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Computer-Generated Residential Building Layouts
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Figure 1: Computer-generated building layout. An architectural program, illustrated by a bubble diagram (left), generated by a Bayesian
network trained on real-world data. A set of floor plans (middle), optimized for the architectural program. A 3D model (right), generated
from the floor plans and decorated in cottage style.

Abstract

We present a method for automated generation of building layouts
for computer graphics applications. Our approach is motivated by
the layout design process developed in architecture. Given a set
of high-level requirements, an architectural program is synthesized
using a Bayesian network trained on real-world data. The architec-
tural program is realized in a set of floor plans, obtained through
stochastic optimization. The floor plans are used to construct a
complete three-dimensional building with internal structure. We
demonstrate a variety of computer-generated buildings produced by
the presented approach.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

Keywords: procedural modeling, architectural modeling,
computer-aided architectural design, spatial allocation, data-driven
3D modeling

1 Introduction

Buildings with interiors are increasingly common in interactive
computer graphics applications. Modern computer games feature

∗e-mail:{pmerrell,eschkufz,vladlen}@cs.stanford.edu

sprawling residential areas with buildings that can be entered and
explored. Social virtual worlds demand building models with cohe-
sive internal layouts. Such models are commonly created by hand,
using modeling software such as Google SketchUp or Autodesk 3ds
Max.

This paper presents a method for automated generation of buildings
with interiors for computer graphics applications. Our focus is on
the building layout: the internal organization of spaces within the
building. The external appearance of the building emerges out of
this layout, and can be customized in a variety of decorative styles.

We specifically focus on the generation of residences, which are
widespread in computer games and networked virtual worlds. Res-
idential building layouts are less codified than the highly regular
layouts often encountered in schools, hospitals, and office build-
ings. Their design is thus particularly challenging, since objectives
are less precisely defined and harder to operationalize. Residential
layouts are commonly designed in an iterative trial-and-error pro-
cess that requires significant expertise (Section 3).

Our approach to computer-generated building layout is motivated
by a methodology for building layout design commonly encoun-
tered in real-world architectural practice. The input to our tool is
a concise (and possibly incomplete) list of high-level requirements,
such as the number of bedrooms, number of bathrooms, and ap-
proximate square footage. These requirements are expanded into
a full architectural program, containing a list of rooms, their adja-
cencies, and their desired sizes (Figure 1, left). This architectural
program is generated by a Bayesian network trained on real-world
data. A set of floor plans that realizes the architectural program is
then obtained through stochastic optimization (Figure 1, middle).
The floor plans can be used to construct a three-dimensional model
of the building (Figure 1, right). Taken together, the approach pro-
vides a complete pipeline for computer-generated building layouts.

Since our method is designed for computer graphics applications,
we focus on qualitative visual similarity to real-world residential
layouts. We have found that the visual appearance of building lay-
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Figure 2: Artifacts from an architecture practice, illustrating the design of a real-world residence. The client’s requirements are refined into
an architectural program, illustrated by a bubble diagram (left). The architectural program is used to generate a set of floor plans (middle).
The floor plans are used to create a three-dimensional visualization (right, top). Ultimately, construction of the physical building begins
(right, bottom). Materials from Topos Architects, reproduced with permission.

outs arises out of complex considerations of human comfort and so-
cial relationships. Despite decades of architectural research, these
considerations have resisted complete formalization. This moti-
vates our decision to employ data-driven techniques for automated
generation of visually plausible building layouts.

In summary, this paper makes a number of contributions that have
not been previously demonstrated:

• Data-driven generation of architectural programs from high-
level requirements.

• Fully automated generation of detailed multi-story floor plans
from architectural programs.

• An end-to-end approach to automated generation of building
layouts from high-level requirements.

2 Related Work

The layout of architectural spaces in the plane is known as the spa-
tial allocation problem. Traditionally, automated spatial allocation
aimed to assist architects during the conceptual design process, and
focused on producing arrangements of rectangles in the plane, or
on the allocation of grid cells. March and Steadman [1971] and
Shaviv [1987] review the first 30 years of spatial allocation algo-
rithms. Many classical approaches attempt to exhaustively enu-
merate all possible arrangements with a specified number of rooms
[Galle 1981]. The exponential growth in the number of possible ar-
rangements makes this approach infeasible as the size of the prob-
lem increases. Other approaches attempt to find a good arrange-
ment using greedy local search over possible partitions of a regular
grid [Shaviv and Gali 1974]. The specific problem of laying out
a set of rectangles with given adjacencies in the plane admits el-
egant graph-theoretic formulations [Lai and Leinwand 1988]. To
date, the application of spatial allocation algorithms has been lim-
ited to highly codified and regular architectural instances, such as
warehouses, hospitals, and schools [Kalay 2004, p. 241].

