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Introduction 
DSA, often referred to Dynamic Signal Analysis or Dynamic 
Signal Analyzer depending on the context, is an application area 
of digital signal processing technology. Compared to general 
data acquisition and time domain analysis, DSA instruments 
and math tools focus more on the dynamic aspect of the signals 
such as frequency response, dynamic range, total harmonic 
distortion, phase match, amplitude flatness etc.. In recent years, 
time domain data acquisition devices and DSA instruments 
have gradually converged together. More and more time domain 
instruments, such as oscilloscopes, can do frequency analysis 
while more and more dynamic signal analyzers can do long time 
data recording.

DSA uses various different technology of digital signal 
processing. Among them, the most fundamental and popular 
technology is based on the so called the Fast Fourier Transform 
(FFT). The FFT transforms the time domain signals into the 
frequency domain. To perform FFT-based measurements, 
however, you need to understand the fundamental issues and 
computations involved. This Chapter describes some of the 
basic signal analysis computations, discusses antialiasing and 
acquisition front end for FFT-based signal analysis, explains how 
to use windowing functions correctly, explains some spectrum 
computations, and shows you how to use FFT-based functions 
for some typical measurements.

In this Chapter we will use standard notations for different 
signals. Each type of signal will be represented by one specific 
letter. For example, “G” stands for a one-side power spectrum, 
while “H” stands for a transfer function.

The following table defines the symbols used in this Chapter:

Cyx Coherence function between input signal x and output 
signal y

Gxx Auto-spectral function (one-sided) of signal x
Gyx Cross-spectral function (one-sided) between input sig-

nal x and output signal y
Hyx Transfer function between input signal x and output 

signal y
k Index of a discrete sample
Rxx Auto-correlation function of signal x
Ryx Cross-correlation function between input signal x and 

output signal y
Sx Linear spectral function of signal x
Sxx Instantaneous auto-spectral function (one-sided) of 

signal x
Syx Instantaneous cross-spectral function (one-sided) be-

tween input signal x and output signal y
t Time variable
x(t) Time history record
X(f) Fourier Transform of time history record

Fourier Transform 
Digital signal processing technology includes FFT based fre-
quency analysis, digital filters and many other topics. This chap-
ter introduces the FFT based frequency analysis methods that 
are widely used in all dynamic signal analyzers. CoCo has fully 
utilized the FFT frequency analysis methods and various real 
time digital filters to analyze the measurement signals.

The Fourier Transform is a transform used to convert quantities

where:

	 x(t) 	 continuous time waveform
	 f	 frequency variable
	 j	 complex number
	 X(f)	 Fourier transform of x(t)

Mathematically the Fourier Transform is defined for all frequen-
cies from negative to positive infinity.  However, the spectrum is 
usually symmetric and it is common to only consider the single-
sided spectrum which is the spectrum from zero to positive infin-
ity.  For discrete sampled signals, this can be expressed as

where:

x(n)	 samples of time waveform
n	 running sample index
N 	 total number of samples or “frame size”	
k	 finite analysis frequency, corresponding to “FFT bin 	
	 centers”
X(k)	 discrete Fourier transform of x(k)
		
In most DSA products, a Radix-2 DIF FFT algorithm is used, 
which requires that the total number of samples must be a power 
of 2 (total number of samples in FFT = 2m , where m is an in-
teger).

Data Windowing
The Fourier Transform assumes that the time signal is periodic 
and infinite in duration.  When only a portion of a record is ana-
lyzed the record must be truncated by a data window to pre-
serve the frequency characteristics. A window can be expressed 
in either the time domain or in the frequency domain, although 
the former is more common. To reduce the edge effects, which 
cause leakage, a window is often given a shape or weighting 
function. For example, a window can be defined as

from the time domain to the frequency domain and vice versa, 
usually derived from the Fourier integral of a periodic function
when the period grows without limit, often expressed as a Fou-
rier transform pair. In the classical sense, a Fourier transform 
takes the form of:

FREQUENCY ANALYSIS
Basic Theory of FFT Frequency Analysis

where g(t) is the window weighting function and T is the window 
duration.
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The data analyzed, x(t) are then given by
	
	 x(t) = w(t) x(t)’

where x(t)’ is the original data and x(t) is the data used for spec-
tral analysis.

A window in the time domain is represented by a multiplication 
and hence, is a convolution in the frequency domain. A convolu-
tion can be thought of as a smoothing function. This smoothing 
can be represented by an effective filter shape of the window; 
i.e., energy at a frequency in the original data will appear at other 
frequencies as given by the filter shape. Since time domain win-
dows can be represented as a filter in the frequency domain, 
the time domain windowing can be accomplished directly in the 
frequency domain. 	

In most DSA products, rectangular, Hann, Flattop and several 
other data windows are used;

Rectangular Window

	 w(k) = 1		  0 ≤ k ≤ N-1

Hann Window

	 w(k) = 0.5 * (1 - cos (2ᴫk /(N-1) )	 0≤ k ≤ N-1

Because creating data window attenuates a portion of the origi-
nal data, a certain amount of correction has to be made in order 
to get an un-biased estimation of the spectra. In linear spectral 
analysis, an Amplitude Correction is applied; in power spectral 
measurements, an Energy Correction is applied. See the sec-
tions below for details.

Linear Spectrum
A linear spectrum is the Fourier transform of windowed time do-
main data. The linear spectrum is useful for analyzing periodic 
signals. You can extract the harmonic amplitude by reading the 
amplitude values at those harmonic frequencies.

