak To Ever Hack Your iPhone.
[Online] Forbes, Febuary 5, 2013.
http://www.forbes.com/sites/andygreenberg/2013/02/05/inside-evasi0n-the-most-elaborate-
jailbreak-to-ever-hack-your-iphone/.

17. Esser, Stefan. CanSecWest. iOS 5 - An Exploitation Nightmare? Vancouver : s.n., 2012.

Appendix A

Evasi0n jailbreak, steps by steps explanations.

DOCUMENT CONTROL DATA
(Security markings for the title, abstract and indexing annotation must be entered when the document is Classified or Designated)

1. ORIGINATOR (The name and address of the organization preparing the document.
Organizations for whom the document was prepared, e.g. Centre sponsoring a
contractor's report, or tasking agency, are entered in section 8.)

LTI Informatique & Génie
1305, blvd. Lebourgneuf, office #130
Quebec, QC,
G2K 2E4
Canada

2a. SECURITY MARKING
(Overall security marking of the document including
special supplemental markings if applicable.)

UNCLASSIFIED

2b. CONTROLLED GOODS

(NON-CONTROLLED GOODS)
DMC A
REVIEW: GCEC APRIL 2011

3. TITLE (The complete document title as indicated on the title page. Its classification should be indicated by the appropriate abbreviation (S, C or U)
in parentheses after the title.)

iOS Security Overview

4. AUTHORS (last name, followed by initials – ranks, titles, etc. not to be used)

Desmeules, M.; Labrie, M.-A.; Bouchard-Foster, K

5. DATE OF PUBLICATION
(Month and year of publication of document.)

M 201

6a. NO. OF PAGES
(Total containing information,
including Annexes, Appendices,
etc.)

6b. NO. OF REFS
(Total cited in document.)

7. DESCRIPTIVE NOTES (The category of the document, e.g. technical report, technical note or memorandum. If appropriate, enter the type of report,
e.g. interim, progress, summary, annual or final. Give the inclusive dates when a specific reporting period is covered.)

Contract Report

8. SPONSORING ACTIVITY (The name of the department project office or laboratory sponsoring the research and development – include address.)

Defence Research and Development Canada – Valcartier
2459 Pie-XI Blvd North
Quebec (Quebec)
G3J 1X5 Canada

9a. PROJECT OR GRANT NO. (If appropriate, the applicable research
and development project or grant number under which the document
was written. Please specify whether project or grant.)

05bi

9b. CONTRACT NO. (If appropriate, the applicable number under
which the document was written.)

W7701-103091

10a. ORIGINATOR'S DOCUMENT NUMBER (The official document
number by which the document is identified by the originating
activity. This number must be unique to this document.)

10b. OTHER DOCUMENT NO(s). (Any other numbers which may be
assigned this document either by the originator or by the sponsor.)

DRDC Valcartier CR 2013-378

11. DOCUMENT AVAILABILITY (Any limitations on further dissemination of the document, other than those imposed by security classification.)

Unlimited

12. DOCUMENT ANNOUNCEMENT (Any limitation to the bibliographic announcement of this document. This will normally correspond to the
Document Availability (11). However, where further distribution (beyond the audience specified in (11) is possible, a wider announcement
audience may be selected.))

Unlimited

13. ABSTRACT (A brief and factual summary of the document. It may also appear elsewhere in the body of the document itself. It is highly desirable
that the abstract of classified documents be unclassified. Each paragraph of the abstract shall begin with an indication of the security classification
of the information in the paragraph (unless the document itself is unclassified) represented as (S), (C), (R), or (U). It is not necessary to include
here abstracts in both official languages unless the text is bilingual.)

The main objective of this document, as part of the contract W7701-103091, is to overview
security concerns, risks and major benefits about the Apple iOS mobile operating system within
in the iPhone, iPad, iPod Touch and Apple TV product. In order to produce this document, over
220 vulnerabilities available in the public domain have been collected for iOS version 1.0 to
6.1.3. Several exploits, jailbreaks as well as security flaws inherent in the creation of iOS
application have been analyzed beginning at iOS version 4.0. Conclusively, Apple quick
response time and ongoing security improvement processes make this operating system secure.

14. KEYWORDS, DESCRIPTORS or IDENTIFIERS (Technically meaningful terms or short phrases that characterize a document and could be
helpful in cataloguing the document. They should be selected so that no security classification is required. Identifiers, such as equipment model
designation, trade name, military project code name, geographic location may also be included. If possible keywords should be selected from a
published thesaurus, e.g. Thesaurus of Engineering and Scientific Terms (TEST) and that thesaurus identified. If it is not possible to select
indexing terms which are Unclassified, the classification of each should be indicated as with the title.)

iOS; iPhone; iPAD; iPOD Touch; Apple TV; vunerabilities; security

Defence R&D Canada R & D pour la défense Canada

Canada's Leader in Defence
and National Security

Science and Technology

Chef de file au Canada en matière
de science et de technologie pour
la défense et la sécurité nationale

www.drdc-rddc.gc.ca