In light of significant challenges with automated spatial allocation,
researchers have explored algorithms that locally tune an initial lay-
out proposed by an architect. Schwarz et al. [1994] developed such
a system, inspired by VLSI layout algorithms [Sarrafzadeh and Lee
1993]. Specifically, given a list of rooms and their adjacencies, as
well as their rough arrangement in the plane, this arrangement is nu-
merically optimized for desirable criteria. However, the complete
specification of rooms and adjacencies, as well as the initial lay-
out, are left to the architect. A similar class of optimization prob-
lems, also operating on collections of rectangles in the plane, is
known to admit a convex optimization formulation [Boyd and Van-
denberghe 2004]. In this case as well, the optimization merely tunes

an existing arrangement that must be created manually. A review of
optimization techniques for facilities layout is provided by Liggett
[2000].

More recently, Michalek et al. [2002] generate layouts for rectangu-
lar single-story apartments by searching over the space of connec-
tivity relationships between rooms. This search is performed using
an evolutionary algorithm that does not take into account real-world
data or any user requirements. The approach is primarily intended
for generating a variety of candidate layouts that can be refined by
an architect. Arvin and House [2002] apply physically based mod-
eling to layout optimization, representing rooms and adjacencies as
a mass-spring system. This heuristic has only been demonstrated
on collections of rectangles and is sensitive to the initial conditions
of the system.

Harada et al. [1995] introduced shape grammars to computer
graphics and developed a system for interactive manipulation of
architectural layouts. Shape grammars were subsequently applied
to procedural generation of building façades [Müller et al. 2006].
Structural feasibility analysis has been introduced in the context
of masonry buildings [Whiting et al. 2009]. Techniques were de-
veloped for texturing architectural models [Legakis et al. 2001;
Lefebvre et al. 2010], and for creating building exteriors from
photographs and sketches [Müller et al. 2007; Chen et al. 2008].
Advanced geometric representations and algorithms were devel-
oped for generating architectural freeform surfaces [Pottmann et al.
2007; Pottmann et al. 2008]. However, none of these techniques
produce internal building layouts from high-level specifications.

Given a complete floor plan, a variety of approaches exist for ex-
truding it into a 3D building model [Yin et al. 2009]. Automated
generation of realistic floor plans is, however, an open problem.
Two heuristic approaches for generating building layouts have been
proposed in the computer graphics literature. Hahn et al. [2006]
generate grid-like internal layouts through random splitting with
axis-aligned planes. Martin [2005] outlines an iterative approach to
building layout generation, but results are only demonstrated for ar-
rangements of six rectangles. A later poster [Martin 2006] demon-
strates a 9-room layout.

In summary, no approach has been proposed that can generate
realistic architectural programs from sparse requirements, and no
previous work generates detailed building layouts from high-level
user specifications. Our work contributes a data-driven approach
to automated generation of architectural programs, based on prob-
abilistic graphical models. This enables an end-to-end pipeline for
computer-generated building layouts, patterned on the layout de-
sign process employed in real-world architecture practices.
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3 Building Layout Design

A number of formalisms have been developed in architectural the-
ory that aim to capture the architectural design process, or particular
architectural styles [Mitchell 1990]. These models have primarily
been used to derive schematic geometric arrangements, rather than
detailed floor plans. Formalisms such as shape grammars have so
far not yielded models able to produce complete building layouts,
akin to ones created by architects in practice [Stiny 2006]. The
underlying difficulty is that real-world building layout design does
not deal exclusively with geometric shapes and their arrangements.
A central role in building layout is played by the function of indi-
vidual spaces within the building, and the functional relationships
between spaces [Hillier and Hanson 1989]. In practice, building
layout design relies on a deep understanding of human comfort,
needs, habits, and social relationships.

Numerous guidelines have been proposed for the building layout
process [Alexander et al. 1977; Susanka 2001; Jacobson et al.
2005], and a few are near-universal in practice. One is the pri-
vacy gradient, which suggests placing common areas, such as the
living room, closer to the entrance, while private spaces, such as
bedrooms, should be farther away. Another concerns room shapes,
which should be largely convex and avoid deep recesses, due to
the instinctive discomfort sometimes triggered by limited visibility
in concave spaces. On the whole, however, the proposed rules of
thumb have proved too numerous and ill-specified to be success-
fully modeled by a hand-designed rule-based system.