An averaging technique is often used in the time domain when 
synchronized triggering is applied. Or equivalently, the averag-
ing can be applied to the complex FFT spectra. 

Because the averaging is taking place in the linear spectrum 
domain, or equivalently, in the time domain, based on the prin-
ciples of linear transform, averaging make no sense unless a 
synchronized trigger is used.

Most DSA products use the following steps to compute a linear 
spectrum:

Step 1
First a window is applied:

	 x(t) = w(t) x(t)’

where x(t)’ is the original data and x(t) is the data used for the 
Fourier transform.

Step 2
The FFT is applied to x(t) to compute X(k), as described above.

Step 3
Averaging is applied to X(k). Here Averaging can be either an

Exponential Average or Stable Average. Result is Sx’.

Sx’ = Average ( X(k) )

Step 4
To get a single-sided spectrum, double the value for symmetry 
about DC.

An Amplitude Correction factor is applied to Sx’ so that the final 
result has an un-biased reading at the harmonic frequencies.

	 Sx = 2 • Sx’ / AmpCorr

where AmpCorr is the amplitude correction factor, defined as:

where w(k) is the window weighting function.

This correction will make the peak or RMS reading of a sine 
wave at specific frequency correct regardless of which data win-
dow is applied. For example, if a 1.0 volt amplitude 1kHz sine 
wave sampled at 6.4kHz is analyzed with a Linear Spectrum 
with Hann window, you will get following the spectral shape:

Figure 1.  Sine wave with Hanning window applied to the spectrum.

The top picture is the digitized time waveform. The sine-wave 
is not smooth because of the low sampling rate relative to the 
frequency of the signal.  However the well known Nyquist prin-
ciple indicates that the frequency estimate from the FFT will be 
accurate as long as the sampling rate is more than twice of the 
signal frequency.  The frequency spectrum of the period signal 
will show the accurate frequency and level.  Note for a more 
accurate sample of the time waveform a higher sampling rate 
is required.
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Figure 2 illustrates a windowing function applied to a pure sine 
tone.

Figure 2. Hanning windowing function applied to a pure sine tone.

The top picture is displayed in EUpk, i.e., the peak of the spec-
trum is scaled to the actual 0 peak level, which is 1.0 in this 
case. The bottom picture shows the same signal with the dB 
scale applied. Since we use 0dB as reference, the 1.0 Vpk is 
now scaled to 0.0 dB. With the dB display, we can see frequency 
points around the peak causing by the Hanning window.

The linear spectrum is saved internally in the complex data for-
mat with real and imaginary parts. Therefore, you should be able 
to view the real and imaginary parts, or amplitude and phase of 
the spectrum.

Power Spectrum
Spectral analysis is popular in characterizing the operation of 
mechanical and electrical systems.  A type of spectral analy-
sis, the power spectrum (and power spectral density (PSD)), is 
especially popular because a “power” measurement in the fre-
quency domain is one that engineers readily accept and apply in 
their solutions to problems. Single channel measurements (au-
to-power spectra) and two channel measurements (cross-power 
spectra) both play important roles.

In power spectrum measurements, window amplitude correction is 
used to get un-biased final spectrum amplitude reading at spe-
cific frequency. In PSD or energy spectral density (ESD) mea-
surements, window energy correction is always used to get an 
un-biased spectral density or energy reading. 

To compute the spectra listed above, the instrument will follow 
these steps:

Step 1
A window is applied:

	 x(k) = w(k) x(k)’

where x(k)’ is the original data and x(k) is the data used for a 
Fourier transform.

Step 2
The FFT is applied to x(t) to compute Sx

Next the so called periodogram method is used to compute the 
spectra with area correction. Using Sx.

Step 3

Calculate the Power Spectrum Sxx = Sx Sx* / (AmpCorr)2

Or calculate the Power Spectral Density  = 

Sx Sx* T / EnergyCorr

Or calculate the Energy Spectral Density  = 

Sx Sx* T2 / EnergyCorr

where T is the time duration of the capture. The symbol  *  is for 
complex conjugation. EnergyCorr is a factor for energy correc-
tion, which is defined as:

N is the total number of the samples and w(k) is window func-
tion.

For any power spectral measurement of the three types listed 
above, the EU is automatically chosen as EUrms because only 
EUrms has a physical meaning related to signal power.

After the power spectra are calculated, the averaging operation 
will be applied. More details will be discussed in the next sec-
tions for averaging operation.

Spectrum Types 
Several Spectrum Types are given for both Linear Spectrum and 
Power Spectrum measurements in CoCo and EDM. The con-
cept of spectrum type is explained below in detail.

First let’s consider the signals with periodic nature. These can be 
the signals measured from a rotating machine, bearing, gearing, 
or anything that repeats. In this case we would be interested 
in amplitude changes at fundamental frequencies, harmonics or 
sub-harmonics. In this case, you can choose a spectrum type of 
EUpk, EUpkpk or EUrms.

A second scenario might consist of a signal with a random na-
ture that is not necessarily periodic. It does not have obvious 
periodicity therefore the frequency analysis could not determine 
the “amplitude” at certain frequencies. However, it is possible to 
measure the r.m.s. level, or power level, or power density level 
over certain frequency bands for such random signals. In this 
case, you must select one of the spectrum types of EUrms

2/ Hz, 
or EUrms/sqrt(Hz), which is called power spectral density, or root-
mean squared density.
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A third scenario might consist of a transient signal. It is neither 
periodic, nor stably random. In this case, must select a spectrum 
type as EU2S/Hz, which is called energy spectrum.

