Probability in Computing

Lecture 15

Last time

- Pairwise and Mutual Independence

Today

- Finish independence of random variables
- Expected value of a random variable (can be interpreted as the average value of a random variable)

Independent Random Variables

Definition: Independent Random Variables

Random variables X and Y are independent if for all $x, y \in \mathbb{R}$, the events $[X \leq x]$ and $[Y \leq y]$ are independent, i.e.,

$$
\operatorname{Pr}([X \leq x] \wedge[Y \leq y])=\operatorname{Pr}(X \leq x) \cdot \operatorname{Pr}(Y \leq y) .
$$

- This definition applies to both discrete and continuous RVs.
- For discrete random variables, it is equivalent to:

Definition: Discrete Independent Random Variables

Discrete random variables X and Y are independent if for all $x \in \operatorname{range}(X)$ and $y \in \operatorname{range}(\boldsymbol{Y})$, the events $[X=x]$ and $[Y=y$] are independent.

Examples: 1) X and Y are the results of two rolls of a die.
2) X and Y the are distances of two darts from the center of the target.

Review Exercise

- Let X and Y be independent random variables, each taking on the values -1 and 1 with probability $1 / 2$.
- Let $Z=X \cdot Y$.

Find the PMF of Z

Top Hat question (Join Code: 033357)

- Let X and Y be independent random variables, each taking on the values -1 and 1 with probability $1 / 2$.
- Let $Z=X \cdot Y$.

Are X, Y, and Z pairwise independent?
A. YES
B. NO

Mutually Independent Random Variables

- Definition of mutual independence carries over from events to RVs

Definition: Mutually Independent RVs

Random variables $X_{1}, X_{2}, \ldots, X_{n}$ are mutually independent if for all values $x_{1}, \ldots, x_{n} \in \mathbb{R}$, the events
$\left[X_{1} \leq x_{1}\right],\left[X_{2} \leq x_{2}\right], \ldots,\left[X_{n} \leq x_{n}\right]$ are mutually independent

- For discrete random variables, we can replace the events with

$$
\left[X_{1}=x_{1}\right],\left[X_{2}=x_{2}\right], \ldots,\left[X_{n}=x_{n}\right]
$$

Examples: 1) X_{1}, \ldots, X_{n} are the results of n rolls of a die.
2) X_{1}, \ldots, X_{n} are the distances of n darts from the center of the target.

Top Hat question (Join Code: 033357)

- Let X and Y be independent random variables, each taking on the values -1 and 1 with probability $1 / 2$.
- Let $Z=X \cdot Y$.

Are X, Y, and Z mutually independent?
A. YES
B. NO

New Topic

Expectation of Random Variables

Top Hat question (Join Code: 033357)

You roll one die.
Let X be the random variable that represents the result.
What value does X take on average?
A. $1 / 6$
B. 3
C. 3.5
D. 6
E. None of the above.

Example: Spinner

- Spin the dial of the spinner.

Let Y be the number of the region where it stopped.
$>\operatorname{Range}(Y)=\{1,2,3,4\}$
$\Rightarrow \operatorname{Pr}(Y=1)=\frac{1}{2}, \operatorname{Pr}(Y=2)=\frac{1}{4}, \operatorname{Pr}(Y=3)=\operatorname{Pr}(Y=4)=\frac{1}{8}$

- What value does Y take on average?
- It is $\operatorname{NOT} \frac{1+2+3+4}{4}=\frac{10}{4}=2.5$
- Suppose we spin the dial N times, where N is huge. Then we expect to see about $\frac{N}{2}$ ones, $\frac{N}{4}$ twos, $\frac{N}{8}$ threes, and $\frac{N}{8}$ fours.
- If we add them up and divide by N, we get

$$
\frac{\frac{N}{2} \cdot 1+\frac{N}{4} \cdot 2+\frac{N}{8} \cdot 3+\frac{N}{8} \cdot 4}{N}=\frac{1}{2}+\frac{1}{2}+\frac{3}{8}+\frac{1}{2}=\frac{15}{8}=1.875 \quad \neq 2.5
$$

We want a weighted average:
each value is counted the number of times proportional to its probability.

Random variables: expectation

Definition: Expectation

The expectation (also called the expected value or mean) of a discrete random variable X over a sample space Ω is

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)
$$

- Example 1: $X=$ number obtained when rolling a die

$$
\mathbb{E}(X)=\sum_{i=1}^{6} i \cdot \frac{1}{6}=\frac{21}{6}=3.5
$$

- Example 2: $Y=$ region of the spinner selected

$$
\mathbb{E}(Y)=\sum_{i=1}^{4} i \cdot \operatorname{Pr}(i)=1 \cdot \frac{1}{2}+2 \cdot \frac{1}{4}+3 \cdot \frac{1}{8}+4 \cdot \frac{1}{8}=\frac{15}{8}
$$

Expectation of X does not have to be in Range (X)

Example: roulette

- 38 slots: 18 black, 18 red, 2 green.

- If we bet $\$ 1$ on red, we get $\$ 2$ back if red comes up. What's the expected value of our winnings?
- Let X be the value of winnings

It is tedious to consider each slot separately

We can combine outcomes on which X takes the same value

Random variables: expectation

Definition: Expectation

The expectation (also called the expected value or mean) of a discrete random variable X over a sample space Ω is

$$
\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)
$$

- We can group together outcomes ω for which $X(\omega)=a$:

$$
\mathbb{E}(X)=\sum_{a \in \operatorname{Range}(X)} a \cdot \operatorname{Pr}(X=a)
$$

This version of the definition is more useful for computations.

Proof: $\mathbb{E}(X)=\sum_{\omega \in \Omega} X(\omega) \cdot \operatorname{Pr}(\omega)$

$$
=\sum_{a \in \operatorname{Range}(X)} \sum_{\omega \in \Omega: X(\omega)=a} X(\omega) \cdot \operatorname{Pr}(\omega)=\sum_{a \in \operatorname{Range}(X)} \sum_{\omega \in \Omega: X(\omega)=a} a \cdot \operatorname{Pr}(\omega)
$$

$$
=\sum_{a \in \operatorname{Range}(X)} a \cdot \sum_{\omega \in \Omega: X(\omega)=a} \operatorname{Pr}(\omega)=\sum_{a \in \operatorname{Range}(X)} a \cdot \operatorname{Pr}(X=a)
$$

Example: roulette

- 38 slots: 18 black, 18 red, 2 green.

- If we bet $\$ 1$ on red, we get $\$ 2$ back if red comes up. What's the expected value of our winnings?
- Let X be the value of winnings

$$
\mathbb{E}(X)=\sum_{a \in \operatorname{Range}(X)} a \cdot \operatorname{Pr}(X=a)
$$

Top Hat question (Join Code: 033357)

You roll two dice.
Let X_{1} be the number on the $1^{\text {st }}$ die, X_{2} be the number on the $2^{\text {nd }}$ die, and $X=\left|X_{1}-X_{2}\right|$. Find $\mathbb{E}(X)$.
A. 0
B. 1
C. $\frac{70}{36}$
D. 2
E. 3.5
F. None of the above

