Notes on Computer Theory Last updated: September, 2015

Turing Machines, diagonalization, the halting problem, reducibility

1 Turing Machines

A Turing machine is a state machine, similar to the ones we have seen until now, but with the
addition of an infinite memory space on which it can read and write. The memory is modeled as
an infinite tape of individual cells, and, in addition to the machine states that we have so far seen,
we will also include in our state information the location of a tape “head.” When determining each
state transition, the Turing machine can read the character at the location of the tape head, choose
to replace the character in that cell with some other character, and move the head right or left.

Formally, a Turing machine is made up of (I', @, gstart, ¢a, gr, 9) where @ is the finite set of states,
I" is the alphabet, which we assume includes a special “blank” symbol, used to represent empty
cells on the tape, gstart € @ is the start state, and ¢,, g, €) are special accept states and reject
states. § is a transition function, 6 : Q@ x I' = @ x I' x {L, R}. The input is the current state of
the machine, and the character currently in the cell where the tape head is found. The output is
a new state, a character that replaces the content of the current tape cell, and a direction for the
head to move.

Note that we require explicit accept and reject states for Turing machines, because, unlike with
automata, there is no specific halting condition with a Turing machine; the machine is allowed to
repeatedly scan the the memory tape, including the input to the computation. The accept and
reject states are trap states, and the machine halts its computation if it ever enters one of these
two states. As before, we are interested in the languages that are decided by Turing machines.
However, because the machine could possibly get stuck in an infinite loop, never entering either
halting state, a subtlety arises here that did not occur in the case of automata. If there exists any
input on which the Turing machine M fails to halt, then M does not decide any language. That is,
we say M decides the language L if and only if 1) M enters the accept state for every = € L, and
2) M enters the reject state for every x ¢ L. That said, even if M does run forever on some inputs,
it is still sometimes useful to describe the set of strings that M halts and accepts. We say that M
recognizes L, if M halts and accepts every « € L. Note that if M decides L, it also recognizes L,
but the opposite is not necessarily true.

It is also useful to note that Turing machines are capable of more than just deciding whether
a string belongs to a language. The machine can also halt with certain output on its tape. The
output of M on input z, denoted M(x), is the binary string contained on the tape (before the
trailing blank symbols) when the machine halts. (When there is no output tape, then the output is
‘17 if M halts in state g, and the output is ‘0’ is M halts in state ¢r.) A Turing machine M computes
a function f:{0,1}* — {0,1}* if M(z) = f(x) for all z. Assuming f is a total function, and so is
defined on all inputs, this in particular means that M halts on all inputs. We say a function f is
computable, if there exists some Turing machine that computes f.

1.1 Comments on the Model

(Jonathan Katz) Turing machines are not meant as a model of modern computer systems. Rather,
they were introduced (before computers were even built!) as a mathematical model of what compu-
tation is. Explicitly, the axiom is that “any function that can be computed in the physical world,
can be computed by a Turing machine”; this is the so-called Church-Turing thesis. (The thesis
cannot be proved unless one can formally define what it means to “compute a function in the phys-
ical world” without reference to Turing machines. In fact, several alternate notions of computation
have been defined and shown to be equivalent to computation by a Turing machine; there are no
serious candidates for alternate notions of computation that are not equivalent to computation by
a Turing machine. See [1] for further discussion.) In fact, an even stronger axiom known as the
strong Church-Turing thesis is sometimes assumed to hold: this says that “any function that can be
computed in the physical world, can be computed with at most a polynomial reduction in efficiency
by a Turing machine”. This thesis is challenged by notions of randomized computation that we
will discuss later. In the past 15 years or so, however, this axiom has been called into question
by results on quantum computing that show polynomial-time algorithms in a quantum model of
computation for problems not known to have polynomial-time algorithms in the classical setting.

There are several variant definitions of Turing machines that are often considered; none of these
contradict the strong Church-Turing thesis. (That is, any function that can be computed on any of
these variant Turing machines, including the variant defined earlier, can be computed on any other
variant with at most a polynomial increase in time/space.) Without being exhaustive, we list some
examples (see [1, 2] for more):

e One may fix I to only include {0,1} and a blank symbol.

e One can allow the machine to have k tapes, rather than 1 tape, with k£ tape heads reading at
each step. One can also allow a specially designated input tape and output tape.

e One may allow the tape heads to stay in place, rather than only moving left or right.
e One can allow the tapes to be infinite in both directions, or two-dimensional.

e One can allow random access to the work tapes (so that the contents of the ith cell of some
tape can be read in one step). This gives a model of computation that fairly closely matches
real-world computer systems, at least at an algorithmic level.