Our approach is to apply machine learning techniques to infer as-
pects of building layout design from data. In order to derive the
methods presented in this paper, we have studied the building layout
process as it is carried out by residential architects in practice. The
balance of this section summarizes this process, which serves as the
model for our approach. The presented summary is distilled from
interviews and on-site observations at three residential architecture
practices in a large suburban area, as well as from published ref-
erences [Wertheimer 2009; Kalay 2004; Séquin and Kalay 1998].
While there is great variability in the design methods of different
architects, this summary presents some significant commonalities.

The first challenge in the process is to expand the incomplete and
high-level requirements given by the client into a detailed specifi-
cation for the residence. “ ‘I want a three bedroom house for under
$300,000’ is a typical initial problem statement” [Kalay 2004, p.
206]. From these initial requirements, the architect produces a list
of rooms and their adjacencies. An adjacency indicates direct ac-
cess, such as a door or an open wall. At this stage, the architect
often sketches a number of bubble diagrams, in which rooms are
represented by ellipses or rounded rectangles, and adjacencies are
represented by edges connecting the rooms (Figure 2, left).

Through prototyping with bubble diagrams, the list of rooms and
their relationships is progressively refined. The architect toggles
between floors, and specifications for one floor are not finalized un-
til the other floors are pinned down. This is a time-consuming iter-
ative process that is often considered to be among the most creative
aspects of architectural design. It culminates with an architectural
program, a complete list of internal spaces on each floor, their adja-
cencies, and their rough sizes. Multi-story spaces, such as stairwells
and atria, are indicated as such.

After the architectural program is vetted by the client, the architect
creates a schematic plan, or concept sketch. This is a rough planar
layout of the spaces on each floor, such that adjacent spaces are next
to each other, and the spaces have roughly the desired sizes. This
stage involves significant trial-and-error, and some architects liken
it to “assembling a puzzle.” In the final stage of the process, the

Feature Domain
Total Square Footage Z
Footprint Z× Z
Room {bed, bath, . . . }
Per-room Area Z
Per-room Aspect Ratio Z× Z
Room to Room Adjacency {true, false}
Room to Room Adjacency Type {open-wall, door}
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Figure 3: Representing a distribution of architectural programs
with a Bayesian network. The table (top) summarizes the types
of features that were extracted from real-world data. An example
Bayesian network, trained on a hypothetical corpus of mountain
cabins, is illustrated below. Note that this is a didactic example:
networks trained on real-world architectural programs are much
larger.

schematic plan is refined into a detailed floor plan for each floor. At
this stage, wall segments are pinned down and doors, windows, and
open walls are precisely specified (Figure 2, middle).

While the external appearance of the house is considered during the
layout design process, practicing residential architects often regard
the exterior style to be largely independent of the internal building
layout. Floor plan design is commonly governed by considerations
of comfort and accessibility. Exterior trim, as well as distinctive
windows and entrances, are applied to customize the house in styles
such as “American Craftsman” or “Colonial Revival.”

4 Data-driven Architectural Program-
ming

The first stage of our building layout pipeline expands a sparse set
of high-level requirements – such as the desired number of bed-
rooms, bathrooms, and floors – into a complete architectural pro-
gram. The architectural program specifies all the rooms in the
building, each room’s desired area and aspect ratio, and all adja-
cencies between rooms.

Real-world architectural programs have significant semantic struc-
ture. For example, a kitchen is much more likely to be adjacent to
a living room than to a bedroom. As another example, the presence
of three or more bedrooms increases the likelihood of a separate
dining room. Such relationships are numerous and are often im-
plicit in architects’ domain expertise. It is not clear how they can
be represented with a hand-specified set of rules, or with an ad-hoc
optimization approach.
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A data-driven technique is therefore more appropriate for captur-
ing semantic relationships in architectural programs. A natural ap-
proach would be to encode the existence probability of any room
type and any adjacency between rooms of specific types. We could
then sample a set of rooms and a set of adjacencies between them.
However, this approach does not take into account conditional de-
pendencies between multiple rooms and adjacencies, and can gen-
erate unrealistic architectural programs. For example, the frequent
occurrence in the data of a bedroom-bathroom adjacency and a
kitchen-bathroom adjacency could lead to architectural programs
being generated with kitchen-bathroom-bedroom paths, which have
very low likelihood.