In many applications, the nature of the data cannot be easily 
classified. Care must be taken to interpret the data when differ-
ent spectrum types are used. For example, in the environmental 
vibration simulation, a typical test uses multiple sine tones on 
top of random profile, which is called Sine-on-Random. In this 
type application, you have to observe the random portion of the 
data in the spectrum with EUrms

2/Hz and the sine portion of the 
data with EUpk.

Figure 3 shows a general flow-chart to choose one of the mea-
surement techniques and spectrum types for linear or auto spec-
trum:

Figure 3. Flow chart to determine measurement technique for various signal 
types.

The following figures illustrate the results of different measure-
ment techniques on a 1 volt pure sine tone.  The figures include 
RMS, Peak or Peak-Peak value for the amplitude, or power 
value corresponding to its amplitude. Notice these readings can 
only be applied to a periodic signal. If you applied these mea-
surement techniques to a signal with random nature, the spec-
trum would not be a meaningful representation of the signal. 

Figure 4. A sine wave is measured with EUpk spectrum unit.  
The sine waveform has a 1V amplitude.

Figure 5. A sine wave is measured with EUrms spectrum unit.  The 
peak reading is 0.707V. The sine waveform has a 1V amplitude.

(EUrms)2  Power Spectrum

The (EUrms)2 displays the power reading of a periodic frequency 
component at a discrete frequency. This spectrum type is suit-
able for narrowband signals.

Figure 6. A sine wave is measured with (EUrms)2 spectrum unit.  The 
peak reading is 0.5V2. The sine waveform has a 1V amplitude.

EU2/Hz, Power Spectrum Density
The EU2/Hz is the spectrum unit used in power spectrum den-
sity (PSD) calculations. The unit is in engineering units squared 
divided by the equivalent filter bandwidth. This provides power 
normalized to a 1Hz bandwidth. This is useful for wideband, con-
tinuous signals. EU2/Hz really should be written as (EUrms)2/Hz. 
But probably due to the limitation of space, people put it as EU2/
Hz. 

PAGE 4 | DSA BASICS

EUpk or EUpkpk

The EUpk and EUpkpk displays the peak value or peak-peak val-
ue of a periodic frequency component at a discrete frequency. 
These two spectrum types are suitable for narrowband signals.

EUrms

The EUrms displays the RMS value of a periodic frequency com-
ponent at a discrete frequency. This spectrum type is suitable for 
narrowband signals.



Figure 7 shows a white noise signal with 1Vrms amplitude or 1V2 
in power level. The bandwidth of the signal is approximately 
10000 Hz and the V2/Hz reading of the signal is around 0.0001 
V2/Hz.  The 1 V RMS can be calculated as follows:

1 Vrms  = sqrt (10000Hz * 0.0001 V2/Hz)

EU2S/Hz, Energy Spectrum Density 
The EU2S/Hz displays the signal in engineering units squared 
divided by the equivalent filter bandwidth, multiplied by the time 
duration of signal. This spectrum type provides energy normal-
ized to a 1Hz bandwidth, or energy spectral density (ESD). It is 
useful for any signals when the purpose is to measure the total 
energy in the data frame. Figure 8 shows a random signal with a 
1 volt RMS level in the ESD format.

Figure 8. Random signal with 1 volt RMS amplitude and Energy Spec-
trum Density format.

The ESD is calculated as follows:

Values for ESD = values of PSD * Time Factor

were the Time Factor = (Block size)/∆f and ∆f is the sampling 
rate / block size.

Notice that in EU2/Hz, or EU2S/Hz, EU really means the RMS 
unit of the EU, i.e., EUrms. 

It should also be noted that since a window is applied in time 
domain, which corresponds a convolution in the linear spec-
trum, we cannot have both a valid amplitude and correct energy 
correction at the same time. Use Figure 3 to select appropriate 
spectrum types.

In a Linear Spectrum measurement, a signal is saved in its com-
plex data format which includes both real and imaginary data. 
Then is averaging operation applied to the linear spectrum. In 
a Power Spectrum measurement, the averaging operation is 
applied to the squared spectrum, which has only real part. Be-
cause of different averaging techniques, the final results of Lin-
ear Spectrum and Power Spectrum will be different even though 
the same spectrum type is used.

Step 2, compute the instantaneous cross power spectral density

	 Syx = Sx*    Sy T

Step 3, average the M frames of Sxx to get averaged PSD Gxx

	 Gyx’ = Average (Syx)

Step 4, Compute the energy correction and double the value for 
the single-sided spectra

	 Gyx = 2 Gyx’ / EnergyCorr

Frequency Response and Coherence Function
The cross power spectrum method is often used for estimating 
the frequency response function (FRF) between channel x and 
channel y. The equation is:

Hyx = Gyx  / Gxx

where Gyx is the averaged cross-spectrum between the input 
channel x and output channel y. Gxx is the averaged auto-spec-
trum of the input. Either power spectrum, power spectral density 
or energy spectral density can be used to compute the FRF be-
cause of the linear relationship between input and output.

Using the cross-power spectrum method instead of simply divid-
ing the linear spectra between input and output to calculate the 
FRF will reduce the effect of the noise at the output measure-
ment end, as shown below.

Figure 9. Frequency response function computation.

PAGE 5 | DSA BASICS

Figure 7. White noise with 1 volt RMS amplitude displays as 100 u 
Vrms2/Hz

Spectrum Types selection only applies to Power Spectrum and 
Linear Spectrum signals.  Spectrum Types do not apply to trans-
fer functions, phase functions or coherence functions.