The upshot of all of this is that it does not matter much which model one uses, as long as one is ok
with losing polynomial factors in the runtime. On the other hand, if one is concerned about “low
level” time/space complexities then it is important to fix the exact model of computation under
discussion. (We will discuss runtime and space requirements later.) For example, the problem of
deciding whether an input string is a palindrome can be solved in time O(n) on a two-tape Turing
machine, but requires time ©(n?) on a one-tape Turing machine.

1.2 An example

We take an example directly out of Sipser’s book [3]. The turing machine M|, accepts the language
L = {0%"|n > 0}. My, uses the alphabet I" = {LJ,0,2}. Recall that the transition function maps
from Q@ xI' - @ x I x {L, R}. Make sure you understand how to map this formalism onto the
notation in the Figure below.

Figure 1: M, accepting language L = {02"|n > 0}, taken from Sipser’s book [3].

Intuitively, what this machine does is: a) it checks if there are no “0”s on the input tape (¢1) and
rejects if this is the case. Otherwise, it scrolls right until it finds the second “0” on the tape (g2)
and crosses this off by replacing it with an x. If it cannot find a second “0”, then there is exactly
one “0” remaining on the tape, and it accepts (also g2). After that, it crosses off every other “0”
(g3 and qq). If it reaches the end (i.e. by finding a LI) when there are an odd number of “0”s, it
rejects (qq), otherwise, it rewinds to the first “0” and begins again (¢g5). Note: there is one confusing
thing in this state diagram! When ¢; replaces the first “0” with a U, this is to help the machine
find the beginning of the tape during the rewinding. But you should think of this first “0” as still
remaining, and not as thought it has been crossed off.

2 Diagonalization

We will use a proof technique called diagonalization to demonstrate that there are some languages
that cannot be decided by a turing machine. This techniques was introduced in 1873 by Georg
Cantor as a way of showing that the (infinite) set of real numbers is larger than the (infinite) set
of integers. We will define what this means more precisely in a moment.

Definition 1 Given two sets, A and B, and a function f : A — B, we say that f is injective
(one-to-one) if it never maps two different elements from A onto the same element from B:Va,b €

Aa#b= f(a)# f(b)

Definition 2 Given two sets, A and B, and a function f : A — B, we say that f is surjective
(onto) if every value in B has a pre-image under f: Vb € B,3a € A s.t. f(a) =b.

If a function is both one-to-one and onto, then we say it is bijective, or a correspondence. Cantor
proposed that we can use a correspondence to compare the sizes of infinite sets, the same way would
finite sets. In particular, we are interested in determining whether some infinite set is the same

size, or larger than the set of natural numbers N = {1,2,3,...}. If a set S has a correspondence
with the natural numbers, i.e. f: N — S, we say that the set is infinitely countable.

Consider, for example, the set of even numbers {2,4,6,...}. We might think that this set
is smaller than the set of natural numbers, since it is fully contained within the set of natural
numbers. But we can also see that there is a correspondence mapping from N to the set of even
numbers: f(a) = 2a. (Verify for yourself that f is both one-to-one and onto.)

How about the set of positive rational numbers Q = {2 | m,n, € N'}? Our first intuition might
be that this set is “larger” than N, but in fact we can again build a correspondence between the
two sets. To do that, let’s start by building a matrix of all positive rational numbers, placing any
number with ¢ in the numerator in the ith row, and any number with j in the denominator in the
7th column.

11 1 11
I 2 3 41 5
2 2 2 2 2
I 2 3 41 5
3 3 3 3 3
1 2 3 41 5

Then, we go through the array, mapping each new item to one of the natural numbers. However,
when doing that, we don’t simply iterate over them row by row, or column by column, because
each row and column has infinite size, and we’d never get past the first row or column! Instead, we
move through the matrix along diagonals that go up from left to right: %, %, %, %, %, %, %, %, %, %, %
Note that in order to ensure that our mapping is one-to-one, we have to skip any repeated values.
So, for example, we skip %, because we already included % = % We also skipped %, % and % for the
same reasons. The correspondence, f, simply maps the a € N onto the ath element on this list.
f is one-to-one because we have only included one “copy” of each equivalent rational number on
the list, so no two natural numbers are mapped onto the same rational number. f is onto because

there is no (positive) rational number left off of our list.
Theorem 1 R is not countable.