To learn structured relationships among numerous features in ar-
chitectural programs, we use probabilistic graphical models [Koller
and Friedman 2009]. Specifically, we train a Bayesian network on
a corpus of real-world programs. The Bayesian network compactly
represents a probability distribution over the space of architectural
programs. Once the Bayesian network is trained, we can sample
from this distribution. Crucially, we can also fix the values of any
subset of features – such as number of bedrooms and bathrooms,
total square footage, and areas of specific rooms – and generate
complete architectural programs conditioned on those values. Any
subset of variables in the Bayesian network can be used as a set of
high-level requirements.

4.1 Bayesian Networks

For the purpose of this work, we manually encoded 120 architec-
tural programs from an extensive catalogue of residential layouts
[Wood 2007]. Figure 3 (top) summarizes the attributes that were
recorded for each instance. Globally, we recorded total square
footage and bounding footprint. On a per-room basis, we recorded
type, square footage, and aspect ratio of bounding rectangle. On an
inter-room basis, we recorded whether rooms are adjacent, and if
so, whether the adjacency is open-wall or mediated by a door. Con-
tinuous attributes, such as room area, were quantized to simplify
parameter estimation in structure learning (Section 4.2).

The space of architectural programs encoded in this fashion is ex-
tremely large. Inferring a probability distribution over this space,
even given hundreds of exemplars, is a challenging task. Fortu-
nately, our data is highly structured: there is a strong statistical
relationship between different features. Room type, for instance,
is a strong predictor of the room’s square footage and aspect ra-
tio. We leverage this structure to make the inference tractable using
Bayesian networks.

To illustrate the application of Bayesian networks to architectural
programming, Figure 3 (bottom) shows a Bayesian network for
representing the underlying distribution of a hypothetical corpus
of mountain cabins. We assume that the corpus consists entirely
of cabins containing a living room and an optional kitchen. All the
types of features present in Bayesian networks used in this work are
illustrated in the example.

The node Total Square Footage encodes the distribu-
tion over square footages observed in the corpus. The node
Footprint encodes the distribution over bounding footprints.
The incoming edge from Square Footage indicates a con-
ditional dependence on its distribution: large footprints are
more likely given large square footage. The same is true of
the nodes Kitchen Exists and Living Room-Kitchen
Adjacency Type: kitchens are more likely given larger square
footages, and a door (rather than an open wall) between the rooms
is more likely given a square footage that is larger still. Although
the example network contains a single existence node for each of
the living room and kitchen, Bayesian networks for more complex
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Network Nodes Edges Training time (s)
Single-story 42 33 1452
Two-story 82 61 4407
Three-story 120 92 8293

Figure 4: Bayesian network structure learning. Top: Log-
likelihood score as a function of training iterations, for each net-
work. Bottom: Total training times.

corpuses will have multiple existence nodes for some room types,
such as bedrooms. Finally, the two incoming edges to the Living
Room-Kitchen Adjacency Exists node suggest a func-
tional dependence on the existence of both a living room and a
kitchen. The remainder of the example network is structured simi-
larly.

Given a trained Bayesian network and a set of high-level require-
ments, we can automatically generate architectural programs that
are compatible with the requirements. The requirements are used
to fix the values of corresponding variables in the network. Values
for the other variables are generated by sampling from the network.
The distributions on the unobserved variables, which are induced
by the values of the observed variables, can be obtained using the
junction tree algorithm [Lauritzen and Spiegelhalter 1988].

4.2 Structure Learning

Given a set of variables and a corpus of training data, we need to
construct a Bayesian network on the variables, such that the struc-
ture and parameters of the network maximize the posterior proba-
bility of the structure given the data. Structure learning is NP-hard
and exact algorithms are super-exponential in the number of vari-
ables. We use a standard local search heuristic for structure search,
which explores the space of possible structures by adding, remov-
ing, or flipping a single edge in the network at a time. The algorithm
attempts to maximize the Bayesian score

log p(D,Sh) = log p(D|Sh) + log p(Sh),

where D is the training data and Sh is a model structure. The prior
p(Sh) is taken to be uniform. The marginal likelihood p(D|Sh)
is approximated using the Bayesian information criterion. Further
details on this procedure are provided by Heckerman [1999].