Cross Spectrum
Cross spectrum or cross power spectrum density is a frequency 
spectrum quantity computed using two signals, usually the ex-
citation and response of a dynamic system. Cross spectrum is 
not commonly used by its own. Most often it is used to compute 
the frequency response function (FRF), transmissibility or cross 
correlation function.

To compute the cross-power spectral density Gyx between 
channel x and channel y:

Step 1, compute the Fourier transform of input signal x(k) and 
response signal y(k):



where Gyx is the averaged cross-spectrum between the input 
channel x and output channel y. Gxx and Gyy are the averaged 
auto-spectrum of the input and output. Either power spectrum, 
power spectral density or energy spectral density can be used 
here because of the linear relationship between input and output 
so that any multiplier factors will be cancelled out.

Coherence is a statistical measure of the how much of the out-
put is caused by the input.  The maximum coherence is 1.0 
when the output is perfectly correlated with the input and zero 
when there is no correlation between input and output. Coher-
ence is calculated by an average of multiple frames.  When it is 
computed for only one frame, then the coherence function has 
a meaningless result of 1.0 due to the estimation error of the 
coherence function.

The coherence function is a non-dimensional real function in the 
frequency domain. You can only view it in the real format.
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The frequency response function has a complex data format. 
You can view it in real and imaginary or magnitude and phase 
display format.

The coherence function is defined as:



DATA WINDOw SelectION

Leakage Effect
Windowing of a simple signal, like a sine wave may cause its 
Fourier transform to have non-zero values (commonly called 
leakage) at frequencies other than the frequency of this sine. 
This leakage effect tends to be worst (highest) near sine fre-
quency and least at frequencies farthest from sine frequency. 
The effect of leakage can easily be depicted in the time domain 
when a signal is truncated.  As shown in the picture, after data 
windowing, truncation distorted the time signal significantly, 
hence causing a distortion in its frequency domain.

Figure 10. Illustration of a non-periodic signal resulting from sampling.

If there are two sinusoids, with different frequencies, leakage 
can interfere with the ability to distinguish them spectrally. If their 
frequencies are dissimilar, then the leakage interferes when one 
sinusoid is much smaller in amplitude than the other. That is, its 
spectral component can be hidden or masked by the leakage 
from the larger component. But when the frequencies are near 
each other, the leakage can be sufficient to interfere even when 
the sinusoids are equal strength; that is, they become undetect-
able.

There are two possible scenarios that leakage does not occur. 
The first is that when the whole time capture is long enough to 
cover the complete duration of the signals. This can occur with 
short transient signals.  For example in a hammer test, if the 
time capture is long enough it may extend to the point where the 
signal decays to zero. In this case, data window is not needed.

The second case is when a periodic signal is sampled at such 
a sampling rate that is perfectly synchronized with the signal 
period, so that with a block of capture, an integer number of 
cycles of the signal are always acquired. For example, if a sine 
wave has a frequency of 1000Hz and the sampling rate is set to 
8000Hz. Each sine cycle would have 8 integer points. If 1024 
data points are acquired then 128 complete cycles of the signal 
are captured. In this case, with no window applied you still can 
get a leakage-free spectrum.

Figure 11 shows a sine signal at 1000 Hz with no leakage result-
ing in a sharp spike.  Figure 12 shows the spectrum of a 1010 
Hz signal with significant leakage resulting in a wide peak.  The 
spectrum has significant energy outside the narrow 1010 Hz fre-
quency.  It is said that the energy leaks out into the surrounding 
frequencies.  

Figure 11. Sine spectrum with no leakage.

Figure 12. Sine spectrum with significant leakage.

Several windowing functions have been developed to reduce 
the leakage effect.   The picture below shows a Flattop window 
applied to the same sine signal with frequency 1010Hz:

Figure 13. Sine spectrum with Flattop windowing function.

When Flattop window is used, the leakage effect is reduced. 
Both the sine peak and noise floor can be seen now. However, 
such data windowing operation also makes the spectrum peak 
“fatter” and less accurate. In the rest of the sections we will dis-
cuss how to choose different data windows.
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Data Window Formula
In this section, we will describe the math formula that we used 
for each data window. 

Uniform Window (rectangular)
w(k)= 1.0

Uniform is the same as no window function.

Hamming Window
w(k) = 0.53836 - 0.46164  cos (2πk/(N-1))

Hann Window
w(k) = 0.5 - 0.5  cos (2πk/(N-1))

The Hann and Hamming windows are in the family known as 
“raised cosine” windows, are respectively named after Julius 
von Hann and Richard Hamming. The term “Hanning window” is 
sometimes used to refer to the Hann window, but is ambiguous 
as it is easily confused with Hamming window.

Blackman Window
w(k) = 0.84 - 0.5 cos (2πk/(N-1) + 0.08 cos (4πk/(N-1) 

for k=0~N-1

Flattop Window
w(k) = 1 - 1.93 cos [2πk/(N-1)] + 1.29 cos [4πk/(N-1)] - 0.388 cos 
[6πk/(N-1)] + 0.032 cos [8πk/(N-1)]                         

for k=0~N-1

Kaiser Bessel Window
w(k) = 1.0 - 1.24 cos [2πk/(N-1)] + 0.244 cos [4πk/(N-1)] + 
0.00305 cos [6πk/(N-1)]                                              

for k = 0~N-1

Exponential Window
The shape of the exponential window is that of a decaying expo-
nential. The following equation defines the exponential window.

w(k) = e^(k ln(final)/(N-1)) 

     for k = 0~N-1

where N is the length of the window, w(k)is the window value, 
and final is the final value of the whole sequence. The initial 
value of the window is one and gradually decays toward zero.

Figure 14. Spectral shape of common windowing functions.