Proof We show this by contradiction. Suppose that R were countable, and let f be the cor-
respondence with N. We will show that there exists some b € R that is not in the image of f,
violating the assumption that f is onto. To do this, we start by ordering all the elements of R ac-
cording to the values of their pre-images: f(1), f(2), f(3), f(4),.... Because f is a correspondence,
all elements of R must appear somewhere on this list. We now define a real number b € R that does
not appear on this list, demonstrating a contradiction. Recall that real numbers can be infinitely
long. Choose the ith digit of b such that it is different from the ith digit of f(i). Suppose that b
appears in the jth position of this list (i.e. that f(j) = b). But this cannot be true, because we
know that b differs from f(j) in the jth position! This is called diagonalization, because we define
the contradictory value by appropriately setting its value along the diagonal. |

2.1 Unrecognizable languages

We use a similar technique to prove that there exists some language that cannot be decided.
Actually, we can prove something even stronger. Recall, we say that a machine M recognizes L if it

halts and accepts for every x € L, and for every x ¢ L, it either halts and rejects, or it runs forever.
We will show that there exist languages that aren’t even recognizable. We show this by proving
that there are more languages than Turing machines: the set of Turing machines is countable, but
the set of languages is not! We use the following lemmas and corollaries in our proof.

Lemma 2 Any set X C N is countable.

Corollary 3 For any alphabet 33, the set of strings X is countable.
Corollary 4 The set of all valid Turing machines is countable.
Lemma 5 The set of infinite binary sequences is uncountable.

The proof of this lemma is essentially identical to the proof that R is not countable, so we omit it.
Note that the key difference between the statement of Corollary 3 and this one is that is that no
string in the set described in Corollary 3 can have infinite length, even though we place no limit
on the size that any string in that set can have. In other words, for any string w € X*, there exists
some constant ¢ such that w = ¢

Theorem 6 There exist languages that are not Turing recognizable.

Proof We already observed that the set of all Turing machines is countable. To show that the
set of all languages is not countable, we give a correspondence to the set of infinite binary strings,
and rely on the second lemma above to complete the proof. To describe this correspondence, we
define a function f mapping each infinite binary string onto some language. We start with a fixed
ordering on all binary strings: we list all strings of length 1 in lexicographic order, followed by all
strings of length 2 in lexicographic order, etc. Then, for some infinite binary string w, we define
the language f(w) by including the jth binary string on this list in the language f(w) if and only if
the jth bit of w is 1. To see that f is one-to-one, consider two infinite binary strings w # w’, and,
suppose they differ on the jth bit. f(w) # f(w'), since the two languages differ on whether they
include the jth string from our canonical list of all strings. It is easy to verify that every language
has a pre-image under f by simply defining the inverse function: given some language L, we can
find w such that f(w) = L by starting with the same canonical ordering on all strings, and letting
the jth bit of w be 1 iff the jth string is in L.

Since there are more languages than there are Turing machines, it follows, at least intuitively,
that there exists some language that is not recognized by any Turing machine. To formalize this,
we actually require an additional lemma.

Lemma 7 Let S be some infinite set, and let f be a surjective (onto) function f : N — S. Then
there exists a bijection g : N — S.

Proof fisonto S, but it is not necessarily one-to-one, which means there exist a,b € N s.t. a # b
and f(a) = f(b). Intuitively, we want to “re-map” f on one of these values so that they no longer
collide. Since we have infinite space to deal with, we can simply choose the next available value,
and “shift” everything down. More formally, to define g, we start by ordering the elements of S
as follows. For every s € S, let m(s) = min({j | f(j) = s}). Sort the elements of S according to
m(s). This ordering is complete, because f is a function, each element of A/ can only be mapped
to a single element of S under f: if s; # s;, but m(s;) = m(s;), it would follow that there exists

some k such that f(k) = s;, and f(k) = s;. After ordering the elements of S this way, denote the
ordered list as s1, s2,.... We define g(i) = s;.