The amount of training data required for structure learning grows
rapidly with the number of variables in the network. For this rea-
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Figure 5: Bubble diagrams that visualize architectural programs generated by a Bayesian network after 10 structure learning iterations (a),
100 iterations (b), and 1000 iterations (c). The diagram in (a) features a low-likelihood clique between a dining room, living room, bedroom,
and hallway. The diagram in (b) is missing a kitchen. The diagram in (c) features plausible connectivity and reflects the privacy gradient. An
architectural program designed by an architect is visualized in (d) for comparison. Bold edges indicate open-wall connections.

son, we use known properties of architectural programs to mini-
mize the number of variables exposed to structure learning. Specif-
ically, to simplify the learning of the dependence between room
areas and room aspect ratios, we omit the aspect ratio variables
during structure learning and add them to the learned network in
an automatic post-processing step. In the case of the cabin exam-
ple, the nodes Living Room Aspect Ratio and Kitchen
Aspect Ratio would have been omitted from training, and
connected respectively to Living Room Area and Kitchen
Area after the rest of the structure is learned.

Furthermore, the structure of residential architectural programs
varies significantly with the number of floors. Singe-story cottages,
for example, have very different programs from three-floor man-
sions. While it is possible to train a single network to encode this
variability using hidden variables, the amount of required training
data is prohibitive. For this reason, we train separate networks for
single-story, two-story, and three-story residences. The size of the
training set for each network is 40, 50, and 30 real-world architec-
tural programs, respectively.

Figure 4 (top) illustrates the training of each network. Percent of fi-
nal log-likelihood score is plotted as a function of structure learning
iterations. Figure 4 (bottom) shows corresponding training times.
Performance was measured on an Intel Pentium D clocked at 2.8
GHz. Our implementation uses the open-source Probabilistic Net-
works Library [Eruhimov et al. 2003]. Figure 5 visualizes architec-
tural programs generated by a network being trained on the corpus
of single-story residences. As the training progresses, the network
learns the structure of the data and generates more realistic archi-
tectural programs.

5 Floor Plan Optimization

Once an architectural program is generated, it is turned into a build-
ing layout: a detailed floor plan for each floor. These floor plans
must realize the program and feature well-formed internal and ex-
ternal shapes. We compute these floor plans by optimizing over the
space of possible building layouts. Different floors are optimized
together to ensure mutual coherence.

A space of floor plans is typically parameterized by the horizon-
tal and vertical coordinates of the rectilinear segments that form
the shape of the plan [Schwarz et al. 1994; Sarrafzadeh and Lee
1993]. Since the number of segments is not constant across floor
plans that conform to a given architectural program, the space we

want to optimize over has varying dimensionality. Thus global op-
timization algorithms like Covariance Matrix Adaptation – which
have recently been applied to a number of highly multimodal op-
timization problems in computer graphics [Wampler and Popović
2009] – cannot be used. We have successfully experimented with
Reversible jump Markov chain Monte Carlo [Green 1995] for op-
timizing over the space of layouts. However, the detailed balance
condition and the associated dimension matching functions com-
plicate both the implementation and the exposition. In practice,
we have found the simple Metropolis algorithm [Press et al. 2007],
which has been widely used for the related problem of VLSI layout,
to be sufficiently effective. Unlike greedy techniques, the Metropo-
lis algorithm can accept moves that increase the cost function, in
order to escape from local modes.

Specifically, define a Boltzmann-like objective function

f(x) = exp(−βC(x)),

where x is a given building layout, C is the cost function defined in
Section 5.2, and β is a constant. At each iteration of the algorithm, a
new building layout x? is proposed and is accepted with probability

α(x?|x) = min

„
1,
f(x?)

f(x)

«
= min

`
1, exp

`
β(C(x)− C(x?)

´´
.

The optimization begins from a canonical high-cost configuration,
in which equally-sized rectangular rooms are packed on a grid on
each floor. Although we have found the algorithm to perform well
with a set value of β, annealing β over time facilitates a more rapid
exploration of the space [White 1984].

The floor plan optimization process is visualized in Figure 6. The
illustrated optimization took 35 seconds on an Intel Core i7 clocked
at 3.2GHz. For the purpose of illustration, the floor plans in Figures
6 and 8 were augmented with windows and other architectural ele-
ments, as described in Section 6.

5.1 Proposal Moves

In order to effectively explore the space of layouts, the proposal
moves x→ x? must contain both local adjustments that tune the
existing layout and global reconfigurations that significantly alter
the layout. We have found the following simple set of moves to be
particularly effective for this purpose. It is easy to show that any
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200 Iterations 2,000 Iterations 20,000 Iterations 100,000 Iterations

Figure 6: Floor plan optimization. As the optimization proceeds, interior and exterior shapes become more cohesive and the architectural
program is realized.

building layout can be reached from any other layout using these
moves, as long as the layouts have the same number of rooms. Our
notation is as follows. A floor plan x is defined as a set of n rooms.
Each room is a rectilinear polygon enclosed by wall segments. A
maximal contiguous set of collinear wall segments is said to form a
wall.