Figure 15.  Window frequency response showing main lobe and side lobes.

How to Choose the Right Data Window
In this section we will discuss how to choose the data window. 
Figure 14 shows the spectral shape of four typical windows cor-
responding to their time waveform. 

Window –3 dB Main Lobe 
Width (bins)

–6 dB Main Lobe 
Width (bins)

Maximum Side 
Lobe Level (dB)

Uniform (none) 0.9 1.2 –13
Hanning 1.4 2.0 –32
Hamming 1.3 1.8 –43
Blackman 1.6 2.3 –58
Flattop 2.9 3.6 –44

The following table lists the characteristics of several data win-
dows.

Frequency Characteristics of Data Windows

It can be seen that the spectral shape of the data window is al-
ways symmetric. The spectral shape can be described as a main 
lobe and several side lobes.
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Main Lobe
The center of the main lobe of a window occurs at each fre-
quency component of the time-domain signal. By convention, to 
characterize the shape of the main lobe, the widths of the main 
lobe at –3 dB and –6 dB below the main lobe peak describe the 
width of the main lobe. The unit of measure for the main lobe 
width is FFT bins or frequency lines.

The width of the main lobe of the window spectrum limits the 
frequency resolution of the windowed signal. Therefore, the 
ability to distinguish two closely spaced frequency components 
increases as the main lobe of the smoothing window narrows. 
As the main lobe narrows and spectral resolution improves, the 
window energy spreads into its side lobes, increasing spec-
tral leakage and decreasing amplitude accuracy. A trade-off 
occurs between amplitude accuracy and spectral resolution.

Side Lobes
Side lobes occur on each side of the main lobe and approach 
zero at multiples of fs/N from the main lobe. The side lobe char-
acteristics of the smoothing window directly affect the extent 
to which adjacent frequency components leak into adjacent 
frequency bins. The side lobe response of a strong sinusoidal 
signal can overpower the main lobe response of a nearby weak 
sinusoidal signal.

Maximum side lobe level and side lobe roll-off rate characterize 
the side lobes of a smoothing window. The maximum side lobe 
level is the largest side lobe level in decibels relative to the main 
lobe peak gain. 

Guidelines of Choosing Data Windows
If a measurement can be made so that no leakage effect will 
occur, then do not apply any window (in the software, select Uni-
form.). As discussed before, this only occurs when the time cap-
ture is long enough to cover the whole transient range, or when 
the signal is exactly periodic in the time frame.

If the goal of the analysis is to discriminate two or multiple sine 
waves in the frequency domain, spectral resolution is very criti-
cal. For such application, choose a data window with very nar-
row main slope. Hanning is a good choice.

If the goal of the analysis is to determine the amplitude reading 
of a periodic signal, i.e., to read EUpk, EUpkpk, EUrms or EUrms

2,  the 
amplitude accuracy of a single frequency component is more 
important than the exact location of the component in a given 
frequency bin, choose a window with a wide main lobe. Flattop 
window is often used.

If you are analyzing transient signals such as impact and re-
sponse signals, it is better not to use the spectral windows be-
cause these windows attenuate important information at the 
beginning of the sample block. Instead, use the Force and Ex-
ponential windows. A Force window is useful in analyzing shock 
stimuli because it removes stray signals at the end of the signal. 
The Exponential window is useful for analyzing transient re-
sponse signals because it damps the end of the signal, ensuring 
that the signal fully decays by the end of the sample block.

If the nature of the data is has a random nature or unknown, 
choose Hanning window.  
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AVERAGING TECHNIQUEs

Averaging is widely used in spectral measurements. It improves 
the measurement and analysis of signals that are purely random 
or mixed random and periodic. Averaged measurements can 
yield either higher signal-to-noise ratios or improved statistical 
accuracy.

Typically, three types of averaging methods are available in DSA 
products. They are: Linear Averaging, Exponential Averaging, and 
Peak-Hold

Linear Averaging
In linear averaging, each set of data (a record) contributes 
equally to the average. The value at any point in the linear aver-
age in given by the equation:

Averaged = (Sum of Records) / N

N is the total number of the records. The advantage of this aver-
aging method is that it is faster to compute and the result is un-
biased. However, this method is suitable only for analyzing short 
signal records or stationary signals, since the average tends to 
stabilize. The contribution of new records eventually will cease 
to change the value of the average. 

Usually, a target average number is defined. The algorithm is 
made so that before the target average number reaches, the 
process can be stopped and the averaged result can still be 
used.

When the specified target averaging number is reached, the in-
strument usually will stop the acquisition and wait for the instruc-
tion for another collection of data acquisition.

Moving Linear Averaging
In a regular Linear Average, the data rate of the output of the av-
eraging operator is only 1/N of that of the original signal. There-
fore more averages takes longer to compute.  Thus averaging 
will increase the time of the measurement. To reduce the time a 
Moving Linear Averaging can be used. Moving Linear Averaging 
uses overlapped input data points to generate more than 1/N 
results within a period of time. Moving linear average has the ad-
vantage that the resulted trace update time can be much shorter 
than the linear averaging period. 

Moving Linear Average is computed by

Where x[k] is the input data, with sampling rate of T, y[n] is the 
output data, with Trace Update rate deltaT, AverageT is the peri-
od of Linear Average and ,N is the  total samples used for Linear 
Average. N = AverageT/T

The Moving Linear Averaging is illustrated in Figure 16. Assume 
the averaging period is AverageT but the progressive time for 
each averaging operation is deltaT, the output buffer will have a 
data rage of deltaT instead of AverageT.