We need to show that g is a bijection. To see that it is injective, note that none of the elements
in S appear in our ordered list more than once, since m(s) is unique for each s. To see that g is
surjective, note that because f is surjective, m(s) is well defined for every s € S, so every element
in S is included somewhere on our list; it follows that every element in .S has a pre-image under g.

|

Consider the obvious function mapping the set of Turing machines onto the set of recognizable
languages. (This function is not a correspondence — can you see why? — but it will suffice for
our proof.) This function cannot be onto the set of all languages, or else, by the previous lemma,
it would follow that the set of languages is countable. It follows that there exists some language
without any pre-image under this function; this language is not recognized by any Turing machine.

|

2.2 Universal Turing Machines and Uncomputable Functions

(Jonathan Katz) An important observation (one that is, perhaps, obvious nowadays but was revo-
lutionary in its time) is that Turing machines can be represented by binary strings. In other words,
we can view a “program” (i.e., a Turing machine) equally well as “data”, and run one Turing
machine on (a description of) another. As a powerful example, a universal Turing machine is one
that can be used to simulate any other Turing machine. We define this next.

Fix some representation of Turing machines by binary strings, and assume for simplicity that
every binary string represents some Turing machine (this is easy to achieve by mapping badly formed
strings to some fixed Turing machine). We will use (M) to denote the binary representation of the
machine M. Consider the function f((M),x) = M(z). Is f computable? Perhaps surprisingly, f
is computable. We stress that here we require there to be a fixed Turing machine U, with a fixed
alphabet and a fixed set of states, that can simulate the behavior of an arbitrary Turing machine M
that may use any number of states, and any size alphabet! A Turing machine computing f is called
a uniwersal Turing machine.

Note that the function f({(M),z) = M(x) is a partial function, since in this context the given
Turing machine M may not halt on the given input x and we leave f undefined in that case. To
simplify things, we will consider the total function

1 if M(z) halts and accepts within ¢ steps,
0 otherwise

P 1t = {
whose computability is closely linked to that of f.

Theorem 8 There exists a Turing machine U such that (1) U((MY),z,1%) = M(z) if M halts on
x within t steps, and 0 otherwise. Furthermore, (2) for every M there exists a constant ¢ such that
the following holds: for all z, if M (z) halts within t steps, then U({(M) ,xz,1%) halts within c-tlogt
steps.

We do not prove this theorem here, and instead refer to Arora and Barak [1]. Intuitively,
though, the idea is that U can maintain the current state of M on its own work tape. U is given
the binary representation of M as input, which includes M’s transition function, §. At each step,

U scans its work tape to fetch the current state of M, and the character currently pointed to by
M’s tape head. U can then scan the description of §, and compute how M would update its own
state. It then returns to the portion of the tape maintaining M’s state and updates it accordingly.
After each step, U will decrement a counter that starts at ¢: if the counter ever reaches 0, U will
halt and reject.

Another natural possibility is to consider the (total) function

_ [1 if M(z) halts with output 1
Tran((M),z) = { 0 otherwise

)

What about frq;:? Is it computable? By again viewing Turing machines as data, we can show that
this function is not computable!

Theorem 9 The function frq: is not computable.

Proof Say there is some Turing machine My computing frq:- Then we can define the following
machine M*((M)):

On input (M), compute Mpq((M),(M)). If the result is 1, output 0; otherwise out-
put 1.

Intuitively, M* is given the description of a machine, (M). It duplicates the input, running Mjpq;
on the duplicate input. Recall that My, looks at its first input, interprets it as a machine, and
runs that interpreted machine on the 2nd input. In this case, the second input happens to also be
the description of a machine. So running Mpq;; on the input ((M),(M)) amounts to asking “does
M halt and accept its own description?” A strange, but perfectly reasonable question!

Now, consider and even stranger, but still perfectly reasonable question. What happens when
we run M* on itself? Consider the possibilities for the result M*((M*)):

e Say M*((M*)) = 1. By the definition of M*, this implies that Mpq((M*), (M*)) = 0. But,
by the definition of My, that means the first input, (M*), does not halt and accept the
second input, (M*). In other words, M*((M*)) does not halt with output 1, a contradiction.

e Say M*((M*)) = 0. By the definition of M*, this implies that Mpq;((M*),(M*)) = 1. But,
by the definition of Mpg, that means the first input, (M*), does halt and accept the second
input, (M*). In other words, M*((M*)) halts with output 1, a contradiction.

e It is not possible for M*((M*)) to never halt, since My ((M*),(M*)) is a total function,
and therefore halts on all inputs.

We have reached a contradiction in all cases, implying that Mp,;; as described cannot exist. |

Remark: The fact that fjq; is not computable does not mean that the halting problem cannot
be solved “in practice”. In fact, checking termination of programs is done all the time in industry.
Of course, they are not using algorithms that are solving the halting problem — this would be
impossible! Rather, they use programs that may give false negatives, i.e., that may claim that
some other program does not halt when it actually does. The reason this tends to work in practice
is that the programs that people want to reason about in practice tend to have a form that makes
them amenable to analysis.