Sliding a wall. The first proposal move locally adjusts the floor
plan by sliding a contiguous set of wall segments forward or back-
ward. We randomly choose a wall and a split point along the
wall. The wall is split into two collinear walls. One remains in
place while the other is moved forward or backward a distance
d ∼ N (0, σ2). (Figure 7, left.) The split point has a strictly
positive probability of being one of the end-points of the wall, in
which case the entire wall is moved without splitting. The splitting
also prioritizes existing vertices, although there is a strictly positive
probability of splitting an existing wall segment. Such splits are es-
sential since they introduce concave corners. While architects pri-
oritize convex spaces, concavities are necessary for realizing many
architectural programs and are often found in real-world floor plans
[Wood 2007].

A sequence of split moves increases the overall number of walls and
can lead to highly irregular room shapes and building outlines. To
balance this, we snap a moved wall to an existing one if, after a split
move, the two walls lie within distance ε. (Figure 7, right.) We em-
pirically set ε = 1 ft. and σ = 2ε. We similarly align the wall with
walls on neighboring floors, to increase consistency across floors.

Swapping rooms. In addition to local adjustments, a success-
ful application of the Metropolis algorithm requires proposal moves
that significantly alter the layout, in order to more rapidly explore
the space of layouts. We adopt the natural strategy of swapping the
identities of two rooms in the existing layout. Two rooms are se-
lected at random and their labels are interchanged. This generally
results in a drastic change in the objective function value, triggering
considerable modifications in the layout over the ensuing sequence
of moves.

Sliding a wall Snapping a wall

Figure 7: A sliding move locally adjusts the layout.

5.2 Cost Function

The optimization procedure attempts to minimize a cost function
C(x) that evaluates the quality of the layout. The cost function
penalizes violations of the architectural program, ill-formed rooms
and exterior outlines, and incompatibilities between floors. Specif-
ically, the cost function is defined as

C(x) = kaCa(x) + kdCd(x) + kfCf (x) + ksCs(x),

where ka, kd, kf , and ks are constants that specify the relative im-
portance of each term. These terms are defined below. The effect
of each term is demonstrated in Figure 8.

Accessibility. The architectural program specifies which pairs
of rooms must be connected by a door or an open passage. These
connections represent the circulation throughout the building and
determine the privacy gradient. For a connection between two
rooms to be possible, they must share a sufficiently long wall seg-
ment to accommodate a door. Furthermore, the entrance, patios,
and garage must have access to the outside. We define the accessi-
bility cost Ca as the number of missing connections plus the num-
ber of enclosed patios, entrances, and garages.

Dimensions. The architectural program also specifies the de-
sired dimensions – in the form of area and aspect ratio – for each
room. While it is possible to sample a single value for each room’s
area and aspect ratio from the Bayesian network, we have found it
advantageous to retain the complete probability distribution pro-
duced for each of these values by the network. Thus, for each
room, we have distributions over possible areas and aspect ratios.
These distributions are used to penalize unlikely room dimensions.
Specifically, let `ia(x) be the log-likelihood of the observed area of
room i in layout x and let `ias(x) be the log-likelihood of the corre-
sponding aspect ratio. The dimension cost is defined as

Cd(x) = −
nX

i=1

`
`ia(x) + `ias(x)

´
.

Floors. Each floor must be contained within the envelope of the
floor beneath [Wertheimer 2009]. Let F i

x be the union of all rooms
on the ith floor. Then F i

x−F i−1
x is the unsupported region on the

ith floor. The bottom floor F 1
x does not need to be supported, but

it must fit within the building lot, denoted by F 0
x . This enables the

generation of buildings that fit in a pre-specified building lot. The
floor compatibility cost Cf (x) is defined as

Cf (x) =

Pl
i=1A(F i

x − F i−1
x )Pl

i=1A(F i
x)

,
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(a) accessibility term excluded (b) area term excluded (c) aspect ratio term excluded (d) shape term excluded (e) all terms included

Figure 8: The cost function. (a,b,c,d) Ablation of individual cost terms and its effect on the floor plan optimization. (e) A floor plan optimized
with the complete cost function.

where l is the number of floors and A(·) is the area operator.