The Moving Linear Average is useful in many situations. For ex-
ample, in Sound Level Meter, Leq is defined as a linear averaged

Exponential Averaging
In exponential averaging, records do not contribute equally to 
the average. A new record is weighted more heavily than old 
ones. The value at any point in the exponential average is given 
by:

y[n]= y[n-1]  *(1-α)+ x[n]* α

where y[n] is the nth average and x[n] is the nth new record. α 
is the weighting coefficient. Usually α is defined as 1/(Number 
of Averaging). For example in the instrument, if the Number of 
Averaging is set to 3 and the averaging type is selected as expo-
nential averaging, then α=1/3

The advantage of this averaging method is that it can be used 
indefinitely. That is, the average will not converge to some value 
and stay there, as is the case with linear averaging. The aver-
age will dynamically respond to the influence of new records and 
gradually ignore the effects of old records. 

Exponential averaging simulates the analog filter smoothing 
process. It will not reset when a specified averaging number is 
reached.

The drawback of the exponential averaging is that a large value 
may embed too much memory into the average result. If there is 
a transient large value as input, it may take a long time for y[n] 
to decay. On the contrary, the contribution of small input value 
of x[n] will have little impact to the averaged output. Therefore, 
exponential average fits a stable signal better than a signal with 
large fluctuations.

Peak-Hold
This method, technically speaking, does not involve averaging in 
the strict sense of the word. Instead, the “average” produced by 
the peak hold method produces a record that at any point repre-
sents the maximum envelope among all the component records. 
The equation for a peak-hold is

Peak-hold is useful for maintaining a record of the highest value 
attained at each point throughout the sequence of ensembles. 

Figure 16.  Illustration of moving linear average

value over a long period of time, say 1 second to 24 hours. As-
sume the AverageT is 1 hour, without moving linear average, 
in a 24 hours period, you can only get 24 readings. This is not 
very useful. With moving averaging, you can get the readings in 
every 1 second, for the linear averaging of the past 1 hour.
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Linear Spectrum Averaging Power Spectrum Averaging
No statistical spectral 
estimate, for deterministic 
signals only.

Statistical spectral estimate, 
for signals with random char-
acteristics.

Signal must have periodic 
components.

Applicable to both pure 
random and mixed random/
periodic signals.

Improve SNR. Does not improve SNR.
Requires a synchronized 
trigger in fixed relation to the 
signals.

Does not require a synchro-
nized trigger.

Table 1. Summary of Averaging Methods..

Spectrum Estimation Error
You may wonder how much confidence we should have when 
we take the spectral measurement. This is a academic topic that 
can go very deep. First you must classify your signal types. If 
you are measuring a deterministic signal, with very few averag-
ing, the spectrum estimation can be very accurate. If the signal 
has a random nature, with partially random, or significant mea-
surement noise, more averaging must be used.

Assume the time data is captured from a stationary random pro-
cess and we calculate various spectra using window, FFT and

Peak-Hold is not a linear math operation therefore it should be 
used carefully. It is acceptable to use Peak-Hold in auto-power 
spectrum measurement but you would not get meaningful re-
sults for FRF or Coherence measurement using Peak-Hold.

Peak-hold averaging will reset after a specified averaging num-
ber is reached.

Linear Spectrum versus Power Spectrum Averaging
Averaging can be applied to either linear spectrum or power 
spectrum. If you want to reduce the spectral estimation vari-
ance, use power spectral averaging. If you want to extract re-
petitive or periodic small signals from a noisy signal, you can use 
triggered capture and average them in linear spectral domain. 
Linear Spectrum averaging must be performed with on a trig-
gered event so that the time signal of one average is correlated 
with other similar measurements.  Without time synchronizing 
mechanism, averaging in the Linear Spectrum domain makes 
no sense. Linear spectrum averaging is also called Vector aver-
aging. It averages the complex FFT spectrum. (The real part is 
averaged separately from the imaginary part.) This can reduce 
the noise floor for random signals since they are not phase co-
herent from time record to time record.

Power Spectrum Averaging is also called RMS Averaging. 
RMS averaging computes the weighted mean of the sum of the 
squared magnitudes (FFT times its complex conjugate). The 
weighting is either linear or exponential. RMS averaging reduc-
es fluctuations in the data but does not reduce the actual noise 
floor. With a sufficient number of averages, a very good approxi-
mation of the actual random noise floor can be displayed. Since 
RMS averaging involves magnitudes only, displaying the real or 
imaginary part, or phase, of an RMS average has no meaning 
and the power spectrum average has no phase information.

Table 1 gives a summary of the averaging methods described 
above.  

averaging techniques, how much we can trust the measured 
spectra can be measured by a statistical quantity, standard de-
viation. Here are a few useful equations to compute the standard 
deviation of the spectra when linear averaging is used:

where n is the average number in linear averaging. The transfer 
function is computed in the cross-power spectrum method as 
presented earlier. 

Assume a signal is random and has an expected power spectral 
density at 0.1 V2/Hz. The goal of a measurement is to average 
a few power spectra and to estimate such an expected value. If 
the average number is 1, meaning, with no average, the stan-
dard deviation of the error of such a measurement will be 100%. 
When we average two frames of auto power spectra, the stan-
dard deviation of the error will become 1/√2=70.7%   When the 
average number is increased to 100, the standard deviation of 
the error of the reading is 10%. This means that the reading is 
likely in the neighborhood of (0.1±0.01) V2/Hz 

Now if this signal has a deterministic nature, say a sine wave, 
the spectral estimation error will only be applied to the random 
portion, i.e., the noisy portion, of this signal.