We can actually visualize the proof that the halting problem cannot be decided as an example of
diagonalization. To prove that Ly is not decidable, we begin by assuming that it My, decides it,
and we list the output of this machine on all possible inputs. Recall that it takes two inputs: (M)
and w, where the first is the description of a turing machine, and the second is interpreted as
the input to M. We will list the outputs of My, by listing all possible Turing machines on one
side of a matrix, and all of their descriptions on the other side of a matrix. (Note that there is a
correspondence mapping the set of Turing machines to the set of finite-length strings, so the second
input to Mpq¢ can always be interpreted as the description of some Turing machine. However, this
point is not essential for the proof: we’re simply only interested in the strings that represent Turing
machines and therefore only list those along the top row.)

We can now list the output of Mp,q:

(My) (Mz) (Ms) (M)
My @ accept accept reject reject
Ms : accept reject reject reject

Ms : reject accept reject accept

We defined M* to run My ((M) , (M)) and do the opposite. Since M* is a valid turing machine,
it must appear somewhere on the list we described above. We fill in its output in the table below:

(My) (Mz) (Mz) (My)

My : accept accept reject reject ... accept
My : accept reject reject reject ... reject
Ms : reject accept reject accept ... accept
reject
M* . reject accept accept reject ... 177

Finally, we give a constructive proof that some languages cannot be recognized. (Note that our
previous proof, which used the fact that the set of Turing machines is countable, did not leave us
with the description of an actual language; it was only a proof of existence of such a language.)
Consider the language L, which is the complement of Lp,;. In other words, Lpq: = {(M),x |
M does not halt and output 1 on input x}. We will prove that this language is not recognizable
by any Turing machine. We begin with the following theorem.

Theorem 10 A language is decidable if and only if both it and its complement are Turing recog-
nizable.

Proof Let L be some decidable language. It follows immediately from the definitions that L is
recognizable. To see that L is also recognizable, let M7, be the machine that decides L, and define
M, as the machine that runs M and reverses its output. In the other direction, suppose L and L
are recognizable by My, and M, respectively. To decide L, we can construct a Turing machine that
runs both of these machines in parallel, alternating the steps of each computation. (The alternation
of steps is important, in case either one of these machines never terminates.) On input z, if My (z)
halts with output 1, then halt and output 1. If M, halts and outputs 1, halt and output 0. |

We have proven that Ly, is not decidable. However, note that it is recognizable, since on input
((M),x) we can always simulate M on x: if M halts and outputs 1, then we do the same. (The
fact that it is not decidable means that it might not halt when M does not accept x; in this case,
our simulation would not halt either.) It follows that Ly is not recognizable: otherwise, by the
previous theorem, Lpq;+ would be decidable.

3 Reducibility

Consider the following language L,,r = {{M), = | M halts on input x and outputs either 0 or 1}.
This looks very similar to Lpq¢, which we know is undecidable, so it is not surprising that this
language is also undecidable. But how do we prove that? We can do it through a reduction: we
demonstrate that if there is a Turing machine M, r that decides L, g, then there is a Turing
machine Mjp,;; that decides Lp,;;. Since we already know that the latter statement is untrue, it
follows that the former statement is untrue.

Theorem 11 The language L4, is undecidable.

Proof We prove it by constructing Mpq;: that does the following.
Mpa((M),) :

1. Simulate My/r((M),).

(a) If it outputs 0, halt and output 0.
(b) If it outputs 1, simulate M on input x until it halts. Output whatever M outputs.

Theorem 12 The language Lsome = {(M) | M is a Turing machine that accepts some string } is
undecidable.

Proof We again assume that there exists some TM Mgome deciding Leome, and demonstrate that
this gives rise to a TM My that decides Lpq;:. We describe My as follows.
Mpare((M), x) :

1. Write down a description of a TM M’ that modifies the behavior of M as follows.
M.

(a) On input y # z, reject.
(b) On input y = x, run M(y) and output whatever it outputs.

2. Run Msome({M')), and output whatever it outputs.

Note that (M’') described in the previous reduction has a particular property of interest. If
((M),x) € Lpqy, then (M') accepts some string (namely, x), whereas if ((M),x) ¢ Lpqy, then
(M') rejects every string. There is a nice way of generalizing the reductions described above, using
what is called a mapping reduction.