Shapes. Architects generally consider near-convex room shapes
to be preferable to strongly concave ones [Alexander et al. 1977].
Near-convex rooms are viewed as more comfortable, while rooms
that feature deep recesses often do not feel like cohesive spaces.
We thus penalize large deviations from convexity with a shape cost
Cs(x). Specifically, given a shape S, we define a measure Mc(S)
as

Mc(S) =
A(H(S))−A(S)

A(S)
+ e(S),

where H(S) is the convex hull of S and e(S) is the number of
edges along the outline of S. e(S) functions as a regularization
term that penalizes complexity even in near-convex shapes.

Hallways and stairways are often shaped differently from other
rooms because they are meant to be traveled through, not lived in.
They are not required to have the comforting qualities of inhabited
rooms and should not be penalized for concavity. We define a hall-
way indicator hi to be 1 if room i is a hallway or stairway and 0
otherwise. The overall shape cost for individual rooms is defined to
be
Pn

i=1(1− hi)Mc(R
i
x), where Ri

x is the ith room in the layout.

There are also groups of rooms whose aggregate shape is impor-
tant. If a group of rooms is connected by open walls, it can be
experienced as a single interior space. Let Gi

x be such a group, for
i ranging from 1 to g, where g is the number of such groups in the
layout. The total shape cost is defined as

Cs(x) = kr

Pn
i=1(1− hi)Mc(R

i
x)

+ kg

Pg
i=1Mc(G

i
x)

+ ko

Pl
i=1 e(F

i
x),

where kr, kg, and ko are constants. The last term penalizes irregu-
larity in the outline of each floor.

6 Generating 3D Models

Given a building layout, we can generate corresponding three-
dimensional models, decorated in a variety of styles (Figure 9).

Each available style is specified in a style template, listing the geo-
metric and material properties of every building element: windows,
doors, wall segments, gables, stairs, roofs, and patio poles and ban-
isters. The style template also records the desired spacings of win-
dows and banister poles, the roof angle, the presence of gables,
and the length of roof overhangs. New styles can be introduced by
adding new style templates.

Passageways. Different types of passageways are used be-
tween different types of rooms. Ordinary doors are placed in private
rooms such as bedrooms. French doors with windows are placed in
semi-private rooms such as studies or patios. Wide passageways
are placed between public rooms. Adjacent public rooms may be
on different floors, such as a second-story hallway that overlooks a
two-story living room; wherever a change in elevation occurs be-
tween adjacent rooms, a banister is placed instead of a passageway.

It is customary to place passageways near room corners. (“When [a
door] is in the middle of the wall, it almost always creates a pattern
of movement which breaks the room in two, destroys the center,
and leaves no single area which is large enough to use” [Alexander
et al. 1977].) We place the door in a location that minimizes the
sum of the distances from the door to the nearest corner in each of
the adjacent rooms.

Windows. Windows are laid out along exterior wall segments at
regular intervals within each room. Different sizes and styles of
windows can be used for different types of rooms. Available win-
dow types, along with their sizes and spacings, are listed in the style
template. If a window is obstructed by a roof segment from a lower
floor, the system defaults to a smaller window type, if available. If
the obstruction is too great for any available window type, no win-
dow is placed. In the entrance room, the central window is replaced
by the front door. Window boxes are handled similarly.

Staircases. Staircase spaces are specified in the building layout.
The shape of a staircase determines how the steps are arranged. If
the staircase space is narrow and rectangular, the steps are laid out
linearly. If the staircase space is wide enough for two flights of
stairs, a U-shaped staircase is used. If the staircase space is L-
shaped, a 90◦-turn is placed. Steps are made at least 36 inches

Figure 9: 3D models generated for the same building layout. From left to right: Cottage, Italianate, Tudor, and Craftsman.
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(a) Straight skeleton (b) Hipped roof (c) Gabled roof

Figure 10: Roof construction. A straight skeleton is computed (a),
yielding a hipped roof (b). If gables are desired, appropriate roof
faces are projected onto the façade plane (c).

wide, with each step having a tread between 9 and 11 in. and a riser
at most 8-1/4 in. [The American Institute of Architects 2007].

Roofs. Roofs are constructed using the straight skeleton algo-
rithm [Aichholzer et al. 1995] (Figure 10(a)). This yields a hipped
roof with no gables (Figure 10(b)). A gable is a triangular shape
below the roof that becomes part of the façade. Gables are added
if their existence is specified in the style template. For a given face
of a hipped roof, its vertices are simply projected onto the façade
plane to create a gable. If a roof face contains horizontal top edges
(parallel to the ground plane), it is not converted into a gable, since
this would distort other roof faces (Figure 10(c)).