Overlap Processing
To increase the speed of spectral calculation, overlap process-
ing can be used to reduce the measurement time. The diagram 
below shows how the overlap is realized. 

As shown in this picture, when a frame of new data is acquired 
after passing the Acquisition Mode control, only a portion of the 
new data will be used.   Overlap calculation will speed up the cal-
culation with the same target average number. The percentage 
of overlap is called overlap ratio. 25% overlap means 25% of the 
old data will be used for each spectral processing. 0% overlap 
means that no old data will be reused.

Figure 17. Illustration of overlap processing.
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Overlap processing can improve the accuracy of spectral esti-
mation. This is because when a data window is applied, some 
useful information is attenuated by the data window on two ends 
of each block. However, it is not true that the higher the overlap 
ratio the higher the spectral estimation accuracy. For Hanning 
window, when the overlap ratio is more than 50%, the estimation 
accuracy of the spectra will not be improved. 

Another advantage to apply overlap processing is that it helps to 
update the display more quickly. 

Single Degree of Freedom System
This section briefly discusses the single degree of freedom 
(SDOF) system as background for the frequency response func-
tion and damping estimation methods. 

The vibration nature of a mechanical structure can be decom-
posed into multiple, relatively independent Single-Degree-Of-
Freedom systems. Each SDOF system can be modeled as a 
mass fixed to the ground by a spring and a damper in parallel as 
shown in Figure 18. The frequency response function (FRF) of 
this mechanical system is also shown.

Figure 18. SDOF system and their frequency response.

The differential equation of motion for this system is given by

The natural frequency ωn and damping ratio ζ can be calculated 
from the system parameters as  

where m is the mass, k is the spring stiffness and c is the damp-
ing coefficient.

The natural frequency, ωn, is in units of radians per second 
(rad/s). The typical units displayed on a digital signal analyzer 
are in Hertz (Hz). The damping ratio, ζ, can also be represented 
as a percent of critical damping – the damping level at which 
the system experiences no oscillation. This is the more common 
understanding of modal damping.. Figure 18 illustrates the re-
sponse of a SDOF system to a transient excitation showing the 
effect of different damping ratios. 

Figure 19. Step response of a SDOF system with different damping ratios.

A SDOF system with light damping factor will have longer oscil-
lation in a transient process. This is why the exponential win-
dow may be chosen to reduce the leakage effect in its spectral 
analysis.

dB and Linear Magnitude
Most often, amplitude or power spectra are shown in the loga-
rithmic unit decibels (dB). Using this unit of measure, it is easy to 
view wide dynamic ranges; that is, it is easy to see small signal 
components in the presence of large ones. The decibel is a unit 
of ratio and is computed as follows.

dB = 10log10 (Power/Pref)

where Power is the measured power and Pref is the reference 
power.

Use the following equation to compute the ratio in decibels from 
amplitude values.

dB = 20log10 (Ampl/Aref)

where Ampl is the measured amplitude and Aref is the reference 
amplitude.

When using amplitude or power as the amplitude-squared of the 
same signal, the resulting decibel level is exactly the same. Mul-
tiplying the decibel ratio by two is equivalent to having a squared 
ratio. Therefore, you obtain the same decibel level and display 
regardless of whether you use the amplitude or power spectrum.

As shown in the preceding equations for power and amplitude, 
you must supply a reference for a measure in decibels. This ref-
erence then corresponds to the 0 dB level. Different conventions 
are used for different types of signals. A common convention is 
to use the reference 1 Vrms for amplitude or 1 Vrms squared for 
power, yielding a unit in dBV or dBVrms. In this case, 1 Vrms 
corresponds to 0 dB. Another common form of dB is dBm, which 
corresponds to a reference of 1 mW into a load of 50 Ω for radio 
frequencies where 0 dB is 0.22 Vrms, or 600 Ω for audio fre-
quencies where 0 dB is 0.78 Vrms.

The following picture shows a sine wave with 1V amplitude dis-
played in dB. Because the reference is 1Vpk , it shows the peak 
value of this sine wave as 0dB.
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Figure 20. Show a 1Vpk sine signal in frequency domain with dB scaling.

Another display format is called Log, or LogMag. The Log dis-
play shows the signal scaled logarithmically  with the grid values 
and cursor readings in actual engineering value. The picture be-
low shows the same signal in LogMag. 

Figure 21. A 1Vpk sine signal in frequency domain with LogMag scaling.

When dB reference is not specified, the dB reference is 1.0 en-
gineering unit. In acoustics application, the dB reference for the 
sound pressure value is set to 20uPa. The same input signal will 
result in different dB readings when dB reference is changed.
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In the previous Chapters of this manual, we have discussed 
how the acquisition mode can be defined in the CSA Editor and 
selected on the CoCo device. This chapter will demonstrate how 
to use CoCo to conduct hammer testing.  Hammer testing refers 
to impact or bump testing that is conducted using an impact 
hammer to apply an impulsive force excitation to a test article 
while measuring the response excitation from an accelerometer 
or other sensor.  This type of measurement is a transient event 
that usually requires triggering, averaging and windowing.   First, 
let’s briefly review the Transient Capture function on CoCo.

Transient Capture is one of the most common used functions 
for dynamic data acquisition. In CoCo the Transient Capture is 
implemented by setting up the Acquisition Mode.  Acquisition 
Mode defines how to transform the time streams into block 
by block time signals. It sets the trigger and the overlapping 
processing. Before the Acquisition Mode stage, the instrument 
acts as a data recorder while after the Acquisition Mode, it is acts 
as a signal analyzer.