Definition 3 Let Ly and Lo be two languages over alphabet . A function f : ¥* — ¥* is
a mapping reduction from L1 <., Lo if [is computable by a Turing machine, and Yr € ¥,
f(z) € Ly x € L.

Now, to reduce L; to Lo, we can just describe a mapping reduction, f. The rest of the proof
follows generically: suppose that My decides Ly. Then, define M; that runs Ma(f(x)) and outputs
the result. It is clear that M; decides Lj. If it is known that L; is undecidable, then, since f is
shown to exist, it follows that Ms must not exist, and that Lo is not decidable either.

Let’s revisit the reduction from Lp.; to Ly /R and this time prove the same result using a
mapping reduction, f. We need to give a computable function f such that

((M),z) € Lpait < f((M),x) € La/g

Note that f in this case outputs the description of a Turing machine and its input. Specifically, on
input ((M),x), f outputs a ((M'), z), where M’ does the following.
M'((M), x) :

1. Simulate M on input z.

(a) If it outputs 1, halt and output 1.
(b) If it outputs 0, loop forever.

To argue that reduction function, f, is computable by a Turing machine, we simply have to
argue that a Turing machine can take ((M),z) as input, and reliably halt with (M’) as output
on its tape. Note that the Turing machine that does this, thereby computing f, does not have to
simulate M. It just needs to take the description of M, (denoted (M)), and modify the description
of M to contain the extra loop in the case of rejection. Modifying the code of (M) can be done
reliably, without risk of running forever, so f is computable. (Simulating M would give no such
guarantee, since M might run forever.)

Let’s now do the same with the reduction we built from Lpgs to Leome. f((M),x) = (M),
where M’ is exactly as previously described: it rejects on all strings y # x, and runs M (y) when
y=uwax If (M),z) € Lpgt, then (M') € Lsome, and if ((M),x) ¢ Lpay, then (M') ¢ Leome. To
argue that f is computable, note that it only needs to modify the description of (M) to perform
the extra comparison, x == y, before proceeding to execute the original code of M.

Theorem 13 The language Lpg = {((M1), (Ma)) | L(My) = L(Ma)} is undecidable. (Here, we
are L(M) to denote the language decided by machine M.)

10

Proof We first define a language Ly = Lsome. That is, Ly = {(M) | M does not accept any string}.
Note that Lg is not decidable (prove this to yourself). We show that Lgq is not decidable by pro-
viding a mapping reduction from Ly to Lgg. Since Ly is undecidable, it follows that Lgg is also
undecidable. We have to give a computable function f that maps = € Ly to 2’ € Lgg, and maps
x ¢ Ly to 2’ ¢ Lpg. The function is as follows. Let (Ms) be the description of a turing machine
that rejects all strings. f((M1)) = ((M1), (M3)). To see that this is a good mapping reduction, first
we argue that f is computable. This follows because f simply needs to write the description of 2
Turing machines to its output tape: one machine description it copies from its own input tape, and
the other is a hard-coded description, (Ms), which can just be stored in the states of the machine
computing f.

We now argue that it preserves membership as it is supposed to. Suppose x € Ly. This means
that x describes a machine that accepts no inputs. In that case, the output of f is the description of
two machines, both of which accept no input, so f(x) € Lgg. On the other hand, suppose x ¢ Ly.
In that case, x describes a machine that accepts some input. Since f outputs (x, (Ma)), where x
describes a machine that accepts some input, and (M5) describes a machine that accepts no input,
it follows that the output of f is not in Lgg. |

The existence of a mapping reduction suffices to show that Lgg is not decidable. To repeat
why this is, note that we can complete the argument generically, as follows. Suppose Mpq decides
Lgg. Then, we claim that the following machine, My, decides Ly.

My((M)) :

1. Run Mgq(f((M))), and output whatever it outputs.

References

[1] S. Arora and B. Barak. Computational Complezity: A Modern Approach. Cambridge University
Press, 2009.

[2] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and Computation.
Addison-Wesley Publishing Company, 1979.

[3] M. Sipser. Introduction to the Theory of Computation (2nd edition). Course Technology, 2005.

[4] R. Kannan. Towards separating nondeterminisn from determinisn. Math. Systems Theory 17(1):
29-45, 1984.

[5] W. Paul, N. Pippenger, E. Szemeredi, and W. Trotter. On determinism versus non-determinisn
and related problems. FOCS 1983.

[6] R. Santhanam. On separators, segregators, and time versus space. IEEE Conf. Computational
Complezity 2001.

11