7 Results

We first evaluate the individual components of the presented ap-
proach. Figures 4 and 5 demonstrate the performance of data-driven
architectural programming, described in Section 4. Figure 12 fo-
cuses on the floor plan optimization. Figure 12 (left) shows a real-
world building layout designed by a human architect, reproduced
from a catalogue [Wood 2007]. To isolate the floor plan optimiza-
tion step, we encoded the architectural program for this layout and
used it as input to the algorithm described in Section 5; the result is
shown in Figure 12 (right). Figure 9 demonstrates automatic gener-
ation of 3D models in different decorative styles for the same build-
ing layout (Section 6).

Figure 13 shows additional building layouts generated by our
method. Real-world layouts designed by human architects [Wood
2007] are shown for comparison.

While the optimization procedure described in Section 5 can theo-

first floor second floor

Figure 11: Failure case. The accessibility term was not driven to
zero before the optimization procedure terminated. As a result, the
staircase is blocked on the second story.

retically be made to converge to the global optimum [Geman and
Geman 1984], it is not guaranteed in practice to yield a layout that
minimizes all cost terms. Figure 11 presents a layout where the
optimization terminated before the accessibility term was driven to
zero. As a result, the staircase is blocked on the second story. For-
tunately, such failures are easy to detect automatically. In our ex-
periments they are virtually absent for single-story buildings, arise
in roughly 1 out of 20 optimization instances for two-story build-
ings, and in 1 out of 5 three-story optimizations. The chief cause
for these unsuccessful optimizations are multi-story spaces, such as
staircases and two-story living rooms, which couple the optimiza-
tion on multiple floors.

Figure 14 uses exploded views to visualize 3D models created with
the presented approach [Niederauer et al. 2003]. While automated
furniture placement techniques have been developed [Germer and
Schwarz 2009], we placed furniture manually to illustrate the func-
tions of the rooms. The three-story residences in our training set
were designed for hilly neighborhoods, with a main entrance on the
ground level, a lower level that is also accessible from the outside,
and an upper level. The model shown in Figure 14(c) is thus situ-
ated on a hill by design. Figure 15 shows a collection of automati-
cally generated residences with a variety of layout complexities and
architectural styles. Figure 16 shows a computer-generated two-
story Tudor, rendered in night-time conditions. All models shown
in this paper took a few seconds to 7 minutes to generate by our
single-threaded implementation.

8 Discussion

This paper presents an end-to-end approach to automated genera-
tion of residential building layouts. The method combines machine
learning and optimization techniques with architectural methodol-

real-world computer-generated

Figure 12: A two-story layout designed by an architect (left) and an automatically generated layout for the same architectural program
(right).
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(a) (b) (c)

(d) (e) (f)

Figure 13: (a,b,d,e) Computer-generated building layouts. (c,f) Real-world layouts, reproduced from a catalogue, shown for comparison.
The bottom row shows two-story layouts.

ogy to produce visually plausible building layouts from high-level
requirements.

Our building layout procedure is idealized and does not take into
account the myriad of site-specific and client-specific factors that
are considered by architects. In real-world architectural practice,
layout design is affected by the local climate, the views from the
site, and other environmental considerations. The client’s personal-
ity also plays a role: if the client has a large collection of paintings, a
good architect will make sure that sufficient wall space is available.
Such considerations can be integrated into the presented approach
by augmenting the objective function in Section 5.2. Another di-
rection for future research is to apply the techniques developed in
this work to other building types, such as apartment complexes and
office buildings. We believe that globally coupled optimization of
floor plans for all stories is not necessary in these cases, due to sig-
nificant regularity between floors.

Another important direction is to enable interactive exploration of
building layout designs. We believe that techniques presented in
this work can lead to powerful tools for interactive creation of build-
ing layouts. An additional research avenue is to apply data-driven
techniques to related layout problems, such as furniture placement
and the layout of outdoor environments.

There are many other ways to extend the presented approach. One
would be to add non-rectilinear or even curved wall segments, as
well as variation in floor elevation and ceiling height [Susanka
2001]. A more explicit optimization of the building exterior could
enable the synthesis of buildings with cohesive interiors as well
as specific façade appearance [Müller et al. 2006]. Integration of

structural stability considerations is another interesting possibility
[Whiting et al. 2009]. These developments will further enhance the
fidelity of computer-generated buildings.
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