TRANSIENT CAPTURE AND HAMMER TESTING
TRANSIENT CAPTURE

Figure 22. Transient capture operation on CoCo.

In the previous Chapters of this manual, we have discussed 
how the acquisition mode can be defined in the CSA Editor and 
selected on the CoCo device. This chapter will demonstrate how 
to use CoCo to conduct hammer testing.  Hammer testing refers 
to impact or bump testing that is conducted using an impact 
hammer to apply an impulsive force excitation to a test article 
while measuring the response excitation from an accelerometer 
or other sensor.  This type of measurement is a transient event 
that usually requires triggering, averaging and windowing.   First, 
let’s briefly review the Transient Capture function on CoCo.

Transient Capture is one of the most common used functions 
for dynamic data acquisition. In CoCo the Transient Capture is 
implemented by setting up the Acquisition Mode.  Acquisition 
Mode defines how to transform the time streams into block 
by block time signals. It sets the trigger and the overlapping 
processing. Before the Acquisition Mode stage, the instrument 
acts as a data recorder while after the Acquisition Mode, it is acts 
as a signal analyzer.

Impact Hammer Testing
Typically impact hammer testing is conducted with a signal 
analyzer to measure FRFs  of the device under test.  The FRFs 
can be used to determine the modal properties of the device 
such as the natural frequencies and damping ratios.  In addition 
the data can be exported to third party modal analysis software 
to compute mode shapes.  

An impact hammer test is the most common method of 
measuring FRFs.  The hammer imparts a transient impulsive 

force excitation to the device.  The impact is intended to excite 
a wide range of frequencies so that the DSA can measure the 
vibration of the device across this range of frequencies.  The 
bandwidth or frequency content of the excitation input depends 
on the size and type of impact hammer that is used.  The dy-
namic force signal is recorded by the DSA.  After the impact, 
the device vibrations are measured with one or more acceler-
ometers or other sensor and recorded by the DSA.  The DSA 
then computes the FRF by comparing the force excitation and 
the response acceleration signals.  Impact testing is depicted in 
Figure 23.

Figure 23. Illustration of a typical impact test and signal processing.

The following equipment is required to perform an impact test:

1.	 An impact hammer to excite the structure. With CoCo we 
recommend using an impact hammer with IEPE output, 
which allows the hammer to be connected directly to the 
analyzer without extra signal conditioning. 

2.	 One or multiple accelerometers that are fixed on the struc-
ture. Again, IEPE accelerometers can be used directly with 
CoCo without additional signal conditioning.

3.	 Coco Signal Analyzer

4.	 The CoCo can be used to extract the resonance frequen-
cies and damping factors of the structure.  In addition third 
party software can be used to extract modal shapes and 
animate the vibration modes.

A wide variety of structures and machines can be impact tested. 
Of course, different sized hammers are required to provide the 
appropriate impact force, depending on the size of the structure; 
small hammers for small structures, large hammers for large 
structures. Realistic signals from a typical impact test are shown 
in Figure 24.

(continued on page 15)
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Figure 24. Typical impact test data.  Top left shows excitation 
force impulse time signal, top right shows response acceleration 
time signal and bottom shows FRF spectrum.

Impact Test Analyzer Settings
The following settings are used for impact testing.  

1.	 Trigger Setup including trigger level and pre-trigger delay 
are used to capture the transient signal for FRF processing.   
It is important to capture the entire short transient signal it 
in the sampling window of the FFT analyzer. To insure that 
the entire signal is captured, the analyzer must be able to 
capture the impulse and impulse response signals prior to 
the occurrence of the impulse with the pre-trigger. 

2.	 Force & Exponential Windows. Two common time 
domain windows that are used in impact testing 
are the force and exponential windows. These win-
dows are applied to the signals after they are sam-
pled, but before the FFT is computed in the analyzer. 
 
The force window is used to remove noise from the im-
pulse (force) signal. Ideally, an impulse signal is non-zero 
for a small portion of the sampling window, and zero for 
the remainder of the window time period. Any non-zero 
data following the impulse signal in the sampling window 
is assumed to be measurement noise. CoCo has a unique 
way to implement the force window. This was discussed 
in the data windowing section in the previous chapter. 
 
The exponential window is applied to the impulse response 
signal. The exponential window is used to reduce leakage 
in the spectrum of the response.

3.	 Accept/Reject: Because accurate impact testing results 
depend on the skill of the operator, FRF measurements 
should be made with averaging, a standard capability in all 
modern FFT analyzers. FRFs should be measured using 
at least 4 impacts per measurement. Since one or two of 
the impacts during the measurement process may be bad 
hits (too hard causing saturation, too soft causing poor co-
herence or a double hit causing distortion in the spectrum), 
an FFT analyzer designed for impact testing should have 
the ability to accept or reject the result of each impact after 
inspecting the impact signals. An accept/reject capability 
saves a lot of time during impact testing since you don’t 
have to redo all measurements in the averaging process 
after one bad hit.

4.	 Modal Damping Estimation. The width of the resonance 
peak is a measure of modal damping. The resonance peak 
width should also be the same for all FRF measurements, 
meaning that modal damping is the same in every FRF 
measurement. A good analyzer should provide an accurate 
damping factor estimate. CoCo uses a curve fitting algo-
rithm to estimate the damping factor. The algorithm reduces 
the inaccuracy caused by the poor spectrum resolution or 
noise. 

5.	 Modal Frequency Estimation. The analyzer must provide 
capability of estimating the resonance frequencies.  CoCo 
uses an algorithm to identify the resonance frequencies 
based on the FRF.
